Sample records for continued climate warming

  1. Climate Change: Evidence and Causes

    ERIC Educational Resources Information Center

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  2. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    NASA Astrophysics Data System (ADS)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some minor negative consequences of it can be successfully prevented.

  3. Medieval Warm Period Archives Preserved in Limpet Shells (Patella Vulgata) From Viking Deposits, United Kingdom

    NASA Astrophysics Data System (ADS)

    Mobilia, M.; Surge, D.

    2008-12-01

    The Medieval Warm Period (700-1100 YBP) represents a recent period of warm climate, and as such provides a powerful comparison to today's continuing warming trend. However, the spatial and temporal variability inherent in the Medieval Warm Period (MWP) makes it difficult to differentiate between global climate trends and regional variability. The continued study of this period will allow for the better understanding of temperature variability, both regional and global, during this climate interval. Our study is located in the Orkney Islands, Scotland, which is a critical area to understand climate dynamics. The North Atlantic Oscillation and Gulf Stream heavily influence climate in this region, and the study of climate intervals during the MWP will improve our understanding of the behavior of these climate mechanisms during this interval. Furthermore, the vast majority of the climate archive has been derived from either deep marine or arctic environments. Studying a coastal environment will offer valuable insight into the behavior of maritime climate during the MWP. Estimated seasonal sea surface temperature data were derived through isotopic analysis of limpet shells (Patella vulgata). Analysis of modern shells confirms that growth temperature tracks seasonal variation in ambient water temperature. Preliminary data from MWP shells record a seasonal temperature range comparable to that observed in the modern temperature data. We will extend the range of temperature data from the 10th through 14th centuries to advance our knowledge of seasonal temperature variability during the late Holocene.

  4. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  5. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  6. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  7. Demographic compensation and tipping points in climate-induced range shifts.

    PubMed

    Doak, Daniel F; Morris, William F

    2010-10-21

    To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.

  8. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  9. Low Elevation Riparian Environments: Warm-Climate Refugia for Conifers in the Great Basin, USA?

    NASA Astrophysics Data System (ADS)

    Millar, C.; Charlet, D. A.; Westfall, R. D.; Delany, D.

    2015-12-01

    The Great Basin, USA, contains hundreds of small to large mountain ranges. Many reach alpine elevations, which are separated from each other by low-elevation basins currently inhospitable to conifer growth. Many of these ranges support montane and subalpine conifer species that have affinities to the Sierra Nevada or Rocky Mountains, and from which these conifers migrated during cool periods of the Pleistocene. Under Holocene climates, the Great Basin geography became a terrestrial island-archipelago, wherein conifer populations are isolated among ranges, and inter-range migration is highly limited. During warm intervals of the Holocene, conifers would be expected to have migrated upslope following favorable conditions, and extirpation would be assumed to result from continued warming. Independent patterns, repeating across multiple species' distributions, however, suggest that refugia were present in these ranges during warm periods, and that low elevation environments below the current main distributions acted as climatic refugia. We hypothesize that cool, narrow, and north-aspect ravines, which during cool climates support persistent or seasonal creeks and deciduous riparian communities, become available as conifer habitat when warming climates desiccate creeks and deplete riparian species. We further speculate that cold-air drainage, reduced solar insolation, lower wind exposure, and higher water tables in these topographic positions support populations of montane and subalpine conifers even during warm climate intervals when high elevations are unfavorable for conifer persistence. On return to cool climates, low elevation refugia become sources for recolonizing higher slopes, and/or continue to persist as relictual populations. We present several lines of evidence supporting this hypothesis, and speculate that low-elevation, extramarginal riparian environments might act as climate refugia for Great Basin conifers in the future as well.

  10. Influence of winter season climate variability on snow-precipitation ratio in the western United States

    Treesearch

    Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin

    2015-01-01

    In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...

  11. Global mean temperature indicators linked to warming levels avoiding climate risks

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Peter; Schleussner, Carl-Friedrich; Mengel, Matthias; Rogelj, Joeri

    2018-06-01

    International climate policy uses global mean temperature rise limits as proxies for societally acceptable levels of climate change. These limits are informed by risk assessments which draw upon projections of climate impacts under various levels of warming. Here we illustrate that indicators used to define limits of warming and those used to track the evolution of the Earth System under climate change are not directly comparable. Depending on the methodological approach, differences can be time-variant and up to 0.2 °C for a warming of 1.5 °C above pre-industrial levels. This might lead to carbon budget overestimates of about 10 years of continued year-2015 emissions, and about a 10% increase in estimated 2100 sea-level rise. Awareness of this definitional mismatch is needed for a more effective communication between scientists and decision makers, as well as between the impact and physical climate science communities.

  12. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  13. Transient climate-carbon simulations of planetary geoengineering.

    PubMed

    Matthews, H Damon; Caldeira, Ken

    2007-06-12

    Geoengineering (the intentional modification of Earth's climate) has been proposed as a means of reducing CO2-induced climate warming while greenhouse gas emissions continue. Most proposals involve managing incoming solar radiation such that future greenhouse gas forcing is counteracted by reduced solar forcing. In this study, we assess the transient climate response to geoengineering under a business-as-usual CO2 emissions scenario by using an intermediate-complexity global climate model that includes an interactive carbon cycle. We find that the climate system responds quickly to artificially reduced insolation; hence, there may be little cost to delaying the deployment of geoengineering strategies until such a time as "dangerous" climate change is imminent. Spatial temperature patterns in the geoengineered simulation are comparable with preindustrial temperatures, although this is not true for precipitation. Carbon sinks in the model increase in response to geoengineering. Because geoengineering acts to mask climate warming, there is a direct CO2-driven increase in carbon uptake without an offsetting temperature-driven suppression of carbon sinks. However, this strengthening of carbon sinks, combined with the potential for rapid climate adjustment to changes in solar forcing, leads to serious consequences should geoengineering fail or be stopped abruptly. Such a scenario could lead to very rapid climate change, with warming rates up to 20 times greater than present-day rates. This warming rebound would be larger and more sustained should climate sensitivity prove to be higher than expected. Thus, employing geoengineering schemes with continued carbon emissions could lead to severe risks for the global climate system.

  14. Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il

    2017-04-01

    Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.

  15. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  16. Environmental Progression: The Psychological Justification for Reframing Climate Change and Global Warming

    NASA Astrophysics Data System (ADS)

    Veldey, S. H.

    2016-12-01

    On-going research in climate science communication through environmental media has uncovered critical barriers to reducing denial and increasing agency in addressing the threat of climate change. Similar to framing of our changing environment as "global warming", the term "climate change" also fails to properly frame the most critical challenge our species has faced. In a set of preliminary studies, significant changes in climate crisis denial, both positive and negative, have resulted from different media messaging. Continuation of this research utilizes social judgement theory (SJT) to classify a broader spectrum of effective avenues for environmental communication. The specificity of the terms global warming and climate change limit inclusion of issues critical to understanding their impacts. Now that the masses know what climate change is, it's time to teach them what it means.

  17. Weighting climate model projections using observational constraints.

    PubMed

    Gillett, Nathan P

    2015-11-13

    Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5. © 2015 The Authors.

  18. Climate scenarios for California

    USGS Publications Warehouse

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    In all of the simulations, most precipitation continues to occur in winter, with virtually all derived from North Pacific winter storms. Relatively little change in overall precipitation is projected. Climate warming has a profound influence in diminishing snow accumulations, because there is more rain and less snow, and earlier snowmelt. These snow losses increase as the warming increases, so that they are most severe under climate changes projected by the more sensitive model with the higher GHG emissions.

  19. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    PubMed

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China

    PubMed Central

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J.; Yu, Lizhong

    2016-01-01

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change. PMID:26725308

  1. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China.

    PubMed

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong

    2016-01-04

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.

  2. Canadian Unilateralism in the Arctic: Using Scenario Planning to Help Canada Achieve Its Strategic Goals in the North

    DTIC Science & Technology

    2013-05-23

    IN THE NORTH, by Major Sonny T. Hatton, 78 pages. Climate change and global warming could open up the Arctic to unprecedented energy and resource...heating up, both literally and figuratively. Climate change and global warming are melting the Polar ice cap in the North at an unprecedented rate...grow for Arctic nations as access increases due to global warming .35 Increased access and development in the Arctic will continue to encourage the

  3. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  4. Late Noachian Climate Of Mars: Constraints From Valley Network System Formation Times And The Intermittencies (Episodic/Periodic And Punctuated).

    NASA Astrophysics Data System (ADS)

    Head, James

    2017-04-01

    Formation of Late Noachian-Early Hesperian (LN-EH) valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. To constrain options for the ambient Noachian climate, we examine estimates for time required to carve channels/deltas and total duration implied by plausible intermittencies. Formation Times for VN, OBL, Deltas, Fans: A synthesis of required timescales show that even with the longest estimated continuous duration of VN formation/intermittencies, total time to carve the VN does not exceed 106 years, <˜0.25% of the total Noachian. Intermittency/episodicity assumptions are climate-model dependent (e.g., most workers use Earth-like fluvial activity and intermittency). Noachian-Early Hesperian Climate Models: 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. Two subtypes: a) "Rainfall/Fluvial Erosion-Dominated Warm and Wet Model": "Rainfall and surface runoff" persist throughout Noachian to explain crater degradation, and a LN-EH short rapidly ending terminal epoch. b) "Recharge Evaporation/Evaporite Dominated Warm and Wet Model": Sustained period of equatorial/mid-latitude precipitation and a vertically integrated hydrological system driven by evaporative upwelling and fluctuating shallow water table playa environments account for sulfate evaporate environments at Meridiani Planum. Sustained temperatures >273 K are required for extended periods (107-108 years). 2) Cold and icy climate: Sustained background temperatures extremely low (MAT ˜225 K), cryosphere is globally continuous, hydrological system is horizontally stratified, separating groundwater system from surface; no combination of spin-axis/orbital perturbations can raise MAT to 273 K. Adiabatic cooling effects transfer water to high altitudes, leading to "Late Noachian Icy Highlands Model". VNS cannot form in this nominal climate environment without special circumstances (e.g., impacts or volcanic eruptions elevate of temperatures by >˜50 K to induce melting and fluvial/lacustrine activity). 3) Cold and Icy climate warmed by greenhouse gases: The climate is sustained cold/icy model, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins (say 25 K, to MAT 250 K), bringing annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K). Fluvial systems driven by episodic/periodic intermittency typically involve short intermittency time-scales (10-106 years) but require a warm climate (MAT >273 K) to be sustained for >0.4 x 109 years. Fluvial systems driven by punctuated intermittency typically involve short duration time-scales (10-105 years) but only require a warm climate (MAT >273 K) for the very short duration of the climatic impact of the punctuated event (102-105 years). We conclude that a cold and icy background climate with punctuated intermittency of warming and melting events is consistent with: 1) the estimated durations of continuous VN formation (<105 years) and 2) VN system estimated recurrence rates (106-107 years).

  5. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  6. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  7. Impacts of Climate Change on Forest Isoprene Emission: Diversity Matters

    NASA Astrophysics Data System (ADS)

    Wang, B.; Shugart, H. H., Jr.; Lerdau, M.

    2016-12-01

    Many abiotic and biotic factors influence volatile organic compound (VOC) production and emission by plants; for example, climate warming is widely projected to enhance VOC emissions by stimulating their biosynthesis. The species-dependent nature of VOC production by plants indicates that changes in species abundances may play an important role in determining VOC production and emission at the ecosystem scale. To date, however, the role of species abundances in affecting VOC emissions has not been well studied. We examine the role of forest systems as sources of VOC's in terms of how species diversity and abundance influence isoprene emission under climate warming by using an individual-based forest VOC emission model—UVAFME-VOC 1.0—that can explicitly simulate forest compositional and structural change and VOC production/emission at the individual and canopy scales. We simulate isoprene emissions under two warming scenarios (warming by 2 and 4 °C) for temperate deciduous forests of the southeastern United States, where the dominant isoprene-emitting species are oaks (Quercus). The simulations show that, contrary to previous expectations, a warming by 2 °C does not affect isoprene emissions, while a further warming by 4 °C causes a large reduction of isoprene emissions. Interestingly, climate warming can directly enhance isoprene emission and simultaneously indirectly reduce it by lowering the abundance of isoprene-emitting species. Under gradual continuous warming, the indirect effect outweighs the direct effect, thus reducing overall forest isoprene emission. This modelling study shows that climate warming does not necessarily stimulate ecosystem VOC emissions and, more generally, that ecosystem diversity and composition can play a significant role in determining vegetation VOC emission capacity. Future earth system models and climate-chemistry models should better represent species diversity in projecting climate-air quality feedbacks and making management policy recommendations.

  8. Global warming: the balance of evidence and its policy implications. A review of the current state-of-the-controversy.

    PubMed

    Keller, Charles F

    2003-05-05

    Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications. With the recent publication of the Third Assessment Report of the United Nations' Intergovernmental Panel on Climate Change there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number. They are: Is the surface temperature record accurate or is it biased by heat from cities, etc.?, Is that record significantly different from past warmings such as the Medieval Warming Period?, Is not the sun's increasing activity the cause of most of the warming?, Can we model climate and predict its future, or is it just too complex and chaotic?, Are there any other changes in climate other than warming, and can they be attributed to the warming? Despite continued uncertainties, the review finds affirmative answers to these questions. Of particular interest are advances that seem to explain why satellites do not see as much warming as surface instruments, how we are getting a good idea of recent paleoclimates, and why the 20th century temperature record was so complex. It makes the point that in each area new information could come to light that would change our thinking on the quantitative magnitude and timing of anthropogenic warming, but it is unlikely to alter the basic conclusions. Finally, there is a very brief discussion of the societal policy response to the scientific message, and the author comments on his 2-year email discussions with many of the world's most outspoken critics of the anthropogenic warming hypothesis.

  9. The changing effects of Alaska’s boreal forests on the climate system

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  10. Assessing state efforts to integrate transportation, land use and climate change.

    DOT National Transportation Integrated Search

    2016-12-01

    Climate change is increasingly recognized as a threat to life on earth. Continued emission of greenhouse gases will cause further : warming and long-lasting changes in all components of the climate system, increasing the likelihood of severe, perv...

  11. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis

    NASA Astrophysics Data System (ADS)

    Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie

    2016-06-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.

  12. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis

    NASA Astrophysics Data System (ADS)

    Shi, S.

    2016-12-01

    Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.

  13. Sustained climate warming drives declining marine biological productivity

    NASA Astrophysics Data System (ADS)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  14. Short winters threaten temperate fish populations

    PubMed Central

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-01-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations. PMID:26173734

  15. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    PubMed

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  17. Understanding recent climate change.

    PubMed

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.

  18. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau

    PubMed Central

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ciais, Philippe; Peñuelas, Josep

    2016-01-01

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming. PMID:27044083

  19. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau.

    PubMed

    Liang, Eryuan; Wang, Yafeng; Piao, Shilong; Lu, Xiaoming; Camarero, Jesús Julio; Zhu, Haifeng; Zhu, Liping; Ellison, Aaron M; Ciais, Philippe; Peñuelas, Josep

    2016-04-19

    The alpine treeline is commonly regarded as being sensitive to climatic warming because regeneration and growth of trees at treeline generally are limited by low temperature. The alpine treelines of the Tibetan Plateau (TP) occur at the highest elevations (4,900 m above sea level) in the Northern Hemisphere. Ongoing climatic warming is expected to shift treelines upward. Studies of treeline dynamics at regional and local scales, however, have yielded conflicting results, indicating either unchanging treeline elevations or upward shifts. To reconcile this conflict, we reconstructed in detail a century of treeline structure and tree recruitment at sites along a climatic gradient of 4 °C and mean annual rainfall of 650 mm on the eastern TP. Species interactions interacted with effects of warming on treeline and could outweigh them. Densification of shrubs just above treeline inhibited tree establishment, and slowed upward movement of treelines on a time scale of decades. Interspecific interactions are major processes controlling treeline dynamics that may account for the absence of an upward shift at some TP treelines despite continued climatic warming.

  20. Connectivity planning to address climate change

    Treesearch

    Tristan A. Nuñez; Joshua J. Lawler; Brad H. McRae; D. John Pierce; Meade B. Krosby; Darren M. Kavanagh; Peter H. Singleton; Joshua J. Tewksbury

    2013-01-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad...

  1. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

    Treesearch

    C. Alina Cansler; Donald. McKenzie

    2014-01-01

    Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We...

  2. Hot Talk, Cold Science

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    One of the hottest topics in climate science is understanding and evaluating the impacts of possible global warming caused by anthropogenic emissions of greenhouse gases. In Hot Talk, Cold Science, S. Fred Singer does not accept global warming. Singer says in his preface, “The purpose of this book is to demonstrate that the evidence [for global warming] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should”.

  3. Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semiarid southern Siberia.

    PubMed

    Xu, Chongyang; Liu, Hongyan; Anenkhonov, Oleg A; Korolyuk, Andrey Yu; Sandanov, Denis V; Balsanova, Larisa D; Naidanov, Bulat B; Wu, Xiuchen

    2017-06-01

    Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long-term resilience of semiarid forests against climate change are limited. In this study, long-term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long-term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900-2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests. © 2016 John Wiley & Sons Ltd.

  4. Sustained climate warming drives declining marine biological productivity

    DOE PAGES

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; ...

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less

  5. Is a warmer climate wilting the forests of the north?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubes, G.

    1995-03-17

    The far-northern climate has warmed 2 degrees Celsium since the 1880s, much more than the rest of the world. A warmer climate might be expected to speed tree growth and drive the northern edge of the forest farther into the Arctic. However a 4 year study of growth rings in trees growing near the timberline in northern and central Alaska indicated differently. Two researchers, Jacoby and D`Arrigo of Lamont-Doherty Earth Observatory, report that as the high latitudes warmed over the past 100 years, tree growth accelerated at first, but recently the growth rate has flattened while the climate continues tomore » warm. This article discusses how the research was done and the possible implications and explanations, including the possibility that warmer temperatures may encourage outbreaks of insect pests.« less

  6. Sustained climate warming drives declining marine biological productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease bymore » more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.« less

  7. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  8. Observing Climate with Satellites - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  9. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    PubMed

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response to ongoing emissions of CO 2 and other greenhouse gases to the atmosphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    NASA Astrophysics Data System (ADS)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated. We show that upon cessation, an abrupt, spatially broad, and sustained warming over land occurs that is well outside the bounds of 20th century climate variability. We then use an upwelling-diffusion energy balance climate model to further show the sensitivity of these trends to background greenhouse gas emissions, termination year, and climate sensitivity. We find that the rate of warming from cessation of solar radiation management -- of critical importance for ecological and human systems -- is principally controlled by the background greenhouse gas concentrations. It follows that the only way to avoid the risk of an abrupt and dangerous warming that is inherent to the large-scale implementation of solar radiation management is to also strongly reduce greenhouse gas emissions. The climate system responds to radiative forcing on a diverse spectrum of timescales, which will affect what goals can be achieved for a given stratospheric aerosol implementation. We next investigate how different rates of stratospheric sulfate aerosol deployment affect what climate impacts can be avoided by simulating two rates of increasing stratospheric sulfate concentrations in a fully-coupled global climate model. We find that disparate goals are achieved for different rates of deployment; for a slow ramping of sulfate, land surface temperature trends remain small but sea levels continue to rise for decades, whereas a quick ramp-up of sulfate yields large land surface cooling trends and immediately reduces sea level. However, atmospheric circulation changes also act to create a large-scale subsurface ocean environment around Antarctica that is favorable for increased basal melting of ice sheet outlets, thereby leaving the potential open for increased sea level rise even in the absence of large atmospheric surface warming. We show that instead, when greenhouse gases are abruptly returned to preindustrial levels, circulation anomalies are reversed, and the subsurface ocean environment does not pose the same threat to Antarctic ice sheets. We conclude that again, reduction of greenhouse gases is the preferred strategy for avoiding climate impacts of global warming.

  11. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  12. The Effect of Impacts on the Martian Climate

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2005-01-01

    Evidence for the presence of liquid water early in Mars history continues to accumulate. The most recent evidence for liquid water being pervasive early in Mars history is the discoveries of sulfate and gypsum layers by the Mars Exploration Rovers and Mars Express. However, the presence of liquid water at the surface very early in Mars history presents a conundrum. The early sun was most likely approximately 75% fainter than it is today. About 65-70 degrees of greenhouse warming is needed to bring surface temperatures to the melting point of water. To date climate models have not been able to produce a continuously warm and wet early Mars. This may be a good thing as there is morphological and mineralogical evidence that the warm and wet period had to be relatively short and episodic. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approximately 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.

  13. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  14. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    PubMed

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  15. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    NASA Astrophysics Data System (ADS)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  16. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia

    PubMed Central

    Wan, Xinru

    2017-01-01

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. PMID:28330916

  17. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia.

    PubMed

    Wan, Xinru; Zhang, Zhibin

    2017-03-29

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus ), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. © 2017 The Author(s).

  18. Climate change and mosquito-borne disease.

    PubMed Central

    Reiter, P

    2001-01-01

    Global atmospheric temperatures are presently in a warming phase that began 250--300 years ago. Speculations on the potential impact of continued warming on human health often focus on mosquito-borne diseases. Elementary models suggest that higher global temperatures will enhance their transmission rates and extend their geographic ranges. However, the histories of three such diseases--malaria, yellow fever, and dengue--reveal that climate has rarely been the principal determinant of their prevalence or range; human activities and their impact on local ecology have generally been much more significant. It is therefore inappropriate to use climate-based models to predict future prevalence. PMID:11250812

  19. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming

    NASA Astrophysics Data System (ADS)

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.

    2017-04-01

    The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports along the U.S. Northeast Shelf. Given the complications of multiple drivers including species interactions and fishing pressure, it is difficult to predict exactly how species will shift. However, observations of species distribution shifts in the historical record under ocean warming suggest that temperature will play a primary role in influencing how species fare. Our results provide critical information on the potential for suitable thermal habitat on the U.S. Northeast Shelf for demersal species in the region, and may contribute to the development of ecosystem-based fisheries management strategies in response to climate change.

  20. Integrating geological archives and climate models for the mid-Pliocene warm period.

    PubMed

    Haywood, Alan M; Dowsett, Harry J; Dolan, Aisling M

    2016-02-16

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change.

  1. Integrating geological archives and climate models for the mid-Pliocene warm period

    PubMed Central

    Haywood, Alan M.; Dowsett, Harry J.; Dolan, Aisling M.

    2016-01-01

    The mid-Pliocene Warm Period (mPWP) offers an opportunity to understand a warmer-than-present world and assess the predictive ability of numerical climate models. Environmental reconstruction and climate modelling are crucial for understanding the mPWP, and the synergy of these two, often disparate, fields has proven essential in confirming features of the past and in turn building confidence in projections of the future. The continual development of methodologies to better facilitate environmental synthesis and data/model comparison is essential, with recent work demonstrating that time-specific (time-slice) syntheses represent the next logical step in exploring climate change during the mPWP and realizing its potential as a test bed for understanding future climate change. PMID:26879640

  2. Indicators of climate change in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Climate change affects all segments of the agricultural enterprise and there is mounting evidence that the continuing warming trend with shifting seasonality and intensity in precipitation will increase the vulnerability of agricultural systems. Agriculture is a complex system within the United Stat...

  3. Variability of precipitation in Poland under climate change

    NASA Astrophysics Data System (ADS)

    Szwed, Małgorzata

    2018-02-01

    The surface warming has been widespread over the entire globe. Central Europe, including Poland, is not an exception. Global temperature increases are accompanied by changes in other climatic variables. Climate change in Poland manifests itself also as change in annual sums of precipitation. They have been slightly growing but, what is more important, seasonal and monthly distributions of precipitation have been also changing. The most visible increases have been observed during colder half-year, especially in March. A decreasing contribution of summer precipitation total (June-August) to the annual total is observed. Climate projections for Poland predict further warming and continuation of already observed changes in the quantity of precipitation as well as its spatial and seasonal distribution.

  4. ``Global Warming/Climate Change'': A Critical Look

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2011-11-01

    There continues to be an increasing number of scientists from around the world who are challenging the dominant claim that has been bolstered by so-called ``consensus'' scientific views -- that dangerous ``global warming/climate change'' is caused primarily by human-produced carbon dioxide. This poster will show scientific evidence contradicting that claim. It will also explain some of the errors that have been introduced from a corruption of the scientific method. (Further information can be found at http://uhaweb.hartford.edu/lgould/)

  5. Climate vulnerability and resilience in the most valuable North American fishery.

    PubMed

    Le Bris, Arnault; Mills, Katherine E; Wahle, Richard A; Chen, Yong; Alexander, Michael A; Allyn, Andrew J; Schuetz, Justin G; Scott, James D; Pershing, Andrew J

    2018-02-20

    Managing natural resources in an era of increasing climate impacts requires accounting for the synergistic effects of climate, ecosystem changes, and harvesting on resource productivity. Coincident with recent exceptional warming of the northwest Atlantic Ocean and removal of large predatory fish, the American lobster has become the most valuable fishery resource in North America. Using a model that links ocean temperature, predator density, and fishing to population productivity, we show that harvester-driven conservation efforts to protect large lobsters prepared the Gulf of Maine lobster fishery to capitalize on favorable ecosystem conditions, resulting in the record-breaking landings recently observed in the region. In contrast, in the warmer southern New England region, the absence of similar conservation efforts precipitated warming-induced recruitment failure that led to the collapse of the fishery. Population projections under expected warming suggest that the American lobster fishery is vulnerable to future temperature increases, but continued efforts to preserve the stock's reproductive potential can dampen the negative impacts of warming. This study demonstrates that, even though global climate change is severely impacting marine ecosystems, widely adopted, proactive conservation measures can increase the resilience of commercial fisheries to climate change.

  6. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  7. Climate warming and the carbon cycle in the permafrost zone of the former Soviet Union

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolchugina, T.P.; Vinson, T.S.

    1993-01-01

    The continuous permafrost zone of the former Soviet Union occupies 5% of the land surface area of the earth and stores a significant amount of carbon. Climate warming could disrupt the balance between carbon (C) accumulation and decomposition processes within the permafrost zone. Increased temperatures may accelerate the rate of organic matter decomposition. At the same time, the productivity of vegetation may increase in response to warming. To assess the future carbon cycle within the permafrost zone under a climate-warming scenario, it is necessary to quantify present carbon pools and fluxes. The present carbon cycle was assessed on the basismore » of an ecosystem/ecoregion approach. Under the present climate, the phytomass carbon pool was estimated at 17.0 Giga tons. The mortmass (coarse woody debris) carbon pool was estimated at 16.1 Giga tons. The soil carbon pool, including peatlands, was 139.4 Giga tons. The present rate of carbon turnover was 1.6 Giga tons/yr. (Copyright (c) 1993 by John Wiley and Sons, Ltd.)« less

  8. Mammalian herbivores confer resilience of Arctic shrub-dominated ecosystems to changing climate.

    PubMed

    Kaarlejärvi, Elina; Hoset, Katrine S; Olofsson, Johan

    2015-09-01

    Climate change is resulting in a rapid expansion of shrubs in the Arctic. This expansion has been shown to be reinforced by positive feedbacks, and it could thus set the ecosystem on a trajectory toward an alternate, more productive regime. Herbivores, on the other hand, are known to counteract the effects of simultaneous climate warming on shrub biomass. However, little is known about the impact of herbivores on resilience of these ecosystems, that is, the capacity of a system to absorb disturbance and still remain in the same regime, retaining the same function, structure, and feedbacks. Here, we investigated how herbivores affect resilience of shrub-dominated systems to warming by studying the change of shrub biomass after a cessation of long-term experimental warming in a forest-tundra ecotone. As predicted, warming increased the biomass of shrubs, and in the absence of herbivores, shrub biomass in tundra continued to increase 4 years after cessation of the artificial warming, indicating that positive effects of warming on plant growth may persist even over a subsequent colder period. Herbivores contributed to the resilience of these systems by returning them back to the original low-biomass regime in both forest and tundra habitats. These results support the prediction that higher shrub biomass triggers positive feedbacks on soil processes and microclimate, which enable maintaining the rapid shrub growth even in colder climates. Furthermore, the results show that in our system, herbivores facilitate the resilience of shrub-dominated ecosystems to climate warming. © 2015 John Wiley & Sons Ltd.

  9. Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades.

    PubMed

    Yu, Li; Huang, Lei; Shao, Xuemei; Xiao, Fengjing; Wilmking, Martin; Zhang, Yongxiang

    2015-01-01

    Warming-induced drought has widely affected forest dynamics in most places of the northern hemisphere. In this study, we assessed how climate warming has affected Picea crassifolia (Qinghai spruce) forests using tree growth-climate relationships and the normalized difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau (the main range of Picea crassifolia). Based on the analysis on trees radial growth data from the upper tree line and the regional NDVI data, we identified a pervasive growth decline in recent decades, most likely caused by warming-induced droughts. The drought stress on Picea crassifolia radial growth were expanding from northeast to southwest and the favorable moisture conditions for tree growth were retreating along the identical direction in the study area over the last half century. Compared to the historical drought stress on tree radial growth in the 1920s, recent warming-induced droughts display a longer-lasting stress with a broader spatial distribution on regional forest growth. If the recent warming continues without the effective moisture increasing, then a notable challenge is developed for Picea crassifolia in the Qilian Mountains. Elaborate forest management is necessary to counteract the future risk of climate change effects in this region.

  10. Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981-2009 in China, and late rice was just opposite.

    PubMed

    Tao, Fulu; Zhang, Zhao; Shi, Wenjiao; Liu, Yujie; Xiao, Dengpan; Zhang, Shuai; Zhu, Zhu; Wang, Meng; Liu, Fengshan

    2013-10-01

    Based on the crop trial data during 1981-2009 at 57 agricultural experimental stations across the North Eastern China Plain (NECP) and the middle and lower reaches of Yangtze River (MLRYR), we investigated how major climate variables had changed and how the climate change had affected crop growth and yield in a setting in which agronomic management practices were taken based on actual weather. We found a significant warming trend during rice growing season, and a general decreasing trend in solar radiation (SRD) in the MLRYR during 1981-2009. Rice transplanting, heading, and maturity dates were generally advanced, but the heading and maturity dates of single rice in the MLRYR (YZ_SR) and NECP (NE_SR) were delayed. Climate warming had a negative impact on growth period lengths at about 80% of the investigated stations. Nevertheless, the actual growth period lengths of YZ_SR and NE_SR, as well as the actual length of reproductive growth period (RGP) of early rice in the MLRYR (YZ_ER), were generally prolonged due to adoption of cultivars with longer growth period to obtain higher yield. In contrast, the actual growth period length of late rice in the MLRYR (YZ_LR) was shortened by both climate warming and adoption of early mature cultivars to prevent cold damage and obtain higher yield. During 1981-2009, climate warming and decrease in SRD changed the yield of YZ_ER by -0.59 to 2.4%; climate warming during RGP increased the yield of YZ_LR by 8.38-9.56%; climate warming and decrease in SRD jointly reduced yield of YZ_SR by 7.14-9.68%; climate warming and increase in SRD jointly increased the yield of NE_SR by 1.01-3.29%. Our study suggests that rice production in China has been affected by climate change, yet at the same time changes in varieties continue to be the major factor driving yield and growing period trends. © 2013 John Wiley & Sons Ltd.

  11. Is Planetary-Scale High Tech Civilization Climatically Sustainable?: The Geophysics v Economics Paradigm War

    NASA Astrophysics Data System (ADS)

    Hoffert, M.

    2012-12-01

    Climate/energy policy is gridlocked between (1) a geophysics perspective revealing long-term instabilities from continued energy consumption growth, of which the fossil fuel greenhouse an early symptom; and (2) short-term, fossil-fuel energized-rapid-economic-growth-driven policies likely adaptive for hunter-gatherers competing for scarce food, but climatically fatal to planetary-scale economies dependent on agriculture and "energy slaves." Incorporating social science into climate/energy policy formulation has focused on integrated assessment models (IAMs) exploring scenarios (parallel universes making different social choices) depicting the evolution of GDP, energy consumed, the energy technology mixture, land use, greenhouse gas and aerosol emissions, and radiative forcing). Representative concentration pathways (RCP) scenarios developed for the IPCC AR5 report imply 5-10 degree C warming from fossil fuel burning unless unprecedentedly fast decarbonization rates ~ 7 %/yr are implemented from 2020 to 2100. A massive transition to carbon neutrality by midcentury is needed to keep warming < 2 degrees C (FIG. 1).Fossil fuel greenhouse warming is leveraged by two orders of magnitude relative to heating from human energy consumption. Even if civilization successfully transitions to carbon-neutrality in time, but energy use continues growing at 2%/year, fossil-fuel-greenhouse level warming would be generated by heat rejecting in only 200-300 years underscoring that sustainability implies a steady state planetary economy (FIG.2). Evolutionary psychology and neuroeconomics are emergent disciplines that may illuminate the physical v social science paradigm conflict threatening human survivability.

  12. Climate change as a migration driver from rural and urban Mexico

    NASA Astrophysics Data System (ADS)

    Nawrotzki, Raphael J.; Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando

    2015-11-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on US-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.

  13. Climate Change as Migration Driver from Rural and Urban Mexico.

    PubMed

    Nawrotzki, Raphael J; Hunter, Lori M; Runfola, Daniel M; Riosmena, Fernando

    2015-11-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986-1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture.

  14. Climate change and potential impacts on bristol bay sockeye salmon populations

    EPA Science Inventory

    Scientific research has shown that climate change has already caused detectable changes to ecosystems throughout Alaska. As warming is predicted to continue, it is likely to lead to changes in marine and freshwater aquatic ecosystems and impact sockeye salmon populations in Brist...

  15. An early warning system for high climate sensitivity? (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2010-12-01

    The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart from this problem, the transient nature of climate response driven by increasing CO2 requires careful monitoring of ocean heat storage as well as top-of-atmosphere radiative budgets, if climate sensitivity is to be estimated. Water vapor feedback is not considered as uncertain as cloud feedback, but there is still a considerable potential for surprises. I will discuss microwave monitoring requirements for tracking water vapor feedback. At the other extreme, the longer term feedbacks that contribute to Earth System Sensitivity are even more uncertain than cloud feedbacks, particularly with regard to the terrestrial carbon cycle. Prospects for obtaining an early warning of a PETM-type organic carbon release seem bleak. Finally, I will discuss the particular challenge of obtaining an early warning of high climate sensitivity in the case that the climate system has a bifurcation.

  16. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    PubMed

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  17. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.

  18. Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century

    PubMed Central

    Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao

    2017-01-01

    Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949

  19. Climate change: a brief overview of the science and health impacts for Australia.

    PubMed

    Hanna, Elizabeth G; McIver, Lachlan J

    2018-04-16

    The scientific relationship between atmospheric CO2 and global temperatures has been understood for over a century. Atmospheric concentrations of CO2 due to burning of fossil fuels have contributed to 75% of the observed 1°C rise in global temperatures since the start of the industrial era (about 1750). Global warming is associated with intensifying climatic extremes and disruption to human society and human health. Mitigation is vital for human health as continued current emission rates are likely to lead to 4°C of warming by 2100. Further escalation of Australia's hot and erratic climate will lead to more extreme climate-related disasters of heatwaves, droughts, fires and storms, as well as shifts in disease burdens.

  20. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis?

    PubMed

    Drake, John E; Tjoelker, Mark G; Aspinwall, Michael J; Reich, Peter B; Barton, Craig V M; Medlyn, Belinda E; Duursma, Remko A

    2016-08-01

    Given the contrasting short-term temperature dependences of gross primary production (GPP) and autotrophic respiration, the fraction of GPP respired by trees is predicted to increase with warming, providing a positive feedback to climate change. However, physiological acclimation may dampen or eliminate this response. We measured the fluxes of aboveground respiration (Ra ), GPP and their ratio (Ra /GPP) in large, field-grown Eucalyptus tereticornis trees exposed to ambient or warmed air temperatures (+3°C). We report continuous measurements of whole-canopy CO2 exchange, direct temperature response curves of leaf and canopy respiration, leaf and branch wood respiration, and diurnal photosynthetic measurements. Warming reduced photosynthesis, whereas physiological acclimation prevented a coincident increase in Ra . Ambient and warmed trees had a common nonlinear relationship between the fraction of GPP that was respired above ground (Ra /GPP) and the mean daily temperature. Thus, warming significantly increased Ra /GPP by moving plants to higher positions on the shared Ra /GPP vs daily temperature relationship, but this effect was modest and only notable during hot conditions. Despite the physiological acclimation of autotrophic respiration to warming, increases in temperature and the frequency of heat waves may modestly increase tree Ra /GPP, contributing to a positive feedback between climate warming and atmospheric CO2 accumulation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  2. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  3. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  4. Stream Channel Stability. Appendix E. Geomorphic Controls of Channel Stability,

    DTIC Science & Technology

    1981-04-01

    first from late-Eocene to middle- Oligocene and the second from middle-Miocene to Pleistocene. These two times of cooling were separated by a warming ...Starkel, 1966). It was warm but rather dry with pronounced fluctuations in humidity. For the North American continent, however, climatic conditions were...post-glacial warming continued until 3500 to 4000 yr BP (Zumberge and Potzer, 1956). This was the warmest and driest period during the Holocene for

  5. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead.

    PubMed

    Ramanathan, V; Feng, Y

    2008-09-23

    The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4 degrees C (1.4 degrees C to 4.3 degrees C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4 degrees C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4 degrees C to 4.3 degrees C in the committed warming overlaps and surpasses the currently perceived threshold range of 1 degrees C to 3 degrees C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan-Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that approximately 25% (0.6 degrees C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6 degrees C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO(2) mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4 degrees C.

  6. On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead

    PubMed Central

    Ramanathan, V.; Feng, Y.

    2008-01-01

    The observed increase in the concentration of greenhouse gases (GHGs) since the preindustrial era has most likely committed the world to a warming of 2.4°C (1.4°C to 4.3°C) above the preindustrial surface temperatures. The committed warming is inferred from the most recent Intergovernmental Panel on Climate Change (IPCC) estimates of the greenhouse forcing and climate sensitivity. The estimated warming of 2.4°C is the equilibrium warming above preindustrial temperatures that the world will observe even if GHG concentrations are held fixed at their 2005 concentration levels but without any other anthropogenic forcing such as the cooling effect of aerosols. The range of 1.4°C to 4.3°C in the committed warming overlaps and surpasses the currently perceived threshold range of 1°C to 3°C for dangerous anthropogenic interference with many of the climate-tipping elements such as the summer arctic sea ice, Himalayan–Tibetan glaciers, and the Greenland Ice Sheet. IPCC models suggest that ≈25% (0.6°C) of the committed warming has been realized as of now. About 90% or more of the rest of the committed warming of 1.6°C will unfold during the 21st century, determined by the rate of the unmasking of the aerosol cooling effect by air pollution abatement laws and by the rate of release of the GHGs-forcing stored in the oceans. The accompanying sea-level rise can continue for more than several centuries. Lastly, even the most aggressive CO2 mitigation steps as envisioned now can only limit further additions to the committed warming, but not reduce the already committed GHGs warming of 2.4°C. PMID:18799733

  7. Climate change threatens the world's marine protected areas

    NASA Astrophysics Data System (ADS)

    Bruno, John F.; Bates, Amanda E.; Cacciapaglia, Chris; Pike, Elizabeth P.; Amstrup, Steven C.; van Hooidonk, Ruben; Henson, Stephanie A.; Aronson, Richard B.

    2018-06-01

    Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing `community thermal safety margin' (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.

  8. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.

    PubMed

    Peterson, Megan L; Doak, Daniel F; Morris, William F

    2018-04-01

    Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life-history plasticity vs. local adaptation to species-wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species' range-not only those at the trailing range edge-could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species' latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade-off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species' ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species' abundance and distribution. © 2017 John Wiley & Sons Ltd.

  9. Long-term monitoring of an amphibian community after a climate change- and infectious disease-driven species extirpation.

    PubMed

    Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Garner, Trenton W J; Carrascal, Luis María

    2018-06-01

    Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway. © 2018 John Wiley & Sons Ltd.

  10. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    Treesearch

    Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...

  11. Ocean Drilling Program Records of the Last Five Million Years: A View of the Ocean and Climate System During a Warm Period and a Major Climate Transition

    NASA Astrophysics Data System (ADS)

    Ravelo, A. C.

    2003-12-01

    The warm Pliocene (4.7 to 3.0 Ma), the most recent period in Earth's history when global equilibrium climate was warmer than today, provides the opportunity to understand what role the components of the climate system that have a long timescale of response (cryosphere and ocean) play in determining globally warm conditions, and in forcing the major global climate cooling after 3.0 Ma. Because sediments of this age are well preserved in many locations in the world's oceans, we can potentially study this warm period in detail. One major accomplishment of the Ocean Drilling Program is the recovery of long continuous sediment sequences from all ocean basins that span the last 5.0 Ma. Dozens of paleoceanographers have generated climate records from these sediments. I will present a synthesis of these data to provide a global picture of the Pliocene warm period, the transition to the cold Pleistocene period, and changes in climate sensitivity related to this transition. In the Pliocene warm period, tropical sea surface temperature (SST) and global climate patterns suggest average conditions that resemble modern El Ni¤os, and deep ocean reconstructions indicate enhanced thermohaline overturning and reduced density and nutrient stratification. The data indicate that the warm conditions were not related to tectonic changes in ocean basin shape compared to today, rather they reflect the long term adjustment of the climate system to stronger than modern radiative forcing. The warm Pliocene to cold Pleistocene transition provides an opportunity to study the feedbacks of various components of the climate system. The marked onset of significant Northern hemisphere glaciation (NHG) at 2.75 Ma occurred in concert with a reduction in deep ocean ventilation, but cooling in subtropical and tropical regions was more gradual until Walker circulation was established in a major step at 2.0 Ma. Thus, regional high latitude ice albedo feedbacks, rather than low latitude processes, must have been primarily responsible for NHG at 2.75 Ma. And, regional air-sea feedbacks in the tropics, rather than ice sheet expansion, must have been primarily responsible for the marked increase in Walker circulation at 2.0 Ma. Finally, the detailed timing of events from different regions suggests that a tectonic `threshold' cannot explain the warm to cold climate transition. Studies of the last 5.0 Ma can also be used to understand how climate responds to changes in the Earth's radiative budget because seasonal and latitudinal variations in solar forcing are extremely well known, and many of the records that have been generated have the resolution and age control appropriate for the study of the climate response to these variations (Milankovitch cycles). In particular, how feedbacks operate when the mean climate state is warm versus cold can be studied. There is clear evidence that the amplitude of the climate response to solar forcing depends on the background mean state. In other words, the sensitivity of the climate to small perturbations in solar forcing has changed with time, and the balance of evidence indicates that tropical conditions, not high latitude conditions (such as ice sheet size) control this sensitivity. In sum, the Ocean Drilling Program has provided scientists with a window into the Pliocene warm period, and an opportunity to understand the workings of the ocean-climate system

  12. Global Warming in the Twenty-First Century: An Alternative Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar; Travis, Larry (Technical Monitor)

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition specific long-term global monitoring of aerosol properties.

  13. Global warming in the twenty-first century: an alternative scenario.

    PubMed

    Hansen, J; Sato, M; Ruedy, R; Lacis, A; Oinas, V

    2000-08-29

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO(2) greenhouse gases (GHGs), such as chlorofluorocarbons, CH(4), and N(2)O, not by the products of fossil fuel burning, CO(2) and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO(2) GHGs has declined in the past decade. If sources of CH(4) and O(3) precursors were reduced in the future, the change in climate forcing by non-CO(2) GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO(2) emissions, this reduction of non-CO(2) GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties.

  14. Global warming in the twenty-first century: An alternative scenario

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific long-term global monitoring of aerosol properties. PMID:10944197

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, R.A.

    As scientists and politicians anxiously eye signs of global greenhouse warming, climatologists are finding the best evidence yet that a massive volcanic eruption can temporarily bring the temperature down a notch or two. Such a cooling could be enough to set the current global warming back more than a decade, confusing any efforts to link it to the greenhouse effect. By effectively eliminating some nonvolcanic climate changes from the record of the past 100 years, researchers have detected drops in global temperature of several tenths of a degree within 1 to 2 years of volcanic eruptions. Apparently, the debris spewedmore » into the stratosphere blocked sunlight and caused the temperature drops. For all their potential social significance, the climate effects of volcanoes have been hard to detect. The problem has been in identifying a volcanic cooling among the nearly continuous climate warmings and coolings of a similar size that fill the record. The paper reviews how this was done.« less

  16. Chapter 8: Droughts, Floods, and Wildfires

    NASA Technical Reports Server (NTRS)

    Wehner, M. F.; Arnold, J. R.; Knutson, T.; Kunkel, K. E.; LeGrande, A. N.

    2017-01-01

    Recent droughts and associated heat waves have reached record intensity in some regions of the United States; however, by geographical scale and duration, the Dust Bowl era of the 1930s remains the benchmark drought and extreme heat event in the historical record (very high confidence). While by some measures drought has decreased over much of the continental United States in association with long-term increases in precipitation, neither the precipitation increases nor inferred drought decreases have been confidently attributed to anthropogenic forcing. The human effect on recent major U.S. droughts is complicated. Little evidence is found for a human influence on observed precipitation deficits, but much evidence is found for a human influence on surface soil moisture deficits due to increased evapotranspiration caused by higher temperatures. Future decreases in surface (top 10 cm) soil moisture from anthropogenic forcing over most of the United States are likely as the climate warms under higher scenarios. Substantial reductions in western U.S. winter and spring snowpack are projected as the climate warms. Earlier spring melt and reduced snow water equivalent have been formally attributed to human-induced warming (high confidence) and will very likely be exacerbated as the climate continues to warm (very high confidence). Under higher scenarios, and assuming no change to current water resources management, chronic, long-duration hydrological drought is increasingly possible by the end of this century. Detectable changes in some classes of flood frequency have occurred in parts of the United States and are a mix of increases and decreases. Extreme precipitation, one of the controlling factors in flood statistics, is observed to have generally increased and is projected to continue to do so across the United States in a warming atmosphere. However, formal attribution approaches have not established a significant connection of increased riverine flooding to human-induced climate change, and the timing of any emergence of a future detectable anthropogenic change in flooding is unclear. The incidence of large forest fires in the western United States and Alaska has increased since the early 1980s and is projected to further increase in those regions as the climate warms, with profound changes to certain ecosystems.

  17. Anthropogenic ``Global Warming'' Alarmism: Illuminating some Scientific and Methodological Flaws

    NASA Astrophysics Data System (ADS)

    Gould, Larry

    2009-10-01

    There continues to be an increasing number of scientists and public figures around the world who are challenging the dominant political- and mediadriven claims that have been bolstered by so-called ``consensus'' scientific views -- that dangerous ``global warming/climate change'' is caused primarily by human-produced carbon dioxide. This general talk will show that the weight of scientific evidence strongly contradicts the alarmist claims. It will also explain what are some of the methodological flaws that continue to threaten the scientific method.

  18. Future assessment activities

    Treesearch

    Toral Patel-Weynand

    2012-01-01

    Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...

  19. Improving scientific knowledge

    Treesearch

    James M. Vose; David L. Peterson

    2012-01-01

    Scientific literature on the effects of climatic variability and change on forest ecosystems has increased significantly over the past decade, providing a foundation for establishing forest-climate relationships and projecting the effects of continued warming on a wide range of forest resources and ecosystem services. In addition, certainty about the nature of some of...

  20. Range shifts or extinction? Ancient DNA and distribution modelling reveal past and future responses to climate warming in cold-adapted birds.

    PubMed

    Lagerholm, Vendela K; Sandoval-Castellanos, Edson; Vaniscotte, Amélie; Potapova, Olga R; Tomek, Teresa; Bochenski, Zbigniew M; Shepherd, Paul; Barton, Nick; Van Dyck, Marie-Claire; Miller, Rebecca; Höglund, Jacob; Yoccoz, Nigel G; Dalén, Love; Stewart, John R

    2017-04-01

    Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long-term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum. © 2016 John Wiley & Sons Ltd.

  1. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated. The impact of the simulated surface warming on the ice flow and ice dynamics is explored.

  2. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Cai, Wenju; Gan, Bolan; Wu, Lixin; Santoso, Agus; Lin, Xiaopei; Chen, Zhaohui; McPhaden, Michael J.

    2017-08-01

    The Paris Agreement aims to constrain global mean temperature (GMT) increases to 2 °C above pre-industrial levels, with an aspirational target of 1.5 °C. However, the pathway to these targets and the impacts of a 1.5 °C and 2 °C warming on extreme El Niño and La Niña events--which severely influence weather patterns, agriculture, ecosystems, public health and economies--is little known. Here, by analysing climate models participating in the Climate Model Intercomparison Project's Phase 5 (CMIP5; ref. ) under a most likely emission scenario, we demonstrate that extreme El Niño frequency increases linearly with the GMT towards a doubling at 1.5 °C warming. This increasing frequency of extreme El Niño events continues for up to a century after GMT has stabilized, underpinned by an oceanic thermocline deepening that sustains faster warming in the eastern equatorial Pacific than the off-equatorial region. Ultimately, this implies a higher risk of extreme El Niño to future generations after GMT rise has halted. On the other hand, whereas previous research suggests extreme La Niña events may double in frequency under the 4.5 °C warming scenario, the results presented here indicate little to no change under 1.5 °C or 2 °C warming.

  3. How will the tundra-taiga interface respond to climate change?

    PubMed

    Skre, Oddvar; Baxter, Robert; Crawford, Robert M M; Callaghan, Terry V; Fedorkov, Alexey

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  4. The climate response to five trillion tonnes of carbon

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.; Eby, Michael

    2016-09-01

    Concrete actions to curtail greenhouse gas emissions have so far been limited on a global scale, and therefore the ultimate magnitude of climate change in the absence of further mitigation is an important consideration for climate policy. Estimates of fossil fuel reserves and resources are highly uncertain, and the amount used under a business-as-usual scenario would depend on prevailing economic and technological conditions. In the absence of global mitigation actions, five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions. An approximately linear relationship between global warming and cumulative CO2 emissions is known to hold up to 2 EgC emissions on decadal to centennial timescales; however, in some simple climate models the predicted warming at higher cumulative emissions is less than that predicted by such a linear relationship. Here, using simulations from four comprehensive Earth system models, we demonstrate that CO2-attributable warming continues to increase approximately linearly up to 5 EgC emissions. These models simulate, in response to 5 EgC of CO2 emissions, global mean warming of 6.4-9.5 °C, mean Arctic warming of 14.7-19.5 °C, and mean regional precipitation increases by more than a factor of four. These results indicate that the unregulated exploitation of the fossil fuel resource could ultimately result in considerably more profound climate changes than previously suggested.

  5. Processes Controlling Baseflow and Climatic Warming Effects in Merced River, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Liu, F.; Conklin, M. H.; Shaw, G.; Bales, R. C.; Conrad, M. E.; Rice, R.

    2006-12-01

    Sources of streamflow in Merced River were determined using stable isotopes and chemical tracers in order to improve our understanding of hydrologic controls on streamflow and their relationship with climatic warming in the region. Samples were collected from streamflow, groundwater, and natural springs from 2003 to 2006. Both stable isotopes and specific conductivity in streamflow showed a strong seasonality, with lower values from April to July during the snowmelt season, higher values from August to October during dry season, and intermediate values from November to March during winter rainfall and snowfall. Two components controlling baseflow (streamflow from August to October) in the Upper Merced River were identified: shallow subsurface runoff from snowmelt infiltration and groundwater from fractured bedrock. Conductivity in baseflow increased rapidly with discharge, following a power law (R2 > 0.96, p < 0.05), and peaked in October, indicating that the contribution of shallow subsurface runoff to baseflow was significant but decreased rapidly from August to October. Baseflow appears to be very sensitive to the snowmelt timing and regime. From 1976 to 2005, during a period of increasing temperature in the region, streamflow tended to decrease significantly during October (p < 0.05) and increase during March (p < 0.05). However, total annual precipitation did not change significantly, indicating that the shift in baseflow discharge is a result of the early onset of snowmelt due to climatic warming. If climatic warming continues in the region, baseflow in the Sierra Nevada may continue decreasing and water supply may suffer increased stress during the late summer, high water-demand period.

  6. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  7. Climate Change as Migration Driver from Rural and Urban Mexico

    PubMed Central

    Hunter, Lori M.; Runfola, Daniel M.; Riosmena, Fernando

    2015-01-01

    Studies investigating migration as a response to climate variability have largely focused on rural locations to the exclusion of urban areas. This lack of urban focus is unfortunate given the sheer numbers of urban residents and continuing high levels of urbanization. To begin filling this empirical gap, this study investigates climate change impacts on U.S.-bound migration from rural and urban Mexico, 1986–1999. We employ geostatistical interpolation methods to construct two climate change indices, capturing warm and wet spell duration, based on daily temperature and precipitation readings for 214 weather stations across Mexico. In combination with detailed migration histories obtained from the Mexican Migration Project, we model the influence of climate change on household-level migration from 68 rural and 49 urban municipalities. Results from multilevel event-history models reveal that a temperature warming and excessive precipitation significantly increased international migration during the study period. However, climate change impacts on international migration is only observed for rural areas. Interactions reveal a causal pathway in which temperature (but not precipitation) influences migration patterns through employment in the agricultural sector. As such, climate-related international migration may decline with continued urbanization and the resulting reductions in direct dependence of households on rural agriculture. PMID:26692890

  8. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem.

    PubMed

    Peng, Fei; Xue, Xian; You, Quangang; Xu, Manhou; Chen, Xiang; Guo, Jian; Wang, Tao

    2016-12-01

    Nitrogen (N) availability is projected to increase in a warming climate. But whether the more available N is immobilized by microbes (thus stimulates soil carbon (C) decomposition), or is absorbed by plants (thus intensifies C uptake) remains unknown in the alpine meadow ecosystem. Infrared heaters were used to simulate climate warming with a paired experimental design. Soil ammonification, nitrification, and net mineralization were obtained by in situ incubation in a permafrost region of the Qinghai-Tibet Plateau (QTP). Available N significantly increased due to the stimulation of net nitrification and mineralization in 0-30 cm soil layer. Microbes immobilized N in the end of growing season in both warming and control plots. The magnitude of immobilized N was lower in the warming plots. The root N concentration significantly reduced, but root N pool intensified due to the significant increase in root biomass in the warming treatment. Our results suggest that a warming-induced increase in biomass is the major N sink and will continue to stimulate plant growth until plant N saturation, which could sustain the positive warming effect on ecosystem productivity.

  9. Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900-2099 *

    USGS Publications Warehouse

    Dettinger, M.D.; Cayan, D.R.; Meyer, M.K.; Jeton, A.

    2004-01-01

    Hydrologic responses of river basins in the Sierra Nevada of California to historical and future climate variations and changes are assessed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-yr period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th century until about 1975 when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st century with an attendant +2.5??C warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. The various projected trends in the business-as-usual simulations become readily visible despite realistic simulated natural climatic and hydrologic variability by about 2025. In contrast to these changes that are mostly associated with streamflow timing, long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. A control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995 yields climate and streamflow timing conditions much like the 1980s and 1990s throughout its duration. The availability of continuous climate-change projection outputs and careful design of initial conditions and control experiments, like those utilized here, promise to improve the quality and usability of future climate-change impact assessments.

  10. Mechanism of non-appearance of hiatus in Tibetan Plateau.

    PubMed

    Ma, Jieru; Guan, Xiaodan; Guo, Ruixia; Gan, Zewen; Xie, Yongkun

    2017-06-30

    In the recent decade, hiatus is the hottest issue in the community of climate change. As the area of great importance, the Tibetan Plateau (TP), however, did not appear to have any warming stoppage in the hiatus period. In fact, the TP showed a continuous warming in the recent decade. To explore why the TP did not show hiatus, we divide the surface air temperature into dynamically-induced temperature (DIT) and radiatively-forced temperature (RFT) by applying the dynamical adjustment method. Our results show that DIT displayed a relatively uniform warming background in the TP, with no obvious correlations with dynamic factors. Meanwhile, as the major contribution to warming, the RFT effect over the TP played the dominant role. The warming role is illustrated using the temperature change between perturbed and control simulation responses to CO 2 or black carbon (BC) forcing via Community Earth System Model (CESM). It shows that an obvious warming in the TP is induced by the CO 2 warming effect, and BC exhibits an amplifying effect on the warming. Therefore, the continuous warming in the TP was a result of uniform DIT warming over a large scale and enhanced RFT warming at a regional scale.

  11. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological impacts.

  12. Vulnerability of wetland soil carbon stocks to climate warming in the perhumid coastal temperate rainforest

    Treesearch

    Jason B. Fellman; David V. D’Amore; Eran Hood; Pat Cunningham

    2017-01-01

    The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha-1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four...

  13. Noachian Climate of Mars: Insights from Noachian Stratigraphy and Valley Networks System Formation Times

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2017-12-01

    Noachian climate models have been proposed in order to account for 1) observed fluvial and lacustrine activity, 2) weathering processes producing phyllosilicates, and 3) an unusual impact record including three major impact basins and unusual degradation processes. We adopt a stratigraphic approach in order place these observations in a temporal context. Formation of the major impact basins Hellas, Isidis and Argyre in earlier Noachian profoundly influenced the uplands geology and appears to have occurred concurrently with major phyllosilicate and related surface occurrences/deposits; the immediate aftermath of these basins appears to have created a temporary hot and wet surface environment with significant effect on surface morphology and alteration processes. Formation of Late Noachian-Early Hesperian valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. We examined estimates for the time required to carve channels/deltas and total duration implied by plausible intermittencies. Synthesis of required timescales show that the total time to carve the VN does not exceed 106 years, < 0.25% of the total Noachian. What climate models can account for the VNS? 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. 2) Cold and Icy climate warmed by greenhouse gases or episodic stochastic events: Climate is sustained cold/icy, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins, bringing the annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K); punctuated warming alternatives include impacts or volcanic eruptions. We conclude that a cold and icy background climate with modest greenhouse warming or punctuated warming and melting events for the VNs origin is consistent with: 1) the estimated durations of continuous VN formation (<105 years) and 2) VN system estimated recurrence rates (106-107 years).

  14. Global warming and flowering times in Thoreau's Concord: a community perspective.

    PubMed

    Miller-Rushing, Abraham J; Primack, Richard B

    2008-02-01

    As a result of climate change, many plants are now flowering measurably earlier than they did in the past. However, some species' flowering times have changed much more than others. Data at the community level can clarify the variation in flowering responses to climate change. In order to determine how North American species' flowering times respond to climate, we analyzed a series of previously unstudied records of the dates of first flowering for over 500 plant taxa in Concord, Massachusetts, USA. These records began with six years of observations by the famous naturalist Henry David Thoreau from 1852 to 1858, continued with 16 years of observations by the botanist Alfred Hosmer in 1878 and 1888-1902, and concluded with our own observations in 2004, 2005, and 2006. From 1852 through 2006, Concord warmed by 2.4 degrees C due to global climate change and urbanization. Using a subset of 43 common species, we determined that plants are now flowering seven days earlier on average than they did in Thoreau's times. Plant flowering times were most correlated with mean temperatures in the one or two months just before flowering and were also correlated with January temperatures. Summer-flowering species showed more interannual variation in flowering time than did spring-flowering species, but the flowering times of spring-flowering species correlated more strongly to mean monthly temperatures. In many cases, such as within the genera Betula and Solidago, closely related, co-occurring species responded to climate very differently from one another. The differences in flowering responses to warming could affect relationships in plant communities as warming continues. Common St. John's wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum) are particularly responsive to changes in climate, are common across much of the United States, and could serve as indicators of biological responses to climate change. We discuss the need for researchers to be aware, when using data sets involving multiple observers, of how varying methodologies, sample sizes, and sampling intensities affect the results. Finally, we emphasize the importance of using historical observations, like those of Thoreau and Hosmer, as sources of long-term data and to increase public awareness of biological responses to climate change.

  15. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed

    Nabi, Sa; Qader, Ss

    2009-03-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world.This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards.

  16. Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong

    2018-05-01

    There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.

  17. The role of clouds and oceans in global greenhouse warming. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffert, M.I.

    1996-10-01

    This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic changemore » from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.« less

  18. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both marine and continental records show continued warmth up to the Eocene-Oligocene boundary. This is followed at 33.96 Ma in both records by a shift to cooler climates, and in the continental record, more humid conditions.

  19. Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.

    PubMed

    Leblans, Niki I W; Sigurdsson, Bjarni D; Vicca, Sara; Fu, Yongshuo; Penuelas, Josep; Janssens, Ivan A

    2017-11-01

    The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming-induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground-level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short- and long-term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming-driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high-latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming-induced extension of LOS has important implications for the C-sink potential of subarctic grasslands under climate change. © 2017 John Wiley & Sons Ltd.

  20. Demographic amplification of climate change experienced by the contiguous United States population during the 20(th) century.

    PubMed

    Samson, Jason; Berteaux, Dominique; McGill, Brian J; Humphries, Murray M

    2012-01-01

    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20(th) century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.

  1. Demographic Amplification of Climate Change Experienced by the Contiguous United States Population during the 20th Century

    PubMed Central

    Samson, Jason; Berteaux, Dominique; McGill, Brian J.; Humphries, Murray M.

    2012-01-01

    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20th century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse. PMID:23115624

  2. The seasonal timing of warming that controls onset of the growing season.

    PubMed

    Clark, James S; Melillo, Jerry; Mohan, Jacqueline; Salk, Carl

    2014-04-01

    Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. © 2013 John Wiley & Sons Ltd.

  3. Changes in the probability of co-occurring extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2017-12-01

    Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.

  4. Regional cooling caused recent New Zealand glacier advances in a period of global warming.

    PubMed

    Mackintosh, Andrew N; Anderson, Brian M; Lorrey, Andrew M; Renwick, James A; Frei, Prisco; Dean, Sam M

    2017-02-14

    Glaciers experienced worldwide retreat during the twentieth and early twenty first centuries, and the negative trend in global glacier mass balance since the early 1990s is predominantly a response to anthropogenic climate warming. The exceptional terminus advance of some glaciers during recent global warming is thought to relate to locally specific climate conditions, such as increased precipitation. In New Zealand, at least 58 glaciers advanced between 1983 and 2008, and Franz Josef and Fox glaciers advanced nearly continuously during this time. Here we show that the glacier advance phase resulted predominantly from discrete periods of reduced air temperature, rather than increased precipitation. The lower temperatures were associated with anomalous southerly winds and low sea surface temperature in the Tasman Sea region. These conditions result from variability in the structure of the extratropical atmospheric circulation over the South Pacific. While this sequence of climate variability and its effect on New Zealand glaciers is unusual on a global scale, it remains consistent with a climate system that is being modified by humans.

  5. Regional cooling caused recent New Zealand glacier advances in a period of global warming

    NASA Astrophysics Data System (ADS)

    Mackintosh, Andrew N.; Anderson, Brian M.; Lorrey, Andrew M.; Renwick, James A.; Frei, Prisco; Dean, Sam M.

    2017-02-01

    Glaciers experienced worldwide retreat during the twentieth and early twenty first centuries, and the negative trend in global glacier mass balance since the early 1990s is predominantly a response to anthropogenic climate warming. The exceptional terminus advance of some glaciers during recent global warming is thought to relate to locally specific climate conditions, such as increased precipitation. In New Zealand, at least 58 glaciers advanced between 1983 and 2008, and Franz Josef and Fox glaciers advanced nearly continuously during this time. Here we show that the glacier advance phase resulted predominantly from discrete periods of reduced air temperature, rather than increased precipitation. The lower temperatures were associated with anomalous southerly winds and low sea surface temperature in the Tasman Sea region. These conditions result from variability in the structure of the extratropical atmospheric circulation over the South Pacific. While this sequence of climate variability and its effect on New Zealand glaciers is unusual on a global scale, it remains consistent with a climate system that is being modified by humans.

  6. Regional cooling caused recent New Zealand glacier advances in a period of global warming

    PubMed Central

    Mackintosh, Andrew N.; Anderson, Brian M.; Lorrey, Andrew M.; Renwick, James A.; Frei, Prisco; Dean, Sam M.

    2017-01-01

    Glaciers experienced worldwide retreat during the twentieth and early twenty first centuries, and the negative trend in global glacier mass balance since the early 1990s is predominantly a response to anthropogenic climate warming. The exceptional terminus advance of some glaciers during recent global warming is thought to relate to locally specific climate conditions, such as increased precipitation. In New Zealand, at least 58 glaciers advanced between 1983 and 2008, and Franz Josef and Fox glaciers advanced nearly continuously during this time. Here we show that the glacier advance phase resulted predominantly from discrete periods of reduced air temperature, rather than increased precipitation. The lower temperatures were associated with anomalous southerly winds and low sea surface temperature in the Tasman Sea region. These conditions result from variability in the structure of the extratropical atmospheric circulation over the South Pacific. While this sequence of climate variability and its effect on New Zealand glaciers is unusual on a global scale, it remains consistent with a climate system that is being modified by humans. PMID:28195582

  7. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle

    USGS Publications Warehouse

    Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.

    2014-01-01

    The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.

  8. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  9. Climatic Change over the 'Third Pole' from Long Tree-Ring Records

    NASA Astrophysics Data System (ADS)

    Cook, E.

    2011-12-01

    Climatic change over the Greater Himalayas and Tibetan Plateau, the 'Third Pole' of the world, is of great concern now as the Earth continues to warm at an alarming rate. While future climatic change over this region and its resulting impacts on humanity and the environment are difficult to predict with much certainty, knowing how climate has varied in the past can provide both an improved understanding of the range of variability and change that could occur in the future and the necessary context for assessing recent observed climatic change there. For this purpose, one of the best natural archives of past climate information available for study of the Third Pole environment is the changing pattern of annual ring widths found in long tree-ring chronologies. The forests of the Third Pole support many long-lived tree species, with some having life spans in excess of 1,000 years. This natural resource is steadily dwindling now due to continuing deforestation caused by human activity, but there is still enough remaining forest cover to produce a detailed network of long tree-ring chronologies for study of climate variability and change covering the past several centuries. The tree-ring records provide a mix of climate information, including that related to both temperature and precipitation. Examples of long drought-sensitive tree-ring records from the more arid parts of the Karakoram and Tibetan Plateau will be presented, along with records that primarily reflect changing temperatures in moister environments such as in Bhutan. Together they provide a glimpse of how climate of the Third Pole has changed over the past several centuries, the range of natural variability that could occur in the future independent of changes caused by greenhouse warming, and how changes during the latter part of the 20th century period of rapid global warming compare to the past.

  10. Uncertainties in forecasting the response of polar bears to global climate change

    USGS Publications Warehouse

    Douglas, David C.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    Several sources of uncertainty affect how precisely the future status of polar bears (Ursus maritimus) can be forecasted. Foremost are unknowns about the future levels of global greenhouse gas emissions, which could range from an unabated increase to an aggressively mitigated reduction. Uncertainties also arise because different climate models project different amounts and rates of future warming (and sea ice loss)—even for the same emission scenario. There are also uncertainties about how global warming could affect the Arctic Ocean’s food web, so even if climate models project the presence of sea ice in the future, the availability of polar bear prey is not guaranteed. Under a worst-case emission scenario in which rates of greenhouse gas emissions continue to rise unabated to century’s end, the uncertainties about polar bear status center on a potential for extinction. If the species were to persist, it would likely be restricted to a high-latitude refugium in northern Canada and Greenland—assuming a food web also existed with enough accessible prey to fuel weight gains for surviving onshore during the most extreme years of summer ice melt. On the other hand, if emissions were to be aggressively mitigated at the levels proposed in the Paris Climate Agreement, healthy polar bear populations would probably continue to occupy all but the most southern areas of their contemporary summer range. While polar bears have survived previous warming phases—which indicate some resiliency to the loss of sea ice habitat—what is certain is that the present pace of warming is unprecedented and will increasingly expose polar bears to historically novel stressors.

  11. Recent climate warming drives ecological change in a remote high-Arctic lake.

    PubMed

    Woelders, Lineke; Lenaerts, Jan T M; Hagemans, Kimberley; Akkerman, Keechy; van Hoof, Thomas B; Hoek, Wim Z

    2018-05-01

    The high Arctic is the fastest warming region on Earth, evidenced by extreme near-surface temperature increase in non-summer seasons, recent rapid sea ice decline and permafrost melting since the early 1990's. Understanding the impact of climate change on the sensitive Arctic ecosystem to climate change has so far been hampered by the lack of time-constrained, high-resolution records and by implicit climate data analyses. Here, we show evidence of sharp growth in freshwater green algae as well as distinct diatom assemblage changes since ~1995, retrieved from a high-Arctic (80 °N) lake sediment record on Barentsøya (Svalbard). The proxy record approaches an annual to biennial resolution. Combining remote sensing and in-situ climate data, we show that this ecological change is concurrent with, and is likely driven by, the atmospheric warming and a sharp decrease in the length of the sea ice covered period in the region, and throughout the Arctic. Moreover, this research demonstrates the value of palaeoclimate records in pristine environments for supporting and extending instrumental records. Our results reinforce and extend observations from other sites that the high Arctic has already undergone rapid ecological changes in response to on-going climate change, and will continue to do so in the future.

  12. Simulated Hydrologic Responses to Climate Variations and Change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900-2099

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Cayan, D. R.; Cayan, D. R.; Meyer, M. K.

    2001-12-01

    Sensitivities of river basins in the Sierra Nevada of California to historical and future climate variations and changes are analyzed by simulating daily streamflow and water-balance responses to simulated climate variations over a continuous 200-year period. The coupled atmosphere-ocean-ice-land Parallel Climate Model provides the simulated climate histories, and existing hydrologic models of the Merced, Carson, and American Rivers are used to simulate the basin responses. The historical simulations yield stationary climate and hydrologic variations through the first part of the 20th Century until about 1975, when temperatures begin to warm noticeably and when snowmelt and streamflow peaks begin to occur progressively earlier within the seasonal cycle. A future climate simulated with business-as-usual increases in greenhouse-gas and aerosol radiative forcings continues those recent trends through the 21st Century with an attendant +2.5ºC warming and a hastening of snowmelt and streamflow within the seasonal cycle by almost a month. In contrast, a control simulation in which radiative forcings are held constant at 1995 levels for the 50 years following 1995, yields climate and streamflow-timing conditions much like the 1980s and 1990s throughout its duration. Long-term average totals of streamflow and other hydrologic fluxes remain similar to the historical mean in all three simulations. The various projected trends in the business-as-usual simulations become readily visible above simulated natural climatic and hydrologic variability by about 2020.

  13. Managing for delicious ecosystem service under climate change: can United States sugar maple (Acer saccharum) syrup production be maintained in a warming climate?

    Treesearch

    Stephen N. Matthews; Louis R. Iverson

    2017-01-01

    Sugar maple (Acer saccharum) is a highly valued tree in United States (US) and Canada, and its sap when collected from taps and concentrated, makes a delicious syrup. Understanding how this resource may be impacted by climate change and other threats is essential to continue management for maple syrup into the future. Here, we evaluate the current...

  14. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  15. Possible climate warming effects on vegetation, forests, biotic (insect, pathogene) disturbances and agriculture in Central Siberia for 1960- 2050

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Soja, A. J.; Lysanova, G. I.; Baranchikov, Y. N.; Kuzmina, N. A.

    2012-04-01

    Regional Siberian studies have already registered climate warming over the last half a century (1960-2010). Our analysis showed that winters are already 2-3°C warmer in the north and 1-2°C warmer in the south by 2010. Summer temperatures increased by 1°C in the north and by 1-2°C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Our goal was to summarize results of research we have done for the last decade in the context of climate warming and its consequences for biosystems in Central Siberia. We modeled climate change effects on vegetation shifts, on forest composition and agriculture change, on the insect Siberian moth (Dendrolimus suprans sibiricus Tschetv) and pathogene (Lophodermium pinastri Chev) ranges in Central Siberia for a century (1960-2050) based on historical climate data and GCM-predicted data. Principal results are: In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over 50% of central Siberia due to the dryer climate by 2080. Permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats; At least half of central Siberia is predicted to be climatically suitable for agriculture at the end of the century although potential croplands would be limited by the availability of suitable soils agriculture in central Siberia would likely benefit from climate warming Crop production may twofold increase as climate warms during the century; traditional crops (grain, potato, maize for silage) could be gradually shifted as far as 500 km from the south northwards (about 50-70 km per decade) and new crops (maize for grain, apricot, grape, gourds) may be introduced in the very south depending on winter conditions and would necessitate irrigation in a drier 2080 climate; The environment for the Siberian moth may considerably shrink in the future leaving suitable habitats only in highlands of mountains and the north of Eurasia. The moth habitats also depend on migration rates of tree species Larix spp., Abies sibirica, and Pinus sibirica being main food resources. Siberian moth may not be considered as a threat in climates with mild winter because larvae require continuos continental type winters. Needle-cast of Pinus sylvestris caused by Lophodermium pinastri Chev. was found to be strongly related to precipation including snow depth. In a predicted dryer climate, it would shift northwards followed sufficient water.

  16. Resilience of Alaska's Boreal Forest to Climatic Change

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; McGuire, A. D.; Ruess, R. W.; Hollingsworth, T. N.; Mack, M. C.; Johnstone, J. F.; Kasischke, E. S.; Euskirchen, E. S.; Jones, J. B.; Jorgenson, M. T.; hide

    2010-01-01

    This paper assesses the resilience of Alaska s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  17. Resilience of Alaska’s boreal forest to climatic change

    USGS Publications Warehouse

    Chapin, F.S.; McGuire, A. David; Ruess, Roger W.; Hollingsworth, Teresa N.; Mack, M.C.; Johnstone, J.F.; Kasischke, E.S.; Euskirchen, E.S.; Jones, J.B.; Jorgenson, M.T.; Kielland, K.; Kofinas, G.; Turetsky, M.R.; Yarie, J.; Lloyd, A.H.; Taylor, D.L.

    2010-01-01

    This paper assesses the resilience of Alaska’s boreal forest system to rapid climatic change. Recent warming is associated with reduced growth of dominant tree species, plant disease and insect outbreaks, warming and thawing of permafrost, drying of lakes, increased wildfire extent, increased postfire recruitment of deciduous trees, and reduced safety of hunters traveling on river ice. These changes have modified key structural features, feedbacks, and interactions in the boreal forest, including reduced effects of upland permafrost on regional hydrology, expansion of boreal forest into tundra, and amplification of climate warming because of reduced albedo (shorter winter season) and carbon release from wildfires. Other temperature-sensitive processes for which no trends have been detected include composition of plant and microbial communities, long-term landscape-scale change in carbon stocks, stream discharge, mammalian population dynamics, and river access and subsistence opportunities for rural indigenous communities. Projections of continued warming suggest that Alaska’s boreal forest will undergo significant functional and structural changes within the next few decades that are unprecedented in the last 6000 years. The impact of these social–ecological changes will depend in part on the extent of landscape reorganization between uplands and lowlands and on policies regulating subsistence opportunities for rural communities.

  18. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  19. Identifying Crucial Issues in Climate Science

    NASA Astrophysics Data System (ADS)

    Ikeda, Motoyoshi; Greve, Ralf; Hara, Toshika; Watanabe, Yutaka W.; Ohmura, Atsumu; Ito, Akihiko; Kawamiya, Michio

    2009-01-01

    Drastic Change in the Earth System During Global Warming; Sapporo, Japan, 24 June 2008; The Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore indicates that global warming is recognized as a real phenomenon critical to human beings. However, humanity's knowledge concerning global warming is based on an uncertainty larger than 50% in the warming rate during the past century. Therefore, scientific clarification is needed to understand important mechanisms that potentially produce positive feedbacks in the Earth system-such mechanisms must be better understood before scientists can develop more reliable predictions. To plan for the future, a symposium was organized at Japan's Hokkaido University in association with the G8 Summit, where the most recent updates on the five urgent issues in climate science were discussed. These issues, considered to be crucial as severe impacts on human society continue to rise, included (1) causes and magnitude of sea level rise; (2) decay of glaciers and the Greenland and Antarctic ice sheets; (3) disappearance of the summer Arctic sea ice; (4) carbon uptake or emission by the terrestrial ecosystem; and (5) marine ecosystem change resulting in carbon emissions.

  20. The Great White Ocean

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    Satellite data have revealed overall decreases in the Arctic sea ice cover since the late 1970s, although with substantial interannual variability. The ice reductions are likely tied to an overall warming in the Arctic region over the same time period, although both the warming and the ice reductions could be connected to large-scale oscillations within the system. Should the ice reductions continue, consequences to the Arctic ecosystems and climate could be considerable.

  1. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    PubMed

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-05

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

  2. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    PubMed

    Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2015-05-01

    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.

  3. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum

    PubMed Central

    Shortlidge, Erin E.; Eppley, Sarah M.; Kohler, Hans; Rosenstiel, Todd N.; Zúñiga, Gustavo E.; Casanova-Katny, Angélica

    2017-01-01

    Background and Aims The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. Methods The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum, were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Key Results Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum. Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Conclusions Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. PMID:27794516

  4. Sea level rise with warming above 2 degree

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2017-04-01

    Holding the increase in the global average temperature to below 2 °C above pre-industrial levels, and pursuing efforts to limit the temperature increase to 1.5 °C, has been agreed by the representatives of the 196 parties of United Nations, as an appropriate threshold beyond which climate change risks become unacceptably high. Sea level rise is one of the most damaging aspects of warming climate for the more than 600 million people living in low-elevation coastal areas less than 10 meters above sea level. Fragile coastal ecosystems and increasing concentrations of population and economic activity in coastal areas, are reasons why future sea level rise is one of the most damaging aspects of the warming climate. Furthermore, sea level is set to continue to rise for centuries after greenhouse gas emissions concentrations are stabilised due to system inertia and feedback time scales. Impact, risk, adaptation policies and long-term decision making in coastal areas depend on regional and local sea level rise projections and local projections can differ substantially from the global one. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 degree goal. A warming of 2°C makes global ocean rise on average by 20 cm, but more than 90% of coastal areas will experience greater rises, 40 cm along the Atlantic coast of North America and Norway, due to ocean dynamics. If warming continues above 2°C, then by 2100 sea level will rise with speeds unprecedented throughout human civilization, reaching 0.9 m (median), and 80% of the global coastline will exceed the global ocean sea level rise upper 95% confidence limit of 1.8 m. Coastal communities of rapidly expanding cities in the developing world, small island states, and vulnerable tropical coastal ecosystems will have a very limited time after mid-century to adapt to sea level rises.

  5. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing

    PubMed Central

    Marshall, John; Armour, Kyle C.; Scott, Jeffery R.; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G.; Bitz, Cecilia M.

    2014-01-01

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around ‘climate response functions’ (CRFs), i.e. the response of the climate to ‘step’ changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate. PMID:24891392

  6. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    PubMed

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  7. Ichthyoplankton Time Series: A Potential Ocean Observing Network to Provide Indicators of Climate Impacts on Fish Communities along the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.

    2016-02-01

    Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.

  8. Expert assessment of vulnerability of permafrost carbon to climate change

    USGS Publications Warehouse

    Schuur, E.A.G.; Abbott, B.W.; Bowden, W.B.; Brovkin, V.; Camill, P.; Canadell, J.G.; Chanton, J.P.; Chapin, F. S.; Christensen, T.R.; Ciais, P.; Crosby, B.T.; Czimczik, C.I.; Grosse, G.; Harden, J.; Hayes, D.J.; Hugelius, G.; Jastrow, J.D.; Jones, J.B.; Kleinen, T.; Koven, C.D.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; McGuire, A.D.; Natali, Susan M.; O'Donnell, J. A.; Ping, C.-L.; Riley, W.J.; Rinke, A.; Romanovsky, V.E.; Sannel, A.B.K.; Schädel, C.; Schaefer, K.; Sky, J.; Subin, Z.M.; Tarnocai, C.; Turetsky, M.R.; Waldrop, M.P.; Anthony, K.M. Walter; Wickland, K.P.; Wilson, C.J.; Zimov, S.A.

    2013-01-01

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO2 equivalent using 100-year CH4 global warming potential (GWP). These values become 50 % larger using 20-year CH4 GWP, with a third to a half of expected climate forcing coming from CH4 even though CH4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.

  9. Expert assessment of vulnerability of permafrost carbon to climate change

    DOE PAGES

    Schuur, E. A. G.; Abbott, B. W.; Bowden, W. B.; ...

    2013-03-26

    Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that Cmore » release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO 2 equivalent using 100-year CH 4 global warming potential (GWP). These values become 50% larger using 20-year CH 4 GWP, with a third to a half of expected climate forcing coming from CH 4 even though CH 4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing.« less

  10. Climate Change, Extreme Weather Events, and Fungal Disease Emergence and Spread

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Yager, Karina; Anyamba, Assaf; Linthicum, Kenneth J.

    2011-01-01

    Empirical evidence from multiple sources show the Earth has been warming since the late 19th century. More recently, evidence for this warming trend is strongly supported by satellite data since the late 1970s from the cryosphere, atmosphere, oceans, and land that confirms increasing temperature trends and their consequences (e.g., reduced Arctic sea ice, rising sea level, ice sheet mass loss, etc.). At the same time, satellite observations of the Sun show remarkably stable solar cycles since the late 1970s, when direct observations of the Sun's total solar irradiance began. Numerical simulation models, driven in part by assimilated satellite data, suggest that future-warming trends will lead to not only a warmer planet, but also a wetter and drier climate depending upon location in a fashion consistent with large-scale atmospheric processes. Continued global warming poses new opportunities for the emergence and spread of fungal disease, as climate systems change at regional and global scales, and as animal and plant species move into new niches. Our contribution to this proceedings is organized thus: First, we review empirical evidence for a warming Earth. Second, we show the Sun is not responsible for the observed warming. Third, we review numerical simulation modeling results that project these trends into the future, describing the projected abiotic environment of our planet in the next 40 to 50 years. Fourth, we illustrate how Rift Valley fever outbreaks have been linked to climate, enabling a better understanding of the dynamics of these diseases, and how this has led to the development of an operational predictive outbreak model for this disease in Africa. Fifth, We project how this experience may be applicable to predicting outbreaks of fungal pathogens in a warming world. Lastly, we describe an example of changing species ranges due to climate change, resulting from recent warming in the Andes and associated glacier melt that has enabled amphibians to colonize higher elevation lakes, only to be followed shortly by the emergence of fungal disease in the new habitats.

  11. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.

    PubMed

    Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina

    2017-07-01

    Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions. © 2016 John Wiley & Sons Ltd.

  12. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed Central

    Nabi, SA; Qader, SS

    2009-01-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world. This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards. PMID:21483497

  13. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change

    PubMed Central

    Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C.

    2016-01-01

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change. PMID:27377632

  14. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change.

    PubMed

    Petersen, Sierra V; Dutton, Andrea; Lohmann, Kyger C

    2016-07-05

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8±3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.

  15. End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change

    NASA Astrophysics Data System (ADS)

    Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C.

    2016-07-01

    The cause of the end-Cretaceous (KPg) mass extinction is still debated due to difficulty separating the influences of two closely timed potential causal events: eruption of the Deccan Traps volcanic province and impact of the Chicxulub meteorite. Here we combine published extinction patterns with a new clumped isotope temperature record from a hiatus-free, expanded KPg boundary section from Seymour Island, Antarctica. We document a 7.8+/-3.3 °C warming synchronous with the onset of Deccan Traps volcanism and a second, smaller warming at the time of meteorite impact. Local warming may have been amplified due to simultaneous disappearance of continental or sea ice. Intra-shell variability indicates a possible reduction in seasonality after Deccan eruptions began, continuing through the meteorite event. Species extinction at Seymour Island occurred in two pulses that coincide with the two observed warming events, directly linking the end-Cretaceous extinction at this site to both volcanic and meteorite events via climate change.

  16. Earth as humans’ habitat: global climate change and the health of populations

    PubMed Central

    McMichael, Anthony J

    2014-01-01

    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction. PMID:24596901

  17. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    PubMed Central

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-01-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907

  18. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival.

    PubMed

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-11-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.

  19. Dangerous Climate Velocities from Geoengineering Termination: Potential Biodiversity Impacts

    NASA Astrophysics Data System (ADS)

    Trisos, C.; Gurevitch, J.; Zambri, B.; Xia, L.; Amatulli, G.; Robock, A.

    2016-12-01

    Geoengineering has been suggested as a potential societal response to the impacts of ongoing global warming. If ongoing mitigation and adaptation measures do not prevent the most dangerous consequences of climate change, it is important to study whether solar radiation management would make the world less dangerous. While impacts of albedo modification on temperature, precipitation, and agriculture have been studied before, here for the first time we investigate its potential ecological impacts. We estimate the speeds marine and terrestrial ecosystems will need to move to remain in their current climate conditions (i.e., climate velocities) in response to the implementation and subsequent termination of geoengineering. We take advantage of climate model simulations conducted using the G4 scenario of the Geoengineering Model Intercomparison Project, in which increased radiative forcing from the RCP4.5 scenario is balanced by a stratospheric aerosol cloud produced by an injection of 5 Tg of SO2 per year into the lower stratosphere for 50 years, and then stopped. The termination of geoengineering is projected to produce a very rapid warming of the climate, resulting in climate velocities much faster than those that will be produced from anthropogenic global warming. Should ongoing geoengineering be terminated abruptly due to society losing the means or will to continue, the resulting ecological impacts, as measured by climate velocities, could be severe for many terrestrial and marine biodiversity hotspots. Thus, the implementation of solar geoengineering represents a potential danger not just to humans, but also to biodiversity globally.

  20. Microbial Community Activity is Insensitive to Passive Warming in a Semiarid Ecosystem

    NASA Astrophysics Data System (ADS)

    Espinosa, N. J.; Gallery, R. E.; Fehmi, J. S.

    2016-12-01

    Soil microorganisms drive ecosystem nutrient cycling through the production of extracellular enzymes, which facilitate organic matter decomposition, and the flux of large amounts of carbon dioxide to the atmosphere. Although aird and semiarid ecosystems occupy over 40% of land cover and are projected to expand due to climate change, much of our current understanding of these processes comes from mesic temperate ecosystems. Semiarid ecosystems have added complexity due to the widespread biological adaptations to infrequent and discreet precipitation pulses, which enable biological activity to persist throughout dry periods and thrive following seasonal precipitation events. Additionally, the intricacies of plant-microbe interactions and the response of these interactions to a warmer climate and increased precipitation variability in semiarid ecosystems present a continued challenge for climate change research. In this study, we used a passive warming experiment with added plant debris as either woodchip or biochar, to simulate different long-term carbon additions to two common semiarid soils. The response of soil respiration, plant biomass, and microbial activity was monitored bi-annually. We hypothesized that microbial activity would increase with temperature manipulations when soil moisture limitation was alleviated by summer precipitation. The passive warming treatment was most pronounced during periods of daily and seasonal temperature maxima. For all seven hydrolytic enzymes examined, there was no significant response to experimental warming, regardless of seasonal climatic and soil moisture variation. Surprisingly, soil respiration responded positively to warming for certain carbon additions and seasons, which did not correspond with a similar response in plant biomass. The enzyme results observed here are consistent with the few other experimental results for warming in semiarid ecosystems and indicate that the soil microbial community activity of semiarid ecosystems is potentially resilient to a warmer environment.

  1. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    PubMed

    Magris, Rafael A; Heron, Scott F; Pressey, Robert L

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.

  2. Deglacial temperature history of West Antarctica

    PubMed Central

    Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted. PMID:27911783

  3. Deglacial temperature history of West Antarctica.

    PubMed

    Cuffey, Kurt M; Clow, Gary D; Steig, Eric J; Buizert, Christo; Fudge, T J; Koutnik, Michelle; Waddington, Edwin D; Alley, Richard B; Severinghaus, Jeffrey P

    2016-12-13

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth's climate responds to various forcings, including a rise in atmospheric CO 2 This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes' sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was [Formula: see text]C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  4. Climate change and allergic disease.

    PubMed

    Shea, Katherine M; Truckner, Robert T; Weber, Richard W; Peden, David B

    2008-09-01

    Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.

  5. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P < 0.001), and increased the annual mean Tsfc by 0.8°C. Warming with an infrared heater (radiation output of 150 W m-2) significantly increased the annual mean Tsfc by 2.5°C (P < 0.001) and significantly increased θ by 4.7% at a depth of 40-60 cm. Experimental warming in degraded land reversed the positive effects of the infrared heater and caused the yearly average θ to decrease significantly by 3.7-8.1% at a depth of 0-100 cm. Our research reveals that land degradation caused a significant water deficit near the soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  6. Thermal regimes of Rocky Mountain lakes warm with climate change

    PubMed Central

    Roberts, James J.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans. PMID:28683083

  7. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    PubMed

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  8. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; hide

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  9. Thermal regimes of Rocky Mountain lakes warm with climate change

    USGS Publications Warehouse

    Roberts, James J.; Fausch, Kurt D.; Schmidt, Travis S.; Walters, David M.

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  10. Thermal regimes of Rocky Mountain lakes warm with climate change.

    PubMed

    Roberts, James J; Fausch, Kurt D; Schmidt, Travis S; Walters, David M

    2017-01-01

    Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1 increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

  11. Volcanic Contribution to Decadal Changes in Tropospheric Temperature

    NASA Technical Reports Server (NTRS)

    Santer, Benjamin D.; Bonfils, Celine; Painter, Jeffrey F.; Zelinka, Mark D.; Mears, Carl; Solomon, Susan; Schmidt, Gavin A.; Fyfe, John C.; Cole, Jason N.S.; Nazarenko, Larissa; hide

    2014-01-01

    Despite continued growth in atmospheric levels of greenhouse gases, global mean surface and tropospheric temperatures have shown slower warming since 1998 than previously. Possible explanations for the slow-down include internal climate variability, external cooling influences and observational errors. Several recent modelling studies have examined the contribution of early twenty-first-century volcanic eruptions to the muted surface warming. Here we present a detailed analysis of the impact of recent volcanic forcing on tropospheric temperature, based on observations as well as climate model simulations. We identify statistically significant correlations between observations of stratospheric aerosol optical depth and satellite-based estimates of both tropospheric temperature and short-wave fluxes at the top of the atmosphere. We show that climate model simulations without the effects of early twenty-first-century volcanic eruptions overestimate the tropospheric warming observed since 1998. In two simulations with more realistic volcanic influences following the 1991 Pinatubo eruption, differences between simulated and observed tropospheric temperature trends over the period 1998 to 2012 are up to 15% smaller, with large uncertainties in the magnitude of the effect. To reduce these uncertainties, better observations of eruption-specific properties of volcanic aerosols are needed, as well as improved representation of these eruption-specific properties in climate model simulations.

  12. Climate change in the age of humans

    Treesearch

    J. Curt Stager

    2014-01-01

    The Anthropocene epoch presents a mix of old and new challenges for the world’s forests. Climatic instability has typified most of the Cenozoic Era but today’s situation is unique due to the presence of billions of humans on the planet. The potential rate and magnitude of future warming driven by continued fossil fuel combustion could be unprecedented during the last...

  13. Stratospheric aerosol geoengineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robock, Alan

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates frommore » gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.« less

  14. When will we reach 1.5 of global warming?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2017-12-01

    Recent global temperature trends indicate that we may be rapidly approaching 1.5 degrees of global warming. However, rigorous estimates of when this target will be breached are rare, and are highly sensitive to small errors in observed and model-simulated historical warming, as well as widely-varying estimates of the allowable emissions for 1.5°C. Here, I present a proposed method to estimate the time remaining to 1.5°C using a new estimate of human-attributable warming, updated CO2 emissions trends, and the latest estimates of the 1.5°C carbon budget. The resulting calculation suggests that a continuation of recent CO2 emission trends would take us past 1.5°C in 2033, a little less than 16 years from now. Uncertainties in this calculation remain large, reflecting both fundamental scientific uncertainties associated with the climate response to emissions, as well as uncertainties associated with human mitigation decisions and their effect on future CO2 and non-CO2 greenhouse gas emissions. However, it is nevertheless important to provide a robust and widely-accepted best estimate of the time remaining before we breach the climate targets that have been adopted in the Paris climate agreement, so as to clearly communicate our scientific understanding to policy makers and the general public. To this end, in an effort to visualize and track our progress towards these target, we have develop an online and projectable climate clock, which shows a real-time countdown of the time remaining to 1.5 and 2°C of global warming (see www.climateclock.net). This clock will be updated annually in light of the most recent emissions and global temperature data, and accounting for improved estimates of the remaining carbon budget associated with these climate targets. As countries around the world move forward with climate mitigation efforts, this climate clock will be able to clearly mark our progress towards the objective of adding time to the countdown so as to ultimately avoid breaching these dangerous climate thresholds.

  15. Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Grillakis, M. G.; Daliakopoulos, I. N.; Tsanis, I. K.; Jacob, D.

    2016-01-01

    Ensemble pan-European projections under a 2 °C global warming relative to the preindustrial period reveal a more intense warming in south Eastern Europe by up to +3 °C, thus indicating that impacts of climate change will be disproportionately high for certain regions. The Mediterranean is projected as one of the most vulnerable areas to climatic and anthropogenic changes with decreasing rainfall trends and a continuous gradual warming causing a progressive decline of average stream flow. Many Mediterranean regions are currently experiencing high to severe water stress induced by human and climate drivers. Changes in average climate conditions will increase this stress notably because of a 10-30% decline in freshwater resources. For small island states, where accessibility to freshwater resources is limited the impact will be more pronounced. Here we use a generalized cross-sectoral framework to assess the impact of climatic and socioeconomic futures on the water resources of an Eastern Mediterranean island. A set of representative regional climate models simulations from the EURO-CORDEX initiative driven by different RCP2.6, RCP4.5, and RCP8.5 GCMs are used to form a comparable set of results and a useful basis for the assessment of uncertainties related to impacts of 2° warming and above. A generalized framework of a cross-sectoral water resources analysis was developed in collaboration with the local water authority exploring and costing adaptation measures associated with a set of socioeconomic pathways (SSPs). Transient hydrological modeling was performed to describe the projected hydro-climatological regime and water availability for each warming level. The robust signal of less precipitation and higher temperatures that is projected by climate simulations results to a severe decrease of local water resources which can be mitigated by a number of actions. Awareness of the practical implications of plausible hydro-climatic and socio-economic scenarios in the not so distant future may be the key to shift perception and preference towards a more sustainable direction.

  16. Passive warming reduces stress and shifts reproductive effort in the Antarctic moss, Polytrichastrum alpinum.

    PubMed

    Shortlidge, Erin E; Eppley, Sarah M; Kohler, Hans; Rosenstiel, Todd N; Zúñiga, Gustavo E; Casanova-Katny, Angélica

    2017-01-01

    The Western Antarctic Peninsula is one of the most rapidly warming regions on Earth, and many biotic communities inhabiting this dynamic region are responding to these well-documented climatic shifts. Yet some of the most prevalent organisms of terrestrial Antarctica, the mosses, and their responses to warming have been relatively overlooked and understudied. In this research, the impacts of 6 years of passive warming were investigated using open top chambers (OTCs), on moss communities of Fildes Peninsula, King George Island, Antarctica. The effects of experimental passive warming on the morphology, sexual reproductive effort and stress physiology of a common dioicous Antarctic moss, Polytrichastrum alpinum ,: were tested, gaining the first species-specific mechanistic insight into moss responses to warming in the Antarctic. Additionally community analyses were conducted examining the impact of warming on overall moss percentage cover and sporophyte production in intact Antarctic moss communities. Our results show a generally greater percentage moss cover under warming conditions as well as increased gametangia production in P. alpinum Distinct morphological and physiological shifts in P. alpinum were found under passive warming compared with those without warming: warmed mosses reduced investment in cellular stress defences, but invested more towards primary productivity and gametangia development. Taken together, results from this study of mosses under passive warming imply that in ice-free moss-dominated regions, continued climate warming will probably have profound impacts on moss biology and colonization along the Western Antarctic Peninsula. Such findings highlight the fundamental role that mosses will play in influencing the terrestrialization of a warming Antarctica. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.

    PubMed

    Drake, John E; Aspinwall, Michael J; Pfautsch, Sebastian; Rymer, Paul D; Reich, Peter B; Smith, Renee A; Crous, Kristine Y; Tissue, David T; Ghannoum, Oula; Tjoelker, Mark G

    2015-01-01

    As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate-shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5-38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate-controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool-origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20-60%. Warm-origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool-origin taxa are likely to benefit from warming, while warm-origin taxa may be negatively affected. © 2014 John Wiley & Sons Ltd.

  18. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change.

    PubMed

    Stortini, Christine H; Chabot, Denis; Shackell, Nancy L

    2017-06-01

    We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20-40 years. A eurythermal depleted species already limited to shallow, oxygen-rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep-dwelling species (Greenland halibut) is projected to lose ~55% of its high-density areas under the combined impacts of warming and oxygen depletion. Another deep-dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high-density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species-by-species basis at the scales most relevant to managers. Our study may provide a basis for work in other low-oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change accelerates. © 2016 John Wiley & Sons Ltd.

  19. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Wood, Richard A.

    2018-04-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  20. Social and economic impacts of climate.

    PubMed

    Carleton, Tamma A; Hsiang, Solomon M

    2016-09-09

    For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.

  1. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5EgC, with smaller forcing contributions from other greenhouse gases. These results indicate that the unregulated exploitation of the fossil fuel resource would ultimately result in considerably more profound climate changes than previously suggested.

  2. The Effect of Impacts on the Early Martian Climate

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R. M.; Segura, T. L.; Toon, O. B.; Zahnle, K.

    2004-01-01

    The first images returned by the Mariner 7 spacecraft of the Martian surface showed a landscape heavily scared by impacts. Mariner 9 imaging revealed geomorphic features including valley networks and outflow channels that suggest liquid water once flowed at the surface of Mars. Further evidence for water erosion and surface modification has come from the Viking Spacecraft, Mars Pathfinder, Mars Global Surveyor's (MGS) Mars Orbiter Camera (MOC), and Mars Odyssey's THEMIS instrument. In addition to network channels, this evidence includes apparent paleolake beds, fluvial fans and sedimentary layers. The estimated erosion rates necessary to explain the observed surface morphologies present a conundrum. The rates of erosion appear to be highest when the early sun was fainter and only 75% as luminous as it is today. All of this evidence points to a very different climate than what exists on Mars today. The most popular paradigm for the formation of the valley networks is that Mars had at one time a warm (T average > 273), wetter and stable climate. Possible warming mechanisms have included increased surface pressures, carbon dioxide clouds and trace greenhouse gasses. Yet to date climate models have not been able to produce a continuously warm and wet early Mars. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approx. 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.

  3. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.

  4. Enhanced Climatic Warming Over the Tibetan Plateau Due to Doubling CO2: A Model Study

    NASA Technical Reports Server (NTRS)

    Chen, Baode; Chao, Winston C.; Liu, Xiaodong; Lau, William K. M. (Technical Monitor)

    2001-01-01

    A number of studies have presented the evidences that surface climate change associated with global warming at high elevation sites shows more pronounced warming than at low elevations, i.e. an elevation dependency of climatic warming pointed out that snow-albedo feedback may be responsible for the excessive warming in the Swiss Alps. From an ensemble of climate change experiments of increasing greenhouse gases and aerosols using an air-sea coupled climate model, Eyre and Raw (1999) found a marked elevation dependency of the simulated surface screen temperature increase over the Rocky Mountains. Using almost all available instrumental records, Liu and Chen (2000) showed that the main portion of the Tibetan Plateau (TP) has experienced significant ground temperature warming since the middlebrows, especially in winter, and that there is a tendency for the warming trend to increase with elevation in the TP as well as its surrounding areas. In this paper, we will investigate the mechanism of elevation dependency of climatic warming in the TP by using a high-resolution regional climate model.

  5. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  6. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  7. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Soussana, Jean-François; Klumpp, Katja; Sultan, Benjamin

    2017-12-01

    Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071-2100 is predicted to be 1-5.5 °C higher than that for 1971-2000. Climate change and elevated CO 2 concentration are anticipated to affect grassland management and livestock production in Europe. However, there has been little work done to quantify the European-wide response of grassland to future climate change. Here we applied ORCHIDEE-GM v2.2, a grid-based model for managed grassland, over European grassland to estimate the impacts of future global change. Increases in grassland productivity are simulated in response to future global change, which are mainly attributed to the simulated fertilization effect of rising CO 2 . The results show significant phenology shifts, in particular an earlier winter-spring onset of grass growth over Europe. A longer growing season is projected over southern and southeastern Europe. In other regions, summer drought causes an earlier end to the growing season, overall reducing growing season length. Future global change allows an increase of management intensity with higher than current potential annual grass forage yield, grazing capacity and livestock density, and a shift in seasonal grazing capacity. We found a continual grassland soil carbon sink in Mediterranean, Alpine, North eastern, South eastern and Eastern regions under specific warming level (SWL) of 1.5 and 2 °C relative to pre-industrial climate. However, this carbon sink is found to saturate, and gradually turn to a carbon source at warming level reaching 3.5 °C. This study provides a European-wide assessment of the future changes in productivity and phenology of grassland, and their consequences for the management intensity and the carbon balance. The simulated productivity increase in response to future global change enables an intensification of grassland management over Europe. However, the simulated increase in the interannual variability of grassland productivity over some regions may reduce the farmers' ability to take advantage of the increased long-term mean productivity in the face of more frequent, and more severe drops of productivity in the future.

  8. Persistence of carbon release events through the peak of early Eocene global warmth

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, Sandra; Sexton, Philip F.; Charles, Christopher D.; Norris, Richard D.

    2014-10-01

    The Early Eocene Climatic Optimum (53-50 million years ago) was preceded by approximately six million years of progressive global warming. This warming was punctuated by a series of rapid hyperthermal warming events triggered by the release of greenhouse gases. Over these six million years, the carbon isotope record suggests that the events became more frequent but smaller in magnitude. This pattern has been suggested to reflect a thermodynamic threshold for carbon release that was more easily crossed as global temperature rose, combined with a decrease in the size of carbon reservoirs during extremely warm conditions. Here we present a continuous, 4.25-million-year-long record of the stable isotope composition of carbonate sediments from the equatorial Atlantic, spanning the peak of early Eocene global warmth. A composite of this and pre-existing records shows that the carbon isotope excursions that identify the hyperthermals exhibit continuity in magnitude and frequency throughout the approximately 10-million-year period covering the onset, peak and termination of the Early Eocene Climate Optimum. We suggest that the carbon cycle processes behind these events, excluding the largest event, the Palaeocene-Eocene Thermal Maximum (about 56 million years ago), were not exceptional. Instead, we argue that the hyperthermals may reflect orbital forcing of the carbon cycle analogous to the mechanisms proposed to operate in the cooler Oligocene and Miocene.

  9. Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations.

    PubMed

    Holmberg, Maria; Aherne, Julian; Austnes, Kari; Beloica, Jelena; De Marco, Alessandra; Dirnböck, Thomas; Fornasier, Maria Francesca; Goergen, Klaus; Futter, Martyn; Lindroos, Antti-Jussi; Krám, Pavel; Neirynck, Johan; Nieminen, Tiina Maileena; Pecka, Tomasz; Posch, Maximilian; Pröll, Gisela; Rowe, Ed C; Scheuschner, Thomas; Schlutow, Angela; Valinia, Salar; Forsius, Martin

    2018-05-31

    Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    USGS Publications Warehouse

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  11. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances

    PubMed Central

    Magris, Rafael A.; Heron, Scott F.; Pressey, Robert L.

    2015-01-01

    Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming. PMID:26535586

  12. East Asian warm season temperature variations over the past two millennia.

    PubMed

    Zhang, Huan; Werner, Johannes P; García-Bustamante, Elena; González-Rouco, Fidel; Wagner, Sebastian; Zorita, Eduardo; Fraedrich, Klaus; Jungclaus, Johann H; Ljungqvist, Fredrik Charpentier; Zhu, Xiuhua; Xoplaki, Elena; Chen, Fahu; Duan, Jianping; Ge, Quansheng; Hao, Zhixin; Ivanov, Martin; Schneider, Lea; Talento, Stefanie; Wang, Jianglin; Yang, Bao; Luterbacher, Jürg

    2018-05-16

    East Asia has experienced strong warming since the 1960s accompanied by an increased frequency of heat waves and shrinking glaciers over the Tibetan Plateau and the Tien Shan. Here, we place the recent warmth in a long-term perspective by presenting a new spatially resolved warm-season (May-September) temperature reconstruction for the period 1-2000 CE using 59 multiproxy records from a wide range of East Asian regions. Our Bayesian Hierarchical Model (BHM) based reconstructions generally agree with earlier shorter regional temperature reconstructions but are more stable due to additional temperature sensitive proxies. We find a rather warm period during the first two centuries CE, followed by a multi-century long cooling period and again a warm interval covering the 900-1200 CE period (Medieval Climate Anomaly, MCA). The interval from 1450 to 1850 CE (Little Ice Age, LIA) was characterized by cooler conditions and the last 150 years are characterized by a continuous warming until recent times. Our results also suggest that the 1990s were likely the warmest decade in at least 1200 years. The comparison between an ensemble of climate model simulations and our summer reconstructions since 850 CE shows good agreement and an important role of internal variability and external forcing on multi-decadal time-scales.

  13. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    USGS Publications Warehouse

    Poore, R.Z.; Dowsett, H.J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural hazard on centennial time scales.

  14. Possible Effects of Climate Warming on Selected Populations of Polar Bears (Ursus maritimus) in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Stirling Ian

    2006-01-01

    Polar bears are dependent on sea ice for survival. Climate warming in the Arctic has caused significant declines in coverage and thickness of sea ice in the polar basin and progressively earlier breakup in some areas. In four populations of polar bears in the eastern Canadian Arctic (including Western Hudson Bay), Inuit hunters report more bears near settlements during the open water period in recent years. These observations have been interpreted as evidence of increasing population size, resulting in increases in hunting quotas. However, long-term data on the population size and condition of polar bears in Western Hudson Bay, and population and harvest data from Baffin Bay, make it clear that those two populations at least are declining, not increasing. While the details vary in different arctic regions, analysis of passive-microwave satellite imagery, beginning in the late 1970s, indicates that the sea ice is breaking up at progressively earlier dates, so that bears must fast for longer periods during the open water season. Thus, at least part of the explanation for the appearance of more bears in coastal communities is likely that they are searching for alternative food sources because their stored body fat depots are being exhausted. We hypothesize that, if the climate continues to warm as projected by the IPCC, then polar bears in all five populations discussed in this paper will be stressed and are likely to decline in numbers, probably significantly so. As these populations decline, there will likely also be continuing, possibly increasing, numbers of problem interactions between bears and humans as the bears seek alternate food sources. Taken together, the data reported in this paper suggest that a precautionary approach be taken to the harvesting of polar bears and that the potential effects of climate warming be incorporated into planning for the management and conservation of this species throughout the Arctic.

  15. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  16. Deglacial temperature history of West Antarctica

    USGS Publications Warehouse

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T.J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-01-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.8∘">11.3±1.8∘11.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  17. Potential vulnerability of southeast Alaskan wetland soil carbon stocks to climate warming

    NASA Astrophysics Data System (ADS)

    Fellman, J.; D'Amore, D. V.; Hood, E. W.

    2015-12-01

    Carbon cycling along the high latitude coastal margins of Alaska is poorly understood relative to boreal and arctic ecosystems. The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest carbon stocks (>300 Mg C ha-1) in the world but the fate of these stocks with continued warming will balance on the poorly constrained rates of carbon accumulation and loss. We quantified the rate of dissolved organic carbon (DOC) and carbon dioxide (CO2) production from four different wetland types (rich fen, poor fen, forested wetland and cedar wetland) using controlled laboratory incubations of surface (10 cm) and subsurface (25 cm) soils incubated at 8 ºC and 15 ºC for 37 weeks. This design allowed us to determine the potential vulnerability of wetland soil carbon stocks to climate warming and partition organic matter mineralization into DOC and CO2 fluxes and its controls (e.g., wetland type and temperature). Furthermore, we used fluorescence characterization of DOC and laboratory bioassays to assess how climate warming may impact the quality and bioavailability of DOC delivered to fluvial systems. Soil depth and temperature strongly influenced carbon loss in all four wetland types with the greatest CO2 fluxes observed in the rich fen and greatest DOC fluxes observed in the poor fen. Of the fluxes, CO2 was the most sensitive to incubation temperature but DOC showed more variation with wetland type. Fluxes of DOC and CO2 were positively correlated only during the last few months of the incubation suggesting strong biotic control of DOC production developed as soil organic matter decomposition progressed. Moreover, bioavailable DOC and protein-like fluorescence were greatest in the initial soil extractions but dramatically decreased over the length of the incubations. Our findings suggest that soil organic matter decomposition will increase as the PCTR continues to warm, but this response will also will vary with wetland type.

  18. News on Climate Change, Air Pollution, and Allergic Triggers of Asthma.

    PubMed

    D Amato, M; Cecchi, L; Annesi-Maesano, I; D Amato, G

    2018-01-01

    The rising frequency of obstructive respiratory diseases during recent years, in particular allergic asthma, can be partially explained by changes in the environment, with the increasing presence in the atmosphere of chemical triggers (particulate matter and gaseous components such as nitrogen dioxide and ozone) and biologic triggers (aeroallergens). In allergic individuals, aeroallergens stimulate airway sensitization and thus induce symptoms of bronchial asthma. Over the last 50 years, the earth's temperature has risen markedly, likely because of growing concentrations of anthropogenic greenhouse gas. Major atmospheric and climatic changes, including global warming induced by human activity, have a considerable impact on the biosphere and on the human environment. Urbanization and high levels of vehicle emissions induce symptoms of bronchial obstruction (in particular bronchial asthma), more so in people living in urban areas compared than in those who live in rural areas. Measures need to be taken to mitigate the future impact of climate change and global warming. However, while global emissions continue to rise, we must learn to adapt to climate variability.

  19. Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE

    NASA Astrophysics Data System (ADS)

    Jones, A.; Haywood, J.; Boucher, O.; Kravitz, B.; Robock, A.

    2010-03-01

    We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO2 into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. The HadGEM2 simulations suggest that the SO2 injection rate considered here (5 Tg[SO2] yr-1) could defer the amount of global warming predicted under the Intergovernmental Panel on Climate Change's A1B scenario by approximately 30-35 years, although both models indicate rapid warming if geoengineering is not sustained. We find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June-August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values.

  20. More frequent moments in the climate change debate as emissions continue

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Friedlingstein, Pierre

    2015-12-01

    Recent years have witnessed unprecedented interest in how the burning of fossil fuels may impact on the global climate system. Such visibility of this issue is in part due to the increasing frequency of key international summits to debate emissions levels, including the 2015 21st Conference of Parties meeting in Paris. In this perspective we plot a timeline of significant climate meetings and reports, and against metrics of atmospheric greenhouse gas changes and global temperature. One powerful metric is cumulative CO2 emissions that can be related to past and future warming levels. That quantity is analysed in detail through a set of papers in this ERL focus issue. We suggest it is an open question as to whether our timeline implies a lack of progress in constraining climate change despite multiple recent keynote meetings—or alternatively—that the increasing level of debate is encouragement that solutions will be found to prevent any dangerous warming levels?

  1. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus) development.

    PubMed

    Lemoine, Nathan P; Capdevielle, Jillian N; Parker, John D

    2015-01-01

    Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under 'Ambient' and 'Warmed' conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  2. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  3. CARBON BALANCE OF THE CONTINUOUS PERMAFROST ZONE OF RUSSIA

    EPA Science Inventory

    An increase in the atmospheric concentration of CO2 is projected to cause climate warming. arming of the permafrost environment could change the balance between carbon accumulation and decomposition processes and substantially disrupt the equilibrium of the carbon cycle. arming m...

  4. Young People's Burden: Requirement of Negative CO2 Emissions

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Von Schuckmann, Karina; Beerling, David J.; Cao, Junji; Marcott, Shaun; Masson-Delmotte, Valerie; Prather, Michael J.; Rohling, Eelco J.; hide

    2017-01-01

    Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 C relative to the 1880 - 1920 mean and annual 2016 global temperature was almost +1.3 C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6 - 9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require "negative emissions", i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89 - 535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.

  5. Young people's burden: requirement of negative CO2 emissions

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; von Schuckmann, Karina; Beerling, David J.; Cao, Junji; Marcott, Shaun; Masson-Delmotte, Valerie; Prather, Michael J.; Rohling, Eelco J.; Shakun, Jeremy; Smith, Pete; Lacis, Andrew; Russell, Gary; Ruedy, Reto

    2017-07-01

    Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 °C relative to the 1880-1920 mean and annual 2016 global temperature was almost +1.3 °C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6-9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require negative emissions, i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89-535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.

  6. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.

    PubMed

    Chen, Huai; Zhu, Qiuan; Peng, Changhui; Wu, Ning; Wang, Yanfen; Fang, Xiuqing; Gao, Yongheng; Zhu, Dan; Yang, Gang; Tian, Jianqing; Kang, Xiaoming; Piao, Shilong; Ouyang, Hua; Xiang, Wenhua; Luo, Zhibin; Jiang, Hong; Song, Xingzhang; Zhang, Yao; Yu, Guirui; Zhao, Xinquan; Gong, Peng; Yao, Tandong; Wu, Jianghua

    2013-10-01

    With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's 'third pole') has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH(4)) emissions from wetlands and increased CH(4) consumption of meadows, but might increase CH(4) emissions from lakes. Warming-induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO(2)) and CH(4). Nitrous oxide (N(2)O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles. © 2013 John Wiley & Sons Ltd.

  7. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.

    PubMed

    Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus

    2017-09-01

    Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.

  8. Global cooling as a driver of diversification in a major marine clade

    PubMed Central

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-01-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems. PMID:27701377

  9. Deglacial climate variability in central Florida, USA

    USGS Publications Warehouse

    Willard, D.A.; Bernhardt, C.E.; Brooks, G.R.; Cronin, T. M.; Edgar, T.; Larson, R.

    2007-01-01

    Pollen and ostracode evidence from lacustrine sediments underlying modern Tampa Bay, Florida, document frequent and abrupt climatic and hydrological events superimposed on deglacial warming in the subtropics. Radiocarbon chronology on well-preserved mollusk shells and pollen residue from core MD02-2579 documents continuous sedimentation in a variety of non-marine habitats in a karst-controlled basin from 20 ka to 11.5 ka. During the last glacial maximum (LGM), much drier and cooler-than-modern conditions are indicated by pollen assemblages enriched in Chenopodiaceae and Carya, with rare Pinus (Pinus pollen increased to 20–40% during the warming of the initial deglaciation (∼ 17.2 ka), reaching near modern abundance (60–80%) during warmer, moister climates of the Bølling/Allerød interval (14.7–12.9 ka). Within the Bølling/Allerød, centennial-scale dry events corresponding to the Older Dryas and Intra-Allerød Cold Period indicate rapid vegetation response (

  10. Global cooling as a driver of diversification in a major marine clade

    NASA Astrophysics Data System (ADS)

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-10-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems.

  11. Communicating the deadly consequences of global warming for human heat stress

    NASA Astrophysics Data System (ADS)

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-04-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  12. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  13. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    PubMed Central

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  14. Heat remains unaccounted for in thermal physiology and climate change research.

    PubMed

    Flouris, Andreas D; Kenny, Glen P

    2017-01-01

    In the aftermath of the Paris Agreement, there is a crucial need for scientists in both thermal physiology and climate change research to develop the integrated approaches necessary to evaluate the health, economic, technological, social, and cultural impacts of 1.5°C warming. Our aim was to explore the fidelity of remote temperature measurements for quantitatively identifying the continuous redistribution of heat within both the Earth and the human body. Not accounting for the regional distribution of warming and heat storage patterns can undermine the results of thermal physiology and climate change research. These concepts are discussed herein using two parallel examples: the so-called slowdown of the Earth's surface temperature warming in the period 1998-2013; and the controversial results in thermal physiology, arising from relying heavily on core temperature measurements. In total, the concept of heat is of major importance for the integrity of systems, such as the Earth and human body. At present, our understanding about the interplay of key factors modulating the heat distribution on the surface of the Earth and in the human body remains incomplete. Identifying and accounting for the interconnections among these factors will be instrumental in improving the accuracy of both climate models and health guidelines.

  15. Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lorenzo, Emanuele

    This research aimed at understanding the dynamics controlling decadal variability in the Pacific Ocean and its interactions with global-scale climate change. The first goal was to assess how the dynamics and statistics of the El Niño Southern Oscillation and the modes of Pacific decadal variability are represented in global climate models used in the IPCC. The second goal was to quantify how decadal dynamics are projected to change under continued greenhouse forcing, and determine their significance in the context of paleo-proxy reconstruction of long-term climate.

  16. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    USGS Publications Warehouse

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  17. Analysis of recent climatic changes in the Arabian Peninsula region

    NASA Astrophysics Data System (ADS)

    Nasrallah, H. A.; Balling, R. C.

    1996-12-01

    Interest in the potential climatic consequences of the continued buildup of anthropo-generated greenhouse gases has led many scientists to conduct extensive climate change studies at the global, hemispheric, and regional scales. In this investigation, analyses are conducted on long-term historical climate records from the Arabian Peninsula region. Over the last 100 years, temperatures in the region increased linearly by 0.63 °C. However, virtually all of this warming occurred from 1911 1935, and over the most recent 50 years, the Arabian Peninsula region has cooled slightly. In addition, the satellite-based measurements of lower-tropospheric temperatures for the region do not show any statistically significant warming over the period 1979 1991. While many other areas of the world are showing a decrease in the diurnal temperature range, the Arabian Peninsula region reveals no evidence of a long-term change in this parameter. Precipitation records for the region show a slight, statistically insignificant decrease over the past 40 years. The results from this study should complement the mass of information that has resulted from similar regional climate studies conducted in the United States, Europe, and Australia.

  18. Adapting to warmer climate through prolonged maize grain filling period in the US Midwest

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Zhuang, Q.; Jin, Z.

    2017-12-01

    Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.

  19. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  20. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  1. Experimental evaluation of reproductive response to climate warming in an oviparous skink.

    PubMed

    Lu, Hongliang; Wang, Yong; Tang, Wenqi; DU, Weiguo

    2013-06-01

    The impact of climate warming on organisms is increasingly being recognized. The experimental evaluation of phenotypically plastic responses to warming is a critical step in understanding the biological effects and adaptive capacity of organisms to future climate warming. Oviparous Scincella modesta live in deeply-shaded habitats and they require low optimal temperatures during embryonic development, which makes them suitable subjects for testing the effects of warming on reproduction. We raised adult females and incubated their eggs under different thermal conditions that mimicked potential climate warming. Female reproduction, embryonic development and hatchling traits were monitored to evaluate the reproductive response to warming. Experimental warming induced females to lay eggs earlier, but it did not affect the developmental stage of embryos at oviposition or the reproductive output. The high temperatures experienced by gravid females during warming treatments reduced the incubation period and increased embryonic mortality. The locomotor performance of hatchlings was not affected by the maternal thermal environment, but it was affected by the warming treatment during embryonic development. Our results suggest that climate warming might have a profound effect on fitness-relevant traits both at embryonic and post-embryonic stages in oviparous lizards. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  2. Soil moisture mediates alpine life form and community productivity responses to warming.

    PubMed

    Winkler, Daniel E; Chapin, Kenneth J; Kueppers, Lara M

    2016-06-01

    Climate change is expected to alter primary production and community composition in alpine ecosystems, but the direction and magnitude of change is debated. Warmer, wetter growing seasons may increase productivity; however, in the absence of additional precipitation, increased temperatures may decrease soil moisture, thereby diminishing any positive effect of warming. Since plant species show individual responses to environmental change, responses may depend on community composition and vary across life form or functional groups. We warmed an alpine plant community at Niwot Ridge, Colorado continuously for four years to test whether warming increases or decreases productivity of life form groups and the whole community. We provided supplemental water to a subset of plots to alleviate the drying effect of warming. We measured annual above-ground productivity and soil temperature and moisture, from which we calculated soil degree days and adequate soil moisture days. Using an information-theoretic approach, we observed that positive productivity responses to warming at the community level occur only when warming is combined with supplemental watering; otherwise we observed decreased productivity. Watering also increased community productivity in the absence of warming. Forbs accounted for the majority of the productivity at the site and drove the contingent community response to warming, while cushions drove the generally positive response to watering and graminoids muted the community response. Warming advanced snowmelt and increased soil degree days, while watering increased adequate soil moisture days. Heated and watered plots had more adequate soil moisture days than heated plots. Overall, measured changes in soil temperature and moisture in response to treatments were consistent with expected productivity responses. We found that available soil moisture largely determines the responses of this forb-dominated alpine community to simulated climate warming. © 2016 by the Ecological Society of America.

  3. Challenges and approaches to projecting changes in forest distributions in complex mountain landscape

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.

    2015-12-01

    The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.

  4. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    PubMed

    Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A

    2018-06-03

    Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of climate change on carbon cycling. © 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  5. GLOBAL ENVIRONMENTAL CHANGE ISSUES IN THE WESTERN INDIAN OCEAN REGION

    EPA Science Inventory

    Mounting evidence from both instrumental and proxy records shows global climate continues to change. nalysis of near-surface temperatures over land and oceans during the past 130 years shows marked warming during the first half of this century with relatively steady temperatures ...

  6. Interactions between Shrubs and Permafrost in the Torngat Mountains, Northern Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, A.; Way, R. G.; Hermanutz, L.; Trant, A.; Siegwart Collier, L.; Whitaker, D.

    2017-12-01

    Discontinuous permafrost is acutely sensitive to climate warming and vegetation dynamics. Shrub height is positively correlated with accumulation of snow in the tundra resulting in warming of the ground in winter, and greater shading and lower surface temperatures in summer. Rapid greening due to climate warming has been observed throughout northeastern Canada and particularly in the coastal mountainous terrain of the Torngat Mountains National Park. Our research examines how this shrubification in the Torngat Mountains is modifying permafrost characteristics using observations which extend over a 100 km south-north transect from the sporadic zone (Saglek, Torr Bay) to where permafrost is widespread (Nakvak Brook, Kangalaksiorvik Lake) and potentially continuous (Komaktorvik River). We use air and ground temperature monitoring, vegetation surveys, dendrochronology, frost probing and electrical resistivity tomography (ERT) to describe the complex interactions between shrub growth, geomorphology, climate and permafrost in a region where climate warming is rapidly altering the landscape. Preliminary analysis of field data shows low resistivity anomalies in the ERT profiles at some sites with thin permafrost, interpreted as unfrozen zones correlated with areas of tall shrubs (Alnus spp., Salix spp. and Betula glandulosa; ranging from prostrate to 2 m). Elsewhere, high resistivities extend to the base of the ERT profiles, indicating thicker permafrost, and no obvious impact of medium to low-prostrate shrubs (Salix spp., Betula glandulosa, Rhododendron spp., and Vaccinium spp.; up to 50 cm). Permafrost is interpreted to be present at most sites with low or prostrate shrubs, except where hydrological conditions favour warmer ground temperatures. We infer that the net impact of increasing shrub heights on the active layer and permafrost depends on antecedent ground temperatures and surficial geology. Increasing shrub heights may cause permafrost degradation at sites where mean ground temperatures are close to 0°C and rising due to climate warming. A deeper active layer or loss of permafrost in turn could affect hydrological conditions, potentially influencing shrub size and species composition.

  7. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    NASA Astrophysics Data System (ADS)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.

  8. Interactions between Shrubs and Permafrost in the Torngat Mountains, Northern Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, A.; Way, R. G.; Hermanutz, L.; Trant, A.; Siegwart Collier, L.; Whitaker, D.

    2016-12-01

    Discontinuous permafrost is acutely sensitive to climate warming and vegetation dynamics. Shrub height is positively correlated with accumulation of snow in the tundra resulting in warming of the ground in winter, and greater shading and lower surface temperatures in summer. Rapid greening due to climate warming has been observed throughout northeastern Canada and particularly in the coastal mountainous terrain of the Torngat Mountains National Park. Our research examines how this shrubification in the Torngat Mountains is modifying permafrost characteristics using observations which extend over a 100 km south-north transect from the sporadic zone (Saglek, Torr Bay) to where permafrost is widespread (Nakvak Brook, Kangalaksiorvik Lake) and potentially continuous (Komaktorvik River). We use air and ground temperature monitoring, vegetation surveys, dendrochronology, frost probing and electrical resistivity tomography (ERT) to describe the complex interactions between shrub growth, geomorphology, climate and permafrost in a region where climate warming is rapidly altering the landscape. Preliminary analysis of field data shows low resistivity anomalies in the ERT profiles at some sites with thin permafrost, interpreted as unfrozen zones correlated with areas of tall shrubs (Alnus spp., Salix spp. and Betula glandulosa; ranging from prostrate to 2 m). Elsewhere, high resistivities extend to the base of the ERT profiles, indicating thicker permafrost, and no obvious impact of medium to low-prostrate shrubs (Salix spp., Betula glandulosa, Rhododendron spp., and Vaccinium spp.; up to 50 cm). Permafrost is interpreted to be present at most sites with low or prostrate shrubs, except where hydrological conditions favour warmer ground temperatures. We infer that the net impact of increasing shrub heights on the active layer and permafrost depends on antecedent ground temperatures and surficial geology. Increasing shrub heights may cause permafrost degradation at sites where mean ground temperatures are close to 0°C and rising due to climate warming. A deeper active layer or loss of permafrost in turn could affect hydrological conditions, potentially influencing shrub size and species composition.

  9. Local adaptations to frost in marginal and central populations of the dominant forest tree Fagus sylvatica L. as affected by temperature and extreme drought in common garden experiments.

    PubMed

    Kreyling, Juergen; Buhk, Constanze; Backhaus, Sabrina; Hallinger, Martin; Huber, Gerhard; Huber, Lukas; Jentsch, Anke; Konnert, Monika; Thiel, Daniel; Wilmking, Martin; Beierkuhnlein, Carl

    2014-03-01

    Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvaticaL., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.

  10. Abrupt climate warming in East Antarctica during the early Holocene

    NASA Astrophysics Data System (ADS)

    Cremer, Holger; Heiri, Oliver; Wagner, Bernd; Wagner-Cremer, Friederike

    2007-08-01

    We report a centennial-scale warming event between 8600 and 8400 cal BP from Amery Oasis, East Antarctica, that is documented by the geochemical record in a lacustrine sediment sequence. The organic carbon content, the C/S ratio, and the sedimentation rate in this core have distinctly elevated values around 8500 y ago reflecting relatively warm and ice-free conditions that led to well-ventilated conditions in the lake and considerable sedimentation of both autochthonous and allochthonous organic matter on the lake bottom. This abrupt warming event occurred concurrently with reported warm climatic conditions in the Southern Ocean while the climate in central East Antarctic remained cold. The comparison of the spatial and temporal variability of warm climatic periods documented in various terrestrial, marine, and glacial archives from East Antarctica elucidates the uniqueness of the centennial-scale warming event in the Amery Oasis. We also discuss a possible correlation of the Amery warming event with the abrupt climatic deterioration around 8200 cal BP on the Northern Hemisphere.

  11. Exceptional aerobic scope and cardiovascular performance of pink salmon (Oncorhynchus gorbuscha) may underlie resilience in a warming climate.

    PubMed

    Clark, Timothy D; Jeffries, Kenneth M; Hinch, Scott G; Farrell, Anthony P

    2011-09-15

    Little is known of the physiological mechanisms underlying the effects of climate change on animals, yet it is clear that some species appear more resilient than others. As pink salmon (Oncorhynchus gorbuscha) in British Columbia, Canada, have flourished in the current era of climate warming in contrast to other Pacific salmonids in the same watershed, this study investigated whether the continuing success of pink salmon may be linked with exceptional cardiorespiratory adaptations and thermal tolerance of adult fish during their spawning migration. Sex-specific differences existed in minimum and maximum oxygen consumption rates (M(O2,min) and M(O2,max), respectively) across the temperature range of 8 to 28°C, reflected in a higher aerobic scope (M(O2,max)-M(O2,min)) for males. Nevertheless, the aerobic scope of both sexes was optimal at 21°C (T(opt)) and was elevated across the entire temperature range in comparison with other Pacific salmonids. As T(opt) for aerobic scope of this pink salmon population is higher than in other Pacific salmonids, and historic river temperature data reveal that this population rarely encounters temperatures exceeding T(opt), these findings offer a physiological explanation for the continuing success of this species throughout the current climate-warming period. Despite this, declining cardiac output was evident above 17°C, and maximum attainable swimming speed was impaired above ∼23°C, suggesting negative implications under prolonged thermal exposure. While forecasted summer river temperatures over the next century are likely to negatively impact all Pacific salmonids, we suggest that the cardiorespiratory capacity of pink salmon may confer a selective advantage over other species.

  12. Spatial changes in the distribution of malaria vectors during the past 5 decades in Iran.

    PubMed

    Salahi-Moghaddam, A; Khoshdel, A; Dalaei, H; Pakdad, K; Nutifafa, G G; Sedaghat, M M

    2017-02-01

    Global warming and climate change affect various aspects of mankind, including public health. Anopheles mosquitoes are of Public Health importance and can be affected by global warming and other environmental variables. Here, we studied the distribution of Anopheles vectors of malaria in relation to environmental variables in Iran. Long-term meteorological and entomological data of about 50 years in retrospect were collected and arranged in a geo-database and analyzed using ArcGIS ver. 9.3 and exported to SPSS ver. 20 for statistical analysis. Distribution maps have been updated for seven species of Anopheles vectors of malaria which involved Anopheles culicifacies s.l., An. fluviatilis s.l., An. stephensi, An. dthali, An. sacharovi, An. maculipennis.l. and An. superpictus in Iran. Distribution maps of vectors were made based on district areas using Kriging model. Historical and recent records were demonstrated for each Anopheles based on climatic factors in the distribution areas of each Anopheles vectors. Iran, like other parts of the world is faced with warming and this probably affected the distribution of Anopheles vectors. Despite the warming phenomenon, the country's climate had changed during the cold season as temperatures became colder or cooler. This study shows that some vectors had migrated from the central part of Iran with dry and sunny landscape, moved towards the mountainous areas of the north or the warm and humid areas of the south. Historical records show that these anophelines have previously been distributed in lowland areas. If this process continues in the future, Anopheles mosquitoes may be seen in low lands with cold areas in central and northern parts of the country or will occupy humid and warm climates in the southern parts of the country where water is more available. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.

    PubMed

    Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J

    2016-06-01

    Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre.

    PubMed

    Telwala, Yasmeen; Brook, Barry W; Manish, Kumar; Pandit, Maharaj K

    2013-01-01

    Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species' response to climate change from this region are lacking. Here we use historical (1849-50) and the recent (2007-2010) data on temperature and endemic species' elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19(th) century. We recorded a shift of 23-998 m in species' upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops.

  15. Negative impacts of climate change on cereal yields: statistical evidence from France

    NASA Astrophysics Data System (ADS)

    Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel

    2017-05-01

    In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.

  16. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  17. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems.

    PubMed

    Templer, Pamela H; Reinmann, Andrew B; Sanders-DeMott, Rebecca; Sorensen, Patrick O; Juice, Stephanie M; Bowles, Francis; Sofen, Laura E; Harrison, Jamie L; Halm, Ian; Rustad, Lindsey; Martin, Mary E; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise.

  18. Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems

    PubMed Central

    Templer, Pamela H.; Reinmann, Andrew B.; Sanders-DeMott, Rebecca; Sorensen, Patrick O.; Juice, Stephanie M.; Bowles, Francis; Sofen, Laura E.; Harrison, Jamie L.; Halm, Ian; Rustad, Lindsey; Martin, Mary E.; Grant, Nicholas

    2017-01-01

    Climate models project an increase in mean annual air temperatures and a reduction in the depth and duration of winter snowpack for many mid and high latitude and high elevation seasonally snow-covered ecosystems over the next century. The combined effects of these changes in climate will lead to warmer soils in the growing season and increased frequency of soil freeze-thaw cycles (FTCs) in winter due to the loss of a continuous, insulating snowpack. Previous experiments have warmed soils or removed snow via shoveling or with shelters to mimic projected declines in the winter snowpack. To our knowledge, no experiment has examined the interactive effects of declining snowpack and increased frequency of soil FTCs, combined with soil warming in the snow-free season on terrestrial ecosystems. In addition, none have mimicked directly the projected increase in soil FTC frequency in tall statured forests that is expected as a result of a loss of insulating snow in winter. We established the Climate Change Across Seasons Experiment (CCASE) at Hubbard Brook Experimental Forest in the White Mountains of New Hampshire in 2012 to assess the combined effects of these changes in climate on a variety of pedoclimate conditions, biogeochemical processes, and ecology of northern hardwood forests. This paper demonstrates the feasibility of creating soil FTC events in a tall statured ecosystem in winter to simulate the projected increase in soil FTC frequency over the next century and combines this projected change in winter climate with ecosystem warming throughout the snow-free season. Together, this experiment provides a new and more comprehensive approach for climate change experiments that can be adopted in other seasonally snow-covered ecosystems to simulate expected changes resulting from global air temperature rise. PMID:28207766

  19. Research on trend of warm-humid climate in Central Asia

    NASA Astrophysics Data System (ADS)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  20. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.

    PubMed

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-10-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.

  1. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-01-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958

  2. Anticipating Future Extreme Climate Events for Alaska Using Dynamical Downscaling and Quantile Mapping

    NASA Astrophysics Data System (ADS)

    Lader, R.; Walsh, J. E.

    2016-12-01

    Alaska is projected to experience major changes in extreme climate during the 21st century, due to greenhouse warming and exacerbated by polar amplification, wherein the Arctic is warming at twice the rate compared to the Northern Hemisphere. Given its complex topography, Alaska displays extreme gradients of temperature and precipitation. However, global climate models (GCMs), which typically have a spatial resolution on the order of 100km, struggle to replicate these extremes. To help resolve this issue, this study employs dynamically downscaled regional climate simulations and quantile-mapping methodologies to provide a full suite of daily model variables at 20 km spatial resolution for Alaska, from 1970 to 2100. These data include downscaled products of the: ERA-Interim reanalysis from 1979 to 2015, GFDL-CM3 historical from 1970 to 2005, and GFDL-CM3 RCP 8.5 from 2006 to 2100. Due to the limited nature of long-term observations and high-resolution modeling in Alaska, these data enable a broad expansion of extremes analysis. This study uses these data to highlight a subset of the 27 climate extremes indices, previously defined by the Expert Team on Climate Change Detection and Indices, as they pertain to climate change in Alaska. These indices are based on the statistical distributions of daily surface temperature and precipitation and focus on threshold exceedance, and percentiles. For example, the annual number of days with a daily maximum temperature greater than 25°C is anticipated to triple in many locations in Alaska by the end of the century. Climate extremes can also refer to long duration events, such as the record-setting warmth that defined the 2015-16 cold season in Alaska. The downscaled climate model simulations indicate that this past winter will be considered normal by as early as the mid-2040s, if we continue to warm according to the business-as-usual RCP 8.5 emissions scenario. This represents an accelerated warming as compared to projections form the coarse scale GCMs, and this greater rate of change in the downscaled products is noted with other extremes indices as well.

  3. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model.

    PubMed

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-03-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue.

  4. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    PubMed

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  5. Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties.

    PubMed

    Kiehl, Jeffrey T; Shields, Christine A

    2013-10-28

    The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in the Earth's history (approx. 55 Ma). The cause for this warming event has been linked to increases in greenhouse gases, specifically carbon dioxide and methane. This rapid warming took place in the presence of the existing Early Eocene warm climate. Given that projected business-as-usual levels of atmospheric carbon dioxide reach concentrations of 800-1100 ppmv by 2100, it is of interest to study past climates where atmospheric carbon dioxide was higher than present. This is especially the case given the difficulty of climate models in simulating past warm climates. This study explores the sensitivity of the simulated pre-PETM and PETM periods to change in cloud condensation nuclei (CCN) and microphysical properties of liquid water clouds. Assuming lower levels of CCN for both of these periods leads to significant warming, especially at high latitudes. The study indicates that past differences in cloud properties may be an important factor in accurately simulating past warm climates. Importantly, additional shortwave warming from such a mechanism would imply lower required atmospheric CO2 concentrations for simulated surface temperatures to be in reasonable agreement with proxy data for the Eocene.

  6. Australian climate extremes at 1.5 °C and 2 °C of global warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  7. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  8. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  9. Global Change Drought in the Southwest: New Management Options

    NASA Astrophysics Data System (ADS)

    Udall, B. H.; Overpeck, J. T.

    2015-12-01

    Long held worries about future runoff declines in the Colorado River under climate change are proving to be more than just theory. Fifteen years into this century flows of the Colorado are already declining due mostly to unprecedented temperatures, and as warming proceeds, declines in river flow will grow larger. Temperature-driven droughts, some lasting decades and much more severe than the current 15-year drought, will also become more commonplace if climate change continues unabated. Current projections of future water availability almost universally understate the risk of large Colorado flow reductions under business-as-usual warming. Betting on highly uncertain projections of increased precipitation to overcome even part of the flow reductions due to virtually certain warming is a poor risk management strategy. Many of the existing water policy arrangements in the Colorado River Basin will fail in the 21st century unless innovative new solutions are developed under leadership from the federal government and its basin state partners.

  10. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Björk; Anne D. Bjorkman; Terry V. Callaghan; [and others] NO-VALUE; William Gould; Joel Mercado

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty...

  11. High latitude changes in ice dynamics and their impact on polar marine ecosystems.

    PubMed

    Moline, Mark A; Karnovsky, Nina J; Brown, Zachary; Divoky, George J; Frazer, Thomas K; Jacoby, Charles A; Torres, Joseph J; Fraser, William R

    2008-01-01

    Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.

  12. Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications.

    PubMed

    New, Mark; Liverman, Diana; Schroeder, Heike; Schroder, Heike; Anderson, Kevin

    2011-01-13

    The 1992 UN Framework Convention on Climate Change commits signatories to preventing 'dangerous anthropogenic interference with the climate system', leaving unspecified the level of global warming that is dangerous. In the late 1990s, a limit of 2°C global warming above preindustrial temperature was proposed as a 'guard rail' below which most of the dangerous climate impacts could be avoided. The 2009 Copenhagen Accord recognized the scientific view 'that the increase in global temperature should be below 2 degrees Celsius' despite growing views that this might be too high. At the same time, the continued rise in greenhouse gas emissions in the past decade and the delays in a comprehensive global emissions reduction agreement have made achieving this target extremely difficult, arguably impossible, raising the likelihood of global temperature rises of 3°C or 4°C within this century. Yet, there are few studies that assess the potential impacts and consequences of a warming of 4°C or greater in a systematic manner. Papers in this themed issue provide an initial picture of the challenges facing a world that warms by 4°C or more, and the difficulties ahead if warming is to be limited to 2°C with any reasonable certainty. Across many sectors--coastal cities, agriculture, water stress, ecosystems, migration--the impacts and adaptation challenges at 4°C will be larger than at 2°C. In some cases, such as farming in sub-Saharan Africa, a +4°C warming could result in the collapse of systems or require transformational adaptation out of systems, as we understand them today. The potential severity of impacts and the behavioural, institutional, societal and economic challenges involved in coping with these impacts argue for renewed efforts to reduce emissions, using all available mechanisms, to minimize the chances of high-end climate change. Yet at the same time, there is a need for accelerated and focused research that improves understanding of how the climate system might behave under a +4°C warming, what the impacts of such changes might be and how best to adapt to what would be unprecedented changes in the world we live in.

  13. When will we be committed to crossing 1.5 and 2 °C temperature thresholds?

    NASA Astrophysics Data System (ADS)

    Armour, K.; Proistosescu, C.; Roe, G.; Huybers, P. J.

    2017-12-01

    The zero-emissions climate commitment is a key metric for science and policy. It is the future warming we face given only to-date emissions, independent of future human influence on climate. Following a cessation of emissions, future global temperature change depends on (i) the atmospheric lifetimes of aerosols and greenhouse gases (GHGs), and (ii) the physical climate response to radiative forcing (Armour and Roe 2011). The cooling effect of aerosols diminishes within weeks; GHG concentrations get drawn down on timescales ranging from months to millennia; and ocean heat uptake diminishes as climate equilibrates with the residual CO2 forcing. Whether global temperature increases, stays stable, or declines following emission cessation depends on these competing factors. There is substantial uncertainty in the zero-emissions commitment due to a combination of (i) correlated uncertainties in aerosol radiative forcing and climate sensitivity, (ii) uncertainty in the atmospheric lifetime of CO2, and (iii) uncertainty in how climate sensitivity will evolve in the future. Here we quantify climate commitment in a Bayesian framework of an idealized model constrained by observations of global warming and energy imbalance, combined with estimates of global radiative forcing. At present, our committed warming is 1.2°C (median), with a 25% chance that it already exceeds 1.5°C and a 5% chance that it exceeds 2°C; the range comes primarily from uncertainty in the degree to which aerosols currently mask GHG forcing. We further quantify how climate commitment, and its uncertainty, changes with emissions scenario and over time. Under high emissions (RCP8.5), we will reach a >50% risk of a 2°C zero-emission climate commitment by the year 2035, about two decades before that temperature would be reached if emissions continued unabated. Committed warming is substantially reduced for lower-emissions scenarios, depending on the mix of aerosol and GHG mitigation. For the next few decades the primary uncertainty in climate commitment comes from correlated uncertainties in aerosol forcing and climate sensitivity; later in the century it comes from uncertainties in the carbon cycle (setting the lifetime and residual concentration of CO2) and in how climate sensitivity changes over time.

  14. Deglacial temperature history of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cuffey, Kurt M.; Clow, Gary D.; Steig, Eric J.; Buizert, Christo; Fudge, T. J.; Koutnik, Michelle; Waddington, Edwin D.; Alley, Richard B.; Severinghaus, Jeffrey P.

    2016-12-01

    The most recent glacial to interglacial transition constitutes a remarkable natural experiment for learning how Earth’s climate responds to various forcings, including a rise in atmospheric CO2. This transition has left a direct thermal remnant in the polar ice sheets, where the exceptional purity and continual accumulation of ice permit analyses not possible in other settings. For Antarctica, the deglacial warming has previously been constrained only by the water isotopic composition in ice cores, without an absolute thermometric assessment of the isotopes’ sensitivity to temperature. To overcome this limitation, we measured temperatures in a deep borehole and analyzed them together with ice-core data to reconstruct the surface temperature history of West Antarctica. The deglacial warming was 11.3±1.811.3±1.8∘C, approximately two to three times the global average, in agreement with theoretical expectations for Antarctic amplification of planetary temperature changes. Consistent with evidence from glacier retreat in Southern Hemisphere mountain ranges, the Antarctic warming was mostly completed by 15 kyBP, several millennia earlier than in the Northern Hemisphere. These results constrain the role of variable oceanic heat transport between hemispheres during deglaciation and quantitatively bound the direct influence of global climate forcings on Antarctic temperature. Although climate models perform well on average in this context, some recent syntheses of deglacial climate history have underestimated Antarctic warming and the models with lowest sensitivity can be discounted.

  15. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE PAGES

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; ...

    2017-09-13

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  16. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  17. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    USGS Publications Warehouse

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  18. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.

    2016-01-01

    Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.

  19. Successful Predictions

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2012-12-01

    In an observational science, it is not possible to test hypotheses through controlled laboratory experiments. One can test parts of the system in the lab (as is done routinely with infrared spectroscopy of greenhouse gases), but the collective behavior cannot be tested experimentally because a star or planet cannot be brought into the lab; it must, instead, itself be the lab. In the case of anthropogenic global warming, this is all too literally true, and the experiment would be quite exciting if it weren't for the unsettling fact that we and all our descendents for the forseeable future will have to continue making our home in the lab. There are nonetheless many routes though which the validity of a theory of the collective behavior can be determined. A convincing explanation must not be a"just-so" story, but must make additional predictions that can be verified against observations that were not originally used in formulating the theory. The field of Earth and planetary climate has racked up an impressive number of such predictions. I will also admit as "predictions" statements about things that happened in the past, provided that observations or proxies pinning down the past climate state were not available at the time the prediction was made. The basic prediction that burning of fossil fuels would lead to an increase of atmospheric CO2, and that this would in turn alter the Earth's energy balance so as to cause tropospheric warming, is one of the great successes of climate science. It began in the lineage of Fourier, Tyndall and Arrhenius, and was largely complete with the the radiative-convective modeling work of Manabe in the 1960's -- all well before the expected warming had progressed far enough to be observable. Similarly, long before the increase in atmospheric CO2 could be detected, Bolin formulated a carbon cycle model and used it to predict atmospheric CO2 out to the year 2000; the actual values come in at the high end of his predicted range, for reasons I shall discuss. During the dark ages of global change, between Arrhenius and Plass (punctuated by Callendar), work on planetary climate had not in fact ground to a halt, but developed vigorously in the astronomical community. This culminated in major discoveries about the atmospheres of Mars and Venus, notably Sagan's prediction that Venus has an extremely high surface temperature owing to an atmosphere extremely rich in greenhouse gases. The fertile interplay between astrophysics and terrestrial climate science continues in the current dawning era of exoplanet discovery. Early modeling work, notably by Manabe and co-workers, identified a number of spatial patterns of global change that were ultimately realized in data. These include: amplification of warming over land and in the Arctic, and the conjunction of stratospheric cooling with tropospheric warming. Additional examples I will discuss include the problem of tropical temperatures at the Last Glacial Maximum, water vapor feedback, Hansen's prediction of response to the Pinatubo eruption, and the prediction that ocean heat uptake would delay warming. While not all aspects of climate change were anticipated in advance (notably the interruption of warming around 1950-1970), examples of truly failed predictions are rare, and are overwhelmingly found among theories such as those of Angstrom or Lindzen which purport to show little sensitivity of climate to CO2.

  20. Early onset of industrial-era warming across the oceans and continents.

    PubMed

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  1. Contributions of past and present human generations to committed warming caused by carbon dioxide.

    PubMed

    Friedlingstein, Pierre; Solomon, Susan

    2005-08-02

    We developed a highly simplified approach to estimate the contributions of the past and present human generations to the increase of atmospheric CO(2) and associated global average temperature increases. For each human generation of adopted 25-year length, we use simplified emission test cases to estimate the committed warming passed to successive children, grandchildren, and later generations. We estimate that the last and the current generation contributed approximately two thirds of the present-day CO(2)-induced warming. Because of the long time scale required for removal of CO(2) from the atmosphere as well as the time delays characteristic of physical responses of the climate system, global mean temperatures are expected to increase by several tenths of a degree for at least the next 20 years even if CO(2) emissions were immediately cut to zero; that is, there is a commitment to additional CO(2)-induced warming even in the absence of emissions. If the rate of increase of CO(2) emissions were to continue up to 2025 and then were cut to zero, a temperature increase of approximately 1.3 degrees C compared to preindustrial conditions would still occur in 2100, whereas a constant-CO(2)-emissions scenario after 2025 would more than double the 2100 warming. These calculations illustrate the manner in which each generation inherits substantial climate change caused by CO(2) emissions that occurred previously, particularly those of their parents, and shows that current CO(2) emissions will contribute significantly to the climate change of future generations.

  2. Communicating the deadly consequences of global warming for human heat stress

    PubMed Central

    Matthews, Tom K. R.; Wilby, Robert L.; Murphy, Conor

    2017-01-01

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations. PMID:28348220

  3. Building Capacity for Collaborative Decisions, Resilient Ecosystems, and Sustainable Practices: Water, Land, Communtiy and People in Estuarine Watersheds

    EPA Science Inventory

    Population growth, urban expansion, and the warming climate have and will continue to stress our coastal ecosystems. Decisions on how and when to respond with stewardship, adaptation, and mitigation are made by individuals, municipalities, states, and agencies. These decisions ...

  4. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  5. America's Children at an Environmental Crossroad

    ERIC Educational Resources Information Center

    Stomfay-Stitz, Aline M.; Wheeler, Edyth

    2008-01-01

    Few issues have galvanized the attention of U.S. citizenry in the past year as have environmental concerns, especially climate change, global warming, and greenhouse gas emissions. Degradation to our fragile planet continues unchecked with only limited actions on a national level. Children who absorb these concerns through television, classroom…

  6. Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes

    NASA Astrophysics Data System (ADS)

    Mayewski, P. A.; Carleton, A. M.; Birkel, S. D.; Dixon, D.; Kurbatov, A. V.; Korotkikh, E.; McConnell, J.; Curran, M.; Cole-Dai, J.; Jiang, S.; Plummer, C.; Vance, T.; Maasch, K. A.; Sneed, S. B.; Handley, M.

    2017-01-01

    A primary goal of the SCAR (Scientific Committee for Antarctic Research) initiated AntClim21 (Antarctic Climate in the 21st Century) Scientific Research Programme is to develop analogs for understanding past, present and future climates for the Antarctic and Southern Hemisphere. In this contribution to AntClim21 we provide a framework for achieving this goal that includes: a description of basic climate parameters; comparison of existing climate reanalyses; and ice core sodium records as proxies for the frequencies of marine air mass intrusion spanning the past ∼2000 years. The resulting analog examples include: natural variability, a continuation of the current trend in Antarctic and Southern Ocean climate characterized by some regions of warming and some cooling at the surface of the Southern Ocean, Antarctic ozone healing, a generally warming climate and separate increases in the meridional and zonal winds. We emphasize changes in atmospheric circulation because the atmosphere rapidly transports heat, moisture, momentum, and pollutants, throughout the middle to high latitudes. In addition, atmospheric circulation interacts with temporal variations (synoptic to monthly scales, inter-annual, decadal, etc.) of sea ice extent and concentration. We also investigate associations between Antarctic atmospheric circulation features, notably the Amundsen Sea Low (ASL), and primary climate teleconnections including the SAM (Southern Annular Mode), ENSO (El Nîno Southern Oscillation), the Pacific Decadal Oscillation (PDO), the AMO (Atlantic Multidecadal Oscillation), and solar irradiance variations.

  7. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  8. The coastal ocean response to the global warming acceleration and hiatus

    PubMed Central

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  9. The coastal ocean response to the global warming acceleration and hiatus.

    PubMed

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  10. Role of land-surface changes in arctic summer warming

    USGS Publications Warehouse

    Chapin, F. S.; Sturm, M.; Serreze, Mark C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, Joshua P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.

    2005-01-01

    A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.

  11. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China

    PubMed Central

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983–1999 and 2000–2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6–11.0% and 19.5–92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  12. A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2015-07-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate-vegetation-land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.

  13. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    PubMed

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  14. Paleoclimate of the Neoglacial and Roman Warm Period Reconstructed from Oxygen Isotope Ratios of Limpet Shells (Patella vulgata), Northwest Scotland

    NASA Astrophysics Data System (ADS)

    Wang, T.; Surge, D. M.; Mithen, S.

    2010-12-01

    Paleoclimate reconstructions from different regions have reported abrupt climate change around 2800-2700 cal yr B.P. The timing of this abrupt climate change is close to the boundary between the Neoglacial (3300-2500 cal yr B.P.) and Roman Warm Period (2500-1600 cal yr B.P.). However, temporal and spatial variability observed in this climate change event raises controversies about the forcing factors driving it and why it has regional variability. Scotland lies in the North Atlantic Ocean, which responds sensitively to climate change. Therefore, even in the case of subtle climate change, the climate variability of Scotland should be able to capture such change. In this study, we expect that paleoclimate reconstructions of the Neoglacial and Roman Warm Period in Scotland will help improve our knowledge of abrupt climate change at 2800-2700 cal yr B.P. Archaeological shell deposits provide a rich source of climate proxy data preserved as oxygen isotope ratios in shell carbonate. Croig Cave on the Isle of Mull, Scotland, contains a nearly continuous accumulation of shells ranging from 800 BC-500 AD and possibly older. This range represents a broad chronology of human use from the late Bronze to Iron Ages and spans the Neoglacial through Roman Warm Period climate episodes. Here, we present seasonal temperature variability of the two climate episodes based on oxygen isotope ratios of ten limpet shells (Patella vulgata) from Croig Cave. Based on AMS dating (2 sigma calibration), the oldest shell was from 3480-3330 cal yr B.P. and the youngest shell was from 2060-1870 cal yr B.P. Our results indicated that estimated temperatures from the Neoglacial limpets average 6.44±0.56°C for coldest winters and 15.06±0.67°C for warmest summers. For the Roman Warm Period limpets, the average is 5.68±0.36°C for coldest winters and 14.14±0.81°C for warmest summers. We compared our estimated temperatures to the present sea surface temperature (SST) from 1961 to 1990 near our study area, which averages 7.40±0.35°C for coldest month and 14.12±0.54°C for warmest month. Our reconstructed temperatures from the Neoglacial limpets showed slightly (0-1°C) colder winters, similar or warmer (1-1.8°C) summers compared to present SST record. One shell captured a year without a summer likely resulting from an eruption of the Katla volcanic system in Iceland. The reconstructed temperatures from the Roman Warm Period limpets showed colder winters (up to 2°C) and similar summers compared with present SST record. Our findings represent the first insights of SST variability at seasonal time scales for these two climate episodes in northwest Scotland.

  15. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    NASA Astrophysics Data System (ADS)

    Frost, Gerald V.; Epstein, Howard E.; Walker, Donald A.; Matyshak, Georgiy; Ermokhina, Ksenia

    2013-03-01

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes.

  16. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    USGS Publications Warehouse

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is sensitive to continental-scale changes in climate and could be affected by future climate change. Plant and animal species sensitive to changes in the moisture regime could thus be endangered within the Great Lakes parks.

  17. On the definition and identifiability of the alleged "hiatus" in global warming.

    PubMed

    Lewandowsky, Stephan; Risbey, James S; Oreskes, Naomi

    2015-11-24

    Recent public debate and the scientific literature have frequently cited a "pause" or "hiatus" in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the "hiatus". To examine whether the notion of a "hiatus" is justified by the available data, we first document that there are multiple definitions of the "hiatus" in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the "hiatus" trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged "hiatus" periods notwithstanding. If current definitions of the "pause" used in the literature are applied to the historical record, then the climate system "paused" for more than 1/3 of the period during which temperatures rose 0.6 K.

  18. Early benefits of mitigation in risk of regional climate extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2017-04-01

    Large differences in climate outcomes are projected by the end of this century depending on whether greenhouse gas emissions continue to increase or are reduced sufficiently to limit total warming to below 2 °C (ref. ). However, it is generally thought that benefits of mitigation are hidden by internal climate variability until later in the century. Here we show that if the likelihood of extremely hot seasons is considered, the benefits of mitigation emerge more quickly than previously thought. It takes less than 20 years of emissions reductions in many regions for the likelihood of extreme seasonal warmth to reduce by more than half following initiation of mitigation. Additionally we show that the latest possible date at which the probability of extreme seasonal temperatures will be halved through emissions reductions consistent with the 2 °C target is in the 2040s. Exposure to climate risk is therefore reduced markedly and rapidly with substantial reductions of greenhouse gas emissions, demonstrating that the early mitigation needed to limit eventual warming below potentially dangerous levels benefits societies in the nearer term not just in the longer-term future.

  19. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  20. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  1. The geological and climatological case for a warmer and wetter early Mars

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Craddock, Robert A.

    2018-04-01

    The climate of early Mars remains a topic of intense debate. Ancient terrains preserve landscapes consistent with stream channels, lake basins and possibly even oceans, and thus the presence of liquid water flowing on the Martian surface 4 billion years ago. However, despite the geological evidence, determining how long climatic conditions supporting liquid water lasted remains uncertain. Climate models have struggled to generate sufficiently warm surface conditions given the faint young Sun—even assuming a denser early atmosphere. A warm climate could have potentially been sustained by supplementing atmospheric CO2 and H2O warming with either secondary greenhouse gases or clouds. Alternatively, the Martian climate could have been predominantly cold and icy, with transient warming episodes triggered by meteoritic impacts, volcanic eruptions, methane bursts or limit cycles. Here, we argue that a warm and semi-arid climate capable of producing rain is most consistent with the geological and climatological evidence.

  2. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains

    PubMed Central

    Calder, W. John; Parker, Dusty; Stopka, Cody J.; Jiménez-Moreno, Gonzalo; Shuman, Bryan N.

    2015-01-01

    Many of the largest wildfires in US history burned in recent decades, and climate change explains much of the increase in area burned. The frequency of extreme wildfire weather will increase with continued warming, but many uncertainties still exist about future fire regimes, including how the risk of large fires will persist as vegetation changes. Past fire-climate relationships provide an opportunity to constrain the related uncertainties, and reveal widespread burning across large regions of western North America during past warm intervals. Whether such episodes also burned large portions of individual landscapes has been difficult to determine, however, because uncertainties with the ages of past fires and limited spatial resolution often prohibit specific estimates of past area burned. Accounting for these challenges in a subalpine landscape in Colorado, we estimated century-scale fire synchroneity across 12 lake-sediment charcoal records spanning the past 2,000 y. The percentage of sites burned only deviated from the historic range of variability during the Medieval Climate Anomaly (MCA) between 1,200 and 850 y B.P., when temperatures were similar to recent decades. Between 1,130 and 1,030 y B.P., 83% (median estimate) of our sites burned when temperatures increased ∼0.5 °C relative to the preceding centuries. Lake-based fire rotation during the MCA decreased to an estimated 120 y, representing a 260% higher rate of burning than during the period of dendroecological sampling (360 to −60 y B.P.). Increased burning, however, did not persist throughout the MCA. Burning declined abruptly before temperatures cooled, indicating possible fuel limitations to continued burning. PMID:26438834

  3. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  4. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China.

    PubMed

    Huang, Qunfang; Lu, Yuqi

    2015-07-27

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957-2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  5. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    PubMed Central

    Huang, Qunfang; Lu, Yuqi

    2015-01-01

    The Yangtze River Delta (YRD) has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA) has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI) effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime) and maximal (daytime) air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05). Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001). The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming. PMID:26225986

  6. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].

    PubMed

    Luo, Xu; Wang, Yu Li; Zhang, Jin Quan

    2018-03-01

    Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus sylvestris var. mongolica, Picea koraiensis and Populus davidiana showed increasing trend at different degrees during the entire simulation period. There was a time lag for the direct effect of climate warming on biomass for coniferous and broadleaved species. The response time of coniferous species to climate warming was 25-30 years, which was longer than that for broadleaf species. The forest landscape in the Great Xing'an Mountains was sensitive to the interactive effect of climate warming (high CO 2 emissions) and high intensity fire disturbance. Future climate warming and high intensity forest fire disturbance would significantly change the composition and structure of forest ecosystem.

  7. Distinctive ocean interior changes during the recent warming slowdown

    PubMed Central

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-01-01

    The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by warming in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant warming. PMID:26394551

  8. Distinctive ocean interior changes during the recent warming slowdown.

    PubMed

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-09-23

    The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by warming in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant warming.

  9. Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils

    PubMed Central

    Billings, Andrew F.; Blanchard, Jeff L.; Burkhardt, Daniel B.; Frey, Serita D.; Melillo, Jerry M.; Schnabel, Julia; van Diepen, Linda T. A.

    2016-01-01

    ABSTRACT As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. PMID:27590813

  10. Prospects for future climate change and the reasons for early action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, Michael C.

    2008-06-15

    Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The global average temperature is already approximately 0.8{sup o}C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1{sup o}C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and themore » commitment to future warming are presently increasing at a rate of approximately 0.2{sup o}C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5{sup o}C above its 1750 value of approximately 15{sup o}C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO{sub 2}) and other non-CO{sub 2} greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO{sub 2} emissions while minimizing growth in CO{sub 2} emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed. 183 refs., 13 figs., 5 tabs.« less

  11. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Lyons, J.; Stewart, J.S.; Mitro, M.

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.

  12. Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.

    USGS Publications Warehouse

    Stewart, Jana S.; Lyons, John D.; Matt Mitro,

    2010-01-01

    Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.

  13. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land

    PubMed Central

    Huntingford, Chris; Mercado, Lina M.

    2016-01-01

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state. PMID:27461560

  14. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  15. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Mercado, Lina M.

    2016-07-01

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or “committed” warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.

  16. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land.

    PubMed

    Huntingford, Chris; Mercado, Lina M

    2016-07-27

    The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.

  17. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  18. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages

    PubMed Central

    Sánchez Goñi, María F.; Desprat, Stéphanie; Fletcher, William J.; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H.; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth’s other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events occurred on the European margin superimposed to a long-term air-sea decoupling trend. Strong air-sea thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This interaction between long-term and shorter time-scale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic processes in Earth models of intermediate complexity. PMID:29434616

  19. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages.

    PubMed

    Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events occurred on the European margin superimposed to a long-term air-sea decoupling trend. Strong air-sea thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This interaction between long-term and shorter time-scale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic processes in Earth models of intermediate complexity.

  20. Climate and meltwater changes in the Himalayas: impacts, risk assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Wang, S.; Zhang, D.; Guo, W.; Gao, X.; Guo, X.; Ming, J.

    2017-12-01

    Regional warming was identified in the whole Himalayas in the past 50 years, with larger warming rate in the last decade. During the same period, precipitation decreased in the most areas of Himalayas. Warming-dry regime of climate resulted in widespread retreating of glaciers. Based on in-situ investigations and mapping of satellite images, we studied glacial changes between 1970's to 2008. It shows that in the north slope of Himalayas, retreating glaciers amount to 25.3% of overall glaciers in Ganges basin, 23.3% in Yarlung Zangbo basin, 29.2% in Indus and 25% in other areas. Glacier areal changes in the southern slope roughly doubled than that of the northern slope. Darkening of glacier surface due to back carbon and other light-absorbing aerosols might have contributed to the strong melting, especially in the southern slope. Using degree-day model (DDM), we estimate that, during 1961-2006, the total mass loses of glaciers in the north slope of Himalayas amounts to 198 km3, equals to approximately 10 m thinning of glaciers. The mass balance is averaged -220mm•a-1 during 2000-2006. Glacier melt water increases in the last 5 decades, contributing to an increasing amount to total river runoff in the Indus, Ganges and Yarlung Zangbo Rivers. Projections of future climate change by Regional Climate Model (ICTP RegCM3) shows continuously warming and drying trends in the most part of Himalayas before 2050, implying continuously retreating of glacier thus depletion of water storage over the Himalayas. Assessment of glacial lake outburst flood (GLOF) disaster risk is completed in the north slope, combined with potential dangerous glacial lakes (PDGL) outburst hazard. The zones at highest risk of GLOF disaster are mainly located in Nyalam, Tingri, Dinggyê, Lhozhag, Kangmar and Zhongba, in the mid-eastern Himalayas. Post-melting season (winter and spring) coincides with strong wind season over valley of Yarlung Zangbo River, blowing sands from exposed river bed to bank and hill foot, where large cultivated and pasture lands exist. An engineering measure is suggested to mitigate such desertification trend.

  1. Ecological dynamics across the Arctic associated with recent climate change.

    PubMed

    Post, Eric; Forchhammer, Mads C; Bret-Harte, M Syndonia; Callaghan, Terry V; Christensen, Torben R; Elberling, Bo; Fox, Anthony D; Gilg, Olivier; Hik, David S; Høye, Toke T; Ims, Rolf A; Jeppesen, Erik; Klein, David R; Madsen, Jesper; McGuire, A David; Rysgaard, Søren; Schindler, Daniel E; Stirling, Ian; Tamstorf, Mikkel P; Tyler, Nicholas J C; van der Wal, Rene; Welker, Jeffrey; Wookey, Philip A; Schmidt, Niels Martin; Aastrup, Peter

    2009-09-11

    At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.

  2. Threats to North American forests from southern pine beetle with warming winters

    NASA Astrophysics Data System (ADS)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley

    2017-10-01

    In coming decades, warmer winters are likely to ease range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York and Connecticut in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modelling approach and current-generation general circulation model output under Representative Concentration Pathways 4.5 and 8.5. Results show that by the middle of the twenty-first century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption of local ecosystem services, shifts in forest structure, and threats to native biodiversity.

  3. Threats to North American Forests from Southern Pine Beetle with Warming Winters

    NASA Technical Reports Server (NTRS)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley M.

    2016-01-01

    In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption oflocal ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.

  4. Simulation of future stream alkalinity under changing deposition and climate scenarios.

    PubMed

    Welsch, Daniel L; Cosby, B Jack; Hornberger, George M

    2006-08-31

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 microeq L-1) except where climate is gradually warming and becoming more moist (average increase of 13 microeq L-1). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions.

  5. Severe Weather in a Changing Climate: Getting to Adaptation

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Janssen, E.; Kunkel, K.

    2011-12-01

    Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the warming, and large precipitation events will likely increase in intensity and frequency. In the presentation, we will not only discuss the recent trends in severe weather and the projections of the impacts of climate change on severe weather in the future, but also specific examples of how this information is being used in developing and applying adaptation policies.

  6. Hydrologic responses to climate change: considering geographic context and alternative hypotheses

    Treesearch

    J.A. Jones

    2011-01-01

    One of the most significant consequences of climate warming is the likely change in streamflow as a result of warming air temperatures. Hydrologists have responded to the challenge of understanding these effects. Many recent studies quantify historical trends in streamflow and usually attribute these trends to climate warming, via altered evapotranspiration and...

  7. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  8. A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins

    PubMed Central

    Clucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom

    2014-01-01

    Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’. PMID:24865774

  9. A reversal of fortunes: climate change 'winners' and 'losers' in Antarctic Peninsula penguins.

    PubMed

    Clucas, Gemma V; Dunn, Michael J; Dyke, Gareth; Emslie, Steven D; Naveen, Ron; Polito, Michael J; Pybus, Oliver G; Rogers, Alex D; Hart, Tom

    2014-06-12

    Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.

  10. Polar bears and sea ice habitat change

    USGS Publications Warehouse

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  11. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community

    PubMed Central

    Alatalo, Juha M.; Jägerbrand, Annika K.; Molau, Ulf

    2016-01-01

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity PMID:26888225

  12. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    PubMed

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  13. Estimating the potential for adaptation of corals to climate warming.

    PubMed

    Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H

    2010-03-18

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  14. Estimating the Potential for Adaptation of Corals to Climate Warming

    PubMed Central

    Császár, Nikolaus B. M.; Ralph, Peter J.; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J. H.

    2010-01-01

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming. PMID:20305781

  15. Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM)

    NASA Astrophysics Data System (ADS)

    Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda

    2018-05-01

    Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual precipitation is expected to decrease in southeastern China. Therefore, flood risk in northern China and drought risk in southern China should draw more attention for a global air temperature increase from 1.5 °C to 2.0 °C.

  16. Global warming and tropical cyclone climate in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kang, Nam-Young

    Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend. Frequency variation and super typhoon intensity variation are regarded as the addition of global warming influence on TC activity variation. The structure depicts how a previous intensity record is overtaken and frequency falls continuously in the global warming environment in a linear perspective. A peak TC activity year when global ocean warmth is the highest ever is likely to experience a record-breaking intensity. In the same way, the least number of annual TCs may appear when a lull of TC activity occurs in the warmest year.

  17. Subsurface thermal and hydrological changes between forest and clear-cut sites in the Oregon Cascades

    EPA Science Inventory

    The Cascades of the US Pacific Northwest are a climatically sensitive area. Projections of continued winter warming in this area are expected to induce a switch from a snow-dominated to a rain-dominated winter precipitation regime with a likely impact on subsurface thermal and h...

  18. The long view: Causes of climate change over the instrumental period

    NASA Astrophysics Data System (ADS)

    Hegerl, G. C.; Schurer, A. P.; Polson, D.; Iles, C. E.; Bronnimann, S.

    2016-12-01

    The period of instrumentally recorded data has seen remarkable changes in climate, with periods of rapid warming, and periods of stagnation or cooling. A recent analysis of the observed temperature change from the instrumental record confirms that most of the warming recorded since the middle of the 20rst century has been caused by human influences, but shows large uncertainty in separating greenhouse gas from aerosol response if accounting for model uncertainty. The contribution by natural forcing and internal variability to the recent warming is estimated to be small, but becomes more important when analysing climate change over earlier or shorter time periods. For example, the enigmatic early 20th century warming was a period of strong climate anomalies, including the US dustbowl drought and exceptional heat waves, and pronounced Arctic warming. Attribution results suggests that about half of the global warming 1901-1950 was forced by greenhouse gases increases, with an anomalously strong contribution by climate variability, and contributions by natural forcing. Long term variations in circulation are important for some regional climate anomalies. Precipitation is important for impacts of climate change and precipitation changes are uncertain in models. Analysis of the instrumental record suggests a human influence on mean and heavy precipitation, and supports climate model estimates of the spatial pattern of precipitation sensitivity to warming. Broadly, and particularly over ocean, wet regions are getting wetter and dry regions are getting drier. In conclusion, the historical record provides evidence for a strong response to external forcings, supports climate models, and raises questions about multi-decadal variability.

  19. Simulations of the Mid-Pliocene Warm Period Using Two Versions of the NASA-GISS ModelE2-R Coupled Model

    NASA Technical Reports Server (NTRS)

    Chandler, M. A.; Sohl, L. E.; Jonas, J. A.; Dowsett, H. J.; Kelley, M.

    2013-01-01

    The mid-Pliocene Warm Period (mPWP) bears many similarities to aspects of future global warming as projected by the Intergovernmental Panel on Climate Change (IPCC, 2007). Both marine and terrestrial data point to high-latitude temperature amplification, including large decreases in sea ice and land ice, as well as expansion of warmer climate biomes into higher latitudes. Here we present our most recent simulations of the mid-Pliocene climate using the CMIP5 version of the NASAGISS Earth System Model (ModelE2-R). We describe the substantial impact associated with a recent correction made in the implementation of the Gent-McWilliams ocean mixing scheme (GM), which has a large effect on the simulation of ocean surface temperatures, particularly in the North Atlantic Ocean. The effect of this correction on the Pliocene climate results would not have been easily determined from examining its impact on the preindustrial runs alone, a useful demonstration of how the consequences of code improvements as seen in modern climate control runs do not necessarily portend the impacts in extreme climates.Both the GM-corrected and GM-uncorrected simulations were contributed to the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Many findings presented here corroborate results from other PlioMIP multi-model ensemble papers, but we also emphasize features in the ModelE2-R simulations that are unlike the ensemble means. The corrected version yields results that more closely resemble the ocean core data as well as the PRISM3D reconstructions of the mid-Pliocene, especially the dramatic warming in the North Atlantic and Greenland-Iceland-Norwegian Sea, which in the new simulation appears to be far more realistic than previously found with older versions of the GISS model. Our belief is that continued development of key physical routines in the atmospheric model, along with higher resolution and recent corrections to mixing parameterisations in the ocean model, have led to an Earth System Model that will produce more accurate projections of future climate.

  20. Tropical Pacific Mean State and ENSO Variability across Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Hertzberg, J. E.; Schmidt, M. W.; Marcantonio, F.; Bianchi, T. S.

    2017-12-01

    The El Niño/Southern Oscillation (ENSO) phenomenon is the largest natural interannual signal in the Earth's climate system and has widespread effects on global climate that impact millions of people worldwide. A series of recent research studies predict an increase in the frequency of extreme El Niño and La Niña events as Earth's climate continues to warm. In order for climate scientists to forecast how ENSO will evolve in response to global warming, it is necessary to have accurate, comprehensive records of how the system has naturally changed in the past, especially across past abrupt warming events. Nevertheless, there remains significant uncertainty about past changes in tropical Pacific climate and how ENSO variability relates to the millennial-scale warming events of the last ice age. This study aims to reconstruct changes in the tropical Pacific mean state and ENSO variability across Marine Isotope Stage 3 from a sediment core recovered from the Eastern Equatorial Pacific cold tongue (MV1014-02-17JC, 0°10.8' S, 85°52.0' W, 2846 m water depth). In this region, thermocline temperatures are significantly correlated to ENSO variability - thus, we analyzed Mg/Ca ratios in the thermocline dwelling foraminifera Neogloboquadrina dutertrei as a proxy for thermocline temperatures in the past. Bulk ( 50 tests/sample) foraminifera Mg/Ca temperatures are used to reconstruct long-term variability in the mean state, while single shell ( 1 test/sample, 60 samples) Mg/Ca analyses are used to assess thermocline temperature variance. Based on our refined age model, we find that thermocline temperature increases of up to 3.5°C occur in-step with interstadial warming events recorded in Greenland ice cores. Cooler thermocline temperatures prevail during stadial intervals and Heinrich Events. This suggests that interstadials were more El-Niño like, while stadials and Heinrich Events were more La-Niña like. These temperature changes are compared to new records of dust flux, export productivity, and bottom-water oxygenation measured in the same core. We will also present single shell Mg/Ca results for an interstadial, stadial, and Heinrich Event interval.

  1. High-resolution ensemble projections of near-term regional climate over the continental United States

    DOE PAGES

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; ...

    2016-09-01

    We present high-resolution near-term ensemble projections of hydro-climatic changes over the contiguous U.S. using a regional climate model (RegCM4) that dynamically downscales 11 Global Climate Models from the 5th phase of Coupled Model Inter-comparison Project at 18km horizontal grid spacing. All model integrations span 41 years in the historical period (1965 – 2005) and 41 years in the near-term future period (2010 – 2050) under Representative Concentration Pathway 8.5 and cover a domain that includes the contiguous U.S. and parts of Canada and Mexico. Should emissions continue to rise, surface temperatures in every region within the U.S. will reach amore » new climate norm well before mid 21st century regardless of the magnitudes of regional warming. Significant warming will likely intensify the regional hydrological cycle through the acceleration of the historical trends in cold, warm and wet extremes. The future temperature response will be partly regulated by changes in snow hydrology over the regions that historically receive a major portion of cold season precipitation in the form of snow. Our results indicate the existence of the Clausius-Clapeyron scaling at regional scales where per degree centigrade rise in surface temperature will lead to a 7.4% increase in precipitation from extremes. More importantly, both winter (snow) and summer (liquid) extremes are projected to increase across the U.S. These changes in precipitation characteristics will be driven by a shift towards shorter and wetter seasons. Altogether, projected changes in the regional hydro-climate can have substantial impacts on the natural and human systems across the U.S.« less

  2. Impacts of climate extremes on gross primary production under global warming

    DOE PAGES

    Williams, I. N.; Torn, M. S.; Riley, W. J.; ...

    2014-09-24

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  3. Impacts of climate extremes on gross primary production under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, I. N.; Torn, M. S.; Riley, W. J.

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at themore » warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections, and the time taken to return to locally optimal climates for GPP following climate extremes increases by more than 25% over many land regions.« less

  4. Contribution of anthropogenic warming to California drought during 2012-2015

    NASA Astrophysics Data System (ADS)

    Williams, P.; Seager, R.; Abatzoglou, J. T.; Cook, B.; Smerdon, J. E.; Cook, E. R.

    2015-12-01

    California is currently in its fourth year of a drought that has caused record-breaking rates of ground-water extraction, fallowed agricultural fields, changes to water-use policy, dangrously low lake levels, and ecological disturbances such as large wildfires and bark-beetle outbreaks. A common and important question is: to what degree can the severity of this drought in California, or of any drought globally, be blamed on human-caused global warming? Here we present the most comprehensive accounting of the natural and anthropogenic contributions to drought variability to date, and we provide an in-depth evaluation of the recent extreme drought in California. A suite of climate datasets and multiple representations of atmospheric moisture demand are used to calculate many estimates of the self-calibrated Palmer Drought Severity Index, a proxy for near-surface soil moisture, across California from 1901-2014 at high spatial resolution. Based on the ensemble of calculations, California drought conditions were record-breaking in 2014, but probably not record-breaking in 2012-2014, contrary to prior findings. Regionally, the 2012-2014 drought was record-breaking in the agriculturally important southern Central Valley and highly populated coastal areas. Contributions of individual climate variables to recent drought are also examined, including the temperature component associated with anthropogenic warming. Precipitation is the primary driver of drought variability but anthropogenic warming is estimated to have accounted for 8-27% of the observed drought anomaly in 2012-2014 and 5-18% in 2014. Analyses will be updated through 2015 for this presentation. Although natural climate variability has often masked the background effects of warming on drought, the background effect is becoming increasingly detectable and important, particularly by increased the overall likelihood of extreme California droughts. The dramatic effects of the current drought in California, combined with knowledge that the background warming-driven drought trend will continue to intensify amidst a high degree of natural climate variability, highlight the critical need for a long-term outlook on drought resilience even though wet conditions are likely to soon mitigate the current drought event.

  5. Non-linear responses of glaciated prairie wetlands to climate warming

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.

    2016-01-01

    The response of ecosystems to climate warming is likely to include threshold events when small changes in key environmental drivers produce large changes in an ecosystem. Wetlands of the Prairie Pothole Region (PPR) are especially sensitive to climate variability, yet the possibility that functional changes may occur more rapidly with warming than expected has not been examined or modeled. The productivity and biodiversity of these wetlands are strongly controlled by the speed and completeness of a vegetation cover cycle driven by the wet and dry extremes of climate. Two thresholds involving duration and depth of standing water must be exceeded every few decades or so to complete the cycle and to produce highly functional wetlands. Model experiments at 19 weather stations employing incremental warming scenarios determined that wetland function across most of the PPR would be diminished beyond a climate warming of about 1.5–2.0 °C, a critical temperature threshold range identified in other climate change studies.

  6. [Serapeo Temple in Pozzuoli, Italy--the unique gauge for the sea (world ocean) level and the Earth surface temperature for over 2100 years].

    PubMed

    Karnaukhov, V N; Karnaukhov, A V

    2010-01-01

    The changes in the sea level relative to the position of the Serapeo Temple in Pozzuoly (Italia) over a period of 2100 years are discussed in the context of the well known periods of climate cooling off (Neoglacial, Little Ace Period) and climate warming (Middle Ages Optimum, Modern climate warming). It is noted that the rate of sea level lifting relative to the position of the Serapeo Temple in the modern phase of climate warming, which began the end of the 18th Century is approximately two times higher than in the previous phase of climate warming in the period from the fifth to the mid-tenth century A.D. This indicates that not only the natural cyclic component contributes to the mechanisms of Modern Climate warming but also the anthropogenic component of approximately equivalent power, which results from the waste of CO2 caused by the burning of fossilized fuels.

  7. Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats

    USGS Publications Warehouse

    Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.; McGlynn, Brian L.; Kershner, Jeffrey L.

    2013-01-01

    Understanding the vulnerability of aquatic species and habitats under climate change is critical for conservation and management of freshwater systems. Climate warming is predicted to increase water temperatures in freshwater ecosystems worldwide, yet few studies have developed spatially explicit modelling tools for understanding the potential impacts. We parameterized a nonspatial model, a spatial flow-routed model, and a spatial hierarchical model to predict August stream temperatures (22-m resolution) throughout the Flathead River Basin, USA and Canada. Model comparisons showed that the spatial models performed significantly better than the nonspatial model, explaining the spatial autocorrelation found between sites. The spatial hierarchical model explained 82% of the variation in summer mean (August) stream temperatures and was used to estimate thermal regimes for threatened bull trout (Salvelinus confluentus) habitats, one of the most thermally sensitive coldwater species in western North America. The model estimated summer thermal regimes of spawning and rearing habitats at <13 C° and foraging, migrating, and overwintering habitats at <14 C°. To illustrate the useful application of such a model, we simulated climate warming scenarios to quantify potential loss of critical habitats under forecasted climatic conditions. As air and water temperatures continue to increase, our model simulations show that lower portions of the Flathead River Basin drainage (foraging, migrating, and overwintering habitat) may become thermally unsuitable and headwater streams (spawning and rearing) may become isolated because of increasing thermal fragmentation during summer. Model results can be used to focus conservation and management efforts on populations of concern, by identifying critical habitats and assessing thermal changes at a local scale.

  8. The impact of global warming on the range distribution of different climatic groups of Aspidoscelis costata costata.

    PubMed

    Güizado-Rodríguez, Martha Anahí; Ballesteros-Barrera, Claudia; Casas-Andreu, Gustavo; Barradas-Miranda, Victor Luis; Téllez-Valdés, Oswaldo; Salgado-Ugarte, Isaías Hazarmabeth

    2012-12-01

    The ectothermic nature of reptiles makes them especially sensitive to global warming. Although climate change and its implications are a frequent topic of detailed studies, most of these studies are carried out without making a distinction between populations. Here we present the first study of an Aspidoscelis species that evaluates the effects of global warming on its distribution using ecological niche modeling. The aims of our study were (1) to understand whether predicted warmer climatic conditions affect the geographic potential distribution of different climatic groups of Aspidoscelis costata costata and (2) to identify potential altitudinal changes of these groups under global warming. We used the maximum entropy species distribution model (MaxEnt) to project the potential distributions expected for the years 2020, 2050, and 2080 under a single simulated climatic scenario. Our analysis suggests that some climatic groups of Aspidoscelis costata costata will exhibit reductions and in others expansions in their distribution, with potential upward shifts toward higher elevation in response to climate warming. Different climatic groups were revealed in our analysis that subsequently showed heterogeneous responses to climatic change illustrating the complex nature of species geographic responses to environmental change and the importance of modeling climatic or geographic groups and/or populations instead of the entire species' range treated as a homogeneous entity.

  9. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions

    PubMed Central

    Zeebe, Richard E.

    2013-01-01

    Climate sensitivity measures the response of Earth’s surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth’s climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000–165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene–Eocene Thermal Maximum. PMID:23918402

  10. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    PubMed

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  11. Observed Changes at the Surface of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ortmeyer, M.; Rigor, I.

    2004-12-01

    The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the Arctic and global climate system, and for forecasting weather and sea ice conditions. The IABP provides the longest continuing record of observations for the Arctic Ocean.

  12. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore.

    PubMed

    Albon, Steve D; Irvine, R Justin; Halvorsen, Odd; Langvatn, Rolf; Loe, Leif E; Ropstad, Erik; Veiberg, Vebjørn; van der Wal, René; Bjørkvoll, Eirin M; Duff, Elizabeth I; Hansen, Brage B; Lee, Aline M; Tveraa, Torkild; Stien, Audun

    2017-04-01

    The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    NASA Astrophysics Data System (ADS)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model RegCM3 (run at 10 km horizontal resolution) was developed by Giorgi et al. and it is available from the ICTP (International Centre for Theoretical Physics). Analysis of the simulated daily temperature datasets suggests that the detected regional warming is expected to continue in the 21st century. Cold temperature extremes are projected to decrease while warm extremes tend to increase significantly. Expected changes of annual precipitation indices are small, but generally consistent with the detected trends of the 20th century. Based on the simulations, extreme precipitation events are expected to become more intense and more frequent in winter, while a general decrease of extreme precipitation indices is expected in summer.

  14. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    PubMed

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.

  15. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  16. The changing seasonal climate in the Arctic

    PubMed Central

    Bintanja, R.; van der Linden, E. C.

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities. PMID:23532038

  17. Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.

    2017-12-01

    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the number of melting days over snow and sea ice (and resultant increases in snow-free and ice-free duration), which are similar in magnitude to the change from pre-industrial conditions to present day. Continued warming to 2°C further intensifies the cryospheric response consistent with amplified Arctic warming relative to the global average trend.

  18. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  19. Examining mechanisms in the final stages of the elimination of boreal tree species on vulnerable sites in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.

    2015-12-01

    The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.

  20. Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre

    PubMed Central

    Telwala, Yasmeen; Brook, Barry W.; Manish, Kumar; Pandit, Maharaj K.

    2013-01-01

    Global average temperature increase during the last century has induced species geographic range shifts and extinctions. Montane floras, in particular, are highly sensitive to climate change and mountains serve as suitable observation sites for tracing climate-induced biological response. The Himalaya constitute an important global biodiversity hotspot, yet studies on species’ response to climate change from this region are lacking. Here we use historical (1849–50) and the recent (2007–2010) data on temperature and endemic species’ elevational ranges to perform a correlative study in the two alpine valleys of Sikkim. We show that the ongoing warming in the alpine Sikkim Himalaya has transformed the plant assemblages. This study lends support to the hypothesis that changing climate is causing species distribution changes. We provide first evidence of warmer winters in the region compared to the last two centuries, with mean temperatures of the warmest and the coldest months may have increased by 0.76±0.25°C and 3.65±2°C, respectively. Warming-driven geographical range shifts were recorded in 87% of 124 endemic plant species studied in the region; upper range extensions of species have resulted in increased species richness in the upper alpine zone, compared to the 19th century. We recorded a shift of 23–998 m in species’ upper elevation limit and a mean upward displacement rate of 27.53±22.04 m/decade in the present study. We infer that the present-day plant assemblages and community structure in the Himalaya is substantially different from the last century and is, therefore, in a state of flux under the impact of warming. The continued trend of warming is likely to result in ongoing elevational range contractions and eventually, species extinctions, particularly at mountaintops. PMID:23437322

  1. The twenty-first century Colorado River hot drought and implications for the future

    NASA Astrophysics Data System (ADS)

    Udall, Bradley; Overpeck, Jonathan

    2017-03-01

    Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9°C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur.Plain Language SummaryBetween 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change. Previous comparable droughts were caused by a lack of precipitation, not high temperatures. As temperatures increase in the 21st century due to continued human emissions of greenhouse gasses, additional temperature-induced flow losses will occur. These losses may exceed 20% at mid-century and 35% at end-century. Additional precipitation may reduce these temperature-induced losses somewhat, but to date no precipitation increases have been noted and climate models do not agree that such increases will occur. These results suggest that future climate change impacts on the Colorado River will be greater than currently assumed. Reductions in greenhouse gas emissions will lead to lower future temperatures and hence less flow loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoRL..3319701F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoRL..3319701F"><span>Southern Ocean warming due to human influence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fyfe, John C.</p> <p>2006-10-01</p> <p>I show that the latest series of climate models reproduce the observed mid-depth Southern Ocean warming since the 1950s if they include time-varying changes in anthropogenic greenhouse gases, sulphate aerosols and volcanic aerosols in the Earth's atmosphere. The remarkable agreement between observations and state-of-the art climate models suggests significant human influence on Southern Ocean temperatures. I also show that climate models that do not include volcanic aerosols produce mid-depth Southern Ocean warming that is nearly double that produced by climate models that do include volcanic aerosols. This implies that the full effect of human-induced warming of the Southern Ocean may yet to be realized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatGe..10..727K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatGe..10..727K"><span>Beyond equilibrium climate sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.</p> <p>2017-10-01</p> <p>Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21078096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21078096"><span>Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lyons, J; Stewart, J S; Mitro, M</p> <p>2010-11-01</p> <p>Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23151478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23151478"><span>Rapid coupling between ice volume and polar temperature over the past 150,000 years.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Grant, K M; Rohling, E J; Bar-Matthews, M; Ayalon, A; Medina-Elizalde, M; Ramsey, C Bronk; Satow, C; Roberts, A P</p> <p>2012-11-29</p> <p>Current global warming necessitates a detailed understanding of the relationships between climate and global ice volume. Highly resolved and continuous sea-level records are essential for quantifying ice-volume changes. However, an unbiased study of the timing of past ice-volume changes, relative to polar climate change, has so far been impossible because available sea-level records either were dated by using orbital tuning or ice-core timescales, or were discontinuous in time. Here we present an independent dating of a continuous, high-resolution sea-level record in millennial-scale detail throughout the past 150,000 years. We find that the timing of ice-volume fluctuations agrees well with that of variations in Antarctic climate and especially Greenland climate. Amplitudes of ice-volume fluctuations more closely match Antarctic (rather than Greenland) climate changes. Polar climate and ice-volume changes, and their rates of change, are found to covary within centennial response times. Finally, rates of sea-level rise reached at least 1.2 m per century during all major episodes of ice-volume reduction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3399147','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3399147"><span>Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry</p> <p>2012-01-01</p> <p>This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45oN and polewards) for the period 1900–2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue. PMID:22822437</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13H..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13H..01A"><span>Updated estimates of the climate response to emissions and their policy implications (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, M. R.; Otto, A.; Stocker, T. F.; Frame, D. J.</p> <p>2013-12-01</p> <p>We review the implications of observations of the global energy budget over recent decades, particularly the 'warming hiatus' period over the 2000s, for key climate system properties including equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative carbon emissions (TCRE). We show how estimates of the upper bound of ECS remain, as ever, sensitive to prior assumptions and also how ECS, even if it were better constrained, would provide much less information about the social cost of carbon than TCR or TCRE. Hence the excitement over recent, apparently conflicting, estimates of ECS, is almost entirely misplaced. Of greater potential policy significance is the fact that recent observations imply a modest (of order 25%) downward revision in the upper bound and most likely values of TCR and TCRE, as compared to some, but not all, of the estimates published in the mid-2000s. This is partly due to the recent reduced rate of warming, and partly due to revisions in estimates of total anthropogenic forcing to date. Both of these developments may turn out to be short-lived, so the policy implications of this modest revision in TCR/TCRE should not be over-sold: nevertheless, it is interesting to explore what they are. The implications for climate change adaptation of a 25% downward revision in TCR and TCRE are minimal, being overshadowed by uncertainty due to internal variability and non-CO2 climate forcings over typical timescales for adaptation planning. We introduce a simple framework for assessing the implications for mitigation in terms of timing of peak emissions average rates of emission reduction required to avoid specific levels of peak warming. We show that, as long as emissions continue to increase approximately exponentially, the implications for mitigation of any revisions in the climate response are surprisingly small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53A0522F"><span>Model-based evidence for persistent species zonation shifts in the southern Rocky Mountains under a warming climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Dwire, K. A.; Fornwalt, P.; Sibold, J.; Negrón, J. F.</p> <p>2016-12-01</p> <p>Forests in the Rocky Mountains are a crucial part of the North American carbon budget, but increases in disturbances such as insect outbreaks and fire, in conjunction with climate change, threaten their vitality. Mean annual temperatures in the western United States have increased by 2°C since 1950 and the higher elevations are warming faster than the rest of the landscape. It is predicted that this warming trend will continue, and that by the end of this century, nearly 50% of the western US landscape will have climate profiles with no current analog within that region. Individual tree-based modeling allows various climate change scenarios and their effects on forest dynamics to be tested. We use an updated individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME) at a subalpine site in the southern Rocky Mountains. UVAFME has been quantitatively and qualitatively validated in the southern Rocky Mountains, and results show that UVAFME-output on size structure, biomass, and species composition compares reasonably to inventory data and descriptions of vegetation zonation and successional dynamics for the region. We perform a climate sensitivity test in which temperature is first increased linearly by 2°C over 100 years, stabilized for 200 years, cooled back to present climate values over 100 years, and again stabilized for 200 years. This test is conducted to determine what effect elevated temperatures may have on vegetation zonation, and how persistent the changes may be if the climate is brought back to its current state. Results show that elevated temperatures within the southern Rocky Mountains may lead to decreases in biomass and changes in species composition as species migrate upslope. These changes are also likely to be fairly persistent for at least one- to two-hundred years. The results from this study suggest that UVAFME and other individual-based gap models can be used to inform forest management and climate mitigation strategies for this vitally important region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22776105','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22776105"><span>Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mercuri, A M; Torri, P; Casini, E; Olmi, L</p> <p>2013-01-01</p> <p>Woody plant performance in a changing global environment has always been at the centre of palaeoenvironmental and long-term climate reconstructions carried out by means of pollen analysis. In Mediterranean regions, Taxus constitutes the highest percentage in past pollen diagrams from cold or cool periods, and therefore it is generally considered a good index to infer climate features from past records. However, a comparison of these inferences with the true current trends in pollen production has not been attemped until now. This study reports the decline of airborne pollen of Taxus observed in Emilia Romagna, a region of northern Italy, during the period 1990-2007. Phenological observations on four male specimens and microscopic examination of fresh pollen were made in order to check Taxus flowering time and pollen morphology. Airborne pollen was monitored through continuous sampling with a Hirst volumetric sampler. In the 18-year long period of investigation, Taxus pollen production has decreased, while total woody pollen abundance in air has increased. The trend of the Taxus pollen season shows a delay at the beginning, a shortening of the pollen period, and an advance of the end of the pollen season. This was interpreted as a response to climate warming. In particular, Taxus follows the behaviour of winter-flowering plants, and therefore earlier pollination is favoured at low autumn temperatures, while late pollination occurs more often, most likely after warm autumn temperatures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29804312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29804312"><span>Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crous, Kristine Y; Drake, John E; Aspinwall, Michael J; Sharwood, Robert E; Tjoelker, Mark G; Ghannoum, Oula</p> <p>2018-05-27</p> <p>Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16-38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (T opt ) of photosynthesis and J max responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the T opt of J max during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming. © 2018 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4282258','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4282258"><span>Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia</p> <p>2014-01-01</p> <p>Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. PMID:24757012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B43I..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B43I..03K"><span>Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.</p> <p>2016-12-01</p> <p>Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21590332','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21590332"><span>Beyond climate envelopes: effects of weather on regional population trends in butterflies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>WallisDeVries, Michiel F; Baxter, Wendy; Van Vliet, Arnold J H</p> <p>2011-10-01</p> <p>Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED51C0816I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED51C0816I"><span>Global warming /climate change: Involving students using local example.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isiorho, S. A.</p> <p>2016-12-01</p> <p>The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B41C0335B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B41C0335B"><span>Net ecosystem exchange of CO2 and CH4 in the high arctic (81°N) during the growing season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barker, J. D.; St. Louis, V. L.; Graydon, J. A.; Lehnherr, I.</p> <p>2009-12-01</p> <p>The role of high arctic ecosystems in the global carbon budget has attracted scientific interest because a) arctic terrestrial ecosystems currently store significant amounts of organic carbon in permafrost and poorly drained tundra soils, and b) the arctic climate system is changing rapidly in response to global warming. The role of the high arctic terrestrial ecosystem as either a source or sink of atmospheric CO2 is unknown, although it is generally assumed that it will become a source of CO2 to the atmosphere as climate change continues to warm the region and previously sequestered organic matter in soils is mineralized as the active layer develops. We will present data on the net ecosystem exchange (NEE) of CO2 from high arctic tundra near Lake Hazen, Quittinirpaaq National Park (81°N) during the 2008 and 2009 growing seasons, collected using an eddy covariance flux tower. This is the first report of NEE from such a northerly latitude. We will also present data on the exchange of CH4 with tundra soils collected using static chambers. The tundra at Lake Hazen was a continuous CO2 sink during the growing season, and is carbon neutral during snow cover conditions in early spring. The CO2 flux correlated strongly with PAR and soil temperature. Despite active layer development at the site during our observation period (11 cm in 2008, 37 cm in 2009), no evidence of a corresponding CO2 pulse to the atmosphere was detected. Soil respiration rates, separately measured using a LiCOR 6400, indicated a correlation between soil respiration and plant cover corresponded. The strong correlation between NEE and vegetation parameters suggests that as vegetation cover increases in the high arctic in response to climate warming, the tundra at Lake Hazen may continue to function as a carbon sink despite continued active layer development. Dry tundra soils always consumed CH4 at our site, suggesting that parts of the high Arctic are actually sinks for this strong greenhouse gas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5544199','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5544199"><span>Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K.</p> <p>2017-01-01</p> <p>Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896–1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981–2010). Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future. PMID:28777816</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..297...71R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..297...71R"><span>A warmer and wetter solution for early Mars and the challenges with transient warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramirez, Ramses M.</p> <p>2017-11-01</p> <p>The climate of early Mars has been hotly debated for decades. Although most investigators believe that the geology indicates the presence of surface water, disagreement has persisted regarding how warm and wet the surface must have been and how long such conditions may have existed. Although the geologic evidence is most easily explained by a persistently warm climate, the perceived difficulty that climate models have in generating warm surface conditions has seeded various models that assume a cold and glaciated early Mars punctuated by transient warming episodes. However, I use a single-column radiative convective climate model to show that it is relatively more straightforward to satisfy warm and relatively non-glaciated early Mars conditions, requiring only ∼1% H2 and 3 bar CO2 or ∼20% H2 and 0.55 bar CO2. In contrast, the reflectivity of surface ice greatly increases the difficulty to transiently warm an initially frozen surface. Surface pressure thresholds required for warm conditions increase ∼10 - 60% for transient warming models, depending on ice cover fraction. No warm solution is possible for ice cover fractions exceeding 40%, 70%, and 85% for mixed snow/ice and 25%, 35%, and 49% for fresher snow/ice at H2 concentrations of 3%, 10%, and 20%, respectively. If high temperatures (298-323 K) were required to produce the observed surface clay amounts on a transiently warm early Mars (Bishop et al), I show that such temperatures would have required surface pressures that exceed available paleopressure constraints for nearly all H2 concentrations considered (1-20%). I then argue that a warm and semi-arid climate remains the simplest and most logical solution to Mars paleoclimate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23D2107P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23D2107P"><span>Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pendall, E.; Carrillo, Y.; Dijkstra, F. A.</p> <p>2017-12-01</p> <p>Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of warming on incorporation of plant derived C into microbes was stronger in deeper soils. Thus, warming made microbes incorporate relatively more plant inputs in deeper soils, where biomass was less stimulated. This dependency on depth of impacts of warming on microbial C cycling should have important implications for forecasting potential feedbacks of soil C to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://irma.nps.gov/App/Reference/Profile/2195963','USGSPUBS'); return false;" href="https://irma.nps.gov/App/Reference/Profile/2195963"><span>A natural resource condition assessment for Sequoia and Kings Canyon National Parks: Appendix 22: climatic change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Das, Adrian J.; Stephenson, Nathan L.</p> <p>2013-01-01</p> <p>30-year time periods -- the Independence station, with a relatively continuous temperature record starting in 1925 -- shows a modest warming, not a cooling, between 1925-1940 and 1971-2000, further casting doubt on the Kings Canyon cooling shown in Figs. 6 and 11 of Appendix 1. If funds become available, it will be useful to more formally analyze potential PRISM biases in long-term SEKI climatic trends. Until then, the analyses of individual weather station records presented here (effectively an analysis of source data that PRISM uses) are meant to provide a robust summary of climatic changes in SEKI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.5062S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.5062S"><span>Ocean Carbon Cycle Feedbacks Under Negative Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwinger, Jörg; Tjiputra, Jerry</p> <p>2018-05-01</p> <p>Negative emissions will most likely be needed to achieve ambitious climate targets, such as limiting global warming to 1.5°. Here we analyze the ocean carbon-concentration and carbon-climate feedback in an Earth system model under an idealized strong CO2 peak and decline scenario. We find that the ocean carbon-climate feedback is not reversible by means of negative emissions on decadal to centennial timescales. When preindustrial surface climate is restored, the oceans, due to the carbon-climate feedback, still contain about 110 Pg less carbon compared to a simulation without climate change. This result is unsurprising but highlights an issue with a widely used carbon cycle feedback metric. We show that this metric can be greatly improved by using ocean potential temperature as a proxy for climate change. The nonlinearity (nonadditivity) of climate and CO2-driven feedbacks continues to grow after the atmospheric CO2 peak.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/1007519','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/1007519"><span>Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</p> <p>2018-06-07</p> <p>Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Intergovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4657026','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4657026"><span>On the definition and identifiability of the alleged “hiatus” in global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lewandowsky, Stephan; Risbey, James S.; Oreskes, Naomi</p> <p>2015-01-01</p> <p>Recent public debate and the scientific literature have frequently cited a “pause” or “hiatus” in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the “hiatus”. To examine whether the notion of a “hiatus” is justified by the available data, we first document that there are multiple definitions of the “hiatus” in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the “hiatus” trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged “hiatus” periods notwithstanding. If current definitions of the “pause” used in the literature are applied to the historical record, then the climate system “paused” for more than 1/3 of the period during which temperatures rose 0.6 K. PMID:26597713</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=321876','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=321876"><span>Evaluations of sustained vigor and winter hardiness of black raspberry (Rubus occidentalis) grown in the Southeastern U.S</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Demand for fresh berry products continues to grow on the East Coast; however commercial raspberry production in the Southeast is difficult because cultivars are not well adapted to the warm climate and fluctuating winter temperatures, where heat degrades plant vigor and fruit quality, and chilling r...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=248828','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=248828"><span>Using copper oxide wire particles or sericea lespedeza to prevent a peri-parturient rise of gastrointestinal nematodes in sheep and goats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Gastrointestinal nematodes (GIN) continue to plague the small ruminant industry, especially parts of the world with warm, humid climates. Alternatives to chemicals are needed for GIN control because of anthelmintic resistance of GIN and a desire to reduce chemical residues in meat products. A stud...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/45456','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/45456"><span>Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Margaret R. Metz; J. Morgan Varner; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo</p> <p>2014-01-01</p> <p>An under-examined component of global change is the alteration of disturbance regimes due to warming climates, continued species invasions, and accelerated land-use change. These drivers of global change are themselves novel ecosystem disturbances that may interact with historically occurring disturbances in complex ways. Here we use the natural experiment presented by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA513745','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA513745"><span>Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-10-23</p> <p>commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237098','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237098"><span>Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cook, Kerry H.; Vizy, Edward</p> <p></p> <p>The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53G..01O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53G..01O"><span>The importance of hot drought in providing more useful, and higher confidence, projections of future climatic, hydrologic, and ecosystem impacts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Overpeck, J. T.; Udall, B. H.</p> <p>2017-12-01</p> <p>Often cited as a general guide to future climatic change, "the wet get wetter, and the dry get drier" is a misleading way to look towards the future for many regions of the globe, just as the simple use of multi-model ensemble projections of temperature and precipitation change averaged over many years can also be quite misleading for real-world planning and decision-making. Factors that support these assertions are multi-fold. First, we know with high confidence that warming will continue as long as greenhouse gas emissions continue. Second, continued warming will act to make droughts more frequent, longer and more severe in many regions. Even in the absence of precipitation declines, increases in evaporation and evapotranspiration, among other things, will drive regional drying. It is misleading to suggest to decision-makers that although the future may see an increase in drought risk, a projected increase in mean precipitation will counter-balance the increased drought risk. This counter-balancing will be absent during periods of precipitation-dominated drought. Moreover, projections of precipitation change are usually associated with much less confidence than projections of warming. For example, in places like the headwaters of the Colorado and Rio Grande Rivers, or East Africa, many models suggest we should be seeing an increase in precipitation, when in fact we are only seeing significant warming. Moreover, paleoclimatic evidence suggests that state-of-the-art Earth System Models may underestimate the risk of future multi-decadal droughts, even though these droughts have occurred in many regions during the last 2000 years. This reality suggests that even in regions that do see modest increases in mean precipitation, there will likely be periods in the future characterized by decades of below 20th century mean precipitation coupled with unprecedented warmth. Hot drought may be a much more widespread and serious threat than widely recognized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A13I..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A13I..03H"><span>Emerging Methane Sources: A Bang or Whimper? (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harriss, R. C.</p> <p>2013-12-01</p> <p>In this presentation we examine two emerging methane emission sources that may further accelerate climate change in the 21st century: 1) Will fugitive methane emissions associated with the development of unconventional natural gas resources pose a significant threat of accelerating climate change? 2) Will continued warming of Arctic regions destabilize permafrost and methane hydrates rapidly increasing global atmospheric methane that results in a catastrophic climate change emergency? These risks are currently described in two different guises, with unconventional gas as persistent and gradually unfolding threat and Arctic rapid warming and release of methane as a low-probability event that could in an instant change everything. Current research is far from answering the question of whether these emerging methane sources will lead to a climate change bang or whimper. Both issues reflect the need to understand complex environmental and engineered systems as they interact with social and economic forces. While the evolution of energy systems favors methane as a contemporary transition fuel, researchers and practitioners need to address the fugitive methane leakage, reliability, and safety of natural gas systems. The concept of a methane bridge as a viable direction to decarbonization is appealing; it's just not as big or fast a step as many scientists want.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014410','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014410"><span>Sensitivity and Response of Bhutanese Glaciers to Atmospheric Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rupper, Summer; Schaefer, Joerg M.; Burgener, Landon K.; Koenig, Lora S.; Tsering, Karma; Cook, Edward</p> <p>2013-01-01</p> <p>Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan s glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1 C regional warming, glacier retreat is going to continue until about 25% of Bhutan s glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%. Citation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27465312','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27465312"><span>Persistent and pervasive compositional shifts of western boreal forest plots in Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Searle, Eric B; Chen, Han Y H</p> <p>2017-02-01</p> <p>Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23J..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23J..06R"><span>Mechanistic Lake Modeling to Understand and Predict Heterogeneous Responses to Climate Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Read, J. S.; Winslow, L. A.; Rose, K. C.; Hansen, G. J.</p> <p>2016-12-01</p> <p>Substantial warming has been documented for of hundreds globally distributed lakes, with likely impacts on ecosystem processes. Despite a clear pattern of widespread warming, thermal responses of individual lakes to climate change are often heterogeneous, with the warming rates of neighboring lakes varying across depths and among seasons. We aggregated temperature observations and parameterized mechanistic models for 9,000 lakes in the U.S. states of Minnesota, Wisconsin, and Michigan to examine broad-scale lake warming trends and among-lake diversity. Daily lake temperature profiles and ice-cover dynamics were simulated using the General Lake Model for the contemporary period (1979-2015) using drivers from the North American Land Data Assimilation System (NLDAS-2) and for contemporary and future periods (1980-2100) using downscaled data from six global circulation models driven by the Representative Climate Pathway 8.5 scenario. For the contemporary period, modeled vs observed summer mean surface temperatures had a root mean squared error of 0.98°C with modeled warming trends similar to observed trends. Future simulations under the extreme 8.5 scenario predicted a median lake summer surface warming rate of 0.57°C/decade until mid-century, with slower rates in the later half of the 21st century (0.35°C/decade). Modeling scenarios and analysis of field data suggest that the lake-specific properties of size, water clarity, and depth are strong controls on the sensitivity of lakes to climate change. For example, a simulated 1% annual decline in water clarity was sufficient to override the effects of climate warming on whole lake water temperatures in some - but not all - study lakes. Understanding heterogeneous lake responses to climate variability can help identify lake-specific features that influence resilience to climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27457660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27457660"><span>Projections of increased and decreased dengue incidence under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, C R; Mincham, G; Faddy, H; Viennet, E; Ritchie, S A; Harley, D</p> <p>2016-10-01</p> <p>Dengue is the world's most prevalent mosquito-borne disease, with more than 200 million people each year becoming infected. We used a mechanistic virus transmission model to determine whether climate warming would change dengue transmission in Australia. Using two climate models each with two carbon emission scenarios, we calculated future dengue epidemic potential for the period 2046-2064. Using the ECHAM5 model, decreased dengue transmission was predicted under the A2 carbon emission scenario, whereas some increases are likely under the B1 scenario. Dengue epidemic potential may decrease under climate warming due to mosquito breeding sites becoming drier and mosquito survivorship declining. These results contradict most previous studies that use correlative models to show increased dengue transmission under climate warming. Dengue epidemiology is determined by a complex interplay between climatic, human host, and pathogen factors. It is therefore naive to assume a simple relationship between climate and incidence, and incorrect to state that climate warming will uniformly increase dengue transmission, although in general the health impacts of climate change will be negative.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1076751','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1076751"><span>Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai</p> <p>2013-04-26</p> <p>Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of fieldmore » measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6..773A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6..773A"><span>New use of global warming potentials to compare cumulative and short-lived climate pollutants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, Myles R.; Fuglestvedt, Jan S.; Shine, Keith P.; Reisinger, Andy; Pierrehumbert, Raymond T.; Forster, Piers M.</p> <p>2016-08-01</p> <p>Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have requested guidance on common greenhouse gas metrics in accounting for Nationally determined contributions (NDCs) to emission reductions. Metric choice can affect the relative emphasis placed on reductions of `cumulative climate pollutants' such as carbon dioxide versus `short-lived climate pollutants' (SLCPs), including methane and black carbon. Here we show that the widely used 100-year global warming potential (GWP100) effectively measures the relative impact of both cumulative pollutants and SLCPs on realized warming 20-40 years after the time of emission. If the overall goal of climate policy is to limit peak warming, GWP100 therefore overstates the importance of current SLCP emissions unless stringent and immediate reductions of all climate pollutants result in temperatures nearing their peak soon after mid-century, which may be necessary to limit warming to ``well below 2 °C'' (ref. ). The GWP100 can be used to approximately equate a one-off pulse emission of a cumulative pollutant and an indefinitely sustained change in the rate of emission of an SLCP. The climate implications of traditional CO2-equivalent targets are ambiguous unless contributions from cumulative pollutants and SLCPs are specified separately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ERL....11c4009H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ERL....11c4009H"><span>Regional climate change and national responsibilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hansen, James; Sato, Makiko</p> <p>2016-03-01</p> <p>Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...746432W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...746432W"><span>Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang</p> <p>2017-04-01</p> <p>The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28425445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28425445"><span>Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang</p> <p>2017-04-20</p> <p>The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397837','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5397837"><span>Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang</p> <p>2017-01-01</p> <p>The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMPP13B1411P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMPP13B1411P"><span>Response of the European Vegetation to the Global Climatic Changes during the Neogene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popescu, S.; Jimenez-Moreno, G.; Suc, J.; Rabineau, M.</p> <p>2009-12-01</p> <p>The beginning of the Neogene coincides with a transient cooler climate event (Mi-1) as response to the intermittent expansion on the EAIS. The Miocene is characterized by warm and humid climate that implied the development of forest environments in Europe. The vegetation was composed mainly by tropical, subtropical and warm-temperate plants, which attempted the maximum of diversity during the Miocene Climate Optimum event (17-15 Ma). Reconstruction of climatic parameters, applied to our pollen records, indicates for the NE Spain, for the Early Miocene a MAT~19°C, a MTW~24.5°C, a MTC~7.5 °C, and MAP = 900 - 1700 mm. Several cooling events (Mi-1 to Mi-7) are responsible for a progressive impoverishment in tropical and subtropical plants, which will be replaced by warm-temperate ones. The most important, Monterey Cooling Event induce the decrease of MAT about 2-4°C implying the disappearance of the Avicennia mangrove from the NW Mediterranean coastline. Warm climate characterized the Serravallian and Tortonian. Paleoclimatic reconstruction for the Late Miocene indicates a MAT=15-24°C, with a strong seasonality correlated with high precipitation values (1100 -1550 mm) in N.Europe and respectively low seasonality and precipitation values (320-680 mm) in SW Europe and N Africa. The West Antarctic glaciations at 6 Ma, probably caused the disappearance of the Avicennia mangrove from S. Mediterranean coastlines. During the Early Pliocene, the climate was relatively warmer with MAT higher of about 1-5°C than today.Increase in humidity characterize the Central and Eastern Europe (MAP higher of about 400 -1000 mm than today), that promoted the development of forest vegetation in this area. The pollen floras from the European Early Pliocene allow a refined geographic specification of the different kinds of reconstructed vegetation. The Late Pliocene is still too much poorly-documented and needs more attention as it represents the key-moment of the progressive transition from the “greenhouse” climatic context to the “icehouse” one. Finally, this is also a crucial time-window because it includes the warming centred at around 3.1 Ma which is generally pointed out as the best past analogue of the present-day warming up. During this time-interval, contrast in vegetation between the North and South European regions exaggerated while the thermic latitudinal gradient increased up to approximately reach the present-day value (0.6°C/° in latitude). The Late Pliocene Optimum Climatic (3.1 Ma) is characterized by MAT higher of 3°C as today. The onset of the North Hemisphere Glaciations which marks the beginning of Pleistocene (2.558 Ma) is well- and completely documented by pollen data from the DSDP Site 380 which, in addition, provides a continuous record of all the glacial-interglacial cycles up to the Present. The transition from 41 to 100 kyr climatic cycles is here particularly well-documented. This long pollen sequence also specifies the chronologic succession of extinctions of thermophilous plants in the Northeastern Mediterranean region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155264','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155264"><span>Examining the contribution of the observed global warming trend to the California droughts of 2012/13 and 2013/14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Funk, Christopher C.; Hoell, Andrew; Daithi Stone,</p> <p>2014-01-01</p> <p>While the SST trend mode has resulted in large SST increases that appear associated with an equatorial precipitation dipole response contrasting increases over the western Pacific and decreases over the central Pacific, the location of most of this warming is to the west of the key sensitivity areas identified in our CMIP5 composite. Removing this warming did not increase the CAM5 precipitation over California in a statistically significant manner, thus there appears to be little evidence that this long term warming trend contributed substantially to the 2013 and 2014 drought events. This result appears consistent with the lack of a long term downward trend in California precipitation. California precipitation does appear to be sensitive to north Pacific SST, and climate change models indicate substantial warming. If SST events like the unprecedented 2014 north Pacific SST anomaly become more common, California could also experience more frequent droughts. In addition, given the strong thermal control on evaporation, snowmelt, and water resources in California, the long-term warming is continuing to exert a growing stress on water availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAESc..77...45C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAESc..77...45C"><span>Holocene vegetation and climatic variations in Central India: A study based on multiproxy evidences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chauhan, M. S.; Sharma, Anupam; Phartiyal, Binita; Kumar, Kamlesh</p> <p>2013-11-01</p> <p>Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal yr BP onwards, the modern Sal dominated deciduous forests were established indicating continuation of warm and more-humid climate including timely arrival of SW monsoon coinciding with the shedding of Sal seeds as they are viable for a very short period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4614843','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4614843"><span>Allocation trade-off under climate warming in experimental amphibian populations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gao, Xu; Jin, Changnan; Camargo, Arley</p> <p>2015-01-01</p> <p>Climate change could either directly or indirectly cause population declines via altered temperature, rainfall regimes, food availability or phenological responses. However few studies have focused on allocation trade-offs between growth and reproduction under marginal resources, such as food scarce that may be caused by climate warming. Such critical changes may have an unpredicted impact on amphibian life-history parameters and even population dynamics. Here, we report an allocation strategy of adult anuran individuals involving a reproductive stage under experimental warming. Using outdoor mesocosm experiments we simulated a warming scenario likely to occur at the end of this century. We examined the effects of temperature (ambient vs. pre-/post-hibernation warming) and food availability (normal vs. low) on reproduction and growth parameters of pond frogs (Pelophylax nigromaculatus). We found that temperature was the major factor influencing reproductive time of female pond frogs, which showed a significant advancing under post-hibernation warming treatment. While feeding rate was the major factor influencing reproductive status of females, clutch size, and variation of body size for females, showed significant positive correlations between feeding rate and reproductive status, clutch size, or variation of body size. Our results suggested that reproduction and body size of amphibians might be modulated by climate warming or food availability variation. We believe this study provides some new evidence on allocation strategies suggesting that amphibians could adjust their reproductive output to cope with climate warming. PMID:26500832</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17370024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17370024"><span>Global warming 2007. An update to global warming: the balance of evidence and its policy implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keller, Charles F</p> <p>2007-03-09</p> <p>In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter century or so. However, this conclusion is being challenged by differing interpretations of satellite observations of Total Solar Insolation (TSI). Different satellites give different estimates of TSI during the 1996-7 solar activity minimum. A recent study using the larger TSI satellite interpretation indicates a stronger role for the sun, and until there is agreement on TSI at solar minimum, we caution completely disregarding the sun as a significant factor in recent warming. Computer models continue to improve and, while they still do not do a satisfactory job of predicting regional changes, their simulations of global aspects of climate change and of individual forcings are increasingly reliable. In addition to these four areas, the past five years have seen advances in our understanding of many other aspects of climate change--from albedo changes due to land use to the dynamics of glacier movement. However, these more are of second order importance and will only be treated very briefly. The big news since CFK03 is the first of these, the collapse of the climate critics' last real bastion, namely that satellites and radiosondes show no significant warming in the past quarter century. Figuratively speaking, this was the center pole that held up the critics' entire "tent." Their argument was that, if there had been little warming in the past 25 years or so, then what warming was observed would have been within the range of natural variations with solar forcing as the major player. Further, the models would have been shown to be unreliable since they were predicting warming that was not happening. But now both satellite and in-situ radiosonde observations have been shown to corroborate both the surface observations of warming and the model predictions. Thus, while uncertainties still remain, we are now seeing a coherent picture in which past climate variations, solar and other forcings, model predictions and other indicators such as glacier recession all point to a human-induced warming that needs to be considered carefully. A final topic touched on briefly here is the new understanding of the phenomenon called "global dimming." Several sets of observations of the sun's total radiation at the surface have shown that there has been a reduction in sunlight reaching it. This has been related to the scattering of sunlight by aerosols and has led to a better quantification of the possibility that cleaning up our atmospheric pollution will lead to greater global warming. Adding all these advances together, there is a growing consensus that the 21st century will indeed see some 2 degrees C (3.5 degrees F) or more in additional warming. This is corroborated in the new IPCC Assessment, an early release of which is touched on very briefly here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799355','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799355"><span>Robust increases in severe thunderstorm environments in response to greenhouse forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diffenbaugh, Noah S.; Scherer, Martin; Trapp, Robert J.</p> <p>2013-01-01</p> <p>Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage. PMID:24062439</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24062439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24062439"><span>Robust increases in severe thunderstorm environments in response to greenhouse forcing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diffenbaugh, Noah S; Scherer, Martin; Trapp, Robert J</p> <p>2013-10-08</p> <p>Although severe thunderstorms are one of the primary causes of catastrophic loss in the United States, their response to elevated greenhouse forcing has remained a prominent source of uncertainty for climate change impacts assessment. We find that the Coupled Model Intercomparison Project, Phase 5, global climate model ensemble indicates robust increases in the occurrence of severe thunderstorm environments over the eastern United States in response to further global warming. For spring and autumn, these robust increases emerge before mean global warming of 2 °C above the preindustrial baseline. We also find that days with high convective available potential energy (CAPE) and strong low-level wind shear increase in occurrence, suggesting an increasing likelihood of atmospheric conditions that contribute to the most severe events, including tornadoes. In contrast, whereas expected decreases in mean wind shear have been used to argue for a negative influence of global warming on severe thunderstorms, we find that decreases in shear are in fact concentrated in days with low CAPE and therefore do not decrease the total occurrence of severe environments. Further, we find that the shift toward high CAPE is most concentrated in days with low convective inhibition, increasing the occurrence of high-CAPE/low-convective inhibition days. The fact that the projected increases in severe environments are robust across a suite of climate models, emerge in response to relatively moderate global warming, and result from robust physical changes suggests that continued increases in greenhouse forcing are likely to increase severe thunderstorm occurrence, thereby increasing the risk of thunderstorm-related damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18409426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18409426"><span>Phenological sequences reveal aggregate life history response to climatic warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Post, Eric S; Pedersen, Christian; Wilmers, Christopher C; Forchhammer, Mads C</p> <p>2008-02-01</p> <p>Climatic warming is associated with organisms breeding earlier in the season than is typical for their species. In some species, however, response to warming is more complex than a simple advance in the timing of all life history events preceding reproduction. Disparities in the extent to which different components of the reproductive phenology of organisms vary with climatic warming indicate that not all life history events are equally responsive to environmental variation. Here, we propose that our understanding of phenological response to climate change can be improved by considering entire sequences of events comprising the aggregate life histories of organisms preceding reproduction. We present results of a two-year warming experiment conducted on 33 individuals of three plant species inhabiting a low-arctic site. Analysis of phenological sequences of three key events for each species revealed how the aggregate life histories preceding reproduction responded to warming, and which individual events exerted the greatest influence on aggregate life history variation. For alpine chickweed (Cerastium alpinum), warming elicited a shortening of the duration of the emergence stage by 2.5 days on average, but the aggregate life history did not differ between warmed and ambient plots. For gray willow (Salix glauca), however, all phenological events monitored occurred earlier on warmed than on ambient plots, and warming reduced the aggregate life history of this species by 22 days on average. Similarly, in dwarf birch (Betula nana), warming advanced flower bud set, blooming, and fruit set and reduced the aggregate life history by 27 days on average. Our approach provides important insight into life history responses of many organisms to climate change and other forms of environmental variation. Such insight may be compromised by considering changes in individual phenological events in isolation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091351','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5091351"><span>Climatic warming destabilizes forest ant communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diamond, Sarah E.; Nichols, Lauren M.; Pelini, Shannon L.; Penick, Clint A.; Barber, Grace W.; Cahan, Sara Helms; Dunn, Robert R.; Ellison, Aaron M.; Sanders, Nathan J.; Gotelli, Nicholas J.</p> <p>2016-01-01</p> <p>How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable. PMID:27819044</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27819044','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27819044"><span>Climatic warming destabilizes forest ant communities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J</p> <p>2016-10-01</p> <p>How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245g2045G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245g2045G"><span>Analysis of Solar Chimneys in Different Climate Zones - Case of Social Housing in Ecuador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godoy-Vaca, Luis; Almaguer, Manuel; Martínez-Gómez, Javier; Lobato, Andrea; Palme, Massimo</p> <p>2017-10-01</p> <p>The aim of this research is to simulate the performance of a solar chimney located in different macro-zones in Ecuador. The proposed solar chimney model was simulated using a python script in order to predict the temperature distribution and the mass flow over time. The results obtained were firstly compared with experimental data for dry-warm climate. Then, the model was evaluated and tested in real weather conditions: dry-warm, moist-warm and rainy-cold. In addition, the assumed chimney dimensions were chosen according to the literature for the studied conditions. In spite of evaluating the best nightly ventilation, different chimney wall materials were tested: solid brick, common brick and reinforced concrete. The results showed that concrete in a dry-warm climate, a metallic layer on the gap with solid brick in a moist-warm climate and reinforced concrete in a rainy cold climate used for the absorbent wall improve the thermal inertia of the social housing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21299824','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21299824"><span>A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C</p> <p>2011-03-01</p> <p>The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2848572','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2848572"><span>Hydrologic Response and Watershed Sensitivity to Climate Warming in California's Sierra Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Null, Sarah E.; Viers, Joshua H.; Mount, Jeffrey F.</p> <p>2010-01-01</p> <p>This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2°, 4°, and 6°C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds. PMID:20368984</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...163....1I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...163....1I"><span>Fluctuations in the East Asian monsoon recorded by pollen assemblages in sediments from the Japan Sea off the southwestern coast of Hokkaido, Japan, from 4.3 Ma to the present</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi</p> <p>2018-04-01</p> <p>We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/35838','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/35838"><span>Modeling aspen responses to climatic warming and insect defoliation in western Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>E. H. Ted Hogg</p> <p>2001-01-01</p> <p>Effects of climate change at three aspen sites in Saskatchewan were explored using a climate-driven model that includes insect defoliation. A simulated warming of 4-5 °C caused complete mortality due to drought at all three sites. A simulated warming of 2-2.5 °C caused complete mortality of aspen at the parkland site, while aspen growth at two boreal sites showed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2677251','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2677251"><span>Why tropical forest lizards are vulnerable to climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore</p> <p>2009-01-01</p> <p>Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19324762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19324762"><span>Why tropical forest lizards are vulnerable to climate warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huey, Raymond B; Deutsch, Curtis A; Tewksbury, Joshua J; Vitt, Laurie J; Hertz, Paul E; Alvarez Pérez, Héctor J; Garland, Theodore</p> <p>2009-06-07</p> <p>Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100033057&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100033057&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DGlobal%2Bwarming"><span>Frequency of Deep Convective Clouds and Global Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aumann, Hartmut H.; Teixeira, Joao</p> <p>2008-01-01</p> <p>This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27590813','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27590813"><span>Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pold, Grace; Billings, Andrew F; Blanchard, Jeff L; Burkhardt, Daniel B; Frey, Serita D; Melillo, Jerry M; Schnabel, Julia; van Diepen, Linda T A; DeAngelis, Kristen M</p> <p>2016-11-15</p> <p>As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world. The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change. Copyright © 2016 Pold et al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018TCry...12..595R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018TCry...12..595R"><span>Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ran, Youhua; Li, Xin; Cheng, Guodong</p> <p>2018-02-01</p> <p>Air temperature increases thermally degrade permafrost, which has widespread impacts on engineering design, resource development, and environmental protection in cold regions. This study evaluates the potential thermal degradation of permafrost over the Qinghai-Tibet Plateau (QTP) from the 1960s to the 2000s using estimated decadal mean annual air temperatures (MAATs) by integrating remote-sensing-based estimates of mean annual land surface temperatures (MASTs), leaf area index (LAI) and fractional snow cover values, and decadal mean MAAT date from 152 weather stations with a geographically weighted regression (GWR). The results reflect a continuous rise of approximately 0.04 °C a-1 in the decadal mean MAAT values over the past half century. A thermal-condition classification matrix is used to convert modelled MAATs to permafrost thermal type. Results show that the climate warming has led to a thermal degradation of permafrost in the past half century. The total area of thermally degraded permafrost is approximately 153.76 × 104 km2, which corresponds to 88 % of the permafrost area in the 1960s. The thermal condition of 75.2 % of the very cold permafrost, 89.6 % of the cold permafrost, 90.3 % of the cool permafrost, 92.3 % of the warm permafrost, and 32.8 % of the very warm permafrost has been degraded to lower levels of thermal condition. Approximately 49.4 % of the very warm permafrost and 96 % of the likely thawing permafrost has degraded to seasonally frozen ground. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88, 97, 155, 185, 161, and 250 m, respectively. The degradation mainly occurred from the 1960s to the 1970s and from the 1990s to the 2000s. This degradation may lead to increased risks to infrastructure, reductions in ecosystem resilience, increased flood risks, and positive climate feedback effects. It therefore affects the well-being of millions of people and sustainable development at the Third Pole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31A1106M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31A1106M"><span>Global Warming Denial: The Human Brain on Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrouch, N.; Johnson, B. T.; Slawinska, J. M.</p> <p>2016-12-01</p> <p>Future assessments of climate change rely on multi-model intercomparisons, and projections of the extreme events frequency are of particular interest as associated with significant economic costs and social threats. Notably, systematically simulated increases in the number of extreme weather events agree well with observational data over the last decade. At the same time, as the climate grows more volatile, widespread denial of climate change and its anthropocentric causes continues to proliferate (based on nationally representative U.S. polls). Simultaneous increases in both high-impact exposure and its denial is in stark contrast with our knowledge of socio-natural dynamics and its models. Disentangling this paradox requires an understanding of the origins of global warming denial at an individual level, and how subsequently it propagates across social networks of many scales, shaping global policies. However, as the real world and its dynamical models are complex (high-dimensional and coupled), separating the particular feedback of interest remains a challenge. Here, we demonstrate this feedback in a controlled experiment, where increasing unpredictability using helplessness-training paradigms induces changes in global warming denial, and the endorsement of conservative ideology. We explain these results in the context of evolutionary theory framing self-deception and denial as remnants of evolutionary processes that shaped and facilitated the survival of the human species. Further we link these findings to changes in neural and higher-level cognitive processes in response to unpredictable stimuli. We argue that climate change denial is an example of an extreme belief system that carries the potential to threaten the wellbeing of both humans and other species alike. It is therefore crucial to better quantify climate denial using social informatics tools that provide the means to improve its representations in coupled socio-geophysical models to mitigate its effects on global and local policies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26695523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26695523"><span>Climate-change refugia: shading reef corals by turbidity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cacciapaglia, Chris; van Woesik, Robert</p> <p>2016-03-01</p> <p>Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28403152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28403152"><span>Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDermott, Molly E; DeGroote, Lucas W</p> <p>2017-01-01</p> <p>Advanced timing of both seasonal migration and reproduction in birds has been strongly associated with a warming climate for many bird species. Phenological responses to climate linking these stages may ultimately impact fitness. We analyzed five decades of banding data from 17 migratory bird species to investigate 1) how spring arrival related to timing of breeding, 2) if the interval between arrival and breeding has changed with increasing spring temperatures, and 3) whether arrival timing or breeding timing best predicted local productivity. Four of 17 species, all mid- to long-distance migrants, hatched young earlier in years when migrants arrived earlier to the breeding grounds (~1:1 day advancement). The interval between arrival on breeding grounds and appearance of juveniles shortened with warmer spring temperatures for 12 species (1-6 days for every 1°C increase) and over time for seven species (1-8 days per decade), suggesting that some migratory passerines adapt to climate change by laying more quickly after arrival or reducing the time from laying to fledging. We found more support for the former, that the rate of reproductive advancement was higher than that for arrival in warm years. Timing of spring arrival and breeding were both poor predictors of avian productivity for most migrants analyzed. Nevertheless, we found evidence that fitness benefits may occur from shifts to earlier spring arrival for the multi-brooded Song Sparrow. Our results uniquely demonstrate that co-occurring avian species are phenologically plastic in their response to climate change on their breeding grounds. If migrants continue to show a weaker response to temperatures during migration than breeding, and the window between arrival and optimal breeding shortens further, biological constraints to plasticity may limit the ability of species to adapt successfully to future warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC34A..05H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC34A..05H"><span>Significant Threat to North American forests from Southern Pine Beetle with Warming Winters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horton, R. M.; Lesk, C.; Coffel, E.; D'Amato, A. W.</p> <p>2016-12-01</p> <p>In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption of local ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23739475','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23739475"><span>Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skuce, P J; Morgan, E R; van Dijk, J; Mitchell, M</p> <p>2013-06-01</p> <p>Weather patterns in northern European regions have changed noticeably over the past several decades, featuring warmer, wetter weather with more extreme events. The climate is projected to continue on this trajectory for the foreseeable future, even under the most modest warming scenarios. Such changes will have a significant impact on livestock farming, both directly through effects on the animals themselves, and indirectly through changing exposure to pests and pathogens. Adaptation options aimed at taking advantage of new opportunities and/or minimising the risks of negative impacts will, in themselves, have implications for animal health and welfare. In this review, we consider the potential consequences of future intensification of animal production, challenges associated with indoor and outdoor rearing of animals and aspects of animal transportation as key examples. We investigate the direct and indirect effects of climate change on the epidemiology of important livestock pathogens, with a particular focus on parasitic infections, and the likely animal health consequences associated with selected adaptation options. Finally, we attempt to identify key gaps in our knowledge and suggest future research priorities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29133863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29133863"><span>A real-time Global Warming Index.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J</p> <p>2017-11-13</p> <p>We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN43B0075B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN43B0075B"><span>Citizen Science in Grand Teton National Park Reveals Phenological Response of Wildlife to Climate Change and Increases Public Involvement in Earth Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bloom, T. D. S.; Riginos, C.</p> <p>2017-12-01</p> <p>Around the world, phenology —or the timing of ecological events — is shifting as the climate warms. This can lead to a variety of consequences for individual species and for ecological communities as a whole, most notably through asynchronies that can develop between plants and animals that depend upon each other (e.g. nectar-consuming pollinators). Within the Greater Yellowstone Ecosystem (GYE) and Grand Teton National Park (GTNP), there is little understanding of how climate change is affecting plant and animal phenology, yet through detailed scientific and citizen science observation there is tremendous potential to further our knowledge of this topic and increase public awareness. Detailed historic data are rare, but in GTNP we have the opportunity to capitalize on phenology data gathered by Dr. Frank Craighead, Jr. in the 1970s, before significant warming had occurred. We have already gathered, digitized, and quality-controlled Craighead's observations of plant first flowering dates. First flowering date for 87% of a 72-species data set correlate significantly with spring temperatures in the 1970s, suggesting that these plants are now flowering earlier and will continue to flower earlier in the future. Our multi-year project has project has 3 primary goals: (1) initiate a citizen science project, Wildflower Watch GTNP, to train volunteer scientists to collect contemporary phenology data on these species (2) gather further historical records of plant phenology in the region, and (3) model continued phenological changes under future climate change scenarios using satellite derived climate data and on the ground observations. This project simultaneously increases public involvement in climate research, collaborates with the National Park Service to inform management strategies for at-risk species, and furthers scientific understanding of phenological response to climate change in the Rocky Mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..375N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..375N"><span>Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nangombe, Shingirai; Zhou, Tianjun; Zhang, Wenxia; Wu, Bo; Hu, Shuai; Zou, Liwei; Li, Donghuan</p> <p>2018-05-01</p> <p>Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December-February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U13C..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U13C..03M"><span>Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maibach, E.; Roser-Renouf, C.</p> <p>2011-12-01</p> <p>That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=302221','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=302221"><span>Artificial warming of arctic meadow under pollution stress: Experimental design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Boreal and arctic terrestrial ecosystems are central to the climate change debate, notably because future warming is expected to be disproportionate as compared to world averages. Likewise, greenhouse gas (GHG) release from terrestrial ecosystems exposed to climate warming is expected to be the larg...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413439B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413439B"><span>Changes in the seasonality of Arctic sea ice and temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bintanja, R.</p> <p>2012-04-01</p> <p>Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PolSc...3..197R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PolSc...3..197R"><span>Effects of climatic changes on anisakid nematodes in polar regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rokicki, Jerzy</p> <p>2009-11-01</p> <p>Anisakid nematodes are common in Antarctic, sub-Antarctic, and Arctic areas. Current distributional knowledge of anisakids in the polar regions is reviewed. Climatic variables influence the occurrence and abundance of anisakids, directly influencing their free-living larval stages and also indirectly influencing their predominantly invertebrate (but also vertebrate) hosts. As these parasites can also be pathogenic for humans, the paucity of information available is a source of additional hazard. As fish are a major human dietary component in Arctic and Antarctic areas, and are often eaten without heat processing, a high risk of infection by anisakid larvae might be expected. The present level of knowledge, particularly relating to anisakid larval stages present in fishes, is far from satisfactory. Preliminary molecular studies have revealed the presence of species complexes. Contemporary climate warming is modifying the marine environment and may result in an extension of time during which anisakid eggs can persist and hatch, and of the time period during which newly hatched larvae remain viable. As a result there may be an increase in the extent of anisakid distribution. Continued warming will modify the composition of the parasitic nematode fauna of marine animals, due to changes in feeding habits, as the warming of the sea and any localised reduction in salinity (from freshwater runoff) can be expected to bring about changes in the species composition of pelagic and benthic invertebrates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5007460','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5007460"><span>Ecological constraints increase the climatic debt in forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel</p> <p>2016-01-01</p> <p>Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities. PMID:27561410</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...712643B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...712643B"><span>Ecological constraints increase the climatic debt in forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertrand, Romain; Riofrío-Dillon, Gabriela; Lenoir, Jonathan; Drapier, Jacques; de Ruffray, Patrice; Gégout, Jean-Claude; Loreau, Michel</p> <p>2016-08-01</p> <p>Biodiversity changes are lagging behind current climate warming. The underlying determinants of this climatic debt are unknown and yet critical to understand the impacts of climate change on the present biota and improve forecasts of biodiversity changes. Here we assess determinants of climatic debt accumulated in French forest herbaceous plant communities between 1987 and 2008 (that is, a 1.05 °C mean difference between the observed and bioindicated temperatures). We show that warmer baseline conditions predispose plant communities to larger climatic debts, and that climate warming exacerbates this response. Forest plant communities, however, are absorbing part of the temperature increase mainly through the species' ability to tolerate changing climate. As climate warming is expected to accelerate during the twenty-first century, plant migration and tolerance to climatic stresses probably will be insufficient to absorb this impact posing threats to the sustainability of forest plant communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..882R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..882R"><span>Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.</p> <p>2017-11-01</p> <p>Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4673699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4673699"><span>The long-term fate of permafrost peatlands under rapid climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.</p> <p>2015-01-01</p> <p>Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5897830','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5897830"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.</p> <p>2018-01-01</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the ‘Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610370</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC53A0872S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC53A0872S"><span>The world at 1.5°C: Understanding its regional dimensions and driving processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seneviratne, S. I.; Wartenburger, R.; Vogel, M.; Hirsch, A.; Guillod, B.; Donat, M.; Pitman, A. J.; Davin, E.; Greve, P.; Hirschi, M.</p> <p>2017-12-01</p> <p>This presentation reviews the available evidence regarding projected regional changes in climate extremes at 1.5°C vs higher levels of warming based on recent analyses (Seneviratne et al. 2016; Wartenburger et al., submitted; Greve et al., submitted). In several regions, significant differences in the occurrence of climate extremes can be identified already for half a degree of warming when assessing changes at 1.5°C vs 2°C global warming. An important feature is the much stronger warming of hot extremes in several continental regions compared to the global mean warming, which implies that temperature extremes can warm regionally by much more than 1.5°C, even if global temperature warming is stabilized at this level (e.g. up to 6°C for certain models in the Arctic). This feature is due to a combination of feedbacks and internal climate variability. We highlight in particular the importance of land-climate feedbacks for projected changes in hot extremes in mid-latitude regions (Vogel et al. 2017). Because of the strong effects of land processes on regional changes in temperature extremes, changes in land surface properties, including land use changes, are found to be particularly important for projections in low-emissions scenarios (Hirsch et al. 2017; Guillod et al., submitted). References: Greve, P., et al.: Regional scaling of annual mean precipitation and water availability with global temperature change. Submitted. Guillod, B.P., et al.: Land use in low climate warming targets critical for hot extreme projections. Submitted. Hirsch, A.L., et al., 2017: Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos., 122, 2269-2288, doi:10.1002/2016JD026125. Seneviratne, S.I., et al., 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., et al., 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519. Wartenburger, R., et al.: Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. - Submitt.,</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29610370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29610370"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R</p> <p>2018-05-13</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p  < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RSPTA.37660460P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RSPTA.37660460P"><span>Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.</p> <p>2018-05-01</p> <p>Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16010537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16010537"><span>Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr</p> <p>2005-10-01</p> <p>Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25824529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25824529"><span>Local cooling and warming effects of forests based on satellite observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng</p> <p>2015-03-31</p> <p>The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4389237','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4389237"><span>Local cooling and warming effects of forests based on satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng</p> <p>2015-01-01</p> <p>The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NatCC...4..143Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NatCC...4..143Z"><span>How warm days increase belief in global warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.</p> <p>2014-02-01</p> <p>Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC34C..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC34C..01D"><span>Probabilistic attribution of individual unprecedented extreme events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diffenbaugh, N. S.</p> <p>2016-12-01</p> <p>The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1373Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1373Z"><span>On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.</p> <p>2018-02-01</p> <p>Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51H..10O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51H..10O"><span>Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.</p> <p>2017-12-01</p> <p>In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to support impact assessment in low warming scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24757012','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24757012"><span>Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Creed, Irena F; Spargo, Adam T; Jones, Julia A; Buttle, Jim M; Adams, Mary B; Beall, Fred D; Booth, Eric G; Campbell, John L; Clow, Dave; Elder, Kelly; Green, Mark B; Grimm, Nancy B; Miniat, Chelcy; Ramlal, Patricia; Saha, Amartya; Sebestyen, Stephen; Spittlehouse, Dave; Sterling, Shannon; Williams, Mark W; Winkler, Rita; Yao, Huaxia</p> <p>2014-10-01</p> <p>Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period - a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI - high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11O..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11O..02M"><span>Mechanisms of elevation-dependent warming over complex terrain in high-resolution simulations of regional climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Minder, J. R.; Letcher, T.; Liu, C.</p> <p>2016-12-01</p> <p>Numerous observational and modeling studies have suggested that over mountainous terrain certain elevations can experience systematically enhanced rates of near-surface climate warming relative to the surrounding region, a phenomenon referred to as elevation-dependent warming (EDW). In many of these studies high-elevation locations were found to experience the fastest warming rates. A variety of physical mechanisms for EDW have been proposed but there is no consensus as to the dominant cause. We examine EDW in regional climate model (RCM) simulations with very high horizontal resolution (4-km horizontal grid). The simulation domain centers on the Rocky Mountains and intermountain west of the United States. Climate change simulations are conducted using the "pseudo global warming" framework to focus on the regional response to large-scale thermodynamic and radiative climate changes representative of mid-century anthropogenic global climate change. Substantial EDW is found in these simulations. Warming varies with elevation by up to 1°C depending on the season considered. The structure of EDW is only weakly sensitive to variations in horizontal grid spacing ranging from 4 to 36 km. The snow-albedo feedback (SAF) plays a major role in causing the simulated EDW. The elevation band of maximum warming varies seasonally, mostly following the margin of the seasonal snowpack where snow cover and albedo reductions are maximized under climate warming. Additional simulations where the SAF is artificially suppressed demonstrate that EDW variations of up to 0.6°C can be attributed to the SAF. Simulations with a suppressed SAF still exhibit EDW variations up to 0.8°C that must be explained by other mechanisms. This remaining EDW shows a near linear increase in warming with elevation in most months and does not appear to be inherited from the profile of large-scale free-tropospheric warming. Simple theoretical calculations suggest that the non-linear dependence of surface emission on temperature offers one promising mechanism. The role of water vapor and cloud feedbacks are also considered as alternative mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3845530','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3845530"><span>Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale, ensemble experiment over the continental United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diffenbaugh, Noah S.; Ashfaq, Moetasim; Scherer, Martin</p> <p>2013-01-01</p> <p>Integrating the potential for climate change impacts into policy and planning decisions requires quantification of the emergence of sub-regional climate changes that could occur in response to transient changes in global radiative forcing. Here we report results from a high-resolution, century-scale, ensemble simulation of climate in the United States, forced by atmospheric constituent concentrations from the Special Report on Emissions Scenarios (SRES) A1B scenario. We find that 21st century summer warming permanently emerges beyond the baseline decadal-scale variability prior to 2020 over most areas of the continental U.S. Permanent emergence beyond the baseline annual-scale variability shows much greater spatial heterogeneity, with emergence occurring prior to 2030 over areas of the southwestern U.S., but not prior to the end of the 21st century over much of the southcentral and southeastern U.S. The pattern of emergence of robust summer warming contrasts with the pattern of summer warming magnitude, which is greatest over the central U.S. and smallest over the western U.S. In addition to stronger warming, the central U.S. also exhibits stronger coupling of changes in surface air temperature, precipitation, and moisture and energy fluxes, along with changes in atmospheric circulation towards increased anticylonic anomalies in the mid-troposphere and a poleward shift in the mid-latitude jet aloft. However, as a fraction of the baseline variability, the transient warming over the central U.S. is smaller than the warming over the southwestern or northeastern U.S., delaying the emergence of the warming signal over the central U.S. Our comparisons with observations and the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble of global climate model experiments suggest that near-term global warming is likely to cause robust sub-regional-scale warming over areas that exhibit relatively little baseline variability. In contrast, where there is greater variability in the baseline climate dynamics, there can be greater variability in the response to elevated greenhouse forcing, decreasing the robustness of the transient warming signal. PMID:24307747</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39970','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39970"><span>Persistent effects of fire severity on early successional forests in interior Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Aditi Shenoy; Jill F. Johnstone; Eric S. Kasischke; Knut Kielland</p> <p>2011-01-01</p> <p>There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47852','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47852"><span>Cold water as a climate shield to preserve native trout through the 21st Century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Daniel J. Isaak; Michael K. Young; David Nagel; Dona Horan</p> <p>2014-01-01</p> <p>Native trout are culturally and ecologically important, but also likely to undergo widespread declines as the coldwater environments they require continue to shrink in association with global warming. Much can be done to preserve these fish but efficient planning and targeting of conservations resources has been hindered by a lack of broad-scale datasets and precise...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ938792.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ938792.pdf"><span>The 800 Pound Gorilla: The Threat and Taming of Global Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hansen, Jim</p> <p>2008-01-01</p> <p>This article provides two case studies that examine the current and future consequences of continued global warming at the current business-as-usual pace and at a decreased (new alternative forms of energy) level. Cause and effect relationships, such as the varying levels of CO[subscript 2] (carbon dioxide) emissions and the effect it has on…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.tmp..216G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.tmp..216G"><span>Long-term comparison of the climate extremes variability in different climate types located in coastal and inland regions of Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghiami-Shamami, Fereshteh; Sabziparvar, Ali Akbar; Shinoda, Seirou</p> <p>2018-06-01</p> <p>The present study examined annually and seasonally trends in climate-based and location-based indices after detection of artificial change points and application of homogenization. Thirteen temperature and eight precipitation indices were generated at 27 meteorological stations over Iran during 1961-2012. The Mann-Kendall test and Sen's slope estimator were applied for trend detection. Results revealed that almost all indices based on minimum temperature followed warmer conditions. Indicators based on minimum temperature showed less consistency with more cold and less warm events. Climate-based results for all extremes indicated semi-arid climate had the most warming events. Moreover, based on location-based results, inland areas showed the most signs of warming. Indices based on precipitation exhibited a negative trend in warm seasons, with the most changes in coastal areas and inland, respectively. Results provided evidence of warming and drying since the 1990s. Changes in precipitation indices were much weaker and less spatially coherent. Summer was found to be the most sensitive season, in comparison with winter. For arid and semi-arid regions, by increasing the latitude, less warm events occurred, while increasing the longitude led to more warming events. Overall, Iran is dominated by a significant increase in warm events, especially minimum temperature-based indices (nighttime). This result, in addition to fewer precipitation events, suggests a generally dryer regime for the future, which is more evident in the warm season of semi-arid sites. The results could provide beneficial references for water resources and eco-environmental policymakers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27104650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27104650"><span>Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ford, Kevin R; Harrington, Constance A; Bansal, Sheel; Gould, Peter J; St Clair, J Bradley</p> <p>2016-11-01</p> <p>Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures ('forcing') typically triggers growth initiation, but many trees also require exposure to cool temperatures ('chilling') while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, toward lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm edges of its distribution. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170564','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170564"><span>Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ford, Kevin R.; Harrington, Constance A.; Bansal, Sheel; Gould, Petter J.; St. Clair, Bradley</p> <p>2016-01-01</p> <p>Under climate change, the reduction of frost risk, onset of warm temperatures and depletion of soil moisture are all likely to occur earlier in the year in many temperate regions. The resilience of tree species will depend on their ability to track these changes in climate with shifts in phenology that lead to earlier growth initiation in the spring. Exposure to warm temperatures (“forcing”) typically triggers growth initiation, but many trees also require exposure to cool temperatures (“chilling”) while dormant to readily initiate growth in the spring. If warming increases forcing and decreases chilling, climate change could maintain, advance or delay growth initiation phenology relative to the onset of favorable conditions. We modeled the timing of height- and diameter-growth initiation in coast Douglas-fir (an ecologically and economically vital tree in western North America) to determine whether changes in phenology are likely to track changes in climate using data from field-based and controlled-environment studies, which included conditions warmer than those currently experienced in the tree's range. For high latitude and elevation portions of the tree's range, our models predicted that warming will lead to earlier growth initiation and allow trees to track changes in the onset of the warm but still moist conditions that favor growth, generally without substantially greater exposure to frost. In contrast, towards lower latitude and elevation range limits, the models predicted that warming will lead to delayed growth initiation relative to changes in climate due to reduced chilling, with trees failing to capture favorable conditions in the earlier parts of the spring. This maladaptive response to climate change was more prevalent for diameter-growth initiation than height-growth initiation. The decoupling of growth initiation with the onset of favorable climatic conditions could reduce the resilience of coast Douglas-fir to climate change at the warm edges of its distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4458V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4458V"><span>Global warming effects: future feasibility of current cooling equipment for animal houses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valiño, V.; Perdigones, A.; García, J. L.; de La Plaza, S.</p> <p>2009-04-01</p> <p>Interest in global warming effects on the agricultural systems is currently high, especially in areas which are likely to be more affected by this temperature rising, i.e. the Mediterranean area (IPCC, 2008). According to this report, the model projections of surface warming predict a temperature increase between 0.5°C to 1.5°C in the European area by the period 2020-2029. The aim of the present work was to assess the future consequences of the global warming effect on the feasibility of the cooling equipment in animal houses. Several equipment combinations were compared by means of modelling the inside climate in fattening pig houses, including forced ventilation and cooling pad. The modelling was carried out for six different European locations: Spain, Greece, Italy, The Netherlands, Germany and the United Kingdom, for the today conditions; secondly, the global warming effect in the inside climate was considered in a second set of simulations, and a mean temperature rising of 2°C was taken into account. Climate data. The six European locations were: Madrid (Spain); Aliartos (Greece); Bedford (The United Kingdom); Schipol (The Netherlands); Milan (Italy); and Stuttgart (Germany). From every location, the available climate data were monthly mean temperature (To; °C); monthly mean relative humidity (HRo, %) and monthly mean solar irradiation on horizontal surface (So; W m-2). From these monthly values, hourly means were calculated resulting in 24 data for a typical day, each month. Climate model. In this study, cooling strategies resulted from the combination of natural ventilation, mechanical ventilation and cooling pads. The climate model was developed taking into account the following energy fluxes: solar radiation, ventilation (Seginer, 2002), animal heat losses (Blanes and Pedersen, 2005), and loss of energy due to the cooling pads (Seginer, 2002). Results for the present work, show a comparative scene of the inside climate by using different cooling equipment combinations, from natural ventilation to cooling pads. Simulations which include the effects of climate change show the evolution in cooling technologies which will be necessary in this kind of animal houses, in six European locations, if the global temperature rising continues with the current rate. The necessary changes in cooling technologies of animal houses, will be important in Europe when the outside air temperature rising is greater than or equal to two Celsius degrees. Intergovernmental Panel on the Climate Change. 2008. Climate Change 2007: Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4syr.pdf I. Seginer. 2002. The Penman-Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design. Biosystems Eng. 82(4): 423-439. doi:10.1006/bioe2002.0086 V. Blanes, S. Pedersen. 2005. Ventilation Flow in Pig Houses measured and calculated by Carbon Dioxide, Moisture and Heat Balance Equations. Biosystems Eng. 92(4): 483-493. doi:10.1006/j.biosystemseng.2005.09.002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.2269H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.2269H"><span>Can climate-effective land management reduce regional warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.</p> <p>2017-02-01</p> <p>Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29927486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29927486"><span>Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Guoyan; Baskin, Carol C; Baskin, Jerry M; Yang, Xuejun; Liu, Guofang; Ye, Xuehua; Zhang, Xinshi; Huang, Zhenying</p> <p>2018-06-21</p> <p>Much research has focused on plant responses to ongoing climate change, but there is relatively little information about how climate change will affect the early plant life history stages. Understanding how global warming and changes in winter snow pattern will affect seed germination and seedling establishment is crucial for predicting future alpine population and vegetation dynamics. In a 2-year study, we tested how warming and alteration in the snowmelt regime, both in isolation and combination, influence seedling emergence phenology, first-year growth, biomass allocation, and survival of four native alpine perennial herbs on the southeastern Tibetan Plateau. Warming promoted seedling emergence phenology of all four species and biomass per plant of two species but reduced seedling survival of three species. Prolonged snow cover partly mediated the affects of warming on Primula alpicola (survival and biomass), Pedicularis fletcheri (phenology, biomass, and root:shoot ratio) and Meconopsis integrifolia (survival). For the narrowly distributed species M. racemosa, seedling growth was additively decreased by warming and prolonged snow cover. Both warming and alteration of the snow cover regime can influence plant recruitment by affecting seedling phenology, growth, and survival, and the effects are largely species-specific. Thus, climate change is likely to affect population dynamics and community structure of the alpine ecosystem. This is the first experimental demonstration of the phenological advancement of seedling emergence in the field by simulated climate warming. © 2018 Botanical Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192315','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192315"><span>Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Leslie A.; Muhlfeld, Clint C.; Marshall, Lucy A.</p> <p>2017-01-01</p> <p>Climate warming is expected to increase stream temperatures in mountainous regions of western North America, yet the degree to which future climate change may influence seasonal patterns of stream temperature is uncertain. In this study, a spatially explicit statistical model framework was integrated with empirical stream temperature data (approximately four million bi-hourly recordings) and high-resolution climate and land surface data to estimate monthly stream temperatures and potential change under future climate scenarios in the Crown of the Continent Ecosystem, USA and Canada (72,000 km2). Moderate and extreme warming scenarios forecast increasing stream temperatures during spring, summer, and fall, with the largest increases predicted during summer (July, August, and September). Additionally, thermal regimes characteristic of current August temperatures, the warmest month of the year, may be exceeded during July and September, suggesting an earlier and extended duration of warm summer stream temperatures. Models estimate that the largest magnitude of temperature warming relative to current conditions may be observed during the shoulder months of winter (April and November). Summer stream temperature warming is likely to be most pronounced in glacial-fed streams where models predict the largest magnitude (> 50%) of change due to the loss of alpine glaciers. We provide the first broad-scale analysis of seasonal climate effects on spatiotemporal patterns of stream temperature in the Crown of the Continent Ecosystem for better understanding climate change impacts on freshwater habitats and guiding conservation and climate adaptation strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14558897','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14558897"><span>Palaeoclimatic insights into future climate challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alley, Richard B</p> <p>2003-09-15</p> <p>Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44C..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44C..01S"><span>Aerosol reductions could dominate regional climate responses in low GHG emission scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.</p> <p>2017-12-01</p> <p>Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GGG....19...73W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GGG....19...73W"><span>Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.</p> <p>2018-01-01</p> <p>Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189930','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189930"><span>Predicting regime shifts in flow of the Colorado River</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gangopadhyay, Subhrendu; McCabe, Gregory J.</p> <p>2010-01-01</p> <p>The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1007/s10584-008-9543-5','USGSPUBS'); return false;" href="http://dx.doi.org/10.1007/s10584-008-9543-5"><span>Climate trends of the North American prairie pothole region 1906-2000</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Millett, B.; Johnson, W.C.; Guntenspergen, G.</p> <p>2009-01-01</p> <p>The Prairie Pothole Region (PPR) is unique to North America. Its millions of wetlands and abundant ecosystem goods and services are highly sensitive to wide variations of temperature and precipitation in time and space characteristic of a strongly continental climate. Precipitation and temperature gradients across the PPR are orthogonal to each other. Precipitation nearly triples from west to east from approximately 300 mm/year to 900 mm/year, while mean annual temperature ranges from approximately 1°C in the north to nearly 10°C in the south. Twentieth-century weather records for 18 PPR weather stations representing 6 ecoregions revealed several trends. The climate generally has been getting warmer and wetter and the diurnal temperature range has decreased. Minimum daily temperatures warmed by 1.0°C, while maximum daily temperatures cooled by 0.15°C. Minimum temperature warmed more in winter than in summer, while maximum temperature cooled in summer and warmed in winter. Average annual precipitation increased by 49 mm or 9%. Palmer Drought Severity Index (PDSI) trends reflected increasing moisture availability for most weather stations; however, several stations in the western Canadian Prairies recorded effectively drier conditions. The east-west moisture gradient steepened during the twentieth century with stations in the west becoming drier and stations in the east becoming wetter. If the moisture gradient continues to steepen, the area of productive wetland ecosystems will shrink. Consequences for wetlands would be especially severe if the future climate does not provide supplemental moisture to offset higher evaporative demand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150019930&hterms=biome&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbiome"><span>Challenges in Quantifying Pliocene Terrestrial Warming Revealed by Data-Model Discord</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salzmann, Ulrich; Dolan, Aisling M.; Haywood, Alan M.; Chan, Wing-Le; Voss, Jochen; Hill, Daniel J.; Abe-Ouchi, Ayako; Otto-Bliesner, Bette; Bragg, Frances J.; Chandler, Mark A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150019930'); toggleEditAbsImage('author_20150019930_show'); toggleEditAbsImage('author_20150019930_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150019930_hide"></p> <p>2013-01-01</p> <p>Comparing simulations of key warm periods in Earth history with contemporaneous geological proxy data is a useful approach for evaluating the ability of climate models to simulate warm, high-CO2 climates that are unprecedented in the more recent past. Here we use a global data set of confidence-assessed, proxy-based temperature estimates and biome reconstructions to assess the ability of eight models to simulate warm terrestrial climates of the Pliocene epoch. The Late Pliocene, 3.6-2.6 million years ago, is an accessible geological interval to understand climate processes of a warmer world4. We show that model-predicted surface air temperatures reveal a substantial cold bias in the Northern Hemisphere. Particularly strong data-model mismatches in mean annual temperatures (up to 18 C) exist in northern Russia. Our model sensitivity tests identify insufficient temporal constraints hampering the accurate configuration of model boundary conditions as an important factor impacting on data- model discrepancies. We conclude that to allow a more robust evaluation of the ability of present climate models to predict warm climates, future Pliocene data-model comparison studies should focus on orbitally defined time slices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27280074','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27280074"><span>Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D</p> <p>2016-01-01</p> <p>Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.6301G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.6301G"><span>Impact Induced Climate Change on Venus: The Role of Large Comets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grinspoon, D. H.; Bullock, M. A.</p> <p>2000-10-01</p> <p>The surface temperature of Venus is a sensitive function of the abundances of greenhouse gases and also of cloud structure. In previous work we have studied the climate impact of past and continued outgassing of greenhouse and cloud-forming gases (1) and tectonic signatures that may have resulted from volcanically induced climate change (2). These studies showed that in outgassing events where large amounts of both H2O and SO2 are released, the increased albedo that arises from thickening of the clouds can, to some extent, ameliorate the greenhouse warming expected from increased abundances of these IR absorbing gases. The largest warming typically arises several hundred million years after an outgassing event when most of the excess SO2 has been removed by reaction with surface minerals, but much of the atmospheric H2O remains (because it is removed by exospheric escape on longer time scales). This combination - enhanced H2O abundance with SO2 returned to 'normal' - leads to maximum warming because the cloud thickness, and thus the albedo, is limited by the availability of SO2, whereas IR absorption in CO2 windows by enhanced H2O can cause warming on the order of 100 K. It seems likely that large comet impacts should also produce such a situation. The atmosphere of Venus currently contains 7 x 1018 grams of water, about as much as in a 25 km diameter comet. Comets may have been an important contributor to the current water inventory on Venus. Much of this may have been supplied by a few large comet impacts in the last several hundred million years (3). We will report on new runs of our Venus Evolutionary Climate Model which simulate the volatile input from large comet impacts and investigate the climate effects of these events. Calculation will be done with cometary delivery alone, and in conjunction with various outgassing scenarios. This allows us to examine how the vulnerability of the Venusian climate system to impact induced climate change is affected by the relative timing of large magmatic and impact events. (1) Bullock, M.A., and D.H. Grinspoon, J. Geophys. Res. 101, 7521-7529, 1996. (2) Solomon, S.C., M. A. Bullock, and D. H. Grinspoon, Science, 286: 87-90, 1999. (3) Grinspoon, D.H. and J.S. Lewis, Icarus, 74, 21-35, 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1757082','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1757082"><span>Cold periods and coronary events: an analysis of populations worldwide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Barnett, A.; Dobson, A.; McElduff, P.; Salomaa, V.; Kuulasmaa, K.; Sans, S.; t for</p> <p>2005-01-01</p> <p>Study objective: To investigate the association between cold periods and coronary events, and the extent to which climate, sex, age, and previous cardiac history increase risk during cold weather. Design: A hierarchical analyses of populations from the World Health Organisation's MONICA project. Setting: Twenty four populations from the WHO's MONICA project, a 21 country register made between 1980 and 1995. Patients: People aged 35–64 years who had a coronary event. Main results: Daily rates of coronary events were correlated with the average temperature over the current and previous three days. In cold periods, coronary event rates increased more in populations living in warm climates than in populations living in cold climates, where the increases were slight. The increase was greater in women than in men, especially in warm climates. On average, the odds for women having an event in the cold periods were 1.07 higher than the odds for men (95% posterior interval: 1.03 to 1.11). The effects of cold periods were similar in those with and without a history of a previous myocardial infarction. Conclusions: Rates of coronary events increased during comparatively cold periods, especially in warm climates. The smaller increases in colder climates suggest that some events in warmer climates are preventable. It is suggested that people living in warm climates, particularly women, should keep warm on cold days. PMID:15965137</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22136670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22136670"><span>Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A</p> <p>2012-02-01</p> <p>Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date. © 2011 Blackwell Publishing Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29026073','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29026073"><span>Causes of model dry and warm bias over central U.S. and impact on climate projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong</p> <p>2017-10-12</p> <p>Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29691388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29691388"><span>Warm summers during the Younger Dryas cold reversal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara</p> <p>2018-04-24</p> <p>The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27789841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27789841"><span>Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guiot, Joel; Cramer, Wolfgang</p> <p>2016-10-28</p> <p>The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911960K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911960K"><span>European freshwater vulnerability under high rates of global warming and plausible socio-economic narratives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koutroulis, Aristeidis; Papadimitriou, Lamprini; Grillakis, Manolis; Tsanis, Ioannis</p> <p>2017-04-01</p> <p>Recent developments could postpone climate actions in the frame of the global climate deal of the Paris Agreement, making higher-end global warming increasingly plausible. Although not clear in the COP21 water security is fundamental to achieving low-carbon ambitions, thus climate and water policies are closely related. The projection of the relationship between global warming, water availability and water stress through their complex interactions among different sectors, along with the synergies and trade-offs between adaptation and mitigation actions, is a rather challenging task under the prism of climate change. Here we try to develop and apply a simple, transparent conceptual framework describing European vulnerability to hydrological drought of current hydro-climatic and socioeconomic status as well as projected vulnerability at specific levels of global warming (1.5oC, 2oC and 4oC) following highly rates of climatic change (RCP8.5) and considering different levels of adaptation associated to specific socioeconomic pathways (SSP2, SSP3 and SSP5).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..652M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..652M"><span>Committed warming inferred from observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mauritsen, Thorsten; Pincus, Robert</p> <p>2017-09-01</p> <p>Due to the lifetime of CO2, the thermal inertia of the oceans, and the temporary impacts of short-lived aerosols and reactive greenhouse gases, the Earth’s climate is not equilibrated with anthropogenic forcing. As a result, even if fossil-fuel emissions were to suddenly cease, some level of committed warming is expected due to past emissions as studied previously using climate models. Here, we provide an observational-based quantification of this committed warming using the instrument record of global-mean warming, recently improved estimates of Earth’s energy imbalance, and estimates of radiative forcing from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Compared with pre-industrial levels, we find a committed warming of 1.5 K (0.9-3.6, 5th-95th percentile) at equilibrium, and of 1.3 K (0.9-2.3) within this century. However, when assuming that ocean carbon uptake cancels remnant greenhouse gas-induced warming on centennial timescales, committed warming is reduced to 1.1 K (0.7-1.8). In the latter case there is a 13% risk that committed warming already exceeds the 1.5 K target set in Paris. Regular updates of these observationally constrained committed warming estimates, although simplistic, can provide transparent guidance as uncertainty regarding transient climate sensitivity inevitably narrows and the understanding of the limitations of the framework is advanced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4837369','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4837369"><span>The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Alexandrov, G. A.; Brovkin, V. A.; Kleinen, T.</p> <p>2016-01-01</p> <p>Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100. PMID:27095029</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27095029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27095029"><span>The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alexandrov, G A; Brovkin, V A; Kleinen, T</p> <p>2016-04-20</p> <p>Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMED31D..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMED31D..02B"><span>Weather it's Climate Change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bostrom, A.; Lashof, D.</p> <p>2004-12-01</p> <p>For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1014756-year-varve-based-climate-record-from-central-brooks-range-alaska','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1014756-year-varve-based-climate-record-from-central-brooks-range-alaska"><span>A 2000 year varve-based climate record from the central Brooks Range, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bird, BW; Abbott, MB; Finney, BP</p> <p></p> <p>Varved minerogenic sediments from glacial-fed Blue Lake, northern Alaska, are used to investigate late Holocene climate variability. Varve-thickness measurements track summer temperature recorded at Atigun Pass, located 41 km east at a similar elevation (r (2) = 0.31, P = 0.08). Results indicate that climate in the Brooks Range from 10 to 730 AD (varve year) was warm with precipitation inferred to be higher than during the twentieth century. The varvetemperature relationship for this period was likely compromised and not used in our temperature reconstruction because the glacier was greatly reduced, or absent, exposing sub-glacial sediments to erosion from enhancedmore » precipitation. Varve-inferred summer temperatures and precipitation decreased after 730 AD, averaging 0.4A degrees C above the last millennial average (LMA = 4.2A degrees C) from 730 to 850 AD, and 0.1A degrees C above the LMA from 850 to 980 AD. Cooling culminated between 980 and 1030 AD with temperatures 0.7A degrees C below the LMA. Varve-inferred summer temperatures increased between 1030 and 1620 AD to the LMA, though the period between 1260 and 1350 AD was 0.2A degrees C below the LMA. Although there is no equivalent to the European Medieval Warm Period in the Blue Lake record, two warm intervals occurred from 1350 to 1450 AD and 1500 to 1620 AD (0.4 and 0.3A degrees C above the LMA, respectively). During the Little Ice Age (LIA; 1620 to 1880 AD), inferred summer temperature averaged 0.2A degrees C below the LMA. After 1880 AD, inferred summer temperature increased to 0.8A degrees C above the LMA, glaciers retreated, but aridity persisted based on a number of regional paleoclimate records. Despite warming and glacial retreat, varve thicknesses have not achieved pre-730 AD levels. This reflects limited sediment availability and transport due to a less extensive retreat compared to the first millennium, and continued relative aridity. Overall, the Blue Lake record is similar to varve records from the eastern Canadian Arctic that document a cool LIA and twentieth century warming. However, the occurrence and timing of events, such as the LIA and Medieval Warm Period, varies considerably among records, suggesting heterogeneous climatic patterns across the North American Arctic.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1239013-us-major-crops-uncertain-climate-change-risks-greenhouse-gas-mitigation-benefits','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1239013-us-major-crops-uncertain-climate-change-risks-greenhouse-gas-mitigation-benefits"><span>US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...</p> <p>2015-10-28</p> <p>In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCC...6...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCC...6...51L"><span>A top-down approach to projecting market impacts of climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemoine, Derek; Kapnick, Sarah</p> <p>2016-01-01</p> <p>To evaluate policies to reduce greenhouse-gas emissions, economic models require estimates of how future climate change will affect well-being. So far, nearly all estimates of the economic impacts of future warming have been developed by combining estimates of impacts in individual sectors of the economy. Recent work has used variation in warming over time and space to produce top-down estimates of how past climate and weather shocks have affected economic output. Here we propose a statistical framework for converting these top-down estimates of past economic costs of regional warming into projections of the economic cost of future global warming. Combining the latest physical climate models, socioeconomic projections, and economic estimates of past impacts, we find that future warming could raise the expected rate of economic growth in richer countries, reduce the expected rate of economic growth in poorer countries, and increase the variability of growth by increasing the climate's variability. This study suggests we should rethink the focus on global impacts and the use of deterministic frameworks for modelling impacts and policy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1239013-us-major-crops-uncertain-climate-change-risks-greenhouse-gas-mitigation-benefits','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1239013-us-major-crops-uncertain-climate-change-risks-greenhouse-gas-mitigation-benefits"><span>US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wing, Ian Sue; Monier, Erwan; Stern, Ari</p> <p></p> <p>In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27721480','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27721480"><span>Ecosystem responses to warming and watering in typical and desert steppes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng</p> <p>2016-10-10</p> <p>Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem's functional responses under climate change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056398','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5056398"><span>Ecosystem responses to warming and watering in typical and desert steppes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng</p> <p>2016-01-01</p> <p>Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios. PMID:27721480</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...634801X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...634801X"><span>Ecosystem responses to warming and watering in typical and desert steppes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng</p> <p>2016-10-01</p> <p>Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.5030K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.5030K"><span>The Inequality of Climate Change From 1.5 to 2°C of Global Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>King, Andrew D.; Harrington, Luke J.</p> <p>2018-05-01</p> <p>The Paris Agreement aims to keep global warming well below 2°C above preindustrial levels with a preferred ambitious 1.5°C target. Developing countries, especially small island nations, pressed for the 1.5°C target to be adopted, but who will suffer the largest changes in climate if we miss this target? Here we show that exceeding the 1.5°C global warming target would lead to the poorest experiencing the greatest local climate changes. Under these circumstances greater support for climate adaptation to prevent poverty growth would be required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21848352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21848352"><span>Global warming: a public health concern.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Afzal, Brenda M</p> <p>2007-05-31</p> <p>Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.......190K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.......190K"><span>Climate and climate change and infectious disease risk in Thailand: A spatial study of dengue hemorrhagic fever using GIS and remotely-sensed imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuzera, Kristopher</p> <p></p> <p>The scientific community has widely accepted that climate plays a key role in the sustainability and transmission of many infectious diseases. Global climate change can potentially trigger the spread of disease into new regions and increase the intensity of disease in regions where it is endemic. This study explores the association between monthly conditions of climate change to changes in disease risk, emphasizing the potential spread of dengue fever due to climate change in Thailand. This study also develops techniques new to GIS and remote sensing that generate surfaces of daily minimum temperature toward identifying areas at greater transmission risk. Dengue fever expansion due to global warming is a serious concern for Thailand where warming temperatures may increase the size of the habitat of the disease-spreading vector, Aedes aegypti, particularly during cooler months when transmission is limited by environmental conditions. In this study, first, the association between past dengue hemorrhagic fever (DHF) and climate in Thailand is determined. Second, evidence of recent climate change is related to changes in DHF rates. Third, daily minimum temperature is derived from remote sensing toward identifying the spatial and temporal limitations of potential transmission risk. The results indicate that minimum temperature has recently experienced a rapid increase, particularly in the winter months when transmission is low. This is associated with a recent rise in winter DHF cases. As increasing minimum temperatures in these regions are anticipated to continue, we can expect dengue transmission rates to also increase throughout the year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3753S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3753S"><span>Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro</p> <p>2017-12-01</p> <p>Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51H..09F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51H..09F"><span>Changes in extremes due to half a degree warming in observations and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.</p> <p>2017-12-01</p> <p>Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=273915','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=273915"><span>Controlled warming effects on wheat growth and yield: field measurements and modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Climate warming may raise wheat yields in cooler climates and lower them in warmer. To understand these contrasting effects, infrared heating lamps were used to warm irrigated spring wheat by 1.5 'C (day) and 3.0 'C (night) above unheated controls during different times of the year at Maricopa, AZ. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37862','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37862"><span>Sensitivity of Arctic carbon in a changing climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>A. David McGuire; Henry P. Huntington; Simon Wilson</p> <p>2009-01-01</p> <p>The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-18/pdf/2012-9335.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-18/pdf/2012-9335.pdf"><span>77 FR 23209 - Endangered and Threatened Species; Proposed Delisting of Eastern DPS of Steller Sea Lions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-18</p> <p>... five potential sources of threat under this factor: 1. Global Climate Warming and Ocean Acidification... 5. Oil and Gas Development. Global climate warming and ocean acidification pose a potential threat... information suggests it is likely that global warming and ocean acidification may affect eastern North Pacific...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC42B..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC42B..02D"><span>Climate change and response of geosystems of the Russian North (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drozdov, D. S.; Korostelev, Y. V.; Malkova, G. V.; Melnikov, V. P.; Orekhov, P. T.; Ukraintseva, N. G.</p> <p>2010-12-01</p> <p>The study of climate change, mainly air temperature and snow cover depth, is a key to understanding of modern trends in evolution of cryolithozone and response of geosystems of the North. Greenhouse and technogenic effects influence the cryolithozone and permafrost as well. Scenarios of substantial warming, temperate warming, and cooling were considered in our research. Weather station records show that the last so called “Earth Global Warming”, which started in 1960-1970s was initially most pronounced in Subarctic and Temperate zones. Maximum warming rate was observed in the 1980s. In Russia, the areas of warming in 20th century were Central Yakutia and Transbaikal, while in the European and Far East Russia the rate of warming was rather small. Later, the warming trend was observed only locally and new areas of maximum rates of warming appear within Russian cryolithozone. In 2000s, warming gradually extends to the Arctic regions while it slows down in Subarctic. Thermal regime of permafrost generally follows the climate change. Geocryological monitoring data evidence the rise of ground temperature at the depth of zero annual amplitude in the north of West Siberia by 0.2 to 1.4°C and in European Russia by 0.1 to 0.7°C. In these regions, slight trend of snow accumulation growth was also observed. At the same time, in Central Yakutia, though climate warms, permafrost temperature does not show increase due to reduction of snow depth in the last decades. In West Siberia, Urengoi gas field, ground temperatures in 1975-1993 increased by 1 to 1.5°C due to natural climate fluctuations (some times up to 2 to 3.5°C). Human impact added 1 to 1.5°C, this last being tightly linked to the effect of engineering structures. Some slowing of thaw and stabilization of ground temperature around 0°C is observed as incoming heat is consumed by phase transition in the near-surface layer. I was instrumentally detected that permafrost table lowered by 5-8 m and more at the forested and shrubby sites. According to our calculations, during the last 30 years, the southern limit of patchy near-surface permafrost shifted northward by 100-120 km in West Siberia, and by 20-50 km in European Russia. Continuous permafrost area in Russia reduced by 1,000,000 km2 (15%) compared to 1960-70-s. This also means changes in hydrology and hydrogeology, occurrence of new and activation of existing exogenic processes, reduction of bearing capacity of the ground used as foundations for roads, pipelines and so on. Climate change became evident also in the landscape appearance of geosystems of the North. In 1975-1980 at the left bank of Pur-river (West Siberia) thin larch forests could be met only at the hill tops of southern forest-tundra zone. Observations in 2007-2008 showed a mass expansion of larch northward into the former forest-free hilltops of northern forest-tundra. Moreover, in 1999 in southern tundra sub-zone at the hill tops 2-3-year old larch undergrowth 10-20 cm high was observed as well, though during several subsequent cold, with little snow winters those larch trees were frost-killed. In High Russian Arctic the ground temperature is not uniform: at Belyi Island (73.5° N) it varies from 11 to 7°C; at Frantz-Joseph Zemlia Archipelago (80.5° N) - from 11.5 to 10.5°C.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25383552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25383552"><span>Large impacts of climatic warming on growth of boreal forests since 1960.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kauppi, Pekka E; Posch, Maximilian; Pirinen, Pentti</p> <p>2014-01-01</p> <p>Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome - more than ten million km2- important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003143','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003143"><span>Climate Research Must Sharpen Its View</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marotzke, Jochem; Jakob, Christian; Bony, Sandrine; Dirmeyer, Paul A.; O'Gorman, Paul; Hawkins, Ed; Perkins-Kirkpatrick, Sarah; Le Quere, Corinne; Nowicki, Sophie; Paulavets, Katsia; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003143'); toggleEditAbsImage('author_20170003143_show'); toggleEditAbsImage('author_20170003143_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003143_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003143_hide"></p> <p>2017-01-01</p> <p>Human activity is changing Earth's climate. Now that this has been acknowledged and accepted ininternational negotiations, climate research needs to define its next frontiers. The 2015 Paris agreement at COP21 has liberated climate research from discussing what is already known: the world is warming and humans are largely responsible. As society aims to limit further warming by reducing greenhouse-gas emissions, climate research must probe deeper into the unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/106788','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/106788"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Griff, M.T.</p> <p></p> <p>This paper provides an overview of recent initiatives of the United States which promote greater use of natural gas and unconventional gas as one part of this nations`s larger response to the global warming threat. Measurable increases in greenhouse gas concentrations since the beginning of the industrial revolution have led to the belief in the existence of a global warming problem. The international community has responded to the global warming threat with the United Nations Framework Convention on Climate Change which is directed toward the stabilization of greenhouse gases in the atmosphere. The Climate Change Action Plan is the Clintonmore » Administration`s detailed response to the global warming threat. It is designed to return United States emissions of greenhouse gases to their 1990 levels by the year 2000. The Action Plan targets all greenhouse gases and emphasizes energy efficiency. Significant regulatory reformation designed to increase the efficiency of the natural gas industry has already occurred and will be continued. Recovery of methane emissions from landfills will be encouraged through indentification of suitable sites and use of existing technology and development of new technology. Recovery of methane from coal mining operations will be promoted by targeting 50 of the gassiest mines in the United States. Even if the Action Plan is fully implemented. legitimate questions arise as to whether its goals will be achieved as a result of funding shortfalls.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC14A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC14A..06C"><span>Investigating the pace of temperature change and its implications over the twenty-first century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chavaillaz, Y.; Joussaume, S.; Braconnot, P.; Vautard, R.</p> <p>2015-12-01</p> <p>In most studies, climate change is approached by focusing on the evolution between a fixed current baseline and the future, emphasizing stronger warming as we move further from the current climate. Under climate conditions that are continuously evolving, human systems might have to constantly adapt to a changing target. We propose here an alternative approach, and consider indicators of the pace of temperature change and its effects on temperature distributions estimated from projections of an ensemble of 18 General Circulation Models. The pace is represented by a rate defined by the difference between two subsequent 20-year periods. Under the strongest emission pathway (RCP 8.5), the warming rate strongly increases over the twenty-first century, with a maximum reached before 2080. Whilst northern high-latitudes witness the highest temperature rise, all other latitudes highlight at least a doubling in the warming rate compared to the current period. The spatial extent of significant shifts in annual temperature distributions between two subsequent 20-year periods is projected to be at least four times larger than in the current period. They are mainly located in tropical areas, such as West Africa and South-East Asia. The fraction of the world population exposed to these shifts grows from 8% to 60% from around 2060 onwards, i.e. reaching 6 billions people. In contrast, low mitigation measures (RCP 6.0) are sufficient to keep the warming rate similar to current values. Under the medium mitigation pathway (RCP 4.5), population exposure to significant shifts drops to negligible values by the end of the century. Strong mitigation measures (RCP 2.6) are the only option that generates a global return to historical conditions regarding our indicators. Considering the pace of change can bring an alternative way to interact with climate impacts and adaptation communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12b5001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12b5001L"><span>Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth</p> <p>2017-02-01</p> <p>Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003-2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming, underlying ecosystem processes are beginning to change. In addition, even short bouts of intense herbivory can have long-term consequences for some species in these communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B43J..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B43J..04G"><span>The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.</p> <p>2017-12-01</p> <p>Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in Arctic Alaska, modeling suggests that a threshold is imminent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880062499&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Deffect%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880062499&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Deffect%2Bglobal%2Bwarming"><span>Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.</p> <p>1988-01-01</p> <p>The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813667S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813667S"><span>Carbon balance of a subarctic meadow under 3 r{ C warming - unravelling respiration}</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silvennoinen, Hanna; Bárcena, Téresa G.; Moni, Christophe; Szychowski, Marcin; Rajewicz, Paulina; Höglind, Mats; Rasse, Daniel P.</p> <p>2016-04-01</p> <p>Boreal and arctic terrestrial ecosystems are central to the climate change debate, as the warming is expected to be disproportionate as compared to world averages. Northern areas contain large terrestrial carbon (C) stocks further increasing the interest in the C cycle's fate in changing climate. In 2013, we started an ecosystem warming experiment at a meadow in Eastern Finnmark, NE Norway. The meadow was on a clay soil and its vegetation was common meadow grasses and clover. Typical local agronomy was applied. The study site featured ten 4m-wide hexagonal plots, five control and five actively warmed plots in randomized complete block design. Each of the warmed plots was continuously maintained 3 ° C above its associated control plot with infrared heaters controlled by canopy thermal sensors. In 2014-2015, we measured net ecosystem exchange (NEE) and respiration twice per week during growth seasons from preinstalled collars of each site with dynamic, temperature-controlled chambers combined to an infrared analyzer. Despite warming-induced differences in yield, species composition and root biomass, neither the NEE nor the respiration responded to the warming, all sites remaining equal sinks for C. Following this observation, we carried out an additional experiment in 2015 where we aimed at partitioning the total CO2 flux to microbial and plant respiration as well as at recording the growth season variation of those parameters in situ. Here, we used an approach based on natural abundances of 13C. The δ13C signature of both autotrophic plant respiration and heterotrophic microbial respiration were obtained in targeted incubations (Snell et al. 2014). Then, the δ13C -signature of the total soil respiration was determined in the field by Keeling approach with dynamic dark chambers combined to CRDS. Proportions of autotrophic and heterotrophic components in total soil respiration were then derived based on 13C mixing model. Incubations were repeated at early, mid and late growth season and field measurements conducted once per week throughout the growth season. We observed differences in the partitioning of the total soil respiration over the three periods: plant respiration consistently dominated in the control plots (60-100 %), whereas the warmed plots exhibited a considerably higher share of microbial respiration in the autumn (70 %; p= 0.03). The share of microbial respiration was also elevated in spring as compared to the control sites. These results indicate that 1)Partitioning exhibits seasonal variation 2) Warmer climate may induce a larger proportion of δ13C-enriched C being decomposed. At our site, warming had little effect on total respiration but enhanced microbial respiration at the expense of plant respiration at early and late growth season. Therefore, even if the local CO2 budgets remained unaffected by the warming climate it may be important to pay attention to the resilience of soil C on a longer run. References: Snell HSK et al. 2014. Rapid Commun. Mass Spectrom. 28: 2341-2351.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23736549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23736549"><span>Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping</p> <p>2013-11-01</p> <p>A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMED33A0771H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMED33A0771H"><span>An evaluation of applying the 'Critical thinking model' to teaching global warming to junior high school students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, J.; Hong, C.; Hsu, Y.</p> <p>2013-12-01</p> <p>Climate change is a consequence of interaction among the biosphere, atmosphere, hydrosphere and geosphere. The causes of climate change are extremely complicated for scientists to explain. The fact that the global climate has kept warming in the past few decades is one example. It remains controversial for scientists whether this warming is the result of human activity or natural causes. This research aims to lead students to discuss the causes of global warming from distinct and controversial viewpoints to help the students realize the uncertainty and complicated characteristics of the global warming issue. The context of applying the critical thinking model to teaching the scientific concepts of climate change and global warming is designed for use in junior high schools. The videos of the upside concept 'An Inconvenient Truth' (a 2006 documentary film directed by Davis Guggenheim) and the reverse-side concept 'The Great Global Warming Swindle' (a 2007 documentary film made by British television producer/director Martin Durkin) about the global warming crisis are incorporated into lessons in order to guide students to make their own decisions appropriately when discussing the earth climate change crisis. A questionnaire, individual teacher interviews and observations in class were conducted to evaluate the curriculum. The pre-test and post-test questionnaires showed differences in the students' knowledge, attitudes and behavior towards the global warming phenomenon before and after attending the lessons. The results show that those students who attended the whole curriculum had a significant increase in their knowledge and behavior factors of global climate (P value <0.001*). However, there was no significant improvement in their attitudes between the pre-test and post-test questionnaires (P value=0.329). From the individual interviews, the teachers who gave the lessons indicated that this project could increase the interaction with their students during class and improve the efficiency of learning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29143493','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29143493"><span>Recurrent sublethal warming reduces embryonic survival, inhibits juvenile growth, and alters species distribution projections under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W</p> <p>2018-01-01</p> <p>The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26951654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26951654"><span>Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli</p> <p>2016-03-22</p> <p>Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B31K..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B31K..01Z"><span>Metagenomics-Enabled Understanding of Soil Microbial Feedbacks to Climate Warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, J.; Wu, L.; Zhili, H.; Kostas, K.; Luo, Y.; Schuur, E. A. G.; Cole, J. R.; Tiedje, J. M.</p> <p>2014-12-01</p> <p>Understanding the response of biological communities to climate warming is a central issue in ecology and global change biology, but it is poorly understood microbial communities. To advance system-level predictive understanding of the feedbacks of belowground microbial communities to multiple climate change factors and their impacts on soil carbon (C) and nitrogen (N) cycling processes, we have used integrated metagenomic technologies (e.g., target gene and shotgun metagenome sequencing, GeoChip, and isotope) to analyze soil microbial communities from experimental warming sites in Alaska (AK) and Oklahoma (OK), and long-term laboratory incubation. Rapid feedbacks of microbial communities to warming were observed in the AK site. Consistent with the changes in soil temperature, moisture and ecosystem respiration, microbial functional community structure was shifted after only 1.5-year warming, indicating rapid responses and high sensitivity of this permafrost ecosystem to climate warming. Also, warming stimulated not only functional genes involved in aerobic respiration of both labile and recalcitrant C, contributing to an observed 24% increase in 2010 growing season and 56% increase of decomposition of a standard substrate, but also functional genes for anaerobic processes (e.g., denitrification, sulfate reduction, methanogenesis). Further comparisons by shotgun sequencing showed significant differences of microbial community structure between AK and OK sites. The OK site was enriched in genes annotated for cellulose degradation, CO2 production, denitrification, sporulation, heat shock response, and cellular surface structures (e.g., trans-membrane transporters for glucosides), while the AK warmed plots were enriched in metabolic pathways related to labile C decomposition. Together, our results demonstrate the vulnerability of permafrost ecosystem C to climate warming and the importance of microbial feedbacks in mediating such vulnerability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24416144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24416144"><span>Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roth, Tobias; Plattner, Matthias; Amrhein, Valentin</p> <p>2014-01-01</p> <p>As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885385','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3885385"><span>Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Roth, Tobias; Plattner, Matthias; Amrhein, Valentin</p> <p>2014-01-01</p> <p>As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003–2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world. PMID:24416144</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B44D..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B44D..03M"><span>Continuing Climate Warming Will Result in Failure of Post-Harvest Natural Regeneration across the Landscape in Interior Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morimoto, M.; Juday, G. P.; Huettmann, F.</p> <p>2016-12-01</p> <p>Following forest disturbance, the stand initiation stage decisively influences future forest structure. Understanding post-harvest regeneration, especially under climate change, is essential to predicting future carbon stores in this extensive forest biome. We apply IPCC B1, A1B, and A2 climate scenarios to generate plausible future forest conditions under different management. We recorded presence of white spruce, birch, and aspen in 726 plots on 30 state forest white spruce harvest units. We built spatially explicit models and scenarios of species presence/absence using TreeNet (Stochastic Gradient Boosting). Post-harvest tree regeneration predictions in calibration data closely matched the validation set, indicating tree regeneration scenarios are reliable. Early stage post-harvest regeneration is similar to post-fire regeneration and matches the pattern of long-term natural vegetation distribution, confirming that site environmental factors are more important than management practices. Post-harvest natural regeneration of tree species increases under moderate warming scenarios, but fails under strong warming scenarios in landscape positions with high temperatures and low precipitation. Under all warming scenarios, the most successful regenerating species following white spruce harvest is white spruce. Birch experiences about 30% regeneration failure under A2 scenario by 2050. White spruce and aspen are projected to regenerate more successfully when site preparation is applied. Although white spruce has been the major managed species, birch may require more intensive management. Sites likely to experience regeneration failure of current tree species apparently will experience biome shift, although adaptive migration of existing or new species might be an option. Our scenario modeling tool allows resource managers to forecast tree regeneration on productive managed sites that have made a disproportionate contribution to carbon flux in a critical region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27070119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27070119"><span>Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hixson, Stefanie M; Arts, Michael T</p> <p>2016-08-01</p> <p>Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B33G..05T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B33G..05T"><span>Sources and Fluxes of Atmospheric Methane from Lakes in the Alaskan Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Townsend-Small, A.; Akerstrom, F.; Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Eisner, W. R.</p> <p>2014-12-01</p> <p>Climate warming in the Arctic may result in release of carbon dioxide and/or methane from thawing permafrost soils, resulting in a positive feedback to warming. Permafrost thaw may also result in release of methane from previously trapped natural gas. The Arctic landscape is approximately 50% covered by shallow permafrost lakes, and these environments may serve as bellwethers for climate change - carbon cycle feedbacks, since permafrost thaw is generally deeper under lakes than tundra soils. Since 2011, the Circum-Arctic Lakes Observation Network (CALON) project has documented landscape-scale variability in physical and biogeochemical processes of Arctic lakes in permafrost terrain, including carbon cycle feedbacks to climate warming. Here we present a dataset of concentrations, isotope ratios (13C and 2H), and atmospheric fluxes of methane from lakes in Arctic Alaska. Concentrations of methane in lake water ranged from 0.3 to 43 micrograms per liter, or between 6 and 750 times supersaturated with respect to air. Isotopic measurements of dissolved methane indicated that most of the lakes had methane derived from anaerobic organic matter decomposition, but that some lakes may have a small source of methane from fossil fuel sources such as natural gas or coal beds. Concurrent measurements of methane fluxes and dissolved methane concentrations in summer of 2014 will aid in translating routine dissolved measurements into fluxes, and will also elucidate the relative importance of diffusive versus ebulliative fluxes. It is essential that measurements of methane emissions from Arctic lakes be continued long-term to determine whether methane emissions are on the rise, and whether warming of the lakes leads to increased venting of fossil fuel methane from enhanced thaw of permafrost beneath the lakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917394W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917394W"><span>Analysing regional climate change in Africa in a 1.5 °C global warming world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, Torsten; Haensler, Andreas; Jacob, Daniela</p> <p>2017-04-01</p> <p>At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GPC...148...55B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GPC...148...55B"><span>Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batir, Joseph F.; Hornbach, Matthew J.; Blackwell, David D.</p> <p>2017-01-01</p> <p>Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska-part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at 0.44 ± 0.05 °C/decade, a value consistent with Surface Air Temperature (SAT) warming of 1.0 ± 0.8 °C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is 0.9 ± 0.5 °C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 °C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates 1 to 4 m of loss at the upper permafrost boundary, a 145 ± 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of 0.44 ± 0.05 °C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by 2150. Permafrost is expected to melt by 2200, 2110, or 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 °C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22global+warming%22+OR+%22climate+change%22+AND+%22evidence%22&pg=6&id=EJ773926','ERIC'); return false;" href="https://eric.ed.gov/?q=%22global+warming%22+OR+%22climate+change%22+AND+%22evidence%22&pg=6&id=EJ773926"><span>A Cooperative Classroom Investigation of Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Constible, Juanita; Sandro, Luke; Lee, Richard E., Jr.</p> <p>2007-01-01</p> <p>Scientists have a particularly difficult time explaining warming trends in Antarctica--a region with a relatively short history of scientific observation and a highly variable climate (Clarke et al. 2007). Regardless of the mechanism of warming, however, climate change is having a dramatic impact on Antarctic ecosystems. In this article, the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP53C2394P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP53C2394P"><span>The Response of Phanerozoic Surface Temperature to Variations in Atmospheric Oxygen Concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Payne, R. C.; Britt, A. V.; Chen, H.; Kasting, J. F.; Catling, D. C.</p> <p>2016-12-01</p> <p>Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the mid-Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2, so that surface temperature increases by 2.1 K with low oxygen. Here, we use a 1-D radiative-convective climate model (with no cloud feedbacks) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines, and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10% - 35% by volume), and the Poulsen et al. (2016) results appear to be largely driven by cloud feedbacks in their model. Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12110089P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12110089P"><span>The response of Phanerozoic surface temperature to variations in atmospheric oxygen concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Payne, Rebecca C.; Britt, Amber V.; Chen, Howard; Kasting, James F.; Catling, David C.</p> <p>2016-09-01</p> <p>Recently, Poulsen et al. (2015) suggested that O2 has played a major role in climate forcing during the Phanerozoic. Specifically, they argued that decreased O2 levels during the Cenomanian stage of the middle Cretaceous (94-100 Ma) could help explain the extremely warm climate during that time. The postulated warming mechanism involves decreased Rayleigh scattering by a thinner atmosphere, which reduces the planetary albedo and allows greater surface warming. This warming effect is then amplified by cloud feedbacks within their 3-D climate model. This increase in shortwave surface forcing, in their calculations, exceeds any decrease in the greenhouse effect caused by decreased O2. Here we use a 1-D radiative-convective climate model (with no cloud feedback) to check their results. We also include a self-consistent calculation of the change in atmospheric ozone and its effect on climate. Our results are opposite to those of Poulsen et al.: we find that the climate warms by 1.4 K at 35% O2 concentrations as a result of increased pressure broadening of CO2 and H2O absorption lines and cools by 0.8 K at 10% O2 as a result of decreased pressure broadening. The surface temperature changes are only about 1 K either way, though, for reasonable variations in Phanerozoic O2 concentrations (10%-35% by volume). Hence, it seems unlikely that changes in atmospheric O2 account for the warm climate of the Cenomanian. Other factors, such as a higher-than-expected sensitivity of climate to increased CO2 concentrations, may be required to obtain agreement with the paleoclimate data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990080951&hterms=physical+dependence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphysical%2Bdependence','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990080951&hterms=physical+dependence&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dphysical%2Bdependence"><span>Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DelGenio, Anthony</p> <p>1999-01-01</p> <p>Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning, is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.5C lower limit for the equilibrium global climate sensitivity to a doubling of CO2 which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990070927&hterms=climate+change+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990070927&hterms=climate+change+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclimate%2Bchange%2Btemperature"><span>Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DelGenio, Anthony D.; Wolf, Audrey B.</p> <p>1999-01-01</p> <p>Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GPC...164...11K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GPC...164...11K"><span>Hydrological and climate changes in southeast Siberia over the last 33 kyr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katsuta, Nagayoshi; Ikeda, Hisashi; Shibata, Kenji; Saito-Kokubu, Yoko; Murakami, Takuma; Tani, Yukinori; Takano, Masao; Nakamura, Toshio; Tanaka, Atsushi; Naito, Sayuri; Ochiai, Shinya; Shichi, Koji; Kawakami, Shin-ichi; Kawai, Takayoshi</p> <p>2018-05-01</p> <p>Paleoenvironmental and paleoclimate changes in intracontinental Siberia were reconstructed by continuous, high-resolution records (biogenic silica, U, total organic carbon and N, total S, and grain size) from a sediment core retrieved from the Buguldeika Saddle, Lake Baikal, dating back to the last 33 cal. ka BP. The Holocene climate was wet relative to the last glacial period. The climate became gradually warm and wet from the early to middle Holocene, followed by a shift at ca. 6.5 cal. ka BP toward warm and dry, possibly because of evapotranspiration. This suggests that the climate system transition from the glacial to interglacial state occurred at that time. In the last glacial, the deposition of carbonate mud from the Primorsky Range was associated with Heinrich events (H3 and H1) and the Selenga River inflow during the Last Glacial Maximum was caused by meltwater of mountain glaciers in the Khamar-Daban Range. The anoxic bottom-water during the Allerød-Younger Dryas was probably a result of weakened ventilation associated with reduced Selenga River inflow and microbial decomposition of organic matters originating from moderate input of nutrients from the Primorsky Range. The rapid decline in precipitation during the early Holocene may have been a response to the 8.2 ka cooling event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...355.1420H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...355.1420H"><span>The whole-soil carbon flux in response to warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hicks Pries, Caitlin E.; Castanha, C.; Porras, R. C.; Torn, M. S.</p> <p>2017-03-01</p> <p>Soil organic carbon harbors three times as much carbon as Earth’s atmosphere, and its decomposition is a potentially large climate change feedback and major source of uncertainty in climate projections. The response of whole-soil profiles to warming has not been tested in situ. In a deep warming experiment in mineral soil, we found that CO2 production from all soil depths increased with 4°C warming; annual soil respiration increased by 34 to 37%. All depths responded to warming with similar temperature sensitivities, driven by decomposition of decadal-aged carbon. Whole-soil warming reveals a larger soil respiration response than many in situ experiments (most of which only warm the surface soil) and models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>