Sample records for continued fraction representation

  1. Representing Numbers as Continued Fractions and an N-Spire. tns Document to Do Some Basic Continued Fraction Arithmetic

    ERIC Educational Resources Information Center

    Leinbach, L. Carl

    2015-01-01

    This paper illustrates a TI N-Spire .tns file created by the author for generating continued fraction representations of real numbers and doing arithmetic with them. The continued fraction representation provides an alternative to the decimal representation. The .tns file can be used as tool for studying continued fractions and their properties as…

  2. A canonical state-space representation for SISO systems using multipoint Jordan CFE. [Continued-Fraction Expansion

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Guo, Tong-Yi; Shieh, Leang-San

    1991-01-01

    A canonical state-space realization based on the multipoint Jordan continued-fraction expansion (CFE) is presented for single-input-single-output (SISO) systems. The similarity transformation matrix which relates the new canonical form to the phase-variable canonical form is also derived. The presented canonical state-space representation is particularly attractive for the application of SISO system theory in which a reduced-dimensional time-domain model is necessary.

  3. Control of Initialized Fractional-Order Systems. Revised

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex w-plane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex w-plane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  4. Control of Initialized Fractional-Order Systems

    NASA Technical Reports Server (NTRS)

    Hartly, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex Airplane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex Airplane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  5. Aboriginal fractions: enumerating identity in Taiwan.

    PubMed

    Liu, Jennifer A

    2012-01-01

    Notions of identity in Taiwan are configured in relation to numbers. I examine the polyvalent capacities of enumerative technologies in both the production of ethnic identities and claims to political representation and justice. By critically historicizing the manner in which Aborigines in Taiwan have been, and continue to be, constructed as objects and subjects of scientific knowledge production through technologies of measuring, I examine the genetic claim made by some Taiwanese to be "fractionally" Aboriginal. Numbers and techniques of measuring are used ostensibly to know the Aborigines, but they are also used to construct a genetically unique Taiwanese identity and to incorporate the Aborigines within projects of democratic governance. Technologies of enumeration thus serve within multiple, and sometimes contradictory, projects of representation and knowledge production.

  6. Neural representations of magnitude for natural and rational numbers.

    PubMed

    DeWolf, Melissa; Chiang, Jeffrey N; Bassok, Miriam; Holyoak, Keith J; Monti, Martin M

    2016-11-01

    Humans have developed multiple symbolic representations for numbers, including natural numbers (positive integers) as well as rational numbers (both fractions and decimals). Despite a considerable body of behavioral and neuroimaging research, it is currently unknown whether different notations map onto a single, fully abstract, magnitude code, or whether separate representations exist for specific number types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions). We address this question by comparing brain metabolic response during a magnitude comparison task involving (on different trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed that the strength and pattern of activation for fractions differed systematically, within the intraparietal sulcus, from that of both decimals and integers, while the latter two number representations appeared virtually indistinguishable. These results demonstrate that the two major notations formats for rational numbers, fractions and decimals, evoke distinct neural representations of magnitude, with decimals representations being more closely linked to those of integers than to those of magnitude-equivalent fractions. Our findings thus suggest that number representation (base-10 versus fractions) is an important organizational principle for the neural substrate underlying mathematical cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  8. Common magnitude representation of fractions and decimals is task dependent.

    PubMed

    Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szűcs, Denes

    2016-01-01

    Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction-decimal mixed pairs and decimal-fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.

  9. Modeling discrete and continuous entities with fractions and decimals.

    PubMed

    Rapp, Monica; Bassok, Miriam; DeWolf, Melissa; Holyoak, Keith J

    2015-03-01

    When people use mathematics to model real-life situations, their use of mathematical expressions is often mediated by semantic alignment (Bassok, Chase, & Martin, 1998): The entities in a problem situation evoke semantic relations (e.g., tulips and vases evoke the functionally asymmetric "contain" relation), which people align with analogous mathematical relations (e.g., the noncommutative division operation, tulips/vases). Here we investigate the possibility that semantic alignment is also involved in the comprehension and use of rational numbers (fractions and decimals). A textbook analysis and results from two experiments revealed that both mathematic educators and college students tend to align the discreteness versus continuity of the entities in word problems (e.g., marbles vs. distance) with distinct symbolic representations of rational numbers--fractions versus decimals, respectively. In addition, fractions and decimals tend to be used with nonmetric units and metric units, respectively. We discuss the importance of the ontological distinction between continuous and discrete entities to mathematical cognition, the role of symbolic notations, and possible implications of our findings for the teaching of rational numbers. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  10. Role of Representation in Prospective Teachers' Fractions Schemes

    ERIC Educational Resources Information Center

    Boyce, Steven; Moss, Diana

    2017-01-01

    This research report explores relationships between fractions' task representations (discrete, rectangular, or circular) and elementary prospective teachers' (PTs) fractions conceptions. Studies show PTs' conceptions of fractions are centered on a part-whole understanding, which may be problematic when teaching children about improper fractions.…

  11. Teaching Equivalent Fractions to Secondary Students with Disabilities via the Virtual-Representational-Abstract Instructional Sequence

    ERIC Educational Resources Information Center

    Bouck, Emily C.; Bassette, Laura; Shurr, Jordan; Park, Jiyoon; Kerr, Jackie; Whorley, Abbie

    2017-01-01

    Fractions are an important mathematical concept; however, fractions are also a struggle for many students with disabilities. This study explored a new framework adapted from the evidence-based concrete-representational-abstract framework: the virtual-representational-abstract (VRA) framework. The VRA framework involves teaching students to solve…

  12. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  13. Mean first passage times of Brownian rotators from differential recurrence relations

    NASA Astrophysics Data System (ADS)

    Coffey, W. T.

    1999-11-01

    An exact method of calculation of mean first passage times (analogous to that previously used [W. T. Coffey, Yu. P. Kalmykov, E. S. Massawe, and J. T. Waldron, J. Chem. Phys. 99, 4011 (1993)] for the correlation time) is developed in terms of continued fractions from the zero frequency limit of the Laplace transform of the set of differential recurrence relations generated by the Fokker-Planck or Langevin equations. The method because it is based on a Floquet representation avoids the use of quadratures and so may be easily generalized to multidegree of freedom systems by the use of matrix continued fractions. The procedure is illustrated by considering the mean first passage time of a fixed axis rotator with two equivalent sites.

  14. The Number Line Is a Critical Spatial-Numerical Representation: Evidence from a Fraction Intervention

    ERIC Educational Resources Information Center

    Hamdan, Noora; Gunderson, Elizabeth A.

    2017-01-01

    Children's ability to place fractions on a number line strongly correlates with math achievement. But does the number line play a causal role in fraction learning or does it simply index more advanced fraction knowledge? The number line may be a particularly effective representation for fraction learning because its properties align with the…

  15. The Development of the Mental Representations of the Magnitude of Fractions

    PubMed Central

    Gabriel, Florence C.; Szucs, Denes; Content, Alain

    2013-01-01

    We investigated the development of the mental representation of the magnitude of fractions during the initial stages of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction magnitude in a numerical comparison task and a matching task. There were global distance effects in the comparison task, but not in the matching task. This suggests that the activation of the global magnitude representation of fractions is not automatic in all tasks involving magnitude judgments. The slope of the global distance effect increased during early fraction learning and declined by adulthood, demonstrating that the development of the fraction global distance effect differs from that of the integer distance effect. PMID:24236169

  16. Variable Weight Fractional Collisions for Multiple Species Mixtures

    DTIC Science & Technology

    2017-08-28

    DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in

  17. The Fractions SNARC Revisited: Processing Fractions on a Consistent Mental Number Line.

    PubMed

    Toomarian, Elizabeth Y; Hubbard, Edward M

    2017-07-12

    The ability to understand fractions is key to establishing a solid foundation in mathematics, yet children and adults struggle to comprehend them. Previous studies have suggested that these struggles emerge because people fail to process fraction magnitude holistically on the mental number line (MNL), focusing instead on fraction components (Bonato et al. 2007). Subsequent studies have produced evidence for default holistic processing (Meert et al., 2009; 2010), but examined only magnitude processing, not spatial representations. We explored the spatial representations of fractions on the MNL in a series of three experiments: Experiment 1 replicated Bonato et al. (2007); 30 naïve undergraduates compared unit fractions (1/1-1/9) to 1/5, resulting in a reverse SNARC effect. Experiment 2 countered potential strategic biases induced by the limited set of fractions used by Bonato et al. by expanding the stimulus set to include all irreducible, single-digit proper fractions, and asked participants to compare them against 1/2. We observed a classic SNARC effect, completely reversing the pattern from Experiment 1. Together, Experiments 1 and 2 demonstrate that stimulus properties dramatically impact spatial representations of fractions. In Experiment 3, we demonstrated within-subjects reliability of the SNARC effect across both a fractions and whole number comparison task. Our results suggest that adults can indeed process fraction magnitudes holistically, and that their spatial representations occur on a consistent MNL for both whole numbers and fractions.

  18. Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques

    ERIC Educational Resources Information Center

    Rau, Martina A.; Pardos, Zachary A.

    2012-01-01

    The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…

  19. Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk

    NASA Astrophysics Data System (ADS)

    Gorenflo, R.; Mainardi, F.

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.

  20. Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.

  1. Mathematics Teacher Candidates' Skills of Using Multiple Representations for Division of Fractions

    ERIC Educational Resources Information Center

    Biber, Abdullah Çagri

    2014-01-01

    The aim of this study is to reveal teacher candidates' preference regarding uses of verbal, symbolic, number line, and/or model representations of fraction divisions, and to investigate their skill of transferring from one representation type to the others. Case study was used as the research method in this study. The case that is examined within…

  2. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  3. Rational numbers: componential versus holistic representation of fractions in a magnitude comparison task.

    PubMed

    Meert, Gaëlle; Grégoire, Jacques; Noël, Marie-Pascale

    2009-08-01

    This study investigated whether the mental representation of the fraction magnitude was componential and/or holistic in a numerical comparison task performed by adults. In Experiment 1, the comparison of fractions with common numerators (x/a_x/b) and of fractions with common denominators (a/x_b/x) primed the comparison of natural numbers. In Experiment 2, fillers (i.e., fractions without common components) were added to reduce the regularity of the stimuli. In both experiments, distance effects indicated that participants compared the numerators for a/x_b/x fractions, but that the magnitudes of the whole fractions were accessed and compared for x/a_x/b fractions. The priming effect of x/a_x/b fractions on natural numbers suggested that the interference of the denominator magnitude was controlled during the comparison of these fractions. These results suggested a hybrid representation of their magnitude (i.e., componential and holistic). In conclusion, the magnitude of the whole fraction can be accessed, probably by estimating the ratio between the magnitude of the denominator and the magnitude of the numerator. However, adults might prefer to rely on the magnitudes of the components and compare the magnitudes of the whole fractions only when the use of a componential strategy is made difficult.

  4. Representational Flexibility and Problem-Solving Ability in Fraction and Decimal Number Addition: A Structural Model

    ERIC Educational Resources Information Center

    Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti

    2016-01-01

    The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…

  5. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    PubMed

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  6. Fraction Representation: The Not-So-Common Denominator among Textbooks

    ERIC Educational Resources Information Center

    Hodges, Thomas E.; Cady, JoAnn; Collins, Lee

    2008-01-01

    Three widely used sixth-grade textbooks were studied to see how fraction concepts were represented. The textbooks selected were "Connected Mathematics," "Middle Grades MathThematics," and Glencoe's "Mathematics: Applications and Concepts Course 1." Three specific areas were examined: representation mode, model, and problem context. Results of…

  7. Continued-fraction representation of the Kraus map for non-Markovian reservoir damping

    NASA Astrophysics Data System (ADS)

    van Wonderen, A. J.; Suttorp, L. G.

    2018-04-01

    Quantum dissipation is studied for a discrete system that linearly interacts with a reservoir of harmonic oscillators at thermal equilibrium. Initial correlations between system and reservoir are assumed to be absent. The dissipative dynamics as determined by the unitary evolution of system and reservoir is described by a Kraus map consisting of an infinite number of matrices. For all Laplace-transformed Kraus matrices exact solutions are constructed in terms of continued fractions that depend on the pair correlation functions of the reservoir. By performing factorizations in the Kraus map a perturbation theory is set up that conserves in arbitrary perturbative order both positivity and probability of the density matrix. The latter is determined by an integral equation for a bitemporal matrix and a finite hierarchy for Kraus matrices. In the lowest perturbative order this hierarchy reduces to one equation for one Kraus matrix. Its solution is given by a continued fraction of a much simpler structure as compared to the non-perturbative case. In the lowest perturbative order our non-Markovian evolution equations are applied to the damped Jaynes–Cummings model. From the solution for the atomic density matrix it is found that the atom may remain in the state of maximum entropy for a significant time span that depends on the initial energy of the radiation field.

  8. Three-dimensional fractional-spin gravity

    NASA Astrophysics Data System (ADS)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2014-02-01

    Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.

  9. Making Connections: Elementary Teachers' Construction of Division Word Problems and Representations

    ERIC Educational Resources Information Center

    Timmerman, Maria A.

    2014-01-01

    If teachers make few connections among multiple representations of division, supporting students in using representations to develop operation sense demanded by national standards will not occur. Studies have investigated how prospective and practicing teachers use representations to develop knowledge of fraction division. However, few studies…

  10. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  11. Relations of different types of numerical magnitude representations to each other and to mathematics achievement.

    PubMed

    Fazio, Lisa K; Bailey, Drew H; Thompson, Clarissa A; Siegler, Robert S

    2014-07-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both magnitude comparison and number line estimation tasks. After controlling for non-mathematical cognitive proficiency, both symbolic and non-symbolic numerical magnitude understandings were uniquely related to mathematics achievement, but the relation was much stronger for symbolic numbers. A meta-analysis of 19 published studies indicated that relations between non-symbolic numerical magnitude knowledge and mathematics achievement are present but tend to be weak, especially beyond 6 years of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The mental representations of fractions: adults' same–different judgments

    PubMed Central

    Gabriel, Florence; Szucs, Denes; Content, Alain

    2013-01-01

    Two experiments examined whether the processing of the magnitude of fractions is global or componential. Previously, some authors concluded that adults process the numerators and denominators of fractions separately and do not access the global magnitude of fractions. Conversely, others reported evidence suggesting that the global magnitude of fractions is accessed. We hypothesized that in a fraction matching task, participants automatically extract the magnitude of the components but that the activation of the global magnitude of the whole fraction is only optional or strategic. Participants carried out same/different judgment tasks. Two different tasks were used: a physical matching task and a numerical matching task. Pairs of fractions were presented either simultaneously or sequentially. Results showed that participants only accessed the representation of the global magnitude of fractions in the numerical matching task. The mode of stimulus presentation did not affect the processing of fractions. The present study allows a deeper understanding of the conditions in which the magnitude of fractions is mentally represented by using matching tasks and two different modes of presentation. PMID:23847562

  13. Making Connections among Multiple Graphical Representations of Fractions: Sense-Making Competencies Enhance Perceptual Fluency, but Not Vice Versa

    ERIC Educational Resources Information Center

    Rau, Martina A.; Aleven, Vincent; Rummel, Nikol

    2017-01-01

    Prior research shows that representational competencies that enable students to use graphical representations to reason and solve tasks is key to learning in many science, technology, engineering, and mathematics domains. We focus on two types of representational competencies: (1) "sense making" of connections by verbally explaining how…

  14. What Is the Whole?

    ERIC Educational Resources Information Center

    Wentworth, Nancy M.; Monroe, Eula Ewing

    1995-01-01

    Discusses ways teachers can encourage students to construct useful meanings for the fractional unit. Provides three examples of representations of common fractions and illustrates misconceptions in fraction problems. Includes a brief summary of constructivist mathematics education and an example in which a teacher misunderstands a fractional unit.…

  15. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.

    PubMed

    Meerschaert, Mark M; Sabzikar, Farzad

    2014-07-01

    Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.

  16. Representations of Fractions: Evidence for Accessing the Whole Magnitude in Adults

    ERIC Educational Resources Information Center

    Sprute, Lisa; Temple, Elise

    2011-01-01

    Proficiency with fractions serves as a foundation for later mathematics and is critical for learning algebra, which plays a role in college success and lifetime earnings. Yet children often struggle to learn fractions. Educators have argued that a conceptual understanding of fractions involves learning that a fraction represents a magnitude…

  17. Birth/birth-death processes and their computable transition probabilities with biological applications.

    PubMed

    Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2018-03-01

    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

  18. Identifying Fractions on a Number Line

    ERIC Educational Resources Information Center

    Wong, Monica

    2013-01-01

    Fractions are generally introduced to students using the part--whole model. Yet the number line is another important representation which can be used to build fraction concepts (Australian Curriculum Assessment and Reporting Authority [ACARA], 2012). Number lines are recognised as key in students' number development not only of fractions, but…

  19. Developing Children's Understanding of Fractions: An Intervention Study

    ERIC Educational Resources Information Center

    Gabriel, Florence; Coche, Frederic; Szucs, Denes; Carette, Vincent; Rey, Bernard; Content, Alain

    2012-01-01

    Fractions constitute a stumbling block in mathematics education. To improve children's understanding of fractions, we designed an intervention based on learning-by-doing activities, which focused on the representation of the magnitude of fractions. Participants were 292 Grade 4 and 5 children. Half of the classes received experimental instruction,…

  20. Representation of solution for fully nonlocal diffusion equations with deviation time variable

    NASA Astrophysics Data System (ADS)

    Drin, I. I.; Drin, S. S.; Drin, Ya. M.

    2018-01-01

    We prove the solvability of the Cauchy problem for a nonlocal heat equation which is of fractional order both in space and time. The representation formula for classical solutions for time- and space- fractional partial differential operator Dat + a2 (-Δ) γ/2 (0 <= α <= 1, γ ɛ (0, 2]) and deviation time variable is given in terms of the Fox H-function, using the step by step method.

  1. Fractional representation theory - Robustness results with applications to finite dimensional control of a class of linear distributed systems

    NASA Technical Reports Server (NTRS)

    Nett, C. N.; Jacobson, C. A.; Balas, M. J.

    1983-01-01

    This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.

  2. Reasoning strategies with rational numbers revealed by eye tracking.

    PubMed

    Plummer, Patrick; DeWolf, Melissa; Bassok, Miriam; Gordon, Peter C; Holyoak, Keith J

    2017-07-01

    Recent research has begun to investigate the impact of different formats for rational numbers on the processes by which people make relational judgments about quantitative relations. DeWolf, Bassok, and Holyoak (Journal of Experimental Psychology: General, 144(1), 127-150, 2015) found that accuracy on a relation identification task was highest when fractions were presented with countable sets, whereas accuracy was relatively low for all conditions where decimals were presented. However, it is unclear what processing strategies underlie these disparities in accuracy. We report an experiment that used eye-tracking methods to externalize the strategies that are evoked by different types of rational numbers for different types of quantities (discrete vs. continuous). Results showed that eye-movement behavior during the task was jointly determined by image and number format. Discrete images elicited a counting strategy for both fractions and decimals, but this strategy led to higher accuracy only for fractions. Continuous images encouraged magnitude estimation and comparison, but to a greater degree for decimals than fractions. This strategy led to decreased accuracy for both number formats. By analyzing participants' eye movements when they viewed a relational context and made decisions, we were able to obtain an externalized representation of the strategic choices evoked by different ontological types of entities and different types of rational numbers. Our findings using eye-tracking measures enable us to go beyond previous studies based on accuracy data alone, demonstrating that quantitative properties of images and the different formats for rational numbers jointly influence strategies that generate eye-movement behavior.

  3. How Should Intelligent Tutoring Systems Sequence Multiple Graphical Representations of Fractions? A Multi-Methods Study

    ERIC Educational Resources Information Center

    Rau, M. A.; Aleven, V.; Rummel, N.; Pardos, Z.

    2014-01-01

    Providing learners with multiple representations of learning content has been shown to enhance learning outcomes. When multiple representations are presented across consecutive problems, we have to decide in what sequence to present them. Prior research has demonstrated that interleaving "tasks types" (as opposed to blocking them) can…

  4. Fractional labelmaps for computing accurate dose volume histograms

    NASA Astrophysics Data System (ADS)

    Sunderland, Kyle; Pinter, Csaba; Lasso, Andras; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In radiation therapy treatment planning systems, structures are represented as parallel 2D contours. For treatment planning algorithms, structures must be converted into labelmap (i.e. 3D image denoting structure inside/outside) representations. This is often done by triangulated a surface from contours, which is converted into a binary labelmap. This surface to binary labelmap conversion can cause large errors in small structures. Binary labelmaps are often represented using one byte per voxel, meaning a large amount of memory is unused. Our goal is to develop a fractional labelmap representation containing non-binary values, allowing more information to be stored in the same amount of memory. METHODS: We implemented an algorithm in 3D Slicer, which converts surfaces to fractional labelmaps by creating 216 binary labelmaps, changing the labelmap origin on each iteration. The binary labelmap values are summed to create the fractional labelmap. In addition, an algorithm is implemented in the SlicerRT toolkit that calculates dose volume histograms (DVH) using fractional labelmaps. RESULTS: We found that with manually segmented RANDO head and neck structures, fractional labelmaps represented structure volume up to 19.07% (average 6.81%) more accurately than binary labelmaps, while occupying the same amount of memory. When compared to baseline DVH from treatment planning software, DVH from fractional labelmaps had agreement acceptance percent (1% ΔD, 1% ΔV) up to 57.46% higher (average 4.33%) than DVH from binary labelmaps. CONCLUSION: Fractional labelmaps promise to be an effective method for structure representation, allowing considerably more information to be stored in the same amount of memory.

  5. Unwrapping Students' Ideas about Fractions

    ERIC Educational Resources Information Center

    Lewis, Rebecca M.; Gibbons, Lynsey K.; Kazemi, Elham; Lind, Teresa

    2015-01-01

    Supporting students to develop an understanding of the meaning of fractions is an important goal of elementary school mathematics. This involves developing partitioning strategies, creating representations, naming fractional quantities, and using symbolic notation. This article describes how teachers can use a formative assessment problem to…

  6. Fractional quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-04-01

    We introduce quiver gauge theory associated with the non-simply laced type fractional quiver and define fractional quiver W-algebras by using construction of Kimura and Pestun (Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1072-1; Lett Math Phys, 2018. https://doi.org/10.1007/s11005-018-1073-0) with representation of fractional quivers.

  7. How to Schedule Multiple Graphical Representations? A Classroom Experiment with an Intelligent Tutoring System for Fractions

    ERIC Educational Resources Information Center

    Rau, M. A.; Aleven, V.; Rummel, N.

    2011-01-01

    Graphical representations (GRs) of the learning content are often used for instruction (Ainsworth, 2006). When used in learning technology, GRs can be especially useful since they allow for interactions across representations that are physically impossible, for instance by dragging and dropping symbolic statements into a chart that automatically…

  8. Making Sense of Fractions and Percentages

    ERIC Educational Resources Information Center

    Whitin, David J.; Whitin, Phyllis

    2012-01-01

    Because fractions and percentages can be difficult for children to grasp, connecting them whenever possible is beneficial. Linking them can foster representational fluency as children simultaneously see the part-whole relationship expressed numerically (as a fraction and as a percentage) and visually (as a pie chart). NCTM advocates these…

  9. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  10. The Future of Fractions

    ERIC Educational Resources Information Center

    Usiskin, Zalman P.

    2007-01-01

    In the 1970s, the movement to the metric system (which has still not completely occurred in the United States) and the advent of hand-held calculators led some to speculate that decimal representation of numbers would render fractions obsolete. This provocative proposition stimulated Zalman Usiskin to write "The Future of Fractions" in 1979. He…

  11. Variation in Children's Understanding of Fractions: Preliminary Findings

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Tran, Dung; Elliott, Natasha

    2015-01-01

    This research targets children's informal strategies and knowledge of fractions by examining their ability to create, interpret, and connect representations in doing and communicating mathematics when solving fractions tasks. Our research group followed a constant comparative method to analyze clinical interviews of children in grades 2-6 solving…

  12. Limited Knowledge of Fraction Representations Differentiates Middle School Students with Mathematics Learning Disability (Dyscalculia) versus Low Mathematics Achievement

    ERIC Educational Resources Information Center

    Mazzocco, Michele M. M.; Myers, Gwen F.; Lewis, Katherine E.; Hanich, Laurie B.; Murphy, Melissa M.

    2013-01-01

    Fractions pose significant challenges for many children, but for some children those challenges persist into high school. Here we administered a fractions magnitude comparison test to 122 children, from Grades 4 to 8, to test whether their knowledge of fractions typically learned early in the sequence of formal math instruction (e.g., fractions…

  13. The Design and Study of a Learning Environment to Support Growth and Change in Students' Knowledge of Fraction Multiplication

    ERIC Educational Resources Information Center

    Brar, Rozy

    2010-01-01

    There is a strong push from within mathematics education reform to incorporate representations in math classrooms (Behr, Harel, Post, & Lesh, 1993; Kieren, 1993; NCTM, 2000). However, questions regarding what representations should be used (for a given topic) and how representations should be used (such that students gain a deep understanding of…

  14. Children's Mental Representation When Comparing Fractions with Common Numerators

    ERIC Educational Resources Information Center

    Liu, Chunhui; Xin, Ziqiang; Lin, Chongde; Thompson, Clarissa A.

    2013-01-01

    Researchers debate whether one represents the magnitude of a fraction according to its real numerical value or just the discrete numerosity of its numerator or denominator. The present study examined three effects based on the notion that people possess a mental number line to explore how children represent fractions when they compare fractions…

  15. Pre-Service Teachers' Understanding of Fraction Multiplication, Representational Knowledge, and Computational Skills

    ERIC Educational Resources Information Center

    Son, Ji-Won; Lee, Ji-Eun

    2016-01-01

    Despite the importance of teacher fractional knowledge, there are several areas of teacher understanding that are not well understood. The purpose of this study was to characterise profiles of pre-service teachers' (PSTs) mathematical competence on the topic of fraction multiplication by examining PSTs' understanding of multiplication of fractions…

  16. De-Dopplerization of Acoustic Measurements

    DTIC Science & Technology

    2017-08-10

    band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier

  17. Rogers-Schur-Ramanujan Type Identities for the M(p,p') Minimal Models of Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne

    We present and prove Rogers-Schur-Ramanujan (Bose/Fermi) type identities for the Virasoro characters of the minimal model M(p,p'). The proof uses the continued fraction decomposition of p'/p introduced by Takahashi and Suzuki for the study of the Bethe's Ansatz equations of the XXZ model and gives a general method to construct polynomial generalizations of the fermionic form of the characters which satisfy the same recursion relations as the bosonic polynomials of Forrester and Baxter. We use this method to get fermionic representations of the characters for many classes of r and s.

  18. A new approach to the Schrödinger equation with rational potentials

    NASA Astrophysics Data System (ADS)

    Dong, Ming-de; Chu, Jue-Hui

    1984-04-01

    A new analytic theory is established for the Schrödinger equation with a rational potential, including a complete classification of the regular eigenfunctions into three different types, an exact method of obtaining wavefunctions, an explicit formulation of the spectral equation (3 x 3 determinant) etc. All representations are exhibited in a unifying way via function-theoretic methods and therefore given in explicit form, in contrast to the prevailing discussion appealing to perturbation or variation methods or continued-fraction techniques. The irregular eigenfunctions at infinity can be obtained analogously and will be discussed separately as another solvable case for singular potentials.

  19. Elastic, Cottage Cheese, and Gasoline: Visualizing Division of Fractions

    ERIC Educational Resources Information Center

    Peck, Sallie; Wood, Japheth

    2008-01-01

    Teachers must be prepared to recognize valid alternative representations of arithmetic problems. Challenging examples involving mixed fractions and division are presented along with teacher's discussion from a professional development workshop. (Contains 6 figures and 1 table.)

  20. Archetypal Analysis for Sparse Representation-Based Hyperspectral Sub-Pixel Quantification

    NASA Astrophysics Data System (ADS)

    Drees, L.; Roscher, R.

    2017-05-01

    This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30m×30m. For this, sparse representation is applied, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. The elementary spectra are determined from image reference data using simplex volume maximization, which is a fast heuristic technique for archetypal analysis. In the experiments, the estimation of class fractions based on the archetypal spectral library is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions and the number of used elementary spectra. We will show, that a collection of archetypes can be an adequate and efficient alternative to the spectral library with respect to mentioned criteria.

  1. Short-time fractional Fourier methods for the time-frequency representation of chirp signals.

    PubMed

    Capus, Chris; Brown, Keith

    2003-06-01

    The fractional Fourier transform (FrFT) provides a valuable tool for the analysis of linear chirp signals. This paper develops two short-time FrFT variants which are suited to the analysis of multicomponent and nonlinear chirp signals. Outputs have similar properties to the short-time Fourier transform (STFT) but show improved time-frequency resolution. The FrFT is a parameterized transform with parameter, a, related to chirp rate. The two short-time implementations differ in how the value of a is chosen. In the first, a global optimization procedure selects one value of a with reference to the entire signal. In the second, a values are selected independently for each windowed section. Comparative variance measures based on the Gaussian function are given and are shown to be consistent with the uncertainty principle in fractional domains. For appropriately chosen FrFT orders, the derived fractional domain uncertainty relationship is minimized for Gaussian windowed linear chirp signals. The two short-time FrFT algorithms have complementary strengths demonstrated by time-frequency representations for a multicomponent bat chirp, a highly nonlinear quadratic chirp, and an output pulse from a finite-difference sonar model with dispersive change. These representations illustrate the improvements obtained in using FrFT based algorithms compared to the STFT.

  2. Lesson Study to Scale up Research-Based Knowledge: A Randomized, Controlled Trial of Fractions Learning

    ERIC Educational Resources Information Center

    Lewis, Catherine; Perry, Rebecca

    2017-01-01

    An understanding of fractions eludes many U.S. students, and research-based knowledge about fraction, such as the utility of linear representations, has not broadly influenced instruction. This randomized trial of lesson study supported by mathematical resources assigned 39 educator teams across the United States to locally managed lesson study…

  3. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W; Simon, J I; DePaolo, D J

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop appropriate experimental tests and combine them with micro- and nano-scale characterization, and to capture the critical processes in mathematical models. Some of the largest fractionation effects have been observed for silicate liquids, where both chemical and thermal diffusion generate large isotopic variations. Intake and transport of Ca in plants is also associated with substantial fractionation. Continuing work is beginning to place the fractionation into the context of global Ca cycles.« less

  4. Table-sized matrix model in fractional learning

    NASA Astrophysics Data System (ADS)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  5. Evaluation of MODIS-Derived Cloud Fraction Using Surface Observations at Low-, Mid- and High Latitude DOE ARM sites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhao, Chuanfeng

    2016-04-01

    Clouds play essential roles in the Earth's energy and water cycle, and Cloud Fraction (CF) is one of the most important cloud parameters. The CF from Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used, whereas the time representation of these instantaneous CF values is not clear. In this study, we evaluate MODIS-derived CF by using continuous, day-and-night radar/lidar CF from the Atmospheric Radiation Measurement (ARM) program Active Remote Sensing of CLouds (ARSCL) product and the total sky cover (TSC) day-time CF datasets. Inter-comparisons between MODIS and surface CFs for time period from 2000 to 2011 are performed for three climate regimes as represented by the ARM sites of Southern Great Plains (SGP), Manus, Papua New Guinea (PNG) and North Slope of Alaska (NSA). We first choose both the TSC and ARSCL CFs averaged over 1 hour around the two passing time of satellite, which are around 10:30 AM and 1:30 PM local time. Then two kind of analyses have been done. One is the spatial variation analysis and the other is temporal variation analysis. For the spatial variation analysis, we compare the 1-hour averaged cloud fractions from TSC and ARSCL around 10:30 AM and 1:30 PM with the instantaneous cloud fractions from MODIS but with different spatial resolution. By obtaining the RMS errors and ratio of average values of CFs for these inter-comparisons, the optimal CF-matching spatial resolutions for MODIS regarding to TSC and ARSCL are obtained which are both 30 km radius of circle. We also find that the optimal matching spatial resolution increases when the ground observation average time increases. For the temporal analysis, we first analyze the diurnal variation of the cloud fraction based on the surface CFs from TSC and ARSCL from which we can see the daily representation of cloud fraction observed at 10:30 AM and 1:30 PM. Then we make a statistical comparison of daily and monthly cloud fraction between using all time observation and using the 1-hour averaged observations at both 10:30 AM and 1:30 PM. Comparison results will be shown in our paper. It shows a high correlation coefficient of 0.95 (0.93) for observations from TSC (ARSCL). The ratios of daily (monthly) averaged cloud fraction between using all time and using the time satellite passes are 0.87(0.92) and 0.86(0.97) for TSC and ARSCL, respectively. This suggests that considerable errors could be introduced while using the cloud fraction at two fixed time points (10:30 AM and 1:30 PM) to represent the daily cloud fraction.

  6. A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.

    2016-12-01

    Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.

  7. Diffusion processes of fragmentary information on scale-free networks

    NASA Astrophysics Data System (ADS)

    Li, Xun; Cao, Lang

    2016-05-01

    Compartmental models of diffusion over contact networks have proven representative of real-life propagation phenomena among interacting individuals. However, there is a broad class of collective spreading mechanisms departing from compartmental representations, including those for diffusive objects capable of fragmentation and transmission unnecessarily as a whole. Here, we consider a continuous-state susceptible-infected-susceptible (SIS) model as an ideal limit-case of diffusion processes of fragmentary information on networks, where individuals possess fractions of the information content and update them by selectively exchanging messages with partners in the vicinity. Specifically, we incorporate local information, such as neighbors' node degrees and carried contents, into the individual partner choice, and examine the roles of a variety of such strategies in the information diffusion process, both qualitatively and quantitatively. Our method provides an effective and flexible route of modulating continuous-state diffusion dynamics on networks and has potential in a wide array of practical applications.

  8. Half a century of "the nuclear matrix".

    PubMed

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.

  9. Analysis of Drude model using fractional derivatives without singular kernels

    NASA Astrophysics Data System (ADS)

    Jiménez, Leonardo Martínez; García, J. Juan Rosales; Contreras, Abraham Ortega; Baleanu, Dumitru

    2017-11-01

    We report study exploring the fractional Drude model in the time domain, using fractional derivatives without singular kernels, Caputo-Fabrizio (CF), and fractional derivatives with a stretched Mittag-Leffler function. It is shown that the velocity and current density of electrons moving through a metal depend on both the time and the fractional order 0 < γ ≤ 1. Due to non-singular fractional kernels, it is possible to consider complete memory effects in the model, which appear neither in the ordinary model, nor in the fractional Drude model with Caputo fractional derivative. A comparison is also made between these two representations of the fractional derivatives, resulting a considered difference when γ < 0.8.

  10. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  11. Using Bar Representations as a Model for Connecting Concepts of Rational Number.

    ERIC Educational Resources Information Center

    Middleton, James A.; van den Heuvel-Panhuizen, Marja; Shew, Julia A.

    1998-01-01

    Examines bar models as graphical representations of rational numbers and presents related real life problems. Concludes that, through pairing the fraction bars with ratio tables and other ways of teaching numbers, numeric strategies become connected with visual strategies that allow students with diverse ways of thinking to share their…

  12. Initial value problem of space dynamics in universal Stumpff anomaly

    NASA Astrophysics Data System (ADS)

    Sharaf, M. A.; Dwidar, H. R.

    2018-05-01

    In this paper, the initial value problem of space dynamics in universal Stumpff anomaly ψ is set up and developed in analytical and computational approach. For the analytical expansions, the linear independence of the functions U_{j} (ψ;σ); {j=0,1,2,3} are proved. The differential and recurrence equations satisfied by them and their relations with the elementary functions are given. The universal Kepler equation and its validations for different conic orbits are established together with the Lagrangian coefficients. Efficient representations of these functions are developed in terms of the continued fractions. For the computational developments we consider the following items: 1. Top-down algorithm for continued fraction evaluation. 2. One-point iteration formulae. 3. Determination of the coefficients of Kepler's equation. 4. Derivatives of Kepler's equation of any integer order. 5. Determination of the initial guess for the solution of the universal Kepler equation. Finally we give summary on the computational design for the initial value problem of space dynamics in universal Stumpff anomaly. This design based on the solution of the universal Kepler's equation by an iterative schemes of quadratic up to any desired order ℓ.

  13. Games for Mathematics Skill Practice.

    ERIC Educational Resources Information Center

    Ludeman, Clinton; Sevier, Bonnie

    1982-01-01

    Multivision is designed to practice simple multiplication and division with one-digit numbers, and is played similarly to Sorry. Fraction Monopoly was designed to assist in practicing addition and subtraction skills with fractions, along with recognizing basic parts and matching numerals with pictorial representations, and is similar to Monopoly.…

  14. Fractional models of seismoacoustic and electromagnetic activity

    NASA Astrophysics Data System (ADS)

    Shevtsov, Boris; Sheremetyeva, Olga

    2017-10-01

    Statistical models of the seismoacoustic and electromagnetic activity caused by deformation disturbances are considered on the basis of compound Poisson process and its fractional generalizations. Wave representations of these processes are used too. It is discussed five regimes of deformation activity and their role in understanding of the earthquakes precursors nature.

  15. Limited knowledge of fraction representations differentiates middle school students with mathematics learning disability (dyscalculia) versus low mathematics achievement.

    PubMed

    Mazzocco, Michèle M M; Myers, Gwen F; Lewis, Katherine E; Hanich, Laurie B; Murphy, Melissa M

    2013-06-01

    Fractions pose significant challenges for many children, but for some children those challenges persist into high school. Here we administered a fractions magnitude comparison test to 122 children, from Grades 4 to 8, to test whether their knowledge of fractions typically learned early in the sequence of formal math instruction (e.g., fractions equivalent to one-half, fraction pairs with common denominators) differentiates those with mathematics learning disability (MLD) versus low achievement (LA) or typical achievement (TA) in mathematics and whether long-term learning trajectories of this knowledge also differentiate these groups. We confirmed that although fourth graders with TA (n=93) were more accurate in evaluating "one-half" fractions than in evaluating "non-half" fractions (until they reached ceiling performance levels on both types of fractions), children with MLD (n=11) did not show a one-half advantage until Grade 7 and did not reach ceiling performance even by Grade 8. Both the MLD and LA groups had early difficulties with fractions, but by Grade 5 the LA group approached performance levels of the TA group and deviated from the MLD group. All groups showed a visual model advantage over Arabic number representation of fractions, but this advantage was short-lived for the TA group (because ceiling level was achieved across formats), whereas it was slightly more persistent for the LA group and persisted through Grade 8 for children with MLD. Thus, difficulties with fractions persist through Grade 8 for many students, but the nature and trajectories of those difficulties vary across children with math difficulties (MLD or LA). Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Control of Initialized Fractional-Order Systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2004-01-01

    Fractional-Order systems, or systems containing fractional derivatives and integrals, have been studied by many in the engineering area. Additionally, very readable discussions, devoted specifically to the subject, are presented by Oldham and Spanier, Miller and Ross, and Pudlubny (1999a). It should be noted that there are a growing number of physical systems whose behavior can be compactly described using fractional system theory. Of specific interest to electrical engineers are long lines, electrochemical processes, dielectric polarization, colored noise, viscoelastic materials, and chaos. With the growing number of applications, it is important to establish a theory of control for these fractional-order systems, and for the potential use of fractional-order systems as feedback compensators. This topic is addressed in this paper. The first section discusses the control of fractional-order systems using a vector space representation, where initialization is included in the discussion. It should be noted that Bagley and Calico and Padovan and Sawicki both present a fractional state-space representation, which do not include the important historic effects. Incorporation of these effects based on the initialized fractional calculus is presented . The control methods presented in this paper are based on the initialized fractional order system theory. The second section presents an input-output approach. Some of the problems encountered in these sections are: a) the need to introduce a new complex plane to study the dynamics of fractional-order systems, b) the need to properly define the Laplace transform of the fractional derivative, and c) the proper inclusion of the initialization response in the system and control formulation. Following this, the next section generalizes the proportional-plus-integral-control (PI-control) and PID-control (PI-plus- derivative) concepts using fractional integrals. This is then further generalized using general fractional- order compensators. Finally the compensator concept is generalized by the use of a continuum of fractions in the compensator via the concept of order-distributions. The last section introduces fractional feedback in discrete-time.

  17. Limited knowledge of fraction representations differentiates middle school students with mathematics learning disability (dyscalculia) vs. low mathematics achievement

    PubMed Central

    Mazzocco, Michèle M. M.; Myers, Gwen F.; Lewis, Katherine E.; Hanich, Laurie B.; Murphy, Melissa M.

    2014-01-01

    Fractions pose significant challenges for many children, but for some children those challenges persist into high school. Here we administered a fractions magnitude comparison test to 122 children, from Grades 4 to 8, to test whether their knowledge of fractions typically learned early in the sequence of formal math instruction (e.g., fractions equivalent to “one-half,” and fraction pairs with common denominators) differentiates those with mathematical learning disability (MLD) versus low achievement (LA) or typical achievement (TA) in mathematics, and whether long term learning trajectories of this knowledge also differentiate these groups. We confirmed that although 4th graders with LA (n = 18) or TA (n = 93) are more accurate evaluating one-half vs. non-half fractions (until they reach ceiling performance levels on both types of fractions), children with MLD (n=11) do not show a one-half advantage until Grade 7 and do not reach ceiling performance even by Grade 8. Both the MLD and LA groups have early difficulties with fractions, but by Grade 5 the LA group approaches performance levels of the TA group and deviates from the MLD group. All groups showed a visual model advantage over Arabic number representation of fractions, but this advantage was short lived for the TA group (because ceiling level was achieved across formats), slightly more persistent for the LA group, and persisted through Grade 8 for children with MLD. Thus, difficulties with fractions persist through Grade 8 for many students, but the nature and trajectories of those difficulties varies across children with math difficulties (MLD or LA). PMID:23587941

  18. Probing Schrodinger equation with a continued fraction potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasr; Alamri, Sultan Z.; Rassem, M.

    2018-06-01

    We suggest a new perturbed form of the quantum potential and investigate the possible solutions of Schrodinger equation. The new form can be written as a finite or infinite continued fraction. a comparison has been given between the continued fractional potential and the non-perturbed potential. We suggest the validity of this continued fractional quantum form in some quantum systems. As the order of the continued fraction increases the difference between the perturbed and the ordinary potentials decreases. The physically acceptable solutions critically depend on the values of the continued fraction coefficients αi .

  19. Strategic Development for Middle School Students Struggling With Fractions: Assessment and Intervention.

    PubMed

    Zhang, Dake; Stecker, Pamela; Huckabee, Sloan; Miller, Rhonda

    2016-09-01

    Research has suggested that different strategies used when solving fraction problems are highly correlated with students' problem-solving accuracy. This study (a) utilized latent profile modeling to classify students into three different strategic developmental levels in solving fraction comparison problems and (b) accordingly provided differentiated strategic training for students starting from two different strategic developmental levels. In Study 1 we assessed 49 middle school students' performance on fraction comparison problems and categorized students into three clusters of strategic developmental clusters: a cross-multiplication cluster with the highest accuracy, a representation strategy cluster with medium accuracy, and a whole-number strategy cluster with the lowest accuracy. Based on the strategic developmental levels identified in Study 1, in Study 2 we selected three students from the whole-number strategy cluster and another three students from the representation strategy cluster and implemented a differentiated strategic training intervention within a multiple-baseline design. Results showed that both groups of students transitioned from less advanced to more advanced strategies and improved their problem-solving accuracy during the posttest, the maintenance test, and the generalization test. © Hammill Institute on Disabilities 2014.

  20. Searching for Variables and Models to Investigate Mediators of Learning from Multiple Representations

    ERIC Educational Resources Information Center

    Rau, Martina A.; Scheines, Richard

    2012-01-01

    Although learning from multiple representations has been shown to be effective in a variety of domains, little is known about the mechanisms by which it occurs. We analyzed log data on error-rate, hint-use, and time-spent obtained from two experiments with a Cognitive Tutor for fractions. The goal of the experiments was to compare learning from…

  1. On soil textural classifications and soil-texture-based estimations

    NASA Astrophysics Data System (ADS)

    Ángel Martín, Miguel; Pachepsky, Yakov A.; García-Gutiérrez, Carlos; Reyes, Miguel

    2018-02-01

    The soil texture representation with the standard textural fraction triplet sand-silt-clay is commonly used to estimate soil properties. The objective of this work was to test the hypothesis that other fraction sizes in the triplets may provide a better representation of soil texture for estimating some soil parameters. We estimated the cumulative particle size distribution and bulk density from an entropy-based representation of the textural triplet with experimental data for 6240 soil samples. The results supported the hypothesis. For example, simulated distributions were not significantly different from the original ones in 25 and 85 % of cases when the sand-silt-clay and very coarse+coarse + medium sand - fine + very fine sand - silt+clay were used, respectively. When the same standard and modified triplets were used to estimate the average bulk density, the coefficients of determination were 0.001 and 0.967, respectively. Overall, the textural triplet selection appears to be application and data specific.

  2. Inadequacy representation of flamelet-based RANS model for turbulent non-premixed flame

    NASA Astrophysics Data System (ADS)

    Lee, Myoungkyu; Oliver, Todd; Moser, Robert

    2017-11-01

    Stochastic representations for model inadequacy in RANS-based models of non-premixed jet flames are developed and explored. Flamelet-based RANS models are attractive for engineering applications relative to higher-fidelity methods because of their low computational costs. However, the various assumptions inherent in such models introduce errors that can significantly affect the accuracy of computed quantities of interest. In this work, we develop an approach to represent the model inadequacy of the flamelet-based RANS model. In particular, we pose a physics-based, stochastic PDE for the triple correlation of the mixture fraction. This additional uncertain state variable is then used to construct perturbations of the PDF for the instantaneous mixture fraction, which is used to obtain an uncertain perturbation of the flame temperature. A hydrogen-air non-premixed jet flame is used to demonstrate the representation of the inadequacy of the flamelet-based RANS model. This work was supported by DARPA-EQUiPS(Enabling Quantification of Uncertainty in Physical Systems) program.

  3. An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS-CTEM modelling framework

    NASA Astrophysics Data System (ADS)

    Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi

    2017-10-01

    The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve model performance.

  4. The random continued fraction transformation

    NASA Astrophysics Data System (ADS)

    Kalle, Charlene; Kempton, Tom; Verbitskiy, Evgeny

    2017-03-01

    We introduce a random dynamical system related to continued fraction expansions. It uses random combinations of the Gauss map and the Rényi (or backwards) continued fraction map. We explore the continued fraction expansions that this system produces, as well as the dynamical properties of the system.

  5. Optimization and Quantization in Gradient Symbol Systems: A Framework for Integrating the Continuous and the Discrete in Cognition

    ERIC Educational Resources Information Center

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-01-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The…

  6. Using Explicit C-R-A Instruction to Teach Fraction Word Problem Solving to Low-Performing Asian English Learners

    ERIC Educational Resources Information Center

    Kim, Sun A.; Wang, Peishi; Michaels, Craig A.

    2015-01-01

    This article investigates the effects of fraction word problem-solving instruction involving explicit teaching of the concrete-representational-abstract sequence with culturally relevant teaching examples for 3 low-performing Asian immigrant English learners who spoke a language other than English at home. We used a multiple probe design across…

  7. A Generalized Fraction: An Entity Smaller than One on the Mental Number Line

    ERIC Educational Resources Information Center

    Kallai, Arava Y.; Tzelgov, Joseph

    2009-01-01

    The representation of fractions in long-term memory (LTM) was investigated by examining the automatic processing of such numbers in a physical comparison task, and their intentional processing in a numerical comparison task. The size congruity effect (SiCE) served as a marker of automatic processing and consequently as an indicator of the access…

  8. Examining and Elaborating upon the Nature of Elementary Prospective Teachers' Conceptions of Partitive Division with Fractions

    ERIC Educational Resources Information Center

    Jansen, Amanda; Hohensee, Charles

    2016-01-01

    The purpose of this study was to examine and elaborate upon elementary prospective teachers' (PSTs) conceptions of partitive division with fractions. We examined the degree to which PSTs' conceptions were connected (i.e., capable of translating between representations correctly; aware that partitive division generates a unit rate for its quotient)…

  9. Laughlin states on the Poincaré half-plane and their quantum group symmetry

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Mohseni Sadjadi, H.

    1996-09-01

    We find the Laughlin states of the electrons on the Poincaré half-plane in different representations. In each case we show that a quantum group 0305-4470/29/17/025/img5 symmetry exists such that the Laughlin states are a representation of it. We calculate the corresponding filling factor by using the plasma analogy of the fractional quantum Hall effect.

  10. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  11. Identify Fractions and Decimals on a Number Line

    ERIC Educational Resources Information Center

    Shaughnessy, Meghan M.

    2011-01-01

    Tasks that ask students to label rational number points on a number line are common not only in curricula in the upper elementary school grades but also on state assessments. Such tasks target foundational rational number concepts: A fraction (or a decimal) is more than a shaded part of an area, a part of a pizza, or a representation using…

  12. Affordances from Number Lines in Fractions Instruction: Students' Interpretation of Teacher's Intentions

    ERIC Educational Resources Information Center

    Patahuddin, Sitti Maesuri; Usman, H. B.; Ramful, Ajay

    2018-01-01

    Given its pedagogical appeal, the number line is a commonly used representation in the teaching and learning of fractions. However, behind its apparent simplicity, this mathematical object may involve layers of complexity when looked at from the perspective of affordances as is the case in this study. In particular, this in situ exploration…

  13. The controversial nuclear matrix: a balanced point of view.

    PubMed

    Martelli, A M; Falcieri, E; Zweyer, M; Bortul, R; Tabellini, G; Cappellini, A; Cocco, L; Manzoli, L

    2002-10-01

    The nuclear matrix is defined as the residual framework after the removal of the nuclear envelope, chromatin, and soluble components by sequential extractions. According to several investigators the nuclear matrix provides the structural basis for intranuclear order. However, the existence itself and the nature of this structure is still uncertain. Although the techniques used for the visualization of the nuclear matrix have improved over the years, it is still unclear to what extent the isolated nuclear matrix corresponds to an in vivo existing structure. Therefore, considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the situation in living cells. Here, we summarize the experimental evidence in favor of, or against, the presence of a diffuse nucleoskeleton as a facilitating organizational nonchromatin structure of the nucleus.

  14. Lord Brouncker's Forgotten Sequence of Continued Fractions for Pi

    ERIC Educational Resources Information Center

    Osler, Thomas J.

    2010-01-01

    "Lord Brouncker's continued fraction for pi" is a well-known result. In this article, we show that Brouncker found not only this one continued fraction, but an entire infinite sequence of related continued fractions for pi. These were recorded in the "Arithmetica Infinitorum" by John Wallis, but appear to have been ignored and forgotten by modern…

  15. Analytical solutions for coupling fractional partial differential equations with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Nieto, Juan J.

    2017-11-01

    In this paper, we consider the analytical solutions of coupling fractional partial differential equations (FPDEs) with Dirichlet boundary conditions on a finite domain. Firstly, the method of successive approximations is used to obtain the analytical solutions of coupling multi-term time fractional ordinary differential equations. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the coupling FPDEs to the coupling multi-term time fractional ordinary differential equations. By applying the obtained analytical solutions to the resulting multi-term time fractional ordinary differential equations, the desired analytical solutions of the coupling FPDEs are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.

  16. Space-time modeling using environmental constraints in a mobile robot system

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1990-01-01

    Grid-based models of a robot's local environment have been used by many researchers building mobile robot control systems. The attraction of grid-based models is their clear parallel between the internal model and the external world. However, the discrete nature of such representations does not match well with the continuous nature of actions and usually serves to limit the abilities of the robot. This work describes a spatial modeling system that extracts information from a grid-based representation to form a symbolic representation of the robot's local environment. The approach makes a separation between the representation provided by the sensing system and the representation used by the action system. Separation allows asynchronous operation between sensing and action in a mobile robot, as well as the generation of a more continuous representation upon which to base actions.

  17. 28 CFR 68.33 - Participation of parties and representation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representation. 68.33 Section 68.33 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RULES OF PRACTICE... FRAUD § 68.33 Participation of parties and representation. (a) Participation of parties. Any party shall...) Representation for parties other than the Department of Justice. Persons who may appear before the Administrative...

  18. 28 CFR 68.33 - Participation of parties and representation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representation. 68.33 Section 68.33 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RULES OF PRACTICE... FRAUD § 68.33 Participation of parties and representation. (a) Participation of parties. Any party shall...) Representation for parties other than the Department of Justice. Persons who may appear before the Administrative...

  19. 28 CFR 68.33 - Participation of parties and representation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representation. 68.33 Section 68.33 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RULES OF PRACTICE... FRAUD § 68.33 Participation of parties and representation. (a) Participation of parties. Any party shall...) Representation for parties other than the Department of Justice. Persons who may appear before the Administrative...

  20. 28 CFR 68.33 - Participation of parties and representation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representation. 68.33 Section 68.33 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) RULES OF PRACTICE... FRAUD § 68.33 Participation of parties and representation. (a) Participation of parties. Any party shall...) Representation for parties other than the Department of Justice. Persons who may appear before the Administrative...

  1. Ion-mediated interactions in suspensions of oppositely charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Dahirel, Vincent; Hansen, Jean Pierre

    2009-08-01

    The structure of oppositely charged spherical nanoparticles (polyions), dispersed in ionic solutions with continuous solvent (primitive model), is investigated by Monte Carlo (MC) simulations, within explicit and implicit microion representations, over a range of polyion valences and densities, and microion concentrations. Systems with explicit microions are explored by semigrand canonical MC simulations, and allow density-dependent effective polyion pair potentials vαβeff(r ) to be extracted from measured partial pair distribution functions. Implicit microion MC simulations are based on pair potentials of mean force vαβ(2)(r ) computed by explicit microion simulations of two charged polyions, in the low density limit. In the vicinity of the liquid-gas separation expected for oppositely charged polyions, the implicit microion representation leads to an instability against density fluctuations for polyion valences |Z| significantly below those at which the instability sets in within the exact explicit microion representation. Far from this instability region, the vαβ(2)(r ) are found to be fairly close to but consistently more repulsive than the effective pair potentials vαβeff(r ). This is corroborated by additional calculations of three-body forces between polyion triplets, which are repulsive when one polyion is of opposite charge to the other two. The explicit microion MC data were exploited to determine the ratio of salt concentrations c and co within the dispersion and the reservoir (Donnan effect). c /co is found to first increase before finally decreasing as a function of the polyion packing fraction.

  2. Hyperspherical Slater determinant approach to few-body fractional quantum Hall states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Bin, E-mail: yanbin@purdue.edu; Wooten, Rachel E.; Daily, Kevin M.

    2017-05-15

    In a recent study (Daily et al., 2015), a hyperspherical approach has been developed to study few-body fractional quantum Hall states. This method has been successfully applied to the exploration of few boson and fermion problems in the quantum Hall region, as well as the study of inter-Landau level collective excitations (Rittenhouse et al., 2016; Wooten et al., 2016). However, the hyperspherical method as it is normally implemented requires a subsidiary (anti-)symmetrization process, which limits its computational effectiveness. The present work overcomes these difficulties and extends the power of this method by implementing a representation of the hyperspherical many-body basismore » space in terms of Slater determinants of single particle eigenfunctions. A clear connection between the hyperspherical representation and the conventional single particle picture is presented, along with a compact operator representation of the theoretical framework. - Highlights: • A hyperspherical method has been implemented to study the quantum Hall effect. • The hyperspherical many-body basis space is represented with Slater determinants. • Example numerical studies of the 4- and 8-electron systems are presented.« less

  3. Calibrating cellular automaton models for pedestrians walking through corners

    NASA Astrophysics Data System (ADS)

    Dias, Charitha; Lovreglio, Ruggiero

    2018-05-01

    Cellular Automata (CA) based pedestrian simulation models have gained remarkable popularity as they are simpler and easier to implement compared to other microscopic modeling approaches. However, incorporating traditional floor field representations in CA models to simulate pedestrian corner navigation behavior could result in unrealistic behaviors. Even though several previous studies have attempted to enhance CA models to realistically simulate pedestrian maneuvers around bends, such modifications have not been calibrated or validated against empirical data. In this study, two static floor field (SFF) representations, namely 'discrete representation' and 'continuous representation', are calibrated for CA-models to represent pedestrians' walking behavior around 90° bends. Trajectory data collected through a controlled experiment are used to calibrate these model representations. Calibration results indicate that although both floor field representations can represent pedestrians' corner navigation behavior, the 'continuous' representation fits the data better. Output of this study could be beneficial for enhancing the reliability of existing CA-based models by representing pedestrians' corner navigation behaviors more realistically.

  4. Dissociations of the number and precision of visual short-term memory representations in change detection.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2017-11-01

    The present study dissociated the number (i.e., quantity) and precision (i.e., quality) of visual short-term memory (STM) representations in change detection using receiver operating characteristic (ROC) and experimental manipulations. Across three experiments, participants performed both recognition and recall tests of visual STM using the change-detection task and the continuous color-wheel recall task, respectively. Experiment 1 demonstrated that the estimates of the number and precision of visual STM representations based on the ROC model of change-detection performance were robustly correlated with the corresponding estimates based on the mixture model of continuous-recall performance. Experiments 2 and 3 showed that the experimental manipulation of mnemonic precision using white-noise masking and the experimental manipulation of the number of encoded STM representations using consolidation masking produced selective effects on the corresponding measures of mnemonic precision and the number of encoded STM representations, respectively, in both change-detection and continuous-recall tasks. Altogether, using the individual-differences (Experiment 1) and experimental dissociation (Experiment 2 and 3) approaches, the present study demonstrated the some-or-none nature of visual STM representations across recall and recognition.

  5. Some Properties of the Fractional Equation of Continuity and the Fractional Diffusion Equation

    NASA Astrophysics Data System (ADS)

    Fukunaga, Masataka

    2006-05-01

    The fractional equation of continuity (FEC) and the fractional diffusion equation (FDE) show peculiar behaviors that are in the opposite sense to those expected from the equation of continuity and the diffusion equation, respectively. The behaviors are interpreted in terms of the memory effect of the fractional time derivatives included in the equations. Some examples are given by solutions of the FDE.

  6. Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions

    NASA Astrophysics Data System (ADS)

    Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.

    2013-09-01

    Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.

  7. Basic Theory of Fractional Conformal Invariance of Mei Symmetry and its Applications to Physics

    NASA Astrophysics Data System (ADS)

    Luo, Shao-Kai; Dai, Yun; Yang, Ming-Jing; Zhang, Xiao-Tian

    2018-04-01

    In this paper, we present a basic theory of fractional dynamics, i.e., the fractional conformal invariance of Mei symmetry, and find a new kind of conserved quantity led by fractional conformal invariance. For a dynamical system that can be transformed into fractional generalized Hamiltonian representation, we introduce a more general kind of single-parameter fractional infinitesimal transformation of Lie group, the definition and determining equation of fractional conformal invariance are given. And then, we reveal the fractional conformal invariance of Mei symmetry, and the necessary and sufficient condition whether the fractional conformal invariance would be the fractional Mei symmetry is found. In particular, we present the basic theory of fractional conformal invariance of Mei symmetry and it is found that, using the new approach, we can find a new kind of conserved quantity; as a special case, we find that an autonomous fractional generalized Hamiltonian system possesses more conserved quantities. Also, as the new method's applications, we, respectively, find the conserved quantities of a fractional general relativistic Buchduhl model and a fractional Duffing oscillator led by fractional conformal invariance of Mei symmetry.

  8. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.

  10. Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"

    ERIC Educational Resources Information Center

    Braza, Peter A.

    2010-01-01

    The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.

  11. 29 CFR 4003.6 - Representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL RULES FOR ADMINISTRATIVE REVIEW OF AGENCY DECISIONS General Provisions § 4003.6 Representation. A person may file any document or... of attorney, signed by the person making the designation, which authorizes the representation and...

  12. Continued fractions with limit periodic coefficients

    NASA Astrophysics Data System (ADS)

    Buslaev, V. I.

    2018-02-01

    The boundary properties of functions represented by limit periodic continued fractions of a fairly general form are investigated. Such functions are shown to have no single-valued meromorphic extension to any neighbourhood of any non-isolated boundary point of the set of convergence of the continued fraction. The boundary of the set of meromorphy has the property of symmetry in an external field determined by the parameters of the continued fraction. Bibliography: 26 titles.

  13. Rational Exponentials and Continued Fractions

    ERIC Educational Resources Information Center

    Denny, J. K.

    2012-01-01

    Using continued fraction expansions, we can approximate constants, such as pi and e, using an appropriate integer n raised to the power x[superscript 1/x], x a suitable rational. We review continued fractions and give an algorithm for producing these approximations.

  14. Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble

    NASA Astrophysics Data System (ADS)

    Sen, Surajit; Barrett, Tyler

    The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.

  15. An exact formulation of the time-ordered exponential using path-sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giscard, P.-L., E-mail: p.giscard1@physics.ox.ac.uk; Lui, K.; Thwaite, S. J.

    2015-05-15

    We present the path-sum formulation for the time-ordered exponential of a time-dependent matrix. The path-sum formulation gives the time-ordered exponential as a branched continued fraction of finite depth and breadth. The terms of the path-sum have an elementary interpretation as self-avoiding walks and self-avoiding polygons on a graph. Our result is based on a representation of the time-ordered exponential as the inverse of an operator, the mapping of this inverse to sums of walks on a graphs, and the algebraic structure of sets of walks. We give examples demonstrating our approach. We establish a super-exponential decay bound for the magnitudemore » of the entries of the time-ordered exponential of sparse matrices. We give explicit results for matrices with commonly encountered sparse structures.« less

  16. Cohomologie des Groupes Localement Compacts et Produits Tensoriels Continus de Representations

    ERIC Educational Resources Information Center

    Guichardet, A.

    1976-01-01

    Contains few and sometimes incomplete proofs on continuous tensor products of Hilbert spaces and of group representations, and on the irreducibility of the latter. Theory of continuous tensor products of Hilbert Spaces is closely related to that of conditionally positive definite functions; it relies on the technique of symmetric Hilbert spaces,…

  17. Optimization and quantization in gradient symbol systems: a framework for integrating the continuous and the discrete in cognition.

    PubMed

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-08-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.

  18. 32 CFR 724.215 - Military representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation. Military...

  19. Fractional diffusion: recovering the distributed fractional derivative from overposed data

    NASA Astrophysics Data System (ADS)

    Rundell, W.; Zhang, Z.

    2017-03-01

    There has been considerable recent study in ‘subdiffusion’ models that replace the standard parabolic equation model by a one with a fractional derivative in the time variable. There are many ways to look at this newer approach and one such is to realize that the order of the fractional derivative is related to the time scales of the underlying diffusion process. This raises the question of what order α of derivative should be taken and if a single value actually suffices. This has led to models that combine a finite number of these derivatives each with a different fractional exponent {αk} and different weighting value c k to better model a greater possible range of time scales. Ultimately, one wants to look at a situation that combines derivatives in a continuous way—the so-called distributional model with parameter μ ≤ft(α \\right) . However all of this begs the question of how one determines this ‘order’ of differentiation. Recovering a single fractional value has been an active part of the process from the beginning of fractional diffusion modeling and if this is the only unknown then the markers left by the fractional order derivative are relatively straightforward to determine. In the case of a finite combination of derivatives this becomes much more complex due to the more limited analytic tools available for such equations, but recent progress in this direction has been made, (Li et al 2015 Appl. Math. Comput. 257 381-97, Li and Yamamoto 2015 Appl. Anal. 94 570-9). This paper considers the full distributional model where the order is viewed as a function μ ≤ft(α \\right) on the interval (0, 1]. We show existence, uniqueness and regularity for an initial-boundary value problem including an important representation theorem in the case of a single spatial variable. This is then used in the inverse problem of recovering the distributional coefficient μ ≤ft(α \\right) from a time trace of the solution and a uniqueness result is proven.

  20. Generalized continued fractions and ergodic theory

    NASA Astrophysics Data System (ADS)

    Pustyl'nikov, L. D.

    2003-02-01

    In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.

  1. Using structured games to teach early fraction concepts to students who are deaf or hard of hearing.

    PubMed

    Markey, Carmel; Power, Des; Booker, George

    2003-01-01

    The study focused on the development of the concept of fractions in a group of 11- and 12-year-old students who were deaf or hard of hearing. The approach implemented in the study relied extensively on the use of games with very little formal instruction. It emphasized the development of appropriate language to facilitate an understanding of the notion of fractions through the investigation of concrete materials, pictorial representations, and interactions between students and teacher. The progress achieved by means of this approach is reported, and the implications of developing an understanding of fractions (and mathematics generally) among students who are deaf or hard of hearing are noted.

  2. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  3. How much does sea spray aerosol organic matter impact clouds and radiation? Sensitivity studies in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Liu, X.; Elliott, S.; Easter, R. C.; Singh, B.; Rasch, P. J.

    2015-12-01

    Submicron marine aerosol particles are frequently observed to contain substantial fractions of organic material, hypothesized to enter the atmosphere as part of the primary sea spray aerosol formed through bubble bursting. This organic matter in sea spray aerosol may affect cloud condensation nuclei and ice nuclei concentrations in the atmosphere, particularly in remote marine regions. Members of our team have developed a new, mechanistic representation of the enrichment of sea spray aerosol with organic matter, the OCEANFILMS parameterization (Burrows et al., 2014). This new representation uses fields from an ocean biogeochemistry model to predict properties of the emitted aerosol. We have recently implemented the OCEANFILMS representation of sea spray aerosol composition into the Community Atmosphere Model (CAM), and performed sensitivity experiments and comparisons with alternate formulations. Early results from these sensitivity simulations will be shown, including impacts on aerosols, clouds, and radiation. References: Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria, Atmos. Chem. Phys., 14, 13601-13629, doi:10.5194/acp-14-13601-2014, 2014.

  4. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI

    PubMed Central

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-01-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484

  5. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2015-10-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.

  6. Delaware Longitudinal Study of Fraction Learning: Implications for Helping Children With Mathematics Difficulties.

    PubMed

    Jordan, Nancy C; Resnick, Ilyse; Rodrigues, Jessica; Hansen, Nicole; Dyson, Nancy

    The goal of the present article is to synthesize findings to date from the Delaware Longitudinal Study of Fraction Learning. The study followed a large cohort of children ( N = 536) between Grades 3 and 6. The findings showed that many students, especially those with diagnosed learning disabilities, made minimal growth in fraction knowledge and that some showed only a basic grasp of the meaning of a fraction even after several years of instruction. Children with low growth in fraction knowledge during the intermediate grades were much more likely to fail to meet state standards on a broad mathematics measure at the end of Grade 6. Although a range of general and mathematics-specific competencies predicted fraction outcomes, the ability to estimate numerical magnitudes on a number line was a uniquely important marker of fraction success. Many children with mathematics difficulties have deep-seated problems related to whole number magnitude representations that are complicated by the introduction of fractions into the curriculum. Implications for helping students with mathematics difficulties are discussed.

  7. Mirror-touch synaesthesia: Difficulties inhibiting the other.

    PubMed

    Santiesteban, Idalmis; Bird, Geoffrey; Tew, Oliver; Cioffi, Maria Cristina; Banissy, Michael J

    2015-10-01

    Individuals with mirror touch synaesthesia (MTS) experience touch on their own body when observing others being touched. A recent account proposes that such rare experiences could be linked to impairment in self-other representations. Here we tested participants with MTS on a battery of social cognition tests and found that compared to non-synaesthete controls, the MTS group showed impairment in imitation-inhibition but not in visual perspective taking or theory of mind. Although all of these socio-cognitive abilities rely on the control of self-other representations, they differ as to whether the self, or the other, should be preferentially represented. For imitation-inhibition, representations of the other should be inhibited and self-representations should be enhanced, whereas the opposite is true for visual perspective taking and theory of mind. These findings suggest that MTS is associated with a specific deficit in inhibiting representation of other individuals and shed light on the fractionability of processes underlying typical social cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Solace and Immortality: Bereaved Parents' Continuing Bond with Their Children.

    ERIC Educational Resources Information Center

    Klass, Dennis

    1993-01-01

    Considers death of child and bereaved parents. Examines nature of solace, reviews literature on inner representation of the dead, examines ways parents find solace connected with interaction with inner representation, explores shared inner representation as significant element in social support, discusses solace in terms of psychosocial meaning of…

  9. 29 CFR 500.231 - Appearances; representation of the Department of Labor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Procedures Before Administrative Law Judge § 500.231 Appearances; representation of the Department of Labor... 29 Labor 3 2010-07-01 2010-07-01 false Appearances; representation of the Department of Labor. 500.231 Section 500.231 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT...

  10. On the local fractional derivative of everywhere non-differentiable continuous functions on intervals

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-shi

    2017-01-01

    We first prove that for a continuous function f(x) defined on an open interval, the Kolvankar-Gangal's (or equivalently Chen-Yan-Zhang's) local fractional derivative f(α)(x) is not continuous, and then prove that it is impossible that the KG derivative f(α)(x) exists everywhere on the interval and satisfies f(α)(x) ≠ 0 in the same time. In addition, we give a criterion of the nonexistence of the local fractional derivative of everywhere non-differentiable continuous functions. Furthermore, we construct two simple nowhere differentiable continuous functions on (0, 1) and prove that they have no the local fractional derivatives everywhere.

  11. Pitch Fractionation.

    DTIC Science & Technology

    1981-12-15

    The solvent fractions were obtained by sequential Soxhlet extraction with solvents such as hexane, cyclohexane, toluene, and pyridine. The most severe...Continued) *.AISYRACT (Continued) fraction increased, the pyrolysis yield and bloating increased, and the msicrostructure of the coke became finer...28 8. Coking Yield and Bloating Behavior of Fractionation Sequence AG 162-4

  12. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  13. Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrady, Florian; Hnybida, Jeff; Department of Physics, University of Waterloo, Waterloo, Ontario

    2011-01-15

    We derive the matrix elements of generators of unitary irreducible representations of SL(2,C) with respect to basis states arising from a decomposition into irreducible representations of SU(1,1). This is done with regard to a discrete basis diagonalized by J{sup 3} and a continuous basis diagonalized by K{sup 1}, and for both the discrete and continuous series of SU(1,1). For completeness, we also treat the more conventional SU(2) decomposition as a fifth case. The derivation proceeds in a functional/differential framework and exploits the fact that state functions and differential operators have a similar structure in all five cases. The states aremore » defined explicitly and related to SU(1,1) and SU(2) matrix elements.« less

  14. Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction.

    PubMed

    Liu, Yingyi

    2017-09-08

    Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.

  15. Pattern Selection and Super-Patterns in Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Ben-Naim, Eli; Scheel, Arnd

    We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. The spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.

  16. 14 CFR 91.1411 - Continuous airworthiness maintenance program use by fractional ownership program manager.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... program use by fractional ownership program manager. 91.1411 Section 91.1411 Aeronautics and Space FEDERAL... airworthiness maintenance program use by fractional ownership program manager. Fractional ownership program... through 91.1443. Any program manager who elects to maintain the program aircraft using a continuous...

  17. About well-posed definition of geophysical fields'

    NASA Astrophysics Data System (ADS)

    Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara

    2013-04-01

    We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation (in an underground half-space) a field measured at the surface, allows you to make the interpretation of geophysical data, to build a cross-section, determine the depth, the approximate shape and size of the sources measured at the surface of the geophysical fields. Appliance of the method are any geophysical surveys: magnetic, gravimetric, electrical exploration, seismic, geochemical surveying, etc. Method was tested on model examples, and practical data. The results are confirmed by drilling.

  18. New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis.

    PubMed

    Ingo, Carson; Magin, Richard L; Parrish, Todd B

    2014-11-01

    Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.

  19. The Coupling of Finite Element and Integral Equation Representations for Efficient Three-Dimensional Modeling of Electromagnetic Scattering and Radiation

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz

    1996-01-01

    Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.

  20. Prevention 0f Unwanted Free-Declaration of Static Obstacles in Probability Occupancy Grids

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Scholz, M.; Hohmann, R.

    2017-10-01

    Obstacle detection and avoidance are major research fields in unmanned aviation. Map based obstacle detection approaches often use discrete world representations such as probabilistic grid maps to fuse incremental environment data from different views or sensors to build a comprehensive representation. The integration of continuous measurements into a discrete representation can result in rounding errors which, in turn, leads to differences between the artificial model and real environment. The cause of these deviations is a low spatial resolution of the world representation comparison to the used sensor data. Differences between artificial representations which are used for path planning or obstacle avoidance and the real world can lead to unexpected behavior up to collisions with unmapped obstacles. This paper presents three approaches to the treatment of errors that can occur during the integration of continuous laser measurement in the discrete probabilistic grid. Further, the quality of the error prevention and the processing performance are compared with real sensor data.

  1. The Effects of the Local Environment on Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Manzer, L. H.; De Robertis, M. M.

    2014-06-01

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2 <= N <= 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems, unlike star-forming galaxies. These results provide some indication that the local environment does play a role in initiating activity in galactic nuclei, but it is by no means simple or straightforward.

  2. Numbers and brains.

    PubMed

    Gallistel, C R

    2017-12-01

    The representation of discrete and continuous quantities appears to be ancient and pervasive in animal brains. Because numbers are the natural carriers of these representations, we may discover that in brains, it's numbers all the way down.

  3. Representations as mediation between purposes as junior secondary science students learn about the human body

    NASA Astrophysics Data System (ADS)

    Olander, Clas; Wickman, Per-Olof; Tytler, Russell; Ingerman, Åke

    2018-01-01

    The aim of this article is to investigate students' meaning-making processes of multiple representations during a teaching sequence about the human body in lower secondary school. Two main influences are brought together to accomplish the analysis: on the one hand, theories on signs and representations as scaffoldings for learning and, on the other hand, pragmatist theories on how continuity between the purposes of different inquiry activities can be sustained. Data consist of 10 videotaped and transcribed lessons with 14-year-old students (N = 26) in Sweden. The analysis focused instances where meaning of representations was negotiated. Findings indicate that continuity is established in multiple ways, for example, as the use of metaphors articulated as an interlanguage expression that enables the students (and the teacher) to maintain the conversation and explain pressing issues in ways that support of the end-in-view of the immediate action. Continuity is also established between every day and scientific registers and between organisation levels as well as between the smaller parts and the whole system.

  4. Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan’s atmospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Gans, B.; Peng, Z.; Carrasco, N.; Gauyacq, D.; Lebonnois, S.; Pernot, P.

    2013-03-01

    A new wavelength-dependent model for CH4 photolysis branching ratios is proposed, based on the values measured recently by Gans et al. (Gans, B. et al. [2011]. Phys. Chem. Chem. Phys. 13, 8140-8152). We quantify the impact of this representation on the predictions of a photochemical model of Titan’s atmosphere, on their precision, and compare to earlier representations. Although the observed effects on the mole fraction of the species are small (never larger than 50%), it is possible to draw some recommendations for further studies: (i) the Ly-α branching ratios of Wang et al. (Wang, J.H. et al. [2000]. J. Chem. Phys. 113, 4146-4152) used in recent models overestimate the CH2:CH3 ratio, a factor to which a lot of species are sensitive; (ii) the description of out-of-Ly-α branching ratios by the “100% CH3” scenario has to be avoided, as it can bias significantly the mole fractions of some important species (C3H8); and (iii) complementary experimental data in the 130-140 nm range would be useful to constrain the models in the Ly-α deprived 500-700 km altitude range.

  5. If you watch it move, you'll recognize it in 3D: Transfer of depth cues between encoding and retrieval.

    PubMed

    Papenmeier, Frank; Schwan, Stephan

    2016-02-01

    Viewing objects with stereoscopic displays provides additional depth cues through binocular disparity supporting object recognition. So far, it was unknown whether this results from the representation of specific stereoscopic information in memory or a more general representation of an object's depth structure. Therefore, we investigated whether continuous object rotation acting as depth cue during encoding results in a memory representation that can subsequently be accessed by stereoscopic information during retrieval. In Experiment 1, we found such transfer effects from continuous object rotation during encoding to stereoscopic presentations during retrieval. In Experiments 2a and 2b, we found that the continuity of object rotation is important because only continuous rotation and/or stereoscopic depth but not multiple static snapshots presented without stereoscopic information caused the extraction of an object's depth structure into memory. We conclude that an object's depth structure and not specific depth cues are represented in memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Continuous family of finite-dimensional representations of a solvable Lie algebra arising from singularities

    PubMed Central

    Yau, Stephen S.-T.

    1983-01-01

    A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401

  7. Chemical equilibrium of ablation materials including condensed species

    NASA Technical Reports Server (NTRS)

    Stroud, C. W.; Brinkley, K. L.

    1975-01-01

    Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.

  8. Mental Representation of Fractions: It All Depends on Whether They Are Common or Uncommon.

    PubMed

    Liu, Fuchang

    2017-08-13

    This study examined whether common and uncommon fractions are mentally represented differently and whether common ones are used in accessing the magnitudes of uncommon ones. In Experiments 1 and 2, college education majors, most of whom were female, Caucasian, and in their early 20s, made comparisons involving common and uncommon fractions. In Experiment 3, participants were presented with comparison tasks involving uncommon fractions and asked to describe the strategies which they used in making such comparisons. Analysis of reaction times and error rates support the hypothesis that for common fractions, it is their holistic real value, rather than their individual components, that gets represented. For uncommon fractions, the access of their magnitudes is a process of retrieving and using a known common one having a similar value. Such results suggest that the development of the cognizance of the magnitudes of fractions may be principally a matter of common ones only and that learners' handling of uncommon fractions may be greatly facilitated through instructions on matching them with common ones having a similar value.

  9. Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition

    NASA Astrophysics Data System (ADS)

    Buciu, Ioan; Pitas, Ioannis

    Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.

  10. Wave propagation in viscoelastic horns using a fractional calculus rheology model

    NASA Astrophysics Data System (ADS)

    Margulies, Timothy

    2003-10-01

    The complex mechanical behavior of materials are characterized by fluid and solid models with fractional calculus differentials to relate stress and strain fields. Fractional derivatives have been shown to describe the viscoelastic stress from polymer chain theory for molecular solutions [Rouse and Sittel, J. Appl. Phys. 24, 690 (1953)]. Here the propagation of infinitesimal waves in one dimensional horns with a small cross-sectional area change along the longitudinal axis are examined. In particular, the linear, conical, exponential, and catenoidal shapes are studied. The wave amplitudes versus frequency are solved analytically and predicted with mathematical computation. Fractional rheology data from Bagley [J. Rheol. 27, 201 (1983); Bagley and Torvik, J. Rheol. 30, 133 (1986)] are incorporated in the simulations. Classical elastic and fluid ``Webster equations'' are recovered in the appropriate limits. Horns with real materials that employ fractional calculus representations can be modeled to examine design trade-offs for engineering or for scientific application.

  11. An ERP Study of the Processing of Common and Decimal Fractions: How Different They Are

    PubMed Central

    Zhang, Li; Wang, Qi; Lin, Chongde; Ding, Cody; Zhou, Xinlin

    2013-01-01

    This study explored event-related potential (ERP) correlates of common fractions (1/5) and decimal fractions (0.2). Thirteen subjects performed a numerical magnitude matching task under two conditions. In the common fraction condition, a nonsymbolic fraction was asked to be judged whether its magnitude matched the magnitude of a common fraction; in the decimal fraction condition, a nonsymbolic fraction was asked to be matched with a decimal fraction. Behavioral results showed significant main effects of condition and numerical distance, but no significant interaction of condition and numerical distance. Electrophysiological data showed that when nonsymbolic fractions were compared to common fractions, they displayed larger N1 and P3 amplitudes than when they were compared to decimal fractions. This finding suggested that the visual identification for nonsymbolic fractions was different under the two conditions, which was not due to perceptual differences but to task demands. For symbolic fractions, the condition effect was observed in the N1 and P3 components, revealing stimulus-specific visual identification processing. The effect of numerical distance as an index of numerical magnitude representation was observed in the P2, N3 and P3 components under the two conditions. However, the topography of the distance effect was different under the two conditions, suggesting stimulus specific semantic processing of common fractions and decimal fractions. PMID:23894491

  12. Adaptations and Continuities in the Use and Design of Visual Representations in US Middle School Science Textbooks

    ERIC Educational Resources Information Center

    Lee, Victor R.

    2010-01-01

    Visual representations are ubiquitous in modern-day science textbooks and have in recent years become an object of criticism and scrutiny. This article examines the extent to which changes in representations in textbooks published in the USA over the past six decades have invited those critiques. Drawing from a correlational analysis of a corpus…

  13. Appliation of rad-sequencing to linkage mapping in citrus

    USDA-ARS?s Scientific Manuscript database

    High density linkage maps can be developed for modest cost using high-throughput DNA sequencing to genotype a defined fraction (representation) of the genome. We developed linkage maps in two citrus populations using the RAD (Restriction site Associated DNA) genotyping method which involves restrict...

  14. Design of broadband time-domain impedance boundary conditions using the oscillatory-diffusive representation of acoustical models.

    PubMed

    Monteghetti, Florian; Matignon, Denis; Piot, Estelle; Pascal, Lucas

    2016-09-01

    A methodology to design broadband time-domain impedance boundary conditions (TDIBCs) from the analysis of acoustical models is presented. The derived TDIBCs are recast exclusively as first-order differential equations, well-suited for high-order numerical simulations. Broadband approximations are yielded from an elementary linear least squares optimization that is, for most models, independent of the absorbing material geometry. This methodology relies on a mathematical technique referred to as the oscillatory-diffusive (or poles and cuts) representation, and is applied to a wide range of acoustical models, drawn from duct acoustics and outdoor sound propagation, which covers perforates, semi-infinite ground layers, as well as cavities filled with a porous medium. It is shown that each of these impedance models leads to a different TDIBC. Comparison with existing numerical models, such as multi-pole or extended Helmholtz resonator, provides insights into their suitability. Additionally, the broadly-applicable fractional polynomial impedance models are analyzed using fractional calculus.

  15. Soil Particle Size Analysis by Laser Diffractometry: Result Comparison with Pipette Method

    NASA Astrophysics Data System (ADS)

    Šinkovičová, Miroslava; Igaz, Dušan; Kondrlová, Elena; Jarošová, Miriam

    2017-10-01

    Soil texture as the basic soil physical property provides a basic information on the soil grain size distribution as well as grain size fraction representation. Currently, there are several methods of particle dimension measurement available that are based on different physical principles. Pipette method based on the different sedimentation velocity of particles with different diameter is considered to be one of the standard methods of individual grain size fraction distribution determination. Following the technical advancement, optical methods such as laser diffraction can be also used nowadays for grain size distribution determination in the soil. According to the literature review of domestic as well as international sources related to this topic, it is obvious that the results obtained by laser diffractometry do not correspond with the results obtained by pipette method. The main aim of this paper was to analyse 132 samples of medium fine soil, taken from the Nitra River catchment in Slovakia, from depths of 15-20 cm and 40-45 cm, respectively, using laser analysers: ANALYSETTE 22 MicroTec plus (Fritsch GmbH) and Mastersizer 2000 (Malvern Instruments Ltd). The results obtained by laser diffractometry were compared with pipette method and the regression relationships using linear, exponential, power and polynomial trend were derived. Regressions with the three highest regression coefficients (R2) were further investigated. The fit with the highest tightness was observed for the polynomial regression. In view of the results obtained, we recommend using the estimate of the representation of the clay fraction (<0.01 mm) polynomial regression, to achieve a highest confidence value R2 at the depths of 15-20 cm 0.72 (Analysette 22 MicroTec plus) and 0.95 (Mastersizer 2000), from a depth of 40-45 cm 0.90 (Analysette 22 MicroTec plus) and 0.96 (Mastersizer 2000). Since the percentage representation of clayey particles (2nd fraction according to the methodology of Complex Soil Survey done in Slovakia) in soil is the determinant for soil type specification, we recommend using the derived relationships in soil science when the soil texture analysis is done according to laser diffractometry. The advantages of laser diffraction method comprise the short analysis time, usage of small sample amount, application for the various grain size fraction and soil type classification systems, and a wide range of determined fractions. Therefore, it is necessary to focus on this issue further to address the needs of soil science research and attempt to replace the standard pipette method with more progressive laser diffraction method.

  16. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet

    PubMed Central

    Rolls, Edmund T.

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus. PMID:22723777

  17. Invariant Visual Object and Face Recognition: Neural and Computational Bases, and a Model, VisNet.

    PubMed

    Rolls, Edmund T

    2012-01-01

    Neurophysiological evidence for invariant representations of objects and faces in the primate inferior temporal visual cortex is described. Then a computational approach to how invariant representations are formed in the brain is described that builds on the neurophysiology. A feature hierarchy model in which invariant representations can be built by self-organizing learning based on the temporal and spatial statistics of the visual input produced by objects as they transform in the world is described. VisNet can use temporal continuity in an associative synaptic learning rule with a short-term memory trace, and/or it can use spatial continuity in continuous spatial transformation learning which does not require a temporal trace. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in, for example, spatial and object search tasks. The approach has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene. The approach has also been extended to provide, with an additional layer, for the development of representations of spatial scenes of the type found in the hippocampus.

  18. Improving the Representation of Land in Climate Models by Application of EOS Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The PI's IDS current and previous investigation has focused on the applications of the land data toward the improvement of climate models. The previous IDS research identified the key factors limiting the accuracy of climate models to be the representation of albedos, land cover, fraction of landscape covered by vegetation, roughness lengths, surface skin temperature and canopy properties such as leaf area index (LAI) and average stomatal conductance. Therefore, we assembled a team uniquely situated to focus on these key variables and incorporate the remotely sensed measures of these variables into the next generation of climate models.

  19. Representations in Calculus: Two Contrasting Cases.

    ERIC Educational Resources Information Center

    Aspinwall, Leslie; Shaw, Kenneth L.

    2002-01-01

    Illustrates the contrasting thinking processes of two beginning calculus students' geometric and analytic schemes for the derivative function. Suggests that teachers can enhance students' understanding by continuing to demonstrate how different representations of the same mathematical concept provide additional information. (KHR)

  20. Vision and the representation of the surroundings in spatial memory

    PubMed Central

    Tatler, Benjamin W.; Land, Michael F.

    2011-01-01

    One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience. PMID:21242146

  1. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    PubMed

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  2. Making Space for Spatial Proportions

    ERIC Educational Resources Information Center

    Matthews, Percival G.; Hubbard, Edward M.

    2017-01-01

    The three target articles presented in this special issue converged on an emerging theme: the importance of spatial proportional reasoning. They suggest that the ability to map between symbolic fractions (like 1/5) and nonsymbolic, spatial representations of their sizes or "magnitudes" may be especially important for building robust…

  3. Invariant visual object recognition: a model, with lighting invariance.

    PubMed

    Rolls, Edmund T; Stringer, Simon M

    2006-01-01

    How are invariant representations of objects formed in the visual cortex? We describe a neurophysiological and computational approach which focusses on a feature hierarchy model in which invariant representations can be built by self-organizing learning based on the statistics of the visual input. The model can use temporal continuity in an associative synaptic learning rule with a short term memory trace, and/or it can use spatial continuity in Continuous Transformation learning. The model of visual processing in the ventral cortical stream can build representations of objects that are invariant with respect to translation, view, size, and in this paper we show also lighting. The model has been extended to provide an account of invariant representations in the dorsal visual system of the global motion produced by objects such as looming, rotation, and object-based movement. The model has been extended to incorporate top-down feedback connections to model the control of attention by biased competition in for example spatial and object search tasks. The model has also been extended to account for how the visual system can select single objects in complex visual scenes, and how multiple objects can be represented in a scene.

  4. Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure. I - Theory

    NASA Technical Reports Server (NTRS)

    Padovan, Joe

    1987-01-01

    In a three-part series of papers, a generalized finite element analysis scheme is developed to handle the steady and transient response of moving/rolling nonlinear viscoelastic structure. This paper considers the development of the moving/rolling element strategy, including the effects of large deformation kinematics and viscoelasticity modeled by fractional integrodifferential operators. To improve the solution strategy, a special hierarchical constraint procedure is developed for the case of steady rolling/translating, as well as a transient scheme involving the use of a Grunwaldian representation of the fractional operator.

  5. Maxent Harmonic Grammars and Phonetic Duration

    ERIC Educational Resources Information Center

    Lefkowitz, Lee Michael

    2017-01-01

    Research in phonetics has established the grammatical status of gradient phonetic patterns in language, suggesting that there is a component of the grammar that governs systematic relationships between discrete phonological representations and gradiently continuous acoustic or articulatory phonetic representations. This dissertation joins several…

  6. 21 CFR 701.1 - Misbranding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.1 Misbranding. (a) Among representations in labeling of a cosmetic which render such cosmetic misbranded is a false or misleading representation with respect to another cosmetic...

  7. 21 CFR 701.1 - Misbranding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.1 Misbranding. (a) Among representations in labeling of a cosmetic which render such cosmetic misbranded is a false or misleading representation with respect to another cosmetic...

  8. 21 CFR 701.1 - Misbranding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.1 Misbranding. (a) Among representations in labeling of a cosmetic which render such cosmetic misbranded is a false or misleading representation with respect to another cosmetic...

  9. 21 CFR 701.1 - Misbranding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.1 Misbranding. (a) Among representations in labeling of a cosmetic which render such cosmetic misbranded is a false or misleading representation with respect to another cosmetic...

  10. 21 CFR 701.1 - Misbranding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.1 Misbranding. (a) Among representations in labeling of a cosmetic which render such cosmetic misbranded is a false or misleading representation with respect to another cosmetic...

  11. Radon Dose Determination for Cave Guides in Czech Republic

    NASA Astrophysics Data System (ADS)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-01

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the "cave factor" 1.5. The value of "cave factor" which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5 for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of "radon pockets" with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.

  12. Quick estimate of oil discovery from gas-condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarem, A.M.

    1966-10-24

    A quick method of estimating the depletion performance of gas-condensate reservoirs is presented by graphical representations. The method is based on correlations reported in the literature and expresses recoverable liquid as function of gas reserves, producing gas-oil ratio, and initial and final reservoir pressures. The amount of recoverable liquid reserves (RLR) under depletion conditions, is estimated from an equation which is given. Where the liquid-reserves are in stock-tank barrels the gas reserves are in Mcf, with the arbitrary constant, N calculated from one graphical representation by dividing fractional oil recovery by the initial gas-oil ratio and multiplying 10U6D for convenience.more » An equation is given for estimating the coefficient C. These factors (N and C) can be determined from the graphical representations. An example calculation is included.« less

  13. Asymmetries in the Processing of Vowel Height

    ERIC Educational Resources Information Center

    Scharinger, Mathias; Monahan, Philip J.; Idsardi, William J.

    2012-01-01

    Purpose: Speech perception can be described as the transformation of continuous acoustic information into discrete memory representations. Therefore, research on neural representations of speech sounds is particularly important for a better understanding of this transformation. Speech perception models make specific assumptions regarding the…

  14. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization

    NASA Astrophysics Data System (ADS)

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-01

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  15. Communication: Density functional theory model for multi-reference systems based on the exact-exchange hole normalization.

    PubMed

    Laqua, Henryk; Kussmann, Jörg; Ochsenfeld, Christian

    2018-03-28

    The correct description of multi-reference electronic ground states within Kohn-Sham density functional theory (DFT) requires an ensemble-state representation, employing fractionally occupied orbitals. However, the use of fractional orbital occupation leads to non-normalized exact-exchange holes, resulting in large fractional-spin errors for conventional approximative density functionals. In this communication, we present a simple approach to directly include the exact-exchange-hole normalization into DFT. Compared to conventional functionals, our model strongly improves the description for multi-reference systems, while preserving the accuracy in the single-reference case. We analyze the performance of our proposed method at the example of spin-averaged atoms and spin-restricted bond dissociation energy surfaces.

  16. A simple filter circuit for denoising biomechanical impact signals.

    PubMed

    Subramaniam, Suba R; Georgakis, Apostolos

    2009-01-01

    We present a simple scheme for denoising non-stationary biomechanical signals with the aim of accurately estimating their second derivative (acceleration). The method is based on filtering in fractional Fourier domains using well-known low-pass filters in a way that amounts to a time-varying cut-off threshold. The resulting algorithm is linear and its design is facilitated by the relationship between the fractional Fourier transform and joint time-frequency representations. The implemented filter circuit employs only three low-order filters while its efficiency is further supported by the low computational complexity of the fractional Fourier transform. The results demonstrate that the proposed method can denoise the signals effectively and is more robust against noise as compared to conventional low-pass filters.

  17. Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2018-04-01

    In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.

  18. Universal sequence map (USM) of arbitrary discrete sequences

    PubMed Central

    2002-01-01

    Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR). The latter enables the representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules. PMID:11895567

  19. A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries

    NASA Astrophysics Data System (ADS)

    Cusimano, N.; Gerardo-Giorda, L.

    2018-06-01

    Classical models of electrophysiology do not typically account for the effects of high structural heterogeneity in the spatio-temporal description of excitation waves propagation. We consider a modification of the Monodomain model obtained by replacing the diffusive term of the classical formulation with a fractional power of the operator, defined in the spectral sense. The resulting nonlocal model describes different levels of tissue heterogeneity as the fractional exponent is varied. The numerical method for the solution of the fractional Monodomain relies on an integral representation of the nonlocal operator combined with a finite element discretisation in space, allowing to handle in a natural way bounded domains in more than one spatial dimension. Numerical tests in two spatial dimensions illustrate the features of the model. Activation times, action potential duration and its dispersion throughout the domain are studied as a function of the fractional parameter: the expected peculiar behaviour driven by tissue heterogeneities is recovered.

  20. 15 CFR 719.7 - Representation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Representation. 719.7 Section 719.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ENFORCEMENT § 719.7...

  1. 15 CFR 719.7 - Representation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Representation. 719.7 Section 719.7 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ENFORCEMENT § 719.7...

  2. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.

    PubMed

    Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold

    2014-12-01

    In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.

  3. Reflection Positive Stochastic Processes Indexed by Lie Groups

    NASA Astrophysics Data System (ADS)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  4. Calculation of the dielectric properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Engel, G. E.; Farid, Behnam

    1992-12-01

    We report on numerical calculations of the dynamical dielectric function in silicon, using a continued-fraction expansion of the polarizability and a recently proposed representation of the inverse dielectric function in terms of plasmonlike excitations. A number of important technical refinements to further improve the computational efficiency of the method are introduced, making the ab initio calculation of the full energy dependence of the dielectric function comparable in cost to calculation of its static value. Physical results include the observation of previously unresolved features in the random-phase approximated dielectric function and its inverse within the framework of density-functional theory in the local-density approximation, which may be accessible to experiment. We discuss the dispersion of plasmon energies in silicon along the Λ and Δ directions and find improved agreement with experiment compared to earlier calculations. We also present quantitative evidence indicating the degree of violation of the Johnson f-sum rule for the dielectric function due to the nonlocality of the one-electron potential used in the underlying band-structure calculations.

  5. Non-Schwarzschild black-hole metric in four dimensional higher derivative gravity: Analytical approximation

    NASA Astrophysics Data System (ADS)

    Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.

    2017-09-01

    Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.

  6. Pattern selection and super-patterns in the bounded confidence model

    DOE PAGES

    Ben-Naim, E.; Scheel, A.

    2015-10-26

    We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes ofmore » the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. Furthermore, the spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.« less

  7. Synthesis of urban greenhouse gas emission estimates from the Indianapolis Flux Experiment (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Davis, K. J.; Deng, A.; Lauvaux, T.; Miles, N. L.; Richardson, S.; Sarmiento, D. P.; Wu, K.; Brewer, A.; Hardesty, R. M.; McKain, K.; Sweeney, C.; Gurney, K. R.; Liang, J.; O'Keeffe, D.; Patarasuk, R.; Cambaliza, M. O. L.; Harvey, R. M.; Heimburger, A. M. F.; Shepson, P. B.; Karion, A.; Lopez-Coto, I.; Prasad, K.; Whetstone, J. R.

    2016-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together high-resolution (in both space and time) inventory assessments, a multi-year record of in situ CO2, CH4and CO from tower-based and aircraft-based atmospheric measurements along with a complementary suite of 35 trace gases and isotopes from flasks collected at the same sites, and atmospheric modelling. Together, these provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Here we synthesize the results to date, and demonstrate broad agreement amongst city-wide emission rates determined from the various top-down and bottom-up methods. We highlight the areas where ongoing efforts are reducing uncertainties in the overall flux estimation, including accurate representation of atmospheric transport, partitioning of GHG source types and the influence of background atmospheric GHG mole fractions.

  8. Applications of rigged Hilbert spaces in quantum mechanics and signal processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid; Gadella, M., E-mail: manuelgadella1@gmail.com

    Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them ismore » obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.« less

  9. Numerical investigation of flow motion and performance of a horizontal axis tidal turbine subjected to a steady current

    NASA Astrophysics Data System (ADS)

    Li, Lin-juan; Zheng, Jin-hai; Peng, Yu-xuan; Zhang, Ji-sheng; Wu, Xiu-guang

    2015-04-01

    Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k- ɛ model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.

  10. Pattern selection and super-patterns in the bounded confidence model

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Scheel, A.

    2015-10-01

    We study pattern formation in the bounded confidence model of opinion dynamics. In this random process, opinion is quantified by a single variable. Two agents may interact and reach a fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from a uniform distribution of opinions with compact support, a traveling wave forms and it propagates from the domain boundary into the unstable uniform state. Consequently, the system reaches a steady state with isolated clusters that are separated by distance larger than the interaction range. These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations between them are nearly constant. We obtain analytically the average separation between clusters L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters. The spatial periods of these modulations are a series of integers that follow from the continued-fraction representation of the irrational average separation L.

  11. Fractional System Identification: An Approach Using Continuous Order-Distributions

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1999-01-01

    This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.

  12. Evaluating and Evolving Metadata in Multiple Dialects

    NASA Technical Reports Server (NTRS)

    Kozimore, John; Habermann, Ted; Gordon, Sean; Powers, Lindsay

    2016-01-01

    Despite many long-term homogenization efforts, communities continue to develop focused metadata standards along with related recommendations and (typically) XML representations (aka dialects) for sharing metadata content. Different representations easily become obstacles to sharing information because each representation generally requires a set of tools and skills that are designed, built, and maintained specifically for that representation. In contrast, community recommendations are generally described, at least initially, at a more conceptual level and are more easily shared. For example, most communities agree that dataset titles should be included in metadata records although they write the titles in different ways.

  13. Three-Dimensional Piecewise-Continuous Class-Shape Transformation of Wings

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    Class-Shape Transformation (CST) is a popular method for creating analytical representations of the surface coordinates of various components of aerospace vehicles. A wide variety of two- and three-dimensional shapes can be represented analytically using only a modest number of parameters, and the surface representation is smooth and continuous to as fine a degree as desired. This paper expands upon the original two-dimensional representation of airfoils to develop a generalized three-dimensional CST parametrization scheme that is suitable for a wider range of aircraft wings than previous formulations, including wings with significant non-planar shapes such as blended winglets and box wings. The method uses individual functions for the spanwise variation of airfoil shape, chord, thickness, twist, and reference axis coordinates to build up the complete wing shape. An alternative formulation parameterizes the slopes of the reference axis coordinates in order to relate the spanwise variation to the tangents of the sweep and dihedral angles. Also discussed are methods for fitting existing wing surface coordinates, including the use of piecewise equations to handle discontinuities, and mathematical formulations of geometric continuity constraints. A subsonic transport wing model is used as an example problem to illustrate the application of the methodology and to quantify the effects of piecewise representation and curvature constraints.

  14. 32 CFR 776.35 - Declining or terminating representation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Declining or terminating representation. 776.35 Section 776.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS... assignment or employment of other counsel, and surrendering papers and property to which the client is...

  15. 32 CFR 776.35 - Declining or terminating representation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Declining or terminating representation. 776.35 Section 776.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS... assignment or employment of other counsel, and surrendering papers and property to which the client is...

  16. 32 CFR 776.35 - Declining or terminating representation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Declining or terminating representation. 776.35 Section 776.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS... assignment or employment of other counsel, and surrendering papers and property to which the client is...

  17. 32 CFR 776.35 - Declining or terminating representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Declining or terminating representation. 776.35 Section 776.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS... assignment or employment of other counsel, and surrendering papers and property to which the client is...

  18. 32 CFR 776.35 - Declining or terminating representation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Declining or terminating representation. 776.35 Section 776.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY MISCELLANEOUS... assignment or employment of other counsel, and surrendering papers and property to which the client is...

  19. 29 CFR 501.18 - Representation of the Secretary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Representation of the Secretary. 501.18 Section 501.18 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN AGRICULTURAL WORKERS ADMITTED UNDER SECTION 218 OF...

  20. 29 CFR 502.18 - Representation of the Secretary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Representation of the Secretary. 502.18 Section 502.18 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN AGRICULTURAL WORKERS ADMITTED UNDER SECTION 218 OF...

  1. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    PubMed

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m 3 and 1500-5600 Bq/m 3 , respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Remote sensing data assimilation for a prognostic phenology model

    Treesearch

    R. Stockli; T. Rutishauser; D. Dragoni; J. O' Keefe; P. E. Thornton; M. Jolly; L. Lu; A. S. Denning

    2008-01-01

    Predicting the global carbon and water cycle requires a realistic representation of vegetation phenology in climate models. However most prognostic phenology models are not yet suited for global applications, and diagnostic satellite data can be uncertain and lack predictive power. We present a framework for data assimilation of Fraction of Photosynthetically Active...

  3. How to Show One-Fourth? Uncovering Hidden Context through Reciprocal Learning

    ERIC Educational Resources Information Center

    Abramovich, S.; Brouwer, P.

    2007-01-01

    This paper suggests that mathematics teacher educators should listen carefully to what their students are saying. More specifically, it demonstrates how from one pre-teacher's non-traditional geometric representation of a unit fraction, a variety of learning environments that lead to the enrichment of mathematics for teaching can be developed. The…

  4. Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner

    2001-01-01

    Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…

  5. Predicting phase behavior of mixtures of reservoir fluids with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Lingane, P.J.

    1983-10-01

    The use of an equation of state to predict phase behavior during carbon dioxide flooding is well established. There is consensus that the characterization of the C fraction, the grouping of this fraction into ''pseudo components'', and the selection of interaction parameters are the most important variables. However, the literature is vague as to how to best select the pseudo components, especially when aiming for a few-component representation as for a field scale compositional simulation. Single-contact phase behavior is presented for mixtures of Ford Geraldine (Delaware), Maljamar (Grayburg), West Sussex (Shannon), and Reservoir D reservoir fluids, and of a syntheticmore » oil C/C/C, with carbon dioxide. One can reproduce the phase behavior of these mixtures using 3-5 pseudo components and common interaction parameters. The critical properties of the pseudo components are calculated from detailed oil characterizations. Because the parameters are not further adjusted, this approach reduces the empiricism in fitting phase data and may result in a more accurate representation of the system as the composition of the oil changes during the approach to miscibility.« less

  6. Matrix product state description of Halperin states

    NASA Astrophysics Data System (ADS)

    Crépel, V.; Estienne, B.; Bernevig, B. A.; Lecheminant, P.; Regnault, N.

    2018-04-01

    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact matrix product state (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wave functions, the Halperin states. These can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wave-function symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation lengths, which are compared to plasma analogy arguments.

  7. Predicting depression from illness severity in cardiovascular disease patients: self-efficacy beliefs, illness perception, and perceived social support as mediators.

    PubMed

    Greco, A; Steca, P; Pozzi, R; Monzani, D; D'Addario, M; Villani, A; Rella, V; Giglio, A; Malfatto, G; Parati, G

    2014-04-01

    Many studies have investigated the relationships between cardiovascular diseases and patients' depression; nevertheless, few is still known as regard the impact of illness severity on depression and whether psychosocial variables mediate this association. The aim of this study is to investigate the putative mediating role of illness representations, self-efficacy beliefs, and perceived social support on the relationship between illness severity and depression. A total of 75 consecutive patients with cardiovascular disease (80 % men; mean age = 65.44, SD = 10.20) were enrolled in an Italian hospital. Illness severity was measured in terms of left ventricular ejection fraction, whereas psychological factors were assessed using self-report questionnaires. The relationship between left ventricular ejection fraction and depression was mediated by identity illness perception, self-efficacy beliefs in managing cardiac risk factors, and perceived social support. The treatment of depression in cardiovascular disease patients may therefore benefit from a psychological intervention focused on patients' illness representations, self-efficacy beliefs, and their perceived social support.

  8. The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain

    NASA Astrophysics Data System (ADS)

    Pskhu, A. V.

    2017-12-01

    We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.

  9. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.

  10. The time-fractional radiative transport equation—Continuous-time random walk, diffusion approximation, and Legendre-polynomial expansion

    NASA Astrophysics Data System (ADS)

    Machida, Manabu

    2017-01-01

    We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.

  11. High-order fractional partial differential equation transform for molecular surface construction.

    PubMed

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation.

  12. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  13. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  14. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  15. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  16. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  17. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  18. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  19. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  20. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  1. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  2. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  3. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  4. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  5. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  6. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  7. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  9. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  10. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  11. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  12. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  13. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  14. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  15. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  16. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  17. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  18. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  19. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  20. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  1. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  2. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  3. 32 CFR 727.10 - Fees, compensation, solicitation, and representation in civilian courts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Fees, compensation, solicitation, and representation in civilian courts. 727.10 Section 727.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL LEGAL ASSISTANCE § 727.10 Fees, compensation, solicitation, and...

  4. 32 CFR 516.30 - Procedures for obtaining certification and DOJ representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Procedures for obtaining certification and DOJ representation. 516.30 Section 516.30 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Individual Liability § 516.30 Procedures for...

  5. 48 CFR 52.226-3 - Disaster or Emergency Area Representation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Disaster or Emergency Area Representation. 52.226-3 Section 52.226-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 52...

  6. 48 CFR 52.226-3 - Disaster or Emergency Area Representation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Disaster or Emergency Area Representation. 52.226-3 Section 52.226-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 52...

  7. Teaching Representation Translations with Magnetic Field Experiments

    ERIC Educational Resources Information Center

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and…

  8. 40 CFR 97.213 - Certificate of representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR Designated Representative for CAIR SO2 Sources § 97.213 Certificate of representation. (a) A complete certificate of... the following elements in a format prescribed by the Administrator: (1) Identification of the CAIR SO2...

  9. 32 CFR 516.30 - Procedures for obtaining certification and DOJ representation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true Procedures for obtaining certification and DOJ representation. 516.30 Section 516.30 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Individual Liability § 516.30 Procedures for...

  10. 29 CFR 801.41 - Representation of the Secretary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Representation of the Secretary. 801.41 Section 801.41 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS... the Supreme Court, the Solicitor of Labor may appear for and represent the Secretary in any civil...

  11. 29 CFR 801.65 - Appearances; representation of the Department of Labor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Appearances; representation of the Department of Labor. 801.65 Section 801.65 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR OTHER LAWS APPLICATION OF THE EMPLOYEE POLYGRAPH PROTECTION ACT OF 1988 Administrative...

  12. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2015-06-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  13. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2016-01-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  14. The effects of the local environment on active galactic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzer, L. H.; De Robertis, M. M., E-mail: liannemanzer@gmail.com, E-mail: mmdr@yorku.ca

    There continues to be significant controversy regarding the mechanism(s) responsible for the initiation and maintenance of activity in galactic nuclei. In this paper we will investigate possible environmental triggers of nuclear activity through a statistical analysis of a large sample of galaxy groups. The focus of this paper is to identify active galactic nuclei (AGNs) and other emission-line galaxies in these groups and to compare their frequency with a sample of over 260,000 isolated galaxies from the same catalog. The galaxy groups are taken from the catalog of Yang et al., in which over 20,000 virialized groups of galaxies (2more » ≤ N ≤ 20) with redshifts between 0.01 and 0.20 are from the Sloan Digital Sky Survey. We first investigate the completeness of our data set and find, though biases are a concern particularly at higher redshift, that our data provide a fair representation of the local universe. After correcting emission-line equivalent widths for extinction and underlying Balmer stellar absorption, we classify galaxies in the sample using traditional emission-line ratios, while incorporating measurement uncertainties. We find a significantly higher fraction of AGNs in groups compared with the isolated sample. Likewise, a significantly higher fraction of absorption-line galaxies are found in groups, while a higher fraction of star-forming galaxies prefer isolated environments. Within grouped environments, AGNs and star-forming galaxies are found more frequently in small- to medium-richness groups, while absorption-line galaxies prefer groups with larger richnesses. Groups containing only emission-line galaxies have smaller virial radii, velocity dispersions, and masses compared with those containing only absorption-line galaxies. Furthermore, the AGN fraction increases with decreasing distance to the group centroid, independent of galaxy morphology. Using properties obtained from Galaxy Zoo, there is an increased fraction of AGNs within merging systems, unlike star-forming galaxies. These results provide some indication that the local environment does play a role in initiating activity in galactic nuclei, but it is by no means simple or straightforward.« less

  15. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  16. A continued fraction resummation form of bath relaxation effect in the spin-boson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn

    2015-02-28

    In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.

  17. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  18. A Deterministic Interfacial Cyclic Oxidation Spalling Model. Part 1; Model Development and Parametric Response

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2002-01-01

    An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.

  19. Social representations, individual and collective mind: a study of Wundt, Cattaneo and Moscovici.

    PubMed

    Tateo, Luca; Iannaccone, Antonio

    2012-03-01

    The paper presents a discussion on the role of Social Representations in the articulation between individual and collective dimensions of mental activity. An analysis of some concepts in the works of Wundt and Cattaneo is the starting point for a discussion of the relationship between individual processes, practices, artifacts, symbolic systems and functions of Social Representations in the development of culture and individuals. In this perspective, Social Representations could be considered a space of negotiation of the meaning. The relationship between Social Representations, symbolic systems, practices and sense making involves the elaboration of the tension between continuity and innovation, which is developed through communication and practice along time in the interaction between individual and collective minds.

  20. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    PubMed

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Examining the NZESM Cloud representation with Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Schuddeboom, Alex; McDonald, Adrian; Parsons, Simon; Morgenstern, Olaf; Harvey, Mike

    2017-04-01

    Several different cloud regimes are identified from MODIS satellite data and the representation of these regimes within the New Zealand Earth System Model (NZESM) is examined. For the development of our cloud classification we utilize a neural network algorithm known as self organizing maps (SOMs) on MODIS cloud top pressure - cloud optical thickness joint histograms. To evaluate the representation of the cloud within NZESM, the frequency and geographical distribution of the regimes is compared between the NZESM and satellite data. This approach has the advantage of not only identifying differences, but also potentially giving additional information about the discrepancy such as in which regions or phases of cloud the differences are most prominent. To allow for a more direct comparison between datasets, the COSP satellite simulation software is applied to NZESM output. COSP works by simulating the observational processes linked to a satellite, within the GCM, so that data can be generated in a way that shares the particular observational bias of specific satellites. By taking the COSP joint histograms and comparing them to our existing classifications we can easily search for discrepancies between the observational data and the simulations without having to be cautious of biases introduced by the satellite. Preliminary results, based on data for 2008, show a significant decrease in overall cloud fraction in the NZESM compared to the MODIS satellite data. To better understand the nature of this discrepancy, the cloud fraction related to different cloud heights and phases were also analysed.

  2. Connecting Architecture and Implementation

    NASA Astrophysics Data System (ADS)

    Buchgeher, Georg; Weinreich, Rainer

    Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.

  3. REPRESENTATIONS OF WEAK AND STRONG INTEGRALS IN BANACH SPACES

    PubMed Central

    Brooks, James K.

    1969-01-01

    We establish a representation of the Gelfand-Pettis (weak) integral in terms of unconditionally convergent series. Moreover, absolute convergence of the series is a necessary and sufficient condition in order that the weak integral coincide with the Bochner integral. Two applications of the representation are given. The first is a simplified proof of the countable additivity and absolute continuity of the indefinite weak integral. The second application is to probability theory; we characterize the conditional expectation of a weakly integrable function. PMID:16591755

  4. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    PubMed Central

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  5. Fractangi: A Tangible Learning Environment for Learning about Fractions with an Interactive Number Line

    ERIC Educational Resources Information Center

    Mpiladeri, Magda; Palaigeorgiou, George; Lemonidis, Charalampos

    2016-01-01

    Tangible user interfaces (TUIs) are frequently used to teach children abstract concepts, in science and mathematics. TUIs offer a natural and immediate form of interaction that promotes active and hands-on engagement and allows for exploration and reflection. Tangible objects are representational artifacts in their essence, and they increase the…

  6. Developmental Change in the Acuity of Approximate Number and Area Representations

    ERIC Educational Resources Information Center

    Odic, Darko; Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin

    2013-01-01

    From very early in life, humans can approximate the number and surface area of objects in a scene. The ability to discriminate between 2 approximate quantities, whether number or area, critically depends on the ratio between the quantities, with the most difficult ratio that a participant can reliably discriminate known as the Weber fraction.…

  7. Representing the Inuit in Contemporary British and Canadian Juvenile Non-Fiction.

    ERIC Educational Resources Information Center

    David, Robert G.

    2001-01-01

    Examines text and pictorial representations of the Inuit in juvenile reference books and in geographical and historical juvenile non-fiction works. Finds continuing prevalence of a wide range of stereotypes. Identifies strengths and weaknesses of a variety of such representations, aided by a discussion group of Inuit people. (SR)

  8. Mother-Child Attachment Representation and Relationships over Time in Mexican-Heritage Families

    ERIC Educational Resources Information Center

    Howes, Carollee; Vu, Jennifer A.; Hamilton, Claire

    2011-01-01

    Continuity and intergenerational transmission of representations of attachment were examined in a longitudinal sample of 88 Mexican immigrant mothers and their children who participated in the local intervention group of the Early Head Start Evaluation Study. The authors interviewed mothers with the Adult Attachment Interview (AAI) and Parent…

  9. The Inner Representation of the Dead Child and the Worldviews of Bereaved Parents.

    ERIC Educational Resources Information Center

    Klass, Dennis

    1993-01-01

    Notes that trauma of child's death challenges parents' worldview. Demonstrates how the task of affirming or remolding one's worldview is consistently intertwined with parents' continued interaction with inner representation of their dead child. Data are presented from 10-year ethnographic study of self-help group of bereaved parents. (Author/NB)

  10. 40 CFR 96.213 - Certificate of representation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR Designated Representative for CAIR SO2 Sources § 96.213 Certificate of representation. (a) A...) Identification of the CAIR SO2 source, and each CAIR SO2 unit at the source, for which the certificate of...

  11. On a self-consistent representation of earth models, with an application to the computing of internal flattening

    NASA Astrophysics Data System (ADS)

    Denis, C.; Ibrahim, A.

    Self-consistent parametric earth models are discussed in terms of a flexible numerical code. The density profile of each layer is represented as a polynomial, and figures of gravity, mass, mean density, hydrostatic pressure, and moment of inertia are derived. The polynomial representation also allows computation of the first order flattening of the internal strata of some models, using a Gauss-Legendre quadrature with a rapidly converging iteration technique. Agreement with measured geophysical data is obtained, and algorithm for estimation of the geometric flattening for any equidense surface identified by its fractional radius is developed. The program can also be applied in studies of planetary and stellar models.

  12. The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction

    NASA Astrophysics Data System (ADS)

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa

    It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.

  13. Continuous modeling of a grain boundary in MgO and its disclination induced grain-boundary migration mechanism

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Sun, X.; Taupin, V.; Fressengeas, C.

    2016-12-01

    Grain boundaries (GBs) are thin material layers where the lattice rotates from one orientation to the next one within a few nanometers. Because they treat these layers as infinitely thin interfaces, large-scale polycrystalline representations fail to describe their structure. Conversely, atomistic representations provide a detailed description of the GBs, but their character remains discrete and not prone to coarse-graining procedures. Continuum descriptions based on kinematic and crystal defect fields defined at interatomic scale are appealing because they can provide smooth and thorough descriptions of GBs, recovering in some sense the atomistic description and potentially serving as a basis for coarse-grained polycrystalline representations. In this work, a crossover between atomistic description and continuous representation of a MgO tilt boundary in polycrystals is set-up to model the periodic arrays of structural units by using dislocation and disclination dipole arrays along GBs. The strain, rotation, curvature, disclination and dislocation density fields are determined in the boundary area by using the discrete atomic positions generated by molecular dynamics simulations. Then, this continuous disclination/dislocation model is used as part of the initial conditions in elasto-plastic continuum mechanics simulations to investigate the shear-coupled boundary migration of tilt boundaries. The present study leads to better understanding of the structure and mechanical architecture of grain boundaries.

  14. FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.

    2016-12-01

    Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.

  15. A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions

    NASA Astrophysics Data System (ADS)

    Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan

    2009-04-01

    Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.

  16. The weakly coupled fractional one-dimensional Schrödinger operator with index 1 < α <= 2

    NASA Astrophysics Data System (ADS)

    Hatzinikitas, Agapitos N.

    2010-12-01

    Considering the space fractional Weyl operator hat{P}^{α } on the separable Hilbert space H=L^2({R},dx) we determine the asymptotic behavior of both the free Green's function and its variation with respect to energy in one dimension for bound states. Later, we specify the Birman-Schwinger representation for the Schrödinger operator hat{H}_g=K_{α }hat{P}^{α }+ghat{V} and extract the finite-rank portion which is essential for the asymptotic expansion of the ground state. Finally, we determine necessary and sufficient conditions for there to be a bound state for small coupling constant g.

  17. Evacuation simulation using Hybrid Space Discretisation and Application to Large Underground Rail Tunnel Station

    NASA Astrophysics Data System (ADS)

    Chooramun, N.; Lawrence, P. J.; Galea, E. R.

    2017-08-01

    In all evacuation simulation tools, the space through which agents navigate and interact is represented by one the following methods, namely Coarse regions, Fine nodes and Continuous regions. Each of the spatial representation methods has its benefits and limitations. For instance, the Coarse approach allows simulations to be processed very rapidly, but is unable to represent the interactions of the agents from an individual perspective; the Continuous approach provides a detailed representation of agent movement and interaction but suffers from relatively poor computational performance. The Fine nodal approach presents a compromise between the Continuous and Coarse approaches such that it allows agent interaction to be modelled while providing good computational performance. Our approach for representing space in an evacuation simulation tool differs such that it allows evacuation simulations to be run using a combination of Coarse regions, Fine nodes and Continuous regions. This approach, which we call Hybrid Spatial Discretisation (HSD), is implemented within the buildingEXODUS evacuation simulation software. The HSD incorporates the benefits of each of the spatial representation methods whilst providing an optimal environment for representing agent movement and interaction. In this work, we demonstrate the effectiveness of the HSD through its application to a moderately large case comprising of an underground rail tunnel station with a population of 2,000 agents.

  18. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  19. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus

    NASA Astrophysics Data System (ADS)

    Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia

    2018-04-01

    In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.

  20. Embodied effects of conceptual knowledge continuously perturb the hand in flight.

    PubMed

    Till, Bernie C; Masson, Michael E J; Bub, Daniel N; Driessen, Peter F

    2014-08-01

    Attending to a manipulable object evokes a mental representation of hand actions associated with the object's form and function. In one view, these representations are sufficiently abstract that their competing influence on an unrelated action is confined to the planning stages of movement and does not affect its on-line control. Alternatively, an object may evoke action representations that affect the entire trajectory of an unrelated grasping action. We developed a new methodology to statistically analyze the forward motion and rotation of the hand and fingers under different task conditions. Using this novel approach, we established that a grasping action executed after seeing a photograph of an object is systematically perturbed even into the late stages of its trajectory by the competing influence of the grasping posture associated with the object. Our results show that embodied effects of conceptual knowledge continuously modulate the hand in flight. © The Author(s) 2014.

  1. H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps.

    PubMed

    Vallicrosa, Guillem; Ridao, Pere

    2018-05-01

    Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping) framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM) is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles). These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.

  2. "Old People Are Useless:" Representations of Aging on "The Simpsons"

    ERIC Educational Resources Information Center

    Blakeborough, Darren

    2008-01-01

    This article looks at how "The Simpsons'" representations of aging, considered ageist and stereotypical by some, can be viewed as a positive look at the elderly that attempts to subvert the same stereotypes that it seemingly employs. The Baby Boom cohort is now seen as an attractive economic group, and as they continue their journey through the…

  3. Radon Dose Determination for Cave Guides in Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thinova, Lenka; Rovenska, Katerina

    2008-08-07

    According to recommended approach there are six (from total of twelve) open-to-public caves in Czech Republic, reaching near to an effective lung-dose of 6mSv/year. A conservative approach for estimating the potential effective lung-dose in caves (or underground) is based on two season's measurements, using solid state alpha track detector (Kodak in plastic diffusion chamber). The obtained dataset is converted into an annual effective dose, in agreement with the ICRP65 recommendation, using the 'cave factor' 1.5. The value of 'cave factor' which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached/attached ratio (6.5 : 93.5more » for residential places, 13.6 : 86.4 for caves due to lower concentration of free aerosols) and on the equilibrium factor. Thus conversion factor is 1.5 times higher in comparison with ICRP 65. Is this correct? Because a more precisely determined dose value would have a significant impact on radon remedies, or on restricting the time workers stay underground, a series of measurement was initiated in 2003 with the aim to specify input data, computation and errors in effective dose assessment in each one of the evaluated caves separately. The enhancement of personal dosimetry for underground work places includes a study of the given questions, from the following points of view in each cave: continual radon measurement; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of free {sup 218}Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoil and in water inside/outside, a study of the radon sources in the cave; determination of the free fraction from continual unattached and attached fraction measurement (grid and filter); thoron measurement. Air flow measurements provide very interesting information about the origin of 'radon pockets' with very high radon concentration, and enable study of the location of the radon supply and its transfer among individual areas of the cave. Most of the results show the equilibrium factor around F = 0.2-0.7 and the unattached fraction around 2%-30%. One of the most important question remains: how accurately was the unattached fraction measured? Part of this project was to verify the influence of etched track detector position in the cave.« less

  4. 29 CFR 4211.4 - Contributions for purposes of the numerator and denominator of the allocation fractions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the allocation fractions. 4211.4 Section 4211.4 Labor Regulations Relating to Labor (Continued... denominator of the allocation fractions. Each of the allocation fractions used in the presumptive, modified... five-year period. (a) The numerator of the allocation fraction, with respect to a withdrawing employer...

  5. Kidney cell electrophoresis, continuing task

    NASA Technical Reports Server (NTRS)

    Todd, P. W.

    1985-01-01

    Materials and procedures for microgravity electrophoresis of living human embryonic kidney cells were evaluated to provide ground support in the form of analytical cell electrophoresis and flow cytometry. Preflight culture media, electrophoresis buffer, fraction collection media, temperature profiles, and urokinase assay procedures were tested prior to flight. Electrophoretic mobility distributions of aliquots of the cell population to be fractionated in flight were obtained. Cells were prepared in suspension prior to flight in electrophoresis buffer and 10% calf serum. Electrophoretic separation proceeded in electrophoresis buffer without serum in the Continuous Flow Electrophoretic Separator, and fractions were collected into sample bags containing culture medium and concentrated serum. Fractions that yielded enough progeny cells were analyzed for morphology and electrophoretic mobility distributions. It is noted that the lowest mobility fraction studied produced higher mobility progeny while the other fractions produced progeny cells with mobilities related to the fractions from which they were collected.

  6. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illarionov, A A

    2014-03-31

    Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.

  7. Tracking Trends in Fractional Forest Cover Change using Long Term Data from AVHRR and MODIS

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; DiMiceli, C.; Sohlberg, R. A.; Hansen, M.; Carroll, M.; Kelly, M.; Townshend, J. R.

    2014-12-01

    Tree cover affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Accurate and long-term continuous observation of tree cover change is critical for the study of the gradual ecosystem change. Tree cover is most commonly inferred from categorical maps which may inadequately represent within-class heterogeneity for many analyses. Alternatively, Vegetation Continuous Fields data measures fractions or proportions of pixel area. Recent development in remote sensing data processing and cross sensor calibration techniques enabled the continuous, long-term observations such as Land Long-Term Data Records. Such data products and their surface reflectance data have enhanced the possibilities for long term Vegetation Continuous Fields data, thus enabling the estimation of long term trend of fractional forest cover change. In this presentation, we will summarize the progress in algorithm development including automation of training selection for deciduous and evergreen forest, the preliminary results, and its future applications to relate trends in fractional forest cover change and environmental change.

  8. The Importance of Multiple Representations of Mathematical Problems: Evidence from Chinese Preservice Elementary Teachers' Analysis of a Learning Goal

    ERIC Educational Resources Information Center

    Kang, Rui; Liu, Di

    2018-01-01

    This article describes a study of how Chinese preservice teachers unpacked a learning goal pertaining to adding fractions and understanding the concepts underlying the operation. Based on work in the USA by Morris, Hiebert, and Spizter ("Journal for Research in Mathematics Education," 40(5), 491-529, 2009), 50 Chinese preservice teachers…

  9. On representation of mechanical behavior and stereological measures of microstructure

    NASA Technical Reports Server (NTRS)

    Onat, E. T.; Wright, S. I.

    1991-01-01

    Macroscopic homogeneity of a heterogeneous body is defined from various points of view. The applicability of the principle of Delesse to a single macroscopically homogeneous body is discussed. It is then seen that a function derived from a consideration of the area fraction of a phase can serve as a measure of clustering of particles of that phase.

  10. Young runoff fractions control streamwater age and solute concentration dynamics

    Treesearch

    Paolo Benettin; Scott W. Bailey; Andrea Rinaldo; Gene E. Likens; Kevin J. McGuire; Gianluca Botter

    2017-01-01

    We introduce a new representation of coupled solute and water age dynamics at the catchment scale, which shows how the contributions of young runoff waters can be directly referenced to observed water quality patterns. The methodology stems from recent trends in hydrologic transport that acknowledge the dynamic nature of streamflow age and explores the use of water age...

  11. Continous Representation Learning via User Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Representation learning is a deep-learning based technique for extracting features from data for the purpose of machine learning. This requires a large amount of data, on order tens of thousands to millions of samples, to properly teach the deep neural network. This a system for continuous representation learning, where the system may be improved with a small number of additional samples (order 10-100). The unique characteristics of this invention include a human-computer feedback component, where assess the quality of the current representation and then provides a better representation to the system. The system then mixes the new data with oldmore » training examples to avoid overfitting and improve overall performance of the system. The model can be exported and shared with other users, and it may be applied to additional images the system hasn't seen before.« less

  12. High-order fractional partial differential equation transform for molecular surface construction

    PubMed Central

    Hu, Langhua; Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional PDEs are constructed via fractional variational principle. A fast fractional Fourier transform (FFFT) is proposed to numerically integrate the high-order fractional PDEs so as to avoid stringent stability constraints in solving high-order evolution PDEs. The proposed high-order fractional PDEs are applied to the surface generation of proteins. We first validate the proposed method with a variety of test examples in two and three-dimensional settings. The impact of high-order fractional derivatives to surface analysis is examined. We also construct fractional PDE transform based on arbitrarily high-order fractional PDEs. We demonstrate that the use of arbitrarily high-order derivatives gives rise to time-frequency localization, the control of the spectral distribution, and the regulation of the spatial resolution in the fractional PDE transform. Consequently, the fractional PDE transform enables the mode decomposition of images, signals, and surfaces. The effect of the propagation time on the quality of resulting molecular surfaces is also studied. Computational efficiency of the present surface generation method is compared with the MSMS approach in Cartesian representation. We further validate the present method by examining some benchmark indicators of macromolecular surfaces, i.e., surface area, surface enclosed volume, surface electrostatic potential and solvation free energy. Extensive numerical experiments and comparison with an established surface model indicate that the proposed high-order fractional PDEs are robust, stable and efficient for biomolecular surface generation. PMID:24364020

  13. Distributed Representation of Visual Objects by Single Neurons in the Human Brain

    PubMed Central

    Valdez, André B.; Papesh, Megan H.; Treiman, David M.; Smith, Kris A.; Goldinger, Stephen D.

    2015-01-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. PMID:25834044

  14. A Review of the Effects of Visual-Spatial Representations and Heuristics on Word Problem Solving in Middle School Mathematics

    ERIC Educational Resources Information Center

    Kribbs, Elizabeth E.; Rogowsky, Beth A.

    2016-01-01

    Mathematics word-problems continue to be an insurmountable challenge for many middle school students. Educators have used pictorial and schematic illustrations within the classroom to help students visualize these problems. However, the data shows that pictorial representations can be more harmful than helpful in that they only display objects or…

  15. The Effects of Using Diagramming as a Representational Technique on High School Students' Achievement in Solving Math Word Problems

    ERIC Educational Resources Information Center

    Banerjee, Banmali

    2010-01-01

    Methods and procedures for successfully solving math word problems have been, and continue to be a mystery to many U.S. high school students. Previous studies suggest that the contextual and mathematical understanding of a word problem, along with the development of schemas and their related external representations, positively contribute to…

  16. Three-Dimensionality as an Effective Mode of Representation for Expressing Sequential Time Perception

    ERIC Educational Resources Information Center

    Eden, Sigal; Passig, David

    2007-01-01

    The process of developing concepts of time continues from age 5 to 11 years (Zakay, 1998). This study sought the representation mode in which children could best express time concepts, especially the proper arrangement of events in a logical and temporal order. Usually, temporal order is examined and taught by 2D (2-dimensional) pictorial scripts.…

  17. The Effect of Two-dimensional and Stereoscopic Presentation on Middle School Students' Performance of Spatial Cognition Tasks

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, Hee-Sun

    2010-02-01

    We investigated whether and how student performance on three types of spatial cognition tasks differs when worked with two-dimensional or stereoscopic representations. We recruited nineteen middle school students visiting a planetarium in a large Midwestern American city and analyzed their performance on a series of spatial cognition tasks in terms of response accuracy and task completion time. Results show that response accuracy did not differ between the two types of representations while task completion time was significantly greater with the stereoscopic representations. The completion time increased as the number of mental manipulations of 3D objects increased in the tasks. Post-interviews provide evidence that some students continued to think of stereoscopic representations as two-dimensional. Based on cognitive load and cue theories, we interpret that, in the absence of pictorial depth cues, students may need more time to be familiar with stereoscopic representations for optimal performance. In light of these results, we discuss potential uses of stereoscopic representations for science learning.

  18. 21 CFR 866.5360 - Cohn fraction IV immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5360 Cohn fraction IV immuno-logical test system. (a) Identification. A Cohn fraction IV immunological... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cohn fraction IV immuno-logical test system. 866...

  19. 7 CFR 1405.2 - Basic rule of fractions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Basic rule of fractions. 1405.2 Section 1405.2 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... rule of fractions. Fractions shall be rounded in accordance with the provisions of 7 CFR part 718. ...

  20. 7 CFR 718.5 - Rule of fractions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Rule of fractions. 718.5 Section 718.5 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE FARM... General Provisions § 718.5 Rule of fractions. (a) Fractions shall be rounded after completion of the...

  1. 29 CFR 1921.10 - Appearances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) RULES OF PRACTICE IN ENFORCEMENT PROCEEDINGS UNDER SECTION 41 OF THE LONGSHOREMEN'S AND HARBOR WORKERS' COMPENSATION ACT Hearing and Related Matters § 1921.10 Appearances. (a) Representation. The parties may appear...

  2. Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs

    DOE PAGES

    Filatov, Michael; Liu, Fang; Kim, Kwang S.; ...

    2016-12-22

    Here, the spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociationmore » of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.« less

  3. Role of linguistic skills in fifth-grade mathematics.

    PubMed

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2018-03-01

    The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Structural analysis of geochemical samples by solid-state nuclear magnetic resonance spectrometry. Role of paramagnetic material

    USGS Publications Warehouse

    Vassallo, A.M.; Wilson, M.A.; Collin, P.J.; Oades, J.M.; Waters, A.G.; Malcolm, R.L.

    1987-01-01

    An examination of coals, coal tars, a fulvic acid, and soil fractions by solid-state 13C NMR spectrometry has demonstrated widely differing behavior regarding quantitative representation in the spectrum. Spin counting experiments on coal tars and the fulvic acid show that almost all the sample carbon is observed in both solution and solid-state NMR spectra. Similar experiments on two coals (a lignite and a bituminous coal) show that most (70-97%) of the carbon is observed; however, when the lignite is ion exchanged with 3% (w/w) Fe3+, the fraction of carbon observed drops to below 10%. In additional experiments signal intensity from soil samples is enhanced by a simple dithionite treatment. This is illustrated by 13C, 27Al, and 29Si solid-state NMR experiments on soil fractions. ?? 1987 American Chemical Society.

  5. Devil's staircases and continued fractions in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.

    2013-12-01

    Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.

  6. Social representations of needlestick injuries.

    PubMed

    Lubenow, Juliana Almeida Marques; Moura, Maria Eliete Batista; Nunes, Benevina Maria Vilar Teixeira; Figueiredo, Maria do Livramento Fortes; Sales, Luís Carlos

    2012-01-01

    understand the Social Representations about needlestick injuries elaborated by Nursing Technicians and analyze how these representations influence their conducts. the data, obtained by interviews, were processed using ALCESTE software and their analysis was based on Serge Moscovici's Social Representations Theory. it was evidenced that, after the accident, these professionals take care of the affected area. Then, they report the accident, motivated by the fear of catching HIV and hepatitis. The different feelings experienced are due to this fear and the way they were forwarded by the institution, reflecting in the cause they attribute to their accident. it was verified that knowledge about the accident as a whole is very incipient in this professional group, demanding continuing education and greater emphasis on this subject in professional training. It is expected that this study draws public authorities and health institutions' attention to the problem and that it modifies Nursing Technicians' Social Representations about percutaneous exposure.

  7. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders.

    PubMed

    Tatu, Laurent; Bogousslavsky, Julien

    2018-01-01

    Body representation disorders continue to be mysterious and involve the anatomical substrate that underlies the mental representation of the body. These disorders sit on the boundaries of neurological and psychiatric diseases. We present the main characteristics of 3 examples of body representation disorders: phantom sensations, supernumerary phantom limb, and apotemnophilia. The dysfunction of anatomical circuits that regulate body representation can sometimes have paradoxical features. In the case of phantom sensations, the patient feels the painful subjective sensation of the existence of the lost part of the body after amputation, surgery or trauma. In case of apotemnophilia, now named body integrity identity disorder, the subject wishes for the disappearance of the existing and normal limb, which can occasionally lead to self-amputation. More rarely, a brain-damaged patient with 4 existing limbs can report the existence of a supernumerary phantom limb. © 2018 S. Karger AG, Basel.

  8. Another elementary proof of the Jordan form of a matrix

    NASA Astrophysics Data System (ADS)

    Budhi, Wono Setya

    2012-05-01

    In this paper we establish the Jordan Form for a matrix using the elementary concepts of vector differentiation and partial fractions. The idea comes from the resolvent of the operator. For the matrix, the Laurent series is finite and easy to compute through rational representation. We also give a proof of some famous theorems in matrix analysis as consequences from the result.

  9. Maximizing Tumor Immunity With Fractionated Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaue, Doerthe, E-mail: dschaue@mednet.ucla.edu; Ratikan, Josephine A.; Iwamoto, Keisuke S.

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma}more » enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.« less

  10. Bounded diffusion impedance characterization of battery electrodes using fractional modeling

    NASA Astrophysics Data System (ADS)

    Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît

    2017-06-01

    This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.

  11. Do gorillas (Gorilla gorilla) and orangutans (Pongo pygmaeus) fail to represent objects in the context of cohesion violations?

    PubMed

    Cacchione, Trix; Call, Josep

    2010-08-01

    Recent research suggests that witnessing events of fission (e.g., the splitting of a solid object) impairs human infants', human adults', and non-human primates' object representations. The present studies investigated the reactions of gorillas and orangutans to cohesion violation across different types of fission events implementing a behavioral paradigm previously used with human infants. Results suggest that fission events vary in their impact on representational abilities but do not destroy apes' representations of continuously existing objects. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  13. 40 CFR Table Hh-4 to Subpart Hh of... - Landfill Methane Oxidation Fractions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas sent off-site). If a single monitoring location is used to monitor volumetric flow and CH4... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Landfill Methane Oxidation Fractions... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt...

  14. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  15. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  16. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  17. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  18. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  19. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  20. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  1. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  2. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  3. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  4. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  5. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  6. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  7. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  8. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  9. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  10. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  11. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  12. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  13. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  14. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.

  15. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    NASA Astrophysics Data System (ADS)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S*, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international thermodynamic equation of seawater 2010, http://www.teos-10.org.

  16. On the ψ-Hilfer fractional derivative

    NASA Astrophysics Data System (ADS)

    Vanterler da C. Sousa, J.; Capelas de Oliveira, E.

    2018-07-01

    In this paper we introduce a new fractional derivative with respect to another function the so-called ψ-Hilfer fractional derivative. We discuss some properties and important results of the fractional calculus. In this sense, we present some results involving uniformly convergent sequence of function, uniformly continuous function and examples including the Mittag-Leffler function with one parameter. Finally, we present a wide class of integrals and fractional derivatives, by means of the fractional integral with respect to another function and the ψ-Hilfer fractional derivative.

  17. Locating Fractions on a Number Line

    ERIC Educational Resources Information Center

    Wong, Monica

    2013-01-01

    Understanding fractions remains problematic for many students. The use of the number line aids in this understanding, but requires students to recognise that a fraction represents the distance from zero to a dot or arrow marked on a number line which is a linear scale. This article continues the discussion from "Identifying Fractions on a…

  18. 19 CFR 159.3 - Rounding of fractions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Rounding of fractions. 159.3 Section 159.3 Customs... (CONTINUED) LIQUIDATION OF DUTIES General Provisions § 159.3 Rounding of fractions. (a) Value. In the... cents or more, the lower fractions shall be dropped, and if it is necessary to take up as whole dollars...

  19. Emotions in "Black and White" or Shades of Gray? How We Think About Emotion Shapes Our Perception and Neural Representation of Emotion.

    PubMed

    Satpute, Ajay B; Nook, Erik C; Narayanan, Sandhya; Shu, Jocelyn; Weber, Jochen; Ochsner, Kevin N

    2016-11-01

    The demands of social life often require categorically judging whether someone's continuously varying facial movements express "calm" or "fear," or whether one's fluctuating internal states mean one feels "good" or "bad." In two studies, we asked whether this kind of categorical, "black and white," thinking can shape the perception and neural representation of emotion. Using psychometric and neuroimaging methods, we found that (a) across participants, judging emotions using a categorical, "black and white" scale relative to judging emotions using a continuous, "shades of gray," scale shifted subjective emotion perception thresholds; (b) these shifts corresponded with activity in brain regions previously associated with affective responding (i.e., the amygdala and ventral anterior insula); and (c) connectivity of these regions with the medial prefrontal cortex correlated with the magnitude of categorization-related shifts. These findings suggest that categorical thinking about emotions may actively shape the perception and neural representation of the emotions in question. © The Author(s) 2016.

  20. Re-framing the representation of women in advertisements for hormone replacement therapy.

    PubMed

    Whittaker, R

    1998-06-01

    This article examines and presents examples of contemporary advertising within the medical and health professions that continue the process and organisation of knowledge about women and their reproductive bodies. It draws on feminist and poststructural perspectives to inform a critical evaluation of the visual representations of menopausal women and hormone replacement therapy. These representations work to construct certain definitions of the feminine that sustain and support existing contradictory cultural meanings and values about menopause. I argue that the images continue to misrepresent and define what forms of femininity and sexual gender are desirable and acceptable for menopausal women. The article addresses the problems of gender discrimination and bias within the advertising industry, and illustrates the ways in which readers of visual texts may be influenced by stereotypic assumptions concerning a woman's lived experience of menopause. It illustrates how specific symbolic images directed towards men and women for hormone replacement therapy, testosterone deficiency and sexual dysfunction influence the viewer's decision making and action responses.

  1. A continuous analog of run length distributions reflecting accumulated fractionation events.

    PubMed

    Yu, Zhe; Sankoff, David

    2016-11-11

    We propose a new, continuous model of the fractionation process (duplicate gene deletion after polyploidization) on the real line. The aim is to infer how much DNA is deleted at a time, based on segment lengths for alternating deleted (invisible) and undeleted (visible) regions. After deriving a number of analytical results for "one-sided" fractionation, we undertake a series of simulations that help us identify the distribution of segment lengths as a gamma with shape and rate parameters evolving over time. This leads to an inference procedure based on observed length distributions for visible and invisible segments. We suggest extensions of this mathematical and simulation work to biologically realistic discrete models, including two-sided fractionation.

  2. 29 CFR 1912.9 - Representation on section 7(b) committees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1912.9 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.9... Secretary of Health, Education, and Welfare; (2) At least one member who is qualified by experience and...

  3. 29 CFR 1912.9 - Representation on section 7(b) committees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1912.9 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADVISORY COMMITTEES ON STANDARDS Organizational Matters § 1912.9... Secretary of Health, Education, and Welfare; (2) At least one member who is qualified by experience and...

  4. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  5. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  6. Anatomical Evidence for Classical and Extra-classical Receptive Field Completion Across the Discontinuous Horizontal Meridian Representation of Primate Area V2

    PubMed Central

    Jeffs, Janelle; Ichida, Jennifer M.; Federer, Frederick

    2009-01-01

    In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9–1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6–0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the “missing” portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography. PMID:18755777

  7. Continuous Flash Suppression: Stimulus Fractionation rather than Integration.

    PubMed

    Moors, Pieter; Hesselmann, Guido; Wagemans, Johan; van Ee, Raymond

    2017-10-01

    Recent studies using continuous flash suppression suggest that invisible stimuli are processed as integrated, semantic entities. We challenge the viability of this account, given recent findings on the neural basis of interocular suppression and replication failures of high-profile CFS studies. We conclude that CFS reveals stimulus fractionation in visual cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach

    PubMed Central

    Teng, Santani

    2017-01-01

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044019

  9. Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approach.

    PubMed

    Cichy, Radoslaw Martin; Teng, Santani

    2017-02-19

    In natural environments, visual and auditory stimulation elicit responses across a large set of brain regions in a fraction of a second, yielding representations of the multimodal scene and its properties. The rapid and complex neural dynamics underlying visual and auditory information processing pose major challenges to human cognitive neuroscience. Brain signals measured non-invasively are inherently noisy, the format of neural representations is unknown, and transformations between representations are complex and often nonlinear. Further, no single non-invasive brain measurement technique provides a spatio-temporally integrated view. In this opinion piece, we argue that progress can be made by a concerted effort based on three pillars of recent methodological development: (i) sensitive analysis techniques such as decoding and cross-classification, (ii) complex computational modelling using models such as deep neural networks, and (iii) integration across imaging methods (magnetoencephalography/electroencephalography, functional magnetic resonance imaging) and models, e.g. using representational similarity analysis. We showcase two recent efforts that have been undertaken in this spirit and provide novel results about visual and auditory scene analysis. Finally, we discuss the limits of this perspective and sketch a concrete roadmap for future research.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  10. Dependency-based Siamese long short-term memory network for learning sentence representations

    PubMed Central

    Zhu, Wenhao; Ni, Jianyue; Wei, Baogang; Lu, Zhiguo

    2018-01-01

    Textual representations play an important role in the field of natural language processing (NLP). The efficiency of NLP tasks, such as text comprehension and information extraction, can be significantly improved with proper textual representations. As neural networks are gradually applied to learn the representation of words and phrases, fairly efficient models of learning short text representations have been developed, such as the continuous bag of words (CBOW) and skip-gram models, and they have been extensively employed in a variety of NLP tasks. Because of the complex structure generated by the longer text lengths, such as sentences, algorithms appropriate for learning short textual representations are not applicable for learning long textual representations. One method of learning long textual representations is the Long Short-Term Memory (LSTM) network, which is suitable for processing sequences. However, the standard LSTM does not adequately address the primary sentence structure (subject, predicate and object), which is an important factor for producing appropriate sentence representations. To resolve this issue, this paper proposes the dependency-based LSTM model (D-LSTM). The D-LSTM divides a sentence representation into two parts: a basic component and a supporting component. The D-LSTM uses a pre-trained dependency parser to obtain the primary sentence information and generate supporting components, and it also uses a standard LSTM model to generate the basic sentence components. A weight factor that can adjust the ratio of the basic and supporting components in a sentence is introduced to generate the sentence representation. Compared with the representation learned by the standard LSTM, the sentence representation learned by the D-LSTM contains a greater amount of useful information. The experimental results show that the D-LSTM is superior to the standard LSTM for sentences involving compositional knowledge (SICK) data. PMID:29513748

  11. A multi-channel gel electrophoresis and continuous fraction collection apparatus for high throughput protein separation and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl

    2009-10-02

    To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this systemmore » using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.« less

  12. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts of the discontinuities in the individual adiabatic vibronic basis functions and therefore cannot reflect the behavior of the exact molecular wave function, which must be continuous.

  13. Levi-Civita cylinders with fractional angular deficit

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2011-05-01

    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index α. When the fractional index is continued into the negative α region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.

  14. Forms and Lability of Phosphorus in Humic Acid Fractions of Hord Silt Loam Soil

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) has long been known to be present in soil humic fractions, but little is known about specific P forms in humic fractions, or their lability. We extracted the mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fractions from a Nebraska Hord silt loam soil under continuous c...

  15. Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (PME 20) (20th, Valencia, Spain, July 8-12, 1996). Volume 3.

    ERIC Educational Resources Information Center

    Puig, Luis, Ed.; Gutierrez, Angel, Ed.

    The third volume of this proceedings contains full research articles. Papers include: (1) "A longitudinal study of children's fraction representations and problem-solving behavior" (G.A. Goldin and C.B. Passantino); (2) "Psychology students' conceptions of a statistics course" (S. Gordon, J. Nicholas, and K. Crawford); (3) "Choosing a visual…

  16. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  17. Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis.

    PubMed

    Le Masle, Agnès; Santin, Sandra; Marlot, Léa; Chahen, Ludovic; Charon, Nadège

    2018-10-31

    Biomass fast pyrolysis oils contain molecules having a large variety of chemical functions and a wide range of molecular weights (from several tens to several thousand grams per mole). The good knowledge of their complex composition is essential for optimizing the conversion of bio-oils to biofuels, thereby requiring powerful separation techniques. In this work, we investigate the interest of centrifugal partition chromatography (CPC) as a first dimension for the analysis of a bio-oil. A CPC method is proposed to separate oxygen containing compounds according to their partition coefficients in the solvent system. This approach is a powerful and easy-to-use technique that enables fractionation of a bio-oil at a semi-preparative scale, without any sample loss related to adsorption on the stationary phase. Collected fractions are then injected in liquid chromatography as a second dimension of separation. Contour plot representations of the CPC × LC separation are established to discuss the potential of this approach. These representations can be used as a veritable fingerprint in the comparison of different samples or samples at different steps of a conversion process but also as a powerful tool to identify new compounds and describe the entire composition of the bio-oil. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Some Families of the Incomplete H-Functions and the Incomplete \\overline H -Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Saxena, R. K.; Parmar, R. K.

    2018-01-01

    Our present investigation is inspired by the recent interesting extensions (by Srivastava et al. [35]) of a pair of the Mellin-Barnes type contour integral representations of their incomplete generalized hypergeometric functions p γ q and p Γ q by means of the incomplete gamma functions γ( s, x) and Γ( s, x). Here, in this sequel, we introduce a family of the relatively more general incomplete H-functions γ p,q m,n ( z) and Γ p,q m,n ( z) as well as their such special cases as the incomplete Fox-Wright generalized hypergeometric functions p Ψ q (γ) [ z] and p Ψ q (Γ) [ z]. The main object of this paper is to study and investigate several interesting properties of these incomplete H-functions, including (for example) decomposition and reduction formulas, derivative formulas, various integral transforms, computational representations, and so on. We apply some substantially general Riemann-Liouville and Weyl type fractional integral operators to each of these incomplete H-functions. We indicate the easilyderivable extensions of the results presented here that hold for the corresponding incomplete \\overline H -functions as well. Potential applications of many of these incomplete special functions involving (for example) probability theory are also indicated.

  19. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  20. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Millar, Richard J.; Nicholls, Zebedee R.; Friedlingstein, Pierre; Allen, Myles R.

    2017-06-01

    Projections of the response to anthropogenic emission scenarios, evaluation of some greenhouse gas metrics, and estimates of the social cost of carbon often require a simple model that links emissions of carbon dioxide (CO2) to atmospheric concentrations and global temperature changes. An essential requirement of such a model is to reproduce typical global surface temperature and atmospheric CO2 responses displayed by more complex Earth system models (ESMs) under a range of emission scenarios, as well as an ability to sample the range of ESM response in a transparent, accessible and reproducible form. Here we adapt the simple model of the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5) to explicitly represent the state dependence of the CO2 airborne fraction. Our adapted model (FAIR) reproduces the range of behaviour shown in full and intermediate complexity ESMs under several idealised carbon pulse and exponential concentration increase experiments. We find that the inclusion of a linear increase in 100-year integrated airborne fraction with cumulative carbon uptake and global temperature change substantially improves the representation of the response of the climate system to CO2 on a range of timescales and under a range of experimental designs.

  1. Measuring Beliefs in Centimeters: Private Knowledge Biases Preschoolers' and Adults' Representation of Others' Beliefs

    ERIC Educational Resources Information Center

    Sommerville, Jessica A.; Bernstein, Daniel M.; Meltzoff, Andrew N.

    2013-01-01

    A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's ("N" = 63), 5-year-old children's ("N" = 60), and adults' ("N" = 60) own privileged knowledge of the location of an object biased their representation of a…

  2. Status of Civil Rights in Texas. Volume I: A Report on the Participation of Mexican-Americans, Blacks and Females in the Political Institutions and Processes in Texas, 1968-1978.

    ERIC Educational Resources Information Center

    Cotrell, Charles

    During the 1970s, Texas' longstanding political, legal, and cultural framework continued the systematic exclusion or discouragement of minority groups from political participation and representation. The Texas Advisory Committee to the U.S. Commission on Civil Rights studied the representation of the state's 12.5% black, 18% Spanish surnamed, and…

  3. Mapping the unconscious maintenance of a lost first language.

    PubMed

    Pierce, Lara J; Klein, Denise; Chen, Jen-Kai; Delcenserie, Audrey; Genesee, Fred

    2014-12-02

    Optimal periods during early development facilitate the formation of perceptual representations, laying the framework for future learning. A crucial question is whether such early representations are maintained in the brain over time without continued input. Using functional MRI, we show that internationally adopted (IA) children from China, exposed exclusively to French since adoption (mean age of adoption, 12.8 mo), maintained neural representations of their birth language despite functionally losing that language and having no conscious recollection of it. Their neural patterns during a Chinese lexical tone discrimination task matched those observed in Chinese/French bilinguals who have had continual exposure to Chinese since birth and differed from monolingual French speakers who had never been exposed to Chinese. They processed lexical tone as linguistically relevant, despite having no Chinese exposure for 12.6 y, on average, and no conscious recollection of that language. More specifically, IA participants recruited left superior temporal gyrus/planum temporale, matching the pattern observed in Chinese/French bilinguals. In contrast, French speakers who had never been exposed to Chinese did not recruit this region and instead activated right superior temporal gyrus. We show that neural representations are not overwritten and suggest a special status for language input obtained during the first year of development.

  4. Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

    PubMed Central

    Kanwisher, Nancy

    2012-01-01

    The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434

  5. Action Sounds Modulate Arm Reaching Movements

    PubMed Central

    Tajadura-Jiménez, Ana; Marquardt, Torsten; Swapp, David; Kitagawa, Norimichi; Bianchi-Berthouze, Nadia

    2016-01-01

    Our mental representations of our body are continuously updated through multisensory bodily feedback as we move and interact with our environment. Although it is often assumed that these internal models of body-representation are used to successfully act upon the environment, only a few studies have actually looked at how body-representation changes influence goal-directed actions, and none have looked at this in relation to body-representation changes induced by sound. The present work examines this question for the first time. Participants reached for a target object before and after adaptation periods during which the sounds produced by their hand tapping a surface were spatially manipulated to induce a representation of an elongated arm. After adaptation, participants’ reaching movements were performed in a way consistent with having a longer arm, in that their reaching velocities were reduced. These kinematic changes suggest auditory-driven recalibration of the somatosensory representation of the arm morphology. These results provide support to the hypothesis that one’s represented body size is used as a perceptual ruler to measure objects’ distances and to accordingly guide bodily actions. PMID:27695430

  6. Distributed representation of visual objects by single neurons in the human brain.

    PubMed

    Valdez, André B; Papesh, Megan H; Treiman, David M; Smith, Kris A; Goldinger, Stephen D; Steinmetz, Peter N

    2015-04-01

    It remains unclear how single neurons in the human brain represent whole-object visual stimuli. While recordings in both human and nonhuman primates have shown distributed representations of objects (many neurons encoding multiple objects), recordings of single neurons in the human medial temporal lobe, taken as subjects' discriminated objects during multiple presentations, have shown gnostic representations (single neurons encoding one object). Because some studies suggest that repeated viewing may enhance neural selectivity for objects, we had human subjects discriminate objects in a single, more naturalistic viewing session. We found that, across 432 well isolated neurons recorded in the hippocampus and amygdala, the average fraction of objects encoded was 26%. We also found that more neurons encoded several objects versus only one object in the hippocampus (28 vs 18%, p < 0.001) and in the amygdala (30 vs 19%, p < 0.001). Thus, during realistic viewing experiences, typical neurons in the human medial temporal lobe code for a considerable range of objects, across multiple semantic categories. Copyright © 2015 the authors 0270-6474/15/355180-07$15.00/0.

  7. Spherical harmonics and rigged Hilbert spaces

    NASA Astrophysics Data System (ADS)

    Celeghini, E.; Gadella, M.; del Olmo, M. A.

    2018-05-01

    This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3, 2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hilbert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.

  8. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  9. Therapeutic Process and Outcome: The Interplay of Research

    ERIC Educational Resources Information Center

    Campbel, Holly

    2008-01-01

    From Freud through to modern times researchers have aimed to develop a clearer understanding of therapeutic processes and outcomes. Despite this continued interest in the field, the representation of psychotherapy processes and the applicability of research findings and recommendations to the therapeutic field continue to prove difficult.…

  10. Tracking the Continuity of Language Comprehension: Computer Mouse Trajectories Suggest Parallel Syntactic Processing

    ERIC Educational Resources Information Center

    Farmer, Thomas A.; Cargill, Sarah A.; Hindy, Nicholas C.; Dale, Rick; Spivey, Michael J.

    2007-01-01

    Although several theories of online syntactic processing assume the parallel activation of multiple syntactic representations, evidence supporting simultaneous activation has been inconclusive. Here, the continuous and non-ballistic properties of computer mouse movements are exploited, by recording their streaming x, y coordinates to procure…

  11. 32 CFR 776.30 - Successive Government and private employment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... covered USG attorney in a firm, partnership, or association knows that another attorney within the firm, partnership, or association is undertaking or continuing representation in such a matter: (i) The disqualified... material disadvantage of that person. The former covered USG attorney may continue association with a firm...

  12. The Continuity Project. Spring/Summer 1998 Report.

    ERIC Educational Resources Information Center

    Wasilko, Peter J.

    The Continuity Project is a research, development, and technology transfer initiative aimed at creating a Library of the Future by combining features of an online public access catalog (OPAC) and a campuswide information system (CWIS) with advanced facilities drawn from such areas as artificial intelligence (AI), knowledge representation (KR),…

  13. QSAR analyses of conformationally restricted 1,5-diaryl pyrazoles as selective COX-2 inhibitors: application of connection table representation of ligands.

    PubMed

    Prasanna, S; Manivannan, E; Chaturvedi, S C

    2005-04-15

    As a part of our continuing efforts in discerning the structural and physicochemical requirements for selective COX-2 over COX-1 inhibition among the fused pyrazole ring systems, herein we report the QSAR analyses of the title compounds. The conformational flexibility of the title compounds was examined using a simple connection table representation. The conformational investigation was aided by calculating a connection table parameter called fraction of rotable bonds, b_rotR encompassing the number of rotable bonds and b_count, the number of bonds including implicit hydrogens of each ligand. The hydrophobic and steric correlation of the title compounds towards selective COX-2 inhibition was reported previously in one of our recent publications. In this communication, we attempt to calculate Wang-Ford charges of the non-hydrogen common atoms of AM1 optimized geometries of the title compounds. Owing to the partial conformational flexibility of title compounds, conformationally restricted and unrestricted descriptors were calculated from MOE. Correlation analysis of these 2D, 3D and Wang-Ford charges was accomplished by linear regression analysis. 2D molecular descriptor b_single, 3D molecular descriptors glob, std_dim3 showed significant contribution towards COX-2 inhibitory activity. Balaban J, a connectivity topological index showed a negative and positive contribution towards COX-1 and selective COX-2 over COX-1 inhibition, respectively. Wang-Ford charges calculated on C(7) showed a significant contribution towards COX-1 inhibitory activity whereas charges calculated on C(8) were crucial in governing the selectivity of COX-2 over COX-1 inhibition among these congeners.

  14. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  15. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  16. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  17. 14 CFR 91.1005 - Prohibitions and limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may carry persons or property for compensation or hire on a program flight. (b) During the term of the multi-year program agreements under which a fractional owner has obtained a minimum fractional ownership... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership...

  18. Building on prior knowledge without building it in.

    PubMed

    Hansen, Steven S; Lampinen, Andrew K; Suri, Gaurav; McClelland, James L

    2017-01-01

    Lake et al. propose that people rely on "start-up software," "causal models," and "intuitive theories" built using compositional representations to learn new tasks more efficiently than some deep neural network models. We highlight the many drawbacks of a commitment to compositional representations and describe our continuing effort to explore how the ability to build on prior knowledge and to learn new tasks efficiently could arise through learning in deep neural networks.

  19. Genetic Contributions to Continuity and Change in Attachment Security: A Prospective, Longitudinal Investigation from Infancy to Young Adulthood

    PubMed Central

    Raby, K. Lee; Cicchetti, Dante; Carlson, Elizabeth A.; Egeland, Byron; Collins, W. Andrew

    2013-01-01

    Background Longitudinal research has demonstrated that individual differences in attachment security show only modest continuity from infancy to adulthood. Recent findings based on retrospective reports suggest that individuals’ genetic variation may moderate the developmental associations between early attachment-relevant relationship experiences and adult attachment security. The purpose of this study was to use a prospective, longitudinal design to investigate genetic contributions to continuity and changes in attachment security from infancy to young adulthood in a higher risk sample. Methods Infant attachment security was assessed using the Strange Situation Procedure at 12 and 18 months. Adults’ general attachment representations were assessed using the Adult Attachment Interview at age 19 and age 26. Romantic attachment representations were assessed with the Current Relationship Interview at ages 20–21 and ages 26–28. Individuals were genotyped for variants within the oxytocin receptor (OXTR), dopamine D4 receptor (DRD4), and serotonin transporter linked polymorphic region (5-HTTLPR). Results The continuity of attachment security from infancy into young adulthood was consistently moderated by OXTR genetic variation. Infant attachment security predicted the security of adults’ general and romantic attachment representations only for individuals with the OXTR G/G genotype. This interaction was significant when predicting adult attachment security as measured by the Adult Attachment Interview at age 19 and 26 and the Current Relationship Interview at ages 26–28. DRD4 and 5-HTTLPR genetic variation did not consistently moderate the longitudinal associations between attachment security during infancy and adulthood. Conclusions This study provides initial longitudinal evidence for genetic contributions to continuity and change in attachment security from infancy to young adulthood. Genetic variation related to the oxytocin system may moderate the stability of attachment security across development. PMID:23731038

  20. Animacy and real-world size shape object representations in the human medial temporal lobes.

    PubMed

    Blumenthal, Anna; Stojanoski, Bobby; Martin, Chris B; Cusack, Rhodri; Köhler, Stefan

    2018-06-26

    Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL. © 2018 Wiley Periodicals, Inc.

  1. Structural analysis and design of multivariable control systems: An algebraic approach

    NASA Technical Reports Server (NTRS)

    Tsay, Yih Tsong; Shieh, Leang-San; Barnett, Stephen

    1988-01-01

    The application of algebraic system theory to the design of controllers for multivariable (MV) systems is explored analytically using an approach based on state-space representations and matrix-fraction descriptions. Chapters are devoted to characteristic lambda matrices and canonical descriptions of MIMO systems; spectral analysis, divisors, and spectral factors of nonsingular lambda matrices; feedback control of MV systems; and structural decomposition theories and their application to MV control systems.

  2. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  3. 26 CFR 1.6049-7T - Market discount fraction reported with other financial information with respect to REMICs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Market discount fraction reported with other... TAX (CONTINUED) INCOME TAXES Information Returns § 1.6049-7T Market discount fraction reported with... purposes of § 1.6049-7(f)(2)(i)(G)(1) relating to the market discount fraction to be reported with other...

  4. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  5. Social workers' and nurses' illness representations about Alzheimer disease: an exploratory study.

    PubMed

    Shinan-Altman, Shiri; Werner, Perla; Cohen, Miri

    2014-01-01

    Professionals' perceptions of patients' diseases (illness representations) are a major factor influencing the quality of treatment they provide. The aim of the study was to examine and compare Alzheimer disease (AD) illness representations among 2 main professional groups involved in the care of Alzheimer patients. A total of 327 nurses and social workers in Israel were asked to report their cognitive representations (dimensions of identity, cause, timeline, consequences, control, coherence, timeline cycle) and emotional representations. Knowledge about AD, demographic, and occupational characteristics were also obtained. Participants perceived AD as a chronic disease associated with severe consequences. Statistically significant differences were found between the groups, as nurses attributed psychological reasons to AD more than the social workers. Nevertheless, social workers perceived AD as more chronic with severe consequences compared with the nurses. Despite some resemblance, there were differences between the social workers and nurses regarding AD illness representations. Therefore, continuing to distribute materials to professionals regarding AD is recommended, with attention to the unique characteristics of each professional group. Furthermore, the findings encourage the development of training and support programs that will not only deal with the organizational and instrumental levels of treating AD patients but also with the assessment and consequences of professionals' illness representations.

  6. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  7. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  8. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  9. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  10. Continuous spin representations from group contraction

    NASA Astrophysics Data System (ADS)

    Khan, Abu M.; Ramond, Pierre

    2005-05-01

    We consider how the continuous spin representation (CSR) of the Poincaré group in four dimensions can be generated by dimensional reduction. The analysis uses the front-form little group in five dimensions, which must yield the Euclidean group E(2), the little group of the CSR. We consider two cases, one is the single spin massless representation of the Poincaré group in five dimensions, the other is the infinite component Majorana equation, which describes an infinite tower of massive states in five dimensions. In the first case, the double singular limit j, R →∞, with j /R fixed, where R is the Kaluza-Klein radius of the fifth dimension, and j is the spin of the particle in five dimensions, yields the CSR in four dimensions. It amounts to the Inönü-Wigner contraction, with the inverse Kaluza-Klein radius as contraction parameter. In the second case, the CSR appears only by taking a triple singular limit, where an internal coordinate of the Majorana theory goes to infinity, while leaving its ratio to the Kaluza-Klein radius fixed.

  11. The deceased child in the psychic and social worlds of bereaved parents during the resolution of grief.

    PubMed

    Klass, D

    1997-01-01

    A core dynamic by which grief is resolved by parents in Bereaved Parents, a self-help group, is a series of transformations of the inner representation of the dead child in the parent's inner world and in the parent's social world. As the reality of the child's death as well as the reality of the parent's continuing bond with the child are made part of the socially shared reality, the inner representation of the child can be transformed in the parent's psychic life. The end of grief is not severing the bond with the dead child, but integrating the child into the parent's life in a different way than when the child was alive. This article traces the course of the inner representation of the child in the parent's inner life and social world as the parent progresses through Bereaved Parents. It concludes with some comments on the differences that should be maintained between scholarly and popular understandings of phenomena in the continuing bonds survivors maintain with the dead.

  12. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  13. The contribution of foveal and peripheral visual information to ensemble representation of face race.

    PubMed

    Jung, Wonmo; Bülthoff, Isabelle; Armann, Regine G M

    2017-11-01

    The brain can only attend to a fraction of all the information that is entering the visual system at any given moment. One way of overcoming the so-called bottleneck of selective attention (e.g., J. M. Wolfe, Võ, Evans, & Greene, 2011) is to make use of redundant visual information and extract summarized statistical information of the whole visual scene. Such ensemble representation occurs for low-level features of textures or simple objects, but it has also been reported for complex high-level properties. While the visual system has, for example, been shown to compute summary representations of facial expression, gender, or identity, it is less clear whether perceptual input from all parts of the visual field contributes equally to the ensemble percept. Here we extend the line of ensemble-representation research into the realm of race and look at the possibility that ensemble perception relies on weighting visual information differently depending on its origin from either the fovea or the visual periphery. We find that observers can judge the mean race of a set of faces, similar to judgments of mean emotion from faces and ensemble representations in low-level domains of visual processing. We also find that while peripheral faces seem to be taken into account for the ensemble percept, far more weight is given to stimuli presented foveally than peripherally. Whether this precision weighting of information stems from differences in the accuracy with which the visual system processes information across the visual field or from statistical inferences about the world needs to be determined by further research.

  14. Conceptual structure and the procedural affordances of rational numbers: relational reasoning with fractions and decimals.

    PubMed

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-02-01

    The standard number system includes several distinct types of notations, which differ conceptually and afford different procedures. Among notations for rational numbers, the bipartite format of fractions (a/b) enables them to represent 2-dimensional relations between sets of discrete (i.e., countable) elements (e.g., red marbles/all marbles). In contrast, the format of decimals is inherently 1-dimensional, expressing a continuous-valued magnitude (i.e., proportion) but not a 2-dimensional relation between sets of countable elements. Experiment 1 showed that college students indeed view these 2-number notations as conceptually distinct. In a task that did not involve mathematical calculations, participants showed a strong preference to represent partitioned displays of discrete objects with fractions and partitioned displays of continuous masses with decimals. Experiment 2 provided evidence that people are better able to identify and evaluate ratio relationships using fractions than decimals, especially for discrete (or discretized) quantities. Experiments 3 and 4 found a similar pattern of performance for a more complex analogical reasoning task. When solving relational reasoning problems based on discrete or discretized quantities, fractions yielded greater accuracy than decimals; in contrast, when quantities were continuous, accuracy was lower for both symbolic notations. Whereas previous research has established that decimals are more effective than fractions in supporting magnitude comparisons, the present study reveals that fractions are relatively advantageous in supporting relational reasoning with discrete (or discretized) concepts. These findings provide an explanation for the effectiveness of natural frequency formats in supporting some types of reasoning, and have implications for teaching of rational numbers.

  15. Local Renyi entropic profiles of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2007-10-16

    In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at http://kdbio.inesc-id.pt/~svinga/ep/. The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.

  16. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  17. Retrieval-Induced Inhibition in Short-Term Memory.

    PubMed

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  18. On stability of fixed points and chaos in fractional systems.

    PubMed

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0<α<2. The method is tested on various forms of fractional generalizations of the standard and logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.

  19. On the Conformable Fractional Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  20. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  2. Light Propagation in Turbulent Media

    NASA Astrophysics Data System (ADS)

    Perez, Dario G.

    2003-07-01

    First, we make a revision of the up-to-date Passive Scalar Fields properties: also, the refractive index is among them. Afterwards, we formulated the properties that make the family of `isotropic' fractional Brownian motion (with parameter H) a good candidate to simulate the turbulent refractive index. Moreover, we obtained its fractal dimension which matches the estimated by Constantin for passive scalar, and thus the parameter H determines the state of the turbulence. Next, using a path integral velocity representation, with the Markovian model, to calculate the effects of the turbulence over a system of grids. Finally, with the tools of Stochastic Calculus for fractional Brownian motions we studied the ray-equation coming from the Geometric Optics in the turbulent case. Our analysis covers those cases where average temperature gradients are relevant.

  3. Representation of Small-Arms Effects in Aggregated Force-on-Force Combat Models.

    DTIC Science & Technology

    1984-03-01

    CONPUTATICY OF FORCE RATIO AND FRACTIONAL VALUE LOST 54 ***** 0 G. SCALING* COMPUTATION OF CASUALTIES AND WlAPCN LOSSES .. .. .. .. .. .. .. .. . .56 VI...ammo because cf its weight or his adversary with an AK-47 capable of rapid rates of accurate fire? The argument for the long- range kill capability of...LEVEL INDEPENDENT 8. IRE ALLOCATION ICT EXPLICITY CONSIDERED 9. SYMB!TRIC 10. 30 CCNSIDERXTION CF NONCOMBAT LOSSES (E.G. DESERTIONS, S URRENDERS) 11

  4. Magnitude comparison with different types of rational numbers.

    PubMed

    DeWolf, Melissa; Grounds, Margaret A; Bassok, Miriam; Holyoak, Keith J

    2014-02-01

    An important issue in understanding mathematical cognition involves the similarities and differences between the magnitude representations associated with various types of rational numbers. For single-digit integers, evidence indicates that magnitudes are represented as analog values on a mental number line, such that magnitude comparisons are made more quickly and accurately as the numerical distance between numbers increases (the distance effect). Evidence concerning a distance effect for compositional numbers (e.g., multidigit whole numbers, fractions and decimals) is mixed. We compared the patterns of response times and errors for college students in magnitude comparison tasks across closely matched sets of rational numbers (e.g., 22/37, 0.595, 595). In Experiment 1, a distance effect was found for both fractions and decimals, but response times were dramatically slower for fractions than for decimals. Experiments 2 and 3 compared performance across fractions, decimals, and 3-digit integers. Response patterns for decimals and integers were extremely similar but, as in Experiment 1, magnitude comparisons based on fractions were dramatically slower, even when the decimals varied in precision (i.e., number of place digits) and could not be compared in the same way as multidigit integers (Experiment 3). Our findings indicate that comparisons of all three types of numbers exhibit a distance effect, but that processing often involves strategic focus on components of numbers. Fractions impose an especially high processing burden due to their bipartite (a/b) structure. In contrast to the other number types, the magnitude values associated with fractions appear to be less precise, and more dependent on explicit calculation. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  5. Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.

    PubMed

    Henry, B I; Langlands, T A M; Wearne, S L

    2006-09-01

    We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.

  6. Immersion freezing of water and aqueous ammonium sulfate droplets initiated by humic-like substances as a function of water activity

    DOE PAGES

    Rigg, Y. J.; Alpert, P. A.; Knopf, Daniel A.

    2013-07-12

    Immersion freezing of water and aqueous (NH 4) 2SO 4 droplets containing leonardite (LEO) and Pahokee peat (PP) serving as surrogates for humic-like substances (HULIS) has been investigated. Organic aerosol containing HULIS are ubiquitous in the atmosphere; however, their potential for ice cloud formation is uncertain. Immersion freezing has been studied for temperatures as low as 215K and solution water activity, aw, from 0.85 to 1.0. The freezing temperatures of water and aqueous solution droplets containing LEO and PP are 5–15 K warmer than homogeneous ice nucleation temperatures. Heterogeneous freezing temperatures can be represented by a horizontal shift of themore » ice melting curve as a function of solution aw by Δ aw = 0.2703 and 0.2466, respectively. Corresponding heterogeneous ice nucleation rate coefficients, Jhet, are (9.6 ± 2.5) × 10 4 and (5.4 ± 1.4) × 10 4 cm -2 s -1 for LEO and PP containing droplets, respectively, and remain constant along freezing curves characterized by Δ aw. Consequently predictions of freezing temperatures and kinetics can be made without knowledge of the solute type when relative humidity and ice nuclei (IN) surface areas are known. The acquired ice nucleation data are applied to evaluate different approaches to fit and reproduce experimentally derived frozen fractions. In addition, we apply a basic formulation of classical nucleation theory (α( T)-model) to calculate contact angles and frozen fractions. Contact angles calculated for each ice nucleus as a function of temperature, α( T)-model, reproduce exactly experimentally derived frozen fractions without involving free-fit parameters. However, assigning the IN a single contact angle for the entire population (single-α model) is not suited to represent the frozen fractions. Application of α-PDF, active sites, and deterministic model approaches to measured frozen fractions yield similar good representations. Furthermore, when using a single parameterization of α-PDF or active sites distribution to fit all individual aw immersion freezing data simultaneously, frozen fraction curves are not reproduced. This implies that these fitting formulations cannot be applied to immersion freezing of aqueous solutions, and suggests that derived fit parameters do not represent independent particle properties. Thus, from fitting frozen fractions only, the underlying ice nucleation mechanism and nature of the ice nucleating sites cannot be inferred. In contrast to using fitted functions obtained to represent experimental conditions only, we suggest to use experimentally derived Jhet as a function of temperature and aw that can be applied to conditions outside of those probed in laboratory. Finally, this is because Jhet(T) is independent of time and IN surface areas in contrast to the fit parameters obtained by representation of experimentally derived frozen fractions.« less

  7. A bounding-based solution approach for the continuous arc covering problem

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Murray, Alan T.; Batta, Rajan

    2014-04-01

    Road segments, telecommunication wiring, water and sewer pipelines, canals and the like are important features of the urban environment. They are often conceived of and represented as network-based arcs. As a result of the usefulness and significance of arc-based features, there is a need to site facilities along arcs to serve demand. Examples of such facilities include surveillance equipment, cellular towers, refueling centers and emergency response stations, with the intent of being economically efficient as well as providing good service along the arcs. While this amounts to a continuous location problem by nature, various discretizations are generally relied upon to solve such problems. The result is potential for representation errors that negatively impact analysis and decision making. This paper develops a solution approach for the continuous arc covering problem that theoretically eliminates representation errors. The developed approach is applied to optimally place acoustic sensors and cellular base stations along a road network. The results demonstrate the effectiveness of this approach for ameliorating any error and uncertainty in the modeling process.

  8. Detailed 3D representations for object recognition and modeling.

    PubMed

    Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad

    2013-11-01

    Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.

  9. Spontaneous representations of small numbers of objects by rhesus macaques: examinations of content and format.

    PubMed

    Hauser, Marc D; Carey, Susan

    2003-12-01

    The project of comparative cognition benefits from common measures across species. We report here on five experiments using the violation of expectancy looking time measure with free-ranging rhesus macaques (Macaca mulatta), each designed to build on current knowledge concerning spontaneous representations of number. Each subject, tested in only one experimental condition, watched as eggplants were placed behind a screen one at a time, after which the screen was removed revealing an outcome that either matched or did not match the number placed there. Subjects looked longer at impossible than possible outcomes in 1+1=2 or 3, 1 small+1 small=1 big or 2 small, 2+1=2 or 3, and 2+1=3 or 4 conditions. They failed in 2+1+1=4 or 3 or 5 and in 1+1+1=2 or 3 conditions. This pattern of results closely matches that observed across several previous studies of human infants. The data allow us to test among four different proposals concerning the format and content of the mental representations underlying looking in these experiments. Object file representations are favored over: (i) low-level perceptual representations, (ii) representations of continuous variables such as volume or surface area, and (iii) analog magnitude representations of number. We conclude by considering exactly how the object tracking system revealed in these and other related experiments does and does not represent number, and how it might be one evolutionary precursor of the human specific system of number representations.

  10. MATERNAL REPRESENTATIONS AND INFANT ATTACHMENT: AN EXAMINATION OF THE PROTOTYPE HYPOTHESIS.

    PubMed

    Madigan, Sheri; Hawkins, Erinn; Plamondon, Andre; Moran, Greg; Benoit, Diane

    2015-01-01

    The prototype hypothesis suggests that attachment representations derived in infancy continue to influence subsequent relationships over the life span, including those formed with one's own children. In the current study, we test the prototype hypothesis by exploring (a) whether child-specific representations following actual experience in interaction with a specific child impacts caregiver-child attachment over and above the prenatal forecast of that representation and (b) whether maternal attachment representations exert their influence on infant attachment via the more child-specific representation of that relationship. In a longitudinal study of 84 mother-infant dyads, mothers' representations of their attachment history were obtained prenatally with the Adult Attachment Interview (AAI; M. Main, R. Goldwyn, & E. Hesse, 2002), representations of relationship with a specific child were assessed with the Working Model of the Child Interview (WMCI; C.H. Zeanah, D. Benoit, & L. Barton, 1986), collected both prenatally and again at infant age 11 months, and infant attachment was assessed in the Strange Situation Procedure (M.D.S. Ainsworth, M.C. Blehar, E. Walters, & S. Wall, 1978) when infants were 11 months of age. Consistent with the prototype hypothesis, considerable correspondence was found between mothers' AAI and WMCI classifications. A mediation analysis showed that WMCI fully accounted for the association between AAI and infant attachment. Postnatal WMCI measured at 11 months' postpartum did not add to the prediction of infant attachment, over and above that explained by the prenatal WMCI. Implications for these findings are discussed. © 2015 Michigan Association for Infant Mental Health.

  11. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  12. Consistent maximum entropy representations of pipe flow networks

    NASA Astrophysics Data System (ADS)

    Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

    2017-06-01

    The maximum entropy method is used to predict flows on water distribution networks. This analysis extends the water distribution network formulation of Waldrip et al. (2016) Journal of Hydraulic Engineering (ASCE), by the use of a continuous relative entropy defined on a reduced parameter set. This reduction in the parameters that the entropy is defined over ensures consistency between different representations of the same network. The performance of the proposed reduced parameter method is demonstrated with a one-loop network case study.

  13. Continuity and Discontinuity, Change and Duration: Hobbes' Riddle of the Theseus and the Diversity of Historical Logics.

    ERIC Educational Resources Information Center

    Blum, Mark E.

    1996-01-01

    Reiterates the need for an understanding of the concepts of continuity and change, not simply in the representation of historical events, but in the writing and study of history. Uses Thomas Hobbes's riddle of Theseus to illustrate the need for multiple readings and critical analysis in history instruction. (MJP)

  14. Vegetation Continuous Fields--Transitioning from MODIS to VIIRS

    NASA Astrophysics Data System (ADS)

    DiMiceli, C.; Townshend, J. R.; Sohlberg, R. A.; Kim, D. H.; Kelly, M.

    2015-12-01

    Measurements of fractional vegetation cover are critical for accurate and consistent monitoring of global deforestation rates. They also provide important parameters for land surface, climate and carbon models and vital background data for research into fire, hydrological and ecosystem processes. MODIS Vegetation Continuous Fields (VCF) products provide four complementary layers of fractional cover: tree cover, non-tree vegetation, bare ground, and surface water. MODIS VCF products are currently produced globally and annually at 250m resolution for 2000 to the present. Additionally, annual VCF products at 1/20° resolution derived from AVHRR and MODIS Long-Term Data Records are in development to provide Earth System Data Records of fractional vegetation cover for 1982 to the present. In order to provide continuity of these valuable products, we are extending the VCF algorithms to create Suomi NPP/VIIRS VCF products. This presentation will highlight the first VIIRS fractional cover product: global percent tree cover at 1 km resolution. To create this product, phenological and physiological metrics were derived from each complete year of VIIRS 8-day surface reflectance products. A supervised regression tree method was applied to the metrics, using training derived from Landsat data supplemented by high-resolution data from Ikonos, RapidEye and QuickBird. The regression tree model was then applied globally to produce fractional tree cover. In our presentation we will detail our methods for creating the VIIRS VCF product. We will compare the new VIIRS VCF product to our current MODIS VCF products and demonstrate continuity between instruments. Finally, we will outline future VIIRS VCF development plans.

  15. An Investigation of Fraction Models in Early Elementary Grades: A Mixed-Methods Approach

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Cooper, Susan; Gupta, Dittika; Montgomery, Mark; Mechell, Sara; Arterbury, Kristin; Moore, Sherrie; Baker, Betty Ruth; Sharp, Pat T.

    2015-01-01

    This study examines the effect varying models have on student understanding of fractions. The study addressed the question of what students know and understand about fractional concepts through the use of discrete and continuous models. A sample of 54 students in kindergarten and 3rd grade were given an interview pretest, participated in…

  16. Dysrhythmia of timed movements in Parkinson's disease and freezing of gait.

    PubMed

    Tolleson, Christopher M; Dobolyi, David G; Roman, Olivia C; Kanoff, Kristen; Barton, Scott; Wylie, Scott A; Kubovy, Michael; Claassen, Daniel O

    2015-10-22

    A well-established motor timing paradigm, the Synchronization-Continuation Task (SCT), quantifies how accurately participants can time finger tapping to a rhythmic auditory beat (synchronization phase) then maintain this rhythm after the external auditory cue is extinguished, where performance depends on an internal representation of the beat (continuation phase). In this study, we investigated the hypothesis that Parkinson's disease (PD) patients with clinical symptoms of freezing of gait (FOG) exhibit exaggerated motor timing deficits. We predicted that dysrhythmia is exacerbated when finger tapping is stopped temporarily and then reinitiated under the guidance of an internal representation of the beat. Healthy controls and PD patients with and without FOG performed the SCT with and without the insertion of a 7-s cessation of motor tapping between synchronization and continuation phases. With no interruption between synchronization and continuation phases, PD patients, especially those with FOG, showed pronounced motor timing hastening at the slowest inter-stimulus intervals during the continuation phase. The introduction of a gap prior to the continuation phase had a beneficial effect for healthy controls and PD patients without FOG, although patients with FOG continued to show pronounced and persistent motor timing hastening. Ratings of freezing of gait severity across the entire sample of PD tracked closely with the magnitude of hastening during the continuation phase. These results suggest that PD is accompanied by a unique dysrhythmia of measured movements, with FOG reflecting a particularly pronounced disruption to internal rhythmic timing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The role of the episodic buffer in working memory for language processing.

    PubMed

    Rudner, Mary; Rönnberg, Jerker

    2008-03-01

    A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.

  18. Field-theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology, and beyond.

    PubMed

    Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang

    2015-01-23

    The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.

  19. Sensitivity of a Cumulus Parameterization Scheme to Precipitation Production Representation and Its Impact on a Heavy Rain Event over Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Ji-Young; Hong, Song-You; Sunny Lim, Kyo-Sun

    The sensitivity of a cumulus parameterization scheme (CPS) to a representation of precipitation production is examined. To do this, the parameter that determines the fraction of cloud condensate converted to precipitation in the simplified Arakawa–Schubert (SAS) convection scheme is modified following the results from a cloud-resolving simulation. While the original conversion parameter is assumed to be constant, the revised parameter includes a temperature dependency above the freezing level, whichleadstolessproductionoffrozenprecipitating condensate with height. The revised CPS has been evaluated for a heavy rainfall event over Korea as well as medium-range forecasts using the Global/Regional Integrated Model system (GRIMs). The inefficient conversionmore » of cloud condensate to convective precipitation at colder temperatures generally leads to a decrease in pre-cipitation, especially in the category of heavy rainfall. The resultant increase of detrained moisture induces moistening and cooling at the top of clouds. A statistical evaluation of the medium-range forecasts with the revised precipitation conversion parameter shows an overall improvement of the forecast skill in precipitation and large-scale fields, indicating importance of more realistic representation of microphysical processes in CPSs.« less

  20. Changes in Self-Representations Following Psychoanalytic Psychotherapy for Young Adults: A Comparative Typology.

    PubMed

    Werbart, Andrzej; Brusell, Lars; Iggedal, Rebecka; Lavfors, Kristin; Widholm, Alexander

    2016-10-01

    Changes in dynamic psychological structures are often a treatment goal in psychotherapy. The present study aimed at creating a typology of self-representations among young women and men in psychoanalytic psychotherapy, to study longitudinal changes in self-representations, and to compare self-representations in the clinical sample with those of a nonclinical group. Twenty-five women and sixteen men were interviewed according to Blatt's Object Relations Inventory pretreatment, at termination, and at a 1.5-year follow-up. In the comparison group, eleven women and nine men were interviewed at baseline, 1.5 years, and three years later. Typologies of the 123 self-descriptions in the clinical group and 60 in the nonclinical group were constructed by means of ideal-type analysis for men and women separately. Clusters of self-representations could be depicted on a two-dimensional matrix with the axes Relatedness-Self-definition and Integration-Nonintegration. In most cases, the self-descriptions changed over time in terms of belonging to different ideal-type clusters. In the clinical group, there was a movement toward increased integration in self-representations, but above all toward a better balance between relatedness and self-definition. The changes continued after termination, paralleled by reduced symptoms, improved functioning, and higher developmental levels of representations. No corresponding tendency could be observed in the nonclinical group.

  1. Bad Mothers and Monstrous Sons: Autistic Adults, Lifelong Dependency, and Sensationalized Narratives of Care.

    PubMed

    Allen, Holly

    2017-03-01

    Sensationalized representations of autistic families in film and other media frequently feature violent encounters between mothers and sons. This essay analyzes two media stories and three films that suggest how limited-and therefore misleading-popular representations of the autism family are. Except for one of the films, these representations blame the problem of adult autistic dependency on either monstrous autism or bad mothering. Doing so elides collective social responsibility for autism care and denies the reality that autistic adults continue to have complex dependency needs that families cannot always meet. Narratives that sensationalize youth and adults with autism or scapegoat their maternal caregivers also diminish opportunities for social inclusion and for autistic people to live fully and dependently.

  2. Development of the Hippocampal Cognitive Map in Pre-weanling Rats

    PubMed Central

    Wills, Tom; Cacucci, Francesca; Burgess, Neil; O’Keefe, John

    2011-01-01

    Orienting in large-scale space depends on the interaction of environmental experience and pre-configured, possibly innate, constructs. Place, head-direction and grid cells in the hippocampal formation provide allocentric representations of space. Here we show how these cognitive representations emerge and develop as rat pups first begin to explore their environment. Directional, locational and rhythmic organization of firing are present during initial exploration, including adult-like directional firing. The stability and precision of place cell firing continues to develop throughout juvenility. Stable grid cell firing appears later but matures rapidly to adult levels. Our results demonstrate the presence of three neuronal representations of space prior to extensive experience, and show how they develop with age. PMID:20558720

  3. Non-symbolic arithmetic in adults and young children.

    PubMed

    Barth, Hilary; La Mont, Kristen; Lipton, Jennifer; Dehaene, Stanislas; Kanwisher, Nancy; Spelke, Elizabeth

    2006-01-01

    Five experiments investigated whether adults and preschool children can perform simple arithmetic calculations on non-symbolic numerosities. Previous research has demonstrated that human adults, human infants, and non-human animals can process numerical quantities through approximate representations of their magnitudes. Here we consider whether these non-symbolic numerical representations might serve as a building block of uniquely human, learned mathematics. Both adults and children with no training in arithmetic successfully performed approximate arithmetic on large sets of elements. Success at these tasks did not depend on non-numerical continuous quantities, modality-specific quantity information, the adoption of alternative non-arithmetic strategies, or learned symbolic arithmetic knowledge. Abstract numerical quantity representations therefore are computationally functional and may provide a foundation for formal mathematics.

  4. Acquisition, representation and rule generation for procedural knowledge

    NASA Technical Reports Server (NTRS)

    Ortiz, Chris; Saito, Tim; Mithal, Sachin; Loftin, R. Bowen

    1991-01-01

    Current research into the design and continuing development of a system for the acquisition of procedural knowledge, its representation in useful forms, and proposed methods for automated C Language Integrated Production System (CLIPS) rule generation is discussed. The Task Analysis and Rule Generation Tool (TARGET) is intended to permit experts, individually or collectively, to visually describe and refine procedural tasks. The system is designed to represent the acquired knowledge in the form of graphical objects with the capacity for generating production rules in CLIPS. The generated rules can then be integrated into applications such as NASA's Intelligent Computer Aided Training (ICAT) architecture. Also described are proposed methods for use in translating the graphical and intermediate knowledge representations into CLIPS rules.

  5. The role of social relationships and culture in the cognitive representation of emotions.

    PubMed

    Koh, Sharon; Napa Scollon, Christie; Wirtz, Derrick

    2014-04-01

    There are individual and cultural differences in how memories of our emotions are cognitively represented. This article examines the cognitive representation of emotions in different cultures, as a result of emotional (in)consistency in different cultures. Using a continuous semantic priming task, we showed in two studies that individuals who were less emotionally consistent across relationships have stronger associations of their emotions within those relationships. Further, we found (in Study 2) that in a culture characterised by higher levels of emotional inconsistency across relationships (Singapore), stronger associations between emotions within relationships were found than in a culture characterised by emotional consistency (USA). This cultural difference in cognitive representation was fully mediated by individual differences in cross-situational consistency levels.

  6. How to help intelligent systems with different uncertainty representations cooperate with each other

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Kumar, Sundeep

    1991-01-01

    In order to solve a complicated problem one must use the knowledge from different domains. Therefore, if one wants to automatize the solution of these problems, one has to help the knowledge-based systems that correspond to these domains cooperate, that is, communicate facts and conclusions to each other in the process of decision making. One of the main obstacles to such cooperation is the fact that different intelligent systems use different methods of knowledge acquisition and different methods and formalisms for uncertainty representation. So an interface f is needed, 'translating' the values x, y, which represent uncertainty of the experts' knowledge in one system, into the values f(x), f(y) appropriate for another one. The problem of designing such an interface as a mathematical problem is formulated and solved. It is shown that the interface must be fractionally linear: f(x) = (ax + b)/(cx + d).

  7. Minimal composite Higgs models at the LHC

    NASA Astrophysics Data System (ADS)

    Carena, Marcela; Da Rold, Leandro; Pontón, Eduardo

    2014-06-01

    We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5) → SO(4) symmetry breaking pattern, assuming the "partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.

  8. Symmetry-protected gapless Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2018-03-01

    Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.

  9. The Stochastic Multicloud Model as part of an operational convection parameterisation in a comprehensive GCM

    NASA Astrophysics Data System (ADS)

    Peters, Karsten; Jakob, Christian; Möbis, Benjamin

    2015-04-01

    An adequate representation of convective processes in numerical models of the atmospheric circulation (general circulation models, GCMs) remains one of the grand challenges in atmospheric science. In particular, the models struggle with correctly representing the spatial distribution and high variability of tropical convection. It is thought that this model deficiency partly results from formulating current convection parameterisation schemes in a purely deterministic manner. Here, we use observations of tropical convection to inform the design of a novel convection parameterisation with stochastic elements. The novel scheme is built around the Stochastic MultiCloud Model (SMCM, Khouider et al 2010). We present the progress made in utilising SMCM-based estimates of updraft area fractions at cloud base as part of the deep convection scheme of a GCM. The updraft area fractions are used to yield one part of the cloud base mass-flux used in the closure assumption of convective mass-flux schemes. The closure thus receives a stochastic component, potentially improving modeled convective variability and coherence. For initial investigations, we apply the above methodology to the operational convective parameterisation of the ECHAM6 GCM. We perform 5-year AMIP simulations, i.e. with prescribed observed SSTs. We find that with the SMCM, convection is weaker and more coherent and continuous from timestep to timestep compared to the standard model. Total global precipitation is reduced in the SMCM run, but this reduces i) the overall error compared to observed global precipitation (GPCP) and ii) middle tropical tropospheric temperature biases compared to ERA-Interim. Hovmoeller diagrams indicate a slightly higher degree of convective organisation compared to the base case and Wheeler-Kiladis frequency wavenumber diagrams indicate slightly more spectral power in the MJO range.

  10. A new transform for the analysis of complex fractionated atrial electrograms

    PubMed Central

    2011-01-01

    Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively robust to jitter in periodic events. Thus the ensemble method can provide a useful alternative for quantitative characterization of CFAE during clinical study. PMID:21569421

  11. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  12. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.

    PubMed

    Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume

    2012-12-17

    A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.

  13. Heart Failure with Recovered EF and Heart Failure with Mid-Range EF: Current Recommendations and Controversies.

    PubMed

    Unkovic, Peter; Basuray, Anupam

    2018-04-03

    This review explores key features and potential management controversies in two emerging populations in heart failure: heart failure with recovered ejection fraction (HF-recovered EF) and heart failure with mid-range ejection fraction (HFmrEF). While HF-recovered EF patients have better outcomes than heart failure with reduced ejection fraction (HFrEF), they continue to have symptoms, persistent biomarker elevations, and abnormal outcomes suggesting a continued disease process. HFmrEF patients appear to have features of HFrEF and heart failure with preserved ejection fraction (HFpEF), but have a high prevalence of ischemic heart disease and may represent a transitory phase between the HFrEF and HFpEF. Management strategies have insufficient data to warrant standardization at this time. HF-recovered EF and HFmrEF represent new populations with unmet needs and expose the pitfalls of an EF basis for heart failure classification.

  14. Baxter operators and Hamiltonians for "nearly all" integrable closed gl(n) spin chains

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Łukowski, Tomasz; Meneghelli, Carlo; Staudacher, Matthias

    2013-09-01

    We continue our systematic construction of Baxter Q-operators for spin chains, which is based on certain degenerate solutions of the Yang-Baxter equation. Here we generalize our approach from the fundamental representation of gl(n) to generic finite-dimensional representations in quantum space. The results equally apply to non-compact representations of highest or lowest weight type. We furthermore fill an apparent gap in the literature, and provide the nearest-neighbor Hamiltonians of the spin chains in question for all cases where the gl(n) representations are described by rectangular Young diagrams, as well as for their infinite-dimensional generalizations. They take the form of digamma functions depending on operator-valued shifted weights. We believe that this condition follows from [R0,I,Jba]=0, [R0,I,Jb˙a˙]=0, [R0,I,Jbc˙Jc˙a]=0, which are specializations, respectively, of the last equation in (2.14), (2.16) and (2.19) in the case of minimal representations. Clearly R0,I can be considered as a function of the Casimir operators of gl(n) as well. These are just constants in a given irreducible representation and will not enter the discussion regarding the determination of R0,I.

  15. A simplified formalism of the algebra of partially transposed permutation operators with applications

    NASA Astrophysics Data System (ADS)

    Mozrzymas, Marek; Studziński, Michał; Horodecki, Michał

    2018-03-01

    Herein we continue the study of the representation theory of the algebra of permutation operators acting on the n -fold tensor product space, partially transposed on the last subsystem. We develop the concept of partially reduced irreducible representations, which allows us to significantly simplify previously proved theorems and, most importantly, derive new results for irreducible representations of the mentioned algebra. In our analysis we are able to reduce the complexity of the central expressions by getting rid of sums over all permutations from the symmetric group, obtaining equations which are much more handy in practical applications. We also find relatively simple matrix representations for the generators of the underlying algebra. The obtained simplifications and developments are applied to derive the characteristics of a deterministic port-based teleportation scheme written purely in terms of irreducible representations of the studied algebra. We solve an eigenproblem for the generators of the algebra, which is the first step towards a hybrid port-based teleportation scheme and gives us new proofs of the asymptotic behaviour of teleportation fidelity. We also show a connection between the density operator characterising port-based teleportation and a particular matrix composed of an irreducible representation of the symmetric group, which encodes properties of the investigated algebra.

  16. Categorical Working Memory Representations are used in Delayed Estimation of Continuous Colors

    PubMed Central

    Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J

    2016-01-01

    In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In two experiments we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. PMID:27797548

  17. Continuous joint measurement and entanglement of qubits in remote cavities

    NASA Astrophysics Data System (ADS)

    Motzoi, Felix; Whaley, K. Birgitta; Sarovar, Mohan

    2015-09-01

    We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.

  18. Multidimensional brain activity dictated by winner-take-all mechanisms.

    PubMed

    Tozzi, Arturo; Peters, James F

    2018-06-21

    A novel demon-based architecture is introduced to elucidate brain functions such as pattern recognition during human perception and mental interpretation of visual scenes. Starting from the topological concepts of invariance and persistence, we introduce a Selfridge pandemonium variant of brain activity that takes into account a novel feature, namely, demons that recognize short straight-line segments, curved lines and scene shapes, such as shape interior, density and texture. Low-level representations of objects can be mapped to higher-level views (our mental interpretations): a series of transformations can be gradually applied to a pattern in a visual scene, without affecting its invariant properties. This makes it possible to construct a symbolic multi-dimensional representation of the environment. These representations can be projected continuously to an object that we have seen and continue to see, thanks to the mapping from shapes in our memory to shapes in Euclidean space. Although perceived shapes are 3-dimensional (plus time), the evaluation of shape features (volume, color, contour, closeness, texture, and so on) leads to n-dimensional brain landscapes. Here we discuss the advantages of our parallel, hierarchical model in pattern recognition, computer vision and biological nervous system's evolution. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Music as Environment: An Ecological and Biosemiotic Approach

    PubMed Central

    Reybrouck, Mark

    2014-01-01

    This paper provides an attempt to conceive of music in terms of a sounding environment. Starting from a definition of music as a collection of vibrational events, it introduces the distinction between discrete-symbolic representations as against analog-continuous representations of the sounds. The former makes it possible to conceive of music in terms of a Humboldt system, the latter in terms of an experiential approach. Both approaches, further, are not opposed to each other, but are complementary to some extent. There is, however, a distinction to be drawn between the bottom-up approach to auditory processing of environmental sounds and music, which is continuous and proceeding in real time, as against the top-down approach, which is proceeding at a level of mental representation by applying discrete symbolic labels to vibrational events. The distinction is discussed against the background of phylogenetic and ontogenetic claims, with a major focus on the innate auditory capabilities of the fetus and neonate and the gradual evolution from mere sensory perception of sound to sense-making and musical meaning. The latter, finally, is elaborated on the basis of the operational concepts of affordance and functional tone, thus bringing together some older contributions from ecology and biosemiotics. PMID:25545707

  20. Categorical working memory representations are used in delayed estimation of continuous colors.

    PubMed

    Hardman, Kyle O; Vergauwe, Evie; Ricker, Timothy J

    2017-01-01

    In the last decade, major strides have been made in understanding visual working memory through mathematical modeling of color production responses. In the delayed color estimation task (Wilken & Ma, 2004), participants are given a set of colored squares to remember, and a few seconds later asked to reproduce those colors by clicking on a color wheel. The degree of error in these responses is characterized with mathematical models that estimate working memory precision and the proportion of items remembered by participants. A standard mathematical model of color memory assumes that items maintained in memory are remembered through memory for precise details about the particular studied shade of color. We contend that this model is incomplete in its present form because no mechanism is provided for remembering the coarse category of a studied color. In the present work, we remedy this omission and present a model of visual working memory that includes both continuous and categorical memory representations. In 2 experiments, we show that our new model outperforms this standard modeling approach, which demonstrates that categorical representations should be accounted for by mathematical models of visual working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  2. Precision of working memory for speech sounds.

    PubMed

    Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud

    2015-01-01

    Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.

  3. Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation

    PubMed Central

    Khaligh-Razavi, Seyed-Mahdi; Kriegeskorte, Nikolaus

    2014-01-01

    Inferior temporal (IT) cortex in human and nonhuman primates serves visual object recognition. Computational object-vision models, although continually improving, do not yet reach human performance. It is unclear to what extent the internal representations of computational models can explain the IT representation. Here we investigate a wide range of computational model representations (37 in total), testing their categorization performance and their ability to account for the IT representational geometry. The models include well-known neuroscientific object-recognition models (e.g. HMAX, VisNet) along with several models from computer vision (e.g. SIFT, GIST, self-similarity features, and a deep convolutional neural network). We compared the representational dissimilarity matrices (RDMs) of the model representations with the RDMs obtained from human IT (measured with fMRI) and monkey IT (measured with cell recording) for the same set of stimuli (not used in training the models). Better performing models were more similar to IT in that they showed greater clustering of representational patterns by category. In addition, better performing models also more strongly resembled IT in terms of their within-category representational dissimilarities. Representational geometries were significantly correlated between IT and many of the models. However, the categorical clustering observed in IT was largely unexplained by the unsupervised models. The deep convolutional network, which was trained by supervision with over a million category-labeled images, reached the highest categorization performance and also best explained IT, although it did not fully explain the IT data. Combining the features of this model with appropriate weights and adding linear combinations that maximize the margin between animate and inanimate objects and between faces and other objects yielded a representation that fully explained our IT data. Overall, our results suggest that explaining IT requires computational features trained through supervised learning to emphasize the behaviorally important categorical divisions prominently reflected in IT. PMID:25375136

  4. An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data

    Treesearch

    Rachel Riemann; Barry Tyler Wilson; Andrew Lister; Sarah Parks

    2010-01-01

    Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to...

  5. Why Are All the Black Kids Still in Special Education? Revisiting the Issue of Disproportionate Representation

    ERIC Educational Resources Information Center

    Shealey, Monika Williams; Lue, Martha Scott

    2006-01-01

    The overrepresentation of students of color in special education continues to be a prevalent, disturbing, and heavily debated problem in this country. What remains is the reality that a large number of African American students continue to be referred and placed in special education programs. On the heels of 2 reports commissioned by the National…

  6. Developmental Differences in Cognitive Control: Goal Representation and Maintenance during a Continuous Performance Task

    ERIC Educational Resources Information Center

    Lorsbach, Thomas C.; Reimer, Jason F.

    2010-01-01

    The present study examined whether younger and older children differ in the use of the goal-related information in a continuous performance task (AX-CPT), and if so, whether those age differences are due to the ability to represent and/or maintain goal information. Experiment 1 compared third- and sixth-grade children in their ability to transform…

  7. Will a category cue attract you? Motor output reveals dynamic competition across person construal.

    PubMed

    Freeman, Jonathan B; Ambady, Nalini; Rule, Nicholas O; Johnson, Kerri L

    2008-11-01

    People use social categories to perceive others, extracting category cues to glean membership. Growing evidence for continuous dynamics in real-time cognition suggests, contrary to prevailing social psychological accounts, that person construal may involve dynamic competition between simultaneously active representations. To test this, the authors examined social categorization in real-time by streaming the x, y coordinates of hand movements as participants categorized typical and atypical faces by sex. Though judgments of atypical targets were largely accurate, online motor output exhibited a continuous spatial attraction toward the opposite sex category, indicating dynamic competition between multiple social category alternatives. The authors offer a dynamic continuity account of social categorization and provide converging evidence across categorizations of real male and female faces (containing a typical or an atypical sex-specifying cue) and categorizations of computer-generated male and female faces (with subtly morphed sex-typical or sex-atypical features). In 3 studies, online motor output revealed continuous dynamics underlying person construal, in which multiple simultaneously and partially active category representations gradually cascade into social categorical judgments. Such evidence is challenging for discrete stage-based accounts. (c) 2008 APA, all rights reserved

  8. A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective

    PubMed Central

    Ekstrom, Arne D.; Arnold, Aiden E. G. F.; Iaria, Giuseppe

    2014-01-01

    While the widely studied allocentric spatial representation holds a special status in neuroscience research, its exact nature and neural underpinnings continue to be the topic of debate, particularly in humans. Here, based on a review of human behavioral research, we argue that allocentric representations do not provide the kind of map-like, metric representation one might expect based on past theoretical work. Instead, we suggest that almost all tasks used in past studies involve a combination of egocentric and allocentric representation, complicating both the investigation of the cognitive basis of an allocentric representation and the task of identifying a brain region specifically dedicated to it. Indeed, as we discuss in detail, past studies suggest numerous brain regions important to allocentric spatial memory in addition to the hippocampus, including parahippocampal, retrosplenial, and prefrontal cortices. We thus argue that although allocentric computations will often require the hippocampus, particularly those involving extracting details across temporally specific routes, the hippocampus is not necessary for all allocentric computations. We instead suggest that a non-aggregate network process involving multiple interacting brain areas, including hippocampus and extra-hippocampal areas such as parahippocampal, retrosplenial, prefrontal, and parietal cortices, better characterizes the neural basis of spatial representation during navigation. According to this model, an allocentric representation does not emerge from the computations of a single brain region (i.e., hippocampus) nor is it readily decomposable into additive computations performed by separate brain regions. Instead, an allocentric representation emerges from computations partially shared across numerous interacting brain regions. We discuss our non-aggregate network model in light of existing data and provide several key predictions for future experiments. PMID:25346679

  9. Tackling the 2nd V: Big Data, Variety and the Need for Representation Consistency

    NASA Astrophysics Data System (ADS)

    Clune, T.; Kuo, K. S.

    2016-12-01

    While Big Data technologies are transforming our ability to analyze ever larger volumes of Earth science data, practical constraints continue to limit our ability to compare data across datasets from different sources in an efficient and robust manner. Within a single data collection, invariants such as file format, grid type, and spatial resolution greatly simplify many types of analysis (often implicitly). However, when analysis combines data across multiple data collections, researchers are generally required to implement data transformations (i.e., "data preparation") to provide appropriate invariants. These transformation include changing of file formats, ingesting into a database, and/or regridding to a common spatial representation, and they can either be performed once, statically, or each time the data is accessed. At the very least, this process is inefficient from the perspective of the community as each team selects its own representation and privately implements the appropriate transformations. No doubt there are disadvantages to any "universal" representation, but we posit that major benefits would be obtained if a suitably flexible spatial representation could be standardized along with tools for transforming to/from that representation. We regard this as part of the historic trend in data publishing. Early datasets used ad hoc formats and lacked metadata. As better tools evolved, published data began to use standardized formats (e.g., HDF and netCDF) with attached metadata. We propose that the modern need to perform analysis across data sets should drive a new generation of tools that support a standardized spatial representation. More specifically, we propose the hierarchical triangular mesh (HTM) as a suitable "generic" resolution that permits standard transformations to/from native representations in use today, as well as tools to convert/regrid existing datasets onto that representation.

  10. Modelling the anaerobic digestion of solid organic waste - Substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach.

    PubMed

    Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M

    2016-07-01

    This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. 45 CFR 1633.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... illegal drug activities. ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Purpose. 1633.1 Section 1633.1 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  12. 45 CFR 1633.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... illegal drug activities. ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Purpose. 1633.1 Section 1633.1 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  13. 45 CFR 1633.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... illegal drug activities. ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Purpose. 1633.1 Section 1633.1 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  14. 45 CFR 1633.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... illegal drug activities. ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Purpose. 1633.1 Section 1633.1 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  15. 45 CFR 1633.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... illegal drug activities. ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Purpose. 1633.1 Section 1633.1 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  16. Mid-course multi-target tracking using continuous representation

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Toomarian, Nikzad

    1991-01-01

    The thrust of this paper is to present a new approach to multi-target tracking for the mid-course stage of the Strategic Defense Initiative (SDI). This approach is based upon a continuum representation of a cluster of flying objects. We assume that the velocities of the flying objects can be embedded into a smooth velocity field. This assumption is based upon the impossibility of encounters in a high density cluster between the flying objects. Therefore, the problem is reduced to an identification of a moving continuum based upon consecutive time frame observations. In contradistinction to the previous approaches, here each target is considered as a center of a small continuous neighborhood subjected to a local-affine transformation, and therefore, the target trajectories do not mix. Obviously, their mixture in plane of sensor view is apparent. The approach is illustrated by an example.

  17. DspaceOgreTerrain 3D Terrain Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Pomerantz, Marc I.

    2012-01-01

    DspaceOgreTerrain is an extension to the DspaceOgre 3D visualization tool that supports real-time visualization of various terrain types, including digital elevation maps, planets, and meshes. DspaceOgreTerrain supports creating 3D representations of terrains and placing them in a scene graph. The 3D representations allow for a continuous level of detail, GPU-based rendering, and overlaying graphics like wheel tracks and shadows. It supports reading data from the SimScape terrain- modeling library. DspaceOgreTerrain solves the problem of displaying the results of simulations that involve very large terrains. In the past, it has been used to visualize simulations of vehicle traverses on Lunar and Martian terrains. These terrains were made up of billions of vertices and would not have been renderable in real-time without using a continuous level of detail rendering technique.

  18. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  19. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.

  20. Molecular Dynamics Simulation of the Cage Effect in a Wide Packing Fraction Range

    NASA Astrophysics Data System (ADS)

    Pestryaev, E. M.

    2018-07-01

    The self-diffusion coefficient and particle residence time in the first coordination shell of its neighbours were investigated by molecular dynamics simulation with the packing fraction of the model system ranging from 0.1 to 0.8. The residence time distribution spans several orders of magnitude and broadens with the system packing fraction. The distribution exhibits a maximum localized in the short residence time region. The average residence time correlates with the conventionally-used intermolecular correlation time governed by the mutual particle translational diffusion. It was shown that the use of the coordination number as an argument for all searched parameters is the obvious representation of the cage effect onset. The agreement of the self-diffusion coefficient with one of the recent theories is excellent in most of the density range, including the start of the glass transition, with the largest divergence only observed for the rare gas state. The same conclusion is true for the simulated and theoretical values of the caging number, which is nearly five, defining the start of the system liquefaction.

  1. Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments.

    PubMed

    Wu, Ailong; Liu, Ling; Huang, Tingwen; Zeng, Zhigang

    2017-01-01

    Neurodynamic system is an emerging research field. To understand the essential motivational representations of neural activity, neurodynamics is an important question in cognitive system research. This paper is to investigate Mittag-Leffler stability of a class of fractional-order neural networks in the presence of generalized piecewise constant arguments. To identify neural types of computational principles in mathematical and computational analysis, the existence and uniqueness of the solution of neurodynamic system is the first prerequisite. We prove that the existence and uniqueness of the solution of the network holds when some conditions are satisfied. In addition, self-active neurodynamic system demands stable internal dynamical states (equilibria). The main emphasis will be then on several sufficient conditions to guarantee a unique equilibrium point. Furthermore, to provide deeper explanations of neurodynamic process, Mittag-Leffler stability is studied in detail. The established results are based on the theories of fractional differential equation and differential equation with generalized piecewise constant arguments. The derived criteria improve and extend the existing related results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Feature-based attentional weighting and spreading in visual working memory

    PubMed Central

    Niklaus, Marcel; Nobre, Anna C.; van Ede, Freek

    2017-01-01

    Attention can be directed at features and feature dimensions to facilitate perception. Here, we investigated whether feature-based-attention (FBA) can also dynamically weight feature-specific representations within multi-feature objects held in visual working memory (VWM). Across three experiments, participants retained coloured arrows in working memory and, during the delay, were cued to either the colour or the orientation dimension. We show that directing attention towards a feature dimension (1) improves the performance in the cued feature dimension at the expense of the uncued dimension, (2) is more efficient if directed to the same rather than to different dimensions for different objects, and (3) at least for colour, automatically spreads to the colour representation of non-attended objects in VWM. We conclude that FBA also continues to operate on VWM representations (with similar principles that govern FBA in the perceptual domain) and challenge the classical view that VWM representations are stored solely as integrated objects. PMID:28233830

  3. An infinite branching hierarchy of time-periodic solutions of the Benjamin-Ono equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkening, Jon

    2008-07-01

    We present a new representation of solutions of the Benjamin-Ono equation that are periodic in space and time. Up to an additive constant and a Galilean transformation, each of these solutions is a previously known, multi-periodic solution; however, the new representation unifies the subset of such solutions with a fixed spatial period and a continuously varying temporal period into a single network of smooth manifolds connected together by an infinite hierarchy of bifurcations. Our representation explicitly describes the evolution of the Fourier modes of the solution as well as the particle trajectories in a meromorphic representation of these solutions; therefore,more » we have also solved the problem of finding periodic solutions of the ordinary differential equation governing these particles, including a description of a bifurcation mechanism for adding or removing particles without destroying periodicity. We illustrate the types of bifurcation that occur with several examples, including degenerate bifurcations not predicted by linearization about traveling waves.« less

  4. Two-Dimensional Electrophoretic Analysis of Subcellular Liver Fractions and Isolated Hepatocytes from Normal and PFDA Treated Rats

    DTIC Science & Technology

    1990-05-28

    Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP perfluoro.n-decanoic acid ; two-dimensional electrophoresis...hepatotoxicity; cell fractions; liver 1 t ABSTRACT (Continue on reverse if necessary and identify by block number) Perfluoro-n-decanoic acid (PFDA) effects...Unu::’-. ’. I AFOSR Ju .T , Building 410 Bolling AFB, DC 20332-6448 By Dist V’ lml mm mm i INTRODUCTION Perfluorocarboxylic acids and other

  5. Some special values of vertices of trees on the suborbital graphs

    NASA Astrophysics Data System (ADS)

    Deǧer, A. H.; Akbaba, Ü.

    2018-01-01

    In the present study, the action of a congruence subgroup of S L(2, Z) on ℚ ^ is examined. From this action and its properties, vertices of paths of minimal length on the suborbital graph Fu,N give rise to some special sequence values, that are alternate sequences such as identity, Fibonacci and Lucas sequences. These types of vertices also give rise to special continued fractions, hence from recurrence relations for continued fractions, values of these vertices and values of special sequences were associated.

  6. Continuous fractional-order Zero Phase Error Tracking Control.

    PubMed

    Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan

    2018-04-01

    A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase

    NASA Astrophysics Data System (ADS)

    Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.

    2015-09-01

    We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.

  8. Standard filtration practices may significantly distort planktonic microbial diversity estimates.

    PubMed

    Padilla, Cory C; Ganesh, Sangita; Gantt, Shelby; Huhman, Alex; Parris, Darren J; Sarode, Neha; Stewart, Frank J

    2015-01-01

    Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05-0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.

  9. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements

    NASA Astrophysics Data System (ADS)

    Kougioumtzoglou, Ioannis A.; dos Santos, Ketson R. M.; Comerford, Liam

    2017-09-01

    Various system identification techniques exist in the literature that can handle non-stationary measured time-histories, or cases of incomplete data, or address systems following a fractional calculus modeling. However, there are not many (if any) techniques that can address all three aforementioned challenges simultaneously in a consistent manner. In this paper, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. In this regard, the oscillator is transformed into an equivalent MISO system in the wavelet domain. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are utilized to determine appropriately defined time- and frequency-dependent wavelet based frequency response functions and related oscillator parameters. Several linear and nonlinear time-variant systems with fractional derivative elements are used as numerical examples to demonstrate the reliability of the technique even in cases of noise corrupted and incomplete data.

  10. A systematic investigation of the link between rational number processing and algebra ability.

    PubMed

    Hurst, Michelle; Cordes, Sara

    2018-02-01

    Recent research suggests that fraction understanding is predictive of algebra ability; however, the relative contributions of various aspects of rational number knowledge are unclear. Furthermore, whether this relationship is notation-dependent or rather relies upon a general understanding of rational numbers (independent of notation) is an open question. In this study, college students completed a rational number magnitude task, procedural arithmetic tasks in fraction and decimal notation, and an algebra assessment. Using these tasks, we measured three different aspects of rational number ability in both fraction and decimal notation: (1) acuity of underlying magnitude representations, (2) fluency with which symbols are mapped to the underlying magnitudes, and (3) fluency with arithmetic procedures. Analyses reveal that when looking at the measures of magnitude understanding, the relationship between adults' rational number magnitude performance and algebra ability is dependent upon notation. However, once performance on arithmetic measures is included in the relationship, individual measures of magnitude understanding are no longer unique predictors of algebra performance. Furthermore, when including all measures simultaneously, results revealed that arithmetic fluency in both fraction and decimal notation each uniquely predicted algebra ability. Findings are the first to demonstrate a relationship between rational number understanding and algebra ability in adults while providing a clearer picture of the nature of this relationship. © 2017 The British Psychological Society.

  11. HIV/AIDS among adolescents in Eastern Europe: knowledge of HIV/AIDS, social representations of risk and sexual activity among school children and homeless adolescents in Russia, Georgia and the Ukraine.

    PubMed

    Goodwin, Robin; Kozlova, Alexandra; Nizharadze, George; Polyakova, Galina

    2004-05-01

    The two studies reported here focus on knowledge and representations of HIV/AIDS (study 1) plus sexual behaviour and hedonistic values (study 2) among 14-17-year-old school children and similar aged shelter children. Results indicate that shelter children are more sexually active, less knowledgeable about means of HIV transmission and are more likely to hold stereotyped representations of those most at risk of infection. Russian respondents were the most sexually active, a finding which could at least be partly explained by their higher levels of hedonistic values. These findings are discussed in the context of a climate of continuing social change in this region.

  12. The Local Geometry of Multiattribute Tradeoff Preferences

    PubMed Central

    McGeachie, Michael; Doyle, Jon

    2011-01-01

    Existing representations for multiattribute ceteris paribus preference statements have provided useful treatments and clear semantics for qualitative comparisons, but have not provided similarly clear representations or semantics for comparisons involving quantitative tradeoffs. We use directional derivatives and other concepts from elementary differential geometry to interpret conditional multiattribute ceteris paribus preference comparisons that state bounds on quantitative tradeoff ratios. This semantics extends the familiar economic notion of marginal rate of substitution to multiple continuous or discrete attributes. The same geometric concepts also provide means for interpreting statements about the relative importance of different attributes. PMID:21528018

  13. From "fixing women" to "institutional transformation": An ADVANCE case study

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; Kaunas, Christine

    2015-12-01

    The United States' position in the global economy requires an influx of women into science, technology, engineering, and mathematics (STEM) fields in order to remain competitive. Despite this, the representation of women in STEM continues to be low. The National Science Foundation's ADVANCE Program addresses this issue by funding projects that aim to increase the representation of women in academic STEM fields through transformation of institutional structures that impede women's progress in academic STEM fields. This paper includes a case study of the Texas A&M University ADVANCE Program.

  14. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowlymore » biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.« less

  15. The impact of the parental illness representation on disease management in childhood asthma.

    PubMed

    Yoos, H Lorrie; Kitzman, Harriet; Henderson, Charles; McMullen, Ann; Sidora-Arcoleo, Kimberly; Halterman, Jill S; Anson, Elizabeth

    2007-01-01

    Despite significant advances in treatment modalities, morbidity due to childhood asthma has continued to increase, particularly for poor and minority children. To describe the parental illness representation of asthma in juxtaposition to the professional model of asthma and to evaluate the impact of that illness representation on the adequacy of the child's medication regimen. Parents (n = 228) of children with asthma were interviewed regarding illness beliefs using a semistructured interview. The impact of background characteristics, parental beliefs, the child's symptom interpretation, and the parent-healthcare provider (HCP) relationship on the adequacy of the child's medication regimen were evaluated. The parental and professional models of asthma differ markedly. Demographic risk factors (p = .005), low parental education (p < .0001), inaccurate symptom evaluation by the child (p = .02), and a poor parent-HCP relationship (p < .0001) had a negative effect on the parental illness representation. A parental illness representation concordant with the professional model of asthma (p = .05) and more formal asthma education (p = .02) had a direct positive effect on the medication regimen. Demographic risk factors (p = .006) and informal advice-seeking (p = .0003) had a negative impact on the regimen. The parental illness representation mediated the impact of demographic risk factors (p = .10), parental education (p =.07), and the parent-HCP relationship (p = .06) on the regimen. Parents and HCPs may come to the clinical encounter with markedly different illness representations. Establishing a partnership with parents by eliciting and acknowledging parental beliefs is an important component of improving disease management.

  16. 7 CFR 948.56 - Nomination and selection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... of producers' cooperative marketing associations may participate in designating nominees to represent such associations. If no separate representation is provided for producers' cooperative marketing...

  17. 45 CFR 1633.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for engaging in illegal drug activity. ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Definitions. 1633.2 Section 1633.2 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  18. 45 CFR 1633.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for engaging in illegal drug activity. ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Definitions. 1633.2 Section 1633.2 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  19. 45 CFR 1633.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for engaging in illegal drug activity. ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Definitions. 1633.2 Section 1633.2 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  20. 45 CFR 1633.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for engaging in illegal drug activity. ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Definitions. 1633.2 Section 1633.2 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  1. 45 CFR 1633.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for engaging in illegal drug activity. ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Definitions. 1633.2 Section 1633.2 Public Welfare Regulations Relating to Public Welfare (Continued) LEGAL SERVICES CORPORATION RESTRICTION ON REPRESENTATION IN...

  2. 7 CFR 1221.100 - Establishment and representation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1221.100 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Sorghum...

  3. 7 CFR 948.56 - Nomination and selection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... of producers' cooperative marketing associations may participate in designating nominees to represent such associations. If no separate representation is provided for producers' cooperative marketing...

  4. Theory of Random Copolymer Fractionation in Columns

    NASA Astrophysics Data System (ADS)

    Enders, Sabine

    Random copolymers show polydispersity both with respect to molecular weight and with respect to chemical composition, where the physical and chemical properties depend on both polydispersities. For special applications, the two-dimensional distribution function must adjusted to the application purpose. The adjustment can be achieved by polymer fractionation. From the thermodynamic point of view, the distribution function can be adjusted by the successive establishment of liquid-liquid equilibria (LLE) for suitable solutions of the polymer to be fractionated. The fractionation column is divided into theoretical stages. Assuming an LLE on each theoretical stage, the polymer fractionation can be modeled using phase equilibrium thermodynamics. As examples, simulations of stepwise fractionation in one direction, cross-fractionation in two directions, and two different column fractionations (Baker-Williams fractionation and continuous polymer fractionation) have been investigated. The simulation delivers the distribution according the molecular weight and chemical composition in every obtained fraction, depending on the operative properties, and is able to optimize the fractionation effectively.

  5. Language Networks as Models of Cognition: Understanding Cognition through Language

    NASA Astrophysics Data System (ADS)

    Beckage, Nicole M.; Colunga, Eliana

    Language is inherently cognitive and distinctly human. Separating the object of language from the human mind that processes and creates language fails to capture the full language system. Linguistics traditionally has focused on the study of language as a static representation, removed from the human mind. Network analysis has traditionally been focused on the properties and structure that emerge from network representations. Both disciplines could gain from looking at language as a cognitive process. In contrast, psycholinguistic research has focused on the process of language without committing to a representation. However, by considering language networks as approximations of the cognitive system we can take the strength of each of these approaches to study human performance and cognition as related to language. This paper reviews research showcasing the contributions of network science to the study of language. Specifically, we focus on the interplay of cognition and language as captured by a network representation. To this end, we review different types of language network representations before considering the influence of global level network features. We continue by considering human performance in relation to network structure and conclude with theoretical network models that offer potential and testable explanations of cognitive and linguistic phenomena.

  6. The continuous spin representations of the Poincare and super-Poincare groups and their construction by the Inonu-Wigner group contraction

    NASA Astrophysics Data System (ADS)

    Khan, Abu M. A. S.

    We study the continuous spin representation (CSR) of the Poincare group in arbitrary dimensions. In d dimensions, the CSRs are characterized by the length of the light-cone vector and the Dynkin labels of the SO(d-3) short little group which leaves the light-cone vector invariant. In addition to these, a solid angle Od-3 which specifies the direction of the light-cone vector is also required to label the states. We also find supersymmetric generalizations of the CSRs. In four dimensions, the supermultiplet contains one bosonic and one fermionic CSRs which transform into each other under the action of the supercharges. In a five dimensional case, the supermultiplet contains two bosonic and two fermionic CSRs which is like N = 2 supersymmetry in four dimensions. When constructed using Grassmann parameters, the light-cone vector becomes nilpotent. This makes the representation finite dimensional, but at the expense of introducing central charges even though the representation is massless. This leads to zero or negative norm states. The nilpotent constructions are valid only for even dimensions. We also show how the CSRs in four dimensions can be obtained from five dimensions by the combinations of Kaluza-Klein (KK) dimensional reduction and the Inonu-Wigner group contraction. The group contraction is a singular transformation. We show that the group contraction is equivalent to imposing periodic boundary condition along one direction and taking a double singular limit. In this form the contraction parameter is interpreted as the inverse KK radius. We apply this technique to both five dimensional regular massless and massive representations. For the regular massless case, we find that the contraction gives the CSR in four dimensions under a double singular limit and the representation wavefunction is the Bessel function. For the massive case, we use Majorana's infinite component theory as a model for the SO(4) little group. In this case, a triple singular limit is required to yield any CSR in four dimensions. The representation wavefunction is the Bessel function, as expected, but the scale factor is not the length of the light-cone vector. The amplitude and the scale factor are implicit functions of the parameter y which is a ratio of the internal and external coordinates. We also state under what conditions our solutions become identical to Wigner's solution.

  7. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    NASA Astrophysics Data System (ADS)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit of learning from an integrated 2D3D representation suggests that there are some spatial transformations which are better retained if they are learned through an explicit demonstration. Participants also showed evidence of continued learning on the tests of generalization with the help of cues and practice, even without feedback. This finding suggests that the computer-based learning programs used in this study were good tools for instruction of neuroanatomy.

  8. The gut microbiome composition associates with bipolar disorder and illness severity.

    PubMed

    Evans, Simon J; Bassis, Christine M; Hein, Robert; Assari, Shervin; Flowers, Stephanie A; Kelly, Marisa B; Young, Vince B; Ellingrod, Vicky E; McInnis, Melvin G

    2017-04-01

    The gut microbiome is emerging as an important factor in regulating mental health yet it remains unclear what the target should be for psychiatric treatment. We aimed to elucidate the complement of the gut-microbiome community for individuals with bipolar disorder relative to controls; and test for relationships with burden of disease measures. We compared the stool microbiome from individuals with bipolar disorder (n = 115) and control subjects (n = 64) using 16S ribosomal RNA (rRNA) gene sequence analysis. Analysis of molecular variance (AMOVA) revealed global community case-control differences (AMOVA p = 0.047). Operational Taxonomical Unit (OTU) level analysis revealed significantly decreased fractional representation (p < 0.001) of Faecalibacterium after adjustment for age, sex, BMI and false discovery rate (FDR) correction at the p < 0.05 level. Within individuals with bipolar disorder, the fractional representation of Faecalibacterium associated with better self-reported health outcomes based on the Short Form Health Survey (SF12); the Patient Health Questionnaire (PHQ9); the Pittsburg Sleep Quality Index (PSQI); the Generalized Anxiety Disorder scale (GAD7); and the Altman Mania Rating Scale (ASRM), independent of covariates. This study provides the first detailed analysis of the gut microbiome relationships with multiple psychiatric domains from a bipolar population. The data support the hypothesis that targeting the microbiome may be an effective treatment paradigm for bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Applications of fractional lower order S transform time frequency filtering algorithm to machine fault diagnosis

    PubMed Central

    Wang, Haibin; Zha, Daifeng; Li, Peng; Xie, Huicheng; Mao, Lili

    2017-01-01

    Stockwell transform(ST) time-frequency representation(ST-TFR) is a time frequency analysis method which combines short time Fourier transform with wavelet transform, and ST time frequency filtering(ST-TFF) method which takes advantage of time-frequency localized spectra can separate the signals from Gaussian noise. The ST-TFR and ST-TFF methods are used to analyze the fault signals, which is reasonable and effective in general Gaussian noise cases. However, it is proved that the mechanical bearing fault signal belongs to Alpha(α) stable distribution process(1 < α < 2) in this paper, even the noise also is α stable distribution in some special cases. The performance of ST-TFR method will degrade under α stable distribution noise environment, following the ST-TFF method fail. Hence, a new fractional lower order ST time frequency representation(FLOST-TFR) method employing fractional lower order moment and ST and inverse FLOST(IFLOST) are proposed in this paper. A new FLOST time frequency filtering(FLOST-TFF) algorithm based on FLOST-TFR method and IFLOST is also proposed, whose simplified method is presented in this paper. The discrete implementation of FLOST-TFF algorithm is deduced, and relevant steps are summarized. Simulation results demonstrate that FLOST-TFR algorithm is obviously better than the existing ST-TFR algorithm under α stable distribution noise, which can work better under Gaussian noise environment, and is robust. The FLOST-TFF method can effectively filter out α stable distribution noise, and restore the original signal. The performance of FLOST-TFF algorithm is better than the ST-TFF method, employing which mixed MSEs are smaller when α and generalized signal noise ratio(GSNR) change. Finally, the FLOST-TFR and FLOST-TFF methods are applied to analyze the outer race fault signal and extract their fault features under α stable distribution noise, where excellent performances can be shown. PMID:28406916

  10. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling

    NASA Astrophysics Data System (ADS)

    Wang, G.; Mayes, M. A.; Gu, L.; Schadt, C. W.

    2013-12-01

    Experimental observations and modeling efforts have shown that dormancy is likely a common strategy for microorganisms to contend with environmental stress. We review the state-of-the-art in modeling approaches for microbial dormancy and discuss the rationales of these models. We proved that the physiological state index model is not appropriate for describing transformation between active and dormant states. Based on the generally accepted assumptions summarized from ten existing models, we postulated a new synthetic microbial physiology component within the Microbial-ENzyme-mediated Decomposition (MEND) model. Both the steady state active fraction (rss) and substrate saturation level (Øss) positively depend on two physiological indices: α and β. The index α = mR /(μG+ mR), where μG and mR represent the maximum specific growth and maintenance rates, respectively, for active microbes. β denotes the ratio of dormant to active maintenance rate. The rss equals to Øss only under the condition of β→0, and they are identical to α. When substrate availability is the only limiting factor, the maximum rss is ca. 0.5 with α≤0.5 and β ≤0.01. This threshold value (0.5) of rss (not dynamic r) can explain the low active microbial fractions observed in undisturbed soils. The applications of the improved model to a 14C-labeled glucose induced respiration dataset and a batch experimental dataset show satisfactory model performance. We found that the exponential growth respiration rates can only be used to determine μG and initial active microbial biomass (Ba0), thus we suggest using respiration data representing both exponential growth and non-accelerating phases to robustly determine other important parameters such as initial total live microbial biomass (B0), initial active fraction (r0), μG, α, and the half-saturation constant (Ks). Similar improved representations of microbial physiology should be incorporated into existing ecosystem models in order to account for the significance of dormancy in microbially-mediated processes.

  11. Path integrals and large deviations in stochastic hybrid systems.

    PubMed

    Bressloff, Paul C; Newby, Jay M

    2014-04-01

    We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.

  12. 40 CFR 63.4322 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... which the mass fraction of organic HAP, determined according to the requirements of § 63.4321(e)(1)(iv... which the mass fraction of organic HAP exceeded the applicable emission limit in Table 1 to this subpart...

  13. 40 CFR 63.4322 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... which the mass fraction of organic HAP, determined according to the requirements of § 63.4321(e)(1)(iv... which the mass fraction of organic HAP exceeded the applicable emission limit in Table 1 to this subpart...

  14. 40 CFR 63.4322 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which the mass fraction of organic HAP, determined according to the requirements of § 63.4321(e)(1)(iv... which the mass fraction of organic HAP exceeded the applicable emission limit in Table 1 to this subpart...

  15. 40 CFR 63.4322 - How do I demonstrate continuous compliance with the emission limitations?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... which the mass fraction of organic HAP, determined according to the requirements of § 63.4321(e)(1)(iv... which the mass fraction of organic HAP exceeded the applicable emission limit in Table 1 to this subpart...

  16. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations

    NASA Astrophysics Data System (ADS)

    Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro

    2017-05-01

    In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.

  17. 7 CFR 948.53 - Reestablishment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... distribution of representation among the subdivision of areas, or among marketing organizations within... changes, the committee shall consider (a) the relative importance of new producing sections, (b) relative...

  18. 7 CFR 989.126 - Representation of the Committee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... selected from and representing the four handler(s) other than major cooperative marketing association....126 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS...

  19. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    DTIC Science & Technology

    2014-10-09

    problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic

  20. iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit

    NASA Astrophysics Data System (ADS)

    Huang, Li

    2017-12-01

    In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.

Top