1983-05-24
S83-32568 (23 May 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, straps herself into a seat in the Shuttle Mission Simulator (SMS) in Johnson Space Center?s Mission Simulation and Training Facility. Dr. Ride and the other STS-7 crew members continue their simulations in the motion base simulator in preparation for their flight in the space shuttle Challenger. Launch is scheduled for June 18. Troy Stewart, suit technician, assisted Dr. Ride. Photo credit: NASA
Integrating Existing Simulation Components into a Cohesive Simulation System
NASA Technical Reports Server (NTRS)
McLaughlin, Brian J.; Barrett, Larry K.
2012-01-01
A tradition of leveraging the re-use of components to help manage costs has evolved in the development of complex system. This tradition continues on in the Joint Polar Satellite System (JPSS) Program with the cloning of the Suomi National Polar-orbiting Partnership (NPP) satellite for the JPSS-1 mission, including the instrument complement. One benefit of re-use on a mission is the availability of existing simulation assets from the systems that were previously built. An issue arises in the continual shift of technology over a long mission, or multi-mission, lifecycle. As the missions mature, the requirements for the observatory simulations evolve. The challenge in this environment becomes re-using the existing components in that ever-changing landscape. To meet this challenge, the system must: establish an operational architecture that minimizes impacts on the implementation of individual components, consolidate the satisfaction of new high-impact requirements into system-level infrastructure, and build in a long-term view of system adaptation that spans the full lifecycle of the simulation system. The Flight Vehicle Test Suite (FVTS) within the JPSS Program is defining and executing this approach to ensure a robust simulation capability for the JPSS multi-mission environment
Ground Contact Model for Mars Science Laboratory Mission Simulations
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Way, David
2012-01-01
The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.
Shuttle spacelab simulation using a Lear jet aircraft: Mission no. 3 (ASSESS program)
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.
1974-01-01
The third ASSESS mission using a Lear Jet aircraft conducted to continue the study of scientific experiment operations in a simulated Spacelab environment. Prior to the mission, research planning and equipment preparation were observed and documented. A flight readiness review for the experiment was conducted. Nine of the ten scheduled flights were completed during simulation mission and all major science objectives were accomplished. The equipment was well qualified for flight and gave little trouble; telescope malfunctions occurred early in the mission and were corrected. Both real-time and post-observation data evaluation were used to assess research progress and to plan subsequent flight observations for maximum effectiveness.
Evolution of Software-Only-Simulation at NASA IV and V
NASA Technical Reports Server (NTRS)
McCarty, Justin; Morris, Justin; Zemerick, Scott
2014-01-01
Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard J.
2008-01-01
The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.
Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile
2012-01-01
II), and engine performance was estimated with the Numerical Propulsion System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented...Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft NPSS Numerical Propulsion System...System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and
Planning Coverage Campaigns for Mission Design and Analysis: Clasp for the Proposed DESDynI Mission
NASA Technical Reports Server (NTRS)
Knight, Russell; McLaren, David; Hu, Steven
2012-01-01
Mission design and analysis present challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, our approach is to use automated planning tools that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. We have applied this approach to DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission design concept using the CLASP (Compressed Large-scale Activity Scheduler/Planner) planning system [7], but since this adaptation many techniques have changed under the hood for CLASP and the DESDynI mission concept has undergone drastic changes, including that it has been renamed the Earth Radar Mission. Over the past two years, we have run more than fifty simulations with the CLASP-DESDynI adaptation, simulating different mission scenarios with changing parameters including targets, swaths, instrument modes, and data and downlink rates. We describe the evolution of simulations through the DESDynI MCR (Mission Concept Review) and afterwards.
Mission Simulation Facility: Simulation Support for Autonomy Development
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael
2003-01-01
The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1978-01-01
An adult male pig-tailed monkey (Macaca nemestrina) with surgically implanted biotelemetry unit was inserted into a fiberglass pod system which was installed in a Spacelab mock-up to simulate a 6-day mission during which extensive physiological measurements were obtained. The purpose of the pod was to make possible the study of respiratory gas exchange. Body temperature and selected cardiovascular parameters were recorded continuously for 2.6 days prior to 'launch', 6.3 days during 'flight', and 1.8 days after 'landing'. The results are surveyed, and it is concluded that it is feasible to perform sound physiological experiments on nonhuman primates in the Spacelab environment
INTEGRITY - Integrated Human Exploration Mission Simulation Facility
NASA Technical Reports Server (NTRS)
Henninger, Donald L.
2002-01-01
It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the best management techniques will have been developed, implemented, and validated. A trained cadre of managers experienced with a large, complex program would then be available.
Simulator Sickness in the AH-1S (Cobra) Flight Simulator
1989-09-01
ADJUSTABLE ARMAMENT BOMB LUG (upper rack use only) AFT ATTACHING POINT SWAY GRACE PAD HANS DEBRIS DIRECTOR ~~ CAPTIVE LOCKINGPI FORWARDHARNESS...Qualification training) Training Stage : Qualification Continuation Refresher AAPART (Check Ride) Mission All rights reserved Essex Corporation 1040 Woodcock Road
Operator procedure verification with a rapidly reconfigurable simulator
NASA Technical Reports Server (NTRS)
Iwasaki, Yumi; Engelmore, Robert; Fehr, Gary; Fikes, Richard
1994-01-01
Generating and testing procedures for controlling spacecraft subsystems composed of electro-mechanical and computationally realized elements has become a very difficult task. Before a spacecraft can be flown, mission controllers must envision a great variety of situations the flight crew may encounter during a mission and carefully construct procedures for operating the spacecraft in each possible situation. If, despite extensive pre-compilation of control procedures, an unforeseen situation arises during a mission, the mission controller must generate a new procedure for the flight crew in a limited amount of time. In such situations, the mission controller cannot systematically consider and test alternative procedures against models of the system being controlled, because the available simulator is too large and complex to reconfigure, run, and analyze quickly. A rapidly reconfigurable simulation environment that can execute a control procedure and show its effects on system behavior would greatly facilitate generation and testing of control procedures both before and during a mission. The How Things Work project at Stanford University has developed a system called DME (Device Modeling Environment) for modeling and simulating the behavior of electromechanical devices. DME was designed to facilitate model formulation and behavior simulation of device behavior including both continuous and discrete phenomena. We are currently extending DME for use in testing operator procedures, and we have built a knowledge base for modeling the Reaction Control System (RCS) of the space shuttle as a testbed. We believe that DME can facilitate design of operator procedures by providing mission controllers with a simulation environment that meets all these requirements.
Evaluation of a Drag-Free Control Concept for Missions in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Fleck, Melissa E.; Starin, Scott R.
2003-01-01
Atmospheric drag causes the greatest uncertainty in the equations of motion for spacecraft in Low Earth Orbit (LEO). If atmospheric drag eflects can be continuously and autonomously counteracted through the use of a drag-fee control system, drag may essentially be eliminated from the equations of motion for the spacecraft. The main perturbations on the spacecraft will then be those due to the gravitational field, which are much more easily predicted Through dynamical analysis and numerical simulation, this paper presents some potential costs and benefits associated with the fuel used during continuous drag compensation. In light of this cost-benefit analysis, simulation results are used to validate the concept of drag-free control for LEO spacecraft missions having certain characteristics.
A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.
Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús
2018-06-02
As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.
Challenges of the Cassini Test Bed Simulating the Saturnian Environment
NASA Technical Reports Server (NTRS)
Hernandez, Juan C.; Badaruddin, Kareem S.
2007-01-01
The Cassini-Huygens mission is a joint NASA and European Space Agency (ESA) mission to collect scientific data of the Saturnian system and is managed by the Jet Propulsion Laboratory (JPL). After having arrived in Saturn orbit and releasing the ESA's Huygens probe for a highly successful descent and landing mission on Saturn's moon Titan, the Cassini orbiter continues on its tour of Saturn, its satellites, and the Saturnian environment. JPL's Cassini Integrated Test laboratory (ITL) is a dedicated high fidelity test bed that verifies and validates command sequences and flight software before upload to the Cassini spacecraft. The ITL provides artificial stimuli that allow a highly accurate hardware-in-the-loop test bed model that tests the operation of the Cassini spacecraft on the ground. This enables accurate prediction and recreation of mission events and flight software and hardware behavior. As we discovered more about the Saturnian environment, a combination of creative test methods and simulation changes were necessary to simulate the harmful effect that the optical and physical environment has on the pointing performance of Cassini. This paper presents the challenges experienced and overcome in that endeavor to simulate and test the post Saturn Orbit Insertion (SOI) and Probe Relay tour phase of the Cassini mission.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Danny Olivas has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist James Reilly has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown.The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Danny Olivas has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist James Reilly has donned his launch suit and helmet for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Steven Swanson checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
NASA Astrophysics Data System (ADS)
Rabotin, C. B.
Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.
A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Jack-Chingtse, C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.
A Simulation Based Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Moore, Michael; Bielski, Paul; Crues, Edwin Z.
2017-01-01
This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions and assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.
A Simulation Based Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael
2017-01-01
This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control system, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions, and to assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.
Robotic Follow-up for Human Exploration
2010-09-01
layering, structural anomalies and fracturing . While ground ice at Haughton is generally present as continuous permafrost, the depth to the thaw zone...geologist (M. Helper) and a geophysicist (E. Heggy) planned tra- verses using a HMMWV as a simulated pressur - ized crew rover. Each traverse was...mounted on the front of a simulated pressurized crew rover; right, GPR is manually deployed by suited crew. Table 3. Flight rules for simulated crew mission
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Burns, Richard D.; Gaylor, David; Higinbotham, John
2004-01-01
A sample mission sequence is defined for a low earth orbit demonstration of Precision Formation Flying (PFF). Various guidance navigation and control strategies are discussed for use in the PFF experiment phases. A sample PFF experiment is implemented and tested in a realistic Hardware-in-the-Loop (HWIL) simulation using the Formation Flying Test Bed (FFTB) at NASA's Goddard Space Flight Center.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialist Steven Swanson (right) practices exiting from the slidewire basket. as Mission Specialist Danny Olivas assists. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Pilot Lee Archambault checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Commander Rick Sturckow checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
2007-02-23
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Commander Rick Sturckow checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.
NASA Astrophysics Data System (ADS)
Wilms, Joern; Guenther, H. Moritz; Dauser, Thomas; Huenemoerder, David P.; Ptak, Andrew; Smith, Randall; Arcus Team
2018-01-01
We present an overview of the end-to-end simulation environment that we are implementing as part of the Arcus phase A Study. With the rcus simulator, we aim to to model the imaging, detection, and event reconstruction properties of the spectrometer. The simulator uses a Monte Carlo ray-trace approach, projecting photons onto the Arcus focal plane from the silicon pore optic mirrors and critical-angle transmission gratings. We simulate the detection and read-out of the photons in the focal plane CCDs with software originally written for the eROSITA and Athena-WFI detectors; we include all relevant detector physics, such as charge splitting, and effects of the detector read-out, such as out of time events. The output of the simulation chain is an event list that closely resembles the data expected during flight. This event list is processed using a prototype event reconstruction chain for the order separation, wavelength calibration, and effective area calibration. The output is compatible with standard X-ray astronomical analysis software.During phase A, the end-to-end simulation approach is used to demonstrate the overall performance of the mission, including a full simulation of the calibration effort. Continued development during later phases of the mission will ensure that the simulator remains a faithful representation of the true mission capabilities, and will ultimately be used as the Arcus calibration model.
Model-Based Verification and Validation of Spacecraft Avionics
NASA Technical Reports Server (NTRS)
Khan, Mohammed Omair
2012-01-01
Our simulation was able to mimic the results of 30 tests on the actual hardware. This shows that simulations have the potential to enable early design validation - well before actual hardware exists. Although simulations focused around data processing procedures at subsystem and device level, they can also be applied to system level analysis to simulate mission scenarios and consumable tracking (e.g. power, propellant, etc.). Simulation engine plug-in developments are continually improving the product, but handling time for time-sensitive operations (like those of the remote engineering unit and bus controller) can be cumbersome.
INTEGRITY -- Integrated Human Exploration Mission Simulation Facility
NASA Astrophysics Data System (ADS)
Henninger, D.; Tri, T.; Daues, K.
It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the best management techniques will have been developed, implemented, and validated. A trained cadre of managers experienced with a large, complex program would then be available. Three other critical items of this approach are as follows: 1) International Cooperation/Collaboration. New paradigms and new techniques for international collaboration would be developed. These paradigms can be developed to include built-in metrics to allow for improvements ultimately to yield proven paradigms for application in the real mission. Note that since this approach is much lower cost than an actual flight mission, smaller countries that could not afford to participate in a program as large as the ISS can become partners. As a result, these nations--along with their citizens--become advocates for human space exploration as well. Since eventual human planetary exploration missions are likely to be truly international, the means for building the requisite working relationships are through cooperative research and technology development activities. 2) Commercial Partnering. Improved paradigms for commercial partnering would be developed - both U.S. and international commercial entities. An examination of what commercial entities would like to gain, what they would expect to contribute, and what NASA wants out of such a relationship would be determined to develop appropriate paradigms. Again, metrics would be included such that continual evaluations can be conducted and adjustments can be made to the working paradigms. Then, after these ground missions are completed, a proven set of paradigms (and a cadre of people trained and comfortable with their use) would be available for the actual mission. Again, since this is a much lower cost program (lower than an actual flight mission), smaller domestic and international commercial entities can participate. 3) Academic Partnering. Improved paradigms for academic partnering can be developed -- both U.S. and international academic institutions. Academic institutions represent a tremendous pool of expertise and creative talent - just what is need for a human planetary exp loration mission. Academia would likely view this ground test facility as a tremendous teaching tool for a variety of disciplines, including science, engineering, medicine, and management.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. From left are Commander Rick Sturckow, Mission Specialist Patrick Forrester, Pilot Lee Archambault, and Mission Specialists Danny Olivas, Steven Swanson and James Reilly. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. From left are Commander Rick Sturckow, Mission Specialists Patrick Forrester and Danny Olivas, Pilot Lee Archambault, and Mission Specialists James Reilly and Steven Swanson. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
Engineering Risk Assessment of Space Thruster Challenge Problem
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie
2014-01-01
The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
NASA Technical Reports Server (NTRS)
White, Warren B.; Tai, Chang-Kou; Holland, William R.
1990-01-01
The optimal interpolation method of Lorenc (1981) was used to conduct continuous assimilation of altimetric sea level differences from the simulated Geosat exact repeat mission (ERM) into a three-layer quasi-geostrophic eddy-resolving numerical ocean box model that simulates the statistics of mesoscale eddy activity in the western North Pacific. Assimilation was conducted continuously as the Geosat tracks appeared in simulated real time/space, with each track repeating every 17 days, but occurring at different times and locations within the 17-day period, as would have occurred in a realistic nowcast situation. This interpolation method was also used to conduct the assimilation of referenced altimetric sea level differences into the same model, performing the referencing of altimetric sea sevel differences by using the simulated sea level. The results of this dynamical interpolation procedure are compared with those of a statistical (i.e., optimum) interpolation procedure.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- Mission STS-117 crew members receive emergency egress instruction at Launch Pad 39A during Terminal Countdown Demonstration Test activities. From the left in front are Pilot Lee Archambault, Mission Specialists Danny Olivas and Steven Swanson, Commander Rick Sturckow and Mission Specialist Patrick Forrester. Directly behind Olivas is Mission Specialist James Reilly. At right is a partial view of the M-113 armored personnel carrier. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
STS-100 crew take a group photo before walkou
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.
NASA Astrophysics Data System (ADS)
Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall
2013-10-01
The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.
Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Abercromby, Andrew F. J.; Gernhardt, Michael L.
2010-01-01
Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities, the Mission STS-117 crew members receive instruction on emergency egress during a walkdown of the 195-foot level of the fixed service structure at Launch Pad 39A. From the left are Mission Specialists Steven Swanson, Danny Olivas and Patrick Forrester, Pilot Lee Archambault, Commander Rick Sturckow and Mission Specialist James Reilly. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
On-Line Analysis of Physiologic and Neurobehavioral Variables During Long-Duration Space Missions
NASA Technical Reports Server (NTRS)
Brown, Emery N.
1999-01-01
The goal of this project is to develop reliable statistical algorithms for on-line analysis of physiologic and neurobehavioral variables monitored during long-duration space missions. Maintenance of physiologic and neurobehavioral homeostasis during long-duration space missions is crucial for ensuring optimal crew performance. If countermeasures are not applied, alterations in homeostasis will occur in nearly all-physiologic systems. During such missions data from most of these systems will be either continually and/or continuously monitored. Therefore, if these data can be analyzed as they are acquired and the status of these systems can be continually assessed, then once alterations are detected, appropriate countermeasures can be applied to correct them. One of the most important physiologic systems in which to maintain homeostasis during long-duration missions is the circadian system. To detect and treat alterations in circadian physiology during long duration space missions requires development of: 1) a ground-based protocol to assess the status of the circadian system under the light-dark environment in which crews in space will typically work; and 2) appropriate statistical methods to make this assessment. The protocol in Project 1, Circadian Entrainment, Sleep-Wake Regulation and Neurobehavioral will study human volunteers under the simulated light-dark environment of long-duration space missions. Therefore, we propose to develop statistical models to characterize in near real time circadian and neurobehavioral physiology under these conditions. The specific aims of this project are to test the hypotheses that: 1) Dynamic statistical methods based on the Kronauer model of the human circadian system can be developed to estimate circadian phase, period, amplitude from core-temperature data collected under simulated light- dark conditions of long-duration space missions. 2) Analytic formulae and numerical algorithms can be developed to compute the error in the estimates of circadian phase, period and amplitude determined from the data in Specific Aim 1. 3) Statistical models can detect reliably in near real- time (daily) significant alternations in the circadian physiology of individual subjects by analyzing the circadian and neurobehavioral data collected in Project 1. 4) Criteria can be developed using the Kronauer model and the recently developed Jewett model of cognitive -performance and subjective alertness to define altered circadian and neurobehavioral physiology and to set conditions for immediate administration of countermeasures.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialists Steven Swanson (left) and Danny Olivas (right) practice exiting from the slidewire basket. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
2007-02-22
KENNEDY SPACE CENTER, FLA. -- In the Launch Pad 39A area, Mission STS-117 crew members receive instruction on emergency egress using the slidewire basket system during Terminal Countdown Demonstration Test activities. Here, Mission Specialists Steven Swanson (left) and Danny Olivas (right) practice exiting from the slidewire basket. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
QuickStrike ASOC Battlefield Simulation: Preparing the War Fighter to Win
NASA Technical Reports Server (NTRS)
Jones, Richard L.
2010-01-01
The QuickStrike ASOC (Air Support Operations Center) Battlefield Simulation fills a crucial gap in USAF and United Kingdom Close Air Support (CAS) and airspace manager training. The system now provides six squadrons with the capability to conduct total-mission training events whenever the personnel and time are available. When the 111th ASOC returned from their first deployment to Afghanistan they realized the training available prior to deployment was inadequate. They sought an organic training capability focused on the ASOC mission that was low cost, simple to use, adaptable, and available now. Using a commercial off-the-shelf simulation, they developed a complete training system by adapting the simulation to their training needs. Through more than two years of spiral development, incorporating lessons learned, the system has matured, and can now realistically replicate the Tactical Operations Center (TOC) in Kabul, Afghanistan, the TOC supporting the mission in Iraq, or can expand to support a major conflict scenario. The training system provides a collaborative workspace for the training audience and exercise control group via integrated software and workstations that can easily adapt to new mission reqUirements and TOC configurations. The system continues to mature. Based on inputs from the war fighter, new capabilities have been incorporated to add realism and simplify the scenario development process. The QuickStrike simulation can now import TBMCS Air Tasking Order air mission data and can provide air and ground tracks to a common operating picture; presented through either C2PC or JADOCS. This oranic capability to practice team processes and tasks and to conduct mission rehearsals proved its value in the 111 h ASOS's next deployment. The ease of scenario development and the simple to learn and intuitive gamelike interface enables the squadrons to develop and share scenarios incorporating lessons learned from every deployment. These war fighters have now filled the training gap and have the capability they need to train to win.
Energy balance and the composition of weight loss during prolonged space flight
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1982-01-01
Integrated metabolic balance analysis, Skylab integrated metabolic balance analysis and computer simulation of fluid-electrolyte responses to zero-g, overall mission weight and tissue losses, energy balance, diet and exercise, continuous changes, electrolyte losses, caloric and exercise requirements, and body composition are discussed.
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.
1979-01-01
A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.
Simulating regolith ejecta due to gas impingement
NASA Astrophysics Data System (ADS)
Chambers, Wesley Allen; Metzger, Philip; Dove, Adrienne; Britt, Daniel
2016-10-01
Space missions operating at or near the surface of a planet or small body must consider possible gas-regolith interactions, as they can cause hazardous effects or, conversely, be employed to accomplish mission goals. They are also directly related to a body's surface properties; thus understanding these interactions could provide an additional tool to analyze mission data. The Python Regolith Interaction Calculator (PyRIC), built upon a computational technique developed in the Apollo era, was used to assess interactions between rocket exhaust and an asteroid's surface. It focused specifically on threshold conditions for causing regolith ejecta. To improve this model, and learn more about the underlying physics, we have begun ground-based experiments studying the interaction between gas impingement and regolith simulant. Compressed air, initially standing in for rocket exhaust, is directed through a rocket nozzle at a bed of simulant. We assess the qualitative behavior of various simulants when subjected to a known maximum surface pressure, both in atmosphere and in a chamber initially at vacuum. These behaviors are compared to prior computational results, and possible flow patterns are inferred. Our future work will continue these experiments in microgravity through the use of a drop tower. These will use several simulant types and various pressure levels to observe the effects gas flow can have on target surfaces. Combining this with a characterization of the surface pressure distribution, tighter bounds can be set on the cohesive threshold necessary to maintain regolith integrity. This will aid the characterization of actual regolith distributions, as well as informing the surface operation phase of mission design.
Future missions for observing Earth's changing gravity field: a closed-loop simulation tool
NASA Astrophysics Data System (ADS)
Visser, P. N.
2008-12-01
The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.
2000-11-08
The STS-97 crew heads for the Astrovan and a ride to Launch Pad 39B as they continue Terminal Countdown Demonstration Test (TCDT) activities. Seen left to right are Mission Specialists Joe Tanner, Carlos Noriega and Marc Garneau; Pilot Mike Bloomfield; and Commander Brent Jett. The TCDT provides emergency egress training, a simulated launch countdown and opportunities to inspect the mission payloads in the orbiter’s payload bay. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST
NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley
NASA Technical Reports Server (NTRS)
Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.
2012-01-01
After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission simulation began as the operations team's consoles came alive with data and images. They executed the mission just like the real mission with lunar communications delays and limited bandwidth and a realistic remote mission control room. This paper will describe the RESOLVE payload in detail and describe the results of the mission simulation in Hawaii.
Accurate approximation of in-ecliptic trajectories for E-sail with constant pitch angle
NASA Astrophysics Data System (ADS)
Huo, Mingying; Mengali, Giovanni; Quarta, Alessandro A.
2018-05-01
Propellantless continuous-thrust propulsion systems, such as electric solar wind sails, may be successfully used for new space missions, especially those requiring high-energy orbit transfers. When the mass-to-thrust ratio is sufficiently large, the spacecraft trajectory is characterized by long flight times with a number of revolutions around the Sun. The corresponding mission analysis, especially when addressed within an optimal context, requires a significant amount of simulation effort. Analytical trajectories are therefore useful aids in a preliminary phase of mission design, even though exact solution are very difficult to obtain. The aim of this paper is to present an accurate, analytical, approximation of the spacecraft trajectory generated by an electric solar wind sail with a constant pitch angle, using the latest mathematical model of the thrust vector. Assuming a heliocentric circular parking orbit and a two-dimensional scenario, the simulation results show that the proposed equations are able to accurately describe the actual spacecraft trajectory for a long time interval when the propulsive acceleration magnitude is sufficiently small.
NASA Astrophysics Data System (ADS)
Abercromby, Andrew F. J.; Gernhardt, Michael L.; Jadwick, Jennifer
2013-10-01
IntroductionA pair of small pressurized rovers (multi-mission space exploration vehicles, or MMSEVs) is at the center of the Global Point-of-Departure architecture for future human lunar exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. MethodsA 14-day mission simulation was conducted in the Arizona desert as part of NASA's 2010 Desert Research and Technology Studies (DRATS) field test. The simulation involved two MMSEV earth-gravity prototypes performing geological exploration under varied operational modes affecting both the extent to which the MMSEVs must maintain real-time communications with the mission control center (Continuous [CC] versus Twice-a-Day [2/D]) and their proximity to each other (Lead-and-Follow [L&F] versus Divide-and-Conquer [D&C]). As part of a minimalist lunar architecture, no communication relay satellites were assumed. Two-person crews (an astronaut and a field geologist) operated each MMSEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Metrics and qualitative observations enabled evaluation of the extent to which the operating modes affected productivity and scientific data quality (SDQ). Results and discussionSDQ was greater during CC mode than during 2/D mode; metrics showed a marginal increase while qualitative assessments suggested a practically significant difference. For the communications architecture evaluated, significantly more crew time (14% per day) was required to maintain communications during D&C than during L&F (5%) or 2/D (2%), increasing the time required to complete all traverse objectives. Situational awareness of the other vehicle's location, activities, and contingency return constraints were qualitatively enhanced during L&F and 2/D modes due to line-of-sight and direct MMSEV-to-MMSEV communication. Future testing will evaluate approaches to operating without real-time space-to-earth communications and will include quantitative evaluation and comparison of the efficacy of mission operations, science operations, and public outreach operations.
STS-37 Mission Specialist (MS) Ross during simulation in JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Mission Specialist (MS) Jerry L. Ross 'borrows' the pilots station to rehearse some of his scheduled duties for his upcoming mission. He is on the flight deck of the fixed-based (FB) shuttle mission simulator (SMS) during this unsuited simulation. The SMS is part of JSC's Mission Simulation and Training Facility Bldg 5.
SEDS1 mission software verification using a signal simulator
NASA Technical Reports Server (NTRS)
Pierson, William E.
1992-01-01
The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.
International Space Station Cathode Life Testing
NASA Technical Reports Server (NTRS)
Soulas, George C.; Sarver-Verhey, Timothy R.
1997-01-01
Four hollow cathode assembly (HCA) life tests were initiated at operating conditions simulating on-orbit operation of the International Space Station plasma contactor. The objective of these tests is to demonstrate the mission-required 18,000 hour lifetime with high-fidelity development model HCAS. HCAs are operated with a continuous 6 sccm xenon flow rate and 3 A anode current. On-orbit emission current requirements are simulated with a square waveform consisting of 50 minutes at a 2.5 A emission current and 40 minutes with no emission current. One HCA test was terminated after approximately 8,000 hours so that a destructive analysis could be performed. The analysis revealed no life-limiting processes and the ultimate lifetime was projected to be greater than the mission requirement. Testing continues for the remaining three HCAs which have accumulated approximately 8,000 hours, 10,000 hours, and 11,000 hours, respectively, as of June 1997. Anode and bias voltages, strong indicators of cathode electron emitter condition, are within acceptable ranges and have exhibited no life- or performance-limiting phenomena to date.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1987-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, mission specialists pose on aft flight deck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. Left to right, Mission Specialist (MS) John M. Lounge, MS George D. Nelson, and MS David C. Hilmers await start of FB-SMS simulation. The long simulation, part of the training for their anticipated June 1988 flight, began 10-20-87.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This space shuttle orbiter payload bay (PLB) video image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). The image is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO
NASA Technical Reports Server (NTRS)
Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael
2014-01-01
For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.
Astronaut Sally K. Ride outside of shuttle mission simulator
1983-05-26
S83-32890 (23 May 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, stands near the Shuttle Mission Simulator (SMS) in Johnson Space Center's (JSC) Mission Simulation and Training Facility with suit specialist Alan M. Rochford after simulation of various phases of the upcoming STS-7 flight. Photo credit: NASA
STS-37 Mission Specialist (MS) Godwin during simulation in JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Mission Specialist (MS) Linda M. Godwin rehearses some phases of her scheduled duties on the middeck of the fixed-based (FB) shuttle mission simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Godwin is inspecting supplies stowed in the middeck lockers during this unsuited simulation.
Next Generation Simulation Framework for Robotic and Human Space Missions
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven
2012-01-01
The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.
Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P
2013-02-12
The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), astronauts John O. Creighton (right) and L. Blaine Hammond review their notes while serving as spacecraft communicators (CAPCOMs) for STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
Geolab Results from Three Years of Analog Mission Tests
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.
2013-01-01
GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
Combining Simulation Tools for End-to-End Trajectory Optimization
NASA Technical Reports Server (NTRS)
Whitley, Ryan; Gutkowski, Jeffrey; Craig, Scott; Dawn, Tim; Williams, Jacobs; Stein, William B.; Litton, Daniel; Lugo, Rafael; Qu, Min
2015-01-01
Trajectory simulations with advanced optimization algorithms are invaluable tools in the process of designing spacecraft. Due to the need for complex models, simulations are often highly tailored to the needs of the particular program or mission. NASA's Orion and SLS programs are no exception. While independent analyses are valuable to assess individual spacecraft capabilities, a complete end-to-end trajectory from launch to splashdown maximizes potential performance and ensures a continuous solution. In order to obtain end-to-end capability, Orion's in-space tool (Copernicus) was made to interface directly with the SLS's ascent tool (POST2) and a new tool to optimize the full problem by operating both simulations simultaneously was born.
STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.
Astronauts Grissom and Young in Gemini Mission Simulator
1964-05-22
S64-25295 (March 1964) --- Astronauts Virgil I. (Gus) Grissom (right) and John W. Young, prime crew for the first manned Gemini mission (GT-3), are shown inside a Gemini mission simulator at McDonnell Aircraft Corp., St. Louis, MO. The simulator will provide Gemini astronauts and ground crews with realistic mission simulation during intensive training prior to actual launch.
Astronaut Frank Borman during training exercise in Apollo Mission simulator
1967-08-01
S67-50590 (1867) --- Astronaut Frank Borman, assigned duty as commander of the Apollo 8 mission, participates in a training exercise in the Apollo Mission simulator in the Mission Simulation and training Facility, Building 5, at the Manned Spacecraft Center, Houston, Texas. Photo credit: NASA
Exploration Supply Chain Simulation
NASA Technical Reports Server (NTRS)
2008-01-01
The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Mission Specialist Danny Olivas, Commander Rick Sturckow, Pilot Lee Archambault, and Mission Specialists James Reilly, Steven Swanson and Patrick Forrester. They are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
A Look at the Impact of High-End Computing Technologies on NASA Missions
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Dunbar, Jill; Hardman, John; Bailey, F. Ron; Wheeler, Lorien; Rogers, Stuart
2012-01-01
From its bold start nearly 30 years ago and continuing today, the NASA Advanced Supercomputing (NAS) facility at Ames Research Center has enabled remarkable breakthroughs in the space agency s science and engineering missions. Throughout this time, NAS experts have influenced the state-of-the-art in high-performance computing (HPC) and related technologies such as scientific visualization, system benchmarking, batch scheduling, and grid environments. We highlight the pioneering achievements and innovations originating from and made possible by NAS resources and know-how, from early supercomputing environment design and software development, to long-term simulation and analyses critical to design safe Space Shuttle operations and associated spinoff technologies, to the highly successful Kepler Mission s discovery of new planets now capturing the world s imagination.
STS-37 crewmembers train in JSC's FB shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Commander Steven R. Nagel (left) and Mission Specialist (MS) Jerry L. Ross rehearse some of their scheduled duties on the flight deck of JSC's fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. During the unsuited simulation, Nagel reviews checklist while seated at the commanders station as Ross looks on from the pilots station.
Description of Simulated Small Satellite Operation Data Sets
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Guarneros Luna, Ali
2018-01-01
A set of two BP930 batteries (Identified as PK31 and PK35) were operated continuously for a simulated satellite operation profile completion for single cycle. The battery packs were charged to an initial voltage of around 8.35 V for 100% SOC before the experiment was started. This document explains the structure of the battery data sets. Please cite this paper when using this dataset: Z. Cameron, C. Kulkarni, A. Guarneros, K. Goebel, S. Poll, "A Battery Certification Testbed for Small Satellite Missions", IEEE AUTOTESTCON 2015, Nov 2-5, 2015, National Harbor, MA
Assessing Mission Impact of Cyberattacks: Report of the NATO IST-128 Workshop
2015-12-01
simulation) perspective. This would be natural, considering that the cybersecurity problem is highly adversarial in nature. Because it involves intelligent ...be formulated as a partial information game; artificial intelligence techniques might help here. Yet another style of problem formulation that...computational information processing for weapons, intelligence , communication, and logistics systems continues to increase the vulnerability of
Simulation and control for telerobots in space medicine
NASA Astrophysics Data System (ADS)
Haidegger, Tamás; Kovács, Levente; Precup, Radu-Emil; Benyó, Balázs; Benyó, Zoltán; Preitl, Stefan
2012-12-01
Human space exploration is continuously advancing despite the current financial difficulties, and the new missions are targeting the Moon and the Mars with more effective human-robot collaborative systems. The continuous development of robotic technology should lead to the advancement of automated technology, including space medicine. Telesurgery has already proved its effectiveness through various telemedicine procedures on Earth, and it has the potential to provide medical assistance in space as well. Aeronautical agencies have already conducted numerous experiments and developed various setups to push the boundaries of teleoperation under extreme conditions. Different control schemes have been proposed and tested to facilitate and enhance telepresence and to ensure transparency, sufficient bandwidth and latency-tolerance. This paper focuses on the modeling of a generic telesurgery setup, supported by a cascade control approach. The minimalistic models were tested with linear and PID-fuzzy control options to provide a simple, universal and scalable solution for the challenges of telesurgery over large distances. In our simulations, the control structures were capable of providing good dynamic performance indices and robustness with respect to the gain in the human operator model. This is a promising result towards the support of future teleoperational missions.
Computer model to simulate ionizing radiation effects correlates with experimental data
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni
Exposure to radiation from high energy protons and particles with ionizing properties is a major challenge for long-term space missions. The specific effect of such radiation on hematopoietic cells is still not fully understood. A number of experiments have been conducted on ground and in space. Those experiments on one hand, measure the extent of damage on blood markers. On the other hand, they intend to quantify the correlation between dose and energy from the radiation particles, with their ability to impair the hematopoietic stem and progenitor function. We present a computer model based on a neural network that intends to assess the relationship between dose, energy and number of hits on a particular cell, to the damage incurred to the human marrow cells. Calibration of the network is performed with the existing experimental data available in bibliography. Different sources of ionizing radiation at different doses (0-90 cGy) and along different patterns of a long-term exposure scenarios are simulated. Results are shown for a continuous variation of doses and are compared with specific data available in the literature. Some predictions are inferred for long-term scenarios of spaceflight, and the risk of jeopardizing a mission due to a major disfunction of the bone marrow is calculated. The method has proved successful in reproducing specific experimental data. We also discuss the significance and validity of the predicted ionizing radiation effects in situations such as long-term missions for a continuous range of dose.
STS-41 MS Akers assisted by technician on SMS middeck at JSC
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is assisted by a technician on the middeck of JSC's Shuttle Mission Simulator (SMS). Akers seated in the mission specialists chairis participating in a simulation of mission events. The SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
Current Status of the GRACE Follow-On Mission
NASA Astrophysics Data System (ADS)
Watkins, Michael; Flechtner, Frank; Webb, Frank; Landerer, Felix; Grunwald, Ludwig
2016-04-01
The GRACE Follow-On Mission has now advanced to the Assembly and Test Phase with the delivery of essentially all satellite subsystems and science instruments. As of the time of this abstract submission, the team continues to plan launch in 2017. The project team is conducting tests of satellite and instrument operation and performance and putting together updated simulations of expected performance on-orbit, including intersatellite ranging (both microwave and laser), accelerometer, thermal variability and deformation, and other errors. In addition, all required ground analysis software of the Science Data System is in development and testing at JPL, The UTCSR, and GFZ, in preparation for fully integrated end-to-end (international) testing from Level-1 through Level-3 data in the coming year. In this presentation, we will provide the detailed status of project integration and test, the latest simulations of science performance, and schedule for remaining project milestones.
Current Status of the GRACE Follow-On Mission
NASA Astrophysics Data System (ADS)
Webb, F.; Watkins, M. M.; Flechtner, F.; Landerer, F. W.; Grunwaldt, L.
2016-12-01
The GRACE Follow-On Mission has now advanced to the Assembly and Test Phase with the delivery of essentially all satellite subsystems and science instruments. As of the time of this abstract submission, the team continues to plan launch in late 2017. The project team is conducting tests of satellite and instrument operation and performance and putting together updated simulations of expected performance on-orbit, including intersatellite ranging (both microwave and laser), accelerometer, thermal variability and deformation, and other errors. In addition, all required ground analysis software of the Science Data System is in development and testing at JPL, The UTCSR, and GFZ, in preparation for fully integrated end-to-end (international) testing from Level-1 through Level-3 data in the coming year. In this presentation, we will provide the detailed status of project integration and test, the latest simulations of science performance, and schedule for remaining project milestones.
Three-Dimensional Analysis of Deep Space Network Antenna Coverage
NASA Technical Reports Server (NTRS)
Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy
2012-01-01
There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.
STS-27 Atlantis, OV-104, crewmembers on shuttle mission simulator flight deck
1988-02-03
S88-27505 (3 Feb. 1988) --- Astronauts William M. Shepherd (standing) and Jerry L. Ross, both STS-27 mission specialists, get in some training time on the flight deck of the Shuttle Mission Simulator in the Jake Garn Mission Simulation and Training Facility at NASA's Johnson Space Center. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Gushin, V.; Shved, D.; Vinokhodova, A.; Vasylieva, G.; Nitchiporuk, I.; Ehmann, B.; Balazs, L.
2012-01-01
“Mars-105” experiment was executed in March-July 2009 in Moscow, at the Institute for Bio-Medical Problems (IBMP) with participation of European Space Agency (ESA) to simulate some specific conditions of future piloted Mars mission. In the last 35 days of isolation, in order to simulate autonomous flight conditions, some serious restrictions were established for the crew resupply and communication with Mission Control (MC). The objective of the study was to investigate psychophysiological and behavioral aspects (communication) of adaptation during this period of “high autonomy”. We used computerized analysis of the crew written daily reports to calculate the frequencies of utilization of certain semantic units, expressing different psychological functions. To estimate the level of psycho-physiological stress, we measured the concentration of urinal cortisol once in two weeks. To investigate psycho-emotional state, we used the questionnaire SAN, estimating Mood, Activity and Health once in two weeks.During the simulation of autonomous flight, we found out the different tendencies of communicative behavior. One group of subjects demonstrated the tendency to “activation and self-government” under “high autonomy” conditions. The other subjects continued to use communicative strategy that we called “closing the communication channel”. “Active” communication strategy was accompanied by increasing in subjective scores of mood and activity. The subjects, whose communication strategy was attributed as “closing”, demonstrated the considerably lower subjective scores of mood and activity. Period of high autonomy causes specific changes in communication strategies of the isolated crew.
A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Tse, C. J. C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.
STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1987-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers (left to right) Commander Frederick H. Hauck, Pilot Richard O. Covey, Mission Specialist (MS) George D. Nelson, MS David C. Hilmers, and MS John M. Lounge pose on the middeck in fixed-based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. A simulation for their anticipated June 1988 flight began 10-20-87.
NASA Technical Reports Server (NTRS)
Houck, J. A.
1979-01-01
The development of a mission simulator for use in the Terminal Configured Vehicle (TCV) program is outlined. The broad objectives of the TCV program are to evaluate new concepts in airborne systems and in operational flight procedures. These evaluations are directed toward improving terminal area capacity and efficiency, improving approach and landing capability in adverse weather, and reducing noise impact in the terminal area. A description is given of the design features and operating principles of the two major components of the TCV Mission Simulator: the TCV Aft Flight Deck Simulation and the Terminal Area Air Traffic Model Simulation, and their merger to form the TCV Mission Simulator. The first research study conducted in the Mission Simulator is presented along with some preliminary results.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Front row of consoles with Propulsion Engineer (PROP) and Guidance, Navigation, and Control Systems Engineer (GNC) are visible in the foreground. CBS television camera personnel record front visual displays (orbital chart and data) for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). CBS television camera personnel record MCC activities at Spacecraft Communicator (CAPCOM) and Flight Activities Officer (FAO) (foreground) consoles for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. MCC FCR visual displays are seen in front of the rows of consoles.
Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith
NASA Astrophysics Data System (ADS)
Piquette, Marcus; Horányi, Mihály; Stern, S. Alan
2017-09-01
The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.
STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1987-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey train in JSC fixed-based (FB) shuttle mission simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. On FB-SMS flight deck, Hauck and Covey man their respective stations. Mission Specialist (MS) David C. Hilmers is partially visible in the foreground. A simulation for their anticipated June 1988 flight began 10-20-87.
Crew Training - Apollo X (Apollo Mission Simulator [AMS]) - KSC
1969-04-05
S69-32788 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.
CREW TRAINING - APOLLO X (APOLLO MISSION SIMULATOR [AMS]) - KSC
1969-04-05
S69-32789 (3 April 1969) --- Astronaut John W. Young, Apollo 10 prime crew command module pilot, participates in simulation activity in the Apollo Mission Simulator at the Kennedy Space Center during preparations for his scheduled lunar orbit mission.
STS-26 MS Lounge in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing comunications kit assembly headset and crouched on the aft flight deck, performs checklist inspection during training session. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
STS 41-D mission crew training in Shuttle Mission simulator
1983-07-01
View of STS 41-D mission crew training in Shuttle Mission simulator. From left to right are Henry Hartsfield, Jr., commander; mission specialists Judith Resnik, Richard Mullane, and Steven Hawley; and Michael Coats, pilot. They appear to be standing in the middeck mockup, preparing for training.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
Apollo 16 astronauts in Apollo Command Module Mission Simulator
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).
Toward a Climate OSSE for NASA Earth Sciences
NASA Astrophysics Data System (ADS)
Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.
2016-12-01
In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth Sciences will require answers from the climate research community to basic questions, such as whether a COSSE capability should be centralized or de-centralized. Most importantly, the quantified scientific objective of a proposed mission must be defined with extreme specificity for a COSSE to be applied.
Advanced simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1988-01-01
Computer simulations have been performed for an orbital gradiometer mission to assist in the study of high degree and order gravity field recovery. The simulations were conducted for a satellite in near-circular, frozen orbit at a 160-km altitude using a gravitational field complete to degree and order 360. The mission duration is taken to be 32 days. The simulation provides a set of measurements to assist in the evaluation of techniques developed for the determination of the gravity field. Also, the simulation provides an ephemeris to study available tracking systems to satisfy the orbit determination requirements of the mission.
A SLAM II simulation model for analyzing space station mission processing requirements
NASA Technical Reports Server (NTRS)
Linton, D. G.
1985-01-01
Space station mission processing is modeled via the SLAM 2 simulation language on an IBM 4381 mainframe and an IBM PC microcomputer with 620K RAM, two double-sided disk drives and an 8087 coprocessor chip. Using a time phased mission (payload) schedule and parameters associated with the mission, orbiter (space shuttle) and ground facility databases, estimates for ground facility utilization are computed. Simulation output associated with the science and applications database is used to assess alternative mission schedules.
NASA Astrophysics Data System (ADS)
Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica
2013-04-01
weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.
Design and simulation of EVA tools for first servicing mission of HST
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1994-01-01
The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. The First Servicing Mission (FSM) involved considerable Extra Vehicular Activity (EVA). Special EVA tools for the FSM were designed and developed for this specific purpose. In an earlier report, the details of the Data Acquisition System developed to test the performance of the various EVA tools in ambient as well as simulated space environment were presented. The general schematic of the test setup is reproduced in this report for continuity. Although the data acquisition system was used extensively to test a number of fasteners, only the results of one test each carried on various fasteners and the Power Ratchet Tool are included in this report.
Study of the Imaging Capabilities of SPIRIT/SPECS Concept Interferometers
NASA Technical Reports Server (NTRS)
Allen, Ronald J.
2002-01-01
Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modeling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. This report covers the activities we have undertaken to provide a preliminary version of a simulator for the SPIRIT mission concept.
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
Large Terrain Modeling and Visualization for Planets
NASA Technical Reports Server (NTRS)
Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher
2011-01-01
Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.
Using full-mission simulation for human factors research in air transport operations
NASA Technical Reports Server (NTRS)
Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.
1988-01-01
This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.
STS-8 crewmembers during shuttle mission simulation training
1983-06-01
S83-33032 (23 May 1983) --- Astronauts Guion S. Bluford, right, and Daniel C. Brandenstein man their respective Challenger entry and ascent stations in the Shuttle Mission Simulator (SMS) at NASA's Johnson Space Center (JSC) during a training session for the STS-8 mission. Brandenstein is in the pilot's station, while Bluford, a mission specialist, occupies one of the two aft flight deck seats. Both are wearing civilian clothes for this training exercise. This motion based simulator represents the scene of a great deal of training and simulation activity, leading up to crew preparedness for Space Transportation System (STS) mission. Photo credt: NASA/Otis Imboden, National Geographic
Practicing for Mars: The International Space Station (ISS) as a Testbed
NASA Technical Reports Server (NTRS)
Korth, David H.
2014-01-01
Allows demonstration and development of exploration capabilities to help accomplish future missions sooner with less risk to crew and mission Characteristics of ISS as a testbed High fidelity human operations platform in LEO: Continuously operating habitat and active laboratory. High fidelity systems. Astronauts as test subjects. Highly experienced ground operations teams. Offers a controlled test environment.: Consequences to systems performance and decision making not offered in ground analogs International participation. Continuously improving system looking for new technology and ideas to improve operations. Technology Demos & Critical Systems Maturation. Human Health and Performance. Operations Simulations and Techniques. Exploration prep testing on ISS has been ongoing since 2012. Number of tests increasing with each ISS expedition. One Year Crew Expedition starting in Spring 2015. ROSCOSMOS and NASA are partnering on the Participating Crew are Mikhail Kornienko and Scott Kelly Majority of testing is an extension of current Human Biomedical Research investigations Plan for extending & expanding upon current operations techniques and tech demo studies ESA 10 Day Mission in Fall 2015 ESA astronaut focus on testing exploration technologies Many more opportunities throughout the life of ISS! 4/24/2014 david.h.korth@nasa.gov 4 Exploration testing
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.
NASA Technical Reports Server (NTRS)
Houck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Technical Reports Server (NTRS)
Rhouck, J. A.; Markos, A. T.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's (NASA) Langley Research Center on the development of a multi-media crew-training program for the Terminal Configured Vehicle (TCV) Mission Simulator. Brief descriptions of the goals and objectives of the TCV Program and of the TCV Mission Simulator are presented. A detailed description of the training program is provided along with a description of the performance of the first group of four commercial pilots to be qualified in the TCV Mission Simulator.
NASA Astrophysics Data System (ADS)
MacCallum, T.; Poynter, J.; Bearden, D.
A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues
Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy
NASA Technical Reports Server (NTRS)
Westra, D. G.; Heinrich, J. C.; Poirier, D. R.
2003-01-01
Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.
STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.
GEMINI-TITAN (GT)-12 - TRAINING (PRIOR) - MISSION SIMULATOR
1966-09-06
S66-45579 (6 Sept. 1966) --- Astronaut James A. Lovell Jr. (right), prime crew command pilot of the Gemini-12 spaceflight, talks with Burton M. Gifford (left) and Duane K. Mosel (center), both with the Simulation Branch, Flight Crew Support Division. Lovell was preparing to undergo flight training in the Gemini Mission Simulator in Building 5, Mission Simulation and Training Facility. Photo credit: NASA
Continual coordination through shared activities
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Barrett, Anthony C.
2003-01-01
Interacting agents that interleave planning and execution must reach consensus on their commitments to each other. In domains where agents have varying degrees of interaction and different constraints on communication and computation, agents will require different coordination protocols in order to efficiently reach consensus in real time. We briefly describe a largely unexplored class of realtime, distributed planning problems (inspired by interacting spacecraft missions), new challenges they pose, and a general approach to solving the problems. These problems involve self-interested agents that have infrequent communication but collaborate on joint activities. We describe a Shared Activity Coordination (SHAC) framework that provides a decentralized algorithm for negotiating the scheduling of shared activities over the lifetimes of separate missions, a soft, real-time approach to reaching consensus during execution with limited communication, and a foundation for customizing protocols for negotiating planner interactions. We apply SHAC to a realistic simulation of interacting Mars missions and illustrate the simplicity of protocol development.
Light treatment for NASA shiftworkers.
Stewart, K T; Hayes, B C; Eastman, C I
1995-04-01
Intense artificial light can phase-shift circadian rhythms and improve performance, sleep, and well-being during shiftwork simulations. In real shiftworkers, however, exposure to sunlight and other time cues may decrease the efficacy of light treatment, and occupational and family responsibilities may make it impractical. With these considerations in mind, we designed and tested light-treatment protocols for NASA personnel who worked on shifted schedules during two Space Shuttle missions. During the prelaunch week, treatment subjects self-administered light of approximately 10,000 lux at times of day that phase-delay circadian rhythms. Treatment continued during the missions and for several days afterward. No treatment was administered to subjects in the control group. Treatment subjects reported better sleep, performance, and physical and emotional well-being than control subjects and rated the treatment as highly effective for promoting adjustment to their work schedules. Light treatment is both feasible and beneficial for NASA personnel who must work on shifted schedules during Space Shuttle missions.
Dual exposure view of exterior and interior of Apollo Mission simulator
1967-08-01
S67-50585 (1967) --- This is an intentional double exposure showing the Apollo Mission Simulator in the Mission Simulation and Training Facility, Building 5 at the Manned Spacecraft Center. In the exterior view astronauts William A. Anders, Michael Collins, and Frank Borman (reading from top of stairs) are about to enter the simulator. The interior view shows the three astronauts in the simulator. They are (left to right) Borman, Collins, and Anders. Photo credit: NASA
A Mars Rover Mission Simulation on Kilauea Volcano
NASA Technical Reports Server (NTRS)
Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
Autonomous Spacecraft Communication Interface for Load Planning
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; May, Ryan D.; Morris, Paul H.
2014-01-01
Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.
Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters
NASA Technical Reports Server (NTRS)
Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel
2010-01-01
HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.
Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool
NASA Technical Reports Server (NTRS)
Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian
2011-01-01
The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process.
Modeling and Simulation for Mission Operations Work System Design
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.
2003-01-01
Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12711 (May 1995) --- Astronaut Leroy Chiao, assigned as mission specialist for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Chiao will join an international mission specialist and four other NASA astronauts aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.
Low Velocity Earth-Penetration Test and Analysis
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris
2001-01-01
Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.
STS-36 crewmembers train in JSC's FB shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1989-01-01
STS-36 Mission Specialist (MS) David C. Hilmers, seated on the aft flight deck, discusses procedures with Commander John O. Creighton (left) and Pilot John H. Casper during a simulation in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). Casper reviews a checklist at the pilots station on the forward flight deck. The crewmembers are rehearsing crew cabin activities for their upcoming Department of Defense (DOD) mission aboard Atlantis, Orbiter Vehicle (OV) 104.
STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1988-01-01
On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This video image is of the STS-2 Columbia, Orbiter Vehicle (OV) 102, payload bay (PLB) showing the Office of Space Terrestrial Applications 1 (OSTA-1) pallet (Shuttle Imaging Radar A (SIR-A) antenna (left) and SIR-A recorder, Shuttle Multispectral Infrared Radiometer (SMIRR), Feature Identification Location Experiment (FILE), Measurement of Air Pollution for Satellites (MAPS) (right)). The image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). It is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
Houck, J. A.
1980-01-01
This paper describes the work being done at the National Aeronautics and Space Administration's Langley Research Center on the development of a mission simulator for use in the Terminal Configured Vehicle Program. A brief description of the goals and objectives of the Terminal Configured Vehicle Program is presented. A more detailed description of the Mission Simulator, in its present configuration, and its components is provided. Finally, a description of the first research study conducted in the Mission Simulator is presented along with a discussion of some preliminary results from this study.
NASA Astrophysics Data System (ADS)
Allner, Matthew; Bishop, Sheryl; Gushin, Vadim; McKay, Chris; Rygalov, Vadim; Allner, Matthew
Introduction: Psychosocial group functioning has become an increased international focus of many space faring nations due to the recent shift in focus of colonizing the Moon and then preparing to travel to Mars and beyond. Purpose: This study investigates the effects of competition and besting among crewmembers in isolated and confined extreme (ICE) environments. Furthermore, the study investigates the effects associated with both preand intra-mission management efforts, which included crewmember assessments at various mission phases (pre-, intra-, and end-mission). Suggestions on how to manage competition and besting within a crew were investigated by implementing preand intra-mission awareness strategies as well as group participation in the development and implementation of countermeasures to manage crewmember tendency towards competition and besting to promote the development of positive group functioning. Methods: A six person heterogeneous American crew conducted a Mars simulation mission at the Mars Society's Mars Desert Research Station in Utah, USA in 2006 as part of a new NASA training program called Spaceward Bound. Participants were administered assessments of personality, personal and group identity/functioning, subjective stress, and subjective motivation. All participants were also provided information (pre-mission) regarding past research findings and tendencies of group functioning, stressors, cognitive functioning, and competition and besting. Results: Anecdotal data obtained from personal interviews with crewmembers strongly showed that pre-mission discussions regarding competition and besting provided awareness that allowed crewmembers to continually self-assess to prevent this tendency from surfacing during the mission. The assessment data results showed support for recorded diary materials which indicated crewmembers felt strongly that continual reminders of the besting concept, along with being allowed to participate in the development and implementation of countermeasures to manage competition and besting, was a key component in preventing it from entering the group dynamic development. Assessment data and diary materials further support the premise that competition and besting was never the cause of any crew conflict during the mission, and successful avoidance of this group fission factor was therefore maintained throughout the duration of the two-week mission.
Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations
NASA Technical Reports Server (NTRS)
Seah, Chin; Sierhuis, Maarten; Clancey, William J.
2005-01-01
A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.
A Simulation Base Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael
2017-01-01
NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.
STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
Launching a Dream. A Teachers Guide to a Simulated Space Shuttle Mission.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.
This publication is about imagination, teamwork, creativity, and a host of other ingredients required to carry out a dream. It is about going into space--going into space as part of a simulated space shuttle mission. The publication highlights two simulated shuttle missions cosponsored by the National Aeronautics and Space Administration (NASA)…
NASA Technical Reports Server (NTRS)
Hendee, E. A.
1980-01-01
A real time mission simulation test program of nickel cadmium cells, performed in conjunction with the Anik 1A2 satellite, is reviewed. Simulation of the temperature profiles, the electrical profiles, the depth of discharge, and the rate of charge and discharge is reported. The type of separator used in the cells and the transfer of electrolytes during overcharge are discussed.
Additional Developments in Atmosphere Revitalization Modeling and Simulation
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.
2013-01-01
NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)
Detectability of the first cosmic explosions
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Ishida, E. E. O.; Johnson, J. L.; Whalen, D. J.; Mesinger, A.
2013-12-01
We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signalling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲ 8 per cent of the total allocation time of the James Webb Space Telescope mission can provide us with up to ˜9-15 detectable PISNe per year.
Launching a dream: A teachers guide to a simulated space shuttle mission
NASA Technical Reports Server (NTRS)
1989-01-01
Two simulated shuttle missions cosponsored by the NASA Lewis Research Center and Cleveland, Ohio, area schools are highlighted in this manual for teachers. A simulated space shuttle mission is an opportunity for students of all ages to plan, train for, and conduct a shuttle mission. Some students are selected to be astronauts, flight planners, and flight controllers. Other students build and test the experiments that the astronauts will conduct. Some set up mission control, while others design the mission patch. Students also serve as security officers or carry out public relations activities. For the simulated shuttle mission, school buses or recreation vehicles are converted to represent shuttle orbiters. All aspects of a shuttle mission are included. During preflight activities the shuttle is prepared, and experiments and a flight plan are made ready for launch day. The flight itself includes lifting off, conducting experiments on orbit, and rendezvousing with the crew from the sister school. After landing back at the home school, the student astronauts are debriefed and hold press conferences. The astronauts celebrate their successful missions with their fellow students at school and with the community at an evening postflight recognition program. To date, approximately 6,000 students have been involved in simulated shuttle missions with the Lewis Research Center. A list of participating schools, along with the names of their space shuttles, is included. Educations outcomes and other positive effects for the students are described.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling
NASA Technical Reports Server (NTRS)
Olsen, A. D.; Cady, E. C.; Jenkins, D. S.; Chandler, F. O.; Grayson, G. D.; Lopez, A.; Hastings, L. J.; Flachbart, R. H.; Pedersen, K. W.
2012-01-01
The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.
Formation Design Strategy for SCOPE High-Elliptic Formation Flying Mission
NASA Technical Reports Server (NTRS)
Tsuda, Yuichi
2007-01-01
The new formation design strategy using simulated annealing (SA) optimization is presented. The SA algorithm is useful to survey a whole solution space of optimum formation, taking into account realistic constraints composed of continuous and discrete functions. It is revealed that this method is not only applicable for circular orbit, but also for high-elliptic orbit formation flying. The developed algorithm is first tested with a simple cart-wheel motion example, and then applied to the formation design for SCOPE. SCOPE is the next generation geomagnetotail observation mission planned in JAXA, utilizing a formation flying techonology in a high elliptic orbit. A distinctive and useful heuristics is found by investigating SA results, showing the effectiveness of the proposed design process.
Human Factors in Training - Space Flight Resource Management Training
NASA Technical Reports Server (NTRS)
Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.
2009-01-01
Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge. Work on SFRM training has been conducted in collaboration with the Expedition Vehicle Division at the Mission Operations Directorate (MOD) and with United Space Alliance (USA) which provides training to Flight Controllers. The space flight resource management training work is part of the Human Factors in Training Directed Research Project (DRP) of the Space Human Factors Engineering (SHFE) Project under the Space Human Factors and Habitability (SHFH) Element of the Human Research Program (HRP). Human factors researchers at the Ames Research Center have been investigating team work and distributed decision making processes to develop a generic SFRM training framework for flight controllers. The work proposed for FY10 continues to build on this strong collaboration with MOD and the USA Training Group as well as previous research in relevant domains such as aviation. In FY10, the work focuses on documenting and analyzing problem solving strategies and decision making processes used in MCC by experienced FCers.
Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification
NASA Technical Reports Server (NTRS)
Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand;
2016-01-01
The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)
1996-01-01
This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.
Effects of CubeSat Deployments in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Matney, M. J.; Vavrin, A. B.; Manis, A. P.
2017-01-01
Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.
Crew Training - Apollo X (Apollo Mission Simulator [AMS])
1969-04-05
S69-32787 (3 April 1969) --- Two members of the Apollo 10 prime crew participate in simulation activity at the Kennedy Space Center during preparations for their scheduled lunar orbit mission. Astronaut Thomas P. Stafford, commander, is in the background; and in the foreground is astronaut Eugene A. Cernan, lunar module pilot. The two crewmen are in the Lunar Module Mission Simulator.
STS-31 crewmembers review checklist with instructor on JSC's FB-SMS middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Bruce McCandless II (left) and Pilot Charles F. Bolden (right) discuss procedures with a training instructor on the middeck of JSC's fixed-based (FB) Shuttle Mission Simulator (SMS). The three are pointing to a checklist during this training simulation in the Mission Simulation and Training Facility Bldg 5.
Leveraging Simulation Against the F-16 Flying Training Gap
2005-11-01
must leverage emerging simulation technology into combined flight training to counter mission employment complexity created by technology itself...two or more of these stand-alone simulators creates a mission training center (MTC), which when further networked create distributed mission...operations (DMO). Ultimately, the grand operational vision of DMO is to interconnect non-collocated users creating a “virtual” joint training environment
A Study of Imaging Interferometer Simulators
NASA Technical Reports Server (NTRS)
Allen, Ronald J.
2002-01-01
Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modelling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM, which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. In a recent GSFC-funded study we have successfully written a preliminary version of a simulator SISIM for the Stellar Imager and carried out some preliminary studies with it. In a separately funded study we have also been applying these methods to SPECS/SPIRIT.
STS-7 crew training in the shuttle mission simulator
NASA Technical Reports Server (NTRS)
1983-01-01
STS-7 crew training in the shuttle mission simulator (SMS). Astronaut Frederick H. Hauck, STS-7 pilot, gets some assistance with his safety helmet from Alan M. Rochford, a suit specialist, during a training session in the JSC mission simulations and training facility (32722); Four of the five STS-7 crewmembers train in the shuttle mission simulator (SMS), taking the same seats they will occupy during launch and landing. Pictured, left to right, are Astronauts Robert L. Crippen, commander; Frederick H. Hauck, pilot; Dr. Sally K. Ride and John M. Fabian (almost totally obscured), mission specialists. The crew is wearing civilian clothes and their shuttle helmets (32723); Portrait view of Dr. Ride exiting the SMS (32724); Dr. Ride and other crew preparing to leave the SMS (32725).
A SmallSat constellation mission architecture for a GRACE-type mission design
NASA Astrophysics Data System (ADS)
Deccia, C. M. A.; Nerem, R. S.; Yunck, T.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) launched in 2002 and has been providing invaluable information of Earth's time-varying gravity field and GRACE-FO will continue this time series. For this work, we focus on architectures of future post-GRACE-FO like missions. Single pairs of satellites like GRACE and GRACE-FO are inherently limited in their spatio-temporal coverage. Full global coverage for a single pair can take up to 30 days for spatial resolutions of a few hundred kilometers, thus a single satellite pair is unable to observe sub-monthly signals in the Earth's time varying gravity field (e.g. hydrologic signals, etc.). Small satellite systems are becoming increasingly affordable and will soon allow a constellation of GRACE-type satellites to be deployed, with the capability to range between multiple satellites. Here, using simulation studies, we investigate the performance of such a constellation for different numbers of satellites (N) and different orbital configurations, in order to understand the improved performance that might be gained from such future mission architectures.
Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study
NASA Technical Reports Server (NTRS)
Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie
2014-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.
Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation
NASA Technical Reports Server (NTRS)
Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard
2015-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2011-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064, 532, 355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time data capability of the ISS will enable CATS to support operational applications such as air quality and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data.
Dark and background response stability for the Landsat 8 Thermal Infrared Sensor
Vanderwerff, Kelly; Montanaro, Matthew
2012-01-01
The Thermal Infrared Sensor (TIRS) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM), which is a joint mission between NASA and the USGS. The TIRS instrument will continue to collect the thermal infrared data that are currently being collected by the Thematic Mapper and the Enhanced Thematic Mapper Plus on Landsats 5 and 7, respectively. One of the key requirements of the new sensor is that the dark and background response be stable to ensure proper data continuity from the legacy Landsat instruments. Pre launch testing of the instrument has recently been completed at the NASA Goddard Space Flight Center (GSFC), which included calibration collects that mimic those that will be performed on orbit. These collects include images of a cold plate meant to simulate the deep space calibration source as viewed by the instrument in flight. The data from these collects give insight into the stability of the instrument’s dark and background response, as well as factors that may cause these responses to vary. This paper quantifies the measured background and dark response of TIRS as well as its stability.
STS-26 MS Nelson on fixed based (FB) shuttle mission simulator (SMS) middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains on the middeck of the fixed based (FB) shuttle mission simulator (SMS). Nelson, wearing communications assembly headset, adjusts camera mounting bracket.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12716 (May 1995) --- Astronauts Brian Duffy, in commander's seat, and Winston E. Scott discuss their scheduled flight aboard the Space Shuttle Endeavour. The two are on the flight deck of the Johnson Space Center's (JSC) fixed base Shuttle Mission Simulator (SMS). Duffy, mission commander, and Scott, mission specialist, will be joined for the winter flight by three other NASA astronauts and an international mission specialist representing NASDA.
Eighteenth Space Simulation Conference: Space Mission Success Through Testing
NASA Technical Reports Server (NTRS)
Stecher, Joseph L., III (Compiler)
1994-01-01
The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'
Simulating Mission Command for Planning and Analysis
2015-06-01
mission plan. 14. SUBJECT TERMS Mission Planning, CPM , PERT, Simulation, DES, Simkit, Triangle Distribution, Critical Path 15. NUMBER OF...Battalion Task Force CO Company CPM Critical Path Method DES Discrete Event Simulation FA BAT Field Artillery Battalion FEL Future Event List FIST...management tools that can be utilized to find the critical path in military projects. These are the Critical Path Method ( CPM ) and the Program Evaluation and
Development of a Crosslink Channel Simulator
NASA Technical Reports Server (NTRS)
Hunt, Chris; Smith, Carl; Burns, Rich
2004-01-01
Distributed Spacecraft missions are an integral part of current and future plans for NASA and other space agencies. Many of these multi-vehicle missions involve utilizing the array of spacecraft as a single, instrument requiring communication via crosslinks to achieve mission goals. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide a hardware-in-the-loop simulation environment to support mission concept development and system trades with a primary focus on Guidance, Navigation, and Control (GN&C) challenges associated with spacecraft flying. The goal of the FFTB is to reduce mission risk by assisting in mission planning and analysis, provide a technology development platform that allows algorithms to be developed for mission functions such as precision formation navigation and control and time synchronization. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be integrated for development and test; an integral part of the FFTB is the Crosslink Channel Simulator (CCS). The CCS is placed into the communications channel between the crosslinks under test, and is used to simulate on-mission effects to the communications channel such as vehicle maneuvers, relative vehicle motion, or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems and provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters. This paper briefly describes the Formation Flying Test Bed and its potential uses. It then provides details on the current and future development of the Crosslink Channel Simulator and its capabilities.
2008-03-01
it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Low Thrust Orbital Maneuvers Using Ion Propulsion
NASA Astrophysics Data System (ADS)
Ramesh, Eric
2011-10-01
Low-thrust maneuver options, such as electric propulsion, offer specific challenges within mission-level Modeling, Simulation, and Analysis (MS&A) tools. This project seeks to transition techniques for simulating low-thrust maneuvers from detailed engineering level simulations such as AGI's Satellite ToolKit (STK) Astrogator to mission level simulations such as the System Effectiveness Analysis Simulation (SEAS). Our project goals are as follows: A) Assess different low-thrust options to achieve various orbital changes; B) Compare such approaches to more conventional, high-thrust profiles; C) Compare computational cost and accuracy of various approaches to calculate and simulate low-thrust maneuvers; D) Recommend methods for implementing low-thrust maneuvers in high-level mission simulations; E) prototype recommended solutions.
Cockpit resource management skills enhance combat mission performance in a B-52 simulator
NASA Technical Reports Server (NTRS)
Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.
1989-01-01
A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.
Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Hart, Roger; Hunt, Chris; Burns, Rich D.
2003-01-01
Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.
Synchronous in-field application of life-detection techniques in planetary analog missions
NASA Astrophysics Data System (ADS)
Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf
2015-02-01
Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.
A New Simulation Framework for Autonomy in Robotic Missions
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Neukom, Christian
2003-01-01
Autonomy is a key factor in remote robotic exploration and there is significant activity addressing the application of autonomy to remote robots. It has become increasingly important to have simulation tools available to test the autonomy algorithms. While indus1;rial robotics benefits from a variety of high quality simulation tools, researchers developing autonomous software are still dependent primarily on block-world simulations. The Mission Simulation Facility I(MSF) project addresses this shortcoming with a simulation toolkit that will enable developers of autonomous control systems to test their system s performance against a set of integrated, standardized simulations of NASA mission scenarios. MSF provides a distributed architecture that connects the autonomous system to a set of simulated components replacing the robot hardware and its environment.
Innovative Educational Aerospace Research at the Northeast High School Space Research Center
NASA Technical Reports Server (NTRS)
Luyet, Audra; Matarazzo, Anthony; Folta, David
1997-01-01
Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.
3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.
Wong, Julielynn Y; Pfahnl, Andreas C
2016-09-01
The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.
Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS
NASA Technical Reports Server (NTRS)
Yokum, Steve
2015-01-01
Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12706 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). He will join five NASA astronauts aboard Endeavour for a scheduled nine-day mission, now set for the winter of this year.
A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools
NASA Technical Reports Server (NTRS)
Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard
2016-01-01
End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.
Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jesica; Dees, Ray; Fratello, David
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
STS-44 Atlantis, OV-104, MS Musgrave on FB-SMS middeck during JSC training
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) F. Story Musgrave, wearing lightweight headset (HDST), adjusts controls on communications module mounted on a middeck overhead panel. Musgrave is on the middeck of the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. The STS-44 crewmembers are participating in a flight simulation.
A life sciences Spacelab mission simulation
NASA Technical Reports Server (NTRS)
Mason, J. A.; Musgrave, F. S.; Morrison, D. R.
1977-01-01
The paper describes the purposes of a seven-day simulated life-sciences mission conducted in a Spacelab simulator. A major objective was the evaluation of in-orbit Spacelab operations and those mission control support functions which will be required from the Payload Operations Center. Tested equipment and procedures included experiment racks, common operational research equipment, commercial off-the-shelf equipment, experiment hardware interfaces with Spacelab, experiment data handling concepts, and Spacelab trash management.
Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator
1969-11-04
S69-56699 (22 Oct. 1969) --- Astronauts Charles Conrad Jr. (left), Apollo 12 commander; and Alan L. Bean, lunar module pilot, are shown in the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Dove, Edwin
2011-01-01
The MMS mission is an ambitious space physics mission that will fly 4 spacecraft in a tetrahedron formation in a series of highly elliptical orbits in order to study magnetic reconnection in the Earth's magnetosphere. The mission design is comprised of a combination of deterministic orbit adjust and random maintenance maneuvers distributed over the 2.5 year mission life. Formal verification of the requirements is achieved by analysis through the use of the End-to-End (ETE) code, which is a modular simulation of the maneuver operations over the entire mission duration. Error models for navigation accuracy (knowledge) and maneuver execution (control) are incorporated to realistically simulate the possible maneuver scenarios that might be realized These error models, coupled with the complex formation flying physics, lead to non-trivial effects that must be taken into account by the ETE automation. Using the ETE code, the MMS Flight Dynamics team was able to demonstrate that the current mission design satisfies the mission requirements.
Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package
NASA Technical Reports Server (NTRS)
Masunaga, Hirohiko; Matsui, Toshihisa; Tao, Wei-Kuo; Hou, Arthur Y.; Kummerow, Christian D.; Nakajima, Teruyuki; Bauer, Peter; Olson, William S.; Sekiguchi, Miho; Nakajima, Teruyuki
2010-01-01
Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be useful for future geostationary satellites with a microwave radiometer and/or a radar aboard, which could become more feasible as engineering challenges are met. In this short article, the SDSU algorithm architecture and potential applications are reviewed in brief.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12703 (May 1995) --- Astronauts Koichi Wakata (left) and Daniel T. Barry check the settings on a 35mm camera during an STS-72 training session. Wakata is a mission specialist, representing Japan's National Space Development Agency (NASDA) and Barry is a United States astronaut assigned as mission specialist for the same mission. The two are on the aft flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC).
An overview of the EASE/ACCESS space construction demonstration
NASA Technical Reports Server (NTRS)
Levin, George M.; Ross, Jerry L.; Spring, Sherwood C.
1988-01-01
Consideration is given to the development of the Experimental Assembly of Structures in EVA/Assembly Concept for Construction of Erectable Space Structures (EASE/ACCESS) space construction demonstration, which was performed during Space Shuttle mission 61-B. The mission equipment is described and illustrated and the EASE/ACCESS mission management structure is outlined. Simulations of the assembly and disassembly in the NASA neutral buoyancy simulators were used to test the mission plans. In addition, EVA training and crew performance for the mission are discussed.
Concept Verification Test - Evaluation of Spacelab/Payload operation concepts
NASA Technical Reports Server (NTRS)
Mcbrayer, R. O.; Watters, H. H.
1977-01-01
The Concept Verification Test (CVT) procedure is used to study Spacelab operational concepts by conducting mission simulations in a General Purpose Laboratory (GPL) which represents a possible design of Spacelab. In conjunction with the laboratory a Mission Development Simulator, a Data Management System Simulator, a Spacelab Simulator, and Shuttle Interface Simulator have been designed. (The Spacelab Simulator is more functionally and physically representative of the Spacelab than the GPL.) Four simulations of Spacelab mission experimentation were performed, two involving several scientific disciplines, one involving life sciences, and the last involving material sciences. The purpose of the CVT project is to support the pre-design and development of payload carriers and payloads, and to coordinate hardware, software, and operational concepts of different developers and users.
NASA Operational Simulator for Small Satellites (NOS3)
NASA Technical Reports Server (NTRS)
Zemerick, Scott
2015-01-01
The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.
1983-05-24
S83-32571 (23 May 1983) --- Four-fifths of the STS-7 crew take a break from simulations in the Johnson Space Center?s Mission Simulation and Training Facility and pose for NASA photographer. Standing on the steps leading into the motion-based Shuttle Mission Simulator (SMS) are (left to right) astronauts Robert L. Crippen, John M. Fabian, Frederick H. Hauck and Sally K. Ride. Crippen is crew commander; Hauck, pilot; and Fabian and Ride are mission specialists, along with Norman E. Thagard (not involved in this phase of training and not pictured). Photo credit: NASA
STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
NASA Technical Reports Server (NTRS)
Wingrove, Rodney C.; Coate, Robert E.
1961-01-01
The guidance system for maneuvering vehicles within a planetary atmosphere which was studied uses the concept of fast continuous prediction of the maximum maneuver capability from existing conditions rather than a stored-trajectory technique. used, desired touchdown points are compared with the maximum range capability and heating or acceleration limits, so that a proper decision and choice of control inputs can be made by the pilot. In the method of display and control a piloted fixed simulator was used t o demonstrate the feasibility od the concept and to study its application to control of lunar mission reentries and recoveries from aborts.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. From left are Commander Rick Sturckow, Mission Specialist Danny Olivas and Pilot Lee Archambault. They and other crew members are practicing the emergency egress procedure using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
Machine Learning for Slow but Steady Interplanetary Construction
NASA Technical Reports Server (NTRS)
Agogino, Adrian
2017-01-01
For prolonged manned missions to destinations such as the moon and Mars, there is a need for significant infrastructure construction ahead of time, such as habitats and landing pads. Unfortunately we have little experience in remote construction and using conventional methods is likely to be expensive, cumbersome and unreliable. Fortunately these challenges may be overcome by taking advantage of the long lead time for such missions and using teams of small and slow construction robots. We propose using teams of simple autonomous robots for this purpose that would perform continuous construction over a period of many years or even decades. While individual robot reliability will be low over such long time frames, system reliability will be maintained by using machine learning over simulations to achieve coordination and reconfigurations in the event of lost robots.
STS-26 crew trains in JSC fixed-based (FB) shuttle mission simulator (SMS)
1987-10-20
S87-46304 (20 Oct 1987) --- Astronauts Frederick H. (Rick) Hauck, left, STS-26 commander, and Richard O. Covey, pilot, man their respective stations in the Shuttle mission simulator (fixed base) at the Johnson Space Center. A simulation for their anticipated June 1988 flight aboard the space shuttle Discovery began Oct. 20. Astronaut David C. Hilmers, one of three mission specialists for the flight, is partially visible in the foreground.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1986-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset and seated in the commanders seat on forward flight deck, looks over his shoulder toward the aft flight deck. A flight data file (FDF) notebook rests on his lap. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.
2012-01-01
Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a summary of the science objectives and simulated data. Input from the ICAP community is desired to help plan our NRT mission goals and interactions with ICAP forecasters.
OpenSpace: From Data Visualization Research to Planetariums and Classrooms Worldwide
NASA Astrophysics Data System (ADS)
Emmart, C.; Ynnerman, A.; Bock, A.; Kuznetsova, M. M.; Kinzler, R. J.; Trakinski, V.; Mac Low, M. M.; Ebel, D. S. S.
2016-12-01
"OpenSpace" is a new NASA supported open source software that brings the latest techniques from data visualization research to the planetarium community and general public. The American Museum of Natural History (AMNH), in collaboration with informal science institutions (ISI), academic partners, key vendors that support planetariums worldwide, and NASA mission teams and Subject Matter Experts (SME), is creating OpenSpace to enable STEM education and improve U.S. scientific literacy by engaging a broad spectrum of the American public and STEM learners in cutting-edge NASA science and engineering content. The project's primary focus is the interactive presentation of dynamic data from observations (image sequences), astrophysical simulation (volumetric rendering), and space missions (observation geometry visualization). Development of the software began several years ago in collaboration with NASA Goddard's space weather modeling center and in conjunction with academic support from Linköping University (LiU) in Sweden, and continued last year with visualizations of NASA's New Horizons mission and ESA's Rosetta mission. For the New Horizons Pluto encounter, a dozen sites around the world running OpenSpace networked simultaneously to view the close approach to Pluto as narrated in real time by mission control scientists at NASA's Jet Propulsion Laboratory. Subsequent image data from the Long Range Reconnaissance Imaging (LORRI) camera was released by NASA as it downloaded from the spacecraft in the following months. These images, along with post encounter navigation reconstruction data (NASA SPICE) were then used to update the OpenSpace New Horizons visualization, and create a February 2016 public program in which Deputy Project Scientist, Cathy Olkin, demonstrated these results visualized in OpenSpace to a sold out crowd in the AMNH Hayden Planetarium. As demonstrated with the New Horizons visualization in OpenSpace, the goals of the project are to make visible mission planning, discoveries and theoretical simulations within an evolving software designed for live demonstration accompanied by authoritative description.
Comparative study of MYSat attitude stability effect on power generation and lifetime
NASA Astrophysics Data System (ADS)
Amilia Ismail, Norilmi; Thaheer, Ahmad Shaqeer Mohamed; Izmir Yamin, Mohd.
2018-05-01
Universiti Sains Malaysia Space System Lab (USSL) is currently developing a 1U cubesat named MYSat. The satellite mission is to measure electron-density in the Ionosphere E-Layer. Power generation from a solar panel is limited due to a small area of the satellite. Apart from that, the satellite is expecting to continuously spinning and tumbling throughout the mission lifetime as the satellite will be launched without an attitude control system. This paper compares the effect on power generation and the lifetime of MYSat of two conditions; first is with attitude controll where satellite pointing to nadir and later is uncontrol attitude of the satellite. The analysis has been conducted using Analytical Graphics, Inc. (AGI) Systems Tool Kit (STK) software. This study assumed the satellite used a hexagonal solar cell with a theoretical efficiency of 29% identical to an Ultra Triple-Junction (UTJ) solar cell. The simulation is done in one year duration on different attitude configuration. The worst-case condition, where the Earth is positioned at apogee, has been chosen for the comparative study and the lifetime of the satellite is also simulated and compared.
Behavioral Health Program Element
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.
2006-01-01
The project goal is to develop behavioral health prevention and maintenance system for continued crew health, safety, and performance for exploration missions. The basic scope includes a) Operationally-relevant research related to clinical cognitive and behavioral health of crewmembers; b) Ground-based studies using analog environments (Antarctic, NEEMO, simulations, and other testbeds; c) ISS studies (ISSMP) focusing on operational issues related to behavioral health outcomes and standards; d) Technology development activities for monitoring and diagnostic tools; and e) Cross-disciplinary research (e.g., human factors and habitability research, skeletal muscle, radiation).
The Mission Planning Lab: A Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.; Cervantes, Benjamin W.
2009-01-01
Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).
NASA Technical Reports Server (NTRS)
Sarani, Sam
2010-01-01
The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of the ring world. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the Reaction Control System (or RCS) and the Reaction Wheel Assembly (RWA) control system. In the course of its mission, Cassini performs numerous reaction wheel momentum biases (or unloads) using its reaction control thrusters. The use of the RCS thrusters often imparts undesired velocity changes (delta Vs) on the spacecraft and it is crucial for Cassini navigation and attitude control teams to be able to, quickly but accurately, predict the hydrazine usage and delta V vector in Earth Mean Equatorial (J2000) inertial coordinates for reaction wheel bias events, without actually having to spend time and resources simulating the event in a dynamic or hardware-in-the-loop simulation environments. The flight-calibrated methodology described in this paper, and the ground software developed thereof, are designed to provide the RCS thruster on-times, with acceptable accuracy and without any form of dynamic simulation, for reaction wheel biases, along with the hydrazine usage and the delta V in EME-2000 inertial frame.
Additional Developments in Atmosphere Revitalization Modeling and Simulation
NASA Technical Reports Server (NTRS)
Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos
2013-01-01
NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.
NASA Technical Reports Server (NTRS)
Barre, Jerome; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William
2015-01-01
By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the "instrument simulator" step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements.
STEREO Superior Solar Conjunction Mission Phase
NASA Technical Reports Server (NTRS)
Ossing, Daniel A.; Wilson, Daniel; Balon, Kevin; Hunt, Jack; Dudley, Owen; Chiu, George; Coulter, Timothy; Reese, Angel; Cox, Matthew; Srinivasan, Dipak;
2017-01-01
With its long duration and high gain antenna (HGA) feed thermal constraint; the NASA Solar-TErestrial RElations Observatory (STEREO) solar conjunction mission phase is quite unique to deep space operations. Originally designed for a two year heliocentric orbit mission to primarily study coronal mass ejection propagation, after 8 years of continuous science data collection, the twin STEREO observatories entered the solar conjunction mission phase, for which they were not designed. Nine months before entering conjunction, an unforeseen thermal constraint threatened to stop daily communications and science data collection for 15months. With a 3.5 month long communication blackout from the superior solar conjunction, without ground commands, each observatory will reset every 3 days, resulting in 35 system resets at an Earth range of 2 AU. As the observatories will be conjoined for the first time in 8 years, a unique opportunity for calibrating the same instruments on identical spacecraft will occur. As each observatory has lost redundancy, and with only a limited fidelity hardware simulator, how can the new observatory configuration be adequately and safely tested on each spacecraft? Without ground commands, how would a 3-axis stabilized spacecraft safely manage the ever accumulating system momentum without using propellant for thrusters? Could science data still be collected for the duration of the solar conjunction mission phase? Would the observatories survive? In its second extended mission, operational resources were limited at best. This paper discusses the solutions to the STEREO superior solar conjunction operational challenges, science data impact, testing, mission operations, results, and lessons learned while implementing.
NASA Astrophysics Data System (ADS)
Koehn, Patrick Leo
The plasma environment at Mercury is a rich laboratory for studying the interaction of the solar wind with a planet. Three primary populations of ions exist at Mercury: solar wind, magnetospheric particles, and pickup ions. Pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury should include a sensor that is able to determine the dynamical properties and composition of all three plasma components. The Fast Imaging Plasma Spectrometer (FIPS) is an instrument to measure the composition of these ion populations and their three-dimensional velocity distribution functions. It is lightweight, fast, and has a very large field of view, and these properties made possible its accommodation within the highly mass- constrained payload of MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) mission, a Mercury orbiter. This work details the development cycle of FIPS, from concept to prototype testing. It begins with science studies of the magnetospheric and pickup ion environments of Mercury, using state-of-the-art computer simulations to produce static and quasi-dynamic magnetospheric systems. Predictions are made of the spatially variable plasma environment at Mercury, and the temporally varying magnetosphere-solar wind interaction is examined. Pickup ion studies provide insights to particle loss mechanisms and the nature of the radar-bright regions at the Hermean poles. These studies produce science requirements for successfully measuring this environment with an orbiting mass spectrometer. With these science requirements in mind, a concept for a new electrostatic analyzer is created. This concept is considered from a theoretical standpoint, and compared with other, similarly performing instruments, both of the past and currently in use. The development cycle continues with instrument simulation, which allows the design to be adjusted to fit within the science requirements of the mission. Finally, a prototype electrostatic is constructed and tested in a space- simulating vacuum chamber system. The results of these tests are compared with the simulation results, and ultimately shown to fit within the science requirements for the MESSENGER mission.
STS 51-L crewmembers during training session in flight deck simulation
NASA Technical Reports Server (NTRS)
1985-01-01
Shuttle mission simulator (SMS) scene of Astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck (46207); Left to right, Backup payload specialist Barbara R. Morgan, Teacher in Space Payload specialist Christa McAuliffe, Hughes Payload specialist Gregory B. Jarvis, and Mission Specialist Ronald E. McNair in the middeck portion of the Shuttle Mission Simulator at JSC (46208).
STS-26 Commander Hauck in fixed based (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing comunications kit assembly headset, checks control panel data while seated in the commanders seat on forward flight deck. A flight data file (FDF) notebook rests on his lap. A portable computer (laptop) is positioned on the center console. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
Apollo 12 crewmembers shown in Apollo Lunar Module Mission Simulator
1969-11-04
S69-56700 (22 Oct. 1969) --- A fish-eye lens view of astronauts Charles Conrad Jr. (on left), Apollo 12 commander, and Alan L. Bean, lunar module pilot, inside the Apollo Lunar Module Mission Simulator during simulator training at the Kennedy Space Center (KSC). Apollo 12 will be the National Aeronautics and Space Administration's (NASA) second lunar landing mission. The third Apollo 12 crewmember will be astronaut Richard F. Gordon Jr., command module pilot.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
MACHETE: Environment for Space Networking Evaluation
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Segui, John S.; Woo, Simon
2010-01-01
Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.
STS-8 crewmembers during shuttle mission simulation training
NASA Technical Reports Server (NTRS)
1983-01-01
Astronauts Guion S. Bluford, right, and Daniel C. Brandenstein man their respective Challenger entry and ascent stations in the Shutle Mission Simulator (SMS) at JSC. Brandenstein is in the pilot's station, while Bluford, a mission specialist, occupies one of the two aft flight deck seats. Both are wearing civilian clothes for this training exercise.
Astronaut Fred Haise participates in simulation training
1970-04-07
S70-34412 (4 April 1970) --- Astronaut Fred W. Haise Jr., Apollo 13 lunar module pilot, participates in simulation training in preparation for the scheduled lunar landing mission. He is in the Apollo Lunar Module Mission Simulator in the Kennedy Space Center's Flight Crew Training building.
Simulation-Based Mission Rehearsal as a Human Activity System.
1996-09-01
explain this demonstrated importance of the people involved in MR, a human activity system model of simulation-based rehearsal was developed. It provides...Implications of this human activity system view are discussed, including: places in the mission preparation process where simulation can benefit operations
Shuttle vehicle and mission simulation requirements report, volume 1
NASA Technical Reports Server (NTRS)
Burke, J. F.
1972-01-01
The requirements for the space shuttle vehicle and mission simulation are developed to analyze the systems, mission, operations, and interfaces. The requirements are developed according to the following subject areas: (1) mission envelope, (2) orbit flight dynamics, (3) shuttle vehicle systems, (4) external interfaces, (5) crew procedures, (6) crew station, (7) visual cues, and (8) aural cues. Line drawings and diagrams of the space shuttle are included to explain the various systems and components.
An Evaluation of the High Level Architecture (HLA) as a Framework for NASA Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reid, Michael R.; Powers, Edward I. (Technical Monitor)
2000-01-01
The High Level Architecture (HLA) is a current US Department of Defense and an industry (IEEE-1516) standard architecture for modeling and simulations. It provides a framework and set of functional rules and common interfaces for integrating separate and disparate simulators into a larger simulation. The goal of the HLA is to reduce software costs by facilitating the reuse of simulation components and by providing a runtime infrastructure to manage the simulations. In order to evaluate the applicability of the HLA as a technology for NASA space mission simulations, a Simulations Group at Goddard Space Flight Center (GSFC) conducted a study of the HLA and developed a simple prototype HLA-compliant space mission simulator. This paper summarizes the prototyping effort and discusses the potential usefulness of the HLA in the design and planning of future NASA space missions with a focus on risk mitigation and cost reduction.
STS-72 crew trains in Fixed Base (FB) Shuttle Mission Simulator (SMS)
1995-06-07
S95-12725 (May 1995) --- Astronaut Koichi Wakata, representing Japan's National Space Development Agency (NASDA) and assigned as mission specialist for the STS-72 mission, checks over a copy of the flight plan. Wakata is on the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). In the background is astronaut Brent W. Jett, pilot. The two will join four NASA astronauts aboard Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.
Fun with Mission Control: Learning Science and Technology by Sitting in the Driver's Seat
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. J.; Fisher, D. K.; Leon, N.; Novati, A.; Chmielewski, A. B.; Karlson, D. K.
2012-12-01
We will demonstrate and discuss iOS games we have developed that simulate real space mission scenarios in simplified form. These games are designed to appeal to multiple generations, while educating and informing the player about the mission science and technology. Such interactive games for mobile devices can reach an audience that might otherwise be inaccessible. However, developing in this medium comes with its own set of challenges. Touch screen input demands a different type of interface and defines new rules for user interaction. Communicating informative messages to an audience on the go also poses unique challenges. The organization and delivery of the content needs to consider that the users are often distracted by their environments or have only short blocks of time in which to become involved with the activity. The first game, "Comet Quest," simulates the Rosetta mission. Rosetta, sponsored by the European Space Agency, with important contributions from NASA, is on its way to Comet 67P/Churyumov-Gerasimenko. It will orbit the comet and drop a lander on the nucleus. It will continue to orbit for two years as the comet approaches the Sun. Both orbiter and lander will make measurements and observations and transmit the data to Earth, in the first close study of a comet's evolution as it journeys to the inner solar system. In "Comet Quest," the player controls the release of the lander and records and transmits all the science data. The game is fun and challenging, no matter the player's skill level. Comet Quest includes a "Learn more" feature, with questions and simple, concise answers about comets and the Rosetta mission. "Rescue 406!" is another simulation game, this one enacting the process of rescuing individuals in distress using the Search And Rescue Satellite-Aided Tracking system, SARSAT. Development of this game was sponsored by NOAA's Geostationary Operational Environmental Satellite, R-series, program (GOES-R). This game incorporates the major components of the SARSAT technology. A "learn more" feature describes how the SARSAT process works. Both of these game concepts begin with the science and technology of real missions. They both involve realistic, albeit simplified, process scenarios. We were challenged to create compelling game play action that simultaneously fulfilled the overall objective to educate, engage, and inform a wide audience about important science and technology achievements.
Crew interface definition study, phase 1
NASA Technical Reports Server (NTRS)
Callihan, J. C.; Kraemer, J. W.; Alles, J. A.
1971-01-01
The timeline analysis of the Shuttle orbiter missions which was conducted in the Phase I Crew Interface Definition Study and the requirements for the man-in-the-loop simulation study are presented. Mission definitions and objectives are presented as they relate to various Shuttle Orbiter missions. The requirements for crew participation and the information required by the crew are discussed, and finally the rationale behind the display concept and calling procedures is given. The simulation objectives, the simulation mechanization, including a detailed presentation of the display and control concept, the simulator test plan and the results are discussed.
Features of the Drag-Free-Simulator demonstrated for the Microscope-mission
NASA Astrophysics Data System (ADS)
List, Meike; Bremer, Stefanie; Dittus, Hansjoerg; Selig, Hanns
The ZARM Drag-Free-Simulator is being developed as a tool for comprehensive mission modeling. Environmental disturbances like solar radiation pressure, atmospheric drag, interactions between the satellite and the Earth's magnetic field can be taken into account via several models. Besides the gravitational field of the Earth, the influence of Sun, Moon and the planets including Pluto can be considered for aimed simulations, too. Methods of modeling and implementation will be presented. At the moment, effort is made to adapt this simulation tool for the french mission MICRO- SCOPE which is designed for testing the equivalence principle up to an accuracy of η=10-15 . Additionally, detailed modeling of on-board capacitive sensors is necessary for a better understanding of the real system. The actual status of mission modeling will be reported.
Pointer, William David; Baglietto, Emilio
2016-05-01
Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less
An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations
NASA Technical Reports Server (NTRS)
Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks, positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center) and MS James S. Voss (standing). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. A maze of panel switches appear overhead and in the background.
Attracting Students to Space Science Fields: Mission to Mars
NASA Astrophysics Data System (ADS)
Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.
Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, A. K.
1978-01-01
The Data Storage Subsystem Simulator (DSSSIM) simulating (by ground software) occurrence of discrete events in the Voyager mission is described. Functional requirements for Data Storage Subsystems (DSS) simulation are discussed, and discrete event simulation/DSSSIM processing is covered. Four types of outputs associated with a typical DSSSIM run are presented, and DSSSIM limitations and constraints are outlined.
NASA Technical Reports Server (NTRS)
Moehlmann, D.; Kochan, H.
1992-01-01
The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.
A Water Rich Mars Surface Mission Scenario
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin
2017-01-01
In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.
A Water Rich Mars Surface Mission Scenario
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin
2017-01-01
In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.
Impact risk assessment and planetary defense mission planning for asteroid 2015 PDC
NASA Astrophysics Data System (ADS)
Vardaxis, George; Sherman, Peter; Wie, Bong
2016-05-01
In this paper, an integrated utilization of analytic keyhole theory, B-plane mapping, and planetary encounter geometry, augmented by direct numerical simulation, is shown to be useful in determining the impact risk of an asteroid with the Earth on a given encounter, as well on potential future encounters via keyhole passages. The accurate estimation of the impact probability of hazardous asteroids is extremely important for planetary defense mission planning. Asteroids in Earth resonant orbits are particularly troublesome because of the continuous threat they pose in the future. Based on the trajectories of the asteroid and the Earth, feasible mission trajectories can be found to mitigate the impact threat of hazardous asteroids. In order to try to ensure mission success, trajectories are judged based on initial and final mission design parameters that would make the mission easier to complete. Given the potential of a short-warning time scenario, a disruption mission considered in this paper occurs approximately one year prior to the anticipated impact date. Expanding upon the established theory, a computational method is developed to estimate the impact probability of the hazardous asteroid, in order to assess the likelihood of an event, and then investigate the fragmentation of the asteroid due to a disruption mission and analyze its effects on the current and future encounters of the fragments with Earth. A fictional asteroid, designated as 2015 PDC - created as an example asteroid risk exercise for the 2015 Planetary Defence Conference, is used as a reference target asteroid to demonstrate the effectiveness and applicability of computational tools being developed for impact risk assessment and planetary defense mission planning for a hazardous asteroid or comet.
Modeling and Simulation for Multi-Missions Space Exploration Vehicle
NASA Technical Reports Server (NTRS)
Chang, Max
2011-01-01
Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
NASA Technical Reports Server (NTRS)
Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura
2007-01-01
The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.
Simulations of gravitational stress on normovolemic and hypovolemic men and women.
Zhang, Qingguang; Knapp, Charles F; Stenger, Michael B; Patwardhan, Abhijit R; Elayi, Samy C; Wang, Siqi; Kostas, Vladimir I; Evans, Joyce M
2014-04-01
Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
NASA Astrophysics Data System (ADS)
Harris, E.
Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.
NASA Technical Reports Server (NTRS)
Carlstrom, Nicholas Mercury
2016-01-01
This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User Training Materials version 2013.0 release was used to complete the Trick tutorial. Multiple network privilege and repository permission requests were required in order to access previous simulation models. The project was also an introduction to computer programming and the Linux operating system. Basic C++ and Python syntax was used during the completion of the Trick tutorial. Trick's engineering analysis and Monte Carlo simulation capabilities were observed and basic space mission planning procedures were applied in the conceptual design phase. Multiple professional development opportunities were completed in addition to project duties during this internship through the System for Administration, Training, and Education Resources for NASA (SATERN). Topics include: JSC Risk Management Workshop, CCP Risk Management, Basic Radiation Safety Training, X-Ray Radiation Safety, Basic Laser Safety, JSC Export Control, ISS RISE Ambassador, Basic SharePoint 2013, Space Nutrition and Biochemistry, and JSC Personal Protective Equipment. Additionally, this internship afforded the opportunity for formal project presentation and public speaking practice. This was my first experience at a NASA center. After completing this internship I have a much clearer understanding of certain aspects of the agency's processes and procedures, as well as a deeper appreciation from spaceflight simulation design and testing. I will continue to improve my technical skills so that I may have another opportunity to return to NASA and Johnson Space Center.
Data-driven simulations of the Landsat Data Continuity Mission (LDCM) platform
NASA Astrophysics Data System (ADS)
Gerace, Aaron; Gartley, Mike; Schott, John; Raqueño, Nina; Raqueño, Rolando
2011-06-01
The Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are two new sensors being developed by the Landsat Data Continuity Mission (LDCM) that will extend over 35 years of archived Landsat data. In a departure from the whiskbroom design used by all previous generations of Landsat, the LDCM system will employ a pushbroom technology. Although the newly adopted modular array, pushbroom architecture has several advantages over the previous whiskbroom design, registration of the multi-spectral data products is a concern. In this paper, the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to simulate an LDCM collection, which gives the team access to data that would not otherwise be available prior to launch. The DIRSIG model was used to simulate the two-instrument LDCM payload in order to study the geometric and radiometric impacts of the sensor design on the proposed processing chain. The Lake Tahoe area located in eastern California was chosen for this work because of its dramatic change in elevation, which was ideal for studying the geometric effects of the new Landsat sensor design. Multi-modal datasets were used to create the Lake Tahoe site model for use in DIRSIG. National Elevation Dataset (NED) data were used to create the digital elevation map (DEM) required by DIRSIG, QuickBird data were used to identify different material classes in the scene, and ASTER and Hyperion spectral data were used to assign radiometric properties to those classes. In order to model a realistic Landsat orbit in these simulations, orbital parameters were obtained from a Landsat 7 two-line element set and propagated with the SGP4 orbital position model. Line-of-sight vectors defining how the individual detector elements of the OLI and TIRS instruments project through the optics were measured and provided by NASA. Additionally, the relative spectral response functions for the 9 bands of OLI and the 2 bands of TIRS were measured and provided by NASA. The instruments were offset on the virtual satellite and data recorders used to generate ephemeris data for downstream processing. Finally, potential platform jitter spectra were measured and provided by NASA and incorporated into the simulations. Simulated imagery generated by the model was incrementally provided to the rest of the LDCM team in a spiral development cycle to constantly refine the simulations.
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Patrick Forrester is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Patrick Forrester (right) waits his turn to practice driving an M-113 armored personnel carrier as fellow crew members look on. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Danny Olivas is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist Steven Swanson is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
2007-02-21
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 39, STS-117 Mission Specialist James Reilly is helmeted and ready to practice driving an M-113 armored personnel carrier. The astronauts on the STS-117 crew are participating in M-113 armored personnel carrier training during Terminal Countdown Demonstration Test (TCDT) activities, a dress rehearsal for their launch, targeted for March 15. The M-113 could be used to move the crew away from the launch pad quickly in the event of an emergency. The TCDT also includes pad emergency egress training and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Photo credit: NASA/Kim Shiflett
Competition Underway at NASA 2017 Robotic Mining Competition
2017-05-24
NASA’s Eighth Annual Robotic Mining Competition (RMC) began its first of three days of actual competition at Kennedy Space Center in Florida. Forty-five teams of college undergraduate and graduate students – and their uniquely-designed and built mining robots – race against the clock to collect and move the most simulated Martian soil. Students also are judged on how they use their robots to inspire their community about science, technology, engineering and math (STEM). Competition continues through Friday. Managed by, and held annually at Kennedy Space Center, RMC is a NASA Human Exploration and Operations Mission Directorate project designed to engage and retain students in STEM fields by expanding opportunities for student research and design. The project provides a competitive environment to foster innovative ideas and solutions with potential use on NASA’s deep space exploration missions, including to Mars.
32 CFR 202.5 - Creating a mission statement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Creating a mission statement. 202.5 Section 202.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS RESTORATION ADVISORY BOARDS Operating Requirements § 202.5 Creating a mission statement. The...
48 CFR 252.237-7023 - Continuation of Essential Contractor Services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... prescribed in 237.7603, use the following clause: Continuation of Mission Essential Functions (Date) (a) The... contractor services in support of mission-essential functions. The contractor-provided services that have been determined to be essential contractor services in support of mission-essential functions are...
Euclid Cosmological Simulations Requirements and Implementation Plan
NASA Technical Reports Server (NTRS)
Kiessling, Alina
2012-01-01
Simulations are essential for the successful undertaking of the Euclid mission. The simulations requirements for the Euclid mission are vast ! It is an enormous undertaking that includes development of software and acquisition of hardware facilities. The simulations requirements are currently being finalised - please contact myself or Elisabetta Semboloni if you would like to add/modify any r equi r ements (or if you would like to be involved in the development of the simulations).
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1976-01-01
Data handling, communications, and documentation aspects of the ASSESS mission are described. Most experiments provided their own data handling equipment, although some used the airborne computer for backup, and one experiment required real-time computations. Communications facilities were set up to simulate those to be provided between Spacelab and the ground, including a downlink TV system. Mission documentation was kept to a minimum and proved sufficient. Examples are given of the basic documents of the mission.
NASA Technical Reports Server (NTRS)
McLaughlin, Brian J.; Barrett, Larry K.
2012-01-01
Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.
STS-31 Pilot Bolden with beverages on the FB-SMS middeck during JSC training
NASA Technical Reports Server (NTRS)
1988-01-01
STS-31 Pilot Charles F. Bolden holds three beverage containers while in front of the galley on the middeck of the fixed based (FB) shuttle mission simulator (SMS) during a training simulation at JSC's Mission Simulation and Training Facility Bldg 5. From the middeck, Bolden, wearing lightweight headset, simulates a communications link with ground controllers and fellow crewmembers.
An investigation into pilot and system response to critical in-flight events, volume 2
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Giffin, W. C.
1981-01-01
Critical in-flight event is studied using mission simulation and written tests of pilot responses. Materials and procedures used in knowledge tests, written tests, and mission simulations are included
Simulation research: A vital step for human missions to Mars
NASA Astrophysics Data System (ADS)
Perino, Maria Antonietta; Apel, Uwe; Bichi, Alessandro
The complex nature of the challenge as humans embark on exploration missions beyond Earth orbit will require that, in the early stages, simulation facilities be established at least on Earth. Suitable facilities in Low Earth Orbit and on the Moon surface would provide complementary information of critical importance for the overall design of a human mission to Mars. A full range of simulation campaigns is required, in fact, to reach a better understanding of the complexities involved in exploration missions that will bring humans back to the Moon and then outward to Mars. The corresponding simulation means may range from small scale environmental simulation chambers and/or computer models that will aid in the development of new materials, to full scale mock-ups of spacecraft and planetary habitats and/or orbiting infrastructues. This paper describes how a suitable simulation campaign will contribute to the definition of the required countermeasures with respect to the expected duration of the flight. This will allow to be traded contermeasure payload and astronaut time against effort in technological development of propulsion systems.
Mars integrated transportation system multistage Mars mission
NASA Technical Reports Server (NTRS)
1991-01-01
In accordance with the objective of the Mars Integrated Transport System (MITS) program, the Multistage Mars Mission (MSMM) design team developed a profile for a manned mission to Mars. The purpose of the multistage mission is to send a crew of five astronauts to the martian surface by the year 2019. The mission continues man's eternal quest for exploration of new frontiers. This mission has a scheduled duration of 426 days that includes experimentation en route as well as surface exploration and experimentation. The MSMM is also designed as a foundation for a continuing program leading to the colonization of the planet Mars.
Hitchhiker mission operations: Past, present, and future
NASA Technical Reports Server (NTRS)
Anderson, Kathryn
1995-01-01
What is mission operations? Mission operations is an iterative process aimed at achieving the greatest possible mission success with the resources available. The process involves understanding of the science objectives, investigation of which system capabilities can best meet these objectives, integration of the objectives and resources into a cohesive mission operations plan, evaluation of the plan through simulations, and implementation of the plan in real-time. In this paper, the authors present a comprehensive description of what the Hitchhiker mission operations approach is and why it is crucial to mission success. The authors describe the significance of operational considerations from the beginning and throughout the experiment ground and flight systems development. The authors also address the necessity of training and simulations. Finally, the authors cite several examples illustrating the benefits of understanding and utilizing the mission operations process.
NASA Astrophysics Data System (ADS)
Onken, Jeffrey
This dissertation introduces a multidisciplinary framework for the enabling of future research and analysis of alternatives for control centers for real-time operations of safety-critical systems. The multidisciplinary framework integrates functional and computational models that describe the dynamics in fundamental concepts of previously disparate engineering and psychology research disciplines, such as group performance and processes, supervisory control, situation awareness, events and delays, and expertise. The application in this dissertation is the real-time operations within the NASA Mission Control Center in Houston, TX. This dissertation operationalizes the framework into a model and simulation, which simulates the functional and computational models in the framework according to user-configured scenarios for a NASA human-spaceflight mission. The model and simulation generates data according to the effectiveness of the mission-control team in supporting the completion of mission objectives and detecting, isolating, and recovering from anomalies. Accompanying the multidisciplinary framework is a proof of concept, which demonstrates the feasibility of such a framework. The proof of concept demonstrates that variability occurs where expected based on the models. The proof of concept also demonstrates that the data generated from the model and simulation is useful for analyzing and comparing MCC configuration alternatives because an investigator can give a diverse set of scenarios to the simulation and the output compared in detail to inform decisions about the effect of MCC configurations on mission operations performance.
Integrated Medical Model (IMM) 4.0 Enhanced Functionalities
NASA Technical Reports Server (NTRS)
Young, M.; Keenan, A. B.; Saile, L.; Boley, L. A.; Walton, M. E.; Shah, R. V.; Kerstman, E. L.; Myers, J. G.
2015-01-01
The Integrated Medical Model is a probabilistic simulation model that uses input data on 100 medical conditions to simulate expected medical events, the resources required to treat, and the resulting impact to the mission for specific crew and mission characteristics. The newest development version of IMM, IMM v4.0, adds capabilities that remove some of the conservative assumptions that underlie the current operational version, IMM v3. While IMM v3 provides the framework to simulate whether a medical event occurred, IMMv4 also simulates when the event occurred during a mission timeline. This allows for more accurate estimation of mission time lost and resource utilization. In addition to the mission timeline, IMMv4.0 features two enhancements that address IMM v3 assumptions regarding medical event treatment. Medical events in IMMv3 are assigned the untreated outcome if any resource required to treat the event was unavailable. IMMv4 allows for partially treated outcomes that are proportional to the amount of required resources available, thus removing the dichotomous treatment assumption. An additional capability IMMv4 is to use an alternative medical resource when the primary resource assigned to the condition is depleted, more accurately reflecting the real-world system. The additional capabilities defining IMM v4.0the mission timeline, partial treatment, and alternate drug result in more realistic predicted mission outcomes. The primary model outcomes of IMM v4.0 for the ISS6 mission, including mission time lost, probability of evacuation, and probability of loss of crew life, are be compared to those produced by the current operational version of IMM to showcase enhanced prediction capabilities.
Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling
NASA Astrophysics Data System (ADS)
Schum, William K.; Doolittle, Christina M.; Boyarko, George A.
2006-05-01
During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.
Fusion of GEDI, ICESAT2 & NISAR data for above ground biomass mapping in Sonoma County, California
NASA Astrophysics Data System (ADS)
Duncanson, L.; Simard, M.; Thomas, N. M.; Neuenschwander, A. L.; Hancock, S.; Armston, J.; Dubayah, R.; Hofton, M. A.; Huang, W.; Tang, H.; Marselis, S.; Fatoyinbo, T.
2017-12-01
Several upcoming NASA missions will collect data sensitive to forest structure (GEDI, ICESAT-2 & NISAR). The LiDAR and SAR data collected by these missions will be used in coming years to map forest aboveground biomass at various resolutions. This research focuses on developing and testing multi-sensor data fusion approaches in advance of these missions. Here, we present the first case study of a CMS-16 grant with results from Sonoma County, California. We simulate lidar and SAR datasets from GEDI, ICESAT-2 and NISAR using airborne discrete return lidar and UAVSAR data, respectively. GEDI and ICESAT-2 signals are simulated from high point density discrete return lidar that was acquired over the entire county in 2014 through a previous CMS project (Dubayah & Hurtt, CMS-13). NISAR is simulated from L-band UAVSAR data collected in 2014. These simulations are empirically related to 300 field plots of aboveground biomass as well as a 30m biomass map produced from the 2014 airborne lidar data. We model biomass independently for each simulated mission dataset and then test two fusion methods for County-wide mapping 1) a pixel based approach and 2) an object oriented approach. In the pixel-based approach, GEDI and ICESAT-2 biomass models are calibrated over field plots and applied in orbital simulations for a 2-year period of the GEDI and ICESAT-2 missions. These simulated samples are then used to calibrate UAVSAR data to produce a 0.25 ha map. In the object oriented approach, the GEDI and ICESAT-2 data are identical to the pixel-based approach, but calibrate image objects of similar L-band backscatter rather than uniform pixels. The results of this research demonstrate the estimated ability for each of these three missions to independently map biomass in a temperate, high biomass system, as well as the potential improvement expected through combining mission datasets.
Asteroid Redirect Crewed Mission Space Suit and EVA System Maturation
NASA Technical Reports Server (NTRS)
Bowie, Jonathan T.; Kelly, Cody; Buffington, Jesse; Watson, Richard D.
2015-01-01
The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment that was selected, for both functions, is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS). The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations have been completed in the NBL and interfacing options have been prototyped and analyzed with testing planned for late 2014. For NBL EVA simulations, in 2013, components were procured to allow in-house build up for four new suits with mobility enhancements built into the arms. Boots outfitted with clips that fit into foot restraints have also been added to the suit and analyzed for possible loads. Major suit objectives accomplished this year in testing include: evaluation of mobility enhancements, ingress/egress of foot restraint, use of foot restraint for worksite stability, ingress/egress of Orion hatch with PLSS mockup, and testing with two crew members in the water at one time to evaluate the crew's ability to help one another. Major tool objectives accomplished this year include using various other methods for worksite stability, testing new methods for asteroid geologic sampling and improving the fidelity of the mockups and crew equipment. These tests were completed on a medium fidelity capsule mockup, asteroid vehicle mockup, and asteroid mockups that were more accurate for an asteroid type EVA than previous tests. Another focus was the design and fabrication of the interface between the MACES and the PLSS. The MACES was not designed to interface with a PLSS, hence an interface kit must accommodate the unique design qualities of the MACES and provide the necessary life support function connections to the PLSS. A prototype interface kit for MACES to PLSS has been designed and fabricated. Unmanned and manned testing of the interface will show the usability of the kit while wearing a MACES. The testing shows viability of the kit approach as well as the operations concept. The design will be vetted through suit and PLSS experts and, with the findings from the testing, the best path forward will be determined. As the Asteroid Redirect Mission matures, the suit/life support portion of the mission will mature along with it and EVA Tools & Equipment can be iterated to accommodate the overall mission objectives and compromises inherent in EVA Suit optimization. The goal of the EVA architecture for ARCM is to continue to build on the previously developed technologies and lessons learned, and accomplish the ARCM EVAs while providing a stepping stone to future missions and destinations.
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1986-01-01
A computer simulation was performed for a Geopotential Research Mission (GRM) to enable study of the gravitational sensitivity of the range/rate measurement between two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulation, identified as SGRM 8511, was conducted with two satellites in near circular, frozen orbits at 160 km altitude and separated by 300 km. High precision numerical integration of the polar orbits was used with a gravitational field complete to degree and order 180 coefficients and to degree 300 in orders 0 to 10. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The characteristics of the simulation and the nature of the results are described.
Shuttle mission simulator requirement report, volume 2, revision A
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The training requirements of all mission phases for crews and ground support personnel are presented. The specifications are given for the design and development of the simulator, data processing systems, engine control, software, and systems integration.
MoonMars Base in Poland: a Simulation Habitat and Laboratory for Research
NASA Astrophysics Data System (ADS)
Kolodziejczyk, Agata; Gocyla, Michal; Harasymczuk, Matt; Krainski, Mateusz; Nawrot, Adam; Orzechowski, Leszek; Wszolek, Bogdan; Vos, Heleen; Foing, Bernard
2017-04-01
Analog simulation missions are notable steps of real space exploration missions, where the hardware, along with the psychological behavior, the scientific and geological experiments, and operations, are scrutinized and conducted in a simulated environment to prepare astronauts and space agencies for actual missions. Here we present the newly built MoonMars base in Poland to investigate human-robotic relations during long-term planetary missions. We apply novel tele-medicine solutions, novel architecture design, life-sustaining systems and novel methods of planning and working to simulate not only "the beginning of life" in the habitat but also "a need to transform". The aim of the project is to facilitate and to speed up development of space education in Europe. Particularly, we are interested to enroll students, engineers and PhD students for realization of their individual projects in the frame of their master and doctoral programmes.
jsc2018m000256_Rooting_for_Answers
2018-03-22
Rooting for Answers: Simulating G-Force in Plants---------On Earth, plants use gravity and light to orient their roots and shoots, but in space, microgravity is too weak to provide a growth cue. The Gravity Perception Systems (Plant Gravity Perception) investigation germinates normal and variant forms of thale cress, a model research plant, to study the plants’ gravity and light perception. Results provide new information about plants’ ability to detect gravity and adapt to an environment without it. The investigation continues efforts to grow plants for food on future missions.
STS-48 MS Buchli and MS Gemar on MB SMS middeck during JSC training session
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James F. Buchli (left) and MS Charles D. Gemar listen to instructions while on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Buchli and Gemar are reviewing inflight procedures during this preflight familiarization session held in the Mission Simulation and Training Facility Bldg 5.
2007 Lunar Regolith Simulant Workshop Overview
NASA Technical Reports Server (NTRS)
McLemore, Carole A.; Fikes, John C.; Howell, Joe T.
2007-01-01
The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the Workshop findings include: simulant developers must understand simulant users' needs and applications; higher fidelity simulants are needed and needed in larger quantities now; simulants must be characterized to allow "apples-to-apples" comparison of test results; simulant users should confer with simulant experts to assist them in the selection of simulants; safety precautions should be taken in the handling and use of simulants; shipping, storing, and preparation of simulants have important implications; and most importantly, close communications among the simulant community must be maintained and will be continued via telecoms, meetings, and an annual Lunar Regolith Simulant Workshop.
2007 Lunar Regolith Simulant Workshop Overview
NASA Technical Reports Server (NTRS)
McLemore, Carole A.; Fikes, John C.; Howell, Joe T.
2007-01-01
The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the Workshop findings include: simulant developers must understand simulant users' needs and applications; higher fidelity simulants are needed and needed in larger quantities now; simulants must be characterized to allow "apples-to-apples" comparison of test results; simulant users should confer with simulant experts to assist them in the selection of simulants; safety precautions should be taken in the handling and use of simulants; shipping, storing, and preparation of simulants have important implications; and most importantly, close communications among the simulant community must be maintained and will be continued via telecoms, meetings, and an annual Lunar Regolith Simulant Workshop.
Generation of Simulated Tracking Data for LADEE Operational Readiness Testing
NASA Technical Reports Server (NTRS)
Woodburn, James; Policastri, Lisa; Owens, Brandon
2015-01-01
Operational Readiness Tests were an important part of the pre-launch preparation for the LADEE mission. The generation of simulated tracking data to stress the Flight Dynamics System and the Flight Dynamics Team was important for satisfying the testing goal of demonstrating that the software and the team were ready to fly the operational mission. The simulated tracking was generated in a manner to incorporate the effects of errors in the baseline dynamical model, errors in maneuver execution and phenomenology associated with various tracking system based components. The ability of the mission team to overcome these challenges in a realistic flight dynamics scenario indicated that the team and flight dynamics system were ready to fly the LADEE mission. Lunar Atmosphere and Dust Environment.
Theory and Modeling in Support of Tether
NASA Technical Reports Server (NTRS)
Chang, C. L.; Bergeron, G.; Drobot, A. D.; Papadopoulos, K.; Riyopoulos, S.; Szuszczewicz, E.
1999-01-01
This final report summarizes the work performed by SAIC's Applied Physics Operation on the modeling and support of Tethered Satellite System missions (TSS-1 and TSS-1R). The SAIC team, known to be Theory and Modeling in Support of Tether (TMST) investigation, was one of the original twelve teams selected in July, 1985 for the first TSS mission. The accomplishments described in this report cover the period December 19, 1985 to September 31, 1999 and are the result of a continuous effort aimed at supporting the TSS missions in the following major areas. During the contract period, the SAIC's TMST investigation acted to: Participate in the planning and the execution on both of the TSS missions; Provide scientific understanding on the issues involved in the electrodynamic tether system operation prior to the TSS missions; Predict ionospheric conditions encountered during the re-flight mission (TSS-lR) based on realtime global ionosounde data; Perform post mission analyses to enhance our understanding on the TSS results. Specifically, we have 1) constructed and improved current collection models and enhanced our understanding on the current-voltage data; 2) investigated the effects of neutral gas in the current collection processes; 3) conducted laboratory experiments to study the discharge phenomena during and after tether-break; and 4) perform numerical simulations to understand data collected by plasma instruments SPES onboard the TSS satellite; Design and produce multi-media CD that highlights TSS mission achievements and convey the knowledge of the tether technology to the general public. Along with discussions of this work, a list of publications and presentations derived from the TMST investigation spanning the reporting period is compiled.
P-8A Poseidon strategy for modeling & simulation verification validation & accreditation (VV&A)
NASA Astrophysics Data System (ADS)
Kropp, Derek L.
2009-05-01
One of the first challenges in addressing the need for Modeling & Simulation (M&S) Verification, Validation, & Accreditation (VV&A) is to develop an approach for applying structured and formalized VV&A processes. The P-8A Poseidon Multi-Mission Maritime Aircraft (MMA) Program Modeling and Simulation Accreditation Strategy documents the P-8A program's approach to VV&A. The P-8A strategy tailors a risk-based approach and leverages existing bodies of knowledge, such as the Defense Modeling and Simulation Office Recommended Practice Guide (DMSO RPG), to make the process practical and efficient. As the program progresses, the M&S team must continue to look for ways to streamline the process, add supplemental steps to enhance the process, and identify and overcome procedural, organizational, and cultural challenges. This paper includes some of the basics of the overall strategy, examples of specific approaches that have worked well, and examples of challenges that the M&S team has faced.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
Spacelab simulation using a Lear Jet aircraft: Mission no. 4 (ASSESS program)
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Mason, R. H.
1975-01-01
The fourth ASSESS Spacelab simulation mission utilizing a Lear Jet aircraft featured trained experiment operators (EOs) in place of the participating scientists, to simulate the role and functions of payload specialists in Spacelab who may conduct experiments developed by other scientists. The experiment was a broadband infrared photometer coupled to a 30-cm, open port, IR telescope. No compromises in equipment design or target selection were made to simplify operator tasks; the science goals of the mission were selected to advance the mainline research program of the principle investigator (PI). Training of the EOs was the responsibility of the PI team and consisted of laboratory sessions, on-site training during experiment integration, and integrated mission training using the aircraft as a high-fidelity simulator. The EO permission experience in these several disciplines proved adequate for normal experiment operations, but marginal for the identification and remedy of equipment malfunctions. During the mission, the PI utilized a TV communication system to assist the EOs to overcome equipment difficulties; both science and operations were successfully implemented.
Development of Models for High Precision Simulation of the Space Mission Microscope
NASA Astrophysics Data System (ADS)
Bremer, Stefanie; List, Meike; Selig, Hanns; Lämmerzahl, Claus
MICROSCOPE is a French space mission for testing the Weak Equivalence Principle (WEP). The mission goal is the determination of the Eötvös parameter with an accuracy of 10-15. This will be achieved by means of two high-precision capacitive differential accelerometers, that are built by the French institute ONERA. At the German institute ZARM drop tower tests are carried out to verify the payload performance. Additionally, the mission data evaluation is prepared in close cooperation with the French partners CNES, ONERA and OCA. Therefore a comprehensive simulation of the real system including the science signal and all error sources is built for the development and testing of data reduction and data analysis algorithms to extract the WEP violation signal. Currently, the High Performance Satellite Dynamics Simulator (HPS), a cooperation project of ZARM and the DLR Institute of Space Systems, is adapted to the MICROSCOPE mission for the simulation of test mass and satellite dynamics. Models of environmental disturbances like solar radiation pressure are considered, too. Furthermore detailed modeling of the on-board capacitive sensors is done.
EVA console personnel during STS-61 simulations
1993-09-01
Susan P. Rainwater monitors an extravehicular activity (EVA) simulation from the EVA console at JSC's Mission Control Center (MCC) during joint integrated simulations for the STS-61 mission. Astronauts assigned to extravehicular activity (EVA) tasks with the Hubble Space Telescope (HST) were simultaneously rehearsing in a neutral buoyancy tank at the Marshall Space Flight Center (MSFC) in Alabama.
NASA Technical Reports Server (NTRS)
Antreasian, Peter G.
1988-01-01
Two orbit simulations, one representing the actual Geopotential Research Mission (GRM) orbit and the other representing the orbit estimated from orbit determination techniques, are presented. A computer algorithm was created to simulate GRM's drag compensation mechanism so the fuel expenditure and proof mass trajectories relative to the spacecraft centroid could be calculated for the mission. The results of the GRM DISCOS simulation demonstrated that the spacecraft can essentially be drag-free. The results showed that the centroid of the spacecraft can be controlled so that it will not deviate more than 1.0 mm in any direction from the centroid of the proof mass.
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
Shuttle mission simulator baseline definition report, volume 1
NASA Technical Reports Server (NTRS)
Burke, J. F.; Small, D. E.
1973-01-01
A baseline definition of the space shuttle mission simulator is presented. The subjects discussed are: (1) physical arrangement of the complete simulator system in the appropriate facility, with a definition of the required facility modifications, (2) functional descriptions of all hardware units, including the operational features, data demands, and facility interfaces, (3) hardware features necessary to integrate the items into a baseline simulator system to include the rationale for selecting the chosen implementation, and (4) operating, maintenance, and configuration updating characteristics of the simulator hardware.
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck
1988-11-15
S88-52187 (22 Nov 1988) --- Five astronauts pause from their training schedule to pose for a photograph. Pictured, left to right, are astronauts David M. Walker, mission commander; Mark C. Lee, Mary L. Cleave, Ronald J. Grabe and Norman E. Thagard. They are on the middeck section of the Shuttle mission simulator (fixed base) in the Johnson Space Center's mission simulation and training facility.
Shuttle sortie simulation using a Lear jet aircraft: Mission no. 1 (assess program)
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Reller, J. O., Jr.; Nell, C. B., Jr.; Mason, R. H.
1972-01-01
The shuttle sortie simulation mission of the Airborne Science/Shuttle Experiments System Simulation Program which was conducted using the CV-990 aircraft is reported. The seven flight, five day mission obtained data on experiment preparation, type of experiment components, operation and maintenance, data acquisition, crew functions, timelines and interfaces, use of support equipment and spare parts, power consumption, work cycles, influence of constraints, and schedule impacts. This report describes the experiment, the facilities, the operation, and the results analyzed from the standpoint of their possible use in aiding the planning for experiments in the Shuttle Sortie Laboratory.
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, left, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
NASA Astrophysics Data System (ADS)
Thirsk, Robert; Williams, David; Anvari, Mehran
2007-02-01
The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.
Integrating O/S models during conceptual design, part 3
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
Space vehicles, such as the Space Shuttle, require intensive ground support prior to, during, and after each mission. Maintenance is a significant part of that ground support. All space vehicles require scheduled maintenance to ensure operability and performance. In addition, components of any vehicle are not one-hundred percent reliable so they exhibit random failures. Once detected, a failure initiates unscheduled maintenance on the vehicle. Maintenance decreases the number of missions which can be completed by keeping vehicles out of service so that the time between the completion of one mission and the start of the next is increased. Maintenance also requires resources such as people, facilities, tooling, and spare parts. Assessing the mission capability and resource requirements of any new space vehicle, in addition to performance specification, is necessary to predict the life cycle cost and success of the vehicle. Maintenance and logistics support has been modeled by computer simulation to estimate mission capability and resource requirements for evaluation of proposed space vehicles. The simulation was written with Simulation Language for Alternative Modeling II (SLAM II) for execution on a personal computer. For either one or a fleet of space vehicles, the model simulates the preflight maintenance checks, the mission and return to earth, and the post flight maintenance in preparation to be sent back into space. THe model enables prediction of the number of missions possible and vehicle turn-time (the time between completion of one mission and the start of the next) given estimated values for component reliability and maintainability. The model also facilitates study of the manpower and vehicle requirements for the proposed vehicle to meet its desired mission rate. This is the 3rd part of a 3 part technical report.
Exoplanet Yield Estimation for Decadal Study Concepts using EXOSIMS
NASA Astrophysics Data System (ADS)
Morgan, Rhonda; Lowrance, Patrick; Savransky, Dmitry; Garrett, Daniel
2016-01-01
The anticipated upcoming large mission study concepts for the direct imaging of exo-earths present an exciting opportunity for exoplanet discovery and characterization. While these telescope concepts would also be capable of conducting a broad range of astrophysical investigations, the most difficult technology challenges are driven by the requirements for imaging exo-earths. The exoplanet science yield for these mission concepts will drive design trades and mission concept comparisons.To assist in these trade studies, the Exoplanet Exploration Program Office (ExEP) is developing a yield estimation tool that emphasizes transparency and consistent comparison of various design concepts. The tool will provide a parametric estimate of science yield of various mission concepts using contrast curves from physics-based model codes and Monte Carlo simulations of design reference missions using realistic constraints, such as solar avoidance angles, the observatory orbit, propulsion limitations of star shades, the accessibility of candidate targets, local and background zodiacal light levels, and background confusion by stars and galaxies. The python tool utilizes Dmitry Savransky's EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) design reference mission simulator that is being developed for the WFIRST Preliminary Science program. ExEP is extending and validating the tool for future mission concepts under consideration for the upcoming 2020 decadal review. We present a validation plan and preliminary yield results for a point design.
Shuttle mission simulator hardware conceptual design report
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.
Tactical Aviation Mission System Simulation Situational Awareness Project
2004-04-01
prototyping and exercising human-machine systems and for measuring the impact of new technologies in a dynamic simulation environment. Theoretical...31 2.4.1 The Impact of an ERSTA-Like System on the CH-146 Mission Commander...was proven to be an effective platform for prototyping and exercising systems and for measuring the impact of new technologies in a dynamic simulation
Magnetic levitation-based Martian and Lunar gravity simulator
NASA Technical Reports Server (NTRS)
Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.
2005-01-01
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.
Magnetic levitation-based Martian and Lunar gravity simulator.
Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W
2005-01-01
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Wallin, Ragnar; Boyle, Richard D.
2013-01-01
The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.
NASA Astrophysics Data System (ADS)
Cady, E. C.
1997-01-01
The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.
Development of a Space Radiation Monte Carlo Computer Simulation
NASA Technical Reports Server (NTRS)
Pinsky, Lawrence S.
1997-01-01
The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.
UTM, a universal simulator for lightcurves of transiting systems
NASA Astrophysics Data System (ADS)
Deeg, Hans
2009-02-01
The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. Applications of UTM to date have been mainly in the generation of light-curves for the testing of detection algorithms. For the preparation of such test for the Corot Mission, a special version has been used to generate multicolour light-curves in Corot's passbands. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.
Modeling and simulation of an unmanned ground vehicle power system
NASA Astrophysics Data System (ADS)
Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.
2014-06-01
Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.
Multiple Access Schemes for Lunar Missions
NASA Technical Reports Server (NTRS)
Deutsch, Leslie; Hamkins, Jon; Stocklin, Frank J.
2010-01-01
Two years ago, the NASA Coding, Modulation, and Link Protocol (CMLP) study was completed. The study, led by the authors of this paper, recommended codes, modulation schemes, and desired attributes of link protocols for all space communication links in NASA's future space architecture. Portions of the NASA CMLP team were reassembled to resolve one open issue: the use of multiple access (MA) communication from the lunar surface. The CMLP-MA team analyzed and simulated two candidate multiple access schemes that were identified in the original CMLP study: Code Division MA (CDMA) and Frequency Division MA (FDMA) based on a bandwidth-efficient Continuous Phase Modulation (CPM) with a superimposed Pseudo-Noise (PN) ranging signal (CPM/PN). This paper summarizes the results of the analysis and simulation of the CMLP-MA study and describes the final recommendations.
Development of a Space Radiation Monte-Carlo Computer Simulation Based on the FLUKE and Root Codes
NASA Technical Reports Server (NTRS)
Pinsky, L. S.; Wilson, T. L.; Ferrari, A.; Sala, Paola; Carminati, F.; Brun, R.
2001-01-01
The radiation environment in space is a complex problem to model. Trying to extrapolate the projections of that environment into all areas of the internal spacecraft geometry is even more daunting. With the support of our CERN colleagues, our research group in Houston is embarking on a project to develop a radiation transport tool that is tailored to the problem of taking the external radiation flux incident on any particular spacecraft and simulating the evolution of that flux through a geometrically accurate model of the spacecraft material. The output will be a prediction of the detailed nature of the resulting internal radiation environment within the spacecraft as well as its secondary albedo. Beyond doing the physics transport of the incident flux, the software tool we are developing will provide a self-contained stand-alone object-oriented analysis and visualization infrastructure. It will also include a graphical user interface and a set of input tools to facilitate the simulation of space missions in terms of nominal radiation models and mission trajectory profiles. The goal of this project is to produce a code that is considerably more accurate and user-friendly than existing Monte-Carlo-based tools for the evaluation of the space radiation environment. Furthermore, the code will be an essential complement to the currently existing analytic codes in the BRYNTRN/HZETRN family for the evaluation of radiation shielding. The code will be directly applicable to the simulation of environments in low earth orbit, on the lunar surface, on planetary surfaces (including the Earth) and in the interplanetary medium such as on a transit to Mars (and even in the interstellar medium). The software will include modules whose underlying physics base can continue to be enhanced and updated for physics content, as future data become available beyond the timeframe of the initial development now foreseen. This future maintenance will be available from the authors of FLUKA as part of their continuing efforts to support the users of the FLUKA code within the particle physics community. In keeping with the spirit of developing an evolving physics code, we are planning as part of this project, to participate in the efforts to validate the core FLUKA physics in ground-based accelerator test runs. The emphasis of these test runs will be the physics of greatest interest in the simulation of the space radiation environment. Such a tool will be of great value to planners, designers and operators of future space missions, as well as for the design of the vehicles and habitats to be used on such missions. It will also be of aid to future experiments of various kinds that may be affected at some level by the ambient radiation environment, or in the analysis of hybrid experiment designs that have been discussed for space-based astronomy and astrophysics. The tool will be of value to the Life Sciences personnel involved in the prediction and measurement of radiation doses experienced by the crewmembers on such missions. In addition, the tool will be of great use to the planners of experiments to measure and evaluate the space radiation environment itself. It can likewise be useful in the analysis of safe havens, hazard migration plans, and NASA's call for new research in composites and to NASA engineers modeling the radiation exposure of electronic circuits. This code will provide an important complimentary check on the predictions of analytic codes such as BRYNTRN/HZETRN that are presently used for many similar applications, and which have shortcomings that are more easily overcome with Monte Carlo type simulations. Finally, it is acknowledged that there are similar efforts based around the use of the GEANT4 Monte-Carlo transport code currently under development at CERN. It is our intention to make our software modular and sufficiently flexible to allow the parallel use of either FLUKA or GEANT4 as the physics transport engine.
Compilation of Abstracts for SC12 Conference Proceedings
NASA Technical Reports Server (NTRS)
Morello, Gina Francine (Compiler)
2012-01-01
1 A Breakthrough in Rotorcraft Prediction Accuracy Using Detached Eddy Simulation; 2 Adjoint-Based Design for Complex Aerospace Configurations; 3 Simulating Hypersonic Turbulent Combustion for Future Aircraft; 4 From a Roar to a Whisper: Making Modern Aircraft Quieter; 5 Modeling of Extended Formation Flight on High-Performance Computers; 6 Supersonic Retropropulsion for Mars Entry; 7 Validating Water Spray Simulation Models for the SLS Launch Environment; 8 Simulating Moving Valves for Space Launch System Liquid Engines; 9 Innovative Simulations for Modeling the SLS Solid Rocket Booster Ignition; 10 Solid Rocket Booster Ignition Overpressure Simulations for the Space Launch System; 11 CFD Simulations to Support the Next Generation of Launch Pads; 12 Modeling and Simulation Support for NASA's Next-Generation Space Launch System; 13 Simulating Planetary Entry Environments for Space Exploration Vehicles; 14 NASA Center for Climate Simulation Highlights; 15 Ultrascale Climate Data Visualization and Analysis; 16 NASA Climate Simulations and Observations for the IPCC and Beyond; 17 Next-Generation Climate Data Services: MERRA Analytics; 18 Recent Advances in High-Resolution Global Atmospheric Modeling; 19 Causes and Consequences of Turbulence in the Earths Protective Shield; 20 NASA Earth Exchange (NEX): A Collaborative Supercomputing Platform; 21 Powering Deep Space Missions: Thermoelectric Properties of Complex Materials; 22 Meeting NASA's High-End Computing Goals Through Innovation; 23 Continuous Enhancements to the Pleiades Supercomputer for Maximum Uptime; 24 Live Demonstrations of 100-Gbps File Transfers Across LANs and WANs; 25 Untangling the Computing Landscape for Climate Simulations; 26 Simulating Galaxies and the Universe; 27 The Mysterious Origin of Stellar Masses; 28 Hot-Plasma Geysers on the Sun; 29 Turbulent Life of Kepler Stars; 30 Modeling Weather on the Sun; 31 Weather on Mars: The Meteorology of Gale Crater; 32 Enhancing Performance of NASAs High-End Computing Applications; 33 Designing Curiosity's Perfect Landing on Mars; 34 The Search Continues: Kepler's Quest for Habitable Earth-Sized Planets.
Integration of an Earth-Based Science Team During Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Newton, Carolyn; Graff, Trevor G.; Young, Kelsey E.; Coan, David; Abercromby, Andrew F. J.; Gernhardt, Michael L.
2017-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21, at the Aquarius undersea research habitat. During the mission, the effects of varied oper-ations concepts with representative communication latencies as-sociated with Mars missions were studied. Six subjects were weighed out to simulate partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) who provided input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys and marine-science-based sampling during saturation dives up to 4 hours in duration that simulated extravehicular activity (EVA) on Mars. A communication latency of 15 minutes in each direction between space and ground was simulated throughout the EVAs. Objective data included task completion times, total EVA time, crew idle time, translation time, ST assimilation time (defined as time available for the science team to discuss, to review and act upon data/imagery after they have been collected and transmitted to the ground). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. In addition, comments from both the crew and the ST were captured during the post-mission debrief. Here, we focus on the acceptability of the operations concepts studied and the capabilities most enhancing or enabling in the operations concept. The importance and challenges of designing EVA time-lines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency, are discussed.
NASA/ESA CV-990 Spacelab Simulation (ASSESS 2)
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Androes, G. M.; Reeves, J. F.
1978-01-01
To test the validity of the ARC approach to Spacelab, several missions simulating aspects of Spacelab operations have been conducted as part of the ASSESS Program. Each mission was designed to evaluate potential Shuttle/Spacelab concepts in increasing detail. For this mission, emphasis was placed on development and exercise of management techniques planned for Spacelab using management participants from NASA and ESA who have responsibilities for Spacelab 1 which will be launched in 1980.
Mission and Safety Critical (MASC) plans for the MASC Kernel simulation
NASA Technical Reports Server (NTRS)
1991-01-01
This report discusses a prototype for Mission and Safety Critical (MASC) kernel simulation which explains the intended approach and how the simulation will be used. Smalltalk is chosen for the simulation because of usefulness in quickly building working models of the systems and its object-oriented approach to software. A scenario is also introduced to give details about how the simulation works. The eventual system will be a fully object-oriented one implemented in Ada via Dragoon. To implement the simulation, a scenario using elements typical of those in the Space Station, was created.
NASA Technical Reports Server (NTRS)
Faris, Grant B.; Bryant, Larry W.
2010-01-01
Mission Operations Assurance (MOA) started at the Jet Propulsion Laboratory (JPL) with the Magellan and Galileo missions of the late 80's. It continued to develop and received a significant impetus with the failures of two successive missions to Mars in the late 90's. MOA continued to evolve with each successive project at JPL achieving its current maturity with the Stardust sample return to Earth.
A Hardware-in-the-Loop Testbed for Spacecraft Formation Flying Applications
NASA Technical Reports Server (NTRS)
Leitner, Jesse; Bauer, Frank H. (Technical Monitor)
2001-01-01
The Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) is being developed as a modular, hybrid dynamic simulation facility employed for end-to-end guidance, navigation, and control (GN&C) analysis and design for formation flying clusters and constellations of satellites. The FFTB will support critical hardware and software technology development to enable current and future missions for NASA, other government agencies, and external customers for a wide range of missions, particularly those involving distributed spacecraft operations. The initial capabilities of the FFTB are based upon an integration of high fidelity hardware and software simulation, emulation, and test platforms developed at GSFC in recent years; including a high-fidelity GPS simulator which has been a fundamental component of the Guidance, Navigation, and Control Center's GPS Test Facility. The FFTB will be continuously evolving over the next several years from a too[ with initial capabilities in GPS navigation hardware/software- in-the- loop analysis and closed loop GPS-based orbit control algorithm assessment to one with cross-link communications and relative navigation analysis and simulation capability. Eventually the FFT13 will provide full capability to support all aspects of multi-sensor, absolute and relative position determination and control, in all (attitude and orbit) degrees of freedom, as well as information management for satellite clusters and constellations. In this paper we focus on the architecture for the FFT13 as a general GN&C analysis environment for the spacecraft formation flying community inside and outside of NASA GSFC and we briefly reference some current and future activities which will drive the requirements and development.
Human Mars Mission Performance Crew Taxi Profile
NASA Technical Reports Server (NTRS)
Duaro, Vince A.
1999-01-01
Using the results from Integrated Mission Program (IMP), a simulation language and code used to model present and future Earth Moon, or Mars missions, this report presents six different case studies of a manned Mars mission. The mission profiles, timelines, propellant requirements, feasibility and perturbation analysis is presented for two aborted, two delayed rendezvous, and two normal rendezvous cases for a future Mars mission.
STS-44 Atlantis, OV-104, Pilot Henricks in FB-SMS training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Pilot Terence T. Henricks, seated at the pilots station on the forward flight deck, reviews checklists before a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Surrounding Henricks are the seat back, the overhead panels, forward panels, and forward windows.
SSERVI Analog Regolith Simulant Testbed Facility
NASA Astrophysics Data System (ADS)
Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina
2016-10-01
The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities, as well as public outreach and education opportunities.
NASA Astrophysics Data System (ADS)
Barré, Jérôme; Edwards, David; Worden, Helen; Da Silva, Arlindo; Lahoz, William
2015-07-01
By the end of the current decade, there are plans to deploy several geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations over continental domains for mapping pollutant sources and variability at diurnal and local scales. In this paper, we use a novel approach to sample a very high global resolution model (GEOS-5 at 7 km horizontal resolution) to produce a dataset of synthetic carbon monoxide pollution observations representative of those potentially obtainable from a GEO satellite constellation with predicted measurement sensitivities based on current remote sensing capabilities. Part 1 of this study focuses on the production of simulated synthetic measurements for air quality OSSEs (Observing System Simulation Experiments). We simulate carbon monoxide nadir retrievals using a technique that provides realistic measurements with very low computational cost. We discuss the sampling methodology: the projection of footprints and areas of regard for geostationary geometries over each of the North America, East Asia and Europe regions; the regression method to simulate measurement sensitivity; and the measurement error simulation. A detailed analysis of the simulated observation sensitivity is performed, and limitations of the method are discussed. We also describe impacts from clouds, showing that the efficiency of an instrument making atmospheric composition measurements on a geostationary platform is dependent on the dominant weather regime over a given region and the pixel size resolution. These results demonstrate the viability of the ;instrument simulator; step for an OSSE to assess the performance of a constellation of geostationary satellites for air quality measurements. We describe the OSSE results in a follow up paper (Part 2 of this study).
Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)
NASA Technical Reports Server (NTRS)
Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam
2013-01-01
NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.
Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)
NASA Technical Reports Server (NTRS)
Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle
2013-01-01
NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer--term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat--shield for extreme entry environment.
Scalable Integrated Multi-Mission Support System (SIMSS) Simulator Release 2.0 for GMSEC
NASA Technical Reports Server (NTRS)
Kim, John; Velamuri, Sarma; Casey, Taylor; Bemann, Travis
2012-01-01
Scalable Integrated Multi-Mission Support System (SIMSS) Simulator Release 2.0 software is designed to perform a variety of test activities related to spacecraft simulations and ground segment checks. This innovation uses the existing SIMSS framework, which interfaces with the GMSEC (Goddard Mission Services Evolution Center) Application Programming Interface (API) Version 3.0 message middleware, and allows SIMSS to accept GMSEC standard messages via the GMSEC message bus service. SIMSS is a distributed, component-based, plug-and-play client-server system that is useful for performing real-time monitoring and communications testing. SIMSS runs on one or more workstations, and is designed to be user-configurable, or to use predefined configurations for routine operations. SIMSS consists of more than 100 modules that can be configured to create, receive, process, and/or transmit data. The SIMSS/GMSEC innovation is intended to provide missions with a low-cost solution for implementing their ground systems, as well as to significantly reduce a mission s integration time and risk.
NASA Technical Reports Server (NTRS)
Nguyen, Daniel H.; Skladany, Lynn M.; Prats, Benito D.; Griffin, Thomas J. (Technical Monitor)
2001-01-01
The Hubble Space Telescope (HST) is one of NASA's most productive astronomical observatories. Launched in 1990, the HST continues to gather scientific data to help scientists around the world discover amazing wonders of the universe. To maintain HST in the fore front of scientific discoveries, NASA has routinely conducted servicing missions to refurbish older equipment as well as to replace existing scientific instruments with better, more powerful instruments. In early 2002, NASA will conduct its fourth servicing mission to the HST. This servicing mission is named Servicing Mission 3B (SM3B). During SM3B, one of the major refurbishment efforts will be to install new rigid-panel solar arrays as a replacement for the existing flexible-foil solar arrays. This is necessary in order to increase electrical power availability for the new scientific instruments. Prior to installing the new solar arrays on HST, the HST project must be certain that the new solar arrays will not cause any performance degradations to the observatory. One of the major concerns is any disturbance that can cause pointing Loss of Lock (LOL) for the telescope. While in orbit, the solar-array temperature transitions quickly from sun to shadow. The resulting thermal expansion and contraction can cause a "mechanical disturbance" which may result in LOL. To better characterize this behavior, a test was conducted at the European Space Research and Technology Centre (ESTEC) in the Large Space Simulator (LSS) thermal-vacuum chamber. In this test, the Sun simulator was used to simulate on-orbit effects on the solar arrays. This paper summarizes the thermal performance of the Solar Array-3 (SA3) during the Disturbance Verification Test (DVT). The test was conducted between 26 October 2000 and 30 October 2000. Included in this paper are: (1) brief description of the SA3's components and its thermal design; (2) a summary of the on-orbit temperature predictions; (3) pretest thermal preparations; (4) a description of the chamber and thermal monitoring sensors; and (6) presentation of test thermal data results versus flight predictions.
NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher
2016-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be done with minimal crew idle time. Imagery and contextual information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide meaningful feedback and instruction to the crew regarding sampling priorities, additional tasks, and changes to the EVA timeline. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency.
Planetary and Space Simulation Facilities (PSI) at DLR
NASA Astrophysics Data System (ADS)
Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.
2010-05-01
The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial organisms in space and will contribute to the understanding of the organic chemistry processes in space, the biological adaptation strategies to extreme conditions, e.g. on early Earth and Mars, and the distribution of life beyond its planet of origin The results gained during the simulation experiments demonstrated mission preparation as a basic requirement for successful and significant results of every space flight experiment. Hence, the Mission preparation program that was performed in the context of the space missions EXPOSE-E and EXPOSE-R proofed the outstanding importance and accentuated need for ground based experiments before and during a space mission. The facilities are also necessary for the performance of the ground control experiment during the mission, the so-called Mission Simulation Test (MST) under simulated space conditions, by parallel exposure of samples to simulated space parameters according to flight data received by telemetry. Finally the facilities also provide the possibility to simulate the surface and climate conditions of the planet Mars. In this way they offer the possibility to investigate under simulated Mars conditions the chances for development of life on Mars and to gain previous knowledge for the search for life on today's Mars and in this context especially the parameters for a manned mission to Mars. References [1] Rabbow E, Rettberg P, Panitz C, Drescher J, Horneck G, Reitz G (2005) SSIOUX - Space Simulation for Investigating Organics, Evolution and Exobiology, Adv. Space Res. 36 (2) 297-302, doi:10.1016/j.asr.2005.08.040Aman, A. and Bman, B. (1997) JGR, 90,1151-1154. [2] Fekete A, Modos K, Hegedüs M, Kovacs G, Ronto Gy, Peter A, Lammer H, Panitz C (2005) DNA Damage under simulated extraterrestrial conditions in bacteriophage T7 Adv. Space Res. 305-310Aman, A. et al. (1997) Meteoritics & Planet. Sci., 32,A74. [3] Cockell Ch, Schuerger AC, Billi D., Friedmann EI, Panitz C (2005) Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029, Astrobiology, 5/2 127-140Aman, A. (1996) LPS XXVII, 1344-1 [4] de la Torre Noetzel, R.; Sancho, L.G.; Pintado,A.; Rettberg, Petra; Rabbow, Elke; Panitz,Corinna; Deutschmann, U.; Reina, M.; Horneck, Gerda (2007): BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. COSPAR [Hrsg.]: Advances in Space Research, 40, Elsevier, S. 1665 - 1671, DOI 10.1016/j.asr.2007.02.022
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-44 Atlantis, Orbiter Vehicle (OV) 104, Commander Frederick D. Gregory (left) and Pilot Terence T. Henricks (right), positioned at their appointed stations on the forward flight deck, are joined by Mission Specialist (MS) F. Story Musgrave (center). The crewmembers are participating in a flight simulation in the Fixed Base (FB) Shuttle Mission Simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Gregory in the commanders seat, Musgrave sitting on center console, and Henricks in the pilots seat look back toward the aft flight deck and the photographer. Seat backs appear in the foreground and forward control panels in the background.
Optimum spaceborne computer system design by simulation
NASA Technical Reports Server (NTRS)
Williams, T.; Weatherbee, J. E.; Taylor, D. S.
1972-01-01
A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.
CREW TRAINING (SIMULATOR) - STS-7 - JSC
1983-05-25
S83-32723 (23 May 1983) --- This scene in the Shuttle Mission Simulator (SMS) previews next month?s STS-7 flight in the space shuttle Challenger. Taken during a simulation session, the photo illustrates the seating arrangement for launch and landing phases of the Challenger?s second spaceflight and its first with five crew members. Pictured, left to right, are astronauts Robert L. Crippen, commander; Frederick H. Hauck, pilot; Sally K. Ride and John M. Fabian (almost totally obscured), mission specialists. Dr. Norman E. Thagard, a third mission specialist, will be seated in the middeck for launch and landing phases. Photo credit: NASA/Otis Imboden/National Geographic Society.
Mission Continuity Planning: Strategically Assessing and Planning for Threats to Operations.
ERIC Educational Resources Information Center
Qayoumi, Mohammad H.
This book covers the principles of risk and risk management and offers a framework for analyzing the significant, often unforeseen threats facing higher education institutions today. It examines the critical elements of a disaster preparedness plan and addresses business continuity and mission continuity planning. The book also provides tools for…
Simulation and analysis of a geopotential research mission
NASA Technical Reports Server (NTRS)
Schutz, B. E.
1987-01-01
Computer simulations were performed for a Geopotential Research Mission (GRM) to enable the study of the gravitational sensitivity of the range rate measurements between the two satellites and to provide a set of simulated measurements to assist in the evaluation of techniques developed for the determination of the gravity field. The simulations were conducted with two satellites in near circular, frozen orbits at 160 km altitudes separated by 300 km. High precision numerical integration of the polar orbits were used with a gravitational field complete to degree and order 360. The set of simulated data for a mission duration of about 32 days was generated on a Cray X-MP computer. The results presented cover the most recent simulation, S8703, and includes a summary of the numerical integration of the simulated trajectories, a summary of the requirements to compute nominal reference trajectories to meet the initial orbit determination requirements for the recovery of the geopotential, an analysis of the nature of the one way integrated Doppler measurements associated with the simulation, and a discussion of the data set to be made available.
Pointing System Simulation Toolbox with Application to a Balloon Mission Simulator
NASA Technical Reports Server (NTRS)
Maringolo Baldraco, Rosana M.; Aretskin-Hariton, Eliot D.; Swank, Aaron J.
2017-01-01
The development of attitude estimation and pointing-control algorithms is necessary in order to achieve high-fidelity modeling for a Balloon Mission Simulator (BMS). A pointing system simulation toolbox was developed to enable this. The toolbox consists of a star-tracker (ST) and Inertial Measurement Unit (IMU) signal generator, a UDP (User Datagram Protocol) communication le (bridge), and an indirect-multiplicative extended Kalman filter (imEKF). This document describes the Python toolbox developed and the results of its implementation in the imEKF.
Using Simulation for Launch Team Training and Evaluation
NASA Technical Reports Server (NTRS)
Peaden, Cary J.
2005-01-01
This document describes some of the histor y and uses of simulation systems and processes for the training and evaluation of Launch Processing, Mission Control, and Mission Management teams. It documents some of the types of simulations that are used at Kennedy Space Center (KSC) today and that could be utilized (and possibly enhanced) for future launch vehicles. This article is intended to provide an initial baseline for further research into simulation for launch team training in the near future.
Validation of Mission Plans Through Simulation
NASA Astrophysics Data System (ADS)
St-Pierre, J.; Melanson, P.; Brunet, C.; Crabtree, D.
2002-01-01
The purpose of a spacecraft mission planning system is to automatically generate safe and optimized mission plans for a single spacecraft, or more functioning in unison. The system verifies user input syntax, conformance to commanding constraints, absence of duty cycle violations, timing conflicts, state conflicts, etc. Present day constraint-based systems with state-based predictive models use verification rules derived from expert knowledge. A familiar solution found in Mission Operations Centers, is to complement the planning system with a high fidelity spacecraft simulator. Often a dedicated workstation, the simulator is frequently used for operator training and procedure validation, and may be interfaced to actual control stations with command and telemetry links. While there are distinct advantages to having a planning system offer realistic operator training using the actual flight control console, physical verification of data transfer across layers and procedure validation, experience has revealed some drawbacks and inefficiencies in ground segment operations: With these considerations, two simulation-based mission plan validation projects are under way at the Canadian Space Agency (CSA): RVMP and ViSION. The tools proposed in these projects will automatically run scenarios and provide execution reports to operations planning personnel, prior to actual command upload. This can provide an important safeguard for system or human errors that can only be detected with high fidelity, interdependent spacecraft models running concurrently. The core element common to these projects is a spacecraft simulator, built with off-the- shelf components such as CAE's Real-Time Object-Based Simulation Environment (ROSE) technology, MathWork's MATLAB/Simulink, and Analytical Graphics' Satellite Tool Kit (STK). To complement these tools, additional components were developed, such as an emulated Spacecraft Test and Operations Language (STOL) interpreter and CCSDS TM/TC encoders and decoders. This paper discusses the use of simulation in the context of space mission planning, describes the projects under way and proposes additional venues of investigation and development.
Interplanetary Transit Simulations Using the International Space Station
NASA Technical Reports Server (NTRS)
Charles, John B.; Arya, M.; Kundrot, C. E.
2010-01-01
We evaluated the space life sciences utility of the International Space Station (ISS) to simulate the outbound transit portion of missions to Mars and Near Earth Asteroids (NEA) to investigate biomedical and psychological aspects of such transits, to develop and test space operation procedures compatible with communication delays and outages, and to demonstrate and validate technologies and countermeasures. Two major categories of space life sciences activities can capitalize on ISS capabilities. The first includes studies that require ISS (or a comparable facility), typically for access to prolonged weightlessness. The second includes studies that do not strictly require ISS but can exploit it to maximize their scientific return more efficiently and productively than in ground-based simulations. For these studies, ISS offers a high fidelity analog for fundamental factors on future missions, such as crew composition, mission control personnel, operational tasks and workload, real-world risk, and isolation, and can mimic the effects of distance and limited accessibility. In addition to conducting Mars- and NEA-transit simulations on 6-month ISS increments, extending the current ISS increment duration from 6 months to 9 or even 12 months will provide opportunities for enhanced and focused research relevant to long duration Mars and NEA missions. Increasing the crew duration may pose little additional risk to crewmembers beyond that currently accepted on 6-month increments, but additional medical monitoring capabilities will be required beyond those currently used for ISS operations. Finally, while presenting major logistical challenges, such a simulation followed by a post-landing simulation of Mars exploration could provide quantitative evidence of capabilities in an actual mission. Thus, the use of ISS to simulate aspects of Mars and NEA missions seems practical. If it were to be implemented without major disruption of on-going ISS activities, then planning should begin soon, in close consultation with all international partners.
Extreme Underwater Mission on This Week @NASA – July 29, 2016
2016-07-29
The 21st NASA Extreme Environment Mission Operations got underway July 21 in the Florida Keys. NASA astronauts Reid Wiseman and Megan McArthur are part of the international crew of NEEMO-21 aquanauts performing research during the 16-day mission, which takes place about 60 feet below the surface of the Atlantic Ocean, in the Aquarius habitat – the world's only undersea science station. Simulated spacewalks are designed to evaluate tools and mission operation techniques that could be used on future space missions. NEEMO-21’s objectives include testing a mini DNA sequencer similar to the one NASA astronaut Kate Rubins also will test aboard the International Space Station, and a telemedicine device that will be used for future space applications. The mission also will simulate communications delays like those that would be encountered on a mission to Mars. Also, Space Launch System Work Platforms, All-Electric X-Plane Arrives, Asteroid Mission Technology, and NASA @Comic-Con International.
Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1
NASA Technical Reports Server (NTRS)
Harris, T. M.; Beerman, D. A.
1983-01-01
A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight.
STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
Mission and Safety Critical (MASC): An EVACS simulation with nested transactions
NASA Technical Reports Server (NTRS)
Auty, David; Atkinson, Colin; Randall, Charlie
1992-01-01
The Extra-Vehicular Activity Control System (EVACS) Simulation with Nested Transactions, a recent effort of the MISSION Kernel Team, is documented. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. The simulation is a tool to explore mission and safety critical (MASC) applications. For the purpose of this effort, its current definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The frequency selection scenario was modified to embed its processing in nested transactions. Again as a first step, only two aspects of transaction support were implemented in this prototype: architecture and state recovery. Issues of concurrency and distribution are yet to be addressed.
NASA Astrophysics Data System (ADS)
Pack, Robert T.; Saunders, David; Fullmer, Rees; Budge, Scott
2006-05-01
USU LadarSIM Release 2.0 is a ladar simulator that has the ability to feed high-level mission scripts into a processor that automatically generates scan commands during flight simulations. The scan generation depends on specified flight trajectories and scenes consisting of terrain and targets. The scenes and trajectories can either consist of simulated or actual data. The first modeling step produces an outline of scan footprints in xyz space. Once mission goals have been analyzed and it is determined that the scan footprints are appropriately distributed or placed, specific scans can then be chosen for the generation of complete radiometry-based range images and point clouds. The simulation is capable of quickly modeling ray-trace geometry associated with (1) various focal plane arrays and scanner configurations and (2) various scene and trajectories associated with particular maneuvers or missions.
NASA Technical Reports Server (NTRS)
Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.
2015-01-01
The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints.
The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks
NASA Technical Reports Server (NTRS)
Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.
2015-01-01
The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.
2016-01-01
OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for presampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across long communication latencies and can be done with minimal crew idle time. Imagery and information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide further instructions to the crew from a SBT on sampling priorities, additional tasks, and changes to the plan. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency. Autonomous crew planning tools can be effective at modifying existing plans if the objectives and constraints are clearly defined.
An overview and the latest status of the Landsat Data Continuity Mission (LDCM)
NASA Astrophysics Data System (ADS)
Sabelhaus, Phil
2011-10-01
The Landsat Data Continuity Mission (LDCM) will provide continuity in the multi-decadal land use/land cover change measurements of the Landsat Program for scientific research. The project office at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is responsible for the development, launch and post launch activation and check out for the Landsat Data Continuity Mission. The LDCM project is currently in its development phase with launch scheduled for December 2012 on an Atlas V launch vehicle provided by the Kennedy Space Center (KSC) from the Vandenberg Air Force Base (VAFB). The project is a partnership between NASA and the Department of the Interior (DOI)/United States Geological Survey (USGS). DOI/USGS is responsible for development of the ground system and will assume responsibility for satellite and ground system operations following the check-out period. This paper will provide an overview and the latest status of the LDCM mission.
Low-thrust mission risk analysis, with application to a 1980 rendezvous with the comet Encke
NASA Technical Reports Server (NTRS)
Yen, C. L.; Smith, D. B.
1973-01-01
A computerized failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust sybsystem burn operation, the system failure processes, and the retargeting operations. The method is applied to assess the risks in carrying out a 1980 rendezvous mission to the comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates are the limiting factors in attaining a high mission relability. It is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.
OneSAF as an In-Stride Mission Command Asset
2014-06-01
implementation approach. While DARPA began with a funded project to complete the capability as a “ big bang ” approach the approach here is based on reuse and...Command (MC), Modeling and Simulation (M&S), Distributed Interactive Simulation (DIS) ABSTRACT: To provide greater interoperability and integration...within Mission Command (MC) Systems the One Semi-Automated Forces (OneSAF) entity level simulation is evolving from a tightly coupled client server
Science yield modeling with the Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS)
NASA Astrophysics Data System (ADS)
Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Morgan, Rhonda
2016-08-01
We report on our ongoing development of EXOSIMS and mission simulation results for WFIRST. We present the interface control and the modular structure of the software, along with corresponding prototypes and class definitions for some of the software modules. More specifically, we focus on describing the main steps of our high-fidelity mission simulator EXOSIMS, i.e., the completeness, optical system and zodiacal light modules definition, the target list module filtering, and the creation of a planet population within our simulated universe module. For the latter, we introduce the integration of a recent mass-radius model from the FORECASTER software. We also provide custom modules dedicated to WFIRST using both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) for detection and characterization, respectively. In that context, we show and discuss the results of some preliminary WFIRST simulations, focusing on comparing different methods of integration time calculation, through ensembles (large numbers) of survey simulations.
Simulating Humans as Integral Parts of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine
2006-01-01
The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.
MoonMars Astronaut and CapCom Protocols: ESTEC and LunAres PMAS Simulations
NASA Astrophysics Data System (ADS)
Authier, L.; Blanc, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Heinicke, C.; Harasymczuk, M.; Chahla, C.; Tomic, A.; Hettrich, S.; PMAS Astronauts
2017-10-01
ILEWG developed since 2008 a Mobile Laboratory Habitat (ExoHab) at ESTEC which was tested during a short simulation in July. It was a foretaste of the PMAS mission on 31 July-14 August in LunAres base at Pila, with mission control in Torun, Poland.
The Shuttle Mission Simulator computer generated imagery
NASA Technical Reports Server (NTRS)
Henderson, T. H.
1984-01-01
Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.
ERIC Educational Resources Information Center
Barrineau, Irene T., Ed.
2007-01-01
The 2007 Annual Meeting of the Association for Continuing Higher Education was themed "Refining Our Mission: Continuing Education's Role in Engagement, Outreach and Public Service." Opportunities were available to participate in sessions relating to outreach, partnerships and public service and perspectives on this theme were presented…
STS-48 MS Gemar uses laptop during training session in JSC's MB SMS
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Charles D. Gemar, wearing lightweight headset, enters data into a portable laptop computer on the middeck of JSC's Motion Based (MB) Shuttle Mission Simulator (SMS). Gemar is participating in a preflight familiarization session in the MB-SMS located in the Mission Simulation and Training Facility Bldg 5. Visible to Gemar's right is a stowed extravehicular mobility unit (EMU) and on his left are forward locker mockups.
STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen hands Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman checklists from middeck locker MF43E during training session in JSC's fixed base (FB) shuttle mission simulator (SMS) located in Mission Simulation and Training Facility Bldg 5. European Space Agency (ESA) MS Claude Nicollier outfitted with communications kit assembly headset (HDST) and equipment looks beyond Hoffman to the opposite side of the middeck.
STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, standing at the interdeck access ladder, explains procedures to backup Italian Payload Specialist Umberto Guidoni (center) and Italian Payload Specialist Franco Malerba (right) on the middeck of JSC's fixed base (FB) shuttle mission simulator (SMS). Behind them, MS Marsha S. Ivins reviews a cheklist. Participants are wearing communications kit assembly lightweight headsets (HDSTs). FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)
2001-01-01
This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.
2010-10-01
the 2004 Fall Simulation Interoperability Workshop, Orlando, Florida, USA, September 2004, 04F- SIW -090. [Blacklock (2007)] - Blacklock, J. and Zalcman...Valley, CA, USA, March 2009, 09S- SIW -084. [DIS (1995)] - IEEE Standard – Protocols for Distributed Interactive Simulation Application (1995), IEEE...Workshop, Orlando, FL, USA, September 2007, 07F- SIW -111. [Gresche] - Gresche, D. et al, (2006), “International Mission Training Research
1983-05-24
S83-32569 (23 May 1983) --- A preview of NASA?s next spaceflight is provided by this scene in the Johnson Space Center?s Shuttle mission simulator (SMS) with four-fifths of the crew in the same stations they will be in for launch and landing phases of the Challenger?s second space mission. They are (left-right) Astronauts Robert L. Crippen, crew commander; Frederick H. Hauck, pilot; John M. Fabian and Dr. Sally K. Ride, mission specialists. Dr. Norman E. Thagard, a third mission specialist, is to be seated in the mid-deck area below the flight deck for launch and landing phases. Launch is now scheduled for June 18.
An analytic model for footprint dispersions and its application to mission design
NASA Technical Reports Server (NTRS)
Rao, J. R. Jagannatha; Chen, Yi-Chao
1992-01-01
This is the final report on our recent research activities that are complementary to those conducted by our colleagues, Professor Farrokh Mistree and students, in the context of the Taguchi method. We have studied the mathematical model that forms the basis of the Simulation and Optimization of Rocket Trajectories (SORT) program and developed an analytic method for determining mission reliability with a reduced number of flight simulations. This method can be incorporated in a design algorithm to mathematically optimize different performance measures of a mission, thus leading to a robust and easy-to-use methodology for mission planning and design.
NASA Astrophysics Data System (ADS)
Groemer, Gernot; Losiak, Anna; Soucek, Alexander; Plank, Clemens; Zanardini, Laura; Sejkora, Nina; Sams, Sebastian
2016-12-01
We report on the AMADEE-15 mission, a 12-day Mars analog field test at the Kaunertal Glacier in Austria. Eleven experiments were conducted by a field crew at the test site under simulated martian surface exploration conditions and coordinated by a Mission Support Center in Innsbruck, Austria. The experiments' research fields encompassed geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. A Remote Science Support team analyzed field data in near real time, providing planning input for a flight control team to manage a complex system of field assets in a realistic work flow, including: two advanced space suit simulators; and four robotic and aerial vehicles. Field operations were supported by a dedicated flight planning group, an external control center tele-operating the PULI-rover, and a medical team. A 10-min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, with a focus on the mission's communication infrastructure. We report on the operational workflows and the experiments conducted, as well as a novel approach of measuring mission success through the introduction of general analog mission transferrable performance indicators.
NASA Technical Reports Server (NTRS)
1997-01-01
On this ninth day of the STS-87 mission, the flight crew, Cmdr. Kevin R. Kregel, Pilot Steven W. Lindsey, Mission Specialists Winston E. Scott, Kalpana Chawla, and Takao Doi, and Payload Specialist Leonid K. Kadenyuk continue work with the microgravity science investigations in a special glovebox facility on the middeck. The autonomous operations with the mission's prime payload continue in the payload bay of Columbia with no interaction by the crew required.
Intelligently interactive combat simulation
NASA Astrophysics Data System (ADS)
Fogel, Lawrence J.; Porto, Vincent W.; Alexander, Steven M.
2001-09-01
To be fully effective, combat simulation must include an intelligently interactive enemy... one that can be calibrated. But human operated combat simulations are uncalibratable, for we learn during the engagement, there's no average enemy, and we cannot replicate their culture/personality. Rule-based combat simulations (expert systems) are not interactive. They do not take advantage of unexpected mistakes, learn, innovate, and reflect the changing mission/situation. And it is presumed that the enemy does not have a copy of the rules, that the available experts are good enough, that they know why they did what they did, that their combat experience provides a sufficient sample and that we know how to combine the rules offered by differing experts. Indeed, expert systems become increasingly complex, costly to develop, and brittle. They have face validity but may be misleading. In contrast, intelligently interactive combat simulation is purpose- driven. Each player is given a well-defined mission, reference to the available weapons/platforms, their dynamics, and the sensed environment. Optimal tactics are discovered online and in real-time by simulating phenotypic evolution in fast time. The initial behaviors are generated randomly or include hints. The process then learns without instruction. The Valuated State Space Approach provides a convenient way to represent any purpose/mission. Evolutionary programming searches the domain of possible tactics in a highly efficient manner. Coupled together, these provide a basis for cruise missile mission planning, and for driving tank warfare simulation. This approach is now being explored to benefit Air Force simulations by a shell that can enhance the original simulation.
Open source IPSEC software in manned and unmanned space missions
NASA Astrophysics Data System (ADS)
Edwards, Jacob
Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.
WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization
NASA Astrophysics Data System (ADS)
Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.
Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the
NASA Technical Reports Server (NTRS)
1996-01-01
STS-72 TRAINING VIEW --- Astronaut Brian Duffy, mission commander for the STS-72 mission, prepares to ascend stairs to the flight deck of the fixed base Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). Duffy will be joined by four other NASA astronauts and an international mission specialist aboard the Space Shuttle Endeavour for a scheduled nine-day mission, now set for the winter of this year.
Power System Simulations For The Globalstar2 Mission Using The PowerCap Software
NASA Astrophysics Data System (ADS)
Defoug, S.; Pin, R.
2011-10-01
The Globalstar system aims to enable customers to communicate all around the world thanks to its constellation of 48 LEO satellites. Thales Alenia Space is in charge of the design and manufacturing of the second generation of the Globalstar satellites. For such a long duration mission (15 years) and with a payload power consumption varying incessantly, the optimization of the solar arrays and battery has to be consolidated by an accurate power simulation tool. After a general overview of the Globalstar power system and of the PowerCap software, this paper presents the dedicated version elaborated for the GlobalStar2 mission, the simulations results and their correlation with the tests.
NASA Technical Reports Server (NTRS)
Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.
2012-01-01
he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.
2008-05-01
communicate with other weapon models In a mission-level simulation; (3) introduces the four configuration levels of the M&S framework; and (4) presents a cost ...and Disadvantages ....................................................................... 26 6 COST -EFFECTIVE M&S LABORATORY PLAN...25 23 Weapon Model Sample Time and Average TET Displayed on the Target PC ..... 26 24 Design and Cost of an
NASA Technical Reports Server (NTRS)
Takahashi, Fumiaki; Linteris, Gregory T.; Katta, Viswanath R.
2003-01-01
Longer duration missions to the moon, to Mars, and on the International Space Station (ISS) increase the likelihood of accidental fires. NASA's fire safety program for human-crewed space flight is based largely on removing ignition sources and controlling the flammability of the material on-board. There is ongoing research to improve the flammability characterization of materials in low gravity; however, very little research has been conducted on fire suppression in the low-gravity environment. Although the existing suppression systems aboard the Space Shuttle (halon 1301, CF3Br) and the ISS (CO2 or water-based form) may continue to be used, alternative effective agents or techniques are desirable for long-duration missions. The goal of the present investigation is to: (1) understand the physical and chemical processes of fire suppression in various gravity and O2 levels simulating spacecraft, Mars, and moon missions; (2) provide rigorous testing of analytical models, which include detailed combustion-suppression chemistry and radiation sub-models, so that the model can be used to interpret (and predict) the suppression behavior in low gravity; and (3) provide basic research results useful for advances in space fire safety technology, including new fire-extinguishing agents and approaches.
Heart Rate Variability During Early Adaptation to Space
NASA Technical Reports Server (NTRS)
Toscano, W. B.; Cowings, P. S.
1994-01-01
A recent report hypothesized that episodes of space motion sickness (SMS) were reliably associated with low frequency oscillations (less than 0.03 to less than 0.01 Hz) in heart rate variability. This paper archives a large data set for review of investigators in this field which may facilitate the evaluation of this hypothesis. Continuous recording of Electro-cardiography (ECG) and other measures were made for 6 to 12 hours per day (waking hours) of six Shuttle crewmembers for the first 3 mission days of two separate Shuttle flights. Spectral analyses of heart rate variability during approximately 200 hours of inflight is presented. In addition, nearly 200 hours of data collected on these same individuals during ground tests prior to the mission are presented. The Purpose of this Publication is to document the incidence of low frequency oscillations of heart rate in 4 people exposed to microgravity over a period of five days. In addition, this report contains spectral analyses of heart rate data collected on these same individuals during ground-based mission simulations. By archiving these data in this manner, it is our intention to make this information available to other investigators interested in studying this phenomena.
Low-latitude Ionospheric Research using the CIRCE Mission
NASA Astrophysics Data System (ADS)
Dymond, K.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.
2016-12-01
The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time frame. These nano-satellites will each feature two 1U ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, a compact UV sensor design which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere. We present our mission concept, simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.
Qualification of Bonding Process of Temperature Sensors to Extreme Temperature Deep Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard; Sunada, Eric T.
2011-01-01
A process has been explored based on the state-of-the-art technology to bond the platinum resistance thermometer (PRT) on to potential aerospace material such as a flat aluminum surface and a flexible copper tube to simulate coaxial cable for the flight applications. Primarily, PRTs were inserted into a metal plated copper braid to avoid stresses on the sensor while attaching the sensor with braid to the base material for long duration deep space missions. Appropriate pretreatment has been implemented in this study to enhance the adhesion of the PRTs to the base material. NuSil product has been chosen in this research to attach PRT to the base materials. The resistance (approx.1.1 k(Omega)) of PRTs has been electrically monitored continuously during the qualification thermal cycling testing from -150 C to +120 C and -100 C to -35 C. The test hardware has been thermal cycled three times the mission life per JPL design principles for JUNO project. No PRT failures were observed during and after the PRT thermal cycling qualification test for extreme temperature environments. However, there were some failures associated with staking of the PRT pig tails as a result of thermal cycling qualification test.
NASA Technical Reports Server (NTRS)
Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han
2012-01-01
The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.
Model implementation for dynamic computation of system cost for advanced life support
NASA Technical Reports Server (NTRS)
Levri, J. A.; Vaccari, D. A.
2004-01-01
Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Inverse simulation system for evaluating handling qualities during rendezvous and docking
NASA Astrophysics Data System (ADS)
Zhou, Wanmeng; Wang, Hua; Thomson, Douglas; Tang, Guojin; Zhang, Fan
2017-08-01
The traditional method used for handling qualities assessment of manned space vehicles is too time-consuming to meet the requirements of an increasingly fast design process. In this study, a rendezvous and docking inverse simulation system to assess the handling qualities of spacecraft is proposed using a previously developed model-predictive-control architecture. By considering the fixed discrete force of the thrusters of the system, the inverse model is constructed using the least squares estimation method with a hyper-ellipsoidal restriction, the continuous control outputs of which are subsequently dispersed by pulse width modulation with sensitivity factors introduced. The inputs in every step are deemed constant parameters, and the method could be considered as a general method for solving nominal, redundant, and insufficient inverse problems. The rendezvous and docking inverse simulation is applied to a nine-degrees-of-freedom platform, and a novel handling qualities evaluation scheme is established according to the operation precision and astronauts' workload. Finally, different nominal trajectories are scored by the inverse simulation and an established evaluation scheme. The scores can offer theoretical guidance for astronaut training and more complex operation missions.
Mars Phoenix Entry, Descent, and Landing Simulation Design and Modelling Analysis
NASA Technical Reports Server (NTRS)
Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.
2008-01-01
The 2007 Mars Phoenix Lander was launched in August of 2007 on a ten month cruise to reach the northern plains of Mars in May 2008. Its mission continues NASA s pursuit to find evidence of water on Mars. Phoenix carries upon it a slew of science instruments to study soil and ice samples from the northern region of the planet, an area previously undiscovered by robotic landers. In order for these science instruments to be useful, it was necessary for Phoenix to perform a safe entry, descent, and landing (EDL) onto the surface of Mars. The EDL design was defined through simulation and analysis of the various phases of the descent. An overview of the simulation and various models developed to characterize the EDL performance is provided. Monte Carlo statistical analysis was performed to assess the performance and robustness of the Phoenix EDL system and are presented in this paper. Using these simulation and modelling tools throughout the design and into the operations phase, the Mars Phoenix EDL was a success on May 25, 2008.
Simulated Performance of the Orbiting Wide-angle Light Collectors (OWL) Experiment
NASA Technical Reports Server (NTRS)
Krizmanic, J. F.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Orbiting Wide-angle Light collectors (OWL) experiment is in NASA's mid-term strategic plan and will stereoscopically image, from equatorial orbit, the air fluorescence signal generated by airshowers induced by the ultrahigh energy (E greater than few x 10(exp 19) eV) component of the cosmic radiation. The use of a space-based platform enables an extremely large event acceptance aperture and thus will allow a high statistics measurement of these rare events. Detailed Monte Carlo simulations are required to quantify the physics potential of the mission as well as optimize the instrumental parameters. This paper reports on the results of the GSFC Monte Carlo simulation for two different, OWL instrument baseline designs. These results indicate that, assuming a continuation of the cosmic ray spectrum (theta approximately E(exp -2.75), OWL could have an event rate of 4000 events/year with E greater than or equal to 10(exp 20) eV. Preliminary results, based upon these Monte Carlo simulations, indicate that events can be accurately reconstructed in the detector focal plane arrays for the OWL instrument baseline designs under consideration.
Model-based verification and validation of the SMAP uplink processes
NASA Astrophysics Data System (ADS)
Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.
Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.
Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana
2008-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.
Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.
Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)
2002-01-01
During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.
Shuttle mission simulator requirements report, volume 1, revision C
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The contractor tasks required to produce a shuttle mission simulator for training crew members and ground personnel are discussed. The tasks will consist of the design, development, production, installation, checkout, and field support of a simulator with two separate crew stations. The tasks include the following: (1) review of spacecraft changes and incorporation of appropriate changes in simulator hardware and software design, and (2) the generation of documentation of design, configuration management, and training used by maintenance and instructor personnel after acceptance for each of the crew stations.
ASTRONAUT COOPER - MERCURY-ATLAS (MA)-9 PRELAUNCH - PREFLIGHT SIMULATED LAUNCH - CAPE
1963-05-11
S63-06124 (1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury Atlas 9 (MA-9) mission, arrives at the top of the gantry during a preflight simulated mission, three days before he is scheduled to take "Faith 7" on the 22-orbit flight. Photo credit: NASA
NASA/ESACV-990 spacelab simulation. Appendix B: Experiment development and performance
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1976-01-01
Eight experiments flown on the CV-990 airborne laboratory during the NASA/ESA joint Spacelab simulation mission are described in terms of their physical arrangement in the aircraft, their scientific objectives, developmental considerations dictated by mission requirements, checkout, integration into the aircraft, and the inflight operation and performance of the experiments.
Large ORU/ Crane evaluations conducted during first EVA of STS-87 (DTO 671)
1997-11-25
STS087-718-073 (19 November ? 5 December 1997) --- On the Space Shuttle Columbia's first ever spacewalk (EVA), astronaut Winston E. Scott works with a simulated battery and 156-pound crane carried onboard for the first time this trip of Columbia. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the ISS. This crane device is designed to aid future spacewalkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier, astronauts Takao Doi (at the base of the crane, out of frame at right), an international mission specialist representing Japan, and Winston E. Scott had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations, long ago manifest for this mission, after completing a contingency spacewalk to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).
Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat
2018-06-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.
Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat
2018-01-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116
Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation
NASA Technical Reports Server (NTRS)
Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.
2016-01-01
The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.
Rosetta mission status: challenges of flying near a comet
NASA Astrophysics Data System (ADS)
Martin, P.; Taylor, M.; Kueppers, M.; O'Rourke, L.; Lodiot, S.
2015-10-01
Recent operational events, most likely due to the increased presence of dust near the spacecraft during close flybys of C67P/Churyumov-Gerasimenko in the comet escort phase, have led to a redefinition of the Rosetta mission through the design of new trajectories allowing the spacecraft and its payload to continue flying safely around the comet while augmenting the wealth of scientific data and results that has characterized the beginning of the mission so far. A decision process is being put in place in view of finding the best ways forward operationally so as to recover some capabilities that will allow Rosetta to continue optimising its scientific mission, in both the nominal and expected extended mission intervals.
NASA Technical Reports Server (NTRS)
Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.
2008-01-01
NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In addition, the performance of DSIL under different traffic loads with different mix of data and priorities are evaluated.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil
2010-01-01
Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.
Scenario management and automated scenario generation
NASA Astrophysics Data System (ADS)
McKeever, William; Gilmour, Duane; Lehman, Lynn; Stirtzinger, Anthony; Krause, Lee
2006-05-01
The military planning process utilizes simulation to determine the appropriate course of action (COA) that will achieve a campaign end state. However, due to the difficulty in developing and generating simulation level COAs, only a few COAs are simulated. This may have been appropriate for traditional conflicts but the evolution of warfare from attrition based to effects based strategies, as well as the complexities of 4 th generation warfare and asymmetric adversaries have placed additional demands on military planners and simulation. To keep pace with this dynamic, changing environment, planners must be able to perform continuous, multiple, "what-if" COA analysis. Scenario management and generation are critical elements to achieving this goal. An effects based scenario generation research project demonstrated the feasibility of automated scenario generation techniques which support multiple stove-pipe and emerging broad scope simulations. This paper will discuss a case study in which the scenario generation capability was employed to support COA simulations to identify plan effectiveness. The study demonstrated the effectiveness of using multiple simulation runs to evaluate the effectiveness of alternate COAs in achieving the overall campaign (metrics-based) objectives. The paper will discuss how scenario generation technology can be employed to allow military commanders and mission planning staff to understand the impact of command decisions on the battlespace of tomorrow.
[Activities of Research Institute for Advanced Computer Science
NASA Technical Reports Server (NTRS)
Gross, Anthony R. (Technical Monitor); Leiner, Barry M.
2001-01-01
The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. Fran Bagenal, senior scientist at the University of Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. Fran Bagenal, senior scientist at the University of Colorado, far right, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. Bonnie Buratti, senior scientist at NASA's Jet Propultion Laboratory, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
Mars Science Laboratory Rover System Thermal Test
NASA Technical Reports Server (NTRS)
Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.
2012-01-01
On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.
NASA Technical Reports Server (NTRS)
Estep, L.; Spruce, J.; Blonski, S.; Moore, R.
2008-01-01
Coral reefs are some of the most biologically rich and economically important ecosystems on Earth. Coral reefs are Earth's largest biological structures and have taken thousands of years to form. Coral reefs not only provide important habitat for many marine animals and plants, but they also provide humanity with food, jobs, chemicals, protection against storms, and life-saving pharmaceuticals. Severe bleaching events have occurred that have dramatic long-term ecological impacts to corals, including loss of reef-building corals, changes in benthic habitat, and, in some cases, changes in larval fish populations (Holden and Ledrew, 1998). Some researchers suggest that 10 percent of Earth s coral reefs have already been destroyed and that another 60 percent are in danger. Scientists have proposed that as much as 95 percent of Jamaica's reefs are dying or dead. This poster reports on a Rapid Prototyping Capability (RPC) experiment done to determine whether future NASA sensors - the Visible/Infrared Imager/Radiometer Suite (VIIRS) and Landsat Data Continuity Mission (LDCM) - could generate key data products for the Integrated Coral Reef Observation Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST) operated by the National Oceanic and Atmospheric Administration (NOAA).
NASA Technical Reports Server (NTRS)
1978-01-01
VIKING PHASE III - With the incredible success of the Viking missions on Mars, mission operations have progressed though a series of phases - each being funded as mission success dictated its potential. The Viking Primary Mission phase was concluded in November, 1976, when the reins were passed on to the second phase - the Viking Extended Mission. The Extended Mission successfully carried spacecraft operations through the desired period of time needed to provided a profile of a full Martian year, but would have fallen a little short of connecting and overlapping a full Martian year of Viking operations which scientists desired as a means of determining the degree of duplicity in the red planet's seasons - at least for the summer period. Without this continuation of spacecraft data acquisitions to and beyond the seasonal points when the spacecraft actually began their Mars observations, there would be no way of knowing whether the changing environmental values - such as temperatures and winds atmospheric dynamics and water vapor, surface thermal dynamics, etc. - would match up with those acquired as the spacecraft began investigations during the summer and fall of 1976. This same broad interest can be specifically pursued at the surface - where hundreds of rocks, soil drifts and other features have become extremely familiar during long-term analysis. This picture was acquired on the 690th Martian day of Lander 1 operations - 4009th picture sequence commanded of the two Viking Landers. As such, it became the first picture acquired as the third phase of Viking operations got under way - the Viking Continuation Mission. Between the start of the Continuation Mission in April, 1978, until spacecraft operations are concluded in November, the landers will acquire an additional 200 pictures. These will be used to monitor the two landscaped for the surface changes. All four cameras, two on Lander 1 and two on Lander 2, continue to operate perfectly. Both landers will also continue to monitor weather conditions - recording atmospheric pressure and its variations, daily temperature extremes, and wind behavior at the two lander locations.
NASA Astrophysics Data System (ADS)
Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein
2012-05-01
The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.
NASA Astrophysics Data System (ADS)
Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.
2017-12-01
The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.
BLDG. 30 - APOLLO-SOYUZ TEST PROJECT (ASTP) SIMS - FLIGHT DIRECTION - JSC
1975-03-20
S75-23638 (20 March 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during joint ASTP simulation activity at NASA's Johnson Space Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975. M.P. Frank (seated, right) is the senior American flight director for the mission. Sigurd A. Sjoberg (in center, checked jacket), JSC Deputy Director, watches some of the console activity. George W.S. Abbey, Technical Assistant to the JSC Director, is standing next to Sjoberg. The television monitor in the background shows Soviet Soyuz crew activity from the Soviet Union.
International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Raftery, Michael; Hoffman, Jeffrey
2011-01-01
The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.
Europa Explorer Operational Scenarios Development
NASA Technical Reports Server (NTRS)
Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.
2008-01-01
In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 2 2010-07-01 2010-07-01 false Mission. 383a.3 Section 383a.3 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS... wartime and, as circumstances dictate, troop issue subsistence support to military dining facilities...
NASA Astrophysics Data System (ADS)
Donà, G.; Faletra, M.
2015-09-01
This paper presents the TT&C performance simulator toolkit developed internally at Thales Alenia Space Italia (TAS-I) to support the design of TT&C subsystems for space exploration and scientific satellites. The simulator has a modular architecture and has been designed using a model-based approach using standard engineering tools such as MATLAB/SIMULINK and mission analysis tools (e.g. STK). The simulator is easily reconfigurable to fit different types of satellites, different mission requirements and different scenarios parameters. This paper provides a brief description of the simulator architecture together with two examples of applications used to demonstrate some of the simulator’s capabilities.
NASA Technical Reports Server (NTRS)
Thomas, Danny; Hartway, Bobby; Hale, Joe
2006-01-01
Throughout its rich history, NASA has invested heavily in sophisticated simulation capabilities. These capabilities reside in NASA facilities across the country - and with partners around the world. NASA s Exploration Systems Mission Directorate (ESMD) has the opportunity to leverage these considerable investments to resolve technical questions relating to its missions. The distributed nature of the assets, both in terms of geography and organization, present challenges to their combined and coordinated use, but precedents of geographically distributed real-time simulations exist. This paper will show how technological advances in simulation can be employed to address the issues associated with netting NASA simulation assets.
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
Education and Public Outreach and Engagement at NASA's Analog Missions in 2012
NASA Technical Reports Server (NTRS)
Watkins, Wendy L.; Janoiko, Barbara A.; Mahoney, Erin; Hermann, Nicole B.
2013-01-01
Analog missions are integrated, multi-disciplinary activities that test key features of future human space exploration missions in an integrated fashion to gain a deeper understanding of system-level interactions and operations early in conceptual development. These tests often are conducted in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They may also be conducted at NASA facilities, using advanced modeling and human-in-the-loop scenarios. As NASA develops a capability driven framework to transport crew to a variety of space environments, it will use analog missions to gather requirements and develop the technologies necessary to ensure successful exploration beyond low Earth orbit. NASA s Advanced Exploration Systems (AES) Division conducts these high-fidelity integrated tests, including the coordination and execution of a robust education and public outreach (EPO) and engagement program for each mission. Conducting these mission scenarios in unique environments not only provides an opportunity to test the EPO concepts for the particular future-mission scenario, such as the best methods for conducting events with a communication time delay, but it also provides an avenue to deliver NASA s human space exploration key messages. These analogs are extremely exciting to students and the public, and they are performed in such a way that the public can feel like part of the mission. They also provide an opportunity for crew members to obtain training in education and public outreach activities similar to what they would perform in space. The analog EPO team is responsible for the coordination and execution of the events, the overall social media component for each mission, and public affairs events such as media visits and interviews. They also create new and exciting ways to engage the public, manage and create website content, coordinate video footage for missions, and coordinate and integrate each activity into the mission timeline. In 2012, the AES Analog Missions Project performed three distinct missions - NASA Extreme Environment Mission Operations (NEEMO), which simulated a mission to an asteroid using an undersea laboratory; In-Situ Resource Utilization (ISRU) Field Test, which simulated a robotic mission to the moon searching and drilling for water; and Research and Technology Studies (RATS) integrated tests, which also simulated a mission to an asteroid. This paper will discuss the education and public engagement that occurred during these missions.
An unconditionally stable method for numerically solving solar sail spacecraft equations of motion
NASA Astrophysics Data System (ADS)
Karwas, Alex
Solar sails use the endless supply of the Sun's radiation to propel spacecraft through space. The sails use the momentum transfer from the impinging solar radiation to provide thrust to the spacecraft while expending zero fuel. Recently, the first solar sail spacecraft, or sailcraft, named IKAROS completed a successful mission to Venus and proved the concept of solar sail propulsion. Sailcraft experimental data is difficult to gather due to the large expenses of space travel, therefore, a reliable and accurate computational method is needed to make the process more efficient. Presented in this document is a new approach to simulating solar sail spacecraft trajectories. The new method provides unconditionally stable numerical solutions for trajectory propagation and includes an improved physical description over other methods. The unconditional stability of the new method means that a unique numerical solution is always determined. The improved physical description of the trajectory provides a numerical solution and time derivatives that are continuous throughout the entire trajectory. The error of the continuous numerical solution is also known for the entire trajectory. Optimal control for maximizing thrust is also provided within the framework of the new method. Verification of the new approach is presented through a mathematical description and through numerical simulations. The mathematical description provides details of the sailcraft equations of motion, the numerical method used to solve the equations, and the formulation for implementing the equations of motion into the numerical solver. Previous work in the field is summarized to show that the new approach can act as a replacement to previous trajectory propagation methods. A code was developed to perform the simulations and it is also described in this document. Results of the simulations are compared to the flight data from the IKAROS mission. Comparison of the two sets of data show that the new approach is capable of accurately simulating sailcraft motion. Sailcraft and spacecraft simulations are compared to flight data and to other numerical solution techniques. The new formulation shows an increase in accuracy over a widely used trajectory propagation technique. Simulations for two-dimensional, three-dimensional, and variable attitude trajectories are presented to show the multiple capabilities of the new technique. An element of optimal control is also part of the new technique. An additional equation is added to the sailcraft equations of motion that maximizes thrust in a specific direction. A technical description and results of an example optimization problem are presented. The spacecraft attitude dynamics equations take the simulation a step further by providing control torques using the angular rate and acceleration outputs of the numerical formulation.
Assess II - A simulated mission of Spacelab
NASA Technical Reports Server (NTRS)
Wegmann, H. M.; Hermann, R.; Wingett, C. M.; De Muizon, M.; Rouan, D.; Lena, P.; Wijnbergen, J.; Olthof, H.; Michel, K. W.; Werner, CH.
1978-01-01
For Assess II, the Spacelab mission simulation conducted in mid-1977, four payload specialists aboard a Convair 990 research aircraft performed six American and six European experiments during nine research flights each of six hours duration in order to evaluate the compatibility of training and experimental design. Mission organization and some initial data from the European experiments are reported. The experiments, conducted over the western U.S., involved infrared astronomy, solar brightness temperature, lidar, airglow TV, and a medical experiment for which physiological parameters were monitored. Conclusions concerning general principles of experiment design are discussed.
NASA Astrophysics Data System (ADS)
Olivier, Chomette; Armante, Raymond; Crevoisier, Cyril; Delahaye, Thibault; Edouart, Dimitri; Gibert, Fabien; Nahan, Frédéric; Tellier, Yoann
2018-04-01
The MEthane Remote sensing Lidar missioN (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA) LIDAR (LIght Detecting And Ranging) to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique), Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.
Skylab (SL)-3 Crewmen - Checklist - Crew Quarters - Orbital Workshop Simulator (OWS) Trainer - JSC
1973-01-01
S73-28793 (16 July 1973) --- The three crewmen of the second manned Skylab mission (Skylab 3) go over a checklist during preflight training at the Johnson Space Center. They are, left to right, scientist-astronaut Owen K. Garriott, science pilot; astronaut Alan L. Bean, commander; and astronaut Jack R. Lousma, pilot. They are in the crew quarters of the Orbital Workshop trainer in the Mission Training and Simulation Facility, Building 5, at JSC. Skylab 3 is scheduled as a 59-day mission in Earth orbit. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Cok, Keith E.
1989-01-01
The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.
Shuttle mission simulator requirements report, volume 1, revision A
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The tasks are defined required to design, develop produce, and field support a shuttle mission simulator for training crew members and ground support personnel. The requirements for program management, control, systems engineering, design and development are discussed along with the design and construction standards, software design, control and display, communication and tracking, and systems integration.
STS-27 Atlantis - OV-104, Commander Gibson on SMS forward flight deck
1988-02-03
STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.
2015-08-20
2015 marks 50 years of successful NASA missions to Mars starting with Mariner 4 in 1965. Since then, a total of 15 robotic missions led by various NASA centers have laid the groundwork for future human missions to the Red Planet. The journey to Mars continues with additional robotic missions planned for 2016 and 2020, and human missions in the 2030s.
2000-01-14
The STS-99 crew leave the Operations and Checkout Building on their way to Launch Pad 39A and a simulated countdown exercise. In the front row are Pilot Dominic Gorie and Commander Kevin Kregel; in the middle row are mission Specialists Janice Voss (Ph.D.) and Janet Lynn Kavandi (Ph.D.); in the back row are Mission Specialists Mamoru Mohri, who is with the National Space Development Agency (NASDA) of Japan, and Gerhard Thiele, who is with the European Space Agency. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
A new terminal guidance sensor system for asteroid intercept or rendezvous missions
NASA Astrophysics Data System (ADS)
Lyzhoft, Joshua; Basart, John; Wie, Bong
2016-02-01
This paper presents the initial conceptual study results of a new terminal guidance sensor system for asteroid intercept or rendezvous missions, which explores the use of visual, infrared, and radar devices. As was demonstrated by NASA's Deep Impact mission, visual cameras can be effectively utilized for hypervelocity intercept terminal guidance for a 5 kilometer target. Other systems such as Raytheon's EKV (Exoatmospheric Kill Vehicle) employ a different scheme that utilizes infrared target information to intercept ballistic missiles. Another example that uses infrared information is the NEOWISE telescope, which is used for asteroid detection and tracking. This paper describes the signal-to-noise ratio estimation problem for infrared sensors, minimum and maximum range of detection, and computational validation using GPU accelerated simulations. Small targets (50-100 m in diameter) are considered, and scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/Churyumov-Gerasimenko, 101,955 Bennu, target of the OSIRIS-REx mission, and asteroid 433 Eros, are utilized. A parallelized ray tracing algorithm to simulate realistic surface-to-surface shadowing of a given celestial body is developed. By using the simulated models and parameters given from the formulation of the different sensors, impact mission scenarios are used to verify the feasibility for intercepting a small target.
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
Pre-adaptation to shiftwork in space
NASA Astrophysics Data System (ADS)
Samel, A.; Wegmann, H. M.; Vejvoda, M.
Astronauts are often required to work in shift schedules. To test pre-mission adaptation strategies and effects on the circadian system, a study was performed using microgravity simulation by head-down bedrest. Eight male subjects were studied over 4 control days, and 7 days each for pre-mission adaptation, bedrest, and readjustment. The circadian system was assessed by monitoring ECG and temperature, and by collecting urine for determination of hormones and electrolytes. Rhythms did not achieve complete adjustment within the adaptation period when the sleep-wake cycle was shortened by 1h/day, but resynchronization continued during bedrest. After the bedrest period when the time shift was reversed by a 7-h delay within 2 days, resynchronization was achieved satisfactorily only within 7 days. From the results it is concluded that a sleep-wake cycle advance as used in this study is insufficient to keep the circadian system in pace. Under operational conditions the circadian system of astronauts may become longer and more destabilized than under controlled laboratory conditions.
Onboard photo: Astronauts at work
NASA Technical Reports Server (NTRS)
1997-01-01
Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).
1997-11-19
Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).
Pre-adaptation to shiftwork in space.
Samel, A; Wegmann, H M; Vejvoda, M
1993-08-01
Astronauts are often required to work in shift schedules. To test pre-mission adaptation strategies and effects on the circadian system, a study was performed using microgravity simulation by head-down bedrest. Eight male subjects were studied over 4 control days, and 7 days each for pre-mission adaptation, bedrest, and readjustment. The circadian system was assessed by monitoring ECG and temperature, and by collecting urine for determination of hormones and electrolytes. Rhythms did not achieve complete adjustment within the adaptation period when the sleep-wake cycle was shortened by 1 h/day, but resynchronization continued during bedrest. After the bedrest period when the time shift was reversed by a 7-h delay within 2 days, resynchronization was achieved satisfactorily only within 7 days. From the results it is concluded that a sleep-wake cycle advance as used in this study is insufficient to keep the circadian system in pace. Under operational conditions the circadian system of astronauts may become longer and more destabilized than under controlled laboratory conditions.
Mission leverage education: NSU/NASA innovative undergraduate model
NASA Technical Reports Server (NTRS)
Chaudhury, S. Raj; Shaw, Paula R. D.
2005-01-01
The BEST Lab (Center for Excellence in Science Education), the Center for Materials Research (CMR), and the Chemistry, Mathematics, Physics, and Computer Science (CS) Departments at Norfolk State University (NSU) joined forces to implement MiLEN(2) IUM - an innovative approach tu integrate current and emerging research into the undergraduate curricula and train students on NASA-related fields. An Earth Observing System (EOS) mission was simulated where students are educated and trained in many aspects of Remote Sensing: detector physics and spectroscopy; signal processing; data conditioning, analysis, visualization; and atmospheric science. This model and its continued impact is expected to significantly enhance the quality of the Mathematics, Science, Engineering and Technology (MSET or SMET) educational experience and to inspire students from historically underrepresented groups to pursue careers in NASA-related fields. MiLEN(2) IUM will be applicable to other higher education institutions that are willing to make the commitment to this endeavor in terms of faculty interest and space.
Software simulations of the detection of rapidly moving asteroids by a charge-coupled device
NASA Astrophysics Data System (ADS)
McMillan, R. S.; Stoll, C. P.
1982-10-01
A rendezvous of an unmanned probe to an earth-approaching asteroid has been given a high priority in the planning of interplanetary missions for the 1990s. Even without a space mission, much could be learned about the history of asteroids and comet nuclei if more information were available concerning asteroids with orbits which cross or approach the orbit of earth. It is estimated that the total number of earth-crossers accessible to ground-based survey telescopes should be approximately 1000. However, in connection with the small size and rapid angular motion expected of many of these objects an average of only one object is discovered per year. Attention is given to the development of the software necessary to distinguish such rapidly moving asteroids from stars and noise in continuously scanned CCD exposures of the night sky. Model and input parameters are considered along with detector sensitivity, aspects of minimum detectable displacement, and the point-spread function of the CCD.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-08-01
Using data from the Gravity Recovery And Climate Experiment (GRACE) mission, we derive statistically robust "hot spot" regions of high probability of peak anomalous—i.e., with respect to the seasonal cycle—water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/month). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hot spot regions to GRACE results and that most exceptions are located in the tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020, it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e., combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE Follow-On (GRACE-FO) mission.
NASA Astrophysics Data System (ADS)
Civitani, Marta; Djalal, Sophie; Chipaux, Remi
2009-08-01
In a X-ray telescope in formation flight configuration, the optics and the focal-plane detectors reside in two different spacecraft. The dynamics of the detector spacecraft (DSC) with respect to the mirror spacecraft (MSC, carrying the mirrors of the telescope) changes continuously the arrival positions of the photons on the detectors. In this paper we analyze this issue for the case of the SIMBOL-X hard X-ray mission, extensively studied by CNES and ASI until 2009 spring. Due to the existing gaps between pixels and between detector modules, the dynamics of the system may produce a relevant photometric effect. The aim of this work is to present the optimization study of the control-law algorithm with respect to the detector's geometry. As the photometric effect may vary depending upon position of the source image on the detector, the analysis-carried out using the simuLOS (INAF, CNES, CEA) simulation tool-is extended over the entire SIMBOL-X field of view.
Low-cost autonomous orbit control about Mars: Initial simulation results
NASA Astrophysics Data System (ADS)
Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.
1999-11-01
Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work would take the form of solar flux (F10.7) and diurnal density dependencies. The autonomous controller is a-derivative of the proprietary and patented Microcosm Earth-orbiting control methodology which will be implemented on the upcoming Surrey Satellite Technology (SSTL) UoSAT-12 and the NASA EO-1 spacecraft missions. This work was funded by the NASA Jet Propulsion Laboratory under a Phase I SBIR (96.1 07.02 9444) and by internal Microcosm R&D funds as well as earlier supporting work done under a variety of USAF Research Laboratory-sponsored contracts [1, 2, 4, 12].
NASA Astrophysics Data System (ADS)
Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso
2017-12-01
Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
1986-02-11
S86-28458 (28 Feb. 1986) --- Astronaut Michael L. Coats participates in a rehearsal for his assigned flight at the commander's station of the Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). NOTE: Coats, a veteran of spaceflight, originally trained for STS 61-H, which was cancelled in the wake of the Challenger accident. Following the Janaury 1986 accident he was named to serve on a mock crew (STS-61M) for personnel training and simulation purposes. Photo credit: NASA
Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software
NASA Technical Reports Server (NTRS)
Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole;
2014-01-01
STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California
2004-10-04
The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.
NASA Technical Reports Server (NTRS)
Curtis, H. B.; Hart, R. E., Jr.
1982-01-01
Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.
A simulation of the instrument pointing system for the Astro-1 mission
NASA Technical Reports Server (NTRS)
Whorton, M.; West, M.; Rakoczy, J.
1991-01-01
NASA has recently completed a shuttle-borne stellar ultraviolet astronomy mission known as Astro-1. A three axis instrument pointing system (IPS) was employed to accurately point the science instruments. In order to analyze the pointing control system and verify pointing performance, a simulation of the IPS was developed using the multibody dynamics software TREETOPS. The TREETOPS IPS simulation is capable of accurately modeling the multibody IPS system undergoing large angle, nonlinear motion. The simulation is documented and example cases are presented demonstrating disturbance rejection, fine pointing operations, and multiple target pointing and slewing of the IPS.
Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)
2001-01-01
Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag
Spacelab life sciences 2 post mission report
NASA Technical Reports Server (NTRS)
Buckey, Jay C.
1994-01-01
Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.
Aligning Continuing Education Units and Universities: Survival Strategies for the New Millennium.
ERIC Educational Resources Information Center
Petersen, Nancy
2001-01-01
Canadian continuing education deans (20 of 53 surveyed) ranked their units' contributions in four categories. Highest rated were monetary (those generating substantial funds), programmatic/teaching (those supporting the core mission), scholarly/research (those supporting the research mission), and strategic (public relations and new initiatives).…
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
2007-02-22
KENNEDY SPACE CENTER, FLA. -- At the 195-foot level of the fixed service structure on Launch Pad 39A, STS-117 crew members receive instruction on emergency egress during Terminal Countdown Demonstration Test activities. Pilot Lee Archambault reviews emergency egress procedures using the slidewire basket system to get off the pad. The TCDT also includes M-113 armored personnel carrier training, and a simulated launch countdown. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1984-01-01
The results of a simulation study to define the functional characteristics of a airborne and ground reference GPS receiver for use in a Differential GPS system are doumented. The operations of a variety of receiver types (sequential-single channel, continuous multi-channel, etc.) are evaluated for a typical civil helicopter mission scenario. The math model of each receiver type incorporated representative system errors including intentional degradation. The results include the discussion of the receiver relative performance, the spatial correlative properties of individual range error sources, and the navigation algorithm used to smooth the position data.
Status of NASA/Army rotorcraft research and development piloted flight simulation
NASA Technical Reports Server (NTRS)
Condon, Gregory W.; Gossett, Terrence D.
1988-01-01
The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.
Cassini Maneuver Experience for the Fourth Year of the Solstice Mission
NASA Technical Reports Server (NTRS)
Vaquero, Mar; Hahn, Yungsun; Stumpf, Paul; Valerino, Powtawche; Wagner, Sean; Wong, Mau
2014-01-01
After sixteen years of successful mission operations and invaluable scientific discoveries, the Cassini orbiter continues to tour Saturn on the most complex gravity-assist trajectory ever flown. To ensure that the end-of-mission target of September 2017 is achieved, propellant preservation is highly prioritized over maneuver cycle minimization. Thus, the maneuver decision process, which includes determining whether a maneuver is performed or canceled, designing a targeting strategy and selecting the engine for execution, is being continuously re-evaluated. This paper summarizes the maneuver experience throughout the fourth year of the Solstice Mission highlighting 27 maneuvers targeted to nine Titan flybys.
NASA Technical Reports Server (NTRS)
1997-01-01
The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participated in the Terminal Countdown Demonstration Test (TCDT) at KSC. Simulating the walk-out from the Operations and Checkout Building before entering a van to take them to the launch pad are (left to right) Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steve Lindsey; Mission Specialist Winston Scott; Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Commander Kevin Kregel. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.
Simulation Studies of Satellite Laser CO2 Mission Concepts
NASA Technical Reports Server (NTRS)
Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.
2011-01-01
Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.
The Thermal Infrared Sensor on the Landsat Data Continuity Mission
NASA Technical Reports Server (NTRS)
Reuter, Dennis; Richardson, Cathy; Irons, James; Allen, Rick; Anderson, Martha; Budinoff, Jason; Casto, Gordon; Coltharp, Craig; Finneran, Paul; Forsbacka, Betsy;
2010-01-01
The Landsat Data Continuity Mission (LDCM), a joint NASA and USGS mission, is scheduled for launch in December, 2012. The LDCM instrument payload will consist of the Operational Land Imager (OLI), provided by Ball Aerospace and Technology Corporation (BATC} under contract to NASA and the Thermal Infrared Sensor (TIRS), provided by NASA's Goddard Space Flight Center (GSFC). This paper outlines the design of the TIRS instrument and gives an example of its application to monitoring water consumption by measuring evapotranspiration.
NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o
2014-08-25
Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)
Habitability and Behavioral Issues of Space Flight.
ERIC Educational Resources Information Center
Stewart, R. A., Jr.
1988-01-01
Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…
The Mars Methane Analogue Mission (M3): Results of the 2011 Field Deployment
NASA Astrophysics Data System (ADS)
Cloutis, E. A.; Whyte, L.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Haddad, E.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Samson, C.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.
2012-03-01
The M3 mission simulated a rover mission to Mars to search for sources of methane. The 2011 campaign found that methane plumes from serpentinite are very localized and target selection based on imagery is preferred over direct methane detection.
Using Small UAS for Mission Simulation, Science Validation, and Definition
NASA Astrophysics Data System (ADS)
Abakians, H.; Donnellan, A.; Chapman, B. D.; Williford, K. H.; Francis, R.; Ehlmann, B. L.; Smith, A. T.
2017-12-01
Small Unmanned Aerial Systems (sUAS) are increasingly being used across JPL and NASA for science data collection, mission simulation, and mission validation. They can also be used as proof of concept for development of autonomous capabilities for Earth and planetary exploration. sUAS are useful for reconstruction of topography and imagery for a variety of applications ranging from fault zone morphology, Mars analog studies, geologic mapping, photometry, and estimation of vegetation structure. Imagery, particularly multispectral imagery can be used for identifying materials such as fault lithology or vegetation type. Reflectance maps can be produced for wetland or other studies. Topography and imagery observations are useful in radar studies such as from UAVSAR or the future NISAR mission to validate 3D motions and to provide imagery in areas of disruption where the radar measurements decorrelate. Small UAS are inexpensive to operate, reconfigurable, and agile, making them a powerful platform for validating mission science measurements, and also for providing surrogate data for existing or future missions.
Fish-eye lens view Astronauts Shepard and Mitchell in Lunar Module Simulator
1970-07-15
S70-45555 (July 1970) --- A fish-eye lens view showing astronauts Alan B. Shepard Jr. (foreground) and Edgar D. Mitchell in the Apollo lunar module mission simulator at the Kennedy Space Center during preflight training for the Apollo 14 lunar landing mission. Shepard is the Apollo 14 commander; and Mitchell is the lunar module pilot.
1975-03-20
S75-23883 (20 March 1975) --- A group of flight controllers from the Soviet Union take part in ASTP joint simulation activity at NASA's Johnson Space Center. They are in one of the support rooms in the Mission Control Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975.
1975-03-20
S75-23881 (20 March 1975) --- A group of flight controllers from the Soviet Union take part in ASTP joint simulation activity at NASA's Johnson Space Center. They are in one of the support rooms in the Mission Control Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975.
Shuttle mission simulator baseline definition report, volume 2
NASA Technical Reports Server (NTRS)
Dahlberg, A. W.; Small, D. E.
1973-01-01
The baseline definition report for the space shuttle mission simulator is presented. The subjects discussed are: (1) the general configurations, (2) motion base crew station, (3) instructor operator station complex, (4) display devices, (5) electromagnetic compatibility, (6) external interface equipment, (7) data conversion equipment, (8) fixed base crew station equipment, and (9) computer complex. Block diagrams of the supporting subsystems are provided.
NASA Astrophysics Data System (ADS)
Kuschenerus, Mieke; Cullen, Robert
2016-08-01
To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.
Scalable Integrated Multi-Mission Support System Simulator Release 3.0
NASA Technical Reports Server (NTRS)
Kim, John; Velamuri, Sarma; Casey, Taylor; Bemann, Travis
2012-01-01
The Scalable Integrated Multi-mission Support System (SIMSS) is a tool that performs a variety of test activities related to spacecraft simulations and ground segment checks. SIMSS is a distributed, component-based, plug-and-play client-server system useful for performing real-time monitoring and communications testing. SIMSS runs on one or more workstations and is designed to be user-configurable or to use predefined configurations for routine operations. SIMSS consists of more than 100 modules that can be configured to create, receive, process, and/or transmit data. The SIMSS/GMSEC innovation is intended to provide missions with a low-cost solution for implementing their ground systems, as well as significantly reducing a mission s integration time and risk.
Military simulation - Pushing the visual technology
NASA Astrophysics Data System (ADS)
Boyle, D.
1984-02-01
A full mission flight simulator has been developed for the U.S. Air Force's B-52 bomber crews which requires more computational capacity than is used aboard the Space Shuttle, employing a total of 14 computers capable of over 5 million operations/sec. The system encompasses a flight deck, in which the pilots train, an offensive station simulator, which is operated by the navigator and weaponry officer, and a defensive station simulator, operated by the electronic warfare (EW) officer and communications officer. Instructors control the computer-generated images simulating the external environment from three consoles corresponding to the three simulator units. In each simulated mission, the crews release bombs and air-launched cruise missiles, and fire short range attack missiles and the B-52 tail guns. The threats simulated include hostile aircraft, surface-to-air missiles, and antiaircraft artillery, together with EW activity.
NASA Technical Reports Server (NTRS)
1973-01-01
Ways in which human intelligence might be simulated onboard an unmanned mission to achieve some of the decision making capability or adaptability of the manned mission are examined. The relative cost and simplicity advantages of the unmanned spacecraft missions are emphasized. Reliable techniques for making onboard decisions and for modifying mission science operations in response to the findings are analyzed.
Strain System for the Motion Base Shuttle Mission Simulator
NASA Technical Reports Server (NTRS)
Huber, David C.; Van Vossen, Karl G.; Kunkel, Glenn W.; Wells, Larry W.
2010-01-01
The Motion Base Shuttle Mission Simulator (MBSMS) Strain System is an innovative engineering tool used to monitor the stresses applied to the MBSMS motion platform tilt pivot frames during motion simulations in real time. The Strain System comprises hardware and software produced by several different companies. The system utilizes a series of strain gages, accelerometers, orientation sensor, rotational meter, scanners, computer, and software packages working in unison. By monitoring and recording the inputs applied to the simulator, data can be analyzed if weld cracks or other problems are found during routine simulator inspections. This will help engineers diagnose problems as well as aid in repair solutions for both current as well as potential problems.
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.; Rosen, Robert
1987-01-01
Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.
Simulation Study of a Follow-on Gravity Mission to GRACE
NASA Technical Reports Server (NTRS)
Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.
2012-01-01
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.
SeaWiFS technical report series. Volume 15: The simulated SesWiFS data set, version 2
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.; Patt, Frederick S.; Woodward, Robert H.
1994-01-01
This document describes the second version of the simulated SeaWiFS data set. A realistic simulated data set is essential for mission readiness preparations and can potentially assist in all phases of ground support for a future mission. The second version improves on the first version primarily through additional realism and complexity. This version incorporates a representation of virtually every aspect of the flight mission. Thus, it provides a high-fidelity data set for testing several aspects of the ground system, including data acquisition, data processing, data transfers, calibration and validation, quality control, and mission operations. The data set is constructed for a seven-day period, 25-31 March 1994. Specific features of the data set include Global Area coverage (GAC), recorded Local Area Coverage (LAC), and realtime High Resolution Picture Transmission (HRPT) data for the seven-day period. A realistic orbit, which is propagated using a Brouwer-Lyddane model with drag, is used to simulate orbit positions. The simulated data corresponds to the command schedule based on the orbit for this seven-day period. It includes total (at-satellite) radiances not only for ocean, but for land, clouds, and ice. The simulation also utilizes a high-resolution land-sea mask. It includes the April 1993 SeaWiFS spectral responses and sensor saturation responses. The simulation is formatted according to July 1993 onboard data structures, which include corresponding telemetry (instrument and spacecraft) data. The methods are described and some examples of the output are given. The instrument response functions made available in April 1993 have been used to produce the Version 2 simulated data. These response functions will change as part of the sensor improvements initiated in July-August 1993.
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.
2013-02-10
VANDENBERG AFB, Calif. -- At Space Launch Complex 3E at Vandenberg Air Force Base, Calif., Kennedy Space Center Director Bob Cabana, left, and NASA Administrator Charles Bolden discuss the Landsat Data Continuity Mission, or LDCM, satellite mission with NASA social media followers. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Liftoff is planned for Feb. 11, 2013 aboard a United Launch Alliance Atlas V rocket. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA/Kim Shiflett
Using Computer Simulation for Neurolab 2 Mission Planning
NASA Technical Reports Server (NTRS)
Sanders, Betty M.
1997-01-01
This paper presents an overview of the procedure used in the creation of a computer simulation video generated by the Graphics Research and Analysis Facility at NASA/Johnson Space Center. The simulation was preceded by an analysis of anthropometric characteristics of crew members and workspace requirements for 13 experiments to be conducted on Neurolab 2 which is dedicated to neuroscience and behavioral research. Neurolab 2 is being carried out as a partnership among national domestic research institutes and international space agencies. The video is a tour of the Spacelab module as it will be configured for STS-90, scheduled for launch in the spring of 1998, and identifies experiments that can be conducted in parallel during that mission. Therefore, this paper will also address methods for using computer modeling to facilitate the mission planning activity.
Assess 2: Spacelab simulation. Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
An Airborne Science/Spacelab Experiments System Simulation (ASSESS II) mission, was conducted with the CV-990 airborne laboratory in May 1977. The project studied the full range of Spacelab-type activities including management interactions, experiment selection and funding, hardware development, payload integration and checkout, mission specialist and payload specialist selection and training, mission control center payload operations control center arrangements and interactions, real time interaction during flight between principal investigators and the flight crew, and retrieval of scientific flight data. ESA established an integration and coordination center for the ESA portion of the payload as planned for Spacelab. A strongly realistic Spacelab mission was conducted on the CV-990 aircraft. U.S. and ESA scientific experiments were integrated into a payload and flown over a 10 day period, with the payload flight crew fully-confined to represent a Spacelab mission. Specific conclusions for Spacelab planning are presented along with a brief explanation of each.
2000-01-14
STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) settles into her seat inside Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-14
STS-99 Mission Specialist Mamoru Mohri (Ph.D.) takes his seat inside Space Shuttle Endeavour for a practice launch countdown during Terminal Countdown Demonstration Test (TCDT) activities for the mission. Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
2000-01-14
STS-99 Mission Specialist Gerhard Thiele, who is with the European Space Agency, goes through countdown procedures aboard the Space Shuttle Endeavour during Terminal Countdown Demonstration Test (TCDT) activities for the mission. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST
CREW TRAINING - STS-33/51L - JSC
1985-09-19
S85-40510 & S85-40511 (23 Sept. 1985) --- Two women representing the Teacher-in-Space Project undergo training in preparation for the 51-L mission in two photographs made in the Johnson Space Center’s mission simulation and training facility. In S85-40510, Sharon Christa McAuliffe (second right), prime crew member; and Barbara R. Morgan (second left), backup, are briefed in the shuttle mission simulator’s instruction station by Jerry Swain, right, instruction team leader. Others pictured are Michelle Brekke (far left) of the payload specialists’ office and Patricia A. Lawson (lower left foreground). Astronaut Ellison S. Onizuka, in S85-40511, assists Morgan with a head set as the two trainees are familiarized with launch and entry stations in the motion base shuttle mission simulator (SMS). The citizen observer (McAuliffe) is scheduled to be seated on the middeck. This picture, however, was taken at the mission specialists’ station on the flight deck. Photo credit: NASA
Mission Assurance Modeling and Simulation: A Cyber Security Roadmap
NASA Technical Reports Server (NTRS)
Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna
2012-01-01
This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.
Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard W., III; Sunada, Eric T.
2011-01-01
A process has been examined for bonding a platinum resistance thermometer (PRT) onto potential aerospace materials such as flat aluminum surfaces and a flexible copper tube to simulate coaxial cables for flight applications. Primarily, PRTs were inserted into a silver-plated copper braid to avoid stresses on the sensor while the sensor was attached with the braid to the base material for long-duration, deep-space missions. A1-1145/graphite composite (planar substrate) and copper tube have been used in this study to assess the reliability of PRT bonding materials. A flexible copper tube was chosen to simulate the coaxial cable to attach PRTs. The substrate materials were cleaned with acetone wipes to remove oils and contaminants. Later, the surface was also cleaned with ethyl alcohol and was air-dried. The materials were gently abraded and then were cleaned again the same way as previously mentioned. Initially, shielded (silver plated copper braid) PRT (type X) test articles were fabricated and cleaned. The base antenna material was pretreated and shielded, and CV-2566 NuSil silicone was used to attach the shielded PRT to the base material. The test articles were cured at room temperature and humidity for seven days. The resistance of the PRTs was continuously monitored during the thermal cycling, and the test articles were inspected prior to, at various intermediate steps during, and at the end of the thermal cycling as well. All of the PRTs survived three times the expected mission life for the JUNO project. No adhesion problems were observed in the PRT sensor area, or under the shielded PRT. Furthermore, the PRT resistance accurately tracked the thermal cycling of the chamber.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-04-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-06-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass
NASA Technical Reports Server (NTRS)
Scott, John H.
2014-01-01
The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the mission analysis products originally conceived for FY13.
Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.
STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC
1991-04-22
S91-35303 (22 April 1991) --- Astronauts Frederick D. Gregory (left) and Terrence T. Henricks (right), STS-44 commander and pilot, respectively, are joined near their launch and entry stations by F. Story Musgrave, mission specialist. The three pause while rehearsing some of the activities that will be performed during the scheduled ten-day November flight. Musgrave will be in a rear cabin station during launch and entry phases of the flight deck of the fixed-base Shuttle Mission Simulator (SMS) in the Johnson Space Center's mission simulation and training facility.
STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation
1992-02-19
S92-29406 (Feb 1992) --- Three mission specialists assigned to the STS-49 flight occupy temporary stations on the "middeck" of a Johnson Space Center (JSC) Shuttle trainer during a rehearsal of Endeavour's launch and entry phases. Left to right are astronauts Thomas D. Akers, Kathryn C. Thornton and Pierre J. Thuot. The three, along with four other NASA astronauts, will be aboard Endeavour in May for a week-long mission during which a satellite will be retrieved and boosted toward a higher orbit and extravehicular activity evaluations for Space Station Freedom assembly techniques will be conducted.
Two Teacher in Space candidates during training at JSC
NASA Technical Reports Server (NTRS)
1985-01-01
Two women representing the Teacher in Space Project undergo training in preparation for the STS 51-L mission. Sharon Christa McAuliffe (second right), prime crewmember; and Barbara R. Morgan (second left) backup, are briefed in the Shuttle mission simulator's instruction station by Jerry Swain, instruction team leader. Others pictured are Michelle Brekke (far right) of the payload specialists office and Patricia A. Lawson (lower left foreground) (40510); Astronaut Ellison S. Onizuka assists Morgan with a head set as the two trainees are familiarized with launch and entry stations in the motion base Shuttle mission simulator (SMS) (40511).
Science Operations During Planetary Surface Exploration: Desert-RATS Tests 2009-2011
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2012-01-01
NASA s Research and Technology Studies (RATS) team evaluates technology, human-robotic systems and extravehicular equipment for use in future human space exploration missions. Tests are conducted in simulated space environments, or analog tests, using prototype instruments, vehicles, and systems. NASA engineers, scientists and technicians from across the country gather annually with representatives from industry and academia to perform the tests. Test scenarios include future missions to near-Earth asteroids (NEA), the moon and Mars.. Mission simulations help determine system requirements for exploring distant locations while developing the technical skills required of the next generation of explorers.
The CanMars Analogue Mission: Lessons Learned for Mars Sample Return
NASA Astrophysics Data System (ADS)
Osinski, G. R.; Beaty, D.; Battler, M.; Caudill, C.; Francis, R.; Haltigin, T.; Hipkin, V.; Pilles, E.
2018-04-01
We present an overview and lessons learned for Mars Sample Return from CanMars — an analogue mission that simulated a Mars 2020-like cache mission. Data from 39 sols of operations conducted in the Utah desert in 2015 and 2016 are presented.
A platform for real-time online health analytics during spaceflight
NASA Astrophysics Data System (ADS)
McGregor, Carolyn
Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for - reater medical support.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Gouda, N.; Yano, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.; Yamauchi, M.
We explain simulation tools in JASMINE project(JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented(OO) methodologies are ideal tools for the simulation system of JASMINE(the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Gouda, N.; Yano, T.; Kobayashi, Y.; Suganuma, M.; Tsujimoto, T.; Sako, N.; Hatsutori, Y.; Tanaka, T.
2006-08-01
We explain simulation tools in JASMINE project (JASMINE simulator). The JASMINE project stands at the stage where its basic design will be determined in a few years. Then it is very important to simulate the data stream generated by astrometric fields at JASMINE in order to support investigations of error budgets, sampling strategy, data compression, data analysis, scientific performances, etc. Of course, component simulations are needed, but total simulations which include all components from observation target to satellite system are also very important. We find that new software technologies, such as Object Oriented (OO) methodologies are ideal tools for the simulation system of JASMINE (the JASMINE simulator). The simulation system should include all objects in JASMINE such as observation techniques, models of instruments and bus design, orbit, data transfer, data analysis etc. in order to resolve all issues which can be expected beforehand and make it easy to cope with some unexpected problems which might occur during the mission of JASMINE. So, the JASMINE Simulator is designed as handling events such as photons from astronomical objects, control signals for devices, disturbances for satellite attitude, by instruments such as mirrors and detectors, successively. The simulator is also applied to the technical demonstration "Nano-JASMINE". The accuracy of ordinary sensor is not enough for initial phase attitude control. Mission instruments may be a good sensor for this purpose. The problem of attitude control in initial phase is a good example of this software because the problem is closely related to both mission instruments and satellite bus systems.
A Facility and Architecture for Autonomy Research
NASA Technical Reports Server (NTRS)
Pisanich, Greg; Clancy, Daniel (Technical Monitor)
2002-01-01
Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.
A Method of Efficient Inclination Changes for Low-thrust Spacecraft
NASA Technical Reports Server (NTRS)
Falck, Robert; Gefert, Leon
2002-01-01
The evolution of low-thrust propulsion technologies has reached a point where such systems have become an economical option for many space missions. The development of efficient, low trip time control laws has received an increasing amount of attention in recent years, though few studies have examined the subject of inclination changing maneuvers in detail. A method for performing economical inclination changes through the use of an efficiency factor is derived front Lagrange's planetary equations. The efficiency factor can be used to regulate propellant expenditure at the expense of trip time. Such a method can be used for discontinuous-thrust transfers that offer reduced propellant masses and trip-times in comparison to continuous thrust transfers, while utilizing thrusters that operate at a lower specific impulse. Performance comparisons of transfers utilizing this approach with continuous-thrust transfers are generated through trajectory simulation and are presented in this paper.
Cockpit resource management training at People Express
NASA Technical Reports Server (NTRS)
Bruce, Keith D.; Jensen, Doug
1987-01-01
In January 1986 in a continuing effort to maintain and improve flight safety and solve some Cockpit Resource Management (CRM) problems, People Express implemented a new CRM training program. It is a continuously running program, scheduled over the next three years and includes state-of-the-art full-mission simulation (LOFT), semi-annual seminar workshops and a comprehensive academic program authored by Robert W. Mudge of Cockpit Management Resources Inc. That program is outlined and to maximize its contribution to the workshop's goals, is organized into four topic areas: (1) Program content: the essential elements of resource management training; (2) Training methods: the strengths and weaknesses of current approaches; (3) Implementation: the implementation of CRM training; and (4) Effectiveness: the effectiveness of training. It is confined as much as possible to concise descriptions of the program's basic components. Brief discussions of rationale are included, however no attempt is made to discuss or review popular CRM tenets or the supporting research.
``Big Bang" for NASA's Buck: Nearly Three Years of EUVE Mission Operations at UCB
NASA Astrophysics Data System (ADS)
Stroozas, B. A.; Nevitt, R.; McDonald, K. E.; Cullison, J.; Malina, R. F.
1999-12-01
After over seven years in orbit, NASA's Extreme Ultraviolet Explorer (EUVE) satellite continues to perform flawlessly and with no significant loss of science capabilities. EUVE continues to produce important and exciting science results and, with reentry not expected until 2003-2004, many more such discoveries await. In the nearly three years since the outsourcing of EUVE from NASA's Goddard Space Flight Center, the small EUVE operations team at the University of California at Berkeley (UCB) has successfully conducted all aspects of the EUVE mission -- from satellite operations, science and mission planning, and data processing, delivery, and archival, to software support, systems administration, science management, and overall mission direction. This paper discusses UCB's continued focus on automation and streamlining, in all aspects of the Project, as the means to maximize EUVE's overall scientific productivity while minimizing costs. Multitasking, non-traditional work roles, and risk management have led to expanded observing capabilities while achieving significant cost reductions and maintaining the mission's historical 99 return. This work was funded under NASA Cooperative Agreement NCC5-138.
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Davis, Bradley; Welch, Katherine; Walsh-Hart, Sharon; Hanseman, Dennis; Petro, Michael; Gerlach, Travis; Dorlac, Warren; Collins, Jocelyn; Pritts, Timothy
2014-08-01
Critical Care Air Transport Teams (CCATTs) are a critical component of the United States Air Force evacuation paradigm. This study was conducted to assess the incidence of task saturation in simulated CCATT missions and to determine if there are predictable performance domains. Sixteen CCATTs were studied over a 6-month period. Performance was scored using a tool assessing eight domains of performance. Teams were also assessed during critical events to determine the presence or absence of task saturation and its impact on patient care. Sixteen simulated missions were reviewed and 45 crisis events identified. Task saturation was present in 22/45 (49%) of crisis events. Scoring demonstrated that task saturation was associated with poor performance in teamwork (odds ratio [OR] = 1.96), communication (OR = 2.08), and mutual performance monitoring (OR = 1.9), but not maintenance of guidelines, task management, procedural skill, and equipment management. We analyzed the effect of task saturation on adverse patient outcomes during crisis events. Adverse outcomes occurred more often when teams were task saturated as compared to non-task-saturated teams (91% vs. 23%; RR 4.1, p < 0.0001). Task saturation is observed in simulated CCATT missions. Nontechnical skills correlate with task saturation. Task saturation is associated with worsening physiologic derangements in simulated patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
NASA Astrophysics Data System (ADS)
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
Komorowski, Matthieu; Fleming, Sarah
2015-01-01
The question of the safety of anaesthetic procedures performed by non anaesthetists or even by non physicians has long been debated. We explore here this question in the hypothetical context of an exploration mission to Mars. During future interplanetary space missions, the risk of medical conditions requiring surgery and anaesthetic techniques will be significant. On Earth, anaesthesia is generally performed by well accustomed personnel. During exploration missions, onboard medical expertise might be lacking, or the crew doctor could become ill or injured. Telemedical assistance will not be available. In these conditions and as a last resort, personnel with limited medical training may have to perform lifesaving procedures, which could include anaesthesia and surgery. The objective of this pilot study was to test the ability for unassisted personnel with no medical training to perform oro-tracheal intubation after a rapid sequence induction on a simulated deconditioned astronaut in a Mars analogue environment. The experiment made use of a hybrid simulation model, in which the injured astronaut was represented by a torso manikin, whose vital signs and hemodynamic status were emulated using a patient simulator software. Only assisted by an interactive computer tool (PowerPoint(®) presentation), five participants with no previous medical training completed a simplified induction of general anaesthesia with intubation. No major complication occurred during the simulated trials, namely no cardiac arrest, no hypoxia, no cardiovascular collapse and no failure to intubate. The study design was able to reproduce many of the constraints of a space exploration mission. Unassisted personnel with minimal medical training and familiarization with the equipment may be able to perform advanced medical care in a safe and efficient manner. Further studies integrating this protocol into a complete anaesthetic and surgical scenario will provide valuable input in designing health support systems for space exploration missions.
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Tao, Wei-Kuo; Hostetler, Chris; Kuo, Kwo-Sen; Matsui, Toshihisa; Jacob, Joseph C.; Niamsuwam, Noppasin; Johnson, Michael P.; Hair, John; Butler, Carolyn;
2011-01-01
Forward simulation is an indispensable tool for evaluation of precipitation retrieval algorithms as well as for studying snow/ice microphysics and their radiative properties. The main challenge of the implementation arises due to the size of the problem domain. To overcome this hurdle, assumptions need to be made to simplify compiles cloud microphysics. It is important that these assumptions are applied consistently throughout the simulation process. ISSARS addresses this issue by providing a computationally efficient and modular framework that can integrate currently existing models and is also capable of expanding for future development. ISSARS is designed to accommodate the simulation needs of the Aerosol/Clouds/Ecosystems (ACE) mission and the Global Precipitation Measurement (GPM) mission: radars, microwave radiometers, and optical instruments such as lidars and polarimeter. ISSARS's computation is performed in three stages: input reconditioning (IRM), electromagnetic properties (scattering/emission/absorption) calculation (SEAM), and instrument simulation (ISM). The computation is implemented as a web service while its configuration can be accessed through a web-based interface.
Boeing CST-100 Starliner Landing Simulation
2018-06-05
Boeing, NASA and U.S. Army teams rehearse safely bringing the CST-100 Starliner spacecraft home to Earth on Wed., June 6, 2018, at the U.S. Army's White Sands Missile Range in New Mexico. During the detailed landing simulation, engineers, technicians and spaceflight specialists worked through tight timelines and intense heat running through simulations of the spacecraft's landing and recovery, an operation that will cap each Starliner mission. For flight controllers at Mission Control in Houston, the simulation offered the chance to evaluate their own processes and rehearse everything from undocking the Starliner from the space station to communicating with the recovery teams in the field.
Prox-1 Automated Proximity Operations
2016-01-13
K.J., and Veto, M., "Automated Trajectory Control for On-Orbit Inspection in the Prox-1 Mission," Journal of Spacecraft and Rockets , in review...the operability of all commands needed for the minimum mission. A Simulated Communications Test was performed that demonstrated long-range uplink...Guidance, Navigation and Control subsystem 6 DOF simulation , and delivered for flight coding. Validation of the system’s capability to meet full
SWOT Oceanography and Hydrology Data Product Simulators
NASA Technical Reports Server (NTRS)
Peral, Eva; Rodriguez, Ernesto; Fernandez, Daniel Esteban; Johnson, Michael P.; Blumstein, Denis
2013-01-01
The proposed Surface Water and Ocean Topography (SWOT) mission would demonstrate a new measurement technique using radar interferometry to obtain wide-swath measurements of water elevation at high resolution over ocean and land, addressing the needs of both the hydrology and oceanography science communities. To accurately evaluate the performance of the proposed SWOT mission, we have developed several data product simulators at different levels of fidelity and complexity.
Software Aids Visualization Of Mars Pathfinder Mission
NASA Technical Reports Server (NTRS)
Weidner, Richard J.
1996-01-01
Report describes Simulator for Imager for Mars Pathfinder (SIMP) computer program. SIMP generates "virtual reality" display of view through video camera on Mars lander spacecraft of Mars Pathfinder mission, along with display of pertinent textual and graphical data, for use by scientific investigators in planning sequences of activities for mission.
Development of simulation computer complex specification
NASA Technical Reports Server (NTRS)
1973-01-01
The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.
A decision model for planetary missions
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.; Brigadier, W. L.
1976-01-01
Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.
NASA Astrophysics Data System (ADS)
Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.
2018-02-01
Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.
Nightside Structure of the Venusian Ionosphere
NASA Astrophysics Data System (ADS)
Ledvina, S. A.; Brecht, S. H.
2017-12-01
The Pioneer Venus Orbiter, PVO, was the first mission to detect large-scale structure in the nightside region of Venus. This structure is often referred to as "tail rays." Since this discovery, there has been continuous discussion as to the cause of the structure. There have been theoretical attempts to explain the structure but no definitive determination of the mechanism. Typically, the wavelengths of the structure were not always consistent with the theory. Three-dimensional hybrid simulations are reported that produce structure on the nightside of Venus. The structure seems consistent with the data. This paper will present the results of the simulations as well as a variety of numerical tests that offer some insight into the mechanism driving the development of the structure. The tests reveal that the ambipolar electric fields as produced by the gradient of the electron pressure seems to be the root cause of the structure. It will be shown that different realizations of the neutral wind modify the structure. The hybrid simulations are three dimensional with neutral winds included in the simulations. The resolution of the simulation is 50 km/cell and lower. The spherical grid used in the simulations to handle chemistry and collisions has a resolution of 5 km radially and under 50 km in the angular directions. It is these high resolution simulations that produce the structure to be discussed in this paper.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.
Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.
Building Better Planet Populations for EXOSIMS
NASA Astrophysics Data System (ADS)
Garrett, Daniel; Savransky, Dmitry
2018-01-01
The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.
VERSE - Virtual Equivalent Real-time Simulation
NASA Technical Reports Server (NTRS)
Zheng, Yang; Martin, Bryan J.; Villaume, Nathaniel
2005-01-01
Distributed real-time simulations provide important timing validation and hardware in the- loop results for the spacecraft flight software development cycle. Occasionally, the need for higher fidelity modeling and more comprehensive debugging capabilities - combined with a limited amount of computational resources - calls for a non real-time simulation environment that mimics the real-time environment. By creating a non real-time environment that accommodates simulations and flight software designed for a multi-CPU real-time system, we can save development time, cut mission costs, and reduce the likelihood of errors. This paper presents such a solution: Virtual Equivalent Real-time Simulation Environment (VERSE). VERSE turns the real-time operating system RTAI (Real-time Application Interface) into an event driven simulator that runs in virtual real time. Designed to keep the original RTAI architecture as intact as possible, and therefore inheriting RTAI's many capabilities, VERSE was implemented with remarkably little change to the RTAI source code. This small footprint together with use of the same API allows users to easily run the same application in both real-time and virtual time environments. VERSE has been used to build a workstation testbed for NASA's Space Interferometry Mission (SIM PlanetQuest) instrument flight software. With its flexible simulation controls and inexpensive setup and replication costs, VERSE will become an invaluable tool in future mission development.
Mission Design and Simulation Considerations for ADReS-A
NASA Astrophysics Data System (ADS)
Peters, S.; Förstner, R.; Fiedler, H.
2016-09-01
Space debris in general has become a major problem for modern space activities. Guidelines to mitigate the threat have been recommended, better prediction models are developed and an advanced observation of objects orbiting Earth is in progress. And still - without the implementation of active debris removal (ADR), the number of debris in space will exponentially increase. To support the ongoing research on ADR-missions, this paper presents the updated mission design of ADReS-A (Autonomous Debris Removal Satellite - #A) - one possible concept for the multiple active removal of large debris in Low Earth orbit, in this case especially of rocket bodies of the SL-8-type. ADReS-A as chaser satellite is supported by at least 5 de-orbit kits, allowing for the same number of targets to be removed. While ADReS-A is conceived for handling of the target, the kit's task is the controlled re-entry of the designated rocket body. The presented mission design forms the basis for the simulation environment in progress. The simulation shall serve as testbed to test multiple scenarios in terms of approach and abort optimization or different tumbling modes of the target. The ultimate goal is the test of autonomous behaviors of the spacecraft in case of unforeseen failures during the approach phase. Considerations to create a simulation for the described mission are presented and discussed. A first visualization of pre-calculated aboard trajectories can be found at the end of this paper.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. Dozens of media are gathered at the slidewire basket landing area on Launch Pad 39B to interview and hear comments from the STS-114 crew: Mission Specialists Andrew Thomas, Wendy Lawrence and Stephen Robinson, Commander Eileen Collins, Mission Specialists Charles Camarda and Soichi Noguchi, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.