Science.gov

Sample records for continuous aortic flow

  1. Continuous flow left ventricular assist device implantation concomitant with aortic arch replacement and aortic valve closure in a patient with end-stage heart failure associated with bicuspid aortic valve.

    PubMed

    Akiyama, Masatoshi; Hosoyama, Katsuhiro; Kumagai, Kiichiro; Kawamoto, Shunsuke; Saiki, Yoshikatsu

    2015-12-01

    Left ventricular assist device (LVAD) implantation has become an established treatment for patients with end-stage heart failure as a bridge to cardiac transplantation. During LVAD implantation, some patients require concomitant surgeries, including tricuspid valve repair, aortic valve repair or replacement, and patent foramen ovale closure. However, concomitant aortic surgeries are rare in patients requiring LVAD implantation. We successfully performed total arch replacement with an open distal technique, aortic valve closure, and continuous flow LVAD implantation simultaneously. PMID:25957796

  2. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation.

    PubMed

    Zamarripa Garcia, Mario A; Enriquez, Luz A; Dembitsky, Walter; May-Newman, Karen

    2008-01-01

    There is evidence that the incidence of aortic valve incompetence (AI) and other valvular pathologies may increase as more patients are submitted to longer periods of ventricular assist device (VAD) support. There is a need to better understand the mechanisms associated with the onset of these conditions and other possible complications related to the altered hemodynamics of VAD patients. In this study, the effect of AI on the hemodynamic response of continuous flow VAD (C-VAD) patients was measured in a mock loop over a range of pump speeds and level of native cardiac function. Our results showed that, in the presence of sufficient ventricular function, decreasing the C-VAD speed can allow a transition from series to parallel flow. Our study demonstrated that AI reduces the aortic pressure and flow when system impedance is unchanged. AI produces wasteful recirculation that substantially increases the pump work and decreases systemic perfusion, in particular during series flow conditions coupled with higher C-VAD speeds. The hematologic consequence of this regurgitant flow is a much higher exposure to shear for the blood, increasing the likelihood of hemolysis and thrombosis. While a certain degree of AI can be tolerated by a heart with good cardiac function, the consequences of AI for patients with VADs and poor cardiac function are much greater. Valve dysfunction in VAD patients may be related to structural changes in the tissue induced by altered biomechanics and excessive stress.

  3. Flow in an Aortic Coarctation

    NASA Astrophysics Data System (ADS)

    Loma, Luis; Miller, Paul; Hertzberg, Jean

    2009-11-01

    Coarctation of the aorta is a congenital cardiovascular defect that causes a constriction in the descending thoracic aorta. To gain a better understanding of the cause of post-surgical problems, a rigid glass and a compliant in vitro model of the aortic arch and descending aorta with a coarctation were constructed. Near-physiologic compliance was obtained using a silicone elastomer. Stereoscopic PIV was used to obtain 3D velocity maps. Results show a high speed turbulent jet formed at the exit of the coarctation. Flow in the rigid model was significantly different from in the compliant model. In the rigid model, the jet was symmetric, creating a toroidal recirculation area. In the compliant model, the jet was directed towards the medial wall, inducing flow reversal only at the lateral wall. Peak velocities and turbulence intensities were higher in the rigid model, however shear rate values in the compliant model were significantly above both the rigid model and normal in vivo values at the medial wall. In both models the reattachment region fluctuated, creating oscillatory shear.

  4. Ascending aortic blood flow dynamics following intense exercise.

    PubMed

    Kilgour, R D; Sellers, W R

    1990-10-01

    The purpose of this study was to compare and contrast aortic blood flow kinetics during recovery from intense aerobic (maximal oxygen uptake test) and anaerobic (Wingate anaerobic power test) exercise. Fifteen healthy male subjects (VO2max = 56.1 +/- 5.8 mk/kg/min) participated in this study. Beat-to-beat peak aortic blood flow velocity (pkV) and acceleration (pkA) measurements were obtained by placing a 3.0 MHz continuous-wave ultrasonic transducer on the suprasternal notch at rest and during recovery (immediately post-exercise, 2.5 min, and 5.0 min) following the two exercise conditions. Peak velocity and acceleration significantly increased (p less than 0.01) from rest to immediately post-exercise and remained elevated throughout the 5-min recovery period. No differences were observed between the aerobic and anaerobic tests. Stroke distance significantly declined (p less than 0.01) immediately following exercise and progressively rose during the 5-min recovery period. The results indicate that: 1) aortic blood flow kinetics remained elevated during short-term recovery, and 2) intense aerobic and anaerobic exercise exhibit similar post-exercise aortic blood flow kinetics. PMID:2262232

  5. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  6. Effects of aortic irregularities on blood flow.

    PubMed

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects. PMID:26104133

  7. Pulsatile blood flow in Abdominal Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  8. Chaotic flow in an aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Parashar, Abhinav; Singh, Rahul; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    Oscillatory flow in straight and deformed geometries is seen in various biomedical applications. The nature of flow plays a significant role in the pathogenesis of an abdominal aortic aneurysm. The present study examines the onset of chaotic flow inside a bulged tube under oscillating flow conditions. An experimental facility is set up for generating the oscillatory flow field inside the model. A fusiform shaped model is hollowed out in a rectangular silicone model. A mixture of water and glycerin is used as the working liquid. Two-camera imaging system placed at right angles is used for three-component velocity measurement of a spherical particle inside the model. Images recorded as a time sequence are analyzed by a particle tracking algorithm. The particle trajectories in space and instantaneous velocities within the bulge have been obtained from experiments as well as numerical simulation. The frequency of oscillation considered is 1.2 Hz and the peak Reynolds numbers are in the range of 650-1200 (experiments) and 1000-3500 (simulation). The dimensionless frequency defined by the Womersely number is in the range of 10-12. Velocity signals obtained from the experiment have been analyzed to study chaotic behavior of fluid flow. Chaos is quantified in terms of the largest Lyapunov exponent, positive values being a signature of chaos. The Lyapunov exponent increases with Reynolds number and is significantly higher in the bulged geometry compared to that of the straight tube. The signature of chaotic flow is also seen in power spectra and Poincaré plots.

  9. Experimental validation of Doppler echocardiographic measurement of volume flow through the stenotic aortic valve.

    PubMed

    Otto, C M; Pearlman, A S; Gardner, C L; Enomoto, D M; Togo, T; Tsuboi, H; Ivey, T D

    1988-08-01

    In aortic stenosis, evaluation of aortic valve area by the continuity equation assumes that the volume of flow through the stenotic valve can be measured accurately in the left ventricular outflow tract. To test the accuracy of Doppler volume-flow measurement proximal to a stenotic valve, we developed an open-chest canine model in which the native leaflets were sutured together to create variable degrees of acute aortic stenosis. Left ventricular and aortic pressures were measured with micromanometer-tipped catheters. Volume flow was controlled and varied by directing systemic venous return through a calibrated roller pump and back to the right atrium. Because transaortic volume flow will not equal roller pump output when there is coexisting aortic insufficiency (present in 67% of studies), transaortic flow was measured by electromagnetic flowmeter with the flow probe placed around the proximal descending thoracic aorta, just beyond the ligated arch vessels. In 12 adult, mongrel dogs (mean weight, 25 kg), the mean transaortic pressure gradient ranged from 2 to 74 mm Hg, and transaortic volume flow ranged from 0.9 to 3.2 l/min. In four dogs, electromagnetic flow that was measured distal to the valve was accurate compared with volume flow determined by timed collection of total aortic flow into a graduated cylinder (n = 24, r = 0.97, electromagnetic flow = 0.87 Direct +0.13 l/min). In eight subsequent dogs, electromagnetic flow was compared with transaortic cardiac output measured by Doppler echocardiography in the left ventricular outflow tract as circular cross-sectional area [pi(D/2)2] x left ventricular outflow tract velocity-time integral x heart rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2969311

  10. Flow modulation algorithms for intra-aortic rotary blood pumps to minimize coronary steal.

    PubMed

    Ising, Mickey S; Koenig, Steven C; Sobieski, Michael A; Slaughter, Mark S; Giridharan, Guruprasad A

    2013-01-01

    Intra-aortic rotary blood pumps (IARBPs) have been used for partial cardiac support during cardiogenic shock, myocardial infarction, percutaneous coronary intervention, and potentially viable for long-term circulatory support. Intra-aortic rotary blood pump support continuously removes volume from the aortic root, which lowers left ventricular preload, external work (LVEW), and improves end-organ perfusion. However, IARBP support diminishes aortic root pressure and coronary artery. It may also create "coronary steal," which may produce a myocardial hypoxic state adversely affecting patient outcomes. Our objective was to develop IARBP flow modulation algorithms to eliminate coronary steal and improve the myocardial supply-demand ratio without compromising the clinical benefits of restored end-organ perfusion and reduced LVEW. The hemodynamic responses of the native ventricle, coronary, and systemic vasculature to timing and synchronization of IARBP flow modulation (cyclic variation of pump flow) were investigated using a clinical heart failure (HF) computer simulation model. A total of more than 150 combinations of varying pulse widths and time-shifts to modulate IARBP flow were tested at mean IARBP flow rates of 2, 3, and 4 L/min, and compared with HF baseline values (no IARBP support). Increasing IARBP support augmented cardiac output and diminished LVEW. Nonmodulated IARBP support significantly diminished mean diastolic coronary flow (-49%) and myocardial supply-demand ratio (-12%) compared with HF baseline. Intra-aortic rotary blood pump flow modulation increased mean diastolic coronary flow (+17%) and myocardial supply-demand ratio (+24%) compared with nonmodulated IARBP (constant flow). Modulation and synchronization of IARBP support augmented coronary artery perfusion and myocardial supply-demand ratio in simulated clinical HF while also restoring end-organ perfusion and reducing LVEW. Implementation of IARBP support with flow modulation may prevent

  11. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function.

  12. Multiplane transesophageal echocardiographic acquisition of ascending aortic flow velocities: A comparison with established techniques.

    PubMed

    Harris, S N; Luther, M A; Perrino, A C

    1999-09-01

    Acquisition of ascending aortic flow velocities with monoplane transesophageal echocardiography (TEE) have been problematic because of limitations of available imaging planes and alignment of the Doppler beam with aortic flow. The rotatable imaging array of multiplane TEE (Multi TEE) may provide improved alignment with ascending aortic blood flow. The purpose of this study was to establish the validity of maximal aortic flow velocities (VMax) and velocity time integrals (VTI) obtained by a Multi TEE continuous wave Doppler technique by comparison with those obtained by established echocardiographic techniques, suprasternal Doppler (SSD), and monoplane TEE (Mono TEE). Forty-five patients scheduled for elective surgery were prospectively studied. Multi TEE-obtained VMax and VTI were significantly greater (P <.05), 120 +/- 28.9 cm/s and 25.8 +/- 7 cm, than those obtained by the SSD method, 100.2 +/- 28.6 cm/s and 19.8 +/- 6.8 cm, respectively. Bias analysis revealed that Multi TEE better assessed VMax (mean difference -19.7, SD of the difference of 28 cm/s) and VTI (mean difference -5.9, SD of the difference of 6.4 cm) than the SSD method. Multi TEE exhibited values for VMax 10% or greater than those obtained by SSD in 18 (48. 6%) of 37 patients, and Multi TEE was 10% or greater than SSD in 23 (67%) of 37 patients for VTI determination. Values obtained by Multi TEE and Mono TEE showed close agreement. Multi TEE provides a favorable alignment for continuous wave Doppler interrogation of aortic flow and compared favorably to established techniques. This technique expands the utility of TEE to evaluate aortic valvular function and cardiac performance.

  13. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  14. Viscous Energy Loss in the Presence of Abnormal Aortic Flow

    PubMed Central

    Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R. O.; Carr, J.; Collins, J.; Malaisrie, C.; Markl, M.

    2014-01-01

    Purpose To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses, and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Methods 4D flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n=12, age=37±10), patients with aortic dilation (n=16, age=52±8), and patients with aortic valve stenosis matched for age and aortic size (n=14, age=46±15), using a relationship between the 3D velocity field and viscous energy dissipation. Results Viscous energy loss was significantly elevated in the thoracic aorta for patients with dilated aorta (3.6±1.3 mW, p=0.024) and patients with aortic stenosis (14.3±8.2 mW, p<0.001) compared to healthy volunteers (2.3±0.9 mW). The same pattern of significant differences were seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2±1.1 mW, p=0.021) and patients with aortic stenosis (10.9±6.8 mW, p<0.001) were elevated compared to healthy volunteers (1.2±0.6 mW). Conclusion This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. PMID:24122967

  15. The relation between transaortic pressure difference and flow during dobutamine stress echocardiography in patients with aortic stenosis

    PubMed Central

    Takeda, S; Rimington, H; Chambers, J

    1999-01-01

    OBJECTIVE—To investigate the relation between transaortic pressure difference and flow in patients with aortic stenosis.
METHODS—50 asymptomatic patients with all grades of aortic stenosis were studied using dobutamine stress echocardiography. Individual plots of mean pressure drop against flow were drawn. Comparisons were made between grades of aortic stenosis as defined by the continuity equation.
RESULTS—A significant linear relation between pressure difference and flow was found in 34 patients (68%). There was a significant curvilinear relation in four (8%), while no significant regression line could be fitted in 12 (24%). In the 34 patients with linear fits, the slopes (mean (SD)) were 0.08 (0.07) in mild, 0.10 (0.04) in moderate, and 0.22 (0.16) in severe aortic stenosis (p = 0.0055).
CONCLUSIONS—Transaortic pressure difference can be related directly to flow in many patients with all grades of aortic stenosis. However, there are individual differences in slope and intercept suggesting that resistance calculated at rest may not always be representative. Raw pressure drop/flow plots may be an alternative method of describing valve function.


Keywords: aortic stenosis; continuity equation; resistance; Doppler echocardiography PMID:10377300

  16. Counterpulsation with symphony prevents retrograde carotid, aortic, and coronary flows observed with intra-aortic balloon pump support.

    PubMed

    Giridharan, Guruprasad A; Bartoli, Carlo R; Spence, Paul A; Dowling, Robert D; Koenig, Steven C

    2012-07-01

    A counterpulsation device (Symphony) is being developed to provide long-term circulatory support for advanced heart failure (HF) patients. In acute animal experiments, flow waveform patterns in the aortic, carotid, and coronary arteries were compared during Symphony and intra-aortic balloon pump (IABP) support. Human data were examined for similarities. The 30-mL Symphony was compared to a 40-mL IABP in calves with cardiac dysfunction (80-100 kg, n = 8). Aortic pressures and aortic, carotid, and coronary artery flows were simultaneously recorded at baseline (devices off) and during 1:1 and 1:2 support. Forward, retrograde, and mean flows were calculated and compared for each test condition. Findings were also compared to aortic flow measurements recorded in HF patients (n = 21) supported by 40-mL IABP. IABP caused significant retrograde flows in the aorta, coronary (IABP: -24 ± 8 mL/min, Symphony: -6 ± 2 mL/min, baseline: -2 ± 1 mL/min, P < 0.05), and carotid arteries (IABP: -30 ± 5 mL/min, Symphony: -0 ± 0 mL/min, baseline: -0 ± 0 L/min, P < 0.05) during ventricular systole compared to the Symphony. IABP support produced higher diastolic pressure and flow augmentation compared to Symphony. Due to retrograde flows during IABP support, Symphony provided higher overall coronary, carotid, and aortic flows. Similar reduction in total aortic flows due to retrograde flow was observed in HF patients during IABP support. Counterpulsation with an IABP via aortic volume displacement produces retrograde flows during rapid balloon deflation that reduces total flow. Counterpulsation with Symphony via volume removal eliminates retrograde flow and improves total flow more than that achieved with IABP. The Symphony may provide long-term hemodynamic benefits in HF patients.

  17. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  18. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity. PMID:24962383

  19. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  20. Continuous flow photochemistry.

    PubMed

    Gilmore, Kerry; Seeberger, Peter H

    2014-06-01

    Due to the narrow width of tubing/reactors used, photochemistry performed in micro- and mesoflow systems is significantly more efficient than when performed in batch due to the Beer-Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations. PMID:24890908

  1. Continuous flow photochemistry.

    PubMed

    Gilmore, Kerry; Seeberger, Peter H

    2014-06-01

    Due to the narrow width of tubing/reactors used, photochemistry performed in micro- and mesoflow systems is significantly more efficient than when performed in batch due to the Beer-Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations.

  2. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  3. Aortic arch replacement with a beating heart: a simple method using continuous 3-way perfusion.

    PubMed

    Abu-Omar, Y; Ali, J M; Colah, S; Dunning, J J

    2014-01-01

    We describe a simplified 3-way perfusion strategy that could be used in complex aortic procedures, which ensures continuous end-organ perfusion and minimizes the potential risks of cardiac, cerebral and peripheral ischaemic complications.

  4. Complications of Continuous-Flow Mechanical Circulatory Support Devices

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Left ventricular assist devices (LVADs), more importantly the continuous-flow subclass, have revolutionized the medical field by improving New York Heart Association (NYHA) functional class status, quality of life, and survival rates in patients with advanced systolic heart failure. From the first pulsatile device to modern day continuous-flow devices, LVADs have continued to improve, but they are still associated with several complications. These complications include infection, bleeding, thrombosis, hemolysis, aortic valvular dysfunction, right heart failure, and ventricular arrhythmias. In this article, we aim to review these complications to understand the most appropriate approach for their prevention and to discuss the available therapeutic modalities. PMID:26052234

  5. Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve.

    PubMed

    Allen, Bradley D; Markl, Michael; Barker, Alex J; van Ooij, Pim; Carr, James C; Malaisrie, S Chris; McCarthy, Patrick; Bonow, Robert O; Kansal, Preeti

    2016-04-01

    In patients with bicuspid aortic valve (BAV), beta-blockers (BB) are assumed to slow ascending aorta (AAo) dilation by reducing wall shear stress (WSS) on the aneurysmal segment. The aim of this study was to assess differences in AAo peak velocity and WSS in BAV patients with and without BB therapy. BAV patients receiving BB (BB+, n = 30, age: 47 ± 11 years) or not on BB (BB-, n = 30, age: 46 ± 13 years) and healthy controls (n = 15, age: 43 ± 11 years) underwent 4D flow MRI for the assessment of in vivo aortic 3D blood flow. Peak systolic velocities and 3D WSS were calculated at the anterior and posterior walls of the AAo. Both patient groups had higher maximum and mean WSS relative to the control group (p = 0.001 to p = 0.04). WSS was not reduced in the BB+ group compared to BB- patients in the anterior AAo (maximum: 1.49 ± 0.47 vs. 1.38 ± 0.49 N/m(2), p = 0.99, mean: 0.76 ± 0.2 vs. 0.74 ± 0.18 N/m(2), p = 1.00) or posterior AAo (maximum: 1.45 ± 0.42 vs. 1.39 ± 0.58 N/m(2), p = 1.00; mean: 0.65 ± 0.16 vs. 0.63 ± 0.16 N/m(2), p = 1.00). AAo peak velocity was elevated in patients compared to controls (p < 0.01) but similar for BB+ and BB- groups (p = 0.42). Linear models identified significant relationships between aortic stenosis severity and increased maximum WSS (β = 0.186, p = 0.007) and between diameter at the sinus of Valsalva and reduced mean WSS (β = -0.151, p = 0.045). Peak velocity and systolic WSS were similar for BAV patients irrespective of BB therapy. Further prospective studies are needed to investigate the impact of dosage and duration of BB therapy on aortic hemodynamics and development of aortopathy. PMID:26817758

  6. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  7. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  8. Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta: potential implication for retrograde embolic stroke in hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2013-09-01

    Aortic stiffening often precedes cardiovascular diseases, including stroke, but the underlying pathophysiological mechanisms remain obscure. We hypothesized that such abnormalities could be attributable to altered central blood flow dynamics. In 296 patients with uncomplicated hypertension, Doppler velocity pulse waveforms were recorded at the proximal descending aorta and carotid artery to calculate the reverse/forward flow ratio and diastolic/systolic flow index, respectively. Tonometric waveforms were recorded on the radial artery to estimate aortic pressure and characteristic impedance (Z0) and to determine carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities. In all subjects, the aortic flow waveform was bidirectional, comprising systolic forward and diastolic reverse flows. The aortic reverse/forward flow ratio (35 ± 10%) was positively associated with parameters of aortic stiffness (including pulse wave velocity, Z0, and aortic/peripheral pulse wave velocity ratio), independent of age, body mass index, aortic diameter, and aortic pressure. The carotid flow waveform was unidirectional and bimodal with systolic and diastolic maximal peaks. There was a positive relationship between the carotid diastolic/systolic flow index (28 ± 9%) and aortic reverse/forward flow ratio, which remained significant after adjustment for aortic stiffness and other related parameters. The Bland-Altman plots showed a close time correspondence between aortic reverse and carotid diastolic flow peaks. In conclusion, aortic stiffness determines the extent of flow reversal from the descending aorta to the aortic arch, which contributes to the diastolic antegrade flow into the carotid artery. This hemodynamic relationship constitutes a potential mechanism linking increased aortic stiffness, altered flow dynamics, and increased stroke risk in hypertension.

  9. Stress analysis in a layered aortic arch model under pulsatile blood flow

    PubMed Central

    Gao, Feng; Watanabe, Masahiro; Matsuzawa, Teruo

    2006-01-01

    Background Many cardiovascular diseases, such as aortic dissection, frequently occur on the aortic arch and fluid-structure interactions play an important role in the cardiovascular system. Mechanical stress is crucial in the functioning of the cardiovascular system; therefore, stress analysis is a useful tool for understanding vascular pathophysiology. The present study is concerned with the stress distribution in a layered aortic arch model with interaction between pulsatile flow and the wall of the blood vessel. Methods A three-dimensional (3D) layered aortic arch model was constructed based on the aortic wall structure and arch shape. The complex mechanical interaction between pulsatile blood flow and wall dynamics in the aortic arch model was simulated by means of computational loose coupling fluid-structure interaction analyses. Results The results showed the variations of mechanical stress along the outer wall of the arch during the cardiac cycle. Variations of circumferential stress are very similar to variations of pressure. Composite stress in the aortic wall plane is high at the ascending portion of the arch and along the top of the arch, and is higher in the media than in the intima and adventitia across the wall thickness. Conclusion Our analysis indicates that circumferential stress in the aortic wall is directly associated with blood pressure, supporting the clinical importance of blood pressure control. High stress in the aortic wall could be a risk factor in aortic dissections. Our numerical layered aortic model may prove useful for biomechanical analyses and for studying the pathogeneses of aortic dissection. PMID:16630365

  10. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  11. Continuous free-flow electrophoresis.

    PubMed

    Krivánková, L; Bocek, P

    1998-06-01

    This review evaluates the literature on continuous free flow electrophoresis, published during the last four years. Its aim is to serve not only experts in the field but also newcomers, and, therefore, it also briefly describes the principles of the method and the techniques used, referring to fundamental papers published earlier. The actual commercial instrumentation is briefly outlined. A substantial part of this review is devoted to the optimization of the performance of this method. Finally, diverse applications of fractionations of charged species in solution, ranging from small ions to biological particles and cells, are surveyed.

  12. Flow Behavior in the Left Heart Ventricle Following Apico-Aortic Bypass Surgery

    NASA Astrophysics Data System (ADS)

    Shahriari, Shahrokh; Jeyhani, Morteza; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Apico-aortic bypass (AAB) surgery is an alternative for transcatheter aortic valve implantation (TAVI) to reduce left ventricle (LV) overload in patients with severe aortic stenosis (AS). It consists in connecting the apex of the LV to the descending thoracic aorta with a valved conduit. Postoperative flow assessments show that two thirds of the outflow is conducted from the LV apex to the conduit, while only one third crosses the native aortic valve. In this study, we performed high speed particle image velocimetry (PIV) measurements of flow pattern within an in vitro elastic model of LV in the presence of a very severe AS, before and after AAB. Results indicate that AAB effectively relieves the LV outflow obstruction; however, it also leads to abnormal ventricular flow patterns. Normal LV flow dynamics is characterized by an emerging mitral jet flow followed by the development of a vortical flow with velocities directed towards the aortic valve, while measurements in the presence of AAB show systolic flow bifurcating to the apical conduit and to the aortic valve outflow tract. This study provides the first insight into the LV flow structure after AAB including outflow jets and disturbed stagnation regions.

  13. Extended 3D Approach for Quantification of Abnormal Ascending Aortic Flow

    PubMed Central

    Sigovan, Monica; Dyverfeldt, Petter; Wrenn, Jarrett; Tseng, Elaine E.; Saloner, David; Hope, Michael D.

    2015-01-01

    Background Flow displacement quantifies eccentric flow, a potential risk factor for aneurysms in the ascending aorta, but only at a single anatomic location. The aim of this study is to extend flow displacement analysis to 3D in patients with aortic and aortic valve pathologies. Methods 43 individuals were studied with 4DFlow MRI in 6 groups: healthy, tricuspid aortic valve (TAV) with aortic stenosis (AS) but no dilatation, TAV with dilatation but no AS, and TAV with both AS and dilatation, BAV without AS or dilatation, BAV without AS but with dilation. The protocol was approved by our institutional review board, and informed consent was obtained. Flow displacement was calculated for multiple planes along the ascending aorta, and 2D and 3D analyses were compared. Results Good correlation was found between 2D flow displacement and both maximum and average 3D values (r>0.8). Healthy controls had significantly lower flow displacement values with all approaches (p<0.05). The highest flow displacement was seen with stenotic TAV and aortic dilation (0.24±0.02 with maximum flow displacement). The 2D approach underestimated the maximum flow displacement by more than 20% in 13 out of 36 patients (36%). Conclusions The extended 3D flow displacement analysis offers a more comprehensive quantitative evaluation of abnormal systolic flow in the ascending aorta than 2D analysis. Differences between patient subgroups are better demonstrated, and maximum flow displacement is more reliable assessed. PMID:25721998

  14. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement.

    PubMed

    Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2016-03-01

    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow. PMID:26493195

  15. The origin and significance of secondary flows in the aortic arch.

    PubMed

    Black, M M; Hose, D R; Lawford, P V

    1995-01-01

    This paper comprises a study of the secondary flow patterns that can develop in the human aortic arch. Clinical evidence of these secondary flows has been obtained by Kilner et al. using magnetic resonance velocity mapping techniques. Some of their results are presented for comparison in this paper. Four difference parametric models of the aortic arch have been analysed using computational fluid dynamic techniques. Both steady and transient flow conditions have been considered and two different commercially available software packages were used, namely FIDAP and FLOTRAN. A satisfactory comparison of the theoretical analysis with the results, both in vivo and in vitro, obtained by Kilner et al. for their out-of-plane inlet model was found. The theoretical analysis can now be extended to analyse the effect of different configurations and orientations of artificial aortic valves on the resulting aortic arch flow patterns.

  16. Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography.

    PubMed

    Chelu, Raluca G; van den Bosch, Annemien E; van Kranenburg, Matthijs; Hsiao, Albert; van den Hoven, Allard T; Ouhlous, Mohamed; Budde, Ricardo P J; Beniest, Kirsten M; Swart, Laurens E; Coenen, Adriaan; Lubbers, Marisa M; Wielopolski, Piotr A; Vasanawala, Shreyas S; Roos-Hesselink, Jolien W; Nieman, Koen

    2016-02-01

    Over the past 10 years there has been intense research in the development of volumetric visualization of intracardiac flow by cardiac magnetic resonance (CMR).This volumetric time resolved technique called CMR 4D flow imaging has several advantages over standard CMR. It offers anatomical, functional and flow information in a single free-breathing, ten-minute acquisition. However, the data obtained is large and its processing requires dedicated software. We evaluated a cloud-based application package that combines volumetric data correction and visualization of CMR 4D flow data, and assessed its accuracy for the detection and grading of aortic valve regurgitation using transthoracic echocardiography as reference. Between June 2014 and January 2015, patients planned for clinical CMR were consecutively approached to undergo the supplementary CMR 4D flow acquisition. Fifty four patients(median age 39 years, 32 males) were included. Detection and grading of the aortic valve regurgitation using CMR4D flow imaging were evaluated against transthoracic echocardiography. The agreement between 4D flow CMR and transthoracic echocardiography for grading of aortic valve regurgitation was good (j = 0.73). To identify relevant,more than mild aortic valve regurgitation, CMR 4D flow imaging had a sensitivity of 100 % and specificity of 98 %. Aortic regurgitation can be well visualized, in a similar manner as transthoracic echocardiography, when using CMR 4D flow imaging. PMID:26498478

  17. Defining pulsatility during continuous-flow ventricular assist device support.

    PubMed

    Soucy, Kevin G; Koenig, Steven C; Giridharan, Guruprasad A; Sobieski, Michael A; Slaughter, Mark S

    2013-06-01

    Continuous-flow ventricular assist devices (CVADs) have gained widespread use as an effective clinical therapy for patients with advanced-stage heart failure. Axial and centrifugal CVADs have been successfully used as bridge-to-transplant and destination therapy. CVADs are smaller, more reliable, and less complex than the first-generation pulsatile-flow ventricular assist devices. Despite their recent clinical success, arteriovenous malformations, gastrointestinal bleeding, hemorrhagic strokes, aortic valve insufficiency, and valve fusion have been reported in heart failure patients supported by CVADs. It has been hypothesized that diminished arterial pressure and flow pulsatility delivered by CVAD may be a contributing factor to these adverse events. Subsequently, the clinical significance of vascular pulsatility continues to be highly debated. Studies comparing pulsatile-flow and continuous-flow support have presented conflicting findings, largely due to variations in device operation, support duration, and the criteria used to quantify pulsatility. Traditional measurements of pulse pressure and pulsatility index are less effective at quantifying pulsatility for mechanically derived flows, particularly with the growing trend of CVAD speed modulation to achieve various pulsatile flow patterns. Kinetic measurements of energy equivalent pressure and surplus hemodynamic energy can better quantify pulsatile energies, yet technologic and conceptual challenges are impeding their clinical adaption. A review of methods for quantifying vascular pulsatility and their application as a research tool for investigating physiologic responses to CVAD support are presented. PMID:23540401

  18. Assessment of baroreflex sensitivity by continuous noninvasive monitoring of peripheral and central aortic pressure.

    PubMed

    Kouchaki, Zahra; Butlin, Mark; Qasem, Ahmed; Avolio, Alberto P

    2014-01-01

    Noninvasive assessment of baroreceptor sensitivity (BRS) facilitates clinical investigation of autonomic function. The spontaneous sequence method estimates BRS using the continuous measurement of arterial pressure in the finger. Since the baroreceptors are centrally located (aortic arch, carotid arteries), this study assessed the use of a continuous aortic pressure signal derived from the peripheral pressure pulse to compute the BRS from changes in systolic pressure (SBP) and pulse interval (PI). BRS computed from central aortic (cBRS) and peripheral pressure (pBRS) was calculated in 12 healthy subjects (25-62 years, 7 females). The difference between pBRS and cBRS was calculated for four levels of pulse lags between changes in SBP and PI. For each lag and for the pooled data for all lags, cBRS was significantly correlated with pBRS (r(2)=0.82). The within subject difference ranged from -41.2% to 59.2%. This difference was not related to age, gender of hemodynamic parameters (systolic or diastolic pressure, heart rate, aortic pulse wave velocity). However 18.2% of the variance was due to the difference in the number of spontaneous pulse sequences used to determine values of cBRS and pBRS. The differences between pBRS and cBRS are in the range of values of BRS as those found, in other studies, to discriminate between patient groups with different levels of autonomic function. Findings of this study suggest that, given the heart rate dependent amplification of the arterial pressure pulse between the central aorta and the peripheral limbs, BRS determined from central aortic pressure derived from the peripheral pulse may provide an improved method for noninvasive assessment of baroreceptor function.

  19. Does aortic regurgitation affect transmitral flow? An echo-Doppler study.

    PubMed

    Castini, D; Gentile, F; Siffredi, M; Lippolis, A; Mangiarotti, E; Donzelli, W; Maggi, G C

    1993-01-01

    Recent studies suggest that the presence of aortic regurgitation can interfere with Doppler measurement of mitral pressure half-time in patients with mitral stenosis. Amongst the factors affecting the transmitral flow in aortic regurgitation a putative role may be played by the mechanical hit of the aortic regurgitant jet impinging on the anterior mitral leaflet, as is very often seen with Doppler Color Flow examination. This study was designed to evaluate the effects of pure aortic regurgitation on the transmitral flow in patients with normal mitral valves. We studied 35 patients affected by pure chronic aortic regurgitation but with a normal mitral valve and compared them with 30 normal subjects. In all the patients the aortic regurgitant jet was directed toward the anterior mitral leaflet. In all the patients and control subjects a standard echo-Doppler examination was performed, sampling the transmitral flow at the level of the tip of the mitral leaflets. In 7 patients and 11 normal subjects the transmitral flow was also sampled at the level of the mitral annulus. Patients with aortic regurgitation showed significantly higher values of the mitral pressure half-time (61.04 +/- 15.14 vs 50.59 +/- 7.07 ms, P < 0.05) and of the time-velocity integral of the total transmitral flow, while the other parameters of transmitral flow, the mitral annulus diameter and the mitral stroke volume didn't show statistically significant differences. The comparison of the pressure half-time and time-velocity flow values measured at the level of the mitral annulus between patients and normal subjects didn't show significant differences.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  1. Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm

    PubMed Central

    Yeow, Siang Lin; Leo, Hwa Liang

    2016-01-01

    This study investigates the effect of a novel flow remodeling stent graft (FRSG) on the hemodynamic characteristics in highly angulated abdominal aortic aneurysm based on computational fluid dynamics (CFD) approach. An idealized aortic aneurysm with varying aortic neck angulations was constructed and CFD simulations were performed on nonstented models and stented models with FRSG. The influence of FRSG intervention on the hemodynamic performance is analyzed and compared in terms of flow patterns, wall shear stress (WSS), and pressure distribution in the aneurysm. The findings showed that aortic neck angulations significantly influence the velocity flow field in nonstented models, with larger angulations shifting the mainstream blood flow towards the center of the aorta. By introducing FRSG treatment into the aneurysm, erratic flow recirculation pattern in the aneurysm sac diminishes while the average velocity magnitude in the aneurysm sac was reduced in the range of 39% to 53%. FRSG intervention protects the aneurysm against the impacts of high velocity concentrated flow and decreases wall shear stress by more than 50%. The simulation results highlighted that FRSG may effectively treat aneurysm with high aortic neck angulations via the mechanism of promoting thrombus formation and subsequently led to the resorption of the aneurysm. PMID:27247612

  2. Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion

    PubMed Central

    Winship, Ian R; Armitage, Glenn A; Ramakrishnan, Gomathi; Dong, Bin; Todd, Kathryn G; Shuaib, Ashfaq

    2014-01-01

    Collateral circulation provides an alternative route for blood flow to reach ischemic tissue during a stroke. Blood flow through the cerebral collaterals is a critical predictor of clinical prognosis after stroke and response to recanalization, but data on collateral dynamics and collateral therapeutics are lacking. Here, we investigate the efficacy of a novel approach to collateral blood flow augmentation to increase collateral circulation by optically recording blood flow in leptomeningeal collaterals in a clinically relevant model of ischemic stroke. Using high-resolution laser speckle contrast imaging (LSCI) during thromboembolic middle cerebral artery occlusion (MCAo), we demonstrate that transiently diverting blood flow from peripheral circulation towards the brain via intra-aortic catheter and balloon induces persistent increases in blood flow through anastomoses between the anterior and middle cerebral arteries. Increased collateral flow restores blood flow in the distal middle cerebral artery segments to baseline levels during aortic occlusion and persists for over 1 hour after removal of the aortic balloon. Given the importance of collateral circulation in predicting stroke outcome and response to treatment, and the potential of collateral flow augmentation as an adjuvant or stand-alone therapy for acute ischemic stroke, this data provide support for further development and translation of collateral therapeutics including transient aortic occlusion. PMID:24045399

  3. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  4. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  5. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.

    PubMed

    Finol, Ender A; Amon, Cristina H

    2003-01-01

    Blood flow in human arteries is dominated by time-dependent transport phenomena. In particular, in the abdominal segment of the aorta under a patient's average resting conditions, blood exhibits laminar flow patterns that are influenced by secondary flows induced by adjacent branches and in irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, in the presence of an aneurysm. An aneurysm is an irreversible dilation of a blood vessel accompanied by weakening of the vessel wall. This work examines the importance of hemodynamics in the characterization of pulsatile blood flow patterns in individual Abdominal Aortic Aneurysm (AAA) models. These patient-specific computational models have been developed for the numerical simulation of the momentum transport equations utilizing the Finite Element Method (FEM) for the spatial and temporal discretization. We characterize pulsatile flow dynamics in AAAs for average resting conditions by means of identifying regions of disturbed flow and quantifying the disturbance by evaluating wall pressure and wall shear stresses at the aneurysm wall. PMID:14515766

  6. Aortic Relative Pressure Components Derived from Four-Dimensional Flow Cardiovascular Magnetic Resonance

    PubMed Central

    Lamata, Pablo; Pitcher, Alex; Krittian, Sebastian; Nordsletten, David; Bissell, Malenka M; Cassar, Thomas; Barker, Alex J; Markl, Michael; Neubauer, Stefan; Smith, Nicolas P

    2014-01-01

    Purpose To describe the assessment of the spatiotemporal distribution of relative aortic pressure quantifying the magnitude of its three major components. Methods Nine healthy volunteers and three patients with aortic disease (bicuspid aortic valve, dissection, and Marfan syndrome) underwent 4D-flow CMR. Spatiotemporal pressure maps were computed from the CMR flow fields solving the pressure Poisson equation. The individual components of pressure were separated into time-varying inertial (“transient”), spatially varying inertial (“convective”), and viscous components. Results Relative aortic pressure is primarily caused by transient effects followed by the convective and small viscous contributions (64.5, 13.6, and 0.3 mmHg/m, respectively, in healthy subjects), although regional analysis revealed prevalent convective effects in specific contexts, e.g., Sinus of Valsalva and aortic arch at instants of peak velocity. Patients showed differences in peak transient values and duration, and localized abrupt convective changes explained by abnormalities in aortic geometry, including the presence of an aneurysm, a pseudo-coarctation, the inlet of a dissection, or by complex flow patterns. Conclusion The evaluation of the three components of relative pressure enables the quantification of mechanistic information for understanding and stratifying aortic disease, with potential future implications for guiding therapy. Magn Reson Med 72:1162–1169, 2014. © 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:24243444

  7. Uncertainty Quantification applied to flow simulations in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2015-11-01

    The thoracic aortic aneurysm is a progressive dilatation of the thoracic aorta causing a weakness in the aortic wall, which may eventually cause life-threatening events. Clinical decisions on treatment strategies are currently based on empiric criteria, like the aortic diameter value or its growth rate. Numerical simulations can give the quantification of important indexes which are impossible to be obtained through in-vivo measurements and can provide supplementary information. Hemodynamic simulations are carried out by using the open-source tool SimVascular and considering patient-specific geometries. One of the main issues in these simulations is the choice of suitable boundary conditions, modeling the organs and vessels not included in the computational domain. The current practice is to use outflow conditions based on resistance and capacitance, whose values are tuned to obtain a physiological behavior of the patient pressure. However it is not known a priori how this choice affects the results of the simulation. The impact of the uncertainties in these outflow parameters is investigated here by using the generalized Polynomial Chaos approach. This analysis also permits to calibrate the outflow-boundary parameters when patient-specific in-vivo data are available.

  8. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  9. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  10. Continuous Flow Microfluidic Bioparticle Concentrator

    NASA Astrophysics Data System (ADS)

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-06-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  11. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  12. Identification of a novel flow-mediated gene expression signature in patients with bicuspid aortic valve.

    PubMed

    Maleki, Shohreh; Björck, Hanna M; Folkersen, Lasse; Nilsson, Roland; Renner, Johan; Caidahl, Kenneth; Franco-Cereceda, Anders; Länne, Toste; Eriksson, Per

    2013-01-01

    Individuals with bicuspid aortic valve (BAV) are at significantly higher risk of developing serious aortic complications than individuals with tricuspid aortic valves (TAV). Studies have indicated an altered aortic blood flow in patients with BAV; however, the extent to which altered flow influences the pathological state of BAV aorta is unclear. In the present study, we dissected flow-mediated aortic gene expression in patients undergoing elective open heart surgery. A large collection of public microarray data sets were firstly screened for consistent co-expression with five well-characterized flow-regulated genes (query genes). Genes with co-expression probability of >0.5 were selected and further analysed in expression profiles (127 arrays) from ascending aorta of BAV and TAV patients. Forty-four genes satisfied two filtering criteria: a significant correlation with one or more of the query genes (R > 0.40) and differential expression between patients with BAV and TAV. No gene fulfilled the criteria in mammary artery (88 arrays), an artery not in direct contact with the valve. Fifty-five percent of the genes significantly altered between BAV and TAV patients showed differential expression between two identified flow regions in the rat aorta. A large proportion of the identified genes were related to angiogenesis and/or wound healing, with pro-angiogenesis genes downregulated and inhibitory genes upregulated in patients with BAV. Moreover, differential expression of ZFP36, GRP116 and PKD2 was confirmed using immunohistochemistry. Implementing a new strategy, we have demonstrated an angiostatic gene expression signature in patients with BAV, indicating impaired wound healing in these patients, potentially involved in BAV-associated aortopathy. PMID:22903503

  13. Continuous flow measurements using fixed ultrasonic meters

    USGS Publications Warehouse

    Oltmann, Rick

    1993-01-01

    USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.

  14. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  15. Instrument continuously measures density of flowing fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, R. B.; Macinko, J.; Miller, C. E.

    1967-01-01

    Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.

  16. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  17. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost. PMID:26983961

  18. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  19. Echocardiographic vs Invasive Measurement of the Direct Flow Transcatheter Aortic Heart Valve Mean Gradient: Contradictory or Complementary?

    PubMed

    Panoulas, Vasileios F; Latib, Azeem; Agricola, Eustachio; Baumgartner, Helmut; Alfieri, Ottavio; Colombo, Antonio

    2015-10-01

    In this case report, we explain the reason behind observed differences in echocardiographic and invasively measured mean aortic valve gradient after transcatheter aortic valve implantation. A 25-mm Direct Flow valve (Direct Flow Medical Inc, Santa Rosa, CA) was successfully implanted in a patient with severe aortic stenosis via the transfemoral route. The discrepancy between invasive and echocardiographic measurements could be explained by the combination of a non-flat velocity profile inside the tubular structure of the Direct Flow valve, which can cause local low pressure fields that result in true high gradients detected using Doppler, and pressure recovery.

  20. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  1. CFD analysis of unsteady flow through conjoining Aorta and aortic isthmus.

    PubMed

    Gunter, Amy-Lee; Keshavarz-Motamed, Zahra; Portaro, Rocco; Kadem, Lyes; Ng, Hoi Dick

    2015-08-01

    The initial stages of fetal development require that blood oxygenation occur through the placenta rather than the non functioning lungs. As a result the fetal circulatory system develops a temporary shunt between the aorta and pulmonary artery, known as the ductus arteriosis (DA). This study utilizes CFD techniques to analyze the flow behavior in the aortic isthmus neighboring the DA. The geometry used to represent these structures is equivalent to that of a 25 week old fetus. The effect of aortic and pulmonary pressure pulse wave delay is examined for producing flow disturbances in the fetal circulatory system. This is accomplished by analyzing both axial and tangential flow fields downstream of the DA. The study demonstrates that there exist different swirl profiles that are related to the timing of pulse contributions from both the left and right ventricles.

  2. Preservation Of Native Aortic Valve Flow And Full Hemodynamic Support With The TORVAD™ Using A Computational Model Of The Cardiovascular System

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Chang, Kay-Won; Larson, Erik R.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2014-01-01

    This paper describes the stroke volume selection and operational design for the TORVAD™, a synchronous, positive-displacement ventricular assist device (VAD). A lumped parameter model was used to simulate hemodynamics with the TORVAD™ compared to those under continuous flow VAD support. Results from the simulation demonstrated that a TORVAD™ with a 30 mL stroke volume ejecting with an early diastolic counterpulse provides comparable systemic support to the HeartMate II® (HMII) (cardiac output 5.7 L/min up from 3.1 L/min in simulated heart failure). By taking advantage of synchronous pulsatility, the TORVAD™ delivers full hemodynamic support with nearly half the VAD flow rate (2.7 L/min compared to 5.3 L/min for the HMII) by allowing the left ventricle to eject during systole, thus preserving native aortic valve flow (3.0 L/min compared to 0.4 L/min for the HMII, down from 3.1 L/min at baseline). The TORVAD™ also preserves pulse pressure (26.7 mmHg compared to 12.8 mmHg for the HMII, down from 29.1 mmHg at baseline). Preservation of aortic valve flow with synchronous pulsatile support could reduce the high incidence of aortic insufficiency and valve cusp fusion reported in patients supported with continuous flow VADs. PMID:25485562

  3. Reversed intracranial blood flow in patients with an intra-aortic balloon pump.

    PubMed

    Brass, L M

    1990-03-01

    As a preliminary investigation into the cerebral effects of mechanical cardiac assist devices, using transcranial Doppler ultrasonography I examined the basal cerebral arteries in three patients placed on an intra-aortic balloon pump. Unassisted systoles had normal blood velocities and waveforms. When the pump was in use, diastolic blood velocity during balloon inflation increased. As the balloon was deflated and intra-aortic pressure was dramatically lowered, diastolic blood velocity within the intracranial vessels decreased sharply. In two patients there was a reversal of blood flow in the middle cerebral, anterior cerebral, basilar, and vertebral arteries during late diastole. Although the clinical effects of cessation and reversal of blood flow in the cerebral circulation while on an intra-aortic balloon pump remain to be determined, transcranial Doppler ultrasonography appears to be a useful tool for measuring these hemodynamic effects. It may also be helpful in quantifying the effects of such pumps on cerebral blood flow and devising inflation/deflation timing sequences that maximize forward blood flow.

  4. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  5. Transcatheter valve implantation can alter fluid flow fields in aortic sinuses and ascending aorta

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yoganathan, Ajit

    2012-11-01

    Transcatheter aortic valves (TAVs) are valve replacements used to treat aortic stenosis. Currently, these have been used in elderly patients at high-risk for open-heart procedures. Since these devices are implanted under fluoroscopic guidance, the implantation position of the valve can vary with respect to the native aortic valve annulus. The current study characterizes the altered hemodynamics in the aortic sinus and ascending aorta under different implantation (high and low) and cardiac output (2.5 and 5.0 L/min) conditions. Two commonly used TAV designs are studied using 2-D Particle Image Velocimetry (PIV). 200 phase locked images are obtained at every 25ms in the cardiac cycle, and the resulting vector fields are ensemble averaged. High implantation of the TAV with respect to the annulus causes weaker sinus washout and weaker sinus vortex formation. Additionally, the longer TAV leaflets can also result in a weaker sinus vortex. The level of turbulent fluctuations in the ascending aorta did not appear to be affected by axial positioning of the valve, but varied with cardiac output. The results of this study indicates that TAV positioning is important to be considered clinically, since this can affect coronary perfusion and potential flow stagnation near the valve.

  6. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  7. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  8. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    NASA Astrophysics Data System (ADS)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  9. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  10. Continuous flow synthesis of conjugated polymers.

    PubMed

    Seyler, Helga; Jones, David J; Holmes, Andrew B; Wong, Wallace W H

    2012-02-01

    A selection of conjugated polymers, widely studied in organic electronics, was synthesised using continuous flow methodology. As a result of superior heat transfer and reagent control, excellent polymer molecular mass distributions were achieved in significantly reduced reaction times compared to conventional batch reactions.

  11. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  12. Moving wall, continuous flow electronphoresis apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor)

    1988-01-01

    This invention relates generally to electrophoresis devices and more particularly to a moving wall, continuous flow device in which an electrophoresis chamber is angularly positionable with respect to the direction of moving belt walls. A frame with an electrophoresis chamber is rotatably supported between two synchronously driven belt walls. This allows the chamber to be angularly positionable with respect to the direction of belt travel, which compensates for electroosmotic flow within the electrophoresis chamber. Injection of a buffer solution via an opening and a homogenous sample stream via another opening is performed at the end of a chamber, and collection of buffer and the fractionated species particles is done by a conventional collection array at an opposite end of the chamber. Belts are driven at a rate which exactly matches the flow of buffer and sample through the chamber, which entrains the buffer to behave as a rigid electrophoretic medium, eliminating flow distortions (Poiseuille effect). Additionally, belt material for each belt is stored at one end of the device and is taken up by drive wheels at an opposite end. The novelty of this invention particularly lies in the electrophoresis chamber being angularly positionable between two moving belt walls in order to compensate for electroosmotic flow. Additionally, new belt material is continuously exposed within the chamber, minimizing flow distortion due to contamination of the belt material by the sample.

  13. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  14. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.

    PubMed

    Shahcheraghi, N; Dwyer, H A; Cheer, A Y; Barakat, A I; Rutaganira, T

    2002-08-01

    A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.

  15. The fluid mechanics of continuous flow electrophoresis

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    1990-11-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  16. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  17. Age and gender related differences in aortic blood flow

    NASA Astrophysics Data System (ADS)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  18. A Novel Intra-aortic Device Designed for Coronary Blood Flow Amplification in Unrevascularizable Patients.

    PubMed

    Nussinovitch, Udi; Shtenberg, Giorgi; Roguin, Ariel; Feld, Yair

    2016-08-01

    Patients with unrevascularizable coronary artery disease represent a substantial number of all patients with coronary disease. However, their therapeutic options are limited; they endure recurrent hospitalizations, a poor quality of life and prognosis. We aim to investigate a novel alternative approach to the treatment of this common medical condition by using a specialized intra-aortic device with coiling properties capable of enhancing diastolic coronary flow. Both a mathematical analysis and in vitro study presented in the current study have yielded enhanced coronary diastolic blood flow and energetic advantages. We suggest that this original approach might be implicated in severely symptomatic unrevascularizable patients. PMID:27260505

  19. Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.

    PubMed

    Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki

    2011-12-01

    This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:

  20. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  1. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. PMID:24166772

  2. Microwave reactions under continuous flow conditions.

    PubMed

    Baxendale, Ian R; Hayward, John J; Ley, Steven V

    2007-12-01

    Microwave chemistry has already impacted significantly on the everyday synthesis of organic molecules. The adoption and integration of this liberating technology has permitted a resurrection of many synthetic transformations that were previously considered too extreme in their conditions (temperatures, pressures, reaction times) to be synthetically useful. Furthermore, whole arrays of additional chemical transformations have been devised under microwave heating that allow access to more diverse chemical architectures via more expedient routes. Continuous flow processing of chemical intermediates taking advantage of the unique heating mechanism and characteristics of microwave irradiation will certainly be the next evolutionary step forward in this area. The synergistic combination afforded by the simultaneous application of these two core processing tools will enhance still further the synthetic capabilities of tomorrow's chemists. This short review aims to highlight the current developments and future potential offered by continuous flow microwave mediated synthesis.

  3. Taming hazardous chemistry by continuous flow technology.

    PubMed

    Movsisyan, M; Delbeke, E I P; Berton, J K E T; Battilocchio, C; Ley, S V; Stevens, C V

    2016-09-21

    Over the last two decades, flow technologies have become increasingly popular in the field of organic chemistry, offering solutions for engineering and/or chemical problems. Flow reactors enhance the mass and heat transfer, resulting in rapid reaction mixing, and enable a precise control over the reaction parameters, increasing the overall process selectivity, efficiency and safety. These features allow chemists to tackle unexploited challenges in their work, with the ultimate objective making chemistry more accessible for laboratory and industrial applications, avoiding the need to store and handle toxic, reactive and explosive reagents. This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions. PMID:27453961

  4. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  5. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  6. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  7. In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV.

    PubMed

    Büsen, Martin; Kaufmann, Tim A S; Neidlin, Michael; Steinseifer, Ulrich; Sonntag, Simon J

    2015-07-16

    The cardiopulmonary bypass is related to complications like stroke or hypoxia. The cannula jet is suspected to be one reason for these complications, due to the sandblast effect on the vessel wall. Several in silico and in vitro studies investigated the underlying mechanisms, but the applied experimental flow measurement techniques were not able to address the highly three-dimensional flow character with a satisfying resolution. In this work in vitro flow measurements in a cannulated and a non-cannulated aortic silicone model are presented. Stereo particle image velocimetry measurements in multiple planes were carried out. By assembling the data of the different measurement planes, quasi 3D velocity fields with a resolution of~1.5×1.5×2.5 mm(3) were obtained. The resulting velocity fields have been compared regarding magnitude, streamlines and vorticity. The presented method shows to be a suitable in vitro technique to measure and address the three-dimensional aortic CPB cannula flow with a high temporal and spatial resolution.

  8. In vitro flow dynamics of four prosthetic aortic valves: a comparative analysis.

    PubMed

    Hanle, D D; Harrison, E C; Yoganathan, A P; Allen, D T; Corcoran, W H

    1989-01-01

    The velocity fields downstream of four prosthetic heart valves were mapped in vitro over the entire cross-section of a model aortic root using laser Doppler anemometry. THe Björk-Shiley 60 degrees convexo-concave tilting disc valve, the Smeloff-Cutter caged ball valve, the St. Jude Medical bileaflet valve, and the Ionescu-Shiley standard bioprosthesis were examined under both steady and pulsatile flows. Velocity profiles under steady flow conditions were a good approximation for pulsatile profiles only during midsystole. The pulsatile flow characteristics of the four valves showed variation in large scale flow structures. Comparison of the valves according to pressure drop, shear stress and maximum velocities are also provided. PMID:2808443

  9. Usefulness of Intraoperative Continuous Infusion of Tranexamic Acid during Emergency Surgery for Type A Acute Aortic Dissection

    PubMed Central

    Yamanaka, Kazuo; Iwakura, Atsushi; Hirose, Keiichi; Nakatsuka, Daisuke; Kusuhara, Takayoshi; Ikarashi, Jin

    2014-01-01

    Purpose: We investigated the influence of intraoperative continuous tranexamic acid (TA) infusion on the amount of blood transfusion required in emergency surgery for type A acute aortic dissection. Methods: The study was based on the data of 55 consecutive patients who underwent surgery for type A acute aortic dissection. The patients were divided into 2 groups for comparison: Group T, consisting of 26 patients who received intraoperative continuous infusion of TA, and Group N, consisting of 29 patients who did not receive TA infusion during the surgery. Results: The mean amounts of blood transfusion required during and after surgery were compared between the 2 groups: they were 10.5 ± 8.7 and 16.2 ± 10.0 units of mannitol-adenine-phosphate-added red cell concentrate, 9.3 ± 8.6 and 17.1 ± 10.0 units of fresh frozen plasma, and 20.4 ± 12.2 and 29.7 ± 14.9 units of platelet concentrate, respectively, in Groups T and N. Thus, the amount of each of these blood products required was significantly reduced in Group T. Conclusions: During emergency surgery for type A acute aortic dissection, continuous infusion of TA resulted in a significant reduction in the amount of blood transfusion required. PMID:24583703

  10. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  11. Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions.

    PubMed

    Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2015-09-01

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies. PMID:26577361

  12. [Antegrade flow in the aorta ascendens despite aortic atresia: 2 case reports with retrograde coronary perfusion through coronary fistulas and sinusoids].

    PubMed

    Jux, C; Kaulitz, R; von Wasielewski, R; Peuster, M; Fink, C; Paul, T; Hausdorf, G

    2000-06-01

    In aortic atresia, coronary perfusion normally occurs through retrograde blood flow in the ascending aorta. We report on two patients with antegrade flow in the ascending aorta despite aortic atresia. In one patient with hypoplastic left heart syndrome (aortic atresia, severe mitral stenosis), an intact interatrial septum/premature closure of the foramen ovale was found. While no other way of left atrial or ventricular decompression was found, echocardiography, angiography and the post-mortem examination showed left ventricular to coronary sinusoids as the sole pathway for systemic oxygenation. In a second patient with complex congenital heart disease, including aortic atresia, antegrade flow in the ascending aorta was through a left coronary fistula with shunt flow originating from the pulmonary trunk. This report describes systemic perfusion depending on retrograde coronary flow due to coronary-cameral (sinusoids) and coronary arterio-venous fistulas leading to the phenomenon of antegrade blood flow in the ascending aorta despite aortic atresia. PMID:10929434

  13. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  14. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. PMID:26249601

  15. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles

    PubMed Central

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2016-01-01

    Objective Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. Methods 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3–9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. Results A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=−0.67–−0.70 for all patients on room air, p<0.01 and R=−0.49–−0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. Conclusions There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. Trial Registration Number NCT02135081. PMID:26048877

  16. Flow Through Surface Mounted Continuous Slits

    NASA Astrophysics Data System (ADS)

    Tariq, A.; Ali, M. A.; Gad-El-Hak, M.

    2014-11-01

    Ribs are used inside certain gas-turbine blades as passive devices to enhance heat transfer. Slits in those ribs are utilized to control the primary shear layer. The role of secondary flow through a continuous slit behind a surface mounted rib is investigated herein in a rectangular duct using hotwire anemometry and particle image velocimetry. Changing the open-area-ratio and the slit's location within the rib dominate the observed shear layer. The behavior of discrete Fourier modes of the velocity fluctuations generated by different configurations is explored. Two distinct flow mechanisms are observed in the rib's wake. Both mechanisms are explained on the basis of large-scale spectral peak in the shear layer. The results show the successful impact of changing the open-area-ratio by manipulating the small-scale vortices at the leeward corner of the rib, which is suspected to be the potential cause of surface ``hot spots'' in a variety of engineering devices with heat transfer. Eventually, the size and location of the slit are seen to be an additional parameter that can be used to control the fluid flow structures behind rib turbulators.

  17. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  18. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  19. Aortic valve orifice equation independent of valvular flow intervals: application to aortic valve area computation in aortic stenosis and comparison with the Gorlin formula.

    PubMed

    Seitz, W; Oppenheimer, L; McIlroy, M; Nelson, D; Operschall, J

    1986-12-01

    An orifice equation is derived relating the effective aortic valve area, A, the average aortic valve pressure gradient, dP, the stroke volume, SV, and the heart frequency, FH, through considerations of momentum conservation across the aortic valve. This leads to a formula consistent with Newton's second law of motion. The form of the new equation is A = (7.5 X 10(-5)) SV FH2/Pd, where A, VS, FH and Pd are expressed in cm2, ml, s-1 and mmHg, respectively. Aortic valve areas computed with the new orifice equation are found to correlate with those computed by the Gorlin formula in conditions of resting haemodynamic states at a level of r = 0.86, SE = 0.25 cm2, N = 120. The results suggest that the new formula may be considered as an independent orifice equation having a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships through combination with established cardiological formulas and applying it in a noninvasive Doppler ultrasonic or echocardiographic context.

  20. Flow characteristics past jellyfish and St. Vincent valves in the aortic position under physiological pulsatile flow conditions.

    PubMed

    Morsi, Y S; Sakhaeimanesh, A A

    2000-07-01

    Thrombus formation and hemolysis have been linked to the dynamic flow characteristics of heart valve prostheses. To enhance our understanding of the flow characteristics past the aortic position of a Jellyfish (JF) valve in the left ventricle, in vitro laser Doppler anemometry (LDA) measurements were carried out under physiological pulsatile flow conditions. The hemodynamic performance of the JF valve was then compared with that of the St. Vincent (SV) valve. The comparison was given in terms of mean systolic pressure drop, back flow energy losses, flow velocity, and shear stresses at various locations downstream of both valves and at cardiac outputs of 3.5 L/min, 4.5 L/min, and 6.5 L/min respectively. The results indicated that both valves created disturbed flow fields with elevated levels of turbulent shear stress as well as higher levels of turbulence in the immediate vicinity of the valve and up to 1 diameter of the pipe (D) downstream of the valve. At a location further downstream, the JF valve showed better flow characteristics than the SV in terms of velocity profiles and turbulent shear stresses. The closure volume of the SV valve was found to be 2.5 times higher than that of the JF valve. Moreover, the total back flow losses and mean systolic pressure drop also were found to be higher in the SV than the JF valve.

  1. MRI-based aortic blood flow model in 3D ballistocardiography.

    PubMed

    Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F

    2015-01-01

    Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections. PMID:26737946

  2. The effect of implantation of aortic stents on compliance and blood flow. An experimental study in pigs.

    PubMed

    Pihkala, J; Thyagarajan, G K; Taylor, G P; Nykanen, D; Benson, L N

    2001-03-01

    Balloon dilation of coarctation of the aorta has been found to be an effective modality for treatment. Recently, in the older child and adult, implantation of endovascular stents has been considered a clinical alternative to dilation alone. Little is known, however, of the effect of implantation of stents on aortic compliance. To investigate this impact of implantation, we studied 18 piglets, divided into experimental and control groups. At median weight of 14 kg, 2 pairs of ultrasonic crystals were implanted on the aortic wall. After 1 week, all animals underwent catheterization. In the experimental group, a 3 cm long balloon expandable stent was implanted in the descending thoracic aorta between the pairs of crystals. Measurements of arterial pressure and dimensions were performed before implantation and immediately thereafter, and at follow-up catheterization. The index of stiffness, beta, and the the elastic modulus of aortic pressure-strain, were calculated as indexes of arterial compliance. The change in compliance during the period of study was not different between groups. At follow-up, no difference was observed between groups in the velocity of the aortic pulse wave, the augmentation index, or the maximum velocity of flow of blood. The stents remained patent and did not affect aortic growth or medial wall thickness. There was no difference between groups in levels of plasma renin activity and serum aldosterone. In this animal model studied over the short term, therefore, implantation of stents does not affect aortic compliance. Further studies are required to elucidate the long term effects of stents on the hemodynamics affecting the aortic wall and local flow dynamics.

  3. Flow topology in patient-specific abdominal aortic aneurysms during rest and exercise

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn

    2012-11-01

    Abdominal aortic aneurysm (AAA) is a permanent, localized widening of the abdominal aorta. Flow in AAA is dominated by recirculation, transitional turbulence and low wall shear stress. Image-based CFD has recently enabled high resolution flow data in patient-specific AAA. This study aims to characterize transport in different AAAs, and understand flow topology changes from rest to exercise, which has been a hypothesized therapy due to potential acute changes in flow. Velocity data in 6 patients with different AAA morphology were obtained using image-based CFD under rest and exercise conditions. Finite-time Lyapunov exponent (FTLE) fields were computed from integration of the velocity data to identify dominant Lagrangian coherent structures. The flow topology was compared between rest and exercise conditions. For all patients, the systolic inflow jet resulted in coherent vortex formation. The evolution of this vortex varied greatly between patients and was a major determinant of transport inside the AAA during diastole. During exercise, previously observed stagnant regions were either replaced with undisturbed flow, regions of uniform high mixing, or persisted relatively unchanged. A mix norm measure provided a quantitative assessment of mixing. This work was supported by the National Institutes of Health, grant number 5R21HL108272.

  4. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  5. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery. PMID:23852404

  6. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing

    PubMed Central

    Arzani, Amirhossein; Les, Andrea S.; Dalman, Ronald L.; Shadden, Shawn C.

    2014-01-01

    SUMMARY Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. Magnetic resonance imaging was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields, and associated Lagrangian coherent structures, were computed from blood velocity data, and used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing, and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. PMID:24493404

  7. Adaptive Flow Simulation of Turbulence in Subject-Specific Abdominal Aortic Aneurysm on Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Jansen, Kenneth; Shephard, Mark; Taylor, Charles

    2007-11-01

    Flow within the healthy human vascular system is typically laminar but diseased conditions can alter the geometry sufficiently to produce transitional/turbulent flows in regions focal (and immediately downstream) of the diseased section. The mean unsteadiness (pulsatile or respiratory cycle) further complicates the situation making traditional turbulence simulation techniques (e.g., Reynolds-averaged Navier-Stokes simulations (RANSS)) suspect. At the other extreme, direct numerical simulation (DNS) while fully appropriate can lead to large computational expense, particularly when the simulations must be done quickly since they are intended to affect the outcome of a medical treatment (e.g., virtual surgical planning). To produce simulations in a clinically relevant time frame requires; 1) adaptive meshing technique that closely matches the desired local mesh resolution in all three directions to the highly anisotropic physical length scales in the flow, 2) efficient solution algorithms, and 3) excellent scaling on massively parallel computers. In this presentation we will demonstrate results for a subject-specific simulation of an abdominal aortic aneurysm using stabilized finite element method on anisotropically adapted meshes consisting of O(10^8) elements over O(10^4) processors.

  8. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology

    PubMed Central

    Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.

    2014-01-01

    OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow

  9. Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer

    SciTech Connect

    Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung; Engelhard, Mark H.

    2013-01-01

    Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.

  10. Bisferiens peaks in the radial artery pressure wave during patent ductus arteriosus in newborn infants: relationship with ascending aortic flow.

    PubMed

    Gevers, M; van der Mooren, K; Stergiopulos, N; Van Genderingen, H R; Lafeber, H N; Hack, W W; Westerhof, N

    1996-07-01

    Previously, we found evidence that bisferiens peaks in the radial artery pressure wave in the newborn infant may suggest the presence of a left-to-right shunt through a patent ductus arteriosus (PDA). The purpose of the present study was to analyze the origin of this pulsus bisferiens. Starting from the assumption that the radial artery pressure wave form is similar to the aortic pressure wave form, as described previously, we attempted to explain the bisferiens peaks on the basis of echocardiographically obtained ascending aortic flow. We studied 11 preterm mechanically ventilated infants with a left-to-right shunt through a PDA and 7 without. Aortic volume flow was established echocardiographically, and radial artery blood pressure measurement was performed with a high fidelity cathetermanometer system. Ascending aortic peak flow during PDA was significantly higher in the case of PDA, compared with the case without PDA. An augmented peak flow with an abrupt decline after the high peak in PDA, resulting in a sharp pressure peak with a steep decline after the peak, was thought to explain the first sharp peak of pulsus bisferiens. An abrupt decline of flow after peak flow is thought to be due to the fast runoff of blood through the ductus. According to the pulsatile pressure dynamics theories, which state that pressure wave forms consist of forward and backward wave forms, the second peak of the pulsus bisferiens can be explained by the return of the reflected (backward) wave form when the forward wave form has already considerably decreased. We conclude that the bisferiens peaks found in PDA result from a combination of large stroke volume (augmented first peak) and large runoff (quick decline of the forward wave) before the return of the reflected wave.

  11. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study.

    PubMed

    Zhang, Qi; Gao, Bin; Chang, Yu

    2016-01-01

    BACKGROUND The BJUT-II VAD is a novel left ventricular assist device (LVAD), which is thought to have significant effects on the characteristics of aortic swirling flow. However, the precise mechanism of the rotational direction of BJTU-II VAD in the aortic swirling flow is unclear. MATERIAL AND METHODS A patient-specific aortic geometric model was reconstructed based on the CT data. Three pump's output flow profiles with varied rotational direction, termed "counterclockwise", "flat profile", and "clockwise", were used as the boundary conditions. The helicity density, area-weighted average of helicity density (Ha), localized normalized helicity (LNH), wall shear stress (WSS), and WSS spatial gradient (WSSG) were calculated to evaluate the swirling flow characteristics in the aorta. RESULTS The results demonstrated that the swirling flow characteristics in the aorta and 3 branches are directly affected by the output blood flow of BJUT-II VAD. In the aortic arch, the helicity density, supported by the clockwise case, achieved the highest value. In the 3 branches, the flat profile case achieved the highest helicity density, whereas the maximum WSS and WSSG generated by clockwise case were lower than in other cases. CONCLUSIONS The outflow of the BJUT-II VAD has significant effects on the aortic hemodynamics and swirling flow characteristics. The helical blood profiles can enhance the strength of aortic swirling flow, and reduce the areas of low WSS and WSSG regions. The clockwise case may have a benefit for preventing development of atherosclerosis in the aorta. PMID:27440399

  12. Impact and Predictors of Noncircular Left Ventricular Outflow Tract Shapes on Estimating Aortic Stenosis Severity by Means of Continuity Equations

    PubMed Central

    Bhatia, Nirmanmoh; Dawn, Buddhadeb; Siddiqui, Tariq S.

    2015-01-01

    Determining aortic stenosis (AS) severity is clinically important. Calculating aortic valve (AV) area by means of the continuity equation assumes a circular left ventricular outflow tract (LVOT). The full impact of this assumption in calculating AV area is unknown. Predictors of noncircular LVOT shape in patients with AS are undefined. In 109 adult patients with AS who underwent multiplanar transesophageal echocardiography, we calculated AV area by means of the standard continuity method and by a modified method involving planimetric LVOT area. We found 54 circular, 37 horizontal-oval, 8 vertical-oval, and 10 irregular LVOTs. Area derived by direct planimetry correlated better with the modified than the standard continuity method (r=0.89 vs r=0.85; both P=0.0001). Valve areas of patients with mild, moderate, or severe AS by planimetry were more often mischaracterized with use of the standard than modified method (29 vs 18; P <0.0001). Horizontal-oval AV area derived by planimetry (1.28 ± 0.55 cm2) was underestimated by the standard method (1.05 ± 0.47 cm2; P=0.001), but not by the modified method. Congenital AV morphology and low cardiac index were the only multivariate predictors of horizontal-oval shape. Low cardiac index was the only predictor of noncircular shape. More than half our patients with AS had noncircular LVOTs. Using the modified method reduces mischaracterizations of AS severity. Congenital AV morphology and low cardiac index predict horizontal-oval or noncircular shape. These data suggest the value of direct LVOT measurement to calculate AS severity in patients who have congenital AV or a low cardiac index. PMID:25873793

  13. Withdrawing intra-aortic balloon pump support paradoxically improves microvascular flow

    PubMed Central

    2010-01-01

    Introduction The Intra-Aortic Balloon Pump (IABP) is frequently used to mechanically support the heart. There is evidence that IABP improves microvascular flow during cardiogenic shock but its influence on the human microcirculation in patients deemed ready for discontinuing IABP support has not yet been studied. Therefore we used sidestream dark field imaging (SDF) to test our hypothesis that human microcirculation remains unaltered with or without IABP support in patients clinically ready for discontinuation of mechanical support. Methods We studied 15 ICU patients on IABP therapy. Measurements were performed after the clinical decision was made to remove the balloon catheter. We recorded global hemodynamic parameters and performed venous oximetry during maximal IABP support (1:1) and 10 minutes after temporarily stopping the IABP therapy. At both time points, we also recorded video clips of the sublingual microcirculation. From these we determined indices of microvascular perfusion including perfused vessel density (PVD) and microvascular flow index (MFI). Results Ceasing IABP support lowered mean arterial pressure (74 ± 8 to 71 ± 10 mmHg; P = 0.048) and increased diastolic pressure (43 ± 10 to 53 ± 9 mmHg; P = 0.0002). However, at the level of the microcirculation we found an increase of PVD of small vessels <20 μm (5.47 ± 1.76 to 6.63 ± 1.90; P = 0.0039). PVD for vessels >20 μm and MFI for both small and large vessels were unaltered. During the procedure global oxygenation parameters (ScvO2/SvO2) remained unchanged. Conclusions In patients deemed ready for discontinuing IABP support according to current practice, SDF imaging showed an increase of microcirculatory flow of small vessels after ceasing IABP therapy. This observation may indicate that IABP impairs microvascular perfusion in recovered patients, although this warrants confirmation. PMID:20738876

  14. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; Sahn, D. J.; Thomas, J. D.

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  15. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  16. Evaluation of Aortic Stenosis Severity using 4D Flow Jet Shear Layer Detection for the Measurement of Valve Effective Orifice Area

    PubMed Central

    Garcia, Julio; Markl, Michael; Schnell, Susanne; Allen, Bradley; Entezari, Pegah; Mahadevia, Riti; Malaisrie, S Chris; Pibarot, Philippe; Carr, James; Barker, Alex J

    2014-01-01

    Aims The objective of this study was to evaluate the potential of 4D flow MRI to assess valve effective orifice area (EOA) in patients with aortic stenosis as determined by the jet shear layer detection (JSLD) method. Methods and Results An in-vitro stenosis phantom was used for validation and in-vivo imaging was performed in 10 healthy controls and 40 patients with aortic stenosis. EOA was calculated by the JSLD method using standard 2D phase contrast MRI (PC-MRI) and 4D flow MRI measurements (EOAJSLD-2D and EOAJSLD-4D, respectively). As a reference standard, the continuity equation was used to calculate EOA (EOACE) with the 2D PC-MRI velocity field and compared to the EOAJSLD measurements. The in-vitro results exhibited excellent agreement between flow theory (EOA=0.78 cm2) and experimental measurement (EOAJSLD-4D=0.78±0.01 cm2) for peak velocities ranging from 0.9 to 3.7 m/s. In-vivo results showed good correlation and agreement between EOAJSLD-2D and EOACE (r=0.91, p<0.001; bias: −0.01±0.38cm2; agreement limits: 0.75 to −0.77cm2), and between EOAJSLD-4D and EOACE (r=0.95, p<0.001; bias: −0.09±0.26cm2; limits: 0.43 to −0.62cm2). Conclusion This study demonstrates the feasibility of measuring EOAJSLD using 4D flow MRI. The technique allows for optimization of the EOA measurement position by visualizing the 3D vena contracta, and avoids potential sources of EOACE measurement variability. PMID:24865143

  17. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients

    PubMed Central

    Lafanechère, A; Pène, F; Goulenok, C; Delahaye, A; Mallet, V; Choukroun, G; Chiche, JD; Mira, JP; Cariou, A

    2006-01-01

    Introduction Esophageal Doppler provides a continuous and non-invasive estimate of descending aortic blood flow (ABF) and corrected left ventricular ejection time (LVETc). Considering passive leg raising (PLR) as a reversible volume expansion (VE), we compared the relative abilities of PLR-induced ABF variations, LVETc and respiratory pulsed pressure variations (ΔPP) to predict fluid responsiveness. Methods We studied 22 critically ill patients in acute circulatory failure in the supine position, during PLR, back to the supine position and after two consecutive VEs of 250 ml of saline. Responders were defined by an increase in ABF induced by 500 ml VE of more than 15%. Results Ten patients were responders and 12 were non-responders. In responders, the increase in ABF induced by PLR was similar to that induced by a 250 ml VE (16% versus 20%; p = 0.15). A PLR-induced increase in ABF of more than 8% predicted fluid responsiveness with a sensitivity of 90% and a specificity of 83%. Corresponding positive and negative predictive values (PPV and NPV, respectively) were 82% and 91%, respectively. A ΔPP threshold value of 12% predicted fluid responsiveness with a sensitivity of 70% and a specificity of 92%. Corresponding PPV and NPV were 87% and 78%, respectively. A LVETc of 245 ms or less predicted fluid responsiveness with a sensitivity of 70%, and a specificity of 67%. Corresponding PPV and NPV were 60% and 66%, respectively. Conclusion The PLR-induced increase in ABF and a ΔPP of more than 12% offer similar predictive values in predicting fluid responsiveness. An isolated basal LVETc value is not a reliable criterion for predicting response to fluid loading. PMID:16970817

  18. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  19. The Impact of Cardiac Motion on Aortic Valve Flow Used in Computational Simulations of the Thoracic Aorta.

    PubMed

    Wendell, David C; Samyn, Margaret M; Cava, Joseph R; Krolikowski, Mary M; LaDisa, John F

    2016-09-01

    Advancements in image-based computational modeling are producing increasingly more realistic representations of vasculature and hemodynamics, but so far have not compensated for cardiac motion when imposing inflow boundary conditions. The effect of cardiac motion on aortic flow is important when assessing sequelae in this region including coarctation of the aorta (CoA) or regurgitant fraction. The objective of this investigation was to develop a method to assess and correct for the influence of cardiac motion on blood flow measurements through the aortic valve (AoV) and to determine its impact on patient-specific local hemodynamics quantified by computational fluid dynamics (CFD). A motion-compensated inflow waveform was imposed into the CFD model of a patient with repaired CoA that accounted for the distance traveled by the basal plane during the cardiac cycle. Time-averaged wall shear stress (TAWSS) and turbulent kinetic energy (TKE) values were compared with CFD results of the same patient using the original waveform. Cardiac motion resulted in underestimation of flow during systole and overestimation during diastole. Influences of inflow waveforms on TAWSS were greatest along the outer wall of the ascending aorta (AscAo) (∼30 dyn/cm2). Differences in TAWSS were more pronounced than those from the model creation or mesh dependence aspects of CFD. TKE was slightly higher for the motion-compensated waveform throughout the aortic arch. These results suggest that accounting for cardiac motion when quantifying blood flow through the AoV can lead to different conclusions for hemodynamic indices, which may be important if these results are ultimately used to predict patient outcomes. PMID:27367143

  20. Continuous Morse-Smale flows with three equilibrium positions

    NASA Astrophysics Data System (ADS)

    Zhuzhoma, E. V.; Medvedev, V. S.

    2016-05-01

    Continuous Morse-Smale flows on closed manifolds whose nonwandering set consists of three equilibrium positions are considered. Necessary and sufficient conditions for topological equivalence of such flows are obtained and the topological structure of the underlying manifolds is described. Bibliography: 36 titles.

  1. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  2. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  3. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study

    PubMed Central

    Zhang, Qi; Gao, Bin; Chang, Yu

    2016-01-01

    Background The BJUT-II VAD is a novel left ventricular assist device (LVAD), which is thought to have significant effects on the characteristics of aortic swirling flow. However, the precise mechanism of the rotational direction of BJTU-II VAD in the aortic swirling flow is unclear. Material/Methods A patient-specific aortic geometric model was reconstructed based on the CT data. Three pump’s output flow profiles with varied rotational direction, termed “counterclockwise”, “flat profile”, and “clockwise”, were used as the boundary conditions. The helicity density, area-weighted average of helicity density (Ha), localized normalized helicity (LNH), wall shear stress (WSS), and WSS spatial gradient (WSSG) were calculated to evaluate the swirling flow characteristics in the aorta. Results The results demonstrated that the swirling flow characteristics in the aorta and 3 branches are directly affected by the output blood flow of BJUT-II VAD. In the aortic arch, the helicity density, supported by the clockwise case, achieved the highest value. In the 3 branches, the flat profile case achieved the highest helicity density, whereas the maximum WSS and WSSG generated by clockwise case were lower than in other cases. Conclusions The outflow of the BJUT-II VAD has significant effects on the aortic hemodynamics and swirling flow characteristics. The helical blood profiles can enhance the strength of aortic swirling flow, and reduce the areas of low WSS and WSSG regions. The clockwise case may have a benefit for preventing development of atherosclerosis in the aorta. PMID:27440399

  4. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  5. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  6. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  7. Combined general–epidural anesthesia with continuous postoperative epidural analgesia preserves sigmoid colon perfusion in elective infrarenal aortic aneurysm repair

    PubMed Central

    Panaretou, Venetiana; Siafaka, Ioanna; Theodorou, Dimitrios; Manouras, Andreas; Seretis, Charalampos; Gourgiotis, Stavros; Katsaragakis, Stylianos; Sigala, Fragiska; Zografos, George; Filis, Konstantinos

    2012-01-01

    Background: In elective open infrarenal aortic aneurysm repair the use of epidural anesthesia and analgesia may preserve splanchnic perfusion. The aim of this study was to investigate the effects of epidural anesthesia on gut perfusion with gastrointestinal tonometry in patients undergoing aortic reconstructive surgery. Methods: Thirty patients, scheduled to undergo an elective infrarenal abdominal aortic reconstructive procedure were randomized in two groups: the epidural anesthesia group (Group A, n=16) and the control group (Group B, n=14). After induction of anesthesia, a transanally inserted sigmoid tonometer was placed for the measurement of sigmoid and gastric intramucosal CO2 levels and the calculation of regional–arterial CO2 difference (ΔPCO2). Additional measurements included mean arterial pressure (MAP), cardiac output (CO), systemic vascular resistance (SVR), and arterial lactate levels. Results: There were no significant intra- and inter-group differences for MAP, CO, SVR, and arterial lactate levels. Sigmoid pH and PCO2 increased in both the groups, but this increase was significantly higher in Group B, 20 min after aortic clamping and 10 min after aortic declamping. Conclusions: Patients receiving epidural anesthesia during abdominal aortic reconstruction appear to have less severe disturbances of sigmoid perfusion compared with patients not receiving epidural anesthesia. Further studies are needed to verify these results. PMID:23493852

  8. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  9. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow. PMID:26736998

  10. Continuous Maximal Flows and Wulff Shapes: Application to MRFs

    PubMed Central

    Zach, Christopher; Niethammer, Marc; Frahm, Jan-Michael

    2014-01-01

    Convex and continuous energy formulations for low level vision problems enable efficient search procedures for the corresponding globally optimal solutions. In this work we extend the well-established continuous, isotropic capacity-based maximal flow framework to the anisotropic setting. By using powerful results from convex analysis, a very simple and efficient minimization procedure is derived. Further, we show that many important properties carry over to the new anisotropic framework, e.g. globally optimal binary results can be achieved simply by thresholding the continuous solution. In addition, we unify the anisotropic continuous maximal flow approach with a recently proposed convex and continuous formulation for Markov random fields, thereby allowing more general smoothness priors to be incorporated. Dense stereo results are included to illustrate the capabilities of the proposed approach. PMID:25729263

  11. Brachial artery diameter has a predictive value in the improvement of flow-mediated dilation after aortic valve replacement for aortic stenosis.

    PubMed

    Takata, Munenori; Amiya, Eisuke; Watanabe, Masafumi; Ozeki, Atsuko; Watanabe, Aya; Kawarasaki, Shuichi; Nakao, Tomoko; Hosoya, Yumiko; Uno, Kansei; Saito, Aya; Murasawa, Takahide; Ono, Minoru; Nagai, Ryozo; Komuro, Issei

    2015-03-01

    Aortic stenosis (AS) is the most common valvular disease and aortic valve replacement (AVR) is one of its most effective interventions. AS affects not only the left ventricle, but also vascular function beyond the stenotic valve, which can lead to various types of vascular dysfunction. However, research evaluating the effect of AS on aortic vascular function is limited. In this study, we investigated clinical meaning to evaluate endothelial function in subjects with AS. From April 2011 to April 2012, 20 consecutive adult patients with degenerative AS (mean age, 74.7 ± 7.4 years; range 50-83 years) who underwent AVR at our institution were included in the study. We measured flow-mediated dilation (FMD) to evaluate the effect of AS on endothelial function. The difference between brachial artery diameter (BAD) before (4.0 ± 0.7 mm) and after AVR (3.9 ± 0.6 mm) was not significant (p = 0.043), but FMD significantly improved after AVR (from 3.1 ± 1.8 to 6.0 ± 2.7 %, p < 0.0001). We also analyzed FMD × BAD index, endogenous vasodilatory capability independent of BAD, resulting that it also significantly increased after AVR (12.3 ± 7.0-22.5 ± 9.3, p < 0.0001). We divided patients into two groups by pre- to post-AVR change in FMD (ΔFMD); large-ΔFMD group [ΔFMD >3.0 % (median value)] and small-ΔFMD group (ΔFMD <3.0 %). There were no significant changes in age, blood pressure, heart rate, B-type natriuretic peptide, or echocardiographic parameters in either group. In contrast, BAD was significantly larger in the small ΔFMD group (4.3 ± 0.7 mm) than in the large ΔFMD group (3.7 ± 0.7 mm) (p = 0.030). In addition, cardio-thoracic ratio was significantly greater in the small ΔFMD group (58.4 ± 7.1 %) than in the large ΔFMD group (53.7 ± 4.6 %) (p = 0.048). Receiver operating characteristic curve analysis of BAD to differentiate large and small ΔFMD demonstrated an area under the curve of 0.750 (p = 0.059) and that optimal cutoff for BAD was 4.28 mm (70

  12. Sorting and Manipulation of Magnetic Droplets in Continuous Flow

    NASA Astrophysics Data System (ADS)

    Al-Hetlani, Entesar; Hatt, Oliver J.; Vojtíšek, Martin; Tarn, Mark D.; Iles, Alexander; Pamme, Nicole

    2010-12-01

    We report the rapid on-chip generation and subsequent manipulation of magnetic droplets in continuous flow. Magnetic droplets were formed using aqueous-based ferrofluid as the dispersed phase and fluorocarbon oil as the continuous phase. Droplet manipulation was demonstrated with simple permanent magnets using two microfluidic platforms: (i) flow focusing droplet generation followed by their splitting into daughter droplets containing different amounts of magnetic nanoparticles, and (ii) droplet generation at a T-junction and their downstream deflection across a chamber for sorting based on the applied magnetic field and magnetite loading of the droplet. Both systems show great potential for performing a wide range of high throughput continuous flow processes including sample dilution, cell sorting and screening, and microparticle fabrication.

  13. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  14. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  15. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  16. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  17. Shape complexes in continuous max-flow segmentation

    NASA Astrophysics Data System (ADS)

    Baxter, John S. H.; Yuan, Jing; Drangova, Maria; Peters, Terry M.; Inoue, Jiro

    2016-03-01

    Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. This paper presents the concept of shape complexes, which combine geodesic star convexity with extendable continuous max-flow solvers. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous work required computationally expensive co-ordinate system warping which are ill-defined and ambiguous in the general case. These shape complexes are validated in a set of synthetic images as well as atrial wall segmentation from contrast-enhanced CT. Shape complexes represent a new, extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems.

  18. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  19. Coupled chemo(enzymatic) reactions in continuous flow

    PubMed Central

    Yuryev, Ruslan; Strompen, Simon

    2011-01-01

    Summary This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development. PMID:22238518

  20. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  1. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  2. Stacking in a continuous sample flow interface in capillary electrophoresis.

    PubMed

    Gstoettenmayr, Daniel; Quirino, Joselito; Ivory, Cornelius F; Breadmore, Michael

    2015-08-21

    Using a tee connector in a commercial capillary electrophoresis instrument, the effect of field amplified sample injection from both flowing and static sample volumes was investigated. It is shown that under identical conditions (40min electrokinetic injection at 5kV from a sample volume of 295μL) the limit of detection using the continuous sample flow interface is 4 times lower than from a static vial. The relationship between different flow rates and injection voltages on the injected sample amount was also investigated using a 2D axisymmetric simulation (COMSOL 4.3b) and verified experimentally, confirming conditions under which there is near-quantitative injection of the sample target ions. Using electrokinetic injection at 30kV and a flow rate of 558nL/s the same enhancement from an even smaller volume of 184μL could be achieved in 5.5min than could be achieved from 295μL and a 40min injection. This sensitivity enhancement factor corresponded to four orders of magnitude improvement compared to a hydrodynamic injection. This is the first report showing that a continuous sample flow interface combined with stacking methods under conditions approaching quantitative injection from the entire sample volume has the potential to be more sensitive than a static system. PMID:26189205

  3. Visualization periodic flows in a continuously stratified fluid.

    NASA Astrophysics Data System (ADS)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  4. Rapid protein immobilization for thin film continuous flow biocatalysis.

    PubMed

    Britton, Joshua; Raston, Colin L; Weiss, Gregory A

    2016-08-01

    A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis. PMID:27461146

  5. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Garcia, Julio; Gaillard, Emmanuel; Maftoon, Nima; Di Labbio, Giuseppe; Cloutier, Guy; Kadem, Lyes

    2014-03-01

    Blood flow in the aorta has been of particular interest from both fluid dynamics and physiology perspectives. Coarctation of the aorta (COA) is a congenital heart disease corresponding to a severe narrowing in the aortic arch. Up to 85 % of patients with COA have a pathological aortic valve, leading to a narrowing at the valve level. The aim of the present work was to advance the state of understanding of flow through a COA to investigate how narrowing in the aorta (COA) affects the characteristics of the velocity field and, in particular, turbulence development. For this purpose, particle image velocimetry measurements were conducted at physiological flow and pressure conditions, with three different aorta configurations: (1) normal case: normal aorta + normal aortic valve; (2) isolated COA: COA (with 75 % reduction in aortic cross-sectional area) + normal aortic valve and (3) complex COA: COA (with 75 % reduction in aortic cross-sectional area) + pathological aortic valve. Viscous shear stress (VSS), representing the physical shear stress, Reynolds shear stress (RSS), representing the turbulent shear stress, and turbulent kinetic energy (TKE), representing the intensity of fluctuations in the fluid flow environment, were calculated for all cases. Results show that, compared with a healthy aorta, the instantaneous velocity streamlines and vortices were deeply changed in the presence of the COA. The normal aorta did not display any regions of elevated VSS, RSS and TKE at any moment of the cardiac cycle. The magnitudes of these parameters were elevated for both isolated COA and complex COA, with their maximum values mainly being located inside the eccentric jet downstream of the COA. However, the presence of a pathologic aortic valve, in complex COA, amplifies VSS (e.g., average absolute peak value in the entire aorta for a total flow of 5 L/min: complex COA: = 36 N/m2; isolated COA = 19 N/m2), RSS (e.g., average peak value in the entire aorta for a total flow of 5

  6. Flow cytometric assessment of circulating platelet and erythrocytes microparticles in young thalassemia major patients: relation to pulmonary hypertension and aortic wall stiffness.

    PubMed

    Tantawy, Azza A G; Adly, Amira A M; Ismail, Eman A R; Habeeb, Nevin M

    2013-06-01

    Heart disease is the leading cause of mortality and morbidity in β-thalassemia major (β-TM). Aggregability of abnormal red cells and membrane-derived microparticles (MPs) stemming from activated platelets and erythrocytes are responsible for thrombotic risk. We measured platelet and erythrocyte MPs (PMPs and ErMPs) in 60 young β-TM patients compared with 40 age- and sex-matched healthy controls and assessed their relation to clinicopathological characteristics and aortic elastic properties. Patients were studied stressing on transfusion history, splenectomy, thrombotic events, chelation therapy, hematological and coagulation profiles, flow cytometric measurement of PMPs (CD41b(+) ) and ErMPs (glycophorin A(+) ) as well as echocardiographic assessment of aortic elastic properties. Aortic stiffness index and pulmonary artery pressure were significantly higher, whereas aortic strain and distensibility were lower in TM patients than controls (P < 0.001). Both PMPs and ErMPs were significantly elevated in TM patients compared with controls, particularly patients with risk of pulmonary hypertension, history of thrombosis, splenectomy or serum ferritin >2500 μg/L (P < 0.001). Compliant patients on chelation therapy had lower MPs levels than non-compliant patients (P < 0.001). PMPs and ErMPs were positively correlated to markers of hemolysis, serum ferritin, D-dimer, vWF Ag, and aortic stiffness, whereas negatively correlated to hemoglobin level and aortic distensibility (P < 0.05). We suggest that increased MPs may be implicated in vascular dysfunction, pulmonary hypertension risk, and aortic wall stiffness observed in thalassemia patients. Their quantification could provide utility for early detection of cardiovascular abnormalities and monitoring the biological efficacy of chelation therapy.

  7. Compartmentalized Droplets for Continuous Flow Liquid-Liquid Interface Catalysis.

    PubMed

    Zhang, Ming; Wei, Lijuan; Chen, Huan; Du, Zhiping; Binks, Bernard P; Yang, Hengquan

    2016-08-17

    To address the limitations of batch organic-aqueous biphasic catalysis, we develop a conceptually novel method termed Flow Pickering Emulsion, or FPE, to process biphasic reactions in a continuous flow fashion. This method involves the compartmentalization of bulk water into micron-sized droplets based on a water-in-oil Pickering emulsion, which are packed into a column reactor. The compartmentalized water droplets can confine water-soluble catalysts, thus "immobilizing" the catalyst in the column reactor, while the interstices between the droplets allow the organic (oil) phase to flow. Key fundamental principles underpinning this method such as the oil phase flow behavior, the stability of compartmentalized droplets and the confinement capability of these droplets toward water-soluble catalysts are experimentally and theoretically investigated. As a proof of this concept, case studies including a sulfuric acid-catalyzed addition reaction, a heteropolyacid-catalyzed ring opening reaction and an enzyme-catalyzed chiral reaction demonstrate the generality and versatility of the FPE method. Impressively, in addition to the excellent durability, the developed FPE reactions exhibit up to 10-fold reaction efficiency enhancement in comparison to the existing batch reactions, indicating a unique flow interface catalysis effect. This study opens up a new avenue to allow conventional biphasic catalysis reactions to access more sustainable and efficient flow chemistry using an innovative liquid-liquid interface protocol. PMID:27429173

  8. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-08-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids.

  9. Continuous-flow Electrokinetic Particle Separation in a Bifurcating Microchannel

    NASA Astrophysics Data System (ADS)

    Li, Di; Lu, Xinyu; Xuan, Xiangchun

    Separating particles from a heterogeneous mixture is important and necessary in many engineering and biomedical applications. Electrokinetic flow-based continuous particle separation has so far been realized primarily by the use of particle dielectrophoresis induced in constricted and/or curved microchannels. We demonstrate in this talk that particles can be continuously separated by size when passing through a bifurcating microchannel. This sheathless label-free separation relies on the wall-induced electrical lift force that acts to focus particles to the center of the main-branch and deflect them to size-dependent flow paths in the two side-branches. We also develop a numerical model to predict and understand this separation.

  10. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  11. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  12. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  13. Management of pneumothorax in cattle by continuous-flow evacuation.

    PubMed

    Peek, Simon E; Slack, J A; McGuirk, Sheila M

    2003-01-01

    Pneumothorax in cattle can develop subsequent to acute or chronic pulmonary disease, and if unresolved may lead to respiratory distress and death due to hypoxia and compression and collapse of cardiac and thoracic great vessels. Therapeutic evacuation of free air within the pleural space can provide acute relief and improve chances of survival. This article descibes the adaptation and use of a continuous flow evacuation device to resolve pneumothorax in 3 cattle with pneumothorax associated with infectious lower airway disease. PMID:12564738

  14. Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting.

    PubMed

    Gao, Feng; Ueda, Hiroshi; Gang, Li; Okada, Hiroshi

    2013-04-26

    One treatment method for aortic aneurysm is the invasive insertion of a stent into the aneurysm. Another method is wrapping the aneurysm using newly developed expanded polytetrafluoroethylene (PTFE) material. A virtual stented aneurysm model and a wrapped aneurysm model were created to study the flow and wall dynamics by means of fluid-structure interaction analyses. The flow velocity and pressure distribution as well as the deformation and wall stress were investigated. Stenting significantly changed the blood flow pattern and the vortexes in the aneurysm. Wrapping increased the thickness of the aneurysm wall and increased the strength of the vessel wall. The maximum von Mises stress in the stented model was found to be 220,494 Pa and 228,218 Pa at the time of peak flow and peak pressure, respectively. This was reduced by 37.8% and 36.7% to 137,200 and 144,354 Pa, respectively, in the wrapped model. Our results provide information that may improve the understanding of the biomechanics of stenting and wrapping. PMID:23477789

  15. Fluid structure interaction simulation in three-layered aortic aneurysm model under pulsatile flow: comparison of wrapping and stenting.

    PubMed

    Gao, Feng; Ueda, Hiroshi; Gang, Li; Okada, Hiroshi

    2013-04-26

    One treatment method for aortic aneurysm is the invasive insertion of a stent into the aneurysm. Another method is wrapping the aneurysm using newly developed expanded polytetrafluoroethylene (PTFE) material. A virtual stented aneurysm model and a wrapped aneurysm model were created to study the flow and wall dynamics by means of fluid-structure interaction analyses. The flow velocity and pressure distribution as well as the deformation and wall stress were investigated. Stenting significantly changed the blood flow pattern and the vortexes in the aneurysm. Wrapping increased the thickness of the aneurysm wall and increased the strength of the vessel wall. The maximum von Mises stress in the stented model was found to be 220,494 Pa and 228,218 Pa at the time of peak flow and peak pressure, respectively. This was reduced by 37.8% and 36.7% to 137,200 and 144,354 Pa, respectively, in the wrapped model. Our results provide information that may improve the understanding of the biomechanics of stenting and wrapping.

  16. Non-Newtonian Study of Blood Flow in an Abdominal Aortic Aneurysm with a Stabilized Finite Element Method

    NASA Astrophysics Data System (ADS)

    Marrero, Victor; Sahni, Onkar; Jansen, Kenneth; Tichy, John; Taylor, Charles

    2008-11-01

    In recent years the methods of computational fluid dynamics (CFD) have been applied to the human cardiovascular system to better understand the relationship between arterial blood flow and the disease process, for example in an abdominal aortic aneurysm (AAA). Obviously, the technical challenges associated with such modeling are formidable. Among the many problems to be addressed, in this paper we add yet another complication -- the known non-Newtonian nature of blood. In this preliminary study, we used a patient-based AAA model with rigid walls. The pulsatile nature of the flow and the RCR outflow boundary condition are considered. We use the Carreau-Yasuda model to describe the non-Newtonian viscosity variation. Preliminary results for 200K, 2M, and 8M elements mesh are presented for the Newtonian and non-Newtonian cases. The broad fundamental issue we wish to eventually resolve is whether or not non-Newtonian effects in blood flow are sufficiently strong in unhealthy vessels that they must be addressed in meaningful simulations. Interesting differences during the flow cycle shed light on the problem, but further research is needed.

  17. Apparatus for irradiating a continuously flowing stream of fluid

    DOEpatents

    Speir, Leslie G.; Adams, Edwin L.

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  18. Development of a continuous-flow fluidic pump

    SciTech Connect

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs.

  19. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  20. Innovative Method for Greatly Reducing Flow Resistance and Obtaining Well-Ordered Continuous Flow

    NASA Astrophysics Data System (ADS)

    Lin, Weiyi

    2009-11-01

    In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. And some experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of Gravity Pipe Flow under the action of Torricelli's Vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under GPFUTV condition the water flow in the tube is full-pipe and continuous, colorless and non-aerated, high-speed and non-rotational as distinguished from laminar flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, the well-known Reynolds' experiment under GPFUTV condition, the potential for GPFUTV to be developed for deep seawater suction technology, seawater intake pipe of OTEC and lifting technology for deep ocean mining in Fe-Mn concretions, flow stability and flow resistance under GPFUTV condition, etc.

  1. A continuous flow evaluation of the galvanic stripping process

    SciTech Connect

    Barrera-Godinez, J.A.; O`Keefe, T.J.

    1999-09-01

    The concept of galvanically stripping cations such as Fe{sup 3+}, Cu{sup 2+}, Pb{sup 2+}, and Au{sup 3+} from organic solvents using solid metal reductants has been demonstrated on a batch test basis in a number of previous studies. In this research the first evaluation of a continuous flow system for the process was made, with Fe{sup 3+} removal from D2EHPA being the primary objective. The effect of operation type (separate or simultaneous stripping), the iron concentration in the organic feed, the organic flow rate, the aqueous-to-organic volume ratio (A/O), the metal reductant (pure zinc vs lead-zinc alloy), the reductant surface area and acidity of the stripping phase on the iron and zinc removal percentages, and the process rate and stoichiometry were evaluated by using continuous flow mixed reactors. The steady-state condition was reached in all the tests after about 40 minutes. In particular, the rate of iron removal was found to be greater for simultaneous than for separate galvanic stripping. A longer organic residence time produced a slightly lower rate, but increasing the aqueous-to-organic ratio augmented the overall rate. The pH of the aqueous phase controlled the iron and zinc stripping percentages, and increasing the reductant surface area increased the iron removal percent. In general, the results agreed with previous batch-type studies on galvanic stripping, and the data indicated that the galvanic stripping process rate and reactor behavior can be assessed by using mechanically agitated continuous flow mixed reactors.

  2. The effects on blood flows of coronary artery by-pass grafts during intra-aortic balloon pumping.

    PubMed

    Tedoriya, T; Akemoto, K; Imai, T; Ueyama, T; Kawasuji, M; Watanabe, Y

    1994-12-01

    The internal thoracic artery (ITA), as well as aorto-coronary by-pass grafts, has been used for widely coronary artery by-pass grafting. Intra-aortic balloon pumping (IABP) is the first choice for left ventricular support when low output syndrome occurs during coronary artery by-pass surgery. However, the effect of diastolic augmentation by IABP may vary to the type of grafts. Graft flow with and without IABP support were measured in six patients undergoing elective coronary artery bypass surgery requiring IABP at Kanazawa National Hospital. The patients ranged in age from 59 to 67 years, with a mean age of 63 years, and included one woman and five men. In all cases, the left ITA was dissected from the thoracic wall as pedicle, and anastomosed in situ to the left anterior descending artery. Saphenous vein grafts (SVGs) were used for aortocoronary by-pass to the obtuse marginal branches, the first diagonal branches, the left circumflex branches, and/or the right coronary artery. Blood flow in 6 ITAs, 11 SVGs to the left coronary artery systems, and three SVGs to the right coronary artery was measured by ultrasound transit-time flowmeter simultaneously with the electrocardiogram. Blood flows in ITA grafts and SVGs were measured during IABP assist and unassisting under hemodynamically stable conditions after discontinuing cardiopulmonary by-pass. The systolic and diastolic flows of each graft were measured using the peak of the R wave and the end of T wave on the electrocardiogram as the references for systole. Systolic flow during IABP were similar to unassisted flow in both ITA and SVGs.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Analytical solutions for flow fields near continuous wall reactive barriers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk

    2008-05-01

    Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.

  4. Analytical solutions for flow fields near continuous wall reactive barriers.

    PubMed

    Klammler, Harald; Hatfield, Kirk

    2008-05-26

    Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.

  5. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  6. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  7. Synthesis of nanomaterials by continuous-flow microfluidics: a review.

    PubMed

    Makgwane, Peter Ramashadi; Ray, Suprakas Sinha

    2014-02-01

    The development of controlled synthesis protocols of nanostructured materials with tailored particle size and shape has been a significant research area in nanoscience and nanotechnology. Much innovative research efforts had been focused on finding suitable chemical reagents and synthetic methodologies that offer opportunities to produce the desired structure-function controlled nanomaterials. On the other hand, the reactor equipment for the synthesis of these tailored nanomaterials is of prime importance not only at laboratory-scale but also with view of up-scaling the synthetic processes into large-scale productions. Whilst the sequential three-stage scale-up from the conventional process (i.e., lab-scale/pilot-scale/large-scale) using multi-purpose batch reactor is masked with complications, on the other hand, the interface of nanomaterials synthesis processes and continuous-flow microfluidic chemistry has demonstrated relatively superior process performance over conventional technologies. Consequently, the uses of continuous-flow microfluidics systems have recently attracted much research attention as versatile tools for the synthesis of various structured nanomaterials. In this review, we highlight and analyze the key achievements to date of adopting microfluidics technologies for the controlled synthesis of nanomaterials with well-defined structural properties desirable for the intended applications. We devote the significant emphasis on demonstrating the improved potential characteristics features of continuous-flow microfluidics as a capable technology to provide efficient synthesis processes for the production of various nanosized scale structured materials with precise control of the involved chemistry. Moreover, we discuss the novel process window opportunities of hyphenated microfluidics nanoparticles synthesis with the in-situ or in-line structure characterization during synthesis under real-time reaction conditions which provide interesting insights

  8. Comparison of continuous and discontinuous discretizations for the Stokes flow

    NASA Astrophysics Data System (ADS)

    Lehmann, Ragnar; Kaus, Boris J. P.; Lukáčová-Medvid'ová, Maria

    2013-04-01

    Finite element methods (FEM) of various types are widely used to solve incompressible flow problems in general and Stokes flow in particular. We present first results of a study comparing two numerical methods: the continuous Galerkin and the discontinuous Galerkin (DG) method. For this purpose a Matlab code was developed employing 2D Stokes flow in a model setup with known analytical solution. [2] Nonlinearities of, e.g., the viscosity can lead to discontinuities in the velocity-pressure solution. Hence, using continuous approximations may result in avoidable inaccuracies. In contrast to the FEM, the DG method allows for discontinuities of velocity and pressure across interior mesh edges. This increases the number of degrees of freedom by a constant factor depending on the chosen element. A parameter is introduced to penalize the jumps in the velocity. The DG method provides the capability to locally adapt the polynomial degree of the shape functions. Moreover, it only needs communication between directly adjacent mesh cells, which makes it highly flexible and easy to parallelize. The velocity and pressure errors of the methods are measured in the L1-norm [1]. Orders of convergence are determined and compared. [1] Duretz, T., May, D.A., Garya, T.V. and Tackley, P.J., 2011. Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical Study, Geochem. Geophys. Geosyst., 12, Q07004, doi:10.1029/2011GC003567. [2] Zhong, S., 1996. Analytic solution for Stokes' flow with lateral variations in viscosity, Geophys. J. Int., 124, 18-128, doi:10.1111/j.1365-246X.1996.tb06349.x.

  9. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

    1993-10-19

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

  10. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.

    1993-01-01

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

  11. Use Of Infrared Imagery In Continuous Flow Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Stallings, D. W.; Whetsel, R. G.

    1983-03-01

    Thermal mapping with infrared imagery is a very useful test technique in continuous flow wind tunnels. Convective-heating patterns over large areas of a model can be obtained through remote sensing of the surface temperature. A system has been developed at AEDC which uses a commercially available infrared scanning camera to produce these heat-transfer maps. In addition to the camera, the system includes video monitors, an analog tape recording, an analog-to-digital converter, a digitizer control, and two minicomputers. This paper will describe the individual components, data reduction techniques, and typical applications. *

  12. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  13. A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension

    NASA Astrophysics Data System (ADS)

    Munmuangsaen, Buncha; Sprott, Julien Clinton; Thio, Wesley Joo-Chen; Buscarino, Arturo; Fortuna, Luigi

    This paper describes two simple three-dimensional autonomous chaotic flows whose attractor dimensions can be adjusted continuously from 2.0 to 3.0 by a single control parameter. Such a parameter provides a means to explore the route through limit cycles, period-doubling, dissipative chaos, and eventually conservative chaos. With an absolute-value nonlinearity and certain choices of parameters, the systems have a vast and smooth continual transition path from dissipative chaos to conservative chaos. One system is analyzed in detail by means of the largest Lyapunov exponent, Kaplan-Yorke dimension, bifurcations, coexisting attractors and eigenvalues of the Jacobian matrix. An electronic version of the system has been constructed and shown to perform in accordance with expectations.

  14. Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    NASA Astrophysics Data System (ADS)

    Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.

    2016-04-01

    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.

  15. Intra-aortic balloon pumping reduces the increased arterial load caused by acute cardiac depression, modifying central and peripheral load determinants in a time- and flow-related way.

    PubMed

    Bia, Daniel; Cabrera-Fischer, Edmundo I; Zócalo, Yanina; Armentano, Ricardo L

    2012-09-01

    The mechanisms that explain intra-aortic balloon pumping (IABP) effects are not completely understood, and attributing them only to pressure-associated changes in cardiac function would be an oversimplification. Since IABP modifies the aortic and systemic blood-flow pattern, flow-related effects could be expected. To characterize effects of acute heart failure (AHF) on the arterial biomechanics; IABP effects on the arterial biomechanics during AHF, and their potential time-dependence; the association between hemodynamics and biomechanical changes during AHF and IABP. Sheep (n = 6) aortic pressure, flow, and diameter were measured: (1) before (Basal) and (2) 1-3 (HF(1-3)) and 28-30 (HF(28-30)) min after starting halothane to induce AHF; and (3) at specific times (1-3, 14-15 and 28-30 min) during IABP assistance. Calculus: aortic characteristic impedance (Z(c)), beta stiffness (β), incremental (E(INC)) and pressure-strain elastic modulus (E(P)); total arterial compliance (C(G)), total systemic vascular resistance and wave propagation parameters. (1) AHF resulted in an acute increase in aortic and systemic stiffness (HF(28-30) % changes with respect to Basal conditions: β +217%, E (P) +143%, E(INC) +101%, Z(c) +52%, C(G) -13%), associated with the reduction in the aortic blood flow; (2) during AHF IABP resulted in acute beneficial changes aortic and systemic biomechanics (% changes in IABP(1-3) with respect HF(28-30): β -62%, E(P) -68%, E (INC) -66%, Z(c) -38%, C(G) 66%), and in wave propagation parameters, (3) IABP-related changes were time-dependent and associated with changes in aortic blood flow. Aortic and systemic biomechanical and impedance properties are detrimentally modified during AHF, being the changes rapidly reverted during IABP. IABP-related beneficial changes in arterial biomechanics were time-dependent and associated with IABP capability to increase blood flow.

  16. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L.

  17. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment.

    PubMed

    Bumbac, C; Ionescu, I A; Tiron, O; Badescu, V R

    2015-01-01

    The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100-500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81-93% and 85-94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH(+)(4) was nitrified with removal efficiencies of 83-99% while the nitrate produced was simultaneously denitrified - highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3-76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L. PMID:25714645

  18. Continuous flow system for controlling phases separation near λ transition

    SciTech Connect

    Chorowski, M.; Poliński, J.; Kempiński, W.; Trybuła, Z.; Łoś, Sz.; Chołast, K.; Kociemba, A.

    2014-01-29

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach λ-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-λ-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  19. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  20. Continuous-Flow Bioseparation Using Microfabricated Anisotropic Nanofluidic Sieving Structures

    PubMed Central

    Fu, Jianping; Mao, Pan; Han, Jongyoon

    2010-01-01

    The anisotropic nanofluidic filter (nanofilter) array (ANA) is a unique molecular sieving structure for separating biomolecules. Here we describe fabrication of planar and vertical ANA chips and how to perform continuous-flow bioseparation using them. This protocol is most useful for bioengineers that are interested in developing automated multistep chip-based bioanalysis systems and assumes prior cleanroom microfabrication knowledge. The ANA consists of a two-dimensional periodic nanofilter array, and the designed structural anisotropy of the ANA causes different sized- or charged-biomolecules to follow distinct trajectories under applied electric fields, leading to efficient continuous-flow separation. Using microfluidic channels surrounding the ANA, the fractionated biomolecule streams are collected and routed to different fluid channels or reservoirs for convenient sample recovery and downstream bioanalysis. The ANA is physically robust and can be reused repeatedly. Compared to conventional gel-based separation techniques, the ANA offers the potential for faster separation, higher throughput, and more convenient sample recovery. PMID:19876028

  1. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  2. Visualization and finite element analysis of pulsatile flow in models of the abdominal aortic aneurysm.

    PubMed

    Fukushima, T; Matsuzawa, T; Homma, T

    1989-01-01

    Pulsatile flows in glass models simulating fusiform and lateral saccular aneurysms were investigated by a flow visualization method. When resting fluid starts to flow, the initial fluid motion is practically irrotational. After a short period of time, the flow began to separate from the proximal wall of the aneurysm. Then the separation bubble or vortex grew rapidly in size and filled the whole area of the aneurysm circumferentially. During this period of time, the center of the vortex moved from the proximal end to the distal point of the aneurysm. The transient reversal flow, for instance, which may occur at the end of the ejection period, passed between the wall of the aneurysm and the centrally located vortex. When the rate and pulsatile frequency of flow were high, the vortex broke down into highly disturbed flow (or turbulence) at the distal portion of the aneurysm. The same effect was observed when the length of the aneurysm was increased. A reduction in pulsatile amplitude made the flow pattern close to that in steady flow. A finite element analysis was made to obtain velocity and pressure fields in pulsatile flow through a tube with an axisymmetric expansion. Calculations were performed with the pulsatile flows used in the visualization experiment in order to study the effects of change in the pulsatile wave form by keeping the time-mean Reynolds number and Womersley's parameter unchanged. Calculated instantaneous patterns of velocity field and stream lines agreed well with the experimental results. The appearance and disappearance of the vortex in the dilated portion and its development resulted in complex distributions of pressure and shear fields. Locally minimum and maximum values of wall shear stress occurred at points just upstream and downstream of the distal end of the expansion when the flow rate reached its peak. PMID:2605323

  3. Continuous-Flow Detector for Rapid Pathogen Identification

    SciTech Connect

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.; Cummings, Eric B.; Fiechtner, Gregory J.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  4. Cardiac flow measurement by ultrafast CT: validation of continuous and pulsatile flow.

    PubMed

    Ludman, P F; Darby, M; Tomlinson, N; Poole-Wilson, P A; Rees, S

    1992-01-01

    To gauge the accuracy of ultrafast CT in measuring cardiac output and myocardial perfusion in humans, measurements of continuous and pulsatile flow were made in a large asymmetrical phantom. The variation in the relationship between Hounsfield number and contrast concentration was assessed in a human thorax phantom. Radiopaque contrast medium was injected during perfusion of the phantom at a range of flow rates between 1.5 and 8 L/min. The phantom was scanned in two modes (50 and 100 ms) during continuous and pulsatile flow and with the phantom surrounded by air and by water. Flow in the tubes was calculated using indicator dilution theory, and flow in the tissue-equivalent chamber was calculated by applying first-pass distribution principles. The standard deviation of the difference between calculated and measured flow varied from 0.2 to 0.6 L/min, giving 95% limits of agreement from 0.4 to 1.2 L/min. The constant (K) relating Hounsfield unit number to iodine concentration varied widely both in different locations within the phantom and under different scan conditions (17.2-27.6 HU/mg I). Within a human thorax phantom, K varied from 14.15 to 23.18 HU/mg I and was dependent on location within the thorax phantom, the scan mode, and the cross-sectional diameter of the phantom. These data suggest that though the ultrafast CT scanner can measure continuous and pulsatile flow accurately in tubes, precise measurements of cardiac output in humans will require K to be assessed for each subject. Measurements of flow in tissue should be possible. PMID:1522275

  5. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection. PMID:27440026

  6. Study of transient flow and particle transport in continuous steel caster molds: Part I. Fluid flow

    NASA Astrophysics Data System (ADS)

    Yuan, Quan; Thomas, Brian G.; Vanka, S. P.

    2004-08-01

    Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle. Three large-eddy simulations (LES) have been validated with measurements and used to compare results between full-pool and symmetric half-pool domains and between a full-scale water model and actual behavior in a thin-slab steel caster. First, time-dependent turbulent flow in the submerged nozzle is computed. The time-dependent velocities exiting the nozzle ports are then used as inlet conditions for the flow in the liquid pool. Complex time-varying flow structures are observed in the simulation results, in spite of the nominally steady casting conditions. Flow in the mold region is seen to switch between a “double-roll” recirculation zone and a complex flow pattern with multiple vortices. The computed time-averaged flow pattern agrees well with measurements obtained by hot-wire anemometry and dye injection in full-scale water models. Full-pool simulations show asymmetries between the left and right sides of the flow, especially in the lower recirculation zone. These asymmetries, caused by interactions between two halves of the liquid pool, are not present in the half-pool simulation. This work also quantifies differences between flow in the water model and the corresponding steel caster. The top-surface liquid profile and fluctuations are predicted in both systems and agree favorably with measurements. The flow field in the water model is predicted to differ from that in the steel caster in having higher upward velocities in the lower-mold region and a more uniform top-surface liquid profile. A spectral analysis of the computed velocities shows characteristics similar to previous measurements. The flow results presented here are later used (in Part II of this article) to investigate the transport of inclusion particles.

  7. Apheresis experience with a continuous flow cell separator.

    PubMed

    Norol, F; Aubert, C; Scotto, F; Duedari, N

    1988-01-01

    The Dideco Vivacell separator is a continuous-flow centrifugation system that has only recently been used for cytapheresis. The authors' experience with this separator in 451 plateletpheresis and 164 leukapheresis procedures is presented. Platelet collection provided high platelet yields (9.53 +/- 2.85 X 10(11) with a collection efficiency of 74 +/- 14 percent for about 6 liters of total blood processed. Functional integrity was confirmed by normal in vitro tests (aggregation and response to hypotonic stress) and good in vivo recovery (55%). In leukapheresis, white cell yields were high (3.42 +/- 1.2 X 10(10) with 85 percent polymorphonuclear neutrophil cells. Their oxidative metabolism functions (generation of free oxygen radicals), investigated by chemiluminescence, were increased over donor values. Donor reactions, all of the mild citrate type, were rare.

  8. Continuous flow ink etching for direct micropattern of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-07-01

    A continuous flow ink etching (CFIE) method is presented to directly create micropatterns on a 60 nm thick silicon dioxide (SiO2) layer. This technique employs a micropipette filled with potassium bifluoride (KHF2) aqueous solution to localize SiO2 dissolution in the vicinity of the micropipette tip. Both dot and line features with well-defined edges were fabricated and used as hardmasks for silicon etching. The linear density of etchant ink deposited on the SiO2 can be used to regulate the depth, width and 2D morphology of the line pattern. The characterization of CFIE including the resolution (about 4 μm), reproducibility and capability to form complex structures are reported. This technique provides a simple and flexible alternative to generate the SiO2 hardmask for silicon microstructure fabrication.

  9. Synthesis of phytochelatins by the continuous flow solid phase procedure.

    PubMed

    Chen, Z; Hemmasi, B

    1993-11-01

    A nona- and an undecapeptide corresponding to phytochelatins with the general structure H-[gamma-Glu-Cys]n-Gly-OH were each synthesized by the continuous flow solid phase method using two different methodologies. Fmoc-amino acid derivatives were used as precursors, and two different H2N-POE-PS supports were employed. Different procedures were used to remove Acm protecting groups from Cys residues. In a second synthesis, Acm groups were removed before cleavage of the peptides from the polymer supports. The partially protected peptides of the first synthesis were purified by preparative HPLC. The purity and identity of all the synthesized peptides were verified by analytical HPLC and IS-MS and in some cases by amino acid analysis. PMID:8292265

  10. Scanning tunneling microscope with continuous flow cryostat sample cooling

    SciTech Connect

    Behler, S.; Rose, M.K.; Dunphy, J.C.; Ogletree, D.F.; Salmeron, M.; Chapelier, C.

    1997-06-01

    We have constructed an ultrahigh vacuum scanning tunneling microscope (STM) for operation in the temperature range 20{endash}300 K. The design consists of a vibration isolated sample holder mounted on a continuous flow cryostat. By rotation and linear motion of the cryostat, the sample can be positioned in front of various surface preparation and analysis instruments contained in a single vacuum chamber. A lightweight beetle-type STM head is lowered from the top onto the sample by a linear manipulator. To minimize helium convection in the cryostat, the entire vacuum system, including a liquid helium storage Dewar, can be tilted by a few degrees perpendicular to the cryostat axis, which improves the operation. The performance of the instrument is demonstrated by atomically resolved images of the Pd(111) surface and adsorbed CO molecules. {copyright} {ital 1997 American Institute of Physics.}

  11. Clinical applications of the continuous flow blood separator machine.

    PubMed Central

    Oon, C J; Hobbs, J R

    1975-01-01

    The NCl/IBM or Aminco Continuous Flow Blood Separator Machine is a safe apparatus for the selective removal or exchange of either packed red blood cells, leucocyte-rich or platelet-rich layers or plasma. Abnormal fractions from any of these layers may be collected and discarded. Normal constituents may be collected for therapeutic uses. The wide scope of its applications includes important uses in clinical immunology: temporary provision of good leucocytes or platelets; harvesting of immune leucocytes (preparation of transfer factor at up to 10 units per harvest); removal of cryo- or macro-globulins, immune complexes or blocking factors; replacement therapy for antibody or complement deficiencies. Examples are given of such uses together with some of the medical problems so far encountered. Images FIG. 6 PMID:1106917

  12. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, Ch.; Mathioulakis, D. S.; Papaharilaou, Y.; Katsamouris, A.

    2011-06-01

    The velocity field in a patient-specific abdominal aneurysm model including the aorto-iliac bifurcation was measured by 2D PIV. Phase-averaged velocities obtained in 14 planes reveal details of the flow evolution during a cycle. The aneurysm expanding asymmetrically toward the anterior side of the aorta causes the generation of a vortex at its entrance, covering the entire aneurysm bulge progressively before flow peak. The fluid entering the aneurysm impinges on the left side of its distal end, following the axis of the upstream aorta segment, causing an increased flow rate in the left (compared to the right) common iliac artery. High shear stresses appear at the aneurysm inlet and outlet as well as along the posterior wall, varying proportionally to the flow rate. At the same regions, elevated flow disturbances are observed, being intensified at flow peak and during the deceleration phase. Low shear stresses are present in the recirculation region, being two orders of magnitude smaller than the previous ones. At flow peak and during the deceleration phase, a clockwise swirling motion (viewed from the inlet) is present in the aneurysm due to the out of plane curvature of the aorta.

  13. Thermal effects on bacterial bioaerosols in continuous air flow.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Kim, Sang Soo

    2009-08-01

    Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 degrees C to 700 degrees C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 degrees C and 350 degrees C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 degrees C) to 82.0% (at 700 degrees C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 degrees C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.

  14. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  15. Continuous-flow metal biosorption in a regenerable Sargassum column.

    PubMed

    Volesky, B; Weber, J; Park, J M

    2003-01-01

    Metal biosorption behavior of raw seaweed S. filipendula in ten consecutive sorption-desorption cycles has been investigated in a packed-bed flow-through column during a continuous removal of copper from a 35mg/L aqueous solution at pH 5. The elutant used was a 1% (w/v) CaCl2/HCl-solution at pH 3. The sorption and desorption was carried out for an average of 85 and 15h, respectively, representing more than 41 days of continuous use of the biosorbent. The weight loss of biomass after this time was 21.6%. The Cu-biosorption capacity of the biomass, based on the initial dry weight, remained relatively constant at approximately 38 mg Cu/g. Loss of sorption performance was indicated by a shortening breakthrough time and a broadening mass-transfer zone. The column service time, considered up to 1 mg Cu/L in the effluent, decreased continuously from 25.4 h for the first to 12.7 h for the last cycle. The critical bed length, representing the mass-transfer zone, increased almost linearly from 28 to 34cm. "Life-factors" for S. filipendula were found to be 0.0008h(-1) for the breakthrough time and 0.008cm/h for the critical bed length, using an exponential decay and linear fitting functions, respectively. Regeneration with CaCl2/HCl at pH 3 provided elution efficiencies up to 100%. Maximum concentration factors were determined to be in the range 16-44, a decreasing tendency was observed with an increasing exposure time. PMID:12502059

  16. Endovascular aortic aneurysm operations.

    PubMed

    Najibi, Sasan; Terramani, Thomas T; Weiss, Victor J; Smith, Robert B; Salam, Atef A; Dodson, Thomas F; Chaikof, Elliot L; Lumsden, Alan B

    2002-02-01

    Options for the treatment of abdominal and thoracic aortic aneurysms are in a state of evolutionary change. The development and continued refinement of the endoluminal approaches has decreased the need for open aortic aneurysm surgery. Endovascular stent graft technology is an area of active research in which both the delivery systems and the endografts are undergoing continued improvement so that patients with what was previously thought to be unfavorable anatomy may be treated by these means. The design and deployment techniques of the currently available endografts, as well as those in clinical trials, are presented. PMID:11822962

  17. Lava flows during the continuing eruption of Mt. Etna, Italy

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows advancing lava flows on the southern flank of Mt. Etna above the town of Nicolosi, which is potentially threatened if the eruption increases in magnitude. Also visible are glowing summit craters above the main lava flows, and a small fissure eruption. The bright puffy clouds were formed from water vapor released during the eruption. The image covers an area of 24 x 30 km.

    The image is centered at 37.7 degrees north latitude, 15 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils

  18. Continuous-Flow System Produces Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R.

    2009-01-01

    A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.

  19. A computerized system for video analysis of the aortic valve.

    PubMed

    Vesely, I; Menkis, A; Campbell, G

    1990-10-01

    A novel technique was developed to study the dynamic behavior of the porcine aortic valve in an isolated heart preparation. Under the control of a personal computer, a video frame grabber board continuously acquired and digitized images of the aortic valve, and an analog-to-digital (A/D) converter read four channels of physiological data (flow rate, aortic and ventricular pressure, and aortic root diameter). The valve was illuminated with a strobe light synchronized to fire at the field acquisition rate of the CCD video camera. Using the overlay bits in the video board, the measured parameters were super-imposed over the live video as graphical tracing, and the resultant composite images were recorded on-line to video tape. The overlaying of the valve images with the graphical tracings of acquired data enabled the data tracings to be precisely synchronized with the video images of the aortic valve. This technique enabled us to observe the relationship between aortic root expansion and valve function.

  20. Hydrothermal upgrading of algae paste in a continuous flow reactor.

    PubMed

    Patel, Bhavish; Hellgardt, Klaus

    2015-09-01

    This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry. PMID:25908412

  1. Simulation of Dilated Heart Failure with Continuous Flow Circulatory Support

    PubMed Central

    Wang, Yajuan; Loghmanpour, Natasha; Vandenberghe, Stijn; Ferreira, Antonio; Keller, Bradley; Gorcsan, John; Antaki, James

    2014-01-01

    Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery. PMID:24465511

  2. Hydrothermal upgrading of algae paste in a continuous flow reactor.

    PubMed

    Patel, Bhavish; Hellgardt, Klaus

    2015-09-01

    This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry.

  3. A Mock Circulatory System to Assess the Performance of Continuous-Flow Left Ventricular Assist Devices (LVADs): Does Axial Flow Unload Better Than Centrifugal LVAD?

    PubMed Central

    2014-01-01

    Hemodynamic performances comparisons between different types of left ventricular assist devices (LVADs) remain difficult in a clinical context. The aim of this study was to create an experimental model to assess and compare two types of LVAD under hemodynamic conditions that simulated physical effort and pulmonary hypertension. An experimental mock circulatory system was created to simulate the systemic and pulmonary circulations and consisted of pulsatile left and right cardiac simulators (cardiowest pump), air/water tanks to model compliances, and tubes to model the venous and arterial resistances. Two types of continuous-flow ventricular assist devices were connected to this pulsated model: an axial flow pump, Heartmate II (HTM II), and a centrifugal pump, VentrAssist (VTA). The hemodynamic conditions at rest and during exercise were replicated. Mean aortic pressures were not significantly different at rest and during effort but mean flow under maximum pump speed was higher with HTM II (13 L vs. 10 L, p = 0.02). Left atrial pressure was lower at rest and during effort for the HTM II (11 mm Hg vs. 3 mm Hg, p = 0.02 and 9 mm Hg vs. 2 mm Hg, p = 0.008) than with the VTA, but with greater risk of left-ventricle suck-down for the axial flow. Power consumption for a similar flow was lower with the VTA during rest (4.7 W vs. 6.9 W, p = 0.002) and during effort (4.3 W vs. 6.6 W, p = 0.008). In case of high pulmonary vascular resistance with preserved right ventricular function, lower right ventricular pressure was obtained with HTM II (21 mm Hg vs. 28 mm Hg, p = 0.03). Observed results are in favor of a better discharge of the left and right cavities with the HTM II compared to the VTA yet with a higher risk of left cavity collapse occurrence. PMID:24577368

  4. Continuous-flow solar UVB disinfection reactor for drinking water.

    PubMed

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  5. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  6. From Unicuspid to Quadricuspid: Influence of Aortic Valve Morphology on Aortic 3D Hemodynamics

    PubMed Central

    Entezari, Pegah; Schnell, Susanne; Mahadevia, Riti; Malaisrie, Chris; McCarthy, Patrick; Mendelson, Marla; Collins, Jeremy; Carr, James C.; Markl, Michael; Barker, Alex J.

    2016-01-01

    Purpose To assess the impact of aortic valve morphology on aortic hemodynamicsbetweennormal tricuspid and congenitally anomalous aortic valvesranging from unicuspid to quadricuspid morphology. Materials and Methods Aortic 3D blood flow was evaluated by 4D flow MRI in 14 healthy volunteers with normal trileaflet valves and 14 patients withunicuspid(n=3), bicuspid (n=9, 3 ‘true’ bicuspid, 3 right-left (RL), 3 right-non (RN) coronary leaflet fusion, and quadricuspid aortic valves (n=2). Data analysis included the co-registered visualization of aortic valve morphology with systolic 3D blood flow. The influence of valve morphology on aortic hemodynamics was quantified by valve flow angle. Results All RL-BAV were associated with flow jets directed towards the right anterior aortic wallwhile RN-fusion and unicuspid valves resulted in flow jet patterns towards the right-posterior or posterior wall. Flow angles were clearly influenced by valve morphology(47°±10, 28°±2, 29°±18, 18°±12, 15°±2 for unicuspid, trueBAV, RN-BAV, RL-BAV, quadricuspid valves) and increased compared to controls (7.2°±1.1, p=0.001). Conclusions Altered 3D aortic hemodynamics are impacted by the morphology of congenitally malformed aortic valves. PMID:24265266

  7. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple...

  8. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple...

  9. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple...

  10. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple...

  11. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple...

  12. Continuous flow measurements using ultrasonic velocity meters - an update

    USGS Publications Warehouse

    Oltmann, Rick

    1995-01-01

    An article in the summer 1993 Newsletter described USGS work to continously monitor tidal flows in the delta using ultrasonic velocity meters.  This article updates progress since 1993, including new installations, results of data analysis, damage during this year's high flows, and the status of each site.

  13. Full dimensional computer simulations to study pulsatile blood flow in vessels, aortic arch and bifurcated veins: Investigation of blood viscosity and turbulent effects.

    PubMed

    Sultanov, Renat A; Guster, Dennis

    2009-01-01

    We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels. PMID:19964834

  14. Aortic Aneurysm Statistics

    MedlinePlus

    ... Blood Pressure Salt Cholesterol Million Hearts® WISEWOMAN Aortic Aneurysm Fact Sheet Recommend on Facebook Tweet Share Compartir ... cause of most deaths from aortic aneurysms. Aortic Aneurysm in the United States Aortic aneurysms were the ...

  15. Abdominal Aortic Aneurysm (AAA)

    MedlinePlus

    ... Resources Professions Site Index A-Z Abdominal Aortic Aneurysm (AAA) Abdominal aortic aneurysm (AAA) occurs when atherosclerosis ... aortic aneurysm treated? What is an abdominal aortic aneurysm? The aorta, the largest artery in the body, ...

  16. Double aortic arch

    MedlinePlus

    Aortic arch anomaly; Double arch; Congenital heart defect - double aortic arch; Birth defect heart - double aortic arch ... aorta is a single arch that leaves the heart and moves leftward. In double aortic arch, some ...

  17. Aortic Aneurysm

    MedlinePlus

    ... these occur in the part of the aorta running through the chest Abdominal aortic aneurysms (AAA) - these occur in the part of the aorta running through the abdomen Most aneurysms are found during ...

  18. Aortic dissection.

    PubMed

    Nienaber, Christoph A; Clough, Rachel E; Sakalihasan, Natzi; Suzuki, Toru; Gibbs, Richard; Mussa, Firas; Jenkins, Michael T; Thompson, Matt M; Evangelista, Arturo; Yeh, James S M; Cheshire, Nicholas; Rosendahl, Ulrich; Pepper, John

    2016-01-01

    Aortic dissection is a life-threatening condition caused by a tear in the intimal layer of the aorta or bleeding within the aortic wall, resulting in the separation (dissection) of the layers of the aortic wall. Aortic dissection is most common in those 65-75 years of age, with an incidence of 35 cases per 100,000 people per year in this population. Other risk factors include hypertension, dyslipidaemia and genetic disorders that involve the connective tissue, such as Marfan syndrome. Swift diagnostic confirmation and adequate treatment are crucial in managing affected patients. Contemporary management is multidisciplinary and includes serial non-invasive imaging, biomarker testing and genetic risk profiling for aortopathy. The choice of approach for repairing or replacing the damaged region of the aorta depends on the severity and the location of the dissection and the risks of complication from surgery. Open surgical repair is most commonly used for dissections involving the ascending aorta and the aortic arch, whereas minimally invasive endovascular intervention is appropriate for descending aorta dissections that are complicated by rupture, malperfusion, ongoing pain, hypotension or imaging features of high risk. Recent advances in the understanding of the underlying pathophysiology of aortic dissection have led to more patients being considered at substantial risk of complications and, therefore, in need of endovascular intervention rather than only medical or surgical intervention. PMID:27440162

  19. Aortic stenting.

    PubMed

    Droc, Ionel; Calinescu, Francisca Blanca; Droc, Gabriela; Blaj, Catalin; Dammrau, Rolf

    2015-01-01

    The approach to aortic pathology is nowadays more and more endovascular at both thoracic and abdominal levels. Thoracic stenting has gained worldwide acceptance as first intention to treat pathologies of the descending thoracic aorta. Indications have been extended to aortic arch aneurysms and also to diseases of the ascending aorta. The current devices in use for thoracic endovascular repair (TEVAR) are Medtronic Valiant, Gore TAG, Cook Tx2 and Jotec. The choice of the endograft depends on the thoracic aortic pathology and the anatomical suitability. The technological evolution of the abdominal aortic endografts was very rapid, arriving now at the fourth generation. We report the results of 55 elective cases of endovascular abdominal aortic repair (EVAR) performed in two vascular surgical centers in Romania and Germany. The prostheses used were 16 E-vita Abdominal XT, 12 Excluder, eight Talent, seven PowerLink, three Endurant and nine custom-made, fenestrated or branched from Jotec. The mean follow-up was 18 months with CT-scan, duplex ultrasound and contrast-enhanced ultrasound. The mortality was 2%. EVAR tends to become the gold standard for abdominal aortic aneurysm repair. Technological development of the devices with lowest profile introduction systems will permit to extend the anatomical indications to new frontiers. PMID:26200430

  20. Aquaporin-1 shifts the critical transmural pressure to compress the aortic intima and change transmural flow: theory and implications.

    PubMed

    Joshi, Shripad; Jan, Kung-Ming; Rumschitzki, David S

    2015-12-01

    Transmural-pressure (ΔP)-driven plasma advection carries macromolecules into the vessel wall, the earliest prelesion atherosclerotic event. The wall's hydraulic conductivity, LP, the water flux-to-ΔP ratio, is high at low pressures, rapidly decreases, and remains flat to high pressures (Baldwin AL, Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993; Nguyen T, Toussaint, Xue JD, Raval Y, Cancel CB, Russell LM, Shou S, Sedes Y, Sun O, Yakobov Y, Tarbell JM, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 308: H1051-H1064, 2015; Tedgui A, Lever MJ. Am J Physiol Heart Circ Physiol. 247: H784-H791, 1984. Shou Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 291: H2758-H2771, 2006) due to pressure-induced subendothelial intima (SI) compression that causes endothelial cells to partially block internal elastic laminar fenestrae. Nguyen et al. showed that rat and bovine aortic endothelial cells express the membrane protein aquaporin-1 (AQP1) and transmural water transport is both transcellular and paracellular. They found that LP lowering by AQP1 blocking was perplexingly ΔP dependent. We hypothesize that AQP1 blocking lowers average SI pressure; therefore, a lower ΔP achieves the critical force/area on the endothelium to partially block fenestrae. To test this hypothesis, we improve the approximate model of Huang et al. (Huang Y, Rumschitzki D, Chien S, Weinbaum SS. Am J Physiol Heart Circ Physiol 272: H2023-H2039, 1997) and extend it by including transcellular AQP1 water flow. Results confirm the observation by Nguyen et al.: wall LP and water transport decrease with AQP1 disabling. The model predicts 1) low-pressure LP experiments correctly; 2) AQP1s contribute 30-40% to both the phenomenological endothelial + SI and intrinsic endothelial LP; 3) the force on the endothelium for partial SI decompression with functioning AQP1s at 60 mmHg equals that on the endothelium at ∼43 mmHg with inactive AQP1s; and 4) increasing endothelial AQP1

  1. Comparing contact and immersion freezing from continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Nagare, Baban; Marcolli, Claudia; Welti, André; Stetzer, Olaf; Lohmann, Ulrike

    2016-07-01

    due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling chAmber-Zurich Ice Nucleation Chamber (IMCA-ZINC) for a 3 s residence time. In IMCA-ZINC, each INP is activated into a droplet in IMCA and provides its surface for ice nucleation in the ZINC chamber. The comparison of contact and immersion freezing results did not confirm a general enhancement of freezing efficiency for contact compared with immersion freezing experiments. For AgI particles the onset of heterogeneous freezing in CLINCH was even shifted to lower temperatures compared with IMCA-ZINC. For ATD, freezing efficiencies for contact and immersion freezing experiments were similar. For kaolinite particles, contact freezing became detectable at higher temperatures than immersion freezing. Using contact angle information between water and the INP, it is discussed how the position of the INP in or on the droplets may influence its ice nucleation activity.

  2. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.

    PubMed

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J

    2016-10-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230

  3. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics.

    PubMed

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J

    2016-10-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = -3 to 6 %), peak flow (-7 %) and net volume (-14 to -9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = -35 to -7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA).

  4. ``Smart'' baroreception along the aortic arch, with reference to essential hypertension

    NASA Astrophysics Data System (ADS)

    Kember, G. C.; Zamir, M.; Armour, J. A.

    2004-11-01

    Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.

  5. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.148 Type C supplied-air respirator, continuous flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  6. Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous flow microwave sterilization is an emerging technology which has the potential to replace the conventional heating processes for viscous and pumpable food products. Dielectric properties of pumpable food products were measured by a new approach (under continuous flow conditions) at a temp...

  7. Continuous-flow synthesis of trimethylsilylphenyl perfluorosulfonate benzyne precursors.

    PubMed

    Michel, Boris; Greaney, Michael F

    2014-05-16

    2-(Trimethylsilyl)phenyl perfluorosulfonated aryne precursors may now be accessed using flow chemistry, enabling the fast preparation of pure compounds with no requirement for low temperature lithiation or column chromatography. The process has been adapted to novel nonaflate precursors, utilizing the cheaper and more user-friendly nonaflyl fluoride reagent. The resultant nonaflates are shown to successfully participate in a range of aryne reaction classes.

  8. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    EPA Science Inventory

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  9. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  10. Numerical study of thermal driven buoyancy flow effect on solidification process of continuous slab caster

    NASA Astrophysics Data System (ADS)

    JAMBHULKAR, ROHIT Y.; SINGH, V.; MISHRA, P.; KRISHNAMURTHY, R.

    2016-09-01

    The main aim of the present research is to study the role of thermal driven buoyancy flow in solidification process of continues slab caster. A 3-D fluid flow, heat transfer and solidification model was developed. The result from the model combined with nondimensional number to study the effect of thermal driven buoyancy flow on fluid flow and temperature distribution. For mushy region Kozeny-Carman is applicable. Observations show the relative strength between thermal driven buoyancy flow and forced flow and steel flow through mushy region. It is observed that buoyancy force in mould and sub mould region depend on the characteristic flow velocity, temperature difference and porosity of mushy zone. The most effect zone of thermal driven buoyancy flow is mushy zone and centre of mould where inertial flow is inferior. The convection flow creates by thermal buoyancy cause appearance of local turbulence.

  11. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-( ), 174080-( ), 174085-( ), 174095... assemblies. This AD was prompted by a report that several oxygen mask assemblies with broken in-line flow... indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to...

  12. [Aortic aneurysm].

    PubMed

    Villar, Fernando; Pedro-Botet, Juan; Vila, Ramón; Lahoz, Carlos

    2013-01-01

    Aortic aneurysm is one important cause of death in our country. The prevalence of abdominal aortic aneurism (AAA) is around 5% for men older than 50 years of age. Some factors are associated with increased risk for AAA: age, hypertension, hypercholesterolemia, cardiovascular disease and, in particular, smoking. The medical management of patients with an AAA includes cardiovascular risk treatment, particularly smoking cessation. Most of major societies guidelines recommend ultrasonography screening for AAA in men aged 65 to 75 years who have ever smoked because it leads to decreased AAA-specific mortality. PMID:24238836

  13. A Sustainable, Semi-Continuous Flow Synthesis of Hydantoins.

    PubMed

    Vukelić, Stella; Koksch, Beate; Seeberger, Peter H; Gilmore, Kerry

    2016-09-12

    Hydantoins are an important class of heterocycles with applications in pharmacy, agriculture, and as intermediates in organic synthesis. Traditional synthetic procedures to access hydantoins are target oriented with multiple synthetic steps and often use reagents that are not commercially available or sustainable. Herein, an efficient process is described for accessing hydantoins starting from commercially available amines using consecutive gas-liquid transformations (oxygen, carbon dioxide). This semi-continuous process produced ten benzylic/aliphatic hydantoins in good overall yields (52-84 %).

  14. Continuous and Discontinuous Dynamic Unbinding Transitions in Drawn Film Flow

    NASA Astrophysics Data System (ADS)

    Galvagno, M.; Tseluiko, D.; Lopez, H.; Thiele, U.

    2014-04-01

    When a plate is withdrawn from a liquid bath a coating layer is deposited whose thickness and homogeneity depend on the velocity and the wetting properties of the plate. Using a long-wave mesoscopic hydrodynamic description that incorporates wettability via a Derjaguin (disjoining) pressure we identify four qualitatively different dynamic transitions between microscopic and macroscopic coatings that are out-of-equilibrium equivalents of known equilibrium unbinding transitions. Namely, these are continuous and discontinuous dynamic wetting and emptying transitions. Several of their features have no equivalent at equilibrium.

  15. Continuous flow, explosives vapor generator and sensor chamber.

    PubMed

    Collins, Greg E; Giordano, Braden C; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D; Tucker, John E; Malito, Michael; Eversole, Jay D; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  16. Scalability of Continuous Flow Production of Metal-Organic Frameworks.

    PubMed

    Rubio-Martinez, Marta; Hadley, Trevor D; Batten, Michael P; Constanti-Carey, Keri; Barton, Tim; Marley, Dylan; Mönch, Andreas; Lim, Kok-Seng; Hill, Matthew R

    2016-05-10

    Achieving the large-scale production of metal-organic frameworks (MOFs) is crucial for their utilization in applied settings. For many MOFs, quality suffers from large-scale, batch reaction systems. We have developed continuous processes for their production which showed promise owing to their versatility and the high quality of the products. Here, we report the successful upscaling of this concept by more than two orders of magnitude to deliver unprecedented production rates and space-time-yields (STYs) while maintaining the product quality. Encouragingly, no change in the reaction parameters, obtained at small scale, was required. The production of aluminium fumarate was achieved at an STY of 97 159 kg m(-3)  day(-1) and a rate of 5.6 kg h(-1) . PMID:27075923

  17. Continuous flow, explosives vapor generator and sensor chamber

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Giordano, Braden C.; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D.; Tucker, John E.; Malito, Michael; Eversole, Jay D.; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  18. Comparison of invasive and non-invasive pressure gradients in aortic arch obstruction

    PubMed Central

    Wisotzkey, Bethany L.; Hornik, Christoph P.; Green, Amanda S.; Barker, Piers C. A.

    2016-01-01

    Background Aortic arch obstruction can be evaluated by catheter peak-to-peak gradient or by Doppler peak instantaneous pressure gradient. Previous studies have shown moderate correlation in discrete coarctation, but few have assessed correlation in patients with more complex aortic reconstruction. Methods We carried out retrospective comparison of cardiac catheterisations and pre- and post-catheterisation echocardiograms in 60 patients with native/recurrent coarctation or aortic reconstruction. Aortic arch obstruction was defined as peak-to-peak gradient ≥25 mmHg in patients with native/recurrent coarctation and ≥10 mmHg in aortic reconstruction. Results Diastolic continuation of flow was not associated with aortic arch obstruction in either group. Doppler peak instantaneous pressure gradient, with and without the expanded Bernoulli equation, weakly correlated with peak-to-peak gradient even in patients with a normal cardiac index (r=0.36, p=0.016, and r=0.49, p=0.001, respectively). Receiver operating characteristic curve analysis identified an area under the curve of 0.61 for patients with all types of obstruction, with a cut-off point of 45 mmHg correctly classifying 64% of patients with arch obstruction (sensitivity 39%, specificity 89%). In patients with aortic arch reconstruction who had a cardiac index ≥3 L/min/m2, a cut-off point of 23 mmHg correctly classified 69% of patients (71% sensitivity, 50% specificity) with an area under the curve of 0.82. Conclusion The non-invasive assessment of aortic obstruction remains challenging. The greatest correlation of Doppler indices was noted in patients with aortic reconstruction and a normal cardiac index. PMID:25602135

  19. Deterministic sequential isolation of floating cancer cells under continuous flow.

    PubMed

    Tran, Quang D; Kong, Tian Fook; Hu, Dinglong; Marcos; Lam, Raymond H W

    2016-08-01

    Isolation of rare cells, such as circulating tumor cells, has been challenging because of their low abundance and limited timeframes of expressions of relevant cell characteristics. In this work, we devise a novel hydrodynamic mechanism to sequentially trap and isolate floating cells in biosamples. We develop a microfluidic device for the sequential isolation of floating cancer cells through a series of microsieves to obtain up to 100% trapping yield and >95% sequential isolation efficiency. We optimize the trappers' dimensions and locations through both computational and experimental analyses using microbeads and cells. Furthermore, we investigated the functional range of flow rates for effective sequential cell isolation by taking the cell deformability into account. We verify the cell isolation ability using the human breast cancer cell line MDA-MB-231 with perfect agreement with the microbead results. The viability of the isolated cells can be maintained for direct identification of any cell characteristics within the device. We further demonstrate that this device can be applied to isolate the largest particles from a sample containing multiple sizes of particles, revealing its possible applicability in isolation of circulating tumor cells in cancer patients' blood. Our study provides a promising sequential cell isolation strategy with high potential for rapid detection and analysis of general floating cells, including circulating tumor cells and other rare cell types. PMID:27387093

  20. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    PubMed

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  1. Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor.

    PubMed

    Tan, Li-Min; Sem, Zhi-Yu; Chong, Wei-Yuan; Liu, Xiaoqian; Hendra; Kwan, Wei Lek; Lee, Chi-Lik Ken

    2013-01-01

    We report the development of a heterogeneous catalyst system on continuous flow chemistry. A palladium (Pd) coated tubular reactor was placed in line with copper (Cu) tubing using a continuous flow platform, and a Sonogashira C-C coupling reaction was used to evaluate the performance. The reactions were favorably carried out in the Cu reactor, catalyzed by the traces of leached Pd from the Pd reactor. The leached Pd and Cu were trapped with a metal scavaging resin at the back-end of the continuous flow system, affording a genuine approach toward green chemistry. PMID:23248977

  2. Comparison of magnetic resonance imaging of aortic valve stenosis and aortic root to multimodality imaging for selection of transcatheter aortic valve implantation candidates.

    PubMed

    Paelinck, Bernard P; Van Herck, Paul L; Rodrigus, Inez; Claeys, Marc J; Laborde, Jean-Claude; Parizel, Paul M; Vrints, Christiaan J; Bosmans, Johan M

    2011-07-01

    The purpose of the present study was to compare the aortic valve area, aortic valve annulus, and aortic root dimensions measured using magnetic resonance imaging (MRI) with catheterization, transthoracic echocardiography (TTE), and transesophageal echocardiography (TEE). An optimal prosthesis--aortic root match is an essential goal when evaluating patients for transcatheter aortic valve implantation. Comparisons between MRI and the other imaging techniques are rare and need validation. In 24 consecutive, high-risk, symptomatic patients with severe aortic stenosis, aortic valve area was prospectively determined using MRI and direct planimetry using three-dimensional TTE and calculated by catheterization using the Gorlin equation and by Doppler echocardiography using the continuity equation. Aortic valve annulus and the aortic root dimensions were prospectively measured using MRI, 2-dimensional TTE, and invasive aortography. In addition, aortic valve annulus was measured using TEE. No differences in aortic valve area were found among MRI, Doppler echocardiography, and 3-dimensional TTE compared with catheterization (p = NS). Invasive angiography underestimated aortic valve annulus compared with MRI (p <0.001), TEE (p <0.001), and 2-dimensional TTE (p <0.001). Two-dimensional TTE tended to underestimate the aortic valve annulus diameters compared to TEE and MRI. In contrast to 2-dimensional TTE, 3 patients had aortic valve annulus beyond the transcatheter aortic valve implantation range using TEE and MRI. In conclusion, MRI planimetry, Doppler, and 3-dimensional TTE provided an accurate estimate of the aortic valve area compared to catheterization. MRI and TEE provided similar and essential assessment of the aortic valve annulus dimensions, especially at the limits of the transcatheter aortic valve implantation range.

  3. Remote semi-continuous flow rate logging seepage meter

    NASA Technical Reports Server (NTRS)

    Reay, William G.; Walthall, Harry G.

    1991-01-01

    The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.

  4. Evaluation of Intravascular Hemolysis With Erythrocyte Creatine in Patients With Aortic Stenosis.

    PubMed

    Sugiura, Tetsuro; Okumiya, Toshika; Kubo, Toru; Takeuchi, Hiroaki; Matsumura, Yoshihisa

    2016-07-27

    Chronic intravascular hemolysis has been identified in patients with cardiac valve prostheses, but only a few case reports have evaluated intravascular hemolysis in patients with native valvular heart disease. To detect intravascular hemolysis in patients with aortic stenosis, erythrocyte creatine was evaluated with hemodynamic indices obtained by echocardiography.Erythrocyte creatine, a marker of erythrocyte age, was assayed in 30 patients with aortic stenosis and 10 aged matched healthy volunteers. Peak flow velocity of the aortic valve was determined by continuous-wave Doppler echocardiography. Twenty of 30 patients with aortic stenosis had high erythrocyte creatine levels (> 1.8 µmol/g Hb) and erythrocyte creatine was significantly higher as compared with control subjects (1.98 ± 0.49 versus 1.52 ± 0.19 µmol/g Hb, P = 0.007). Peak transvalvular pressure gradient ranged from 46 to 142 mmHg and peak flow velocity ranged from 3.40 to 5.95 m/second. Patients with aortic stenosis had a significantly lower erythrocyte count (387 ± 40 versus 436 ± 42 × 10(4) µL, P = 0.002) and hemoglobin (119 ± 11 versus 135 ± 11 g/L, P < 0.001) as compared with control subjects. Erythrocyte creatine had a fair correlation with peak flow velocity (r = 0.55, P = 0.002).In conclusion, intravascular hemolysis due to destruction of erythrocytes was detected in patients with moderate to severe aortic stenosis and the severity of intravascular hemolysis was related to valvular flow velocity of the aortic valve.

  5. Acute Aortic Syndromes and Thoracic Aortic Aneurysm

    PubMed Central

    Ramanath, Vijay S.; Oh, Jae K.; Sundt, Thoralf M.; Eagle, Kim A.

    2009-01-01

    Acute and chronic aortic diseases have been diagnosed and studied by physicians for centuries. Both the diagnosis and treatment of aortic diseases have been steadily improving over time, largely because of increased physician awareness and improvements in diagnostic modalities. This comprehensive review discusses the pathophysiology and risk factors, classification schemes, epidemiology, clinical presentations, diagnostic modalities, management options, and outcomes of various aortic conditions, including acute aortic dissection (and its variants intramural hematoma and penetrating aortic ulcers) and thoracic aortic aneurysms. Literature searches of the PubMed database were conducted using the following keywords: aortic dissection, intramural hematoma, aortic ulcer, and thoracic aortic aneurysm. Retrospective and prospective studies performed within the past 20 years were included in the review; however, most data are from the past 15 years. PMID:19411444

  6. The Effects of Positioning of Transcatheter Aortic Valve on Fluid Dynamics of the Aortic Root

    PubMed Central

    Su, Jimmy L; Kheradvar, Arash

    2015-01-01

    Transcatheter aortic valve implantation is a novel treatment for severe aortic valve stenosis. Due to the recent use of this technology and the procedural variability, there is very little data that quantifies the hemodynamic consequences of variations in valve placement. Changes in aortic wall stresses and fluid retention in the sinuses of Valsalva can have a significant effect on the clinical response a patient has to the procedure. By comprehensively characterizing complex flow in the sinuses of Valsalva using Digital Particle Image Velocimetry and an advanced heart flow simulator, various positions of a deployed transcatheter valve with respect to a bioprosthetic aortic valve (valve-in-valve) were tested in vitro. Displacements of the transcatheter valve were axial and directed below the simulated native valve annulus. It was determined that for both blood residence time and aortic Reynolds stresses, it is optimal to have the annulus of the transcatheter valve deployed as close to the aortic valve annulus as possible. PMID:25010918

  7. Aortic Valve Disease

    MedlinePlus

    ... Disease Tricuspid Valve Disease Cardiac Rhythm Disturbances Thoracic Aortic Aneurysm Pediatric and Congenital Heart Disease Heart abnormalities that ... Disease Tricuspid Valve Disease Cardiac Rhythm Disturbances Thoracic Aortic Aneurysm Aortic Valve Disease Overview The human heart has ...

  8. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    PubMed

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  9. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    EPA Science Inventory

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  10. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (External Review Draft)

    EPA Science Inventory

    This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...

  11. Flow structure in submarine meandering channels, a continuous discussion on secondary flow

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Parker, G.; Sequeiros, O.; Spinewine, B.; Garcia, M. H.; Pirmez, C.

    2011-12-01

    The understanding of the flow structure in deep-sea turbidity currents is important for the formation of submarine meandering channels. Similarly to the case of subaerial channels, several types of secondary flows include turbulence-, curvature- and bed morphodynamic-driven flow structures that modulate sediment transport and channel bed morphodynamics. This study focuses on [1] a review of long-time research effort (Abad et al., 2011) that tackles the description of the secondary flow associated with a subaqueous bottom current (saline) in a high-curvature meandering channel and [2] ongoing numerical simulations of similar settings as the experiments to describe the entire flow structure. In the case of subaerial channels, the classical Rozovskiian paradigm is often invoked which indicates that the near-bottom secondary flow in a bend is directed inward. It has recently been suggested based on experimental and theoretical considerations, however, that this pattern is reversed (near-bottom secondary flow is directed outward) in the case of submarine meandering channels. Experimental results presented here, on the other hand, indicate near-bottom secondary flows that have the same direction as observed in a river (normal secondary flow). The implication is an apparent contradiction between experimental results. This study combines theory, experiments, reconstructions of field flows and ongoing simulations to resolve this apparent contradiction based on the flow densimetric Froude number. Three ranges of densimetric Froude number are found, such that a) in an upper regime, secondary flow is reversed, b) in a middle regime, it is normal and c) in a lower regime, it is reversed. These results are applied to field scale channel-forming turbidity currents in the Amazon submarine canyon-fan system (Amazon Channel) and the Monterey canyon and a saline underflow in the Black Sea flowing from the Bosphorus. Our analysis indicates that secondary flow should be normal

  12. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.

    PubMed

    Wang, Yu; Koenig, Steven C; Slaughter, Mark S; Giridharan, Guruprasad A

    2015-01-01

    The risk for left ventricular (LV) suction during left ventricular assist devices (LVAD) support has been a clinical concern. Current development efforts suggest LVAD suction prevention and physiologic control algorithms may require chronic implantation of pressure or flow sensors, which can be unreliable because of baseline drift and short lifespan. To overcome this limitation, we designed a sensorless suction prevention and physiologic control (eSPPC) algorithm that only requires LVAD intrinsic parameters (pump speed and power). Two gain-scheduled, proportional-integral controllers maintain a differential pump speed (ΔRPM) above a user-defined threshold to prevent LV suction while maintaining an average reference differential pressure (ΔP) between the LV and aorta. ΔRPM is calculated from noisy pump speed measurements that are low-pass filtered, and ΔP is estimated using an extended Kalman filter. Efficacy and robustness of the eSPPC algorithm were evaluated in silico during simulated rest and exercise test conditions for 1) excessive ΔP setpoint (ES); 2) rapid eightfold increase in pulmonary vascular resistance (PVR); and 3) ES and PVR. Simulated hemodynamic waveforms (LV pressure and volume; aortic pressure and flow) using only intrinsic pump parameters showed the feasibility of our proposed eSPPC algorithm in preventing LV suction for all test conditions. PMID:25396276

  13. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  14. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds.

    PubMed

    Deadman, Benjamin J; Collins, Stuart G; Maguire, Anita R

    2015-02-01

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed.

  15. In vitro testing of a temporary catheter-based aortic "parachute" valve.

    PubMed

    Vandenberghe, Stijn; Salizzoni, Stefano; Bajona, Pietro; Zehr, Kenton J; Speziali, Giovanni

    2008-01-01

    Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.

  16. Effect of continuous regional vasoactive agent infusion on liver metastasis blood flow.

    PubMed Central

    Dworkin, M. J.; Carnochan, P.; Allen-Mersh, T. G.

    1997-01-01

    Regionally administered vasopressors might increase tumour chemotherapy uptake by differentially constricting normal and tumour blood vessels, leading to a selective increase in blood flow to the tumour. In this study, we compared the effects of the vasopressors angiotensin II, vasopressin and endothelin I and the vasodilator calcitonin gene-related peptide (CGRP) by continuously measuring liver parenchymal and tumour blood flow during a 30-min regional vasoactive infusion in a rat HSN liver metastasis model. Vasopressin and angiotensin II produced a vasoconstriction that decreased despite continued infusion, while endothelin I infusion led to prolonged vasoconstriction with a more gradual onset. CGRP infusion resulted in increased vessel conductance but a reduction in blood flow due to systemic hypotension. The tumour to normal flow ratio (TNR) was transiently increased during infusion of all pressors, but only endothelin I produced sufficient change to result in a rise in average TNR throughout pressor infusion. Continuous liver and tumour blood flow measurement throughout vasoactive infusion demonstrated that the extent and the duration of blood flow change varied with the agents assessed. No vasoactive agent increased tumour blood flow, but endothelin I had the most suitable vasoactive properties for enhancing tumour uptake of continuously infused chemotherapy. PMID:9365170

  17. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  18. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

    PubMed

    Hood, Renee R; DeVoe, Don L

    2015-11-18

    Liposomes represent a leading class of nanoparticles for drug delivery. While a variety of techniques for liposome synthesis have been reported that take advantage of microfluidic flow elements to achieve precise control over the size and polydispersity of nanoscale liposomes, with important implications for nanomedicine applications, these methods suffer from extremely limited throughput, making them impractical for large-scale nanoparticle synthesis. High aspect ratio microfluidic vertical flow focusing is investigated here as a new approach to overcoming the throughput limits of established microfluidic nanoparticle synthesis techniques. Here the vertical flow focusing technique is utilized to generate populations of small, unilamellar, and nearly monodisperse liposomal nanoparticles with exceptionally high production rates and remarkable sample homogeneity. By leveraging this platform, liposomes with modal diameters ranging from 80 to 200 nm are prepared at production rates as high as 1.6 mg min(-1) in a simple flow-through process.

  19. Simulation for the development of the continuous groundwater flow measurement technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaoru; Kumagai, Koki; Fujima, Ritsuko; Chikahisa, Hiroshi

    The flow of groundwater varies with time due to rainfall, atmospheric pressure change, tidal change, melting of snow during seasonal change, underground construction works etc. Therefore, to increase the precision of assessing in-situ groundwater flow characteristics, it is important to measure continuously the direction and velocity of the flow, in addition to obtaining accurate data for the afore mentioned environmental changes. The first part of this paper describes the development of a new device for measuring the direction and velocity of groundwater flow. The device was composed of a unique floating sensor with a hinge end at the bottom, which enabled continuous measurement of groundwater flow based on image data processing technique. In the second part, discussion is focused on clarifying the optimum cross-section shape and the behavior of the float sensor in saltwater and freshwater using numerical analysis.

  20. Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow.

    PubMed

    Fischer, Raphaël; Gondret, Philippe; Rabaud, Marc

    2009-09-18

    We investigate, in the rotating drum configuration, the transition from the regime of discontinuous avalanches observed at low angular velocity to the regime of continuous flow observed at higher velocity. Instead of the hysteretic transition reported previously by Rajchenbach [Phys. Rev. Lett. 65, 2221 (1990)], with an apparent bistability of the two flow regimes in a range of drum velocities, we observe intermittency with spontaneous erratic switches from one regime to the other. Both scenarios of transition are recovered by a model dynamic equation for the avalanche flow with two sources of stochasticity: a Langevin noise during the avalanche flow and a distributed maximal stability angle at which avalanches start.

  1. Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions.

    PubMed

    Kumar, P; Coronel, P; Simunovic, J; Truong, V D; Sandeep, K P

    2007-05-01

    Continuous flow microwave sterilization is an emerging technology that has the potential to replace the conventional heating processes for viscous and pumpable food products. Dielectric properties of pumpable food products were measured by a new approach (under continuous flow conditions) at a temperature range of 20 to 130 degrees C and compared with those measured by the conventional approach (under static conditions). The food products chosen for this study were skim milk, green pea puree, carrot puree, and salsa con queso. Second-order polynomial correlations for the dependence of dielectric properties at 915 MHz of the food products on temperature were developed. Dielectric properties measured under static and continuous flow conditions were similar for homogeneous food products such as skim milk and vegetable puree, but they were significantly different for salsa con queso, which is a multiphase food product. The results from this study suggest that, for a multiphase product, dielectric properties measured under continuous flow conditions should be used for designing a continuous flow microwave heating system.

  2. Simulation of the fluid dynamics in artificial aortic roots: comparison of two different types of prostheses.

    PubMed

    Bara, Christoph L; Verhey, Janko F

    2008-01-01

    As a consequence of the growing number of elderly people, the incidence of degenerative aortic diseases continues to increase. Often, artificial aortic roots are needed to replace the native tissue. Some physical characteristics of the artificial aortic root, however, are quite different from native aorta and need to be optimized. The supposed benefit of a prosthesis with artificial sinuses of Valsalva could first be checked by numerical calculations. Two simplified base geometries were used for simulating the flow and pressure distributions, especially in the coronary arteries. One model approximates the ascending aorta as a tube, and the other uses a design with toroidal dilation of the aortic root to approximate the native geometry of the sinuses of Valsalva. The flow and pressure distributions in both models were compared in the ascending aorta as well as in the right and the left coronary arteries. Both the pressure and the velocity distribution in the coronary artery region were not significantly higher in the model with the sinus design compared to the tube model. The sinus design only slightly increased the mean pressures and the velocities in both the ascending aorta and in the coronary arteries. Higher pressure in the coronary arteries should improve the blood circulation and decrease the risk of a surgery-related coronary incident. The sinus design did not show the hoped-for benefits, and therefore it is only a minor factor in optimizing future aortic root prostheses.

  3. An Adult Case of Unicommissural Unicuspid Aortic Valve Diagnosed Based on the Intraoperative Findings.

    PubMed

    Yamanaka, Tetsuo; Fukatsu, Toru; Ichinohe, Yoshimaro; Komatsu, Hirotaka; Seki, Masahiro; Sasaki, Kenichi; Takai, Hideaki; Kunihara, Takashi; Hirata, Yasunobu

    2016-01-01

    We herein report an adult case of unicommissural unicuspid aortic valve (UAV). A 59-year-old man, who was noted to have a cardiac murmur at 31 years of age, was admitted to our hospital due to acute heart failure. Severe calcification in the aortic valve with severe low-flow/low-gradient aortic stenosis and moderate aortic regurgitation was observed and thought to be the cause of heart failure, however, the etiology of aortic valve dysfunction was not clear. Aortic valve replacement was subsequently performed, and unicommissural UAV was diagnosed according to the intraoperative findings. UAV is very rare congenital aortic valve disease which is rarely diagnosed preoperatively.

  4. An Adult Case of Unicommissural Unicuspid Aortic Valve Diagnosed Based on the Intraoperative Findings.

    PubMed

    Yamanaka, Tetsuo; Fukatsu, Toru; Ichinohe, Yoshimaro; Komatsu, Hirotaka; Seki, Masahiro; Sasaki, Kenichi; Takai, Hideaki; Kunihara, Takashi; Hirata, Yasunobu

    2016-01-01

    We herein report an adult case of unicommissural unicuspid aortic valve (UAV). A 59-year-old man, who was noted to have a cardiac murmur at 31 years of age, was admitted to our hospital due to acute heart failure. Severe calcification in the aortic valve with severe low-flow/low-gradient aortic stenosis and moderate aortic regurgitation was observed and thought to be the cause of heart failure, however, the etiology of aortic valve dysfunction was not clear. Aortic valve replacement was subsequently performed, and unicommissural UAV was diagnosed according to the intraoperative findings. UAV is very rare congenital aortic valve disease which is rarely diagnosed preoperatively. PMID:27629961

  5. Continuation in a parameter - Experience with viscous and free surface flows

    NASA Astrophysics Data System (ADS)

    Kheshgi, H. S.; Basaran, O. A.; Benner, R. E.; Kistler, S. F.; Scriven, L. E.

    The results of modifications in continuation methods applied to obtain solutions to the Navier-Stokes systems of equations for incompressible, two-dimensional, steady flows are reported. It is shown that parameter continuation permits prediction of accurate, initial estimates for iterative processing of nonlinear finite difference and finite element equations of motions. The new parameter steps are derived from values of the preceding parameter steps. The accuracy of the estimates is ensured with appropriate choices of the step size. The continuation predictor/iterative corrector is demonstrated to trace the branches of parameter space along which steady flow states are found, and techniques are available for tracing multiply branching paths. The techniques are applied to solving the Navier-Stokes equations for flow through a rotating square channel, the formation of a falling liquid curtain, and gyrostatic equilibria of rotating cylindrical drops.

  6. Continuation in a parameter - Experience with viscous and free surface flows

    NASA Technical Reports Server (NTRS)

    Kheshgi, H. S.; Basaran, O. A.; Benner, R. E.; Kistler, S. F.; Scriven, L. E.

    1983-01-01

    The results of modifications in continuation methods applied to obtain solutions to the Navier-Stokes systems of equations for incompressible, two-dimensional, steady flows are reported. It is shown that parameter continuation permits prediction of accurate, initial estimates for iterative processing of nonlinear finite difference and finite element equations of motions. The new parameter steps are derived from values of the preceding parameter steps. The accuracy of the estimates is ensured with appropriate choices of the step size. The continuation predictor/iterative corrector is demonstrated to trace the branches of parameter space along which steady flow states are found, and techniques are available for tracing multiply branching paths. The techniques are applied to solving the Navier-Stokes equations for flow through a rotating square channel, the formation of a falling liquid curtain, and gyrostatic equilibria of rotating cylindrical drops.

  7. Polystyrene latex separations by continuous flow electrophoresis on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.

    1986-01-01

    The seventh mission of the Space Shuttle carried two NASA experiments in the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system. The objectives were to test the operation of continuous flow electrophoresis in a reduced gravity environment using stable particles with established electrokinetic properties and specifically to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoretic device. Polystrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread compared to the second experiment under matched conductivity conditions. It is proposed that the sample of higher electrical conductivity distorted the electric field near the sample stream so that the polystyrene latex particles migrated toward the chamber walls where electroosmosis retarded and spread the sample.

  8. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    PubMed Central

    2015-01-01

    Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  9. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.

    PubMed

    Baumann, Marcus; Baxendale, Ian R

    2015-01-01

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  10. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  11. Aortic Stiffness, Cerebrovascular Dysfunction, and Memory

    PubMed Central

    Cooper, Leroy L.; Mitchell, Gary F.

    2016-01-01

    Background Aortic stiffness is associated with cardiovascular and cerebrovascular events and cognitive decline. This mini-review focuses on relations of aortic stiffness with microvascular dysfunction and discusses the contribution of abnormal pulsatile hemodynamics to cerebrovascular damage and cognitive decline. We also provide a rationale for considering aortic stiffness as a putative and important contributor to memory impairment in older individuals. Summary Aging is associated with stiffening of the aorta but not the muscular arteries, which reduces wave reflection and increases the transmission of pulsatility into the periphery. Aortic stiffening thereby impairs a protective mechanism that shields the peripheral microcirculation from excessive pulsatility within downstream target organs. Beyond midlife, aortic stiffness increases rapidly and exposes the cerebral microcirculation to abnormal pulsatile mechanical forces that are associated with microvascular damage and remodeling in the brain. Aortic stiffening and high-flow pulsatility are associated with alterations in the microvasculature of the brain; however, a mechanistic link between aortic stiffness and memory has not been established. We showed that in a community-based sample of older individuals, cerebrovascular resistance and white matter hyperintensities - markers of cerebrovascular remodeling and damage - mediated the relation between higher aortic stiffness and lower performance on memory function tests. These data suggest that microvascular and white matter damage associated with excessive aortic stiffness contribute to impaired memory function with advancing age. Key Messages Increasing evidence suggests that vascular etiologies - including aortic stiffness and microvascular damage - contribute to memory impairment and the pathogenesis of dementia, including Alzheimer's disease. Interventions that reduce aortic stiffness may delay memory decline among older individuals. PMID:27752478

  12. Continuous flow α-trifluoromethylation of ketones by metal-free visible light photoredox catalysis.

    PubMed

    Cantillo, David; de Frutos, Oscar; Rincón, Juan A; Mateos, Carlos; Kappe, C Oliver

    2014-02-01

    A continuous-flow, two-step procedure for the preparation of α-CF3-substituted carbonyl compounds has been developed. The carbonyl substrates were converted in situ into the corresponding silyl enol ethers, mixed with the CF3 radical source, and then irradiated with visible light using a flow reactor based on transparent tubing and a household compact fluorescent lamp. The continuous protocol uses Eosin Y as an inexpensive photoredox catalyst and requires only 20 min to complete the two reaction steps.

  13. Continuous flow α-trifluoromethylation of ketones by metal-free visible light photoredox catalysis.

    PubMed

    Cantillo, David; de Frutos, Oscar; Rincón, Juan A; Mateos, Carlos; Kappe, C Oliver

    2014-02-01

    A continuous-flow, two-step procedure for the preparation of α-CF3-substituted carbonyl compounds has been developed. The carbonyl substrates were converted in situ into the corresponding silyl enol ethers, mixed with the CF3 radical source, and then irradiated with visible light using a flow reactor based on transparent tubing and a household compact fluorescent lamp. The continuous protocol uses Eosin Y as an inexpensive photoredox catalyst and requires only 20 min to complete the two reaction steps. PMID:24432711

  14. An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides.

    PubMed

    Zambelli, Paolo; Tamborini, Lucia; Cazzamalli, Samuele; Pinto, Andrea; Arioli, Stefania; Balzaretti, Silvia; Plou, Francisco J; Fernandez-Arrojo, Lucia; Molinari, Francesco; Conti, Paola; Romano, Diego

    2016-01-01

    A sustainable and scalable process for the production of a new mixture of fructooligosaccharides (FOS) was developed using a continuous-flow approach based on an immobilized whole cells-packed bed reactor. The technological transfer from a classical batch system to an innovative flow environment allowed a significant improvement of the productivity. Moreover, the stability of this production system was ascertained by up to 7 days of continuous working. These results suggest the suitability of the proposed method for a large-scale production of the desired FOS mixture, in view of a foreseeable use as a novel prebiotic preparation. PMID:26213017

  15. An efficient continuous flow process for the synthesis of a non-conventional mixture of fructooligosaccharides.

    PubMed

    Zambelli, Paolo; Tamborini, Lucia; Cazzamalli, Samuele; Pinto, Andrea; Arioli, Stefania; Balzaretti, Silvia; Plou, Francisco J; Fernandez-Arrojo, Lucia; Molinari, Francesco; Conti, Paola; Romano, Diego

    2016-01-01

    A sustainable and scalable process for the production of a new mixture of fructooligosaccharides (FOS) was developed using a continuous-flow approach based on an immobilized whole cells-packed bed reactor. The technological transfer from a classical batch system to an innovative flow environment allowed a significant improvement of the productivity. Moreover, the stability of this production system was ascertained by up to 7 days of continuous working. These results suggest the suitability of the proposed method for a large-scale production of the desired FOS mixture, in view of a foreseeable use as a novel prebiotic preparation.

  16. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-01

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  17. Study of an ammonia-based wet scrubbing process in a continuous flow system

    SciTech Connect

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  18. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    DOE PAGESBeta

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less

  19. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    SciTech Connect

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. As a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.

  20. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    PubMed

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  1. Significance and function of different spinal collateral compartments following thoracic aortic surgery: immediate versus long-term flow compensation.

    PubMed

    Meffert, Philipp; Bischoff, Moritz S; Brenner, Robert; Siepe, Matthias; Beyersdorf, Friedhelm; Kari, Fabian A

    2014-05-01

    Iatrogenic paraplegia has been accompanying cardiovascular surgery since its beginning. As a result, surgeons have been developing many theories about the exact mechanisms of this devastating complication. Thus, the impact of single arteries that contribute to the spinal perfusion is one of the most discussed subjects in modern surgery. The subsequent decision of reattachment or the permanent disconnection of these intercostal arteries divides the surgical community. On the one hand, the anatomical or vascular approach pleads for the immediate reimplantation to reconstruct the anatomical situation. On the other hand, the decision of the permanent disconnection aims at avoiding stealing phenomenon away from the spinal vascular network. This spinal collateral network can be described as consisting of three components-the intraspinal and two paraspinal compartments-that feed the nutrient arteries of the spinal cord. The exact functional impact of the different compartments of the collateral network remains poorly understood. In this review, the function of the intraspinal compartment in the context of collateral network principle as an immediate emergency backup system is described. The exact structure and architectural principles of the intraspinal compartment are described. The critical parameters with regard to the risk of postoperative spinal cord ischaemia are the number of anterior radiculomedullary arteries (ARMAs) and the distance between them in relation to the longitudinal extent of aortic disease. The paraspinal network as a sleeping reserve is proposed as the long-term backup system. This sleeping reserve has to be activated by arteriogenic stimuli. These are presented briefly, and prior findings regarding arteriogenesis are discussed in the light of the collateral network concept. Finally, the role of preoperative visualization of the ARMAs in order to evaluate the risk of postoperative paraplegia is emphasized. PMID:24078102

  2. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress.

    PubMed

    Lane, Whitney O; Jantzen, Alexandra E; Carlon, Tim A; Jamiolkowski, Ryan M; Grenet, Justin E; Ley, Melissa M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Allen, Jason D; Truskey, George A; Achneck, Hardean E

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).

  3. Generation and Synthetic Application of Trifluoromethyl Diazomethane Utilizing Continuous Flow Technologies.

    PubMed

    Pieber, Bartholomäus; Kappe, C Oliver

    2016-03-01

    A continuous process for the synthesis and inline separation of anhydrous trifluoromethyl diazomethane in a single continuous flow process is presented. The diazo building block is generated from the corresponding amine and NaNO2 under acidic, aqueous conditions and subsequently diffuses through a gas-permeable membrane into an organic stream. To avoid storage and transportation of the hazardous compound, a representative downstream process in a packed-bed reactor yielding highly functionalized building blocks was developed. PMID:26902154

  4. Two-dimensional calculations of a continuous optical discharge in atmospheric air flow (optical plasma generator)

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.; Silant'ev, A. Iu.; Surzhikov, S. T.

    1987-06-01

    Two-dimensional gasdynamic processes in a continuous optical discharge in subsonic flow of atmospheric air are simulated numerically with allowance for distortions of the light channel due to laser beam refraction in the generated plasma, radiative energy losses, and radiant heat transfer. It is found that instabilities and vortex structures are formed in the hot jet behind the energy release region; flow in this region is nonstationary but periodic. These effects are not observed in the main part of the discharge, which is quite stable. Depending on flow velocity, diffraction in the plasma may lead to both defocusing and focusing of the beam.

  5. Contactless inductive flow tomography for a model of continuous steel casting

    NASA Astrophysics Data System (ADS)

    Wondrak, T.; Galindo, V.; Gerbeth, G.; Gundrum, T.; Stefani, F.; Timmel, K.

    2010-04-01

    The contactless inductive flow tomography (CIFT) aims at reconstructing the velocity field in electrically conducting melts from externally measured induced magnetic fields. One of its possible applications is the velocity reconstruction in the continuous casting process. In this paper, we apply this method to the flow field in a small model (containing approximately 1.4 l of the eutectic alloy GaInSn) of a mould for thin slab casting. It is shown that the flow structure, in general, and the jet position and intensity, in particular, can be reliably determined from magnetic field data using only a modest number (in the order of 5) of sensors.

  6. Continuous flow synthesis of ketones from carbon dioxide and organolithium or Grignard reagents.

    PubMed

    Wu, Jie; Yang, Xiaoqing; He, Zhi; Mao, Xianwen; Hatton, T Alan; Jamison, Timothy F

    2014-08-01

    We describe an efficient continuous flow synthesis of ketones from CO2 and organolithium or Grignard reagents that exhibits significant advantages over conventional batch conditions in suppressing undesired symmetric ketone and tertiary alcohol byproducts. We observed an unprecedented solvent-dependence of the organolithium reactivity, the key factor in governing selectivity during the flow process. A facile, telescoped three-step-one-flow process for the preparation of ketones in a modular fashion through the in-line generation of organometallic reagents is also established. PMID:24961600

  7. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.

    PubMed

    Moazami, Nader; Fukamachi, Kiyotaka; Kobayashi, Mariko; Smedira, Nicholas G; Hoercher, Katherine J; Massiello, Alex; Lee, Sangjin; Horvath, David J; Starling, Randall C

    2013-01-01

    The recent success of continuous-flow circulatory support devices has led to the growing acceptance of these devices as a viable therapeutic option for end-stage heart failure patients who are not responsive to current pharmacologic and electrophysiologic therapies. This article defines and clarifies the major classification of these pumps as axial or centrifugal continuous-flow devices by discussing the difference in their inherent mechanics and describing how these features translate clinically to pump selection and patient management issues. Axial vs centrifugal pump and bearing design, theory of operation, hydrodynamic performance, and current vs flow relationships are discussed. A review of axial vs centrifugal physiology, pre-load and after-load sensitivity, flow pulsatility, and issues related to automatic physiologic control and suction prevention algorithms is offered. Reliability and biocompatibility of the two types of pumps are reviewed from the perspectives of mechanical wear, implant life, hemolysis, and pump deposition. Finally, a glimpse into the future of continuous-flow technologies is presented.

  8. Studying Fast Reactions: Construction and Use of a Low-Cost Continuous-Flow Instrument

    ERIC Educational Resources Information Center

    Bisson, Patrick J.; Whitten, James E.

    2006-01-01

    The construction and use of a low-cost continuous-flow instrument for measuring the kinetics of fast reaction which include the use of an light emitting diode light source, a photodiode-on-a-chip detector, and a position sensor is demonstrated. The instrument is suitable for the physical chemistry laboratory and could be used to study the kinetics…

  9. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. PMID:26093797

  10. Catalytic Macrocyclization Strategies Using Continuous Flow: Formal Total Synthesis of Ivorenolide A.

    PubMed

    de Léséleuc, Mylène; Godin, Éric; Parisien-Collette, Shawn; Lévesque, Alexandre; Collins, Shawn K

    2016-08-01

    A formal total synthesis of ivorenolide A has been accomplished employing a Z-selective olefin cross metathesis and a macrocyclic Glaser-Hay coupling as key steps. The macrocyclization protocol employed a phase separation/continuous flow manifold whose advantages include catalysis, fast reaction times, high concentrations, and facile scale-up. PMID:27404899

  11. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level.

  12. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  13. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  14. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing.

    PubMed

    Kohl, Thomas M; Hornung, Christian H; Tsanaktsidis, John

    2015-09-25

    Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID) and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  15. Series DNA Amplification Using the Continuous-Flow Polymerase Chain Reaction Chip

    NASA Astrophysics Data System (ADS)

    Joung, Seung-Ryong; Kang, Chi Jung; Kim, Yong-Sang

    2008-02-01

    We proposed a continuous-flow polymerase chain reaction (PCR) chip that can be used for series DNA amplification. The continuous-flow PCR chip has several advantages such as fast thermal cycling, series of amplifications, cost-effective fabrication, portability, and fluorescence detection. The continuous-flow PCR chip is composed of two parts namely poly(dimethylsiloxane) (PDMS) microchannel for sample injection and indium-tin-oxide (ITO) heater/glass chip for thermal cycling. The fabricated microchannel width and depth are 250 and 200 µm, respectively. Also, the total working length of the PDMS microchannel is 1340 mm which is equivalent for 20 cycles of amplification. A 2:2:3 microchannel length ratio for three different temperature zones namely denaturation, annealing, and extension was assigned, respectively. Upon the operation of the fabricated continuous-flow PCR chip, the amplification of plasmid DNA pKS-GFP with 720 base pairs and PG-noswsi with 300 base pairs were found successfully with a total reaction time of 15 min.

  16. Enrichment of Denitrifying Methane-Oxidizing Microorganisms Using Up-Flow Continuous Reactors and Batch Cultures

    PubMed Central

    Hatamoto, Masashi; Kimura, Masafumi; Sato, Takafumi; Koizumi, Masato; Takahashi, Masanobu; Kawakami, Shuji; Araki, Nobuo; Yamaguchi, Takashi

    2014-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms were enriched from paddy field soils using continuous-flow and batch cultures fed with nitrate or nitrite as a sole electron acceptor. After several months of cultivation, the continuous-flow cultures using nitrite showed remarkable simultaneous methane oxidation and nitrite reduction and DAMO bacteria belonging to phylum NC10 were enriched. A maximum volumetric nitrite consumption rate of 70.4±3.4 mg-N·L−1·day−1 was achieved with very short hydraulic retention time of 2.1 hour. In the culture, about 68% of total microbial cells were bacteria and no archaeal cells were detected by fluorescence in situ hybridization. In the nitrate-fed continuous-flow cultures, 58% of total microbial cells were bacteria while archaeal cells accounted for 7% of total cell numbers. Phylogenetic analysis of pmoA gene sequence showed that enriched DAMO bacteria in the continuous-flow cultivation had over 98% sequence similarity to DAMO bacteria in the inoculum. In contrast, for batch culture, the enriched pmoA gene sequences had 89–91% sequence similarity to DAMO bacteria in the inoculum. These results indicate that electron acceptor and cultivation method strongly affect the microbial community structures of DAMO consortia. PMID:25545013

  17. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    EPA Science Inventory

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  18. Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted to evaluate fermentation by Clostridium thermocellum and C. saccharoperbutylacetonicum in a continuous-flow, high-solids reactor. Liquid medium was continuously flowed through switchgrass (2 mm particle size) at one of three flow rates: 83.33 mL h-1 (2 L d-1), 41.66 mL h-1(1 ...

  19. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  20. Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.

    1988-01-01

    The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.

  1. Comparison of ethanol absorption during continuous and intermittent flow irrigation in transurethral resection.

    PubMed

    Hahn, R G; Algotsson, L A; Törnebrandt, K

    1990-01-01

    Transurethral resection of the prostate was performed using intermittent-flow bladder irrigation (n = 50), or by continuous-flow irrigation, using a suprapubic trocar (n = 50). The irrigant solution contained 1.5% glycine +1% ethanol and fluid absorption was measured from the ethanol content of the expired breath. Fluid absorption was significantly lower in patients receiving continuous-flow irrigation (p less than 0.007) although major absorption occurred in one of these patients. The immediate detection of absorption with the ethanol method allowed us to stop one of the operations performed with intermittent bladder irrigation, at which 2 l of fluid had been absorbed in 20 min. With correction for the amount of removed prostatic tissue, there were no differences in operation time or blood loss between the two types of irrigation. PMID:1690917

  2. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    PubMed

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-01

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for continuous-flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested. PMID:27389817

  3. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system.

    PubMed

    Adamo, Andrea; Beingessner, Rachel L; Behnam, Mohsen; Chen, Jie; Jamison, Timothy F; Jensen, Klavs F; Monbaliu, Jean-Christophe M; Myerson, Allan S; Revalor, Eve M; Snead, David R; Stelzer, Torsten; Weeranoppanant, Nopphon; Wong, Shin Yee; Zhang, Ping

    2016-04-01

    Pharmaceutical manufacturing typically uses batch processing at multiple locations. Disadvantages of this approach include long production times and the potential for supply chain disruptions. As a preliminary demonstration of an alternative approach, we report here the continuous-flow synthesis and formulation of active pharmaceutical ingredients in a compact, reconfigurable manufacturing platform. Continuous end-to-end synthesis in the refrigerator-sized [1.0 meter (width) × 0.7 meter (length) × 1.8 meter (height)] system produces sufficient quantities per day to supply hundreds to thousands of oral or topical liquid doses of diphenhydramine hydrochloride, lidocaine hydrochloride, diazepam, and fluoxetine hydrochloride that meet U.S. Pharmacopeia standards. Underlying this flexible plug-and-play approach are substantial enabling advances in continuous-flow synthesis, complex multistep sequence telescoping, reaction engineering equipment, and real-time formulation. PMID:27034366

  4. Continuous flow electrocoagulation in the treatment of wastewater from dairy industries.

    PubMed

    Benazzi, Toni L; Di Luccio, Marco; Dallago, Rogério M; Steffens, Juliana; Mores, Rúbia; Do Nascimento, Mariele S; Krebs, Jociane; Ceni, Gustavo

    2016-01-01

    Dairy industry wastewater contains high levels of organic matter, consisting mainly of fat, protein and products of their partial microbial decomposition. In the present study, the use of continuous electrocoagulation is proposed for the primary treatment of dairy wastewater. The electrochemical treatment was carried out in a continuous flow cell with aluminum electrodes. The influence of the voltage, the distance between the electrodes and the hydraulic residence time (HRT) on the process performance was assessed, by measuring the removal of color, turbidity, total organic carbon (TOC) and chemical oxygen demand (COD). The optimum voltage, distance between the electrodes and HRT were 10 V, 1 cm and 90 min, respectively, yielding a current density of 13.3 A.m(-2). Under these conditions, removal of color, turbidity, TOC and COD were 94%, 93%, 65% and 69%, respectively, after a steady state was reached in the continuous flow reactor. PMID:27003084

  5. Continuous flow electrocoagulation in the treatment of wastewater from dairy industries.

    PubMed

    Benazzi, Toni L; Di Luccio, Marco; Dallago, Rogério M; Steffens, Juliana; Mores, Rúbia; Do Nascimento, Mariele S; Krebs, Jociane; Ceni, Gustavo

    2016-01-01

    Dairy industry wastewater contains high levels of organic matter, consisting mainly of fat, protein and products of their partial microbial decomposition. In the present study, the use of continuous electrocoagulation is proposed for the primary treatment of dairy wastewater. The electrochemical treatment was carried out in a continuous flow cell with aluminum electrodes. The influence of the voltage, the distance between the electrodes and the hydraulic residence time (HRT) on the process performance was assessed, by measuring the removal of color, turbidity, total organic carbon (TOC) and chemical oxygen demand (COD). The optimum voltage, distance between the electrodes and HRT were 10 V, 1 cm and 90 min, respectively, yielding a current density of 13.3 A.m(-2). Under these conditions, removal of color, turbidity, TOC and COD were 94%, 93%, 65% and 69%, respectively, after a steady state was reached in the continuous flow reactor.

  6. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  7. Discrepancies between cardiovascular magnetic resonance and Doppler echocardiography in the measurement of transvalvular gradient in aortic stenosis: the effect of flow vorticity

    PubMed Central

    2013-01-01

    Background Valve effective orifice area EOA and transvalvular mean pressure gradient (MPG) are the most frequently used parameters to assess aortic stenosis (AS) severity. However, MPG measured by cardiovascular magnetic resonance (CMR) may differ from the one measured by transthoracic Doppler-echocardiography (TTE). The objectives of this study were: 1) to identify the factors responsible for the MPG measurement discrepancies by CMR versus TTE in AS patients; 2) to investigate the effect of flow vorticity on AS severity assessment by CMR; and 3) to evaluate two models reconciling MPG discrepancies between CMR/TTE measurements. Methods Eight healthy subjects and 60 patients with AS underwent TTE and CMR. Strouhal number (St), energy loss (EL), and vorticity were computed from CMR. Two correction models were evaluated: 1) based on the Gorlin equation (MPGCMR-Gorlin); 2) based on a multivariate regression model (MPGCMR-Predicted). Results MPGCMR underestimated MPGTTE (bias = −6.5 mmHg, limits of agreement from −18.3 to 5.2 mmHg). On multivariate regression analysis, St (p = 0.002), EL (p = 0.001), and mean systolic vorticity (p < 0.001) were independently associated with larger MPG discrepancies between CMR and TTE. MPGCMR-Gorlin and MPGTTE correlation and agreement were r = 0.7; bias = −2.8 mmHg, limits of agreement from −18.4 to 12.9 mmHg. MPGCMR-Predicted model showed better correlation and agreement with MPGTTE (r = 0.82; bias = 0.5 mmHg, limits of agreement from −9.1 to 10.2 mmHg) than measured MPGCMR and MPGCMR-Gorlin. Conclusion Flow vorticity is one of the main factors responsible for MPG discrepancies between CMR and TTE. PMID:24053194

  8. Open aortic surgery after thoracic endovascular aortic repair.

    PubMed

    Coselli, Joseph S; Spiliotopoulos, Konstantinos; Preventza, Ourania; de la Cruz, Kim I; Amarasekara, Hiruni; Green, Susan Y

    2016-08-01

    In the last decade, thoracic endovascular aortic aneurysm repair (TEVAR) has emerged as an appealing alternative to the traditional open aortic aneurysm repair. This is largely due to generally improved early outcomes associated with TEVAR, including lower perioperative mortality and morbidity. However, it is relatively common for patients who undergo TEVAR to need a secondary intervention. In select circumstances, these secondary interventions are performed as an open procedure. Although it is difficult to assess the rate of open repairs after TEVAR, the rates in large series of TEVAR cases (>300) have ranged from 0.4 to 7.9 %. Major complications of TEVAR that typically necessitates open distal aortic repair (i.e., repair of the descending thoracic or thoracoabdominal aorta) include endoleak (especially type I), aortic fistula, endograft infection, device collapse or migration, and continued expansion of the aneurysm sac. Conversion to open repair of the distal aorta may be either elective (as for many endoleaks) or emergent (as for rupture, retrograde complicated dissection, malperfusion, and endograft infection). In addition, in select patients (e.g., those with a chronic aortic dissection), unrepaired sections of the aorta may progressively dilate, resulting in the need for multiple distal aortic repairs. Open repairs after TEVAR can be broadly classified as full extraction, partial extraction, or full salvage of the stent-graft. Although full and partial stent-graft extraction imply failure of TEVAR, such failure is generally absent in cases where the stent-graft can be fully salvaged. We review the literature regarding open repair after TEVAR and highlight operative strategies.

  9. Two-dimensional calculations of a continuous optical discharge in atmospheric-air flow (optical plasmatron)

    SciTech Connect

    Raizer, Yu.P.; Silant'ev, A.Yu.; Surzhikov, S.T.

    1987-11-01

    A two-dimensional gas-dynamic process in a continuous optical discharge, burning in subsonic atmospheric-air flow, is modeled numerically. The distortion of the light channel owing to refraction of the laser beam in the plasma created by it, the radiative energy losses, and radiant heat transfer were taken into account. It was found that in a hot jet instabilities and eddy structures appear behind the region of energy liberation. These effects do not affect the main part of the discharge, where the state is completely stable. The calculations showed that for an optical plasmatron in the free atmosphere the incoming flow primarily flows around the highly heated region, and penetrates into it only slightly. Depending on the velocity of the flow the refraction in the plasma can lead to both defocusing and additional focusing of the beam. The results agree qualitatively with available experimental data.

  10. Enhanced photo-H₂ production by unsaturated flow condition in continuous culture.

    PubMed

    Guo, Cheng-Long; Cao, Hong-Xia; Guo, Fei-Qiang; Huang, Cong-Liang; Wang, Huan-Guang; Rao, Zhong-Hao

    2015-02-01

    A biofilm photobioreactor under unsaturated flow condition (BFPBR-U) is proposed using a polished optical fiber as the internal light source for photo-H2 production in continuous culture. The main chamber was filled with spherical glass beads to create the reaction bed and the cells were immobilized to form a biofilm under unsaturated flow condition obtained by pumping substrate solution over a packing bed at a rate to create a thin fluid film and injecting the argon to maintain the gas phase space. The effects of operational conditions, including flow rate and influent substrate concentration, on the photo-H2 production performance were investigated. The unsaturated flow conditions eliminated the inhibition caused by high organic loading rate and enhanced light transmission efficiency, leading to an improvement in the photo-H2 production performance. PMID:25257592

  11. Simulation of fluid flow inside a continuous slab-casting machine

    NASA Astrophysics Data System (ADS)

    Thomas, B. G.; Mika, L. J.; Najjar, F. M.

    1990-04-01

    A finite element model has been developed and applied to compute the fluid flow distribution inside the shell in the mold region of a continuous, steel slab-casting machine. The model was produced with the commercial program FIDAP, which allows this nonlinear, highly turbulent problem to be simulated using the K- ɛ turbulence model. It consists of separate two-dimensional (2-D) models of the nozzle and a section through the mold, facing the broad face. The predicted flow patterns and velocity fields show reasonable agreement with experimental observations and measurements conducted using a transparent plastic water model. The effects of nozzle angle, casting speed, mold width, and turbulence simulation parameters on the flow pattern have been investigated. The overall flow field is relatively insensitive to process parameters.

  12. Balloon aortic valvuloplasty.

    PubMed

    Wang, A; Harrison, J K; Bashore, T M

    1997-01-01

    Balloon aortic valvuloplasty is a percutaneous, therapeutic option for patients with severe aortic stenosis, yet the effectiveness of this procedure is dependent on the morphology of the stenotic aortic valve and the respective mechanism of dilation. In younger patients with congenital aortic stenosis, acute and intermediate-term results are good. However, in adult patients, in whom degenerative aortic stenosis is the most common cause, the acute clinical and hemodynamic benefits of balloon aortic valvuloplasty are not lasting, as restenosis occurs in most patients within 6 months. Sympatomatic relief for adults undergoing balloon aortic valvuloplasty is only apparent in patients with normal left ventricular function, who generally are also candidates for aortic valve replacement. Furthermore, the long-term survival for adults after balloon aortic valvuloplasty is similar to the natural history of untreated severe aortic stenosis. In this article, the mechanism of balloon aortic valvuloplasty, as well as its clinical and hemodynamic effects, are reviewed in the context of the different morphological types of aortic stenosis. In addition, two large registries of adult patients treated with balloon aortic valvuloplasty provide important information regarding the acute and long-term results of this procedure and are reviewed.

  13. Aortic Annular Enlargement during Aortic Valve Replacement

    PubMed Central

    Dumani, Selman; Likaj, Ermal; Dibra, Laureta; Llazo, Stavri; Refatllari, Ali

    2016-01-01

    In the surgery of aortic valve replacement is always attempted, as much as possible, to implant the larger prosthesis with the mains goals to enhance the potential benefits, to minimise transvalvular gradient, decrease left ventricular size and avoid the phenomenon of patient-prosthesis mismatch. Implantation of an ideal prosthesis often it is not possible, due to a small aortic annulus. A variety of aortic annulus enlargement techniques is reported to avoid patient-prosthesis mismatch. We present the case that has submitted four three times open heart surgery. We used Manouguian technique to enlarge aortic anulus with excellent results during the fourth time of surgery. PMID:27703574

  14. Effect of Pulsatile and Continuous Flow on Yes-Associated Protein

    PubMed Central

    Chitragari, Gautham; Shalaby, Sherif Y.; Sumpio, Brandon J.; Sumpio, Bauer E.

    2014-01-01

    Yes-associated protein (YAP) is a mechanosignaling protein that relays mechanical information to the nucleus by changing its level of phosphorylation. We hypothesize that different flow patterns show differential effect on phosphorylated YAP (pYAP) (S127) and total YAP and could be responsible for flow dependent localization of atherosclerosis. Confluent human umbilical vein endothelial cells (HUVECs) seeded on fibronectin-coated glass slides were exposed to continuous forward flow (CFF) and pulsatile forward flow (PFF) using a parallel plate flow chamber system for 30 minutes. Cell lysates were prepared and immunoblotted to detect the levels of phosphorylated YAP and total YAP. HUVECs exposed to both PFF and CFF showed a mild decrease in the levels of both pYAP (S127) and total YAP. While the levels of pYAP (S127) decreased to 87.85 and 85.21% of static control with PFF and CFF, respectively, the levels of total YAP significantly decreased to 91.31 and 92.27% of static control. No significant difference was seen between CFF and PFF on their effect on pYAP (S127), but both conditions resulted in a significant decrease in total YAP at 30 minutes. The results of this experiment show that the possible effect of different types of flow on YAP is not induced before 30 minutes. Experiments exposing endothelial cells to various types of flow for longer duration of time could help to elucidate the role of YAP in the pathogenesis of atherosclerosis. PMID:25317030

  15. Effect of pulsatile and continuous flow on yes-associated protein.

    PubMed

    Chitragari, Gautham; Shalaby, Sherif Y; Sumpio, Brandon J; Sumpio, Bauer E

    2014-09-01

    Yes-associated protein (YAP) is a mechanosignaling protein that relays mechanical information to the nucleus by changing its level of phosphorylation. We hypothesize that different flow patterns show differential effect on phosphorylated YAP (pYAP) (S127) and total YAP and could be responsible for flow dependent localization of atherosclerosis. Confluent human umbilical vein endothelial cells (HUVECs) seeded on fibronectin-coated glass slides were exposed to continuous forward flow (CFF) and pulsatile forward flow (PFF) using a parallel plate flow chamber system for 30 minutes. Cell lysates were prepared and immunoblotted to detect the levels of phosphorylated YAP and total YAP. HUVECs exposed to both PFF and CFF showed a mild decrease in the levels of both pYAP (S127) and total YAP. While the levels of pYAP (S127) decreased to 87.85 and 85.21% of static control with PFF and CFF, respectively, the levels of total YAP significantly decreased to 91.31 and 92.27% of static control. No significant difference was seen between CFF and PFF on their effect on pYAP (S127), but both conditions resulted in a significant decrease in total YAP at 30 minutes. The results of this experiment show that the possible effect of different types of flow on YAP is not induced before 30 minutes. Experiments exposing endothelial cells to various types of flow for longer duration of time could help to elucidate the role of YAP in the pathogenesis of atherosclerosis.

  16. Long-term continuous-flow left ventricular assist devices (LVAD) as bridge to heart transplantation

    PubMed Central

    Pozzi, Matteo; Giraud, Raphaël; Tozzi, Piergiorgio; Bendjelid, Karim; Robin, Jacques; Meyer, Philippe; Obadia, Jean François

    2015-01-01

    Heart transplantation (HTx) is the treatment of choice for end-stage heart failure but the limited availability of heart’s donors still represents a major issue. So long-term mechanical circulatory support (MCS) has been proposed as an alternative treatment option to assist patients scheduled on HTx waiting list bridging them for a variable time period to cardiac transplantation—the so-called bridge-to-transplantation (BTT) strategy. Nowadays approximately 90% of patients being considered for MCS receive a left ventricular assist device (LVAD). In fact, LVAD experienced several improvements in the last decade and the predominance of continuous-flow over pulsatile-flow technology has been evident since 2008. The aim of the present report is to give an overview of continuous-flow LVAD utilization in the specific setting of the BTT strategy taking into consideration the most representative articles of the scientific literature and focusing the attention on the evolution, clinical outcomes, relevant implications on the HTx strategy and future perspectives of the continuous-flow LVAD technology. PMID:25922736

  17. Transesophageal Doppler echocardiographic assessment of systolic and diastolic coronary blood flow velocities at baseline and during adenosine triphosphate-induced coronary vasodilation in chronic aortic regurgitation.

    PubMed

    Kisanuki, A; Matsushita, R; Murayama, T; Otsuji, Y; Miyazono, Y; Toyonaga, K; Nakao, S; Taira, A; Tanaka, H

    1997-01-01

    Few reports exist on the changes in systolic and diastolic coronary flow velocities (CFVs) at baseline and during coronary vasodilation in patients with chronic aortic regurgitation (AR). We examined the left anterior descending CFVs in 21 patients with AR (11 patients with mild AR and 10 patients with moderate to severe AR), 9 patients without AR (no AR group), and 6 patients who had undergone surgery for moderate to severe AR (postoperation group) with transesophageal Doppler echocardiography. Adenosine triphosphate (ATP) was infused into a peripheral right arm vein at four different doses (35, 70, 100, and 140 micrograms/kg/min). Coronary flow velocity response in systole and diastole was calculated as the ratio of systolic peak and mean and diastolic peak and mean CFVs during maximal ATP infusion to those at baseline. The systolic peak and mean CFVs and the diastolic peak and mean CFVs at baseline were significantly increased in the moderate to severe group compared with those in the other groups (p < 0.05, respectively). Systolic and diastolic CFVs were significantly increased during ATP infusions in the four groups. No significant differences of systolic and diastolic CFVs were observed among the four groups during maximal ATP infusion. The coronary flow velocity response calculated from the peak and mean diastolic CFVs were significantly decreased in the moderate to severe group (1.6 +/- 0.3 and 1.7 +/- 0.4) compared with those in the other three groups (3.6 +/- 0.7 and 3.2 +/- 1.1 in the no AR group, 2.6 +/- 0.6 and 2.5 +/- 0.4 in the mild group, and 2.5 +/- 0.7 and 2.4 +/- 0.6 in the postoperation group) (p < 0.05, respectively). In conclusion, the systolic and diastolic left CFVs at baseline appeared to be significantly increased in patients with moderate to severe chronic AR. However, the velocities during coronary vasodilation by ATP were equal to those in other groups, resulting in a decrease of coronary flow velocity response in systole and diastole

  18. Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate.

    PubMed

    Garza-García, Lucía D; García-López, Erika; Camacho-León, Sergio; Del Refugio Rocha-Pizaña, María; López-Pacheco, Felipe; López-Meza, Julián; Araiz-Hernández, Diana; Tapia-Mejía, Eduardo J; Trujillo-de Santiago, Grissel; Rodríguez-González, Ciro A; Alvarez, Mario Moisés

    2014-04-01

    We used continuous flow micro-devices as bioreactors for the production of a glycosylated pharmaceutical product (a monoclonal antibody). We cultured CHO cells on the surface of PMMA/PDMS micro-channels that had been textured by micromachining and coated with fibronectin. Three different micro-channel geometries (a wavy channel, a zigzag channel, and a series of donut-shape reservoirs) were tested in a continuous flow regime in the range of 3 to 6 μL min(-1). Both the geometry of the micro-device and the flow rate had a significant effect on cell adhesion, cell proliferation, and monoclonal antibody production. The most efficient configuration was a series of donut-shaped reservoirs, which yielded mAb concentrations of 7.2 mg L(-1) at residence times lower than one minute and steady-state productivities above 9 mg mL(-1) min(-1). These rates are at about 3 orders of magnitude higher than those observed in suspended-cell stirred tank fed-batch bioreactors.

  19. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-01

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed. PMID:24297040

  20. Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Bing, Ji; Ping, Wu; Han, Ren; Shiping, Zhang; Abdul, Rehman; Li, Wang

    2016-07-01

    The research of magnetic separation starts from magnetic solid particles to nanoparticles, and in the research progress, particles become smaller gradually with the development of application of magnetic separation technology. Nevertheless, little experimental study of magnetic separation of molecules and ions under continuous flowing conditions has been reported. In this work, we designed a magnetic device and a “layered” flow channel to study the magnetic separation at the ionic level in continuous flowing solution. A segregation model was built to discuss the segregation behavior as well as the factors that may affect the separation. The magnetic force was proved to be the driving force which plays an indispensable role leading to the segregation and separation. The flow velocity has an effect on the segregation behavior of magnetic ions, which determines the separation result. On the other hand, the optimum flow velocity which makes maximum separation is related to the initial concentration of solution. Project supported by the National Natural Science Foundation of China (Grant No. 51276016).

  1. Purification and concentration of influenza inactivated viruses by continuous-flow zonal centrifugation.

    PubMed

    Mistretta, A P; Crovari-Cuneo, P; Giacometti, G; Sacchi, G; Strozzi, F

    1975-01-01

    A mathod is described for the purification, on an industrial scale, of influenza viruses grown in allantoic cavity of embryonated eggs. The mehtod consists of combining continuous-flow centrifugation with zonal centrifugation in a sucrose (36.6 per cent-52.5 per cent w/v) density gradient. The sample flow rate is approximately 3.7 litres/h and the volumes treated vary between 3 and 33 litres of allantoic fluid. Both the recovery of the virus and the degree of concentration and purification result satisfactory.

  2. Increase in circadian variation after continuous-flow ventricular assist device implantation.

    PubMed

    Slaughter, Mark S; Ising, Michael S; Tamez, Daniel; O'Driscoll, Gerry; Voskoboynikov, Neil; Bartoli, Carlo R; Koenig, Steven C; Giridharan, Guruprasad A

    2010-06-01

    The circadian rhythm of varying blood pressure and heart rate is attenuated or absent in patients with severe heart failure. In 28 patients supported by a left ventricular assist device (LVAD) for at least 30 days, a restoration of the circadian rhythm was demonstrated by a consistent nocturnal decrease, and then increase, of the LVAD flow while at a constant LVAD speed. The return of the circadian rhythm has implications for cardiac recovery, and the observation indicates that the continuous-flow LVAD has an intrinsic automatic response to physiologic demands. PMID:20207167

  3. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  4. Effects of the Transient Blood Flow-Wall Interaction on the Wall Stress Distribution in Abdominal Aortic Aneurysm (AAA)

    NASA Astrophysics Data System (ADS)

    Tang, Rubing; Geindreau, Christian; Lasheras, Juan

    2006-11-01

    Our static finite element analysis (FEA) of both idealized and real clinical models has shown that the maximum diameter and asymmetry have substantial influence on the AAA wall stress distribution. The thrombus inside the AAA was also found to reduce the magnitude of the wall stresses. To achieve a better understanding of the wall stress distribution in real AAAs, a dynamic FEA was also performed. We considered models, both symmetric and non-symmetric, in which the aorta is assumed isotropic with nonlinear material properties. For the limiting case of rigid walls, the evolution of the flow pattern and the wall shear stresses due to fluid flow at different stages of cardiac cycle predicted by our simulations are compared with experimental results obtained in in-vitro models. A good agreement is found between both results. Finally, we have extended the analysis to the physiologically correct case of deformable walls and characterized the transient effects on the wall stresses.

  5. Abdominal Aortic Aneurysms: Treatments

    MedlinePlus

    ... information Membership Directory (SIR login) Interventional Radiology Abdominal Aortic Aneurysms Interventional Radiologists Treat Abdominal Aneurysms Nonsurgically Interventional radiologists ...

  6. Continuous on-line feedback based flow titrations. Complexometric titrations of calcium and magnesium.

    PubMed

    Jo, Kyoo Dong; Dasgupta, Purnendu K

    2003-05-28

    The methodology of continuous feedback-based flow titrations and the principle of compensating errors [Anal. Chem. 72 (2000) 4713; Anal. Chim. Acta 435 (2001) 289] were applied to the determination of calcium and magnesium ions with EDTA. The flow of the titrant, EDTA, varied linearly in response to a controller output voltage while the total flow (F(T), the sum of the metal ion sample flow and the titrant flow) was held constant. The sample was pre-doped with a metal ion indicator; the status of the indicator color in the mixed stream was monitored by an optical detector and was used for governing the controller output as well as for interpreting the results of the titrations. The titrant flow initially ramped upward linearly. As a change in the color corresponding to the equivalence point was sensed by the detector, the controller output (instantaneous value V(H)) reversed its ramp direction, thus decreasing the titrant flow linearly at the same ramp rate. When the predefined absorbance corresponding to the equivalence point was sensed again, the controller voltage (instantaneous value V(L)) was ramped in reverse once more, going upward. Because of the lag time between a change in the controller output and its effect being sensed by the detector, the controller voltage corresponding to the actual equivalence point was the average of V(H) and V(L). Continuous sensor-governed operation of the controller resulted in a triangular waveform. The mean of this waveform during any cycle gives the equivalence point controller voltage V(E). This principle allowed true titrations with good reproducibility (0.2-0.7% R.S.D.) and throughput (33-42 s per titration).

  7. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  8. The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes.

    PubMed

    Glasnov, Toma N; Kappe, C Oliver

    2011-10-17

    The popularity of dedicated microwave reactors in many academic and industrial laboratories has produced a plethora of synthetic protocols that are based on this enabling technology. In the majority of examples, transformations that require several hours when performed using conventional heating under reflux conditions reach completion in a few minutes or even seconds in sealed-vessel, autoclave-type, microwave reactors. However, one severe drawback of microwave chemistry is the difficulty in scaling this technology to a production-scale level. This Concept article demonstrates that this limitation can be overcome by translating batch microwave chemistry to scalable continuous-flow processes. For this purpose, conventionally heated micro- or mesofluidic flow devices fitted with a back-pressure regulator are employed, in which the high temperatures and pressures attainable in a sealed-vessel microwave chemistry batch experiment can be mimicked.

  9. Design, evaluation, and application of continuous flow cells for organic electrochemical synthesis. Progress report

    SciTech Connect

    Nobe, K.

    1982-03-01

    The strategy of paired electrochemical synthesis for the production of organic chemicals can result in as much as a 50% reduction in energy consumption, as compared to conventional electroorganic synthesis. A continuation of the research in paired synthesis, presently being conducted in this laboratory, is proposed. The future proposed work includes: (1) A continuing investigation into the chemistry of paired electroorganic reactions; (2) The engineering analysis and design of the electrochemical flow cell and separation equipment required for a synthesis; and (3) A bench scale pilot plant study and economic analysis of a synthesis.

  10. MARS--multiple automated robotic synthesizer for continuous flow of peptides.

    PubMed

    Krchnák, V; Cabel, D; Lebl, M

    1996-01-01

    We have designed and constructed a multiple automated robotic synthesizer, the MARS. Its novel timing procedure for handling multiple synthetic tasks eliminates unnecessary respite time by keeping the robotic arm in continuous operation. Polypropylene syringes equipped at the bottom with polypropylene frits serve as physically independent reaction vessels. All operations are performed by the robotic arm, which is equipped with a specially designed gripper to hold a syringe and to aspirate and dispense liquid. Typically, the MARS synthesizes concurrently 5 to 15 peptides of different length, and once one peptide is finished it automatically starts the synthesis of the next peptide in the queue, assuring a continuous flow of peptides.

  11. Contactless inductive flow tomography: basic principles and first applications in the experimental modelling of continuous casting

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Eckert, S.; Ratajczak, M.; Timmel, K.; Wondrak, T.

    2016-07-01

    Contactless inductive flow tomography (CIFT) aims at reconstructing the flow structure of a liquid metal from the magnetic fields measured at various positions outside the fluid body which are induced by the flow under the influence of one or multiple applied magnetic fields. We recap the basic mathematical principles of CIFT and the results of an experiment in which the propeller-driven three-dimensional flow in a cylindrical had been reconstructed. We also summarize the recent activities to utilize CIFT in various problems connected with the experimental simulation of the continuous casting process. These include flow reconstructions in single-phase and two-phase flow problems in the Mini-LIMMCAST model of slab-casting, studies of the specific effects of an electromagnetic stirrer attached to the Submerged Entry Nozzle (SEN), as well as first successful applications of CIFT on the background of a strong electromagnetic brake field. We conclude by discussing some remaining obstacles for the deployment of CIFT in a real caster.

  12. Cardiovascular devices; reclassification of intra-aortic balloon and control systems for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure; effective date of requirement for premarket approval for intra-aortic balloon and control systems for septic shock or pulsatile flow generation. Final order.

    PubMed

    2013-12-30

    The Food and Drug Administration (FDA) is issuing a final order to reclassify intra-aortic balloon and control system (IABP) devices when indicated for acute coronary syndrome, cardiac and non-cardiac surgery, or complications of heart failure, a preamendments class III device, into class II (special controls), and to require the filing of a premarket approval application (PMA) or a notice of completion of a product development protocol (PDP) for IABPs when indicated for septic shock or pulsatile flow generation. PMID:24383147

  13. Different surgical strategies for implantation of continuous-flow VADs—Experience from Deutsches Herzzentrum Berlin

    PubMed Central

    Drews, Thorsten; Potapov, Evgenij; Weng, Yugo; Pasic, Miralem; Hetzer, Roland

    2014-01-01

    Objective This manuscript summarizes our surgical experience with the implantation of recent continuous-flow left ventricular assist devices (LVADs), with special emphasis on the HeartWare HVAD pump. Methods The HeartWare HVAD is, in our experience currently implanted in four different techniques: (I) “Classical” LVAD implantation with heart-lung machine and median sternotomy; (II) “Minimally-invasive” implantation without sternotomy and without heart-lung machine; (III) “Lateral implantation” to the descending aorta; (IV) Using two continuous-flow LVADs for implantable biventricular support. Results Five-hundred and four HeartWare HVADs have been implanted using the described techniques in our institution up to now. Conclusions The HeartWare HVAD is a versatile device. It has been found to be eminently suited to these four different modes of implantation. PMID:25452906

  14. Convenient and Simple Esterification in Continuous-Flow Systems using g-DMAP.

    PubMed

    Okuno, Yoshinori; Isomura, Shigeki; Sugamata, Anna; Tamahori, Kaoru; Fukuhara, Ami; Kashiwagi, Miyu; Kitagawa, Yuuichi; Kasai, Emiri; Takeda, Kazuyoshi

    2015-11-01

    The utility and applicability of polyethylene-g-polyacrylic acid-immobilized dimethylaminopyridine (g-DMAP) as a catalyst in a continuous-flow system were investigated for decarboxylative esterification. High catalytic activity toward acylation was provided by g-DMAP containing a flexible grafted-polymer structure. During decarboxylation, carboxylic acids and alcohols were converted cleanly using di-tert-butyl dicarbonate (Boc2O) as a coupling reagent, which reduced by-products. In addition, the use of Boc2O resulted in the formation of tert-butyl esters. These esterifications dramatically reduced the reaction time under continuous-flow conditions, with a residence time of approximately 2 min. This highly efficient esterification procedure will provide more practical industrial applications.

  15. Electrospun Nanofibrous Sheets for Selective Cell Capturing in Continuous Flow in Microchannels.

    PubMed

    Son, Young Ju; Kang, Jihyun; Kim, Hye Sung; Yoo, Hyuk Sang

    2016-03-14

    Electrospun nanofibrous meshes were surface-modified for selective capturing of specific cells from a continuous flow in PDMS microchannels. We electrospun nanofibrous mats composed of poly(ε-carprolactone) (PCL) and amine-functionalized block copolymers composed of PCL and poly(ethylenimine) (PEI). A mixture of biotinylated PEG and blunt PEG was chemically tethered to the nanofibrous mats via the surface-exposed amines on the mat. The degree of biotinylation was fluorescently and quantitatively assayed for confirming the surface-biotinylation levels for avidin-specific binding. The incorporation level of avidin gradually increased when the blend ratio of biotinylated PEG on the mat increased, confirming the manipulated surfaces with various degree of biotinylation. Biotinylated cells were incubated with avidin-coated biotinylated mats and the specific binding of biotinylated cells was monitored in a microfluidic channel with a continuous flow of culture medium, which suggests efficient and selective capturing of the biotinylated cells on the nanofibrous mat. PMID:26812501

  16. Evaluation of the Separability of Monodisperse Polystyrene Latex Microspheres in a Continuous Flow Electrophoresis System

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1983-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free flowing film of aqueous electrolyte medium. The sample is introduced at one end of the chamber and is subjected to a lateral dc field. This process separates the sample into fractions since each component has a distinctive electrophoric mobility. Evaluations were made of sample conductivity and buffer conductivity as they affect sample band spread and separation using the Continuous Particle Electrophoresis (CPE) system. Samples were prepared from mixtures of 5 percent and 1 percent polystyrene latex (PSL) microspheres which were .4, .56 and .7 microns in diameter. These were prepared in electrolyte media 1x and 3x the conductivity of the curtain buffer, approximately 150 and 450 micro mhos/cm. Samples with matched conductivities produced greater resolution and less band spread than those with 3x the conductivity of the curtain buffer.

  17. Strategic Application of Residence-Time Control in Continuous-Flow Reactors

    PubMed Central

    Mándity, István M; Ötvös, Sándor B; Fülöp, Ferenc

    2015-01-01

    As a sustainable alternative for conventional batch-based synthetic techniques, the concept of continuous-flow processing has emerged in the synthesis of fine chemicals. Systematic tuning of the residence time, a key parameter of continuous-reaction technology, can govern the outcome of a chemical reaction by determining the reaction rate and the conversion and by influencing the product selectivity. This review furnishes a brief insight into flow reactions in which high chemo- and/or stereoselectivity can be attained by strategic residence-time control and illustrates the importance of the residence time as a crucial parameter in sustainable method development. Such a fine reaction control cannot be performed in conventional batch reaction set-ups. PMID:26246983

  18. Experimental and numerical modelling of the fluid flow in the continuous casting of steel

    NASA Astrophysics Data System (ADS)

    Timmel, K.; Miao, X.; Wondrak, T.; Stefani, F.; Lucas, D.; Eckert, S.; Gerbeth, G.

    2013-03-01

    This article gives an overview of recent research activities with respect to the mold flow in the continuous casting of steel in presence of DC magnetic fields. The magnetic fields appear to be an attractive tool for controlling the melt flow in a contactless way. Various kinds of magnetic systems are already in operation in industrial steel casting, but the actual impact on the melt flow has not been sufficiently verified by experimental studies. The rapid development of innovative diagnostic techniques in low-melting liquid metals over the last two decades enables new possibilities for systematic flow measurements in liquid metal model experiments. A new research program was initiated at HZDR comprising three experimental facilities providing a LIquid Metal Model for continuous CASTing of steel (LIMMCAST). The facilities operate in a temperature range from room temperature up to 400∘C using the low-melting alloys GaInSn and SnBi, respectively. The experimental program is focused on quantitative flow measurements in the mold, the submerged entry nozzle and the tundish. Local potential probes, Ultrasonic Doppler Velocimetry (UDV) and Contactless Inductive Flow Tomography (CIFT) are employed to measure the melt flow. The behavior of two-phase flows in case of argon injection is investigated by means of the Mutual Inductance Tomography (MIT) and X-ray radioscopy. The experimental results provide a substantial data basis for the validation of related numerical simulations. Numerical calculations were performed with the software package ANSYS-CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of MHD turbulence was taken into account by specific modifications of the turbulence model. First results of the LIMMCAST program reveal important findings such as the peculiar, unexpected phenomenon that the application of a DC magnetic field may excite non-steady, non-isotropic large-scale flow oscillations in the mold. Another important result of our

  19. Validation of a continuous penile blood-flow measurement by pulse-volume-plethysmography.

    PubMed

    Lavoisier, P; Barbe, R; Gally, M

    2002-04-01

    Today, in the assessment of cavernous artery blood-flow, the most commonly used technique is Doppler ultrasound velocimetry (continuous, pulsed, color-coded or power), which is often considered as the gold standard. Plethysmographic techniques and radioactive tracers have been widely used for the assessment of global penis flow variations but are not adequate for continuous blood-flow measurement. A new pulse-volume plethysmographic (PVP) device using a water-filled penile cuff was employed to assess continuous blood-flow measurement in the penis. Simultaneously Doppler velocity was recorded and served as a gold standard. A penile water-cuff is connected through a pressure tube to a three-way tap. The pulse-volume changes in the penile water-cuff are measured by means of a latex membrane placed over one of the three-way taps. The displacements of the latex are recorded by a photoplethysmograph. The third tap is connected to a 5 l perfusion bag placed 30 cm above the penis so as to maintain constant pressure in the whole device whatever the penis volume. Twenty-four volunteers were tested. The Doppler velocity signal and pulse volume of cavernous arteries were measured simultaneously after PGE1 intra-cavernous injection. Blood-flow variations were induced by increasing penis artery compression with a second penile water-cuff used as a tourniquet fitted onto the penis root, and the pressure of which could be modified by a water-filled syringe. The amplitude of the plethysmographic pulse-volume signal and the area under the Doppler velocity signal were correlated. The inter-patient (n=24) correlation ranged from 0.455 to 0.904, with a mean correlation of 0.704 and P<0.0001. PVP measurement by a water-filled cuff was validated by ultrasound velocimetry. This new continuous, non-invasive and easy-to-use technique enables physiological and physiopathological flow-measurement during sleep, under visual sexual stimulation (VSS), or following artificial erection

  20. Plasma motion velocity along laser beam and continuous optical discharge in gas flow

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Gus'kov, K. G.; Raizer, Iu. P.; Surzhikov, S. T.

    1991-02-01

    The present solution of the problem of gas flow around a hollow ball demonstrates why the velocity of a laser deflagration wave is an order of magnitude higher than the velocity of the wave driven by heat conductivity. Attention is given to the numerical siumulation of continuous optical discharge motion in a parallel beam; simulation results are compared with experimental data and found to be in agreement.

  1. Flow Intermittency, Dispersion, and Correlated Continuous Time Random Walks in Porous Media

    SciTech Connect

    de Anna, Pietro; Le Borgne, Tanguy; Dentz, Marco; Tartakovsky, Alexandre M.; Bolster, Diogo; Davy, Philippe

    2013-05-01

    We study the intermittency of fluid velocities in porous media and its relation to anomalous dispersion. Lagrangian velocities measured at equidistant points along streamlines are shown to form a spatial Markov process. As a consequence of this remarkable property, the dispersion of fluid particles can be described by a continuous time random walk with correlated temporal increments. This new dynamical picture of intermittency provides a direct link between the microscale flow, its intermittent properties, and non-Fickian dispersion.

  2. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design.

    PubMed

    Ahn, Yongtae; Logan, Bruce E

    2013-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m(2)/m(3)). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m(2) (1,000 Ω), the maximum power density was 120 mW/m(2), and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m(2). Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m(2). Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m(2). These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. PMID:23053104

  3. Rapid Synthesis of Aryl Fluorides in Continuous Flow through the Balz-Schiemann Reaction.

    PubMed

    Park, Nathaniel H; Senter, Timothy J; Buchwald, Stephen L

    2016-09-19

    The Balz-Schiemann reaction remains a highly utilized means for preparing aryl fluorides from anilines. However, the limitations associated with handling aryl diazonium salts often hinder both the substrate scope and scalability of this reaction. To address this, a new continuous flow protocol was developed that eliminates the need to isolate the aryl diazonium salts. The new process has enabled the fluorination of an array of aryl and heteroaryl amines. PMID:27558308

  4. Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2.

    PubMed

    Chamberlain, Thomas W; Earley, James H; Anderson, Daniel P; Khlobystov, Andrei N; Bourne, Richard A

    2014-05-25

    One nanometre wide carbon nanoreactors are utilised as the reaction vessel for catalytic chemical reactions on a preparative scale. Sub-nanometre ruthenium catalytic particles which are encapsulated solely within single-walled carbon nanotubes offering a unique reaction environment are shown to be active when embedded in a supercritical CO2 continuous flow reactor. A range of hydrogenation reactions were tested and the catalyst displayed excellent stability over extended reaction times.

  5. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children

    PubMed Central

    Achar, Shreepathi Krishna; Sagar, Maddani Shanmukhappa; Shetty, Ranjan; Kini, Gurudas; Samanth, Jyothi; Nayak, Chaitra; Madhu, Vidya; Shetty, Thara

    2016-01-01

    Background and Aims: Dynamic parameters such as the respiratory variation in aortic flow peak velocity (ΔVpeak) and inferior vena cava distensibility index (dIVC) are accurate indices of fluid responsiveness in adults. Little is known about their utility in children. We studied the ability of these indices to predict fluid responsiveness in anaesthetised and mechanically ventilated children. Methods: This prospective study was conducted in 42 children aged between one to 14 years scheduled for elective surgery under general endotracheal anaesthesia. Mechanical ventilation was initiated with a tidal volume of 10 ml/kg. ΔVpeak, dIVC and stroke volume index (SVI) were measured before and after volume expansion (VE) with 10 ml/kg of crystalloid using transthoracic echocardiography. Patients were considered to be responders (R) and non-responders (NR) when SVI increased to either ≥15% or <15% after VE. ΔVpeak and dIVC were analysed between R and NR. Results: The best cut-off value for ΔVpeak as defined by the receiver operator characteristics (ROC) curve analysis was 12.2%, for which sensitivity, specificity, positive predictive value and negative predictive value were 100%, 94%, 96% and 100%, respectively, the area under the curve was 0.975. The best cut-off value for dIVC as defined by the ROC curve analysis was 23.5%, for which sensitivity, specificity, positive predictive value and negative predictive value were 91%, 89%, 91% and 89%, respectively, the area under the curve was 0.95. Conclusion: ΔVpeak and dIVC are reliable indices of fluid responsiveness in children. PMID:27013751

  6. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  7. Continuous flow electrophoretic separation of proteins and cells from mammalian tissues

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Barlow, Grant H.; Blaisdell, Steven J.; Cleveland, Carolyn; Farrington, Mary Ann; Feldmeier, Mary; Hatfield, J. Michael; Lanham, J. Wayne; Grindeland, Richard; Snyder, Robert S.

    1987-01-01

    This paper describes an apparatus for continuous flow electrophoresis (CFE), designed to separate macromolecules and cells at conditions of microgravity. In this CFE, buffer flows upward in a 120-cm long flow chamber, which is 16-cm wide x 3.0-mm thick in the microgravity version (and 6-cm wide x 1.5-mm thick in the unit-gravity laboratory version). Ovalbumin and rat serum albumin were separated in space (flight STS-4) with the same resolution of the two proteins achieved at 25 percent total w/v concentration that was obtained in the laboratory at 0.2 percent w/v concentration. Rat anterior pituitary cells, cultured human embryonic kidney cells, and canine Langerhans cells were separated into subpopulations (flight STS-8) more effectively than in unit gravity, with comparable resolution having been achieved at 100 times the concentration possible on earth.

  8. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOEpatents

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  9. Process simulator for time-dependent material and energy flow in a continuous casting system

    SciTech Connect

    Westerberg, K.W.; McClelland, M.A.

    1995-02-06

    A process simulator is developed for the material and energy flow in a continuous casting system which utilizes an electron-beam energy source. A time-dependent, one-dimensional model is used which accounts for energy transport within the ingot and transport to the surroundings by conduction, thermal radiation, and the formation of secondary electrons. Also included are the mass and energy additions associated with the poured metal. A modified finite element method is used to solve the energy equation while tracking boundaries at the pool surface and solidification zone. Model parameters are determined using results from a steady-state experiment and a more detailed two-dimensional model for fluid flow and energy transport. For a transient experiment with pouring, a comparison is made between predicted and measured heat flows.

  10. Method and apparatus for improved melt flow during continuous strip casting

    DOEpatents

    Follstaedt, D.W.; King, E.L.; Schneider, K.C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points. 8 figures.

  11. Method and apparatus for improved melt flow during continuous strip casting

    DOEpatents

    Follstaedt, Donald W.; King, Edward L.; Schneider, Ken C.

    1991-11-12

    The continuous casting of metal strip using the melt overflow process is improved by controlling the weir conditions in the nozzle to provide a more uniform flow of molten metal across the width of the nozzle and reducing the tendency for freezing of metal along the interface with refractory surfaces. A weir design having a sloped rear wall and tapered sidewalls and critical gap controls beneath the weir has resulted in the drastic reduction in edge tearing and a significant improvement in strip uniformity. The floor of the container vessel is preferably sloped and the gap between the nozzle and the rotating substrate is critically controlled. The resulting flow patterns observed with the improved casting process have reduced thermal gradients in the bath, contained surface slag and eliminated undesirable solidification near the discharge area by increasing the flow rates at those points.

  12. Improved continuous-flow print head for micro-array deposition.

    PubMed

    Eddings, Mark A; Miles, Adam R; Eckman, Josh W; Kim, Jungkyu; Rich, Rebecca L; Gale, Bruce K; Myszka, David G

    2008-11-01

    Limitations in depositing ligands using conventional micro-array pin spotting have hindered the application of surface plasmon resonance imaging (SPRi) technology. To address these challenges we introduce a modification to our continuous-flow micro-spotting technology that improves ligand deposition. Using Flexchip protein A/G and neutravidin capturing surfaces, we demonstrate that our new microfluidic spotter requires 1000 times less concentrated antibodies and biotinylated ligands than is required for pin spotting. By varying the deposition flow rate, we show that the design of our tip overlay flow cell is efficient at delivering sample to the substrate surface. Finally, contact time studies show that it is possible to capture antibodies and biotinylated ligands at concentrations of less than 0.1 ug/ml and 100 pM, respectively. These improvements in spotting technology will help to expand the applications of SPRi systems in areas such as antibody screening, carbohydrate arrays, and biomarker detection.

  13. On-chip determination of C-reactive protein using magnetic particles in continuous flow.

    PubMed

    Phurimsak, Chayakom; Tarn, Mark D; Peyman, Sally A; Greenman, John; Pamme, Nicole

    2014-11-01

    We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the inflammatory biomarker, C-reactive protein (CRP). The two-step sandwich immunoassay was accomplished in less than 60 s, a vast improvement on the 80-300 min time frame required for enzyme-linked immunosorbent assays (ELISA) and the 50 min necessary for off-chip magnetic particle-based assays. The combination of continuous flow and a stationary magnet enables a degree of autonomy in the system, while a detection limit of 0.87 μg mL(-1) makes it suitable for the determination of CRP concentrations in clinical diagnostics. Its applicability was further proven by assaying real human serum samples and comparing those results to values obtained using standard ELISA tests.

  14. A combined kinetic and thermodynamic approach for the interpretation of continuous-flow heterogeneous catalytic processes.

    PubMed

    Bortolini, Olga; Cavazzini, Alberto; Giovannini, Pier Paolo; Greco, Roberto; Marchetti, Nicola; Massi, Alessandro; Pasti, Luisa

    2013-06-10

    The heterogeneous proline-catalyzed aldol reaction was investigated under continuous-flow conditions by means of a packed-bed microreactor. Reaction-progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous catalytic process at a molecular level. The information gathered by RPKA and nonlinear chromatography proved to be highly complementary and allowed for the assessment of optimal operating variables. In particular, the determination of the rate-determining step was pivotal for optimizing the feed composition. On the other hand, the competitive product inhibition was responsible for the unexpected decrease in the reaction yield following an apparently obvious variation in the feed composition. The study was facilitated by a suitable 2D instrumental arrangement for simultaneous flow reaction and online flow-injection analysis. PMID:23589216

  15. [Quick Start-up and Sustaining of Shortcut Nitrification in Continuous Flow Reactor].

    PubMed

    Wu, Peng; Zhang Shi-ying; Song, Yin-ling; Xu, Yue-zhong; Shen, Yao-liang

    2016-04-15

    How to achieve fast and stable startup of shortcut nitrification has a very important practical value for treatment of low C/N ratio wastewater. Thus, the quick start-up and sustaining of shortcut nitrification were investigated in continuous flow reactor targeting at the current situation of urban wastewater treatment plant using a continuous flow process. The results showed that quick start-up of shortcut nitrification could be successfully achieved in a continuous flow reactor after 60 days' operation with intermittent aeration and controlling of three stages of stop/aeration time (15 min/45 min, 45 min/45 min and 30 min/30 min). The nitrification rates could reach 90% or 95% respectively, while influent ammonia concentrations were 50 or 100 mg · L⁻¹ with stop/aeration time of 30 min/30 min. In addition, intermittent aeration could inhibit the activity of nitrite oxidizing bacteria (NOB), while short hydraulic retention time (HRT) may wash out NOB. And a combined use of both measures was beneficial to sustain shortcut nitrification. PMID:27548971

  16. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow.

    PubMed

    Webb, R Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor, James G; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M; Slepian, Marvin J; Huang, Yonggang; Gorbach, Alexander M; Rogers, John A

    2015-10-01

    Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309

  17. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow

    PubMed Central

    Webb, R. Chad; Ma, Yinji; Krishnan, Siddharth; Li, Yuhang; Yoon, Stephen; Guo, Xiaogang; Feng, Xue; Shi, Yan; Seidel, Miles; Cho, Nam Heon; Kurniawan, Jonas; Ahad, James; Sheth, Niral; Kim, Joseph; Taylor VI, James G.; Darlington, Tom; Chang, Ken; Huang, Weizhong; Ayers, Joshua; Gruebele, Alexander; Pielak, Rafal M.; Slepian, Marvin J.; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.

    2015-01-01

    Continuous monitoring of variations in blood flow is vital in assessing the status of microvascular and macrovascular beds for a wide range of clinical and research scenarios. Although a variety of techniques exist, most require complete immobilization of the subject, thereby limiting their utility to hospital or clinical settings. Those that can be rendered in wearable formats suffer from limited accuracy, motion artifacts, and other shortcomings that follow from an inability to achieve intimate, noninvasive mechanical linkage of sensors with the surface of the skin. We introduce an ultrathin, soft, skin-conforming sensor technology that offers advanced capabilities in continuous and precise blood flow mapping. Systematic work establishes a set of experimental procedures and theoretical models for quantitative measurements and guidelines in design and operation. Experimental studies on human subjects, including validation with measurements performed using state-of-the-art clinical techniques, demonstrate sensitive and accurate assessment of both macrovascular and microvascular flow under a range of physiological conditions. Refined operational modes eliminate long-term drifts and reduce power consumption, thereby providing steps toward the use of this technology for continuous monitoring during daily activities. PMID:26601309

  18. Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics.

    PubMed

    Li, Yuyuan; Xing, Da; Zhang, Chunsun

    2009-02-01

    The ability to perform DNA amplification on a microfluidic device is very appealing. In this study, a compact continuous-flow polymerase chain reaction (PCR) microfluidics was developed for rapid analysis of genetically modified organisms (GMOs) in genetically modified soybeans. The device consists of three pieces of copper and a transparent polytetrafluoroethylene capillary tube embedded in the spiral channel fabricated on the copper. On this device, the P35S and Tnos sequences were successfully amplified within 9min, and the limit of detection of the DNA sample was estimated to be 0.005 ng microl(-1). Furthermore, a duplex continuous-flow PCR was also reported for the detection of the P35S and Tnos sequences in GMOs simultaneously. This method was coupled with the intercalating dye SYBR Green I and the melting curve analysis of the amplified products. Using this method, temperature differences were identified by the specific melting temperature values of two sequences, and the limit of detection of the DNA sample was assessed to be 0.01 ng microl(-1). Therefore, our results demonstrated that the continuous-flow PCR assay could discriminate the GMOs in a cost-saving and less time-consuming way.

  19. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process.

    PubMed

    Kumar, N Sanjeev; Goel, Sudha

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  20. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.

    PubMed

    Rodrigues, Raquel O; Pinho, Diana; Faustino, Vera; Lima, Rui

    2015-12-01

    Blood flow presents several interesting phenomena in microcirculation that can be used to develop microfluidic devices capable to promote blood cells separation and analysis in continuous flow. In the last decade there have been numerous microfluidic studies focused on the deformation of red blood cells (RBCs) flowing through geometries mimicking microvessels. In contrast, studies focusing on the deformation of white blood cells (WBCs) are scarce despite this phenomenon often happens in the microcirculation. In this work, we present a novel integrative microfluidic device able to perform continuous separation of a desired amount of blood cells, without clogging or jamming, and at the same time, capable to assess the deformation index (DI) of both WBCs and RBCs. To determine the DI of both WBCs and RBCs, a hyperbolic converging microchannel was used, as well as a suitable image analysis technique to measure the DIs of these blood cells along the regions of interest. The results show that the WBCs have a much lower deformability than RBCs when subjected to the same in vitro flow conditions, which is directly related to their cytoskeleton and nucleus contents. The proposed strategy can be easily transformed into a simple and inexpensive diagnostic microfluidic system to simultaneously separate and assess blood cells deformability. PMID:26482154

  1. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    PubMed

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. PMID:22902131

  2. Simultaneous detection of E. coli K12 and S. aureus Using a Continuous Flow Multijunction Biosensor.

    PubMed

    Lee, Inae; Jun, Soojin

    2016-06-01

    Rapid detection and identification of potentially harmful bacteria is ideal for food manufacturers to prevent foodborne illness outbreaks. Continuous monitoring method of foodborne pathogens levels and trends in food gives real-time results. Therefore, the objectives of this study were to fabricate and characterize the continuous flow multijunction biosensor for simultaneous detection of Escherichia coli K12 and Staphylococcus aureus. Junction biosensors were fabricated using gold plated tungsten wires coated with polyethylenimine and single walled carbon nanotubes. Each junction was functionalized with streptavidin and biotinylated antibodies specific to E. coli K12 and S. aureus. Then, single or 2 biosensors for each targeted analyte were connected to tubing, perpendicular to the flow direction. Pure serial diluted samples of E. coli K12 and S. aureus and microbial cocktail samples were continuously pumped at a 0.0167 mL/s into the detection zone. Changes in the electric current by biorecognition reactions between antibody and antigens were calculated. The developed junction sensor coupled with the fluidic channel showed the enhancement of the electric signal responses for detection of E. coli K12, compared to the stationary sensor. A linear regression was observed for both the E. coli and S. aureus functionalized array sensors in the detection range of 10(2) to 10(5) CFU/mL. Multiplexed detection of bacteria at the sensing levels as low as 10(2) CFU/mL for E. coli K12 and S. aureus was achieved within 2 min. Therefore, the continuous flow multijunction biosensor shows potential for rapid and continuous multiplexed detection of foodborne pathogens.

  3. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  4. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  5. Manufacture and properties of continuous grain flow crankshafts for locomotive and power generation diesel engines

    SciTech Connect

    Antos, D.J.; Nisbett, E.G.

    1997-12-31

    The bulk of the large crankshaft production volume is associated with the medium speed diesel engine market. These engines have seen intense development to obtain higher power outputs without change in the physical size of the crankshaft and at the same time there has been continuing pressure to reduce costs. Fatigue and bearing normal wear are the major technical hurdles that threaten the crankshaft life, and measures for dealing with these issues are described. Continuous grain flow (CGF) crankshafts are responsible for the continued integrity of these enhanced power output engines and the production of these crankshafts is described. Comparisons are made with the older slab forging crankshaft production method. The demand for the medium speed diesel engine and its natural gas derivative is strong and supports an aggressive engine building industry serving locomotive, marine and power generation markets. This demand in turn relies on practical national standards that serve the needs of the engine builder, material supplier and the end user.

  6. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    PubMed Central

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experimental results. The proposed device uses the so-called “liquid electrodes” design and can be used with low applied voltages, as low as 10 Vpp. The obtained separation is very efficient, the device being able to achieve a very high purity of platelets of 98.8% with less than 2% cell loss. Its low-voltage operation makes it particularly suitable for point-of-care applications. It could further be used for the separation of other cell types based on their size difference, as well as in combination with other sorting techniques to separate multiple cell populations from each other. PMID:22662047

  7. Chronic Type A Aortic Dissection

    PubMed Central

    Hynes, Conor F.; Greenberg, Michael D.; Sarin, Shawn; Trachiotis, Gregory D.

    2016-01-01

    Stanford Type A aortic dissection is a rapidly progressing disease process that is often fatal without emergent surgical repair. A small proportion of Type A dissections go undiagnosed in the acute phase and are found upon delayed presentation of symptoms or incidentally. These chronic lesions may have a distinct natural history that may have a better prognosis and could potentially be managed differently then those presenting acutely. The method of repair depends on location and extent of the false lumen, as well as involvement of critical structures and branch arteries. Surgical repair techniques similar to those employed for acute dissection management are currently first-line therapy for chronic cases that involve the aortic valve, sinuses of Valsalva, coronary arteries, and supra-aortic branch arteries. In patients with high-risk for surgery, endovascular repairs have been successful, and active development of delivery systems and grafts will continue to enhance outcomes. We present two cases of chronic Type A aortic dissection and review the current literature.

  8. Effect of an Electromagnetic Brake on the Turbulent Melt Flow in a Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Miao, Xincheng; Timmel, Klaus; Lucas, Dirk; Ren, Zhongmin; Eckert, Sven; Gerbeth, Gunter

    2012-08-01

    This article presents numerical and experimental investigations with respect to the fluid flow in the continuous-casting process under the influence of an external direct current (DC) magnetic field. Numerical calculations were performed by means of the software package CFX (Ansys, Inc., Canonsburg, PA) with an implemented Reynolds-averaged Navier-Stokes (RANS)-SST turbulence model. The nonisotropic nature of the magnetohydrodynamic (MHD) turbulence was taken into account by specific modifications of the turbulence model. The numerical results were validated by flow measurements carried out in a small-scale mockup using the eutectic alloy GaInSn. The jet flow discharging from the submerged entry nozzle was exposed to a level magnetic field spanning across the entire wide side of the mold. The comparison between our numerical calculations and the experimental results displays a good agreement; in particular, we reconstructed the peculiar phenomenon of an excitation of nonsteady, nonisotropic, large-scale flow perturbations caused by the application of the DC magnetic field. Another important result of our study is the feature that the electrical boundary conditions, namely the wall conductivity ratio, have a serious influence on the mold flow while it is exposed to an external magnetic field.

  9. A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control

    PubMed Central

    Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen

    2009-01-01

    This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760

  10. High-throughput DNA Stretching in Continuous Elongational Flow for Genome Sequence Scanning

    NASA Astrophysics Data System (ADS)

    Meltzer, Robert; Griffis, Joshua; Safranovitch, Mikhail; Malkin, Gene; Cameron, Douglas

    2014-03-01

    Genome Sequence Scanning (GSS) identifies and compares bacterial genomes by stretching long (60 - 300 kb) genomic DNA restriction fragments and scanning for site-selective fluorescent probes. Practical application of GSS requires: 1) high throughput data acquisition, 2) efficient DNA stretching, 3) reproducible DNA elasticity in the presence of intercalating fluorescent dyes. GSS utilizes a pseudo-two-dimensional micron-scale funnel with convergent sheathing flows to stretch one molecule at a time in continuous elongational flow and center the DNA stream over diffraction-limited confocal laser excitation spots. Funnel geometry has been optimized to maximize throughput of DNA within the desired length range (>10 million nucleobases per second). A constant-strain detection channel maximizes stretching efficiency by applying a constant parabolic tension profile to each molecule, minimizing relaxation and flow-induced tumbling. The effect of intercalator on DNA elasticity is experimentally controlled by reacting one molecule of DNA at a time in convergent sheathing flows of the dye. Derivations of accelerating flow and non-linear tension distribution permit alignment of detected fluorescence traces to theoretical templates derived from whole-genome sequence data.

  11. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    SciTech Connect

    Al-Wahaibi, Talal; Angeli, Panagiota

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  12. Reference values for pulsed Doppler signals from the blood flow on both sides of the aortic valve.

    PubMed

    van Dam, I; Heringa, A; de Boo, T; Alsters, J; van Oort, A; Hopman, J; Fast, J; de Knecht, S; van der Werf, T; Daniels, O

    1987-11-01

    Pulsed Doppler signals were recorded in 215 healthy subjects, 120 males and 95 females, between 1 and 65 years of age. The measurements were performed in the left ventricular outflow tract (LVOT) and in the ascending aorta (AAO). Amplitude spectra from the Doppler signals were stored in digital form together with adjustment data for the instrument, the simultaneously registered ECG and respiration signal. The maximum velocity (Vmax), the maximum acceleration (Amax) and the width of the velocity distribution around Vmax (width) were derived from these spectra and used for the characterization of the signals. These parameters were computed without observer interaction using a computer program. Effects of age, sex, body surface area, heart rate and respiration were studied. Reference ranges were calculated. The following conclusions can be drawn: Vmax and Amax in the AAO decrease clearly with increasing age from approximately 100 to 60 cm s-1 and from 2000 to 1000 cm s-2 (medians), respectively. The variation of the width in the AAO is greater for people over 45 years. Vmax, Amax and width in the LVOT increase slightly with advancing age from approximately 60 to 80 cm s-1, 800 to 1000 cm s-2 and 12 to 15 cm s-1 (medians), respectively. These parameters of flow were either unrelated or only weakly related to other physiological variables in this study group. PMID:3691558

  13. Feature identification for image-guided transcatheter aortic valve implantation

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Rajchl, Martin; McLeod, A. Jonathan; Chu, Michael W.; Peters, Terry M.

    2012-02-01

    Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to open-heart surgery, and is critically dependent on imaging for accurate placement of the new valve. Augmented image-guidance for TAVI can be provided by registering together intra-operative transesophageal echo (TEE) ultrasound and a model derived from pre-operative CT. Automatic contour delineation on TEE images of the aortic root is required for real-time registration. This study develops an algorithm to automatically extract contours on simultaneous cross-plane short-axis and long-axis (XPlane) TEE views, and register these features to a 3D pre-operative model. A continuous max-flow approach is used to segment the aortic root, followed by analysis of curvature to select appropriate contours for use in registration. Results demonstrate a mean contour boundary distance error of 1.3 and 2.8mm for the short and long-axis views respectively, and a mean target registration error of 5.9mm. Real-time image guidance has the potential to increase accuracy and reduce complications in TAVI.

  14. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-01

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.

  15. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our

  16. Rectified Continuous Flow Loop for the Thermal Management of Large Structures

    NASA Astrophysics Data System (ADS)

    Skye, H. M.; Hoch, D. W.; Nellis, G. F.; Maddocks, J. R.; Klein, S. A.; Roberts, T.; Davis, T.

    2006-04-01

    Distributed loads are frequently encountered in large deployable structures used in space applications such as optical mirrors, actively cooled sunshades, and on focal plane electronics. One mechanism for providing distributed cooling is via an oscillatory cryocooler such as a pulse-tube that is integrated with a fluid rectification system consisting of check-valves and buffer volumes in order to extract a small amount of continuous flow. This continuous flow allows relatively large loads to be accepted over a long distance with a small temperature difference and has advantages relative to vibration and electrical isolation. Also, it is possible to provide rapid and precise temperature control via modulation of the flow rate. The same working fluid, helium, can be used throughout the entire system, reducing complexity and simplifying the contamination control process. This paper describes steady state and transient modeling results and presents experimental data for a single-stage pulse tube with a rectifying interface that is integrated with a distributed load. The predicted and measured steady state and transient behaviors are compared. The experimental data are used to demonstrate the thermal management concept and illustrate how it can be used for rapid and precise temperature control.

  17. Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.

    1987-01-01

    A space continuous flow electrophoresis system (CFES) was developed that would incorporate specific modifications to laboratory instruments to take advantage of weightlessness. The specific objectives were to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the CFES instrument and compare its separation resolution and sample throughput with related devices on Earth and to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as primary samples. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was due to the mismatch of electrical conductivity between the sample and the buffer. On STS-7 the major objective was to evaluate the influence of the electrical properties of the sample constituents on the resolution of the CFES. As expected, the polystyrene latex microspheres dispersed in a solution with 3 times the electrical conductivity of the curtain buffer separated with a larger band spread than in the 2nd experiment.

  18. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor.

    PubMed

    Chen, Pin-Chuan; Park, Daniel S; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A; Nikitopoulos, Dimitris E; Murphy, Michael C

    2010-08-01

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  19. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor

    PubMed Central

    Chen, Pin-Chuan; Park, Daniel S.; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.

    2010-01-01

    Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow

  20. Transesophageal echocardiography: first-line imaging for aortic diseases

    NASA Technical Reports Server (NTRS)

    Yalcin, F.; Thomas, J. D.; Homa, D.; Flachskampf, F. A.

    2000-01-01

    Transesophageal echocardiography (TEE) is now commonly used to evaluate the thoracic aorta, because it is widely available and provides high-resolution images and flow information by Doppler. This article reviews the essential features on TEE of acute and chronic aortic diseases, such as aortic dissection, aneurysm, and atherosclerosis, and discusses its strengths, weaknesses, and indications.

  1. Solar disinfection for the post-treatment of greywater by means of a continuous flow reactor.

    PubMed

    Pansonato, Natália; Afonso, Marcos V G; Salles, Carlos A; Boncz, Marc A; Paulo, Paula L

    2011-01-01

    SODIS (solar disinfection) is a low-cost alternative for water decontamination. The method is based on the exposure of water, contained in PET bottles, to direct sunlight, and mainly its UV-A and infrared components. The present research studied SODIS as a low cost alternative for the inactivation of Escherichia coli (E. coli) in treated greywater, aiming at its reuse for more noble applications. Experiments were performed in (i) batch mode (2 L PET-bottles), testing the effect of turbidity on system efficiency and, (ii) in a continuous pilot-scale reactor prototype (51 L, using interconnected 2 L-PET bottles), testing hydraulic retention times (HRT) of 18 and 24 h. Samples were exposed to an average solar radiation intensity of 518 W/m2. The results obtained indicate that the SODIS system has potential for total coliforms and E. coli inactivation in the pre-treated greywater, reaching 2.1 log units E. coli inactivation in batch experiments for low turbidity samples (21 NTU), and > 2 log units inactivation of total coliforms (and E. coli, when present) for the 24 h HRT-continuous prototype. The continuous flow prototype needs more testing and structural improvements to cope with the difficulties posed by algae growth, as they complicate maintaining conditions of constant flow and make frequent maintenance inevitable.

  2. Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds

    NASA Astrophysics Data System (ADS)

    McDavid, R. M.; Thomas, B. G.

    1996-08-01

    Steady-state finite-element models have been formulated to investigate the coupled fluid flow and thermal behavior of the top-surface flux layers in continuous casting of steel slabs. The three-dimensional (3-D) FIDAP model includes the shear stresses imposed on the flux/steel interface by flow velocities calculated in the molten steel pool. It also includes different temperature-dependent powder properties for solidification and melting. Good agreement between the 3-D model and experimental measurements was obtained. The shear forces, imposed by the steel surface motion toward the submerged entry nozzle (SEN), create a large recirculation zone in the liquid flux pool. Its depth increases with increasing casting speed, increasing liquid flux conductivity, and decreasing flux viscosity. For typical conditions, this zone contains almost 4 kg of flux, which contributes to an average residence time of about 2 minutes. Additionally, because the shear forces produced by the narrowface consumption and the steel flow oppose each other, the flow in the liquid flux layer separates at a location centered 200 mm from the narrowface wall. This flow separation depletes the liquid flux pool at this location and may contribute to generically poor feeding of the mold-strand gap there. As a further consequence, a relatively cold spot develops at the wideface mold wall near the separation point. This nonuniformity in the temperature distribution may result in nonuniform heat removal, and possibly nonuniform initial shell growth in the meniscus region along the wideface off-corner region. In this way, potential steel quality problems may be linked to flow in the liquid flux pool.

  3. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  4. On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

    PubMed

    Bristow, Tony W T; Ray, Andrew D; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed. PMID:25106707

  5. Comparison of different Methods to model Transient Turbulent Magnetohydrodynamic Flow in Continuous Casting Molds

    NASA Astrophysics Data System (ADS)

    Kratzsch, C.; Asad, A.; Schwarze, R.

    2016-07-01

    Modeling of the processes in the continuous casting mold engaged many scientists once the computer-technology was able to accomplish that task. Despite that, CFD modeling of the fluid flow is still challenging. The methods allow deeper and deeper inside views into transient flow processes. Mostly two kinds of methods are applied for this purpose. URANS simulations are used for a coarse overview of the transient behavior on scales determined by the big rollers inside the mold. Besides, LES were done to study the processes on smaller scales. Unfortunately, the effort to set up a LES is orders of magnitude higher in time and space compared to URANS. Often, the flow determining processes take place in small areas inside the flow domain. Hence, scale resolving methods (SRS) came up, which resolve the turbulence in some amount in these regions, whereas they go back to URANS in the regions of less importance. It becomes more complex when dealing with magnetic fields in terms of EMBr devices. The impact of electro magnetically forces changes the flow structure remarkably. Many important effects occur, e.g. MHD turbulence, which are attributable to processes on large turbulent scales. To understand the underlying phenomena in detail, SRS allows a good inside view by resolving these processes partially. This study compares two of these methods, namely the Scale Adaptive Simulation (SAS) and the Delayed Detached Eddy Simulation (DDES), with respect to rendition of the results known from experiments and URANS simulation. The results show, that the SAS as well as the DDES are able to deliver good results with higher mesh resolutions in important regions in the flow domain

  6. Coupled turbulent flow, heat, and solute transport in continuous casting processes

    NASA Astrophysics Data System (ADS)

    Aboutalebi, M. Reza; Hasan, M.; Guthrie, R. I. L.

    1995-08-01

    A fully coupled fluid flow, heat, and solute transport model was developed to analyze turbulent flow, solidification, and evolution of macrosegregation in a continuous billet caster. Transport equations of total mass, momentum, energy, and species for a binary iron-carbon alloy system were solved using a continuum model, wherein the equations are valid for the solid, liquid, and mushy zones in the casting. A modified version of the low-Reynolds number k-ɛ model was adopted to incorporate turbulence effects on transport processes in the system. A control-volume-based finite-difference procedure was employed to solve the conservation equations associated with appropriate boundary conditions. Because of high nonlinearity in the system of equations, a number of techniques were used to accelerate the convergence process. The effects of the parameters such as casting speed, steel grade, nozzle configuration on flow pattern, solidification profile, and carbon segregation were investigated. From the computed flow pattern, the trajectory of inclusion particles, as well as the density distribution of the particles, was calculated. Some of the computed results were compared with available experimental measurements, and reasonable agreements were obtained.

  7. A scalable procedure for light-induced benzylic brominations in continuous flow.

    PubMed

    Cantillo, David; de Frutos, Oscar; Rincon, Juan A; Mateos, Carlos; Kappe, C Oliver

    2014-01-01

    A continuous-flow protocol for the bromination of benzylic compounds with N-bromosuccinimide (NBS) is presented. The radical reactions were activated with a readily available household compact fluorescent lamp (CFL) using a simple flow reactor design based on transparent fluorinated ethylene polymer (FEP) tubing. All of the reactions were carried out using acetonitrile as the solvent, thus avoiding hazardous chlorinated solvents such as CCl4. For each substrate, only 1.05 equiv of NBS was necessary to fully transform the benzylic starting material into the corresponding bromide. The general character of the procedure was demonstrated by brominating a diverse set of 19 substrates containing different functional groups. Good to excellent isolated yields were obtained in all cases. The novel flow protocol can be readily scaled to multigram quantities by operating the reactor for longer time periods (throughput 30 mmol h(-1)), which is not easily possible in batch photochemical reactors. The bromination protocol can also be performed with equal efficiency in a larger flow reactor utilizing a more powerful lamp. For the bromination of phenylacetone as a model, a productivity of 180 mmol h(-1) for the desired bromide was achieved. PMID:24261546

  8. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  9. ET-AAS determination of aluminium in dialysis concentrates after continuous flow solvent extraction.

    PubMed

    Komárek, J; Cervenka, R; Růzicka, T; Kubán, V

    2007-11-01

    Conditions of a continuous flow extraction (CFE) of aluminium acetylacetonate in acetylacetone and aluminium 8-hydroxyquinolinate into methylisobutylketone (lengths of reaction and extraction coils, flow rates of aqueous and organic phases and their flow rate ratio, pH of aqueous phase, lengths of coils for transport of aqueous and organic phases and effect of salts) were studied. The analytical signal of the aluminium chelates present in the organic phase was measured at 309.3 nm using atomic absorption spectrometry with electrothermal atomization (ET-AAS) at the flow rate ratio F aq/F org=3 for aqueous and organic phases. The five points calibration curves were linear (R2 0.9973 and 0.9987) up to 21 microgl(-1) Al with the limits of detection of 0.3 microgl(-1) and the recovery 100+/-2% and precision of 3% at 2-10-fold dilution of the dialysis concentrates. The acetylacetonate method was applied to the determination of aluminium in real dialysis concentrates. Aluminium in concentrations 5-6 microgl(-1) (R.S.D.s 5-10% in real samples) were found and the results were in the very good agreement with those obtained by an ET-AAS using preconcentration of Al(III) on a Spheron-Salicyl chelating sorbent (absolute and relative differences were under 0.4 microgl(-1) and 8.2%, respectively). PMID:17897803

  10. Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics

    SciTech Connect

    Sun, Xuefei; Tang, Keqi; Smith, Richard D.; Kelly, Ryan T.

    2012-03-07

    Reliable and highly efficient extraction of droplets from oil to aqueous phase is key for downstream coupling with chemical separations and nonoptical detection methods such as amperometry and mass spectrometry. This paper presents an improved interface providing robust extraction for droplet-based poly(dimethylsiloxane) (PDMS) microfluidic devices. The extraction interface consists of an array of cylindrical posts with narrow apertures in between. The aqueous flow channel into which droplets coalesced was simply and selectively modified to be hydrophilic, while the continuous oil phase flow channel that contained encapsulated aqueous droplets retained a hydrophobic surface. The different surfaces on both sides of the extraction region form a highly stable liquid interface between the two immiscible phases, allowing rapid droplet transfer to the aqueous stream. Entire droplets could be completely extracted within broad ranges of aqueous and oil flow rates (0 - 1 and 0.1 - 1 uL/min, respectively). After extraction, the droplet contents could be transported electrophoretically or by pressure-driven flow to a monolithically integrated emitter for nano-electrospray ionization mass spectrometry (nanoESI-MS) analysis. This interface should be amenable to the separation and identification of droplet contents and on-line monitoring of in-droplet reactions.

  11. A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale.

    PubMed

    Shastry, M C; Luck, S D; Roder, H

    1998-05-01

    A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction.

  12. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime. PMID:26633128

  13. Experimental study of submillimeter droplets dynamics and breakup in continuous supersonic flow terminated by shock wave

    NASA Astrophysics Data System (ADS)

    Gobyzov, Oleg; Lozhkin, Yuriy; Ryabov, Mikhail; Markovich, Dmitriy

    2016-03-01

    The present paper reports an application of optical methods, namely PIV, background-oriented-schlieren (BOS) and high-magnification imaging with background illumination to study of dynamics and breakup of 10-100 μm size droplets in continuous supersonic flow terminated by a normal shock wave. Flow diagnostics was performed by means of BOS and PIV. Shadow photography allowed to specify velocity ranges for different droplet sizes and to visualize droplets dynamics and breakup modes. Features of the experimental setup and certain details of implemented measurement system are considered. Results of velocity measurements and droplets behavior, including deformation and breakup, are presented and analysis of experimental conditions and dimensionless parameters affecting the droplets behavior is performed. Distinctive features of deformation and breakup processes of submillimeter scale droplets are revealed.

  14. Measurements of natural ice nuclei with a continuous flow diffusion chamber

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.

    1983-01-01

    A description is given of a continuous flow diffusion chamber technique for measuring the atmospheric concentrations of natural C-F nuclei. It is noted that the same device can also measure deposition nuclei; these two modes can thus be separated and compared. The laminar flow characteristics allow the temperature and supersaturation to be calculated with a high degree of precision and confidence. The method avoids the problems of a supporting substrate and of concentrating the sample into a small volume (as for membrane filters). The present measurements of natural ice nucleus concentrations at +1 percent water supersaturation are found to be comparable to research aircraft measurements of ice crystal concentrations in winter cap clouds over Elk Mountain, Wyoming (Vali et al., 1982).

  15. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  16. Development of current injection based three phase unbalanced continuation power flow for distribution system

    NASA Astrophysics Data System (ADS)

    Toppo, Shilpa

    Voltage stability studies (VSS) of the electric network is a crucial factor to make the system operate in stable region and to prevent power blackouts. There are several commercial tools available for VSS of electric transmission systems (TS) but not many for distribution systems (DS). With increasing penetration of distributed renewable generations and meshed network within DS, shipboard power system (SPS) and microgrid, these VSS tools need to be extended for DS. Due to inherent characteristic like high R/X ratio, three phase and unbalanced operation, DS or SPS requires different mathematical approach than TS. Unbalanced three phase power flow and continuation power flow tools were developed using current injection and corrector predictor methods in this work for VSS. Maximum loading point for given DS or SPS can be computed using developed tools to guide required preventive and corrective actions. Developed tool was tested and validated for several different test cases.

  17. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.

    PubMed

    Zhang, Yonghao; Jiang, Hui-Rong

    2016-03-31

    Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies. PMID:26965323

  18. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.

    PubMed

    Zhang, Yonghao; Jiang, Hui-Rong

    2016-03-31

    Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies.

  19. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  20. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor.

    PubMed

    Elsayed, O F; Maillard, E; Vuilleumier, S; Imfeld, G

    2014-11-15

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold(®) contaminated water (960 g L(-1) of the herbicide S-metolachlor, >80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was >40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93-97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p=0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems.

  1. Experimental study on the disinfection efficiencies of a continuous-flow ultrasound/ultraviolet baffled reactor.

    PubMed

    Zhou, Xiaoqin; Guo, Hao; Li, Zifu; Zhao, Junyuan; Yun, Yupan

    2015-11-01

    A self-designed continuous-flow ultrasound/ultraviolet (US/UV) baffled reactor was tested in this work, and the disinfection efficiency of secondary effluent from a wastewater treatment plant (WWTP) was investigated in terms of the different locations of ultrasonic transducers inside the reactor under similar input power densities and specific energy consumptions. Results demonstrated that the two-stage simultaneous US/UV irradiation in both chambers 2 and 3 at a flow rate of 1200 L/h performed excellent disinfection efficiency. It achieved an average feacal coliforms concentration of 201±78 colony forming unit (CFU)/L in the effluent and an average of (4.24±0.26) log10 reduction. Thereafter, 8 days of continuous operation was performed under such a condition. A total of 31 samples were taken, and all the samples were analyzed in triplicate for feacal coliforms analysis. Experimental results showed that feacal coliforms concentrations remained at about 347±174 CFU/L under the selected optimum disinfection condition, even if the influent concentrations fluctuated from 3.97×10(5) to 3.57×10(6) CFU/L. This finding implied that all effluents of continuous-flow-baffled-reactor with simultaneous US/UV disinfection could meet the requirements of the discharge standard of pollutants for municipal WWTP (GB 18918-2002) Class 1-A (1000 CFU/L) with a specific energy consumption of 0.219 kWh/m(3). Therefore, the US/UV disinfection process has great potential for practical applications.

  2. First continuous flow analysis results from the Greenland ReCAP project

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid

    2016-04-01

    The new Renland ice core was drilled in summer 2015 in Greenland and measured by means of Continuous flow analysis during the last 3 months of 2015. The Renland ice core was obtained as part of the ReCAP project, extending 584.11 meters to the bottom of the Renland ice cap located in east Greenland. The unique position on a mountain saddle above 2000 meters altitude, but close to the coast, ensures that the Renland ice core offers high accumulation, but also reaches far back in time. Preliminary results show that the record holds ice from the past warm interglacial period, the Eemian. The record was analyzed for multiple elements including the forest fire tracers NH4+ and black carbon, insoluble dust particles by means of Abakus laser particle counter and the dust ion Ca2+, sea salt Na and acidity useful for finding volcanic layers to date the core. Further H2O2, and the nutrients Fe and dissolved reactive phosphorus was analyzed as well as the temperature indicator δ18O all by means of continuous flow analysis (CFA). The core was melted at a rate of 3 cm/min providing a temporal resolution for most components determined sufficient to resolve annual layers through the Holocene. The glacial section is strongly thinned, but nonetheless due to the high resolution of the measurements all DO events could be identified. Below the glacial section another ˜20 meters of warm Eemian ice have been analysed. Here we present the first chemistry results as obtained by continuous flow analysis (CFA).

  3. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E

    1995-01-01

    A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings. PMID:8573825

  4. Selected low-flow frequency statistics for continuous-record streamgage locations in Maryland, 2010

    USGS Publications Warehouse

    Doheny, Edward J.; Banks, William S.L.

    2010-01-01

    According to a 2008 report by the Governor's Advisory Committee on the Management and Protection of the State's Water Resources, Maryland's population grew by 35 percent between 1970 and 2000, and is expected to increase by an additional 27 percent between 2000 and 2030. Because domestic water demand generally increases in proportion to population growth, Maryland will be facing increased pressure on water resources over the next 20 years. Water-resources decisions should be based on sound, comprehensive, long-term data and low-flow frequency statistics from all available streamgage locations with unregulated streamflow and adequate record lengths. To provide the Maryland Department of the Environment with tools for making future water-resources decisions, the U.S. Geological Survey initiated a study in October 2009 to compute low-flow frequency statistics for selected streamgage locations in Maryland with 10 or more years of continuous streamflow records. This report presents low-flow frequency statistics for 114 continuous-record streamgage locations in Maryland. The computed statistics presented for each streamgage location include the mean 7-, 14-, and 30-consecutive day minimum daily low-flow dischages for recurrence intervals of 2, 10, and 20 years, and are based on approved streamflow records that include a minimum of 10 complete climatic years of record as of June 2010. Descriptive information for each of these streamgage locations, including the station number, station name, latitude, longitude, county, physiographic province, and drainage area, also is presented. The statistics are planned for incorporation into StreamStats, which is a U.S. Geological Survey Web application for obtaining stream information, and is being used by water-resource managers and decision makers in Maryland to address water-supply planning and management, water-use appropriation and permitting, wastewater and industrial discharge permitting, and setting minimum required

  5. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  6. Periodicity and chaos from switched flow systems - Contrasting examples of discretely controlled continuous systems

    NASA Technical Reports Server (NTRS)

    Chase, Christopher; Serrano, Joseph; Ramadge, Peter J.

    1993-01-01

    We analyze two examples of the discrete control of a continuous variable system. These examples exhibit what may be regarded as the two extremes of complexity of the closed-loop behavior: one is eventually periodic, the other is chaotic. Our examples are derived from sampled deterministic flow models. These are of interest in their own right but have also been used as models for certain aspects of manufacturing systems. In each case, we give a precise characterization of the closed-loop behavior.

  7. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    NASA Astrophysics Data System (ADS)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  8. Lab on a chip for continuous-flow magnetic cell separation.

    PubMed

    Hejazian, Majid; Li, Weihua; Nguyen, Nam-Trung

    2015-02-21

    Separation of cells is a key application area of lab-on-a-chip (LOC) devices. Among the various methods, magnetic separation of cells utilizing microfluidic devices offers the merits of biocompatibility, efficiency, and simplicity. This review discusses the fundamental physics involved in using magnetic force to separate particles, and identifies the optimisation parameters and corresponding methods for increasing the magnetic force. The paper then elaborates the design considerations of LOC devices for continuous-flow magnetic cell separation. Examples from the recently published literature illustrate these state-of-the-art techniques.

  9. Hydromagnetic flow and heat transfer past a continuously moving porous boundary

    SciTech Connect

    Chandran, P.; Sacheti, N.C.; Singh, A.K.

    1996-10-01

    The effect of magnetic field on the flow and heat transfer past a continuously moving porous plate in a stationary fluid has been analyzed. The governing boundary layer equations have been reduced to a set of nonlinear ordinary differential equations using similarity transformations. The resulting boundary value problem has been solved numerically. The effects of magnetic and suction (or injection) parameters on the velocity and temperature profiles as well as on the skin friction and heat transfer coefficients have been studied. It has been observed that the effect of magnetic field is to increase the wall skin friction while the reverse occurs in the case of Nusselt number.

  10. Automated continuous flow determination of urine albumin by competition with dye-detergent binding.

    PubMed

    Lever, M; Walmsley, T A

    1978-02-15

    A continuous flow automated method for urine albumin was developed based on the ability of albumin to displace bromophenol blue from a bromophenol blue detergent complex. The method is almost specific for albumin, giving a slight response with an alpha-globulin fraction from serum. Results agreed closely with rocket electrophoresis albumin estimates on urine samples, but significantly less closely with "total urine protein" estimates by an acid protein precipitation, followed by biuret colour reaction, procedure. This method is being used to replace the indefinite "total protein" test for most routine purposes.

  11. Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Nazar, R.; Pop, I.

    2006-05-01

    The present paper deals with the analysis of boundary-layer flow of a micropolar fluid on a fixed or continuous moving plane surface. Both parallel and reverse moving surfaces to the free stream are considered. The resulting system of nonlinear ordinary differential equations is solved numerically using the Keller-box method. Numerical results are obtained for skin friction coefficient, local Nusselt number, velocity, angular velocity, and temperature profiles. The results indicate that the effect of the material parameter on skin friction and heat transfer depends on the velocity ratio of the plate and the fluid.

  12. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts.

    PubMed

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  13. Continuous Flow Reactor for Hydroxylation of Benzene to Phenol by Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liu, Hui-hui; Li, Gui-ying; Hu, Chang-wei

    2012-10-01

    The direct hydroxylation of benzene to phenol catalyzed by activated carbon-supported Fe (Fe/AC) in acetonitrile using H2O2 as the oxidant was studied in a continuous flow reactor. Results showed that the continuous operation could obtain high phenol yield of 28.1%, coupled with the turnover frequency of 3 h-1, and high selectivity of 98% under mild condition. The catalyst was characterized by N2 adsorption/desorption, Boehm titration, X-ray photoelectron spectra, and Fourier transform infrared spectroscopy. It was observed that iron may interact with the carboxyl group forming iron-carboxylate like species, which act as the active phase. The apparent activation energy obtained by fitting an Arrhenius model to the experimental data was 13.4 kJ/mol. The reaction order was calculated to be about 1, 0.2 for benzene and 0.7 for H2O2.

  14. Nitrification and denitrifying phosphorus removal in an upright continuous flow reactor.

    PubMed

    Reza, Maryam; Alvarez Cuenca, Manuel

    2016-01-01

    Simultaneous nitrification and denitrifying phosphorus removal was achieved in a single-sludge continuous flow bioreactor. The upright bioreactor was aligned with a biomass fermenter (BF) and operated continuously for over 350 days. This study revealed that unknown bacteria of the Saprospiraceae class may have been responsible for the successful nutrient removal in this bioreactor. The successive anoxic-aerobic stages of the bioreactor with upright alignment along with a 60 L BF created a unique ecosystem for the growth of nitrifier, denitrifiers, phosphorus accumulating organisms and denitrifying phosphorus accumulating organisms. Furthermore, total nitrogen to chemical oxygen demand (COD) ratio and total phosphorus to COD ratio of 0.6 and 0.034, respectively, confirmed the comparative advantages of this advanced nutrient removal process relative to both sequencing batch reactors and activated sludge processes. The process yielded 95% nitrogen removal and over 90% phosphorus removal efficiencies. PMID:27148710

  15. Nitrification and denitrifying phosphorus removal in an upright continuous flow reactor.

    PubMed

    Reza, Maryam; Alvarez Cuenca, Manuel

    2016-01-01

    Simultaneous nitrification and denitrifying phosphorus removal was achieved in a single-sludge continuous flow bioreactor. The upright bioreactor was aligned with a biomass fermenter (BF) and operated continuously for over 350 days. This study revealed that unknown bacteria of the Saprospiraceae class may have been responsible for the successful nutrient removal in this bioreactor. The successive anoxic-aerobic stages of the bioreactor with upright alignment along with a 60 L BF created a unique ecosystem for the growth of nitrifier, denitrifiers, phosphorus accumulating organisms and denitrifying phosphorus accumulating organisms. Furthermore, total nitrogen to chemical oxygen demand (COD) ratio and total phosphorus to COD ratio of 0.6 and 0.034, respectively, confirmed the comparative advantages of this advanced nutrient removal process relative to both sequencing batch reactors and activated sludge processes. The process yielded 95% nitrogen removal and over 90% phosphorus removal efficiencies.

  16. Continuous and stopped flow injection for catalytic determination of total iodine in urine.

    PubMed

    Nacapricha, D; Muangkaew, S; Ratanawimarnwong, N; Shiowatana, J; Grudpan, K

    2001-01-01

    This paper describes the use of flow injection (FI) techniques for the determination of iodine in urine, based on the catalytic effect of iodide in the redox reaction between Ce(IV) and As(III). The proposed procedures minimize errors in the conventional batch method arising from the reading of absorbance at a fixed time after addition of Ce(IV) reagent. Two FI systems, for the continuous and stopped modes of operation were assembled. In the continuous-FI system, a thermostated bath was used to increase the sensitivity. However this is not necessary for the stopped-FI system. The two systems are comparable in terms of sensitivity, sample throughput and detection limit. The continuous-FI and the stopped-FI exhibited detection limits (3 sigma) of 2.3 and 3 micrograms I l-1 respectively. Both systems have equal sample throughputs of 35 samples h-1. Calibration plots for both techniques are linear. The FI procedures provide very short analysis times compared to the batch procedure. Using the linear regression test, there is no significant difference between the results from the four methods, i.e., continuous-FI, stopped-FI, conventional method and ICP-MS. The proposed methods are readily applicable for automation and can be an alternative to the conventional procedure for the survey of the iodine deficiency disorder. A condition for sample digestion is also proposed to reduce the amount of chloric acid required for complete digestion. Kinetic information of the reaction can also be obtained from the stopped flow mode.

  17. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device...

  18. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device...

  19. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device...

  20. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device...

  1. Acute aortic syndrome

    PubMed Central

    2016-01-01

    Acute aortic syndrome (AAS) is a term used to describe a constellation of life-threatening aortic diseases that have similar presentation, but appear to have distinct demographic, clinical, pathological and survival characteristics. Many believe that the three major entities that comprise AAS: aortic dissection (AD), intramural hematoma (IMH) and penetrating aortic ulcer (PAU), make up a spectrum of aortic disease in which one entity may evolve into or coexist with another. Much of the confusion in accurately classifying an AAS is that they present with similar symptoms: typically acute onset of severe chest or back pain, and may have similar radiographic features, since the disease entities all involve injury or disruption of the medial layer of the aortic wall. The accurate diagnosis of an AAS is often made at operation. This manuscript will attempt to clarify the similarities and differences between AD, IMH and PAU of the ascending aorta and describe the challenges in distinguishing them from one another. PMID:27386405

  2. Para-aortic lymphocyst.

    PubMed

    Helmkamp, B F; Krebs, H B; Isikoff, M B; Poliakoff, S R; Averette, H E

    1980-10-15

    Although numerous articles regarding the etiology, incidence, complications, and management of pelvic lymphocysts have been published in the American literature since 1958, there has been no mention of para-aortic lymphocyst as a complication of para-aortic node dissection. Two recent cases of symptomatic para-aortic lymphocyst have prompted a review of our para-aortic node dissection technique when this procedure is not combined with a more extensive pelvic lymphadenectomy. Our modification in technique is to use retroperitoneal para-aortic drainage by constant pressure-controlled suction following closure of the posterior parietal peritoneum, and the results in our first 15 patients are presented. There were no complications related to the drainage technique. Abdominal ultrasound and intravenous urography have proved to be excellent diagnostic tools in the initial evaluation and subsequent follow-up of para-aortic lymphocytes.

  3. Acute aortic syndrome.

    PubMed

    Corvera, Joel S

    2016-05-01

    Acute aortic syndrome (AAS) is a term used to describe a constellation of life-threatening aortic diseases that have similar presentation, but appear to have distinct demographic, clinical, pathological and survival characteristics. Many believe that the three major entities that comprise AAS: aortic dissection (AD), intramural hematoma (IMH) and penetrating aortic ulcer (PAU), make up a spectrum of aortic disease in which one entity may evolve into or coexist with another. Much of the confusion in accurately classifying an AAS is that they present with similar symptoms: typically acute onset of severe chest or back pain, and may have similar radiographic features, since the disease entities all involve injury or disruption of the medial layer of the aortic wall. The accurate diagnosis of an AAS is often made at operation. This manuscript will attempt to clarify the similarities and differences between AD, IMH and PAU of the ascending aorta and describe the challenges in distinguishing them from one another. PMID:27386405

  4. Juxtarenal aortic aneurysm: endoluminal transfemoral repair?

    PubMed

    Ferko, A; Krajina, A; Jon, B; Lesko, M; Voboril, Z; Zizka, J; Eliás, P

    1997-01-01

    Endoluminal transfemoral repair of an abdominal aortic aneurysm by a stent graft placement requires a segment of the nondilated infrarenal aorta of at least 15 mm long for safe stent graft attachment. The possibility of endoluminal treatment of a juxtarenal abdominal aortic aneurysm with partially covered spiral Z stent was assessed in experiment and in three clinical cases. In the experiment, the noncovered spiral Z stent was placed into the abdominal aorta, across the origins of renal arteries and mesenteric arteries, in six dogs. In the clinical cases, a partially covered stent graft was attached in 3 patients with the juxtarenal abdominal aortic aneurysm (of the group of 12 patients with abdominal aortic aneurysm). The stent grafts were attached with proximal uncovered parts across the origins of the renal arteries. In experiment, the renal artery occlusions or stenoses were not observed 36 months after stent placement, and in clinic, 3 patients with the juxtarenal aortic aneurysm were successfully treated by stent graft placement. There were no signs of flow impairment into the renal arteries 14 months after stent graft implantation. This approach can possibly expand the indications for endoluminal grafting in the treatment of juxtarenal aortic aneurysms in patients who are at high risk for surgery.

  5. Quantification of abdominal aortic deformation after EVAR

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  6. Asymptomatic Interrupted Aortic Arch, Severe Tricuspid Regurgitation, and Bicuspid Aortic Valve in a 76-Year-Old Woman

    PubMed Central

    Tajdini, Masih; Sardari, Akram; Forouzannia, Seyed Khalil; Baradaran, Abdolvahab; Hosseini, Seyed Mohammad Reza

    2016-01-01

    Interrupted aortic arch is a rare congenital abnormality with a high infancy mortality rate. The principal finding is loss of luminal continuity between the ascending and descending portions of the aorta. Because of the high mortality rate in infancy, interrupted aortic arch is very rare among adults. In this report, we describe the case of a 76-year-old woman with asymptomatic interrupted aortic arch, severe tricuspid regurgitation, and bicuspid aortic valve. To our knowledge, she is the oldest patient ever reported with this possibly unique combination of pathologic conditions. In addition to reporting her case, we review the relevant medical literature. PMID:27777532

  7. Aortic Disease in the Young: Genetic Aneurysm Syndromes, Connective Tissue Disorders, and Familial Aortic Aneurysms and Dissections

    PubMed Central

    Cury, Marcelo; Zeidan, Fernanda; Lobato, Armando C.

    2013-01-01

    There are many genetic syndromes associated with the aortic aneurysmal disease which include Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), Loeys-Dietz syndrome (LDS), familial thoracic aortic aneurysms and dissections (TAAD), bicuspid aortic valve disease (BAV), and autosomal dominant polycystic kidney disease (ADPKD). In the absence of familial history and other clinical findings, the proportion of thoracic and abdominal aortic aneurysms and dissections resulting from a genetic predisposition is still unknown. In this study, we propose the review of the current genetic knowledge in the aortic disease, observing, in the results that the causative genes and molecular pathways involved in the pathophysiology of aortic aneurysm disease remain undiscovered and continue to be an area of intensive research. PMID:23401778

  8. A disposable, continuous-flow polymerase chain reaction device: design, fabrication and evaluation.

    PubMed

    Ragsdale, Victoria; Li, Huizhong; Sant, Himanshu; Ameel, Tim; Gale, Bruce K

    2016-08-01

    Polymerase Chain Reaction (PCR) is used to amplify a specific segment of DNA through a thermal cycling protocol. The PCR industry is shifting its focus away from macro-scale systems and towards micro-scale devices because: micro-scale sample sizes require less blood from patients, total reaction times are on the order of minutes opposed to hours, and there are cost advantages as many microfluidic devices are manufactured from inexpensive polymers. Some of the fastest PCR devices use continuous flow, but they have all been built of silicon or glass to allow sufficient heat transfer. This article presents a disposable polycarbonate (PC) device that is capable of achieving real-time, continuous flow PCR in a completely disposable polymer device in less than 13 minutes by thermally cycling the sample through an established temperature gradient in a serpentine channel. The desired temperature gradient was determined through simulations and validated by experiments which showed that PCR was achieved. Practical demonstration included amplification of foot-and-mouth disease virus (FMDV) derived cDNA. PMID:27393216

  9. Gastrointestinal bleeding in a patient with a continuous-flow biventricular assist device.

    PubMed

    Mirasol, Raymond V; Tholany, Jason J; Reddy, Hasini; Fyfe-Kirschner, Billie S; Cheng, Christina L; Moubarak, Issam F; Nosher, John L

    2016-04-28

    The association between continuous-flow left ventricular assist devices (CF-LVADs) and gastrointestinal (GI) bleeding from angiodysplasia is well recognized. However, the association between continuous-flow biventricular assist devices (CF-BIVADs) and bleeding angiodysplasia is less understood. We report a case of GI bleeding from a patient with a CF-BIVAD. The location of GI bleeding was identified by nuclear red blood cell bleeding scan. The vascular malformation leading to the bleed was identified and localized on angiography and then by pathology. The intensity of bleeding, reflected by number of units of packed red blood cells needed for normalization of hemoglobin, as well as the time to onset of bleeding after transplantation, are similar to that seen in the literature for CF-LVADs and pulsatile BIVADs. While angiography only detected a dilated late draining vein, pathology demonstrated the presence of both arterial and venous dilation in the submucosa, vascular abnormalities characteristic of a late arteriovenous malformation. PMID:27158430

  10. Gastrointestinal bleeding in a patient with a continuous-flow biventricular assist device

    PubMed Central

    Mirasol, Raymond V; Tholany, Jason J; Reddy, Hasini; Fyfe-Kirschner, Billie S; Cheng, Christina L; Moubarak, Issam F; Nosher, John L

    2016-01-01

    The association between continuous-flow left ventricular assist devices (CF-LVADs) and gastrointestinal (GI) bleeding from angiodysplasia is well recognized. However, the association between continuous-flow biventricular assist devices (CF-BIVADs) and bleeding angiodysplasia is less understood. We report a case of GI bleeding from a patient with a CF-BIVAD. The location of GI bleeding was identified by nuclear red blood cell bleeding scan. The vascular malformation leading to the bleed was identified and localized on angiography and then by pathology. The intensity of bleeding, reflected by number of units of packed red blood cells needed for normalization of hemoglobin, as well as the time to onset of bleeding after transplantation, are similar to that seen in the literature for CF-LVADs and pulsatile BIVADs. While angiography only detected a dilated late draining vein, pathology demonstrated the presence of both arterial and venous dilation in the submucosa, vascular abnormalities characteristic of a late arteriovenous malformation. PMID:27158430

  11. Continued development of the Nimbus/University of Pittsburgh (UOP) axial flow left ventricular assist system.

    PubMed

    Thomas, D C; Butler, K C; Taylor, L P; Le Blanc, P; Griffith, B P; Kormos, R L; Borovetz, H S; Litwak, P; Kameneva, M V; Choi, S; Burgreen, G W; Wagner, W R; Wu, Z; Antaki, J F

    1997-01-01

    Nimbus and the University of Pittsburgh (UOP) have continued the development of a totally implanted axial flow blood pump under the National Institutes of Health (NIH) Innovative Ventricular Assist System (IVAS) program. This 62 cc device has an overall length of 84 mm and an outer diameter of 34.5 mm. The inner diameter of the blood pump is 12 mm. It is being designed to be a totally implanted permanent device. A key achievement during the past year was the completion of the Model 2 pump design. Ten of these pumps have been fabricated and are being used to conduct in vitro and in vivo experiments to evaluate the performance of different materials and hydraulic components. Efforts for optimizing the closed loop speed control have continued using mathematical modeling, computer simulations, and in vitro and in vivo testing. New hydraulic blade designs have been tested using computational fluid dynamics (CFD) and flow visualization. A second generation motor was designed with improved efficiency. To support the new motor, a new motor controller fabricated as a surface mount PC board has been completed. The program is now operating under a formal QA system.

  12. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  13. Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study.

    PubMed

    Velimirovic, Milica; Simons, Queenie; Bastiaens, Leen

    2014-01-30

    A column study was performed under in situ conditions to evaluate to which extend the inactivation of the microscale zerovalent iron (mZVI) by guar gum occurs under continuous flow conditions. Five aquifer containing columns were set up under different conditions. Efficient removal of trichloroethene was observed for the column amended by mZVI. Stabilization of the mZVI with guar gum led to slightly reduced activity. More reduced reactivity was observed in the poisoned column containing guar gum stabilized mZVI. This confirms that soil microorganisms can degrade guar gum and that subsequent removal of the oligosaccharides by the groundwater flow (flushing effect) can reactivate the mZVI. After more than six months of continuous operation the columns were dismantled. DNA-based qPCR analysis revealed that mZVI does not significantly affect the bacterial community, while guar gum stabilized mZVI particles can even induce bacterial growth. Overall, this study suggests that the temporarily decreased mZVI reactivity due to guar gum, has a rather limited impact on the performance of in situ reactive zones. The presence of guar gum slightly reduced the reactivity of iron, but also slowed down the iron corrosion rate which prolongs the life time of reactive zone.

  14. Micro Continuous-Flow Synthesis of Metal Nanoparticles Using Micro Fluid Segment Technology

    NASA Astrophysics Data System (ADS)

    Knauer, Andrea; Köhler, J. Michael

    The micro segmented flow technique is very promising for the synthesis of metal nanoparticles, in particular for plasmonic nanoparticles and is very useful for combinatorial syntheses and screenings of new types of nanomaterials. In this chapter, the specific properties and technical as well as scientific challenges related to metal nanoparticles, the advantages of micro segmented flow and draw-backs of conventional synthesis for metal nanoparticles as well as the general applicability and the potential for the application of micro segmented flow for the preparation of metal and semiconductor nanoparticles are discussed. The specific conditions of micro segmented flow are described relating to the critical steps of reactant mixing, nucleation, and particle growth. It is shown that the intensification of local transport in the microfluidic system causes a significant improvement in particle homogeneity. In the formation and handling of metal particles, aspects of redox reactions, electrochemical parameters, and aspects of coordination chemistry have to be reconsidered. Ligands, which are able to interact with the metal ions in solution or with the forming nanoparticles, have a strong effect on the particle formation, their transport behavior, and interaction. The effect of fast reactant mixing supported by intensive segment-internal convection due to high flow rates is used in order to obtain uniform conditions for nucleation as well as for the particle growth. It is explained why non-spherical particles are of particular interest for different applications and how their quality can be improved by the application of microfluidic synthesis techniques, too. The formation of silver prisms by a micro continuous-flow synthesis in micro fluid segments will be given as a typical example allowing the tuning of the optical properties of the colloidal solutions. Finally, it is demonstrated that the micro segmented flow technique is well suited for an automated variation of

  15. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel.

    PubMed

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-27

    Refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, RI contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving parts approach that provides three-dimensional refractive index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate RI maps of the samples from the measured spectra. Using this method, we demonstrate label-free 3-D imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass and density of these cells from the measured 3-D refractive index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, promises as a quantitative tool for stain-free characterization of large number of cells.

  16. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-01

    The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

  17. Practical strategies for stable operation of HFF-QCM in continuous air flow.

    PubMed

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R

    2013-09-09

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10-9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.

  18. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2012-01-01

    Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.

  19. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  20. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process.

    PubMed

    Muley, Pranjali D; Boldor, Dorin

    2012-01-01

    Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data. PMID:24432470

  1. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  2. Transient fluid flow and superheat transport in continuous casting of steel slabs

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Thomas, B. G.; Vanka, S. P.; O'Malley, R. J.

    2005-12-01

    The turbulent flow of molten steel and the superheat transport in the mold region of a continuous caster of thin steel slabs are investigated with transient large-eddy simulations and plant experiments. The predicted fluid velocities matched measurements taken from dye-injection experiments on full-scale water models of the process. The corresponding predicted temperatures matched measurements by thermocouples lowered into the molten steel during continuous casting. The classic double-roll flow pattern is confirmed for this 132×984 mm slab caster at a 1.52 m/min casting speed, with about 85 pct of the single-phase flow leaving the two side ports of the three-port nozzle. The temperature in the top portion of the molten pool dropped to about 30 pct of the superheat-temperature difference entering the mold of 58 °C. About 12 pct of the superheat is extracted at the narrow face, where the peak heat flux averages almost 750 kW/m2 and the instantaneous peaks exceed 1500 kW/m2. Two-thirds of the superheat is removed in the mold. The jets exiting the nozzle ports exhibit chaotic variations, producing temperature fluctuations in the upper liquid pool of ±4 °C and peak heat-flux variations of±350 kW/m2. Employing a static- k subgrid-scale (SGS) model into the three-dimensional (3-D) finite-volume code had little effect on the solution.

  3. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman

    2016-08-01

    During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment

  4. Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation.

    PubMed

    Schmidt, Adrian; de Waard, Hans; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2016-01-01

    In pharmaceutical manufacturing, there is an increasing interest in continuous manufacturing. As an example for fast continuous processes in general of considerable complexity, this study was focussed on improving the understanding of twin-screw wet granulation. The impact of the liquid-to-solid (L/S) mass flow ratio on product quality (granules) as well as on downstream process operations (tableting) was investigated in detail. Initially two methods were used to define L/S ratio boundaries for the granulation regime in twin-screw wet granulation. It was shown that the first method, which is based on measuring the wet granule mass flow variation, can be used to define the upper L/S ratio boundary of the granulation regime. The second method, based on measuring the granule size distribution, can be used to define the lower L/S ratio boundary of the regime. Using these methods, the granulation regime for different formulations could be established. This information was then used to show that the formulation could be optimised such that the process is more robust (i.e. wider L/S ratio boundaries for the granulation regime). Also it could be used to optimise the formulation considering further downstream processing such as drying (using as little water as possible to reduce drying efforts) or tableting (obtain granules with optimised tableting properties). Preferably, the process should be performed close to the lower L/S ratio boundary of the granulation regime. In summary, these tools enabled the quantitative establishment of granulation regime boundaries in a twin-screw wet granulation process and can be used to optimise formulation and to create a robust process. Analogies to other continuous processes in completely different applications can be conceived. PMID:27646540

  5. Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-Dong; Fan, Bao-Chun; Gui, Ming-Yue; Pan, Zhen-Hua; Dong, Gang

    2012-02-01

    Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonationshock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interesting properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.

  6. Differential aspects of the disease and treatment of Thoracic Acute Aortic Dissection (TAAD)-the European experience.

    PubMed

    Pepper, John

    2016-07-01

    The management of patients with acute aortic dissection continues to be a challenge. It is an uncommon but lethal condition which continues to be under-diagnosed and under-treated. In this review, the term acute aortic syndrome is preferred in order to embrace the closely related pathologies of intramural hematoma (IMH) and penetrating aortic ulcer (PAU). PMID:27563549

  7. Differential aspects of the disease and treatment of Thoracic Acute Aortic Dissection (TAAD)—the European experience

    PubMed Central

    2016-01-01

    The management of patients with acute aortic dissection continues to be a challenge. It is an uncommon but lethal condition which continues to be under-diagnosed and under-treated. In this review, the term acute aortic syndrome is preferred in order to embrace the closely related pathologies of intramural hematoma (IMH) and penetrating aortic ulcer (PAU). PMID:27563549

  8. An easy and economical in vitro method for the formation of Candida albicans biofilms under continuous conditions of flow.

    PubMed

    Uppuluri, Priya; Lopez-Ribot, Jose L

    2010-01-01

    Candida albicans can develop biofilms on medical devices and these biofilms are most often nourished by a continuous flow of body fluids and subjected to shear stress forces. While many C. albicans biofilm studies have been carried out using in vitro static models, more limited information is available for biofilms developed under conditions of flow. We have previously described a simple flow biofilm model (SFB) for the development of C. albicans biofilms under conditions of continuous media flow. Here, we recount in detail from a methodological perspective, this model that can be assembled easily using materials commonly available in most microbiological laboratories. The entire procedure takes approximately two days to complete. Biofilms developed using this system are robust, and particularly suitable for studies requiring large amounts of biofilm cells for downstream analyses. This methodology simplifies biofilm formation under continuous replenishment of nutrients. Moreover, this technique mimics in vivo flow conditions, thereby making it physiologically more relevant than the currently dominant static models.

  9. Method 349.0 Determination of Ammonia in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of ammonia in estuarine and coastal waters. The method is based upon the indophenol reaction,1-5 here adapted to automated gas-segmented continuous flow analysis.

  10. Methodological inaccuracies in clinical aortic valve severity assessment: insights from computational fluid dynamic modeling of CT-derived aortic valve anatomy

    NASA Astrophysics Data System (ADS)

    Traeger, Brad; Srivatsa, Sanjay S.; Beussman, Kevin M.; Wang, Yechun; Suzen, Yildirim B.; Rybicki, Frank J.; Mazur, Wojciech; Miszalski-Jamka, Tomasz

    2016-04-01

    Aortic stenosis is the most common valvular heart disease. Assessing the contribution of the valve as a portion to total ventricular load is essential for the aging population. A CT scan for one patient was used to create one in vivo tricuspid aortic valve geometry and assessed with computational fluid dynamics (CFD). CFD simulated the pressure, velocity, and flow rate, which were used to assess the Gorlin formula and continuity equation, current clinical diagnostic standards. The results demonstrate an underestimation of the anatomic orifice area (AOA) by Gorlin formula and overestimation of AOA by the continuity equation, using peak velocities, as would be measured clinically by Doppler echocardiography. As a result, we suggest that the Gorlin formula is unable to achieve the intended estimation of AOA and largely underestimates AOA at the critical low-flow states present in heart failure. The disparity in the use of echocardiography with the continuity equation is due to the variation in velocity profile between the outflow tract and the valve orifice. Comparison of time-averaged orifice areas by Gorlin and continuity with instantaneous orifice areas by planimetry can mask the errors of these methods, which is a result of the assumption that the blood flow is inviscid.

  11. Selected low-flow frequency statistics for continuous-record streamgages in Georgia, 2013

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2016-04-13

    This report presents the annual and monthly minimum 1- and 7-day average streamflows with the 10-year recurrence interval (1Q10 and 7Q10) for 197 continuous-record streamgages in Georgia. Streamgages used in the study included active and discontinued stations having a minimum of 10 complete climatic years of record as of September 30, 2013. The 1Q10 and 7Q10 flow statistics were computed for 85 streamgages on unregulated streams with minimal diversions upstream, 43 streamgages on regulated streams, and 69 streamgages known, or considered, to be affected by varying degrees of diversions upstream. Descriptive information for each of these streamgages, including the U.S. Geological Survey (USGS) station number, station name, latitude, longitude, county, drainage area, and period of record analyzed also is presented.Kendall’s tau nonparametric test was used to determine the statistical significance of trends in annual and monthly minimum 1-day and 7-day average flows for the 197 streamgages. Significant negative trends in the minimum annual 1-day and 7-day average streamflow were indicated for 77 of the 197 streamgages. Many of these significant negative trends are due to the period of record ending during one of the recent droughts in Georgia, particularly those streamgages with record through the 2013 water year. Long-term unregulated streamgages with 70 or more years of record indicate significant negative trends in the annual minimum 7-day average flow for central and southern Georgia. Watersheds for some of these streamgages have experienced minimal human impact, thus indicating that the significant negative trends observed in flows at the long-term streamgages may be influenced by changing climatological conditions. A Kendall-tau trend analysis of the annual air temperature and precipitation totals for Georgia indicated no significant trends. A comprehensive analysis of causes of the trends in annual and monthly minimum 1-day and 7-day average flows in central

  12. Continuous flow electrophoresis: The effect of sample concentration on throughput and resolution in an upward flowing system

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1980-01-01

    The effect of sample concentration on throughput and resolution in a modified continuous particle electrophoresis (CPE) system with flow in an upward direction is investigated. Maximum resolution is achieved at concentrations ranging from 2 x 10 to the 8th power cells/ml to 8 x 10 to the 8th power cells/ml. The widest peak separation is at 2 x 10 to the 8th power cells/ml; however, the sharpest peaks and least overlap between cell populations is at 8 x 10 to the 8th power cells/ml. Apparently as a result of improved electrophoresis cell performance due to coasting the chamber with bovine serum albumin, changing the electrode membranes and rinse, and lowering buffer temperatures, sedimentation effects attending to higher concentrations are diminished. Throughput as measured by recovery of fixed cells is diminished at the concentrations judged most likely to yield satisfactory resolution. The tradeoff appears to be improved recovery/throughput at the expense of resolution.

  13. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  14. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  15. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  16. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  17. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice

    PubMed Central

    Jung, Jae-Joon; Razavian, Mahmoud; Kim, Hye-Yeong; Ye, Yunpeng; Golestani, Reza; Toczek, Jakub; Zhang, Jiasheng; Sadeghi, Mehran M.

    2016-01-01

    Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression. PMID:27619752

  18. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice.

    PubMed

    Jung, Jae-Joon; Razavian, Mahmoud; Kim, Hye-Yeong; Ye, Yunpeng; Golestani, Reza; Toczek, Jakub; Zhang, Jiasheng; Sadeghi, Mehran M

    2016-01-01

    Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E(-/-) mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE(-/-) mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression. PMID:27619752

  19. Continuous flow determination of carbon dioxide in water by membrane separation-chemiluminescent detection

    SciTech Connect

    Aoki, T.; Ito, K.; Munemori, M.

    1988-10-01

    Carbon dioxide has been found to enhance the chemiluminescence of a luminol system. A determination method for carbon dioxide in water was developed by applying this reaction to a continuous flow membrane-separation system. Concentrations of carbon dioxide as low as 0.04 ..mu..g C/mL were determined. Membrane-separation effectively eliminated interferences from Co(II), Cr(III), Fe(III), and other ions which also enhance chemiluminescence. The relative standard deviation for this method was 2.8% (n=5) for 4.0 ..mu..g C/mL and the time required for the analysis of one sample was 3.0 min.

  20. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    PubMed

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pH<4.5. The representative strains of these fermentations were Clostridium sp., Propionibacterium sp. and Bacteriodes sp., respectively. Ethanol fermentation was optimal type by comparing the operating stabilities and hydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  1. [Unsegmented continuous-flow sample processing and electrochemical detection of gaseous species

    SciTech Connect

    Mottola, H.A.

    1991-01-01

    Goals were a continuous-flow, unsegmented, all-gas carrier and/or a segmented liquid/gas interface system for sample introduction and transport to detection/determination point; a regenerable electrode probe base on redox reactions of Fe(II) and Fe(III) complexes with 1, 10-phenanthroline and related ligands; and amperometric/coulometric current measurements providing analyte signals. Gases to be detected included NO[sub x] and SO[sub 2]. This report is divided into 3 parts: preparation of new ligands of 1,10-phenanthroline family; glassy carbon surfaces coated with polymeric films prepared from monomeric units of tris[5-amino-1,10-phenanthroline]iron(II); and sulfite oxidase/hexacyanoferrate modified C paste electrode.

  2. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins.

    PubMed

    Fu, Jianping; Schoch, Reto B; Stevens, Anna L; Tannenbaum, Steven R; Han, Jongyoon

    2007-02-01

    Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system. PMID:18654231

  3. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins

    NASA Astrophysics Data System (ADS)

    Fu, Jianping; Schoch, Reto B.; Stevens, Anna L.; Tannenbaum, Steven R.; Han, Jongyoon

    2007-02-01

    Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system.

  4. Parallel continuous flow: a parallel suffix tree construction tool for whole genomes.

    PubMed

    Comin, Matteo; Farreras, Montse

    2014-04-01

    The construction of suffix trees for very long sequences is essential for many applications, and it plays a central role in the bioinformatic domain. With the advent of modern sequencing technologies, biological sequence databases have grown dramatically. Also the methodologies required to analyze these data have become more complex everyday, requiring fast queries to multiple genomes. In this article, we present parallel continuous flow (PCF), a parallel suffix tree construction method that is suitable for very long genomes. We tested our method for the suffix tree construction of the entire human genome, about 3GB. We showed that PCF can scale gracefully as the size of the input genome grows. Our method can work with an efficiency of 90% with 36 processors and 55% with 172 processors. We can index the human genome in 7 minutes using 172 processes.

  5. Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines.

    PubMed

    Viefhues, Martina; Wegener, Sonja; Rischmüller, Anja; Schleef, Martin; Anselmetti, Dario

    2013-08-01

    We present a prototype nanofluidic device, developed for the continuous-flow dielectrophoretic (DEP) fractionation, purification, and quality control of sample suspensions for gene vaccine production. The device consists of a cross injector, two operation regions, and separate outlets where the analytes are collected. In each DEP operation region, an inhomogeneous electric field is generated at a channel spanning insulating ridge. The samples are driven by ac and dc voltages that generate a dielectrophoretic potential at the ridge as well as (linear) electrokinetics. Since the DEP potential differs at the two ridges, probes of three and more species can be iteratively fully fractionated. We demonstrate the fast and efficient separation of parental plasmid, miniplasmid, and minicircle DNA, where the latter is applicable as a gene vaccine. Since the present technique is virtually label-free, it offers a fast purification and in-process quality control with low consumption, in parallel, for the production of gene vaccines.

  6. Continuous Flow Metathesis for Direct Valorization of Food Waste: An Example of Cocoa Butter Triglyceride

    PubMed Central

    2015-01-01

    The direct chemical conversion of cocoa butter triglycerides, a material available as a postmanufacture waste stream from the food industry, to 1-decene by way of ethenolysis is reported. The conversion of the raw waste material was made possible by use of 1 mol % of the [RuCl2(iBu-phoban)2(3-phenylindenyl)] catalyst. The process has been investigated in both batch and flow conditions, where the latter approach employs a Teflon AF-2400 tube-in-tube gas–liquid membrane contactor to deliver ethylene to the reaction system. These preliminary studies culminate in a continuous processing system, which maintained a constant output over a 150 min period tested. PMID:26322250

  7. Nonequilibrium chemical instabilities in continuous flow stirred tank reactors: The effect of stirring

    NASA Astrophysics Data System (ADS)

    Horsthemke, W.; Hannon, L.

    1984-11-01

    We present a stochastic model for stirred chemical reactors. In the limiting case of practical interest, i.e., fast stirring, we solve for the characteristic function in steady state and derive expressions for the stationary moments through a perturbation expansion. Moments are explicitly calculated for a generic model of bistable behavior. We find that stirring decreases the area of the bistable region essentially by changing the point of transition from the high reaction rate state to the low reaction rate state. This is in remarkable agreement with the experimental findings of Roux, et al. Our results indicate that stirring should not be considered simply as an ``enhanced diffusion'' process and that nucleation plays only a minor role in transitions between multiple steady states in a continuous flow stirred tank reactor (CSTR).

  8. Continuous Open Flow-Through System as a Model for Oil Degradation in the Arctic Ocean

    PubMed Central

    Horowitz, Amikam; Atlas, Ronald M.

    1977-01-01

    A continuous flow-through system incubated in situ was used to model oil biodegradation in Arctic coastal waters. High numbers of oil-degrading microorganisms were found in the Arctic coastal waters examined in this study. The microbial community underlying oil slicks increased and showed a population shift to a greater percentage of hydrocarbon-utilizing microorganisms. Microbial populations and oil biodegradation were increased by the addition of nitrogen and phosphorus. Both abiotic and biodegradative losses were lower than expected, perhaps due to the unusually harsh, ice-dominated Arctic summer, during which these tests were conducted. Chromatographic and spectrometric analyses showed that residual oils contained similar percentages of individual components and classes of hydrocarbons, regardless of the amount of degradation, indicating that most components of the oil were being degraded at similar rates. PMID:16345221

  9. Development of continuous flow type hydrothermal reactor for hemicellulose fraction recovery from corncob.

    PubMed

    Makishima, Satoshi; Mizuno, Masahiro; Sato, Nobuaki; Shinji, Kazunori; Suzuki, Masayuki; Nozaki, Kouichi; Takahashi, Fumihiro; Kanda, Takahisa; Amano, Yoshihiko

    2009-06-01

    The semi-pilot scale of continuous flow type hydrothermal reactor has been investigated to separate hemicellulose fraction from corncob. We obtained the effective recovery of hemicellulose using tubular type reactor at 200 degrees C for 10 min. From constituent sugar analysis of corncob, 82.2% of xylan fraction was recovered as mixture of xylose, xylooligosaccharides and higher-xylooligosaccharide which has more than DP 10. During purification of solubilized fraction by hydrothermal reaction such as ultrafiltration and ion exchange resin, higher-xylooligosaccharide was recovered as the precipitate. This precipitate was identified as non-blanched xylan fraction which has from DP 11 to DP 21 mainly. In this system, only a small amount of furfural has been generated. This tubular reactor has a characteristic controllability of thermal history, and seems to be effective for sugar recovery from soft biomass like corncob.

  10. Accessing Stereochemically Rich Sultams via Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) Scale-out

    PubMed Central

    Organ, Michael G.; Hanson, Paul R.; Rolfe, Alan; Samarakoon, Thiwanka B.; Ullah, Farman

    2011-01-01

    The generation of stereochemically-rich benzothiaoxazepine-1,1′-dioxides for enrichment of high-throughput screening collections is reported. Utilizing a microwave-assisted, continuous flow organic synthesis platform (MACOS), scale-out of core benzothiaoxazepine-1,1′-dioxide scaffolds has been achieved on multi-gram scale using an epoxide opening/SNAr cyclization protocol. Diversification of these sultam scaffolds was attained via a microwave-assisted intermolecular SNAr reaction with a variety of amines. Overall, a facile, 2-step protocol generated a collection of benzothiaoxazepine-1,1′-dioxides possessing stereochemical complexity in rapid fashion, where all 8 stereoisomers were accessed from commercially available starting materials. PMID:22116791

  11. Time Resolved Particle Image Velocimetry Techniques with Continuous Wave Laser and their Application to Transient Flows

    NASA Astrophysics Data System (ADS)

    Esposito, Chiara

    The demand to increase the temporal resolution of Stereo-Particle Image Velocimetry systems used in the measurement of highly unsteady flow fields is limited by the low repetition rate of the pulse lasers and cameras. The availability of high-frame-rate digital cameras and CW lasers opens new possibilities in the development of continuous PIV systems with increased temporal resolution. Time-Resolved Particle Image Velocimetry (TR-PIV) with continuous wave (CW) laser sheet technique and a high frame-rate camera is introduced here to be used in gas flows at low to moderate Reynolds numbers. This experimental technique can measure velocity of the flow in a planar field with good spatial and temporal resolution. Additional modifications led to the development of a Split view TR-PIV system capable of resolving three-component velocity fields. The optical setup consists of a single high-frame-rate camera which can accommodate two simultaneous stereo view images of the deforming fluid on its CMOS chip obtained by using four different planar mirrors, appropriately positioned. This approach offers several advantages over traditional systems with two different cameras. First, it provides identical system parameters for the two views which minimize their differences and thus facilitating robust stereo matching. Second, it reduces calibration time since only one camera is used and third its cost is substantially lower than the cost of a system with two cameras. The TR-PIV with the CW laser technique has been evaluated in canonical turbulent boundary layer flows and the results were compared to data from the vast literature. Particular attention has been given to the performance of the system components, such as the high speed cameras, and the CW lasers. The techniques were also investigated in terms of the duration of exposure of PIV images. The effect of the duration of exposure was proven to be particularly important, and it has a negative effect for the case with higher

  12. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design.

    PubMed

    Ahn, Yongtae; Logan, Bruce E

    2012-03-01

    Scaling up microbial fuel cells (MFCs) requires the development of compact reactors with multiple electrodes. A scalable single chamber MFC (130 mL), with multiple graphite fiber brush anodes and a single air-cathode cathode chamber (27 m2/m3), was designed with a separator electrode assembly (SEA) to minimize electrode spacing. The maximum voltage produced in fed-batch operation was 0.65 V (1,000 Ω) with a textile separator, compared to only 0.18 V with a glass fiber separator due to short-circuiting by anode bristles through this separator with the cathode. The maximum power density was 975 mW/m2, with an overall chemical oxygen demand (COD) removal of >90% and a maximum coulombic efficiency (CE) of 53% (50 Ω resistor). When the reactor was switched to continuous flow operation at a hydraulic retention time (HRT) of 8 h, the cell voltage was 0.21 ± 0.04 V, with a very high CE = 85%. Voltage was reduced to 0.13 ± 0.03 V at a longer HRT = 16 h due to a lower average COD concentration, and the CE (80%) decreased slightly with increased oxygen intrusion into the reactor per amount of COD removed. Total internal resistance was 33 Ω, with a solution resistance of 2 Ω. These results show that the SEA type MFC can produce stable power and a high CE, making it useful for future continuous flow treatment using actual wastewaters.

  13. Lower rotation speed stimulates sympathetic activation during continuous-flow left ventricular assist device treatment.

    PubMed

    Imamura, Teruhiko; Kinugawa, Koichiro; Nitta, Daisuke; Fujino, Takeo; Inaba, Toshiro; Maki, Hisataka; Hatano, Masaru; Kinoshita, Osamu; Nawata, Kan; Kyo, Shunei; Ono, Minoru

    2015-03-01

    Although the suppression of sympathetic activity is an essential mission for the current heart failure treatment strategy, little is known about the relationship between the rotation speed setting and autonomic nervous activity during continuous-flow left ventricular assist device (LVAD) treatment. We evaluated 23 adult patients with sinus rhythm (36 ± 13 years) who had received continuous-flow LVAD and been followed at our institute between March 2013 and August 2014. Heart rate variability measurement was executed along with hemodynamic study at 3 rotation speeds (low, middle, and high) at 5 weeks after LVAD implantation. Lower rotation speed was associated with higher ratio of low-frequency over high-frequency spectral level (LF/HF), representing enhanced sympathetic activation (p < 0.05 by repeated analyses of variance). Among hemodynamic parameters, cardiac index was exclusively associated with LFNU = LF/(LF + HF), representing relative sympathetic activity over parasympathetic one (p < 0.05). After 6 months LVAD support at middle rotation speed, 19 patients with higher LFNU eventually had higher plasma levels of B-type natriuretic peptide and achieved less LV reverse remodeling. A logistic regression analysis demonstrated that lower LFNU was significantly associated with improvement of LV reverse remodeling (p = 0.021, odds ratio 0.903) with a cut-off level of 55 % calculated by the ROC analysis (AUC 0.869). In conclusion, autonomic activity can vary in various rotation speeds. Patients with higher LFNU may better be controlled at higher rotation speed with the view point to suppress sympathetic activity and achieve LV reverse remodeling.

  14. Readmissions After Continuous Flow Left Ventricular Assist Device Implantation: Differences Observed Between Two Contemporary Device Types.

    PubMed

    Haglund, Nicholas A; Davis, Mary E; Tricarico, Nicole M; Keebler, Mary E; Maltais, Simon

    2015-01-01

    Readmissions after continuous flow left ventricular assist devices implantation are common. We compared the frequency and etiology of readmissions between two continuous flow left ventricular assist devices 6 months after implant. We retrospectively assessed readmissions in 81 patients who received a bridge to transplant HeartMate-II (HM-II) n = 35, 43% or HeartWare (HW) n = 46, 57%, from 2009 to 2014. Readmissions were divided into cardiac, infection, gastrointestinal bleeding, stroke, pump thrombosis, and miscellaneous profiles. Age, gender, creatinine, INTERMACS profiles were comparable between groups (p > 0.05). Sixty-one patients accounted for 141 readmissions. At 6 months, the overall readmission rate was higher among HM-II versus HW recipients (2.3 ± 1.7 vs. 1.4 ± 1.3; p = 0.024). Multiple readmissions (≥2) occurred more frequently in HM-II recipients (HM-II 23, 66% vs. HW 20, 44%; p = 0.047) which accounted for 87% of overall readmission frequency. Cardiac profile was the most common reason for readmission (HM-II = 15, HW = 17; p = 0.95). Readmission for arrhythmia (HM-II = 10, HW = 3; p = 0.021) and overall infection rate (0.49 ± 0.70 vs. 0.17 ± 0.68; p = 0.001) were more common among HM-II recipients; however, other readmission profiles were comparable between devices (p > 0.05). Readmission frequency, multiple readmissions, and clinical profile characteristics were different between HM-II and HW recipients.

  15. Continuous determination of regional myocardial blood flow with intracoronary krypton-81m in coronary artery disease.

    PubMed

    Remme, W J; Krauss, X H; van Hoogenhuyze, D C; Cox, P H; Storm, C J; Kruyssen, D A

    1985-09-01

    Pacing-induced changes in regional coronary flow were studied continuously with krypton-81m by intracoronary infusion in 25 patients: 21 with 50% or greater diameter narrowing of 1 or more left coronary arteries (group I) and 4 with less than 50% diameter reduction of a left coronary artery (group II). No changes occurred in group II. In group I, krypton-81m perfusion decreased progressively in all areas with more than 70% diameter narrowing, with a simultaneous increase in normal regions. At the end of pacing during angina, krypton-81m perfusion was reduced to 81 +/- 4% of control in areas with 71 to 90% diameter reduction (n = 8) and to 69 +/- 6% in areas with more than 90% diameter narrowing (n = 15). In contrast, in regions with 50 to 70% diameter reduction changes were variable (decrease in 4 regions, increase in 2 and an unchanged distribution in 1 region). Krypton-81m perfusion decreased early, before general signs of ischemia in areas with more than 90% diameter reduction, whereas this decrease occurred later in regions with 71 to 90% diameter narrowing, concurrently with ST-segment changes but before anginal pain. Although all signs of ischemia had disappeared between 2 and 5 minutes after pacing, changes in krypton-81m distribution persisted in most areas for 5 to 15 minutes after pacing. It is concluded that the functional significance of coronary arterial narrowing can be assessed with a continuous intracoronary infusion of krypton-81m. Changes in regional distribution persisted after cessation of pacing-induced ischemia, indicating an ongoing decrease in regional myocardial blood flow.

  16. Conservative Management of Chronic Aortic Dissection with Underlying Aortic Aneurysm

    PubMed Central

    Yusuf Beebeejaun, Mohammad; Malec, Aleksandra; Gupta, Ravi

    2013-01-01

    Aortic dissection is one of the most common aortic emergencies affecting around 2000 Americans each year. It usually presents in the acute state but in a small percentage of patients aortic dissections go unnoticed and these patients survive without any adequate therapy. With recent advances in medical care and diagnostic technologies, aortic dissection can be successfully managed through surgical or medical options, consequently increasing the related survival rate. However, little is known about the optimal long-term management of patients suffering from chronic aortic dissection. The purpose of the present report is to review aortic dissection, namely its pathology and the current diagnostic tools available, and to discuss the management options for chronic aortic dissection. We report a patient in which chronic aortic dissection presented with recurring episodes of vomiting and also discuss the management plan of our patient who had a chronic aortic dissection as well as an underlying aortic aneurysm. PMID:24179638

  17. Endovascular Management of Chronic Type B Dissecting Aortic Aneurysm Utilizing Aortic and Renal Stents

    SciTech Connect

    Taylor, J. D. Dunckley, M.; Thompson, M.; Morgan, R. A.

    2008-07-15

    Over the last 10 years endovascular stent-graft placement has been increasingly used to treat complicated acute Type B thoracic aortic dissections. While studies have demonstrated the use of additional aortic stent-grafts to treat continued false lumen perfusion and case reports have detailed the use of renal artery stents to treat renal ischemia related to aortic dissection, to our knowledge the adjuvant use of renal artery stents to reduce false lumen perfusion has not been reported. We present the case of a 72-year-old male who had previously undergone endovascular repair of a complicated Type B thoracic aortic dissection and presented with an expanding false lumen in the peridiaphragmatic aorta despite coverage of the entire thoracic aorta. This was treated by closure of a right renal fenestration using a renal stent.

  18. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting

    SciTech Connect

    Najjar, F.M.; Thomas, B.G.; Hershey, D.E.

    1995-08-01

    Bifurcated nozzles are used in continuous casting of molten steel, where they influence the quality of the cast steel slabs. The present study performs two-dimensional (2-D) and three-dimensional (3-D) simulations of steady turbulent (K-{epsilon}) flow in bifurcated nozzles, using a finite-element (FIDAP) model, which has been verified previously with water model experiments. The effects of nozzle design and casting process operating variables on the jet characteristics exiting the nozzle are investigated. The nozzle design parameters studied include the shape, angle, height, width, and thickness of the ports and the bottom geometry. The process operating practices include inlet velocity profile and angle as well as port curvature caused by erosion or inclusion buildup. Results show that the jet angle is controlled mainly by the port angle but is steeper with larger port area and thinner walls. The degree of swirl is increased by larger or rounder ports. The effective port area, where there is no recirculation, is increased by smaller or curved ports. Flow asymmetry is more severe with skewed or angled inlet conditions or unequal port sizes. Turbulence levels in the jet are higher with higher casting speed and small ports.

  19. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    PubMed

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.

  20. Numerical study of steady turbulent flow through bifurcated nozzles in continuous casting

    NASA Astrophysics Data System (ADS)

    Najjar, Fady M.; Thomas, Brian G.; Hershey, Donald E.

    1995-08-01

    Bifurcated nozzles are used in continuous casting of molten steel, where they influence the quality of the cast steel slabs. The present study performs two-dimensional (2-D) and three-dimensional (3-D) simulations of steady turbulent (K- ɛ) flow in bifurcated nozzles, using a finite-element (FIDAP) model, which has been verified previously with water model experiments. The effects of nozzle design and casting process operating variables on the jet characteristics exiting the nozzle are investigated. The nozzle design parameters studied include the shape, angle, height, width, and thickness of the ports and the bottom geometry. The process operating practices include inlet velocity profile and angle as well as port curvature caused by erosion or inclusion buildup. Results show that the jet angle is controlled mainly by the port angle but is steeper with larger port area and thinner walls. The degree of swirl is increased by larger or rounder ports. The effective port area, where there is no recirculation, is increased by smaller or curved ports. Flow asymmetry is more severe with skewed or angled inlet conditions or unequal port sizes. Turbulence levels in the jet are higher with higher casting speed and smaller ports.

  1. Site-specific protein modification using immobilized sortase in batch and continuous-flow systems

    PubMed Central

    Witte, Martin D.; Wu, Tongfei; Guimaraes, Carla P.; Theile, Christopher S.; Blom, Annet E.M.; Ingram, Jessica R.; Li, Zeyang; Kundrat, Lenka; Goldberg, Shalom D.; Ploegh, Hidde L.

    2016-01-01

    Transpeptidation catalyzed by sortase A allows the preparation of proteins that are site-specifically and homogeneously modified with a wide variety of functional groups, such as fluorophores, PEG moieties, lipids, glycans, bioorthogonal reactive groups and affinity handles. This protocol describes immobilization of sortase A on a solid support (sepharose beads). Immobilization of sortase A simplifies downstream purification of a protein of interest after labeling of its N- or C- terminus. Small batch and larger scale continuous flow reactions require only a limited amount of enzyme. The immobilized enzyme can be reused for multiple cycles of protein modification reactions. The described protocol also works with a Ca2+-independent variant of sortase A with increased catalytic activity. This heptamutant variant of sortase A (7M) was generated by combining previously published mutations and this immobilized enzyme can used for the modification of calcium-senstive substrates or in instances where low temperatures are needed. Preparation of immobilized sortase A takes 1–2 days. Batch reactions take 3–12 hours and flow reactions proceed at 0.5 mL per hour, depending on the geometry of the reactor used. PMID:25719269

  2. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    PubMed

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species.

  3. A continuous-time, nonlinear observer for estimating structure from motion from omnidirectional optic flow

    NASA Astrophysics Data System (ADS)

    Conroy, Joseph K.

    Various insect species utilize certain types of self-motion to perceive structure in their local environment, a process known as active vision. This dissertation presents the development of a continuous-time formulated observer for estimating structure from motion that emulates the biological phenomenon of active vision. In an attempt to emulate the wide-field of view of compound eyes and neurophysiology of insects, the observer utilizes an omni-directional optic flow field. Exponential stability of the observer is assured provided the persistency of excitation condition is met. Persistency of excitation is assured by altering the direction of motion sufficiently quickly. An equal convergence rate on the entire viewable area can be achieved by executing certain prototypical maneuvers. Practical implementation of the observer is accomplished both in simulation and via an actual flying quadrotor testbed vehicle. Furthermore, this dissertation presents the vehicular implementation of a complimentary navigation methodology known as wide-field integration of the optic flow field. The implementation of the developed insect-inspired navigation methodologies on physical testbed vehicles utilized in this research required the development of many subsystems that comprise a control and navigation suite, including avionics development and state sensing, model development via system identification, feedback controller design, and state estimation strategies. These requisite subsystems and their development are discussed.

  4. A simple toxicity apparatus for continuous flow with small volumes: demonstration with mysids and naphthalene

    SciTech Connect

    Smith, R.L.; Hargreaves, B.R.

    1983-04-01

    To determine the toxicity of naphthalene to the mysid crustacean Neomysis americana a small continuous-flow toxicant exposure system was built using design features of Mariotte bottle chemostats. Chemostats maintain cultures at constant cell concentrations by providing constant nutrient inputs. Such cultures remain well-mixed and have minimal cell contact with the container. The same characteristics are useful for exposing small invertebrates to volatile toxicants. The Mariotte bottles in the exposure system were modified by addition of air inlet restrictors. This modification provided stable flow at low pressure heads. The apparatus provided good water quality and physical environment for 10 mysids per chamber, and a more constant concentration of naphthalene than did static chambers replenished daily. Preliminary 96 h toxicity tests with N. americana were performed at 15/sup 0/C and 25/sup 0/C at concentrations of 900 and 1800 ..mu..g l/sup -1/ naphthalene in artificial seawater, for comparison with similar tests performed under static conditions. (JMT)

  5. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    PubMed

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device. PMID:26995085

  6. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.

    PubMed

    Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan

    2012-05-30

    2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX.

  7. High Flow Nasal Cannula as a Method for Rapid Weaning From Nasal Continuous Positive Airway Pressure

    PubMed Central

    Badiee, Zohreh; Eshghi, Alireza; Mohammadizadeh, Majid

    2015-01-01

    Background: To compare two methods of weaning premature infants from nasal continuous positive airway pressure (NCPAP). Methods: Between March and November 2012, 88 preterm infants who were stable on NCPAP of 5 cmH2O with FIO2 <30% for a minimum of 6 h were randomly allocated to one of two groups. The high flow nasal cannula (HFNC) group received HFNC with flow of 2 L/min and FIO2 = 0.3 and then stepwise reduction of FIO2 and then flow. The non-HFNC group was maintained on NCPAP of 5 cmH2O and gradual reduction of oxygen until they were on FIO2 = 0.21 for 6 h, and we had weaned them directly from NCPAP (with pressure of 5 cmH2O) to room air. Results: No significant differences were found between 2 study groups with regards to gestational age, birth weight, Apgar score at 1 and 5 min after birth, patent ductus arteriosus and use of xanthines. The mean duration of oxygen therapy after randomization was significantly lower in HFNC group compared to non-HFNC group (20.6 ± 16.8 h vs. 49.6 ± 25.3 h, P < 0.001). Also, the mean length of hospital stay was significantly lower in HFNC group compared to non-HFNC group (11.3 ± 7.8 days vs. 14.8 ± 8.6 days, P = 0.04). The rate of successful weaning was not statistically different between two groups. Conclusions: Weaning from NCPAP to HFNC could decrease the duration of oxygen therapy and length of hospitalization in preterm infants. PMID:25949783

  8. Continuous monitoring of a large active earth flow using an integrated GPS - automatic total station approach

    NASA Astrophysics Data System (ADS)

    Corsini, A.

    2009-04-01

    Landslide monitoring has evolved as a crucial tool in civil protection to mitigate and prevent disasters. The research presents an approach to continuous monitoring of a large-scale active earth flow using a system that integrates surface measurements obtained by a GPS and an automatic total station. With the data obtained from the system the landslide can be monitored in near-real-time and surface displacements can be directly utilized to provide early warning of slope movements and to study the behavior of the landslide, e.g. to predict timing and mechanisms of future failure. The Valoria landslide located in the northern Apennines of Italy was reactivated in 2001, 2005 and 2007 damaging roads and endangering houses. A monitoring system was installed in 2007-2008 in the frame of a civil protection plan aimed at risk mitigation. The system consists of an automatic total station measuring about 40 prisms located in the landslide to a maximum distance of 1.800 km; one double-frequency GPS receiver connects in streaming by wireless communication with 4 single-frequency GPS in side the flow. Until December 2007 the monitoring network was operated with periodic static surveying followed by the data post-processing. From September 2007 until March 2008 the landslide deformation was evaluated by periodic surveys with the total station and the GPS system. This first measure showed that the displacements were influenced by the rainfall events and by the snow melting. The total displacements measured vary from centimeter scale in the crown zone, where retrogressive movements were in progress, to over 50 m in the flow track zone. Starting in March 2008 data acquisition by the total station system and GPS were automated in order to allow continuous and near-real-time data processing. The displacement data collected in one and a half year of continuous operation show different acceleration and deceleration phases as a result of the pore water pressure distribution inside the

  9. Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics

    PubMed Central

    Kowalski, William J.; Dur, Onur; Wang, Yajuan; Patrick, Michael J.; Tinney, Joseph P.; Keller, Bradley B.; Pekkan, Kerem

    2013-01-01

    Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a

  10. A stroboscopic technique for using CCD cameras in flow visualization systems for continuous viewing and stop action photography

    NASA Technical Reports Server (NTRS)

    Franke, John M.; Rhodes, David B.; Jones, Stephen B.; Dismond, Harriet R.

    1992-01-01

    A technique for synchronizing a pulse light source to charge coupled device cameras is presented. The technique permits the use of pulse light sources for continuous as well as stop action flow visualization. The technique has eliminated the need to provide separate lighting systems at facilities requiring continuous and stop action viewing or photography.

  11. Effect of weaning on oxygen consumption and cardiovascular function. A comparison of continuous flow and demand valve systems.

    PubMed

    Ip Yam, P C; Appadurai, I R; Kox, W J

    1994-05-01

    This study compared the continuous positive airways pressure mode of the demand valve system of the Engstrom Erica ventilator with a custom-made continuous flow continuous positive airways pressure system in terms of the oxygen cost of breathing during weaning from mechanical ventilation. Ten consecutive patients in our intensive care unit, with thermodilution pulmonary artery flotation catheters in situ, were studied. Measurements were carried out under steady-state conditions, initially when breathing spontaneously with continuous positive airways pressure via the Erica and then when transition to the continuous flow system was achieved. There were no significant differences between the two methods of providing continuous positive airways pressure in terms of the measured and derived physiological variables studied, with the exception of oxygen consumption. Oxygen consumption with the continuous flow system was significantly less than with the Erica (142.8 (SEM 31.4) ml.min-1.m-2 compared with 165.8 (SEM 30.5) ml.min-1.m-2, p < 0.05). This difference reflects the reduced oxygen cost of breathing when the custom-made continuous flow system was used during weaning.

  12. Mechanical Circulatory Support for the Failing Heart: Continuous-Flow Left Ventricular Assist Devices

    PubMed Central

    Englert, Joseph A. R.; Davis, Jennifer A.; Krim, Selim R.

    2016-01-01

    Background: Heart transplantation remains the definitive therapy for patients with advanced heart failure; however, owing to limited donor organ availability and long wait times, continuous-flow left ventricular assist devices (LVADs) have become standard therapy. Methods: This review summarizes the history, progression, function, and basic management of LVADs. Additionally, we provide some clinical pearls and important caveats for managing this unique patient population. Results: Currently, the most common LVADs being implanted in the United States are second- and third-generation devices, the HeartMate II (Thoratec Corp., St. Jude Medical) and the HeartWare HVAD (HeartWare International, Inc.). A newer third-generation pump, the HeartMate III (Thoratec Corp., St. Jude Medical), is designed to create an artificial pulse and is currently under investigation in the United States. Conclusion: LVAD use is promising, will continue to grow, and has become standard therapy for advanced heart failure as a bridge to recovery, as destination therapy, and as a bridge to transplantation. PMID:27660575

  13. Mechanical Circulatory Support for the Failing Heart: Continuous-Flow Left Ventricular Assist Devices

    PubMed Central

    Englert, Joseph A. R.; Davis, Jennifer A.; Krim, Selim R.

    2016-01-01

    Background: Heart transplantation remains the definitive therapy for patients with advanced heart failure; however, owing to limited donor organ availability and long wait times, continuous-flow left ventricular assist devices (LVADs) have become standard therapy. Methods: This review summarizes the history, progression, function, and basic management of LVADs. Additionally, we provide some clinical pearls and important caveats for managing this unique patient population. Results: Currently, the most common LVADs being implanted in the United States are second- and third-generation devices, the HeartMate II (Thoratec Corp., St. Jude Medical) and the HeartWare HVAD (HeartWare International, Inc.). A newer third-generation pump, the HeartMate III (Thoratec Corp., St. Jude Medical), is designed to create an artificial pulse and is currently under investigation in the United States. Conclusion: LVAD use is promising, will continue to grow, and has become standard therapy for advanced heart failure as a bridge to recovery, as destination therapy, and as a bridge to transplantation.

  14. Continuous-flow wood chip reactor for biodegradation of 2,4-DCP

    SciTech Connect

    Yum, K.J.; Peirce, J.J.

    1998-02-01

    Chlorinated phenols are by-products of chlorine bleaching in numerous industries including pulp and paper mills and can be emitted from a variety of incineration processes. This research investigates the ability and efficiency of continuous-flow wood chip reactors seeded with a white-rot fungus to degrade 2,4-dichlorophenol (2,4-DCP) using wood chips as a carbon source. When 2,4-DCP was the only substrate (nonglucose treatment conditions), the wood chip reactor system had a high degradation efficiency and operated continuously without excessive fungal biomass buildup on the wood chips. In the presence of added glucose, a clogging problem and an effluent contamination problem of fungal cells are found during the reactor operating period. In addition, 2,4-DCP is degraded effectively both under low-nitrogen as well as high-nitrogen treatment conditions. The 2,4-DCP is degraded to a greater extent with small-size wood chips and hardwood chips as a carbon source. The results of this research demonstrate a potential application of wood chip reactor systems for the treatment of contaminated water while expanding the use of wasted forest products.

  15. Design and testing of a unique randomized gravity, continuous flow bioreactor

    NASA Technical Reports Server (NTRS)

    Lassiter, Carroll B.

    1993-01-01

    high concentrations of oxygen into the culture medium. The system described allows for continuous, on line sampling for production of product without disturbing fluid and particle dynamics in the reaction chamber. It provides for the introduction of substrate, or control substances after cell adaptation to simulated microgravity has been accomplished. The reactor system provides for the nondisruptive, continuous flow replacement of nutrient and removal of product. On line monitoring and control of growth conditions such as pH and nutrient status are provided. A rotating distribution valve allows cessation of growth chamber rotation, thereby preserving the simulated microgravity conditions over longer periods of time.

  16. Total Aortic Arch Replacement: Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses

    PubMed Central

    Schmack, Bastian; Korkmaz, Sevil; Li, Shiliang; Chaimow, Nicole; Pätzold, Ines; Becher, Peter Moritz; Hartyánszky, István; Soós, Pál; Merkely, Gergő; Németh, Balázs Tamás; Istók, Roland; Veres, Gábor; Merkely, Béla; Terytze, Konstantin; Karck, Matthias; Szabó, Gábor

    2014-01-01

    Background To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. Methods After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. Results While Ees did not differ between the groups and over time (4.1±1.19 vs. 4.58±1.39 mmHg/mL and 3.21±0.97 vs. 3.96±1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01±0.67 vs. 6.18±0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03±0.35 vs. 5.99±1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5±50.9 vs. 3.9±23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6±8.3dyn·sec·cm−5 vs. 32.4±2.0dyn·sec·cm−5, P<0.05). Conclusions Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance

  17. Characterization of extended channel bioreactors for continuous-flow protein production

    SciTech Connect

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-10-02

    reactions continuously and in line with downstream purification modules. Here, the authors demonstrate the capability to produce protein over time with continuous-flow reactions and examine basic design features and operation specifications fundamental to continuous microfluidic protein synthesis.

  18. Characterization of extended channel bioreactors for continuous-flow protein production

    DOE PAGESBeta

    Timm, Andrea C.; Shankles, Peter G.; Foster, Carmen M.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-10-02

    these reactions continuously and in line with downstream purification modules. Here, the authors demonstrate the capability to produce protein over time with continuous-flow reactions and examine basic design features and operation specifications fundamental to continuous microfluidic protein synthesis.« less

  19. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Kuhn, Reinhard; Wagner, Horst; Mosher, Richard A.; Thormann, Wolfgang

    1987-01-01

    Isoelectric focusing in the continuous flow mode can be more quickly and economically performed by admitting a stepwise pH gradient composed of simple buffers instead of uniform mixtures of synthetic carrier ampholytes. The time-consuming formation of the pH gradient by the electric field is thereby omitted. The stability of a three-step system with arginine - morpholinoethanesulfonic acid/glycylglycine - aspartic acid is analyzed theoretically by one-dimensional computer simulation as well as experimentally at various flow rates in a continuous flow apparatus. Excellent agreement between experimental and theoretical data was obtained. This metastable configuration was found to be suitable for focusing of proteins under continuous flow conditions. The influence of various combinations of electrolytes and membranes between electrophoresis chamber and electrode compartments is also discussed.

  20. Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root.

    PubMed

    Van Doormaal, Mark A; Kazakidi, Asimina; Wylezinska, Marzena; Hunt, Anthony; Tremoleda, Jordi L; Protti, Andrea; Bohraus, Yvette; Gsell, Willy; Weinberg, Peter D; Ethier, C Ross

    2012-11-01

    Mice are widely used to investigate atherogenesis, which is known to be influenced by stresses related to blood flow. However, numerical characterization of the haemodynamic environment in the commonly studied aortic arch has hitherto been based on idealizations of inflow into the aorta. Our purpose in this work was to numerically characterize the haemodynamic environment in the mouse aortic arch using measured inflow velocities, and to relate the resulting shear stress patterns to known locations of high- and low-lesion prevalence. Blood flow velocities were measured in the aortic root of C57/BL6 mice using phase-contrast MRI. Arterial geometries were obtained by micro-CT of corrosion casts. These data were used to compute blood flow and wall shear stress (WSS) patterns in the arch. WSS profiles computed using realistic and idealized aortic root velocities differed significantly. An unexpected finding was that average WSS in the high-lesion-probability region on the inner wall was actually higher than the WSS in the low-probability region on the outer wall. Future studies of mouse aortic arch haemodynamics should avoid the use of idealized inflow velocity profiles. Lesion formation does not seem to uniquely associate with low or oscillating WSS in this segment, suggesting that other factors may also play a role in lesion localization. PMID:22764131