Sample records for continuous aortic flow

  1. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    PubMed

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Durability of central aortic valve closure in patients with continuous flow left ventricular assist devices.

    PubMed

    McKellar, Stephen H; Deo, Salil; Daly, Richard C; Durham, Lucian A; Joyce, Lyle D; Stulak, John M; Park, Soon J

    2014-01-01

    A competent aortic valve is essential to providing effective left ventricular assist device support. We have adopted a practice of central aortic valve closure by placing a simple coaptation stitch at left ventricular assist device implantation in patients with significant aortic insufficiency. We conducted a follow-up study to evaluate the efficacy and durability of this procedure. The study included patients who had undergone continuous flow left ventricular assist device implantation. The patients were divided into 2 groups, those who did not require any aortic procedure because the valve was competent and those who underwent central aortic valve closure for mild or greater aortic regurgitation. The clinical endpoints were mortality, progression or recurrence of aortic insufficiency, and reoperation for aortic valve pathologic features. Aortic insufficiency was measured qualitatively from mild to severe on a scale of 0 to 5. A total of 123 patients received continuous flow left ventricular assist devices from February 2007 to August 2011. Of those, 18 (15%) underwent central aortic valve closure at left ventricular assist device implantation because of significant aortic insufficiency (1.8 ± 1.4) and 105 who did not (competent aortic valve, 0.15 ± 0.43; P < .01). At follow-up (median, 312 days; range, 0-1429 days), the mean aortic insufficiency score remained low for the patients with central aortic valve closure (0.27 ± 0.46) in contrast to those without central aortic valve closure who experienced aortic insufficiency progression (0.78 ± 0.89; P = .02). In addition, the proportion of patients with more than mild aortic insufficiency was significantly less in the central aortic valve closure group (0% vs 18%; P = .05). The patients in the central aortic valve closure group were significantly older and had a greater incidence of renal failure at baseline. The 30-day mortality was greater in the central aortic valve closure group, but the late survival

  3. Effect of Outflow Graft Size on Flow in the Aortic Arch and Cerebral Blood Flow in Continuous Flow Pumps: Possible Relevance to Strokes.

    PubMed

    Bhat, Sindhoor; Mathew, Jayakala; Balakrishnan, Komrakshi R; Krishna Kumar, Ramarathnam

    One of the most devastating complications of continuous flow left ventricular devices (CFLVADS) is stroke, with a higher incidence in HeartWare Ventricular Assist Device (HVAD) as compared with HEARTMATE II. The reason for the observed difference in stroke rates is unclear. Because outflow graft diameters are different, we hypothesized that this could contribute to the difference in stroke rates. A computational fluid-structure interaction model was created from the computed tomography (CT) scan of a patient. Pressures were used as the boundary condition and the flow through the cerebral vessels was derived as outputs. Flow into the innominate artery was very sensitive to the anastomosis angle for a 10 mm as compared with a 14 mm graft, with the net innominate flow severely compromised with a 10 mm graft at 45° angle. Aortic insufficiency seems to affect cerebral blood flow nonlinearly with an 80% decrease at certain angles of outflow graft anastomosis. Arterial return in to the arch through a narrow graft has important jet effects and results in significant flow perturbations in the aortic arch and cerebral vessels and stasis. A 10 mm graft is more sensitive to angle of insertion than a 14 mm graft. Under some conditions, serious hypoperfusion of the innominate artery is possible. Aortic incompetence results in significant decrease of cerebral blood flow. No stasis was found in the pulsatile flow compared with LVAD flow.

  4. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association

  5. Association between flow skewness and aortic dilatation in patients with aortic stenosis.

    PubMed

    Ha, Hojin; Koo, Hyun Jung; Lee, June Goo; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kang, Joon Won; Lim, Tae Hwan; Kim, Dae Hee; Song, Jong Min; Kang, Duk Hyun; Song, Jae Kwan; Kim, Young Hak; Kim, Namkug; Yang, Dong Hyun

    2017-12-01

    We investigated association between hemodynamic characteristics and aortic dilatation in patients with severe aortic stenosis (AS). Eighty patients with severe AS (mean age, 67.2 ± 12.5 years) who underwent multi-detector computed tomography and phase-contrast magnetic resonance imaging at the ascending aorta were retrospectively analyzed. Patients with an ascending aorta diameter >4 cm had a significantly higher forward flow rate at systole (28.5 ± 6.0 vs. 36.2 ± 8.6 L min, P < 0.001), and retrograde flow rate at systole (11.3 ± 4.2 vs. 18.8 ± 5.8 L min, P < 0.001), fractional reverse ratio (a ratio of retrograde flow rate to forward flow rate; 34.1 ± 11.9% vs. 43.5 ± 18.0%, P = 0.014), flow skewness R skewness (a ratio of sum of forward and retrograde systole flow to net systole flow rate; 2.4 ± 0.7 vs. 3.2 ± 1.0, P < 0.001). The presence of bicuspid aortic valve (BAV; odds ratio [OR] 72.01, 95% confidence interval [CI] 10.57-490.46, P < 0.001), Left ventricular mass index (LVMI; OR 1.02 /g/m 2 ; CI 1.00-1.04, P = 0.043) and R skewness (OR 5.6 per 1, 95% CI 1.8-17.1, P = 0.001) were associated with aortic dilatation. BAV, LVMI, and increased R skewness in the ascending aorta are associated with aortic dilatation in patients with AS.

  6. Aortic Valve Stenosis Increases Helical Flow and Flow Complexity: A Study of Intra-Operative Cardiac Vector Flow Imaging.

    PubMed

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper; Jensen, Maiken Brit; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2017-08-01

    Aortic valve stenosis alters blood flow in the ascending aorta. Using intra-operative vector flow imaging on the ascending aorta, secondary helical flow during peak systole and diastole, as well as flow complexity of primary flow during systole, were investigated in patients with normal, stenotic and replaced aortic valves. Peak systolic helical flow, diastolic helical flow and flow complexity during systole differed between the groups (p < 0.0001), and correlated to peak systolic velocity (R = 0.94, 0.87 and 0.88, respectively). The study indicates that aortic valve stenosis increases helical flow and flow complexity, which are measurable with vector flow imaging. For assessment of aortic stenosis and optimization of valve surgery, vector flow imaging may be useful. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Correlation between systolic transvalvular flow and proximal aortic wall changes in bicuspid aortic valve stenosis.

    PubMed

    Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Scholle, Thorsten; Fey, Beatrix; Theis, Bernhard; Petersen, Iver; Borger, Michael A; Kuntze, Thomas

    2014-08-01

    The purpose of this study was to analyse the correlation between preoperative systolic transvalvular flow patterns and proximal aortic wall lesions in patients undergoing surgery for bicuspid aortic valve (BAV) stenosis. A total of 48 consecutive patients with BAV stenosis (mean age 58 ± 9 years, 65% male) underwent aortic valve replacement (AVR) ± proximal aortic surgery from January 2012 through February 2013. Preoperative cardiac phase-contrast cine magnetic resonance imaging (MRI) assessment was performed in all patients in order to detect the area of maximal flow-induced stress in the proximal aorta. Based on these MRI data, two aortic wall samples (i.e. area of the maximal stress (jet sample) and the opposite aortic wall (control sample)) were collected during AVR surgery. Aortic wall changes were graded based on a summation of seven histological criteria (each scored from 0 to 3). Histological sum score (0-21) was separately calculated and compared between the two aortic samples (i.e. jet sample vs control sample). An eccentric transvalvular flow jet hitting the proximal aortic wall could be identified in all 48 (100%) patients. The mean histological sum score was significantly higher in the jet sample vs control sample areas of the aorta (i.e. 4.1 ± 1.8 vs 2.2 ± 1.5, respectively) (P = 0.02). None of the patients had a higher sum score value in the control sample. Our study demonstrates a strong correlation between the systolic pattern of the transvalvular flow jet and asymmetric proximal aortic wall changes in patients undergoing AVR for BAV stenosis. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  8. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  9. Proximal thoracic aorta dimensions after continuous-flow left ventricular assist device implantation: Longitudinal changes and relation to aortic valve insufficiency.

    PubMed

    Fine, Nowell M; Park, Soon J; Stulak, John M; Topilsky, Yan; Daly, Richard C; Joyce, Lyle D; Pereira, Naveen L; Schirger, John A; Edwards, Brooks S; Lin, Grace; Kushwaha, Sudhir S

    2016-04-01

    In this study we examined the impact of continuous-flow left ventricular assist device (CF-LVAD) support on proximal thoracic aorta dimensions. Aortic root and ascending aorta diameter were measured from serial echocardiograms before and after CF-LVAD implantation in patients with ≥6 months of support, and correlated with the development of >mild aortic valve insufficiency (AI). Of 162 patients included, mean age was 58 ± 11 years and 128 (79%) were male. Seventy-nine (63%) were destination therapy patients. Mean aortic root and ascending aorta diameters at baseline, 1 month, 6 months, 12 months and long-term follow-up (mean 2.0 ± 1.4 years) were 3.5 ± 0.4, 3.5 ± 0.3, 3.9 ± 0.3, 3.9 ± 0.2 and 4.0 ± 0.3, and 3.3 ± 0.2, 3.3 ± 0.3, 3.6 ± 0.2, 3.6 ± 0.3 and 3.6 ± 0.3 cm, respectively. Only change in aortic root diameter from 1-month to 6-month follow-up reached statistical significance (p = 0.03). Nine (6%) patients had accelerated proximal thoracic aorta expansion (>0.5 cm/year), occurring predominantly in the first 6 months after implantation. These patients were older and more likely to have hypertension and baseline proximal thoracic aorta dilation. Forty-five (28%) patients developed >mild AI at long-term follow-up, including 7 of 9 (78%) of those with accelerated proximal thoracic aorta expansion. All 7 had aortic valves that remained closed throughout the cardiac cycle, and this, along with duration of CF-LVAD support and increase in aortic root diameter, were significantly associated with developing >mild AI. CF-LVAD patients have small increases in proximal thoracic aorta dimensions that predominantly occur within the first 6 months after implantation and then stabilize. Increasing aortic root diameter was associated with AI development. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  10. [Non-invasive estimation of aortic flow by local electrical impedance changes].

    PubMed

    Okuda, N; Ohashi, N; Yamada, M; Fujinami, T

    1986-09-01

    Aortic flow velocity was measured by catheter-tip flow transducer in 25 patients who underwent left cardiac catheterization for non-invasive estimates by the impedance method. Disk electrodes were attached to the skin at the levels of the second thoracic vertebra in the posterior median line and the V8 lead position for electrocardiography. Alternating current, 350 micro-amperes, 50 KHz constant, was applied to the outer electrode, and impedance changes were detected via the inner electrode. The e wave, or height of the first derivative dz/dt wave of the electrical impedance was lower in cases of old myocardial infarction and higher in cases of aortic valve regurgitation, as compared with the values of the healthy control group. The time lag between the start of the upward deflection and the peak value of the dz/dt wave coincided with that of the aortic flow curve as measured at the aortic arch and descending aorta. These time lags were about 20 to 30 msec as compared with the ascending aortic flow curve, and were -20 to -30 msec as compared with the abdominal aortic flow curve. There was a close correlation between the maximum flow velocity measured at the aortic arch and the height of the e waves. The regression equation was: Y = 0.21X - 1.53, r = 0.88, p less than 0.01. These data suggest that the first derivative of electrical impedance change as obtained by the disk electrode method reflects aortic flow at the arch and descending aorta.

  11. Flow Behavior in the Left Heart Ventricle Following Apico-Aortic Bypass Surgery

    NASA Astrophysics Data System (ADS)

    Shahriari, Shahrokh; Jeyhani, Morteza; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Apico-aortic bypass (AAB) surgery is an alternative for transcatheter aortic valve implantation (TAVI) to reduce left ventricle (LV) overload in patients with severe aortic stenosis (AS). It consists in connecting the apex of the LV to the descending thoracic aorta with a valved conduit. Postoperative flow assessments show that two thirds of the outflow is conducted from the LV apex to the conduit, while only one third crosses the native aortic valve. In this study, we performed high speed particle image velocimetry (PIV) measurements of flow pattern within an in vitro elastic model of LV in the presence of a very severe AS, before and after AAB. Results indicate that AAB effectively relieves the LV outflow obstruction; however, it also leads to abnormal ventricular flow patterns. Normal LV flow dynamics is characterized by an emerging mitral jet flow followed by the development of a vortical flow with velocities directed towards the aortic valve, while measurements in the presence of AAB show systolic flow bifurcating to the apical conduit and to the aortic valve outflow tract. This study provides the first insight into the LV flow structure after AAB including outflow jets and disturbed stagnation regions.

  12. Comparison of valvular resistance, stroke work loss, and Gorlin valve area for quantification of aortic stenosis. An in vitro study in a pulsatile aortic flow model.

    PubMed

    Voelker, W; Reul, H; Nienhaus, G; Stelzer, T; Schmitz, B; Steegers, A; Karsch, K R

    1995-02-15

    Valvular resistance and stroke work loss have been proposed as alternative measures of stenotic valvular lesions that may be less flow dependent and, thus, superior over valve area calculations for the quantification of aortic stenosis. The present in vitro study was designed to compare the impacts of valvular resistance, stroke work loss, and Gorlin valve area as hemodynamic indexes of aortic stenosis. In a pulsatile aortic flow model, rigid stenotic orifices in varying sizes (0.5, 1.0, 1.5 and 2.0 cm2) and geometry were studied under different hemodynamic conditions. Ventricular and aortic pressures were measured to determine the mean systolic ventricular pressure (LVSPm) and the transstenotic pressure gradient (delta Pm). Transvalvular flow (Fm) was assessed with an electromagnetic flowmeter. Valvular resistance [VR = 1333.(delta Pm/Fm)] and stroke work loss [SWL = 100.(delta Pm/LVSPm)] were calculated and compared with aortic valve area [AVA = Fm/(50 square root of delta Pm)]. The measurements were performed for a large range of transvalvular flows. At low-flow states, flow augmentation (100-->200 mL/s) increased calculated valvular resistance between 21% (2.0 cm2 orifice) and 66% (0.5-cm2 orifice). Stroke work loss demonstrated an increase from 43% (2.0 cm2) to 100% (1.0 cm2). In contrast, Gorlin valve area revealed only a moderate change from 29% (2.0 cm2) to 5% (0.5 cm2). At physiological flow rates, increase in transvalvular flow (200-->300 mL/s) did not alter calculated Gorlin valve area, whereas valvular resistance and stroke work loss demonstrated a continuing increase. Our experimental results were adopted to interpret the results of three clinical studies in aortic stenosis. The flow-dependent increase of Gorlin valve area, which was found in the cited clinical studies, can be elucidated as true further opening of the stenotic valve but not as a calculation error due to the Gorlin formula. Within the physiological range of flow, calculated aortic valve

  13. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling.

    PubMed

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-03-01

    Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. The aim of this study was to describe blood flow patterns in the ascending aorta of patients with AS and determine their association with remodeling. Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age, 63±13 years) and 37 healthy controls (age, 60±10 years) underwent 4-dimensional-flow magnetic resonance imaging. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index and the ratio of LV mass:end-diastolic volume (relative wall mass). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and patients with AS exhibited an asymmetrical and elevated distribution of peak systolic wall shear stress. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (P=0.0274), eccentricity (P=0.0070), and flow displacement (P=0.0021). Bicuspid aortic valve was associated with more intense helical (P=0.0098) and vortical flow formation (P=0.0536), higher flow displacement (P=0.11), and higher peak systolic wall shear stress (P=0.0926). LV mass index and relative wall mass were significantly associated with aortic orifice area (P=0.0611, P=0.0058) and flow displacement (P=0.0058, P=0.0283). In this pilot study, AS leads to abnormal blood flow pattern and peak systolic wall shear stress in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. © 2016 American Heart Association, Inc.

  14. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    PubMed Central

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  15. Aortic valve replacement using continuous suture technique in patients with aortic valve disease.

    PubMed

    Choi, Jong Bum; Kim, Jong Hun; Park, Hyun Kyu; Kim, Kyung Hwa; Kim, Min Ho; Kuh, Ja Hong; Jo, Jung Ku

    2013-08-01

    The continuous suture (CS) technique has several advantages as a method for simple, fast, and secure aortic valve replacement (AVR). We used a simple CS technique without the use of a pledget for AVR and evaluated the surgical outcomes. Between October 2007 and 2012, 123 patients with aortic valve disease underwent AVR alone (n=28) or with other concomitant cardiac procedures (n=95), such as mitral, tricuspid, or aortic surgery. The patients were divided into two groups: the interrupted suture (IS) group (n=47), in which the conventional IS technique was used, and the CS group (n=76), in which the simple CS technique was used. There were two hospital deaths (1.6%), which were not related to the suture technique. There were no significant differences in cardiopulmonary bypass time or aortic cross-clamp time between the two groups for AVR alone or AVR with concomitant cardiac procedures. In the IS group, two patients had prosthetic endocarditis and one patient experienced significant perivalvular leak. These patients underwent reoperations. In the CS group, there were no complications related to the surgery. Postoperatively, the two groups had similar aortic valve gradients. The simple CS method is useful and secure for AVR in patients with aortic valve disease, and it may minimize surgical complications, as neither pledgets nor braided sutures are used.

  16. Viscous Energy Loss in the Presence of Abnormal Aortic Flow

    PubMed Central

    Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R. O.; Carr, J.; Collins, J.; Malaisrie, C.; Markl, M.

    2014-01-01

    Purpose To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses, and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Methods 4D flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n=12, age=37±10), patients with aortic dilation (n=16, age=52±8), and patients with aortic valve stenosis matched for age and aortic size (n=14, age=46±15), using a relationship between the 3D velocity field and viscous energy dissipation. Results Viscous energy loss was significantly elevated in the thoracic aorta for patients with dilated aorta (3.6±1.3 mW, p=0.024) and patients with aortic stenosis (14.3±8.2 mW, p<0.001) compared to healthy volunteers (2.3±0.9 mW). The same pattern of significant differences were seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2±1.1 mW, p=0.021) and patients with aortic stenosis (10.9±6.8 mW, p<0.001) were elevated compared to healthy volunteers (1.2±0.6 mW). Conclusion This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. PMID:24122967

  17. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease.

    PubMed

    Rodríguez-Palomares, José Fernando; Dux-Santoy, Lydia; Guala, Andrea; Kale, Raquel; Maldonado, Giuliana; Teixidó-Turà, Gisela; Galian, Laura; Huguet, Marina; Valente, Filipa; Gutiérrez, Laura; González-Alujas, Teresa; Johnson, Kevin M; Wieben, Oliver; García-Dorado, David; Evangelista, Arturo

    2018-04-26

    In patients with bicuspid valve (BAV), ascending aorta (AAo) dilatation may be caused by altered flow patterns and wall shear stress (WSS). These differences may explain different aortic dilatation morphotypes. Using 4D-flow cardiovascular magnetic resonance (CMR), we aimed to analyze differences in flow patterns and regional axial and circumferential WSS maps between BAV phenotypes and their correlation with ascending aorta dilatation morphotype. One hundred and one BAV patients (aortic diameter ≤ 45 mm, no severe valvular disease) and 20 healthy subjects were studied by 4D-flow CMR. Peak velocity, flow jet angle, flow displacement, in-plane rotational flow (IRF) and systolic flow reversal ratio (SFRR) were assessed at different levels of the AAo. Peak-systolic axial and circumferential regional WSS maps were also estimated. Unadjusted and multivariable adjusted linear regression analyses were used to identify independent correlates of aortic root or ascending dilatation. Age, sex, valve morphotype, body surface area, flow derived variables and WSS components were included in the multivariable models. The AAo was non-dilated in 24 BAV patients and dilated in 77 (root morphotype in 11 and ascending in 66). BAV phenotype was right-left (RL-) in 78 patients and right-non-coronary (RN-) in 23. Both BAV phenotypes presented different outflow jet direction and velocity profiles that matched the location of maximum systolic axial WSS. RL-BAV velocity profiles and maximum axial WSS were homogeneously distributed right-anteriorly, however, RN-BAV showed higher variable profiles with a main proximal-posterior distribution shifting anteriorly at mid-distal AAo. Compared to controls, BAV patients presented similar WSS magnitude at proximal, mid and distal AAo (p = 0.764, 0.516 and 0.053, respectively) but lower axial and higher circumferential WSS components (p < 0.001 for both, at all aortic levels). Among BAV patients, RN-BAV presented higher IRF at all

  18. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement.

    PubMed

    Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2016-03-01

    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow.

  19. Modification of Aortic Cannula With an Inlet Chamber to Induce Spiral Flow and Improve Outlet Flow.

    PubMed

    Darlis, Nofrizalidris; Osman, Kahar; Padzillah, Muhamad Hasbullah; Dillon, Jeswant; Md Khudzari, Ahmad Zahran

    2018-05-01

    Physiologically, blood ejected from the left ventricle in systole exhibited spiral flow characteristics. This spiral flow has been proven to have several advantages such as lateral reduction of directed forces and thrombus formation, while it also appears to be clinically beneficial in suppressing neurological complications. In order to deliver spiral flow characteristics during cardiopulmonary bypass operation, several modifications have been made on an aortic cannula either at the internal or at the outflow tip; these modifications have proven to yield better hemodynamic performances compared to standard cannula. However, there is no modification done at the inlet part of the aortic cannula for inducing spiral flow so far. This study was carried out by attaching a spiral inducer at the inlet of an aortic cannula. Then, the hemodynamic performances of the new cannula were compared with the standard straight tip end-hole cannula. This is achieved by modeling the cannula and attaching the cannula at a patient-specific aorta model. Numerical approach was utilized to evaluate the hemodynamic performance, and a water jet impact experiment was used to demonstrate the jet force generated by the cannula. The new spiral flow aortic cannula has shown some improvements by reducing approximately 21% of impinging velocity near to the aortic wall, and more than 58% reduction on total force generated as compared to standard cannula. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Postoperative Reverse Remodeling and Symptomatic Improvement in Normal-Flow Low-Gradient Aortic Stenosis After Aortic Valve Replacement.

    PubMed

    Carter-Storch, Rasmus; Møller, Jacob E; Christensen, Nicolaj L; Irmukhadenov, Akhmadjon; Rasmussen, Lars M; Pecini, Redi; Øvrehus, Kristian A; Søndergård, Eva V; Marcussen, Niels; Dahl, Jordi S

    2017-12-01

    Severe aortic stenosis (AS) most often presents with reduced aortic valve area (<1 cm 2 ), normal stroke volume index (≥35 mL/m 2 ), and either high mean gradient (≥40 mm Hg; normal-flow high-gradient AS) or low mean gradient (normal-flow low-gradient [NFLG] AS). The benefit of aortic valve replacement (AVR) among NFLG patients is controversial. We compared the impact of NFLG condition on preoperative left ventricular (LV) remodeling and myocardial fibrosis and postoperative remodeling and symptomatic benefit. Eighty-seven consecutive patients with reduced aortic valve area and normal stroke volume index undergoing AVR underwent echocardiography, magnetic resonance imaging, a 6-minute walk test, and measurement of natriuretic peptides before and 1 year after AVR. Myocardial fibrosis was assessed from magnetic resonance imaging. Patients were stratified as NFLG or normal-flow high-gradient. In total, 33 patients (38%) had NFLG. Before AVR, they were characterized by similar symptom burden but less severe AS measured by aortic valve area index (0.50±0.09 versus 0.40±0.08 cm 2 /m 2 ; P <0.0001), lower LV mass index (74±18 versus 90±26 g/m 2 ; P =0.01), but the same degree of myocardial fibrosis. After AVR, NFLG had a smaller reduction in LV mass index (-3±10 versus -±18 g/m 2 ; P <0.0001) and a smaller reduction in natriuretic peptides. Both groups experienced similar symptomatic improvement. Normal-flow high-gradient condition independently predicted change in LV mass index. Patients with NFLG had less severe AS and LV remodeling than patients with normal-flow high-gradient. Furthermore, NFLG patients experienced less reverse remodeling but the same symptomatic benefit. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02316587. © 2017 American Heart Association, Inc.

  1. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass.

    PubMed

    Gramigna, V; Caruso, M V; Rossi, M; Serraino, G F; Renzulli, A; Fragomeni, G

    2015-01-01

    In the modern era, stroke remains a main cause of morbidity after cardiac surgery despite continuing improvements in the cardiopulmonary bypass (CPB) techniques. The aim of the current work was to numerically investigate the blood flow in aorta and epiaortic vessels during standard and pulsed CPB, obtained with the intra-aortic balloon pump (IABP). A multi-scale model, realized coupling a 3D computational fluid dynamics study with a 0D model, was developed and validated with in vivo data. The presence of IABP improved the flow pattern directed towards the epiaortic vessels with a mean flow increase of 6.3% and reduced flow vorticity.

  2. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    PubMed

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  3. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruihang; Zhang, Yan

    2017-11-01

    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  4. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  5. Phasic changes in human right coronary blood flow before and after repair of aortic insufficiency.

    PubMed

    Folts, J D; Rowe, G G; Kahn, D R; Young, W P

    1979-02-01

    We have shown previously that acute aortic insufficiency in chronically instrumented dogs reverses the normally high ratio of diastolic to systolic coronary blood flow. Phasic blood flow in the dominant right coronary artery was measured directly with an electromagnetic flow meter during surgery in eight patients with severe aortic insufficiency before and after relacement of the aortic valve. Before the insufficiency was eliminated, right coronary flow average 116 +/- 37 ml./minute and the diastolic to systolic flow ratio was 0.88 +/- 17. Mean arterial blood pressure averaged 106 +/- 17 mm. Hg, heart rate 84 +/- 19 beats/minute, and mean diastolic pressure averaged 67 +/- 10 mm. Hg. After the aortic valve was replaced with an average heart rate of 90 +/- 15 and mean blood pressure of 103 +/- 13 mm. Hg, the average right coronary blood flow increased to 180 +/- 40 ml./minute with a D/S ratio of 2.18 +/- 0.8. In all cases the right coronary blood flow increased after the aortic insufficiency was eliminated surgically. Right coronary flow probably increased because of the improved diastolic perfusion pressure and the change from predominantly systolic to diastolic coronary flow.

  6. Effect of the positioning of a balloon valve in the aorta on coronary flow during aortic regurgitation.

    PubMed

    Antonatos, P G; Anthopoulos, L P; Kandyla, D D; Karras, A D; Moulopoulos, S D

    1984-07-01

    The coronary artery flow changes relative to the function of a catheter-mounted balloon valve used for relief of aortic regurgitation were studied in 10 mongrel dogs. Acute aortic regurgitation was produced by severing the aortic cusps with a long needle. Coronary flow was recorded from the left anterior descending coronary artery through an electromagnetic flowmeter. When the balloon was functioning within the cavity of the left ventricle there were no significant changes in the coronary flow and aortic pressure, except for a slight decrease in the aortic end-diastolic pressure. When it was functioning in the aortic ring the coronary flow increased 6.52 +/- 1.65 ml/min/100 gm of myocardium (p less than 0.001) and became predominantly diastolic. When it was functioning in the ascending aorta the coronary flow decreased 6.22 +/- 1.16 ml/min/100 gm of myocardium (p less than 0.001) and remained predominantly systolic. Finally, when the balloon was functioning in the thoracic aorta the coronary flow did not change significantly. With the balloon functioning in the aortic ring, ascending aorta, or thoracic aorta, there was a significant increase in the aortic end-diastolic pressure and decrease in the pulse pressure distal to the location of the balloon. It is concluded that the location of the balloon valve inserted for relief of aortic regurgitation influences the effect on coronary arterial flow.

  7. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed

    Wang, Hung-Hsuan; Chiu, Hsin-Hui; Tseng, Wen-Yih Isaac; Peng, Hsu-Hsia

    2016-08-01

    To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Four-dimensional flow MRI was performed in 20 MFS patients and 12 age-matched normal subjects with a 3T system. The cross-sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial , WSScirc ), oscillatory shear index (OSIaxial , OSIcirc ), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05-0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R(2)  = 0.50-0.72) in MFS patients. The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow-up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500-508. © 2016 Wiley Periodicals, Inc.

  8. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed Central

    Wang, Hung‐Hsuan; Chiu, Hsin‐Hui; Tseng, Wen‐Yih Isaac

    2016-01-01

    Purpose To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Materials and Methods Four‐dimensional flow MRI was performed in 20 MFS patients and 12 age‐matched normal subjects with a 3T system. The cross‐sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial, WSScirc), oscillatory shear index (OSIaxial, OSIcirc), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Results Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05–0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R2 = 0.50–0.72) in MFS patients. Conclusion The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow‐up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500–508. PMID:26854646

  9. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  10. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept

    PubMed Central

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi

    2015-01-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  11. Correlation of echo-Doppler aortic valve regurgitation index with angiographic aortic regurgitation severity.

    PubMed

    Chen, Ming; Luo, Huai; Miyamoto, Takashi; Atar, Shaul; Kobal, Sergio; Rahban, Masoud; Brasch, Andrea V; Makkar, Rajendra; Neuman, Yoram; Naqvi, Tasneem Z; Tolstrup, Kirsten; Siegel, Robert J

    2003-09-01

    We assessed aortic regurgitation (AR) severity by utilizing multiple echo-Doppler variables in comparison with AR severity by aortic root angiography. Patients were divided into 3 groups: mild, moderate, and severe. An AR index (ARI) was developed, comprising 5 echocardiographic parameters: ratio of color AR jet height to left ventricular outlet flow diameter, AR signal density from continuous-wave Doppler, pressure half-time, left ventricular end-diastolic diameter, and aortic root diameter. There was a strong correlation between AR severity by angiography and the calculated echo-Doppler ARI (r = 0.84, p = 0.0001). As validated by aortic angiography, the ARI is an accurate reflection of AR severity.

  12. Calcification Characteristics of Low-Flow Low-Gradient Severe Aortic Stenosis in Patients Undergoing Transcatheter Aortic Valve Replacement

    PubMed Central

    Stähli, Barbara E.; Nguyen-Kim, Thi Dan Linh; Gebhard, Cathérine; Frauenfelder, Thomas; Tanner, Felix C.; Nietlispach, Fabian; Maisano, Francesco; Falk, Volkmar; Lüscher, Thomas F.; Maier, Willibald; Binder, Ronald K.

    2015-01-01

    Low-flow low-gradient severe aortic stenosis (LFLGAS) is associated with worse outcomes. Aortic valve calcification patterns of LFLGAS as compared to non-LFLGAS have not yet been thoroughly assessed. 137 patients undergoing transcatheter aortic valve replacement (TAVR) with preprocedural multidetector computed tomography (MDCT) and postprocedural transthoracic echocardiography were enrolled. Calcification characteristics were assessed by MDCT both for the total aortic valve and separately for each leaflet. 34 patients had LFLGAS and 103 non-LFLGAS. Total aortic valve calcification volume (p < 0.001), mass (p < 0.001), and density (p = 0.004) were lower in LFLGAS as compared to non-LFLGAS patients. At 30-day follow-up, mean transaortic pressure gradients and more than mild paravalvular regurgitation did not differ between groups. In conclusion, LFLGAS and non-LFLGAS express different calcification patterns which, however, did not impact on device success after TAVR. PMID:26435875

  13. Low Transvalvular Flow Rate Predicts Mortality in Patients With Low-Gradient Aortic Stenosis Following Aortic Valve Intervention.

    PubMed

    Vamvakidou, Anastasia; Jin, Wenying; Danylenko, Oleksandr; Chahal, Navtej; Khattar, Rajdeep; Senior, Roxy

    2018-03-09

    This study aimed to assess the value of low transvalvular flow rate (FR) for the prediction of mortality compared with low stroke volume index (SVi) in patients with low-gradient (mean gradient: <40 mm Hg), low aortic valve area (<1 cm 2 ) aortic stenosis (AS) following aortic valve intervention. Transaortic FR defined as stroke volume/left ventricular ejection time is also a marker of flow; however, no data exist comparing the relative prognostic value of these 2 transvalvular flow markers in patients with low-gradient AS who had undergone valve intervention. We retrospectively followed prospectively assessed consecutive patients with low-gradient, low aortic valve area AS who underwent aortic valve intervention between 2010 and 2014 for all-cause mortality. Of the 218 patients with mean age 75 ± 12 years, 102 (46.8%) had low stroke volume index (SVi) (<35 ml/m 2 ), 95 (43.6%) had low FR (<200 ml/s), and 58 (26.6%) had low left ventricular ejection fraction <50%. The concordance between FR and SVi was 78.8% (p < 0.005). Over a median follow-up of 46.8 ± 21 months, 52 (23.9%) deaths occurred. Patients with low FR had significantly worse outcome compared with those with normal FR (p < 0.005). In patients with low SVi, a low FR conferred a worse outcome than a normal FR (p = 0.005), but FR status did not discriminate outcome in patients with normal SVi. By contrast, SVi did not discriminate survival either in patients with normal or low FR. Low FR was an independent predictor of mortality (p = 0.013) after adjusting for age, clinical prognostic factors, European System for Cardiac Operative Risk Evaluation II, dimensionless velocity index, left ventricular mass index, left ventricular ejection fraction, heart rate, time, type of aortic valve intervention, and SVi (p = 0.59). In patients with low-gradient, low valve area aortic stenosis undergoing aortic valve intervention, low FR, not low SVi, was an independent predictor of medium-term mortality

  14. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    PubMed

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

  15. Impact of Vascular Hemodynamics on Aortic Stenosis Evaluation: New Insights Into the Pathophysiology of Normal Flow-Small Aortic Valve Area-Low Gradient Pattern.

    PubMed

    Côté, Nancy; Simard, Louis; Zenses, Anne-Sophie; Tastet, Lionel; Shen, Mylène; Clisson, Marine; Clavel, Marie-Annick

    2017-07-07

    About 50% of normal-flow/low-gradient patients (ie, low mean gradient [MG] or peak aortic jet velocity and small aortic valve area) have severe aortic valve calcification as measured by computed tomography. However, they are considered to have moderate aortic stenosis (AS) in current American College of Cardiology/American Heart Association guidelines. The objective was thus to evaluate the effect of hypertension and reduced arterial compliance (rAC) on MG and V peak measurements. Doppler-echocardiography was performed in 4 sheep with experimentally induced severe and critical AS at: (1) normal aortic pressure, (2) during hypertension, and (3) with rAC. Hypertension and rAC induced a substantial decrease in MG/V peak compared with normal stage (both P ≤0.03) despite a stable transvalvular flow ( P >0.16). Hypertension and rAC resulted in a greater reduction of MG in critical (-42%) compared with severe (-35%) AS ( P ˂0.0001). Comprehensive Doppler-echocardiography and computed tomography were performed in 220 AS patients (mean age: 69±13 years; MG 29±18 mm Hg) with normal flow. The population was divided in 3 groups according to the presence of hypertension and rAC. The slope of the linear association between MG/V peak and aortic valve calcification divided by the cross-sectional area of the aortic annulus was significantly reduced in patients with hypertension and/or rAC compared with normotensive/normal AC patients ( P <0.01). Accordingly, patients with normal-flow/low-gradient and severe aortic valve calcification density were more frequent in hypertension and rAC groups compared with the normotensive/normal-AC group (16% and 12% compared with 2%; P =0.03). Hypertension and rAC are associated with a substantial reduction in MG/V peak for similar aortic valve calcification (ie, similar AS anatomic severity), which may lead to underestimation of AS hemodynamic severity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by

  16. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    PubMed

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  17. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  18. Decreased poststenotic flow disturbance during drag reduction by polyacrylamide infusion without increased aortic blood flow.

    PubMed

    Hutchison, K J; Campbell, J D; Karpinski, E

    1989-07-01

    The infusion of polyacrylamide in open chest rats has been reported to increase aortic blood flow and the effect has been ascribed to the "drag reduction" properties of these compounds. In six anesthetized dogs the infusion of polyacrylamide to a total dose of 2 mg/kg caused a reduction in midline and separation zone Doppler spectral broadening in the common carotid artery poststenotic velocity field. This apparent reduction in poststenotic turbulence was interpreted as indicating the presence of a drag reducing effect. Despite this demonstration that polyacrylamide was present in the blood in drag reducing concentrations no increase in aortic blood flow was produced.

  19. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  20. Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm

    PubMed Central

    Yeow, Siang Lin; Leo, Hwa Liang

    2016-01-01

    This study investigates the effect of a novel flow remodeling stent graft (FRSG) on the hemodynamic characteristics in highly angulated abdominal aortic aneurysm based on computational fluid dynamics (CFD) approach. An idealized aortic aneurysm with varying aortic neck angulations was constructed and CFD simulations were performed on nonstented models and stented models with FRSG. The influence of FRSG intervention on the hemodynamic performance is analyzed and compared in terms of flow patterns, wall shear stress (WSS), and pressure distribution in the aneurysm. The findings showed that aortic neck angulations significantly influence the velocity flow field in nonstented models, with larger angulations shifting the mainstream blood flow towards the center of the aorta. By introducing FRSG treatment into the aneurysm, erratic flow recirculation pattern in the aneurysm sac diminishes while the average velocity magnitude in the aneurysm sac was reduced in the range of 39% to 53%. FRSG intervention protects the aneurysm against the impacts of high velocity concentrated flow and decreases wall shear stress by more than 50%. The simulation results highlighted that FRSG may effectively treat aneurysm with high aortic neck angulations via the mechanism of promoting thrombus formation and subsequently led to the resorption of the aneurysm. PMID:27247612

  1. Effect of cannula shape on aortic wall and flow turbulence: hydrodynamic study during extracorporeal circulation in mock thoracic aorta.

    PubMed

    Minakawa, Masahito; Fukuda, Ikuo; Yamazaki, Junichi; Fukui, Kozo; Yanaoka, Hideki; Inamura, Takao

    2007-12-01

    This study was designed to analyze flow pattern, velocity, and strain on the aortic wall of a glass aortic model during extracorporeal circulation, and to elucidate the characteristics of flow pattern in four aortic cannulas. Different patterns of large vortices and helical flow were made by each cannula. The high-velocity flow (0.6 m/s) was observed in end-hole cannula, causing high strain rate tensor (0.3~0.4 without unit) on the aortic arch. In dispersion cannula, a decreased strain rate tensor (less than 0.1) was found on the outer curvature of the aortic arch. In Soft-flow cannula (3M Cardiovascular, Ann Arbor, MI, USA), further decreased flow velocity (0.2 m/s) and strain (less than 0.2) were observed. In Select 3D cannula (Medtronic, Inc., Minneapolis, MN, USA), a high strain (0.4~0.5) was observed along the inner curvature of the aortic arch. In conclusion, end-hole cannula should not be used in atherosclerotic aorta. Particular attention should be paid both for selection of cannulas and cannulation site based on this result.

  2. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root.

    PubMed

    Hasler, David; Obrist, Dominik

    2018-01-01

    The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.

  3. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015

  4. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    NASA Astrophysics Data System (ADS)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  5. Finite element analysis of helical flows in human aortic arch: A novel index

    PubMed Central

    Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-01-01

    This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed in the ascending aorta. Angle α between the zero reference point and the aortic ostium (correlation coefficient (r) = −0.851, P = 0.001), the dispersion index of the cross section of the ascending (r = 0.683, P = 0.021) and descending aorta (r = 0.732, P = 0.010), all correlated closely with the presence of helical flow (P < 0.05). Stepwise multiple linear regression analysis confirmed angel α to be independently associated with the helical flow pattern in therein (standardized coefficients = −0.721, P = 0.023). The presence of helical fluid motion based on the atherosclerotic risks of patients, including those associated with diabetes, hypertension, hyperlipidemia, or renal insufficiency, was also evaluated. Numerical simulation of the flow patterns in aortas incorporating the atherosclerotic risks may better explain the mechanism of formation of helical flows and provide insight into causative factors that underlie them. PMID:24803960

  6. Analysis of flow patterns in a patient-specific aortic dissection model.

    PubMed

    Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y

    2010-05-01

    Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.

  7. Haemodynamic outcome at four-dimensional flow magnetic resonance imaging following valve-sparing aortic root replacement with tricuspid and bicuspid valve morphology

    PubMed Central

    Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.

    2014-01-01

    OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow

  8. Aortic Valve Stenosis Alters Expression of Regional Aortic Wall Shear Stress: New Insights From a 4-Dimensional Flow Magnetic Resonance Imaging Study of 571 Subjects.

    PubMed

    van Ooij, Pim; Markl, Michael; Collins, Jeremy D; Carr, James C; Rigsby, Cynthia; Bonow, Robert O; Malaisrie, S Chris; McCarthy, Patrick M; Fedak, Paul W M; Barker, Alex J

    2017-09-13

    Wall shear stress (WSS) is a stimulus for vessel wall remodeling. Differences in ascending aorta (AAo) hemodynamics have been reported between bicuspid aortic valve (BAV) and tricuspid aortic valve patients with aortic dilatation, but the confounding impact of aortic valve stenosis (AS) is unknown. Five hundred seventy-one subjects underwent 4-dimensional flow magnetic resonance imaging in the thoracic aorta (210 right-left BAV cusp fusions, 60 right-noncoronary BAV cusp fusions, 245 tricuspid aortic valve patients with aortic dilatation, and 56 healthy controls). There were 166 of 515 (32%) patients with AS. WSS atlases were created to quantify group-specific WSS patterns in the AAo as a function of AS severity. In BAV patients without AS, the different cusp fusion phenotypes resulted in distinct differences in eccentric WSS elevation: right-left BAV patients exhibited increased WSS by 9% to 34% ( P <0.001) at the aortic root and along the entire outer curvature of the AAo whereas right-noncoronary BAV patients showed 30% WSS increase ( P <0.001) at the distal portion of the AAo. WSS in tricuspid aortic valve patients with aortic dilatation patients with no AS was significantly reduced by 21% to 33% ( P <0.01) in 4 of 6 AAo regions. In all patient groups, mild, moderate, and severe AS resulted in a marked increase in regional WSS ( P <0.001). Moderate-to-severe AS further increased WSS magnitude and variability in the AAo. Differences between valve phenotypes were no longer apparent. AS significantly alters aortic hemodynamics and WSS independent of aortic valve phenotype and over-rides previously described flow patterns associated with BAV and tricuspid aortic valve with aortic dilatation. Severity of AS must be considered when investigating valve-mediated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  9. Treatment of aortic stenosis with aortic valve bypass (apicoaortic conduit) surgery: an assessment using computational modeling.

    PubMed

    Balaras, Elias; Cha, K S; Griffith, Bartley P; Gammie, James S

    2009-03-01

    Aortic valve bypass surgery treats aortic valve stenosis with a valve-containing conduit that connects the left ventricular apex to the descending thoracic aorta. After aortic valve bypass, blood is ejected from the left ventricle via both the native stenotic aortic valve and the conduit. We performed computational modeling to determine the effects of aortic valve bypass on aortic and cerebral blood flow, as well as the effect of conduit size on relative blood flow through the conduit and the native valve. The interaction of blood flow with the vascular boundary was modeled using a hybrid Eurelian-Lagrangian formulation, where an unstructured Galerkin finite element method was coupled with an immersed boundary approach. Our model predicted native (stenotic) valve to conduit flow ratios of 45:55, 52:48, and 60:40 for conduits with diameters of 20, 16, and 10 mm, respectively. Mean gradients across the native aortic valve were calculated to be 12.5, 13.8, and 17.6 mm Hg, respectively. Post-aortic valve bypass cerebral blood flow was unchanged from preoperative aortic valve stenosis configurations and was constant across all conduit sizes. In all cases modeled, cerebral blood flow was completely supplied by blood ejected across the native aortic valve. An aortic valve bypass conduit as small as 10 mm results in excellent relief of left ventricular outflow tract obstruction in critical aortic valve stenosis. The presence of an aortic valve bypass conduit has no effect on cerebral blood flow. All blood flow to the brain occurs via antegrade flow across the native stenotic valve; this configuration may decrease the long-term risk of cerebral thromboembolism.

  10. Study of the Pressure and Velocity Across the Aortic Valve

    NASA Astrophysics Data System (ADS)

    Kyung, Seo Young; Chung, Erica Soyun; Lee, Joo Hee; Kyung, Hayoung; Choi, Si Young

    Biomechanics of the heart, requiring an extensive understanding of the complexity of the heart, have become the interests of many biomedical engineers in cardiology today. In order to study aortic valve disease, engineers have focused on the data obtained through bio-fluid flow analysis. To further this study, physical and computational analysis on the biomechanical determinants of blood flow in the stenosed aortic valve have been examined. These observations, along with the principles of cardiovascular physiology, confirm that when blood flows through the valve opening, pressure gradient across the valve is produced as a result of stenosis of the aortic valve. The aortic valve gradient is used to interpret the increase and decrease on each side of the defective valve. To compute different pressure gradients across the aortic valve, this paper analyzes Aortic Valve Areas (AVA) using simulations based on the continuity equation and Gorlin equation. The data obtained from such analysis consist of patients in the AS category that display mild Aortic Valve Velocity (AVV) and pressure gradient. Such correlation results in the construction of a dependent relationship between severe AS causing LV systolic dysfunction and the transaortic velocity.

  11. Coronary flow reserve is impaired in patients with aortic valve calcification.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Sade, Elif; Eroglu, Serpil; Atar, Ilyas; Altin, Cihan; Demirtas, Saadet; Ozin, Bulent; Muderrisoglu, Haldun

    2008-04-01

    Calcific aortic valve disease is an active and progressive condition. Data indicate that aortic valve calcification (AVC) is associated with endothelial dysfunction and accepted as a manifestation of atherosclerosis. Coronary flow reserve (CFR) determined by transthoracic echocardiography has been introduced as a reliable indicator for coronary microvascular function. In this study we aimed to evaluate CFR in patients with AVC. Eighty patients, aged more than 60 years, without coronary heart disease or diabetes mellitus were included: 40 had AVC without significant stenosis (peak gradient across the valve <25 mm Hg) and 40 had normal aortic valves (controls). Using transthoracic Doppler echocardiography, we measured coronary diastolic peak flow velocities (PFV) at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic PFV and was compared between groups. Mean ages for patients with AVC and controls were 68.9+/-6.2 and 67.6+/-5.9 years (P=.3). There were no significant differences regarding clinical characteristics, laboratory findings, ejection fraction, or peak aortic valve gradients. Mean diastolic PFV at baseline and during hyperemia were 28.4+/-4.2 and 59.2+/-7.8 cm/s for AVC and 27.7+/-3.9 and 68.5+/-10.5 cm/s for controls. Compared with controls, patients with AVC had significantly lower CFR values (2.12+/-0.41 versus 2.51+/-0.51; P<.0001). CFR is impaired in patients with AVC before valve stenosis develops, suggesting that microvascular-endothelial dysfunction is present during the early stages of the calcific aortic valve disease.

  12. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  13. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  14. Thoracic aortic operations: management of maldistribution of arterial flow during cardiopulmonary bypass.

    PubMed

    Najafi, H; Veeragandham, R

    1997-08-01

    On three occasions during operations for aortic aneurysm involving the ascending aorta it was noted that upon the release of the aortic clamp the grafted segment remained collapsed, indicating very little or no flow reaching the lumen of the reconstructed aorta. This was promptly and successfully remedied in 2 patients by perfusing the graft directly with a pediatric arterial catheter attached to a pump head while the femoral arterial line maintained systemic arterial inflow. This simple, safe, and highly effective technique adds to the surgeon's repertoire to manage yet another intriguing intraoperative development during thoracic aortic operations.

  15. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  16. Aortic assessment of bicuspid aortic valve patients and their first-degree relatives.

    PubMed

    Straneo, Pablo; Parma, Gabriel; Lluberas, Natalia; Marichal, Alvaro; Soca, Gerardo; Cura, Leandro; Paganini, Juan J; Brusich, Daniel; Florio, Lucia; Dayan, Victor

    2017-03-01

    Background Bicuspid aortic valve patients have an increased risk of aortic dilatation. A deficit of nitric oxide synthase has been proposed as the causative factor. No correlation between flow-mediated dilation and aortic diameter has been performed in patients with bicuspid aortic valves and normal aortic diameters. Being a hereditary disease, we compared echocardiographic features and endothelial function in these patients and their first-degree relatives. Methods Comprehensive physical examinations, routine laboratory tests, transthoracic echocardiography, and measurements of endothelium-dependent and non-dependent flow-mediated vasodilatation were performed in 18 bicuspid aortic valve patients (14 type 1 and 4 type 2) and 19 of their first-degree relatives. Results The first-degree relatives were younger (36.7 ± 18.8 vs. 50.5 ± 13.9 years, p = 0.019) with higher ejection fractions (64.6% ± 1.7% vs. 58.4% ± 9.5%, p = 0.015). Aortic diameters indexed to body surface area were similar in both groups, the except the tubular aorta which was larger in bicuspid aortic valve patients (19.3 ± 2.7 vs. 17.4 ± 2.2 mm·m -2 , p = 0.033). Flow-dependent vasodilation was similar in both groups. A significant inverse correlation was found between non-flow-dependent vasodilation and aortic root diameter in patients with bicuspid aortic valve ( R = -0.57, p = 0.05). Conclusions Bicuspid aortic valve patients without aortopathy have larger ascending aortic diameters than their first-degree relatives. Endothelial function is similar in both groups, and there is no correlation with ascending aorta diameter. Nonetheless, an inverse correlation exists between non-endothelial-dependent dilation and aortic root diameter in bicuspid aortic valve patients.

  17. Aortopathy in patients with bicuspid aortic valve stenosis: role of aortic root functional parameters.

    PubMed

    Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Espinoza, Andres; Dubslaff, Georg; Fey, Beatrix; Theis, Bernhard; Petersen, Iver; Borger, Michael A; Kuntze, Thomas

    2016-02-01

    We prospectively examined functional characteristics of the aortic root and transvalvular haemodynamic flow in order to define factors associated with the severity of aortopathy in patients undergoing surgery for bicuspid aortic valve (BAV) stenosis. A total of 103 consecutive patients with BAV stenosis (mean age 61 ± 9 years, 66% male) underwent aortic valve replacement ± concomitant aortic surgery from January 2012 through March 2014. All patients underwent preoperative cardiac magnetic resonance imaging (MRI) in order to evaluate the systolic transvalvular flow and the following functional parameters: (i) angulation between the left ventricular outflow axis and the aortic root, (ii) geometrical orientation of residual aortic valve orifice and (iii) BAV cusp fusion pattern. MRI data were used to guide sampling of the ascending aorta during surgery [i.e. jet-sample from the area where the flow-jet impacts on the aortic wall and control sample from the opposite aortic wall (obtained from the aortotomy site)]. Aortopathy was quantified by means of a histological sum-score (0 to 21+) in each sample. A significant correlation was found between histological sum-score in the jet-sample and the angle between the LV outflow axis and the aortic root (r = 0.6, P = 0.007). Moreover, there was a linear correlation between proximal aortic diameter and the angle between systolic flow-jet and ascending aortic wall (r = 0.5, P = 0.006). Logistic regression identified the angle between the LV outflow axis and the aortic root (OR 1.1, P = 0.04) and the angle between the flow-jet and the aortic wall (OR 1.2, P = 0.001) as independent predictors of an indexed proximal aortic diameter ≥22 mm/m(2). Functional parameters of the aortic root may be used to predict the severity of aortopathy in patients with BAV stenosis, and may be useful in predicting future risk of aortic disease in such patients. © The Author 2015. Published by Oxford University Press on behalf of the European

  18. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  19. Multi-Velocity Encoding Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Chronic Aortic Dissection

    PubMed Central

    Sherrah, Andrew G.; Callaghan, Fraser M.; Puranik, Rajesh; Jeremy, Richmond W.; Bannon, Paul G.; Vallely, Michael P.; Grieve, Stuart M.

    2017-01-01

    Background Chronic descending thoracic aortic dissection (CDTAD) following surgical repair of ascending aortic dissection requires long-term imaging surveillance. We investigated four-dimensional (4D)-flow magnetic resonance imaging (MRI) with a novel multi-velocity encoding (multi-VENC) technique as an emerging clinical method enabling the dynamic quantification of blood volume and velocity throughout the cardiac cycle. Methods Patients with CDTAD (n = 10; mean age, 55.1 years; standard deviation (SD) 10.8) and healthy volunteers (n = 9; mean age, 37.1 years; SD 11.4; p < 0.01) underwent 3T MRI, and standard views and 4D-flow data were obtained. Flow measurements were made in selected regions of interest within the ascending and descending thoracic aorta. Results The overall flow profile at peak systole was reduced in the false lumen (FL) compared with the true lumen (TL) and normal aortas (p < 0.05 for velocity < 0.4 m/s). Peak systolic flow rate per aortic lumen area (mL/s/cm2) was lower in the FL than in the TL (p < 0.05), and both rates were lower than that of control aortas (p < 0.05). Blood flow reversal was higher in the FL than in the TL throughout the descending aorta in CDTAD patients (p < 0.05). A derived pulsatility index was elevated in the TL compared with that in the FL in CDTAD patients. Generated pathline images demonstrated flow patterns in detail, including sites of communication between the true and FL. Conclusions 4D-flow MRI revealed FL blood flow and reduced blood flow velocity and flow rate in the TL of CDTAD patients compared with normal aortas of healthy participants. Thus, multi-VENC 4D-flow MRI could serve as an adjunct in the long-term assessment of CDTAD following surgical repair of ascending aortic dissection. PMID:29675440

  20. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  1. Intra-Operative Vector Flow Imaging Using Ultrasound of the Ascending Aorta among 40 Patients with Normal, Stenotic and Replaced Aortic Valves.

    PubMed

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper; Jensen, Maiken Brit; Lund, Jens Teglgaard; Pedersen, Mads Møller; Lange, Theis; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2016-10-01

    Stenosis of the aortic valve gives rise to more complex blood flows with increased velocities. The angle-independent vector flow ultrasound technique transverse oscillation was employed intra-operatively on the ascending aorta of (I) 20 patients with a healthy aortic valve and 20 patients with aortic stenosis before (IIa) and after (IIb) valve replacement. The results indicate that aortic stenosis increased flow complexity (p < 0.0001), induced systolic backflow (p < 0.003) and reduced systolic jet width (p < 0.0001). After valve replacement, the systolic backflow and jet width were normalized (p < 0.52 and p < 0.22), but flow complexity was not (p < 0.0001). Flow complexity (p < 0.0001), systolic jet width (p < 0.0001) and systolic backflow (p < 0.001) were associated with peak systolic velocity. The study found that aortic stenosis changes blood flow in the ascending aorta and valve replacement corrects some of these changes. Transverse oscillation may be useful for assessment of aortic stenosis and optimization of valve surgery. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Prospective assessment of the frequency of low gradient severe aortic stenosis with preserved left ventricular ejection fraction: Critical impact of aortic flow misalignment and pressure recovery phenomenon.

    PubMed

    Ringle, Anne; Castel, Anne-Laure; Le Goffic, Caroline; Delelis, François; Binda, Camille; Bohbot, Yohan; Ennezat, Pierre Vladimir; Guerbaai, Raphaëlle A; Levy, Franck; Vincentelli, André; Graux, Pierre; Tribouilloy, Christophe; Maréchaux, Sylvestre

    2018-02-10

    The frequency of paradoxical low-gradient severe aortic stenosis (AS) varies widely across studies. The impact of misalignment of aortic flow and pressure recovery phenomenon on the frequency of low-gradient severe AS with preserved left ventricular ejection fraction (LVEF) has not been evaluated in prospective studies. To investigate prospectively the impact of aortic flow misalignment by Doppler and lack of pressure recovery phenomenon correction on the frequency of low-gradient (LG) severe aortic stenosis (AS) with preserved LVEF. Aortic jet velocities and mean pressure gradient (MPG) were obtained by interrogating all windows in 68 consecutive patients with normal LVEF and severe AS (aortic valve area [AVA] ≤1cm 2 ) on the basis of the apical imaging window alone (two-dimensional [2D] apical approach). Patients were classified as having LG or high-gradient (HG) AS according to MPG <40mmHg or ≥40mmHg, and normal flow (NF) or low flow (LF) according to stroke volume index >35mL/m 2 or ≤35mL/m 2 , on the basis of the 2D apical approach, the multiview approach (multiple windows evaluation) and AVA corrected for pressure recovery. The proportion of LG severe AS was 57% using the 2D apical approach alone. After the multiview approach and correction for pressure recovery, the proportion of LG severe AS decreased from 57% to 13% (LF-LG severe AS decreased from 23% to 3%; NF-LG severe AS decreased from 34% to 10%). As a result, 25% of patients were reclassified as having HG severe AS (AVA ≤1cm 2 and MPG ≥40mmHg) and 19% as having moderate AS. Hence, 77% of patients initially diagnosed with LG severe AS did not have "true" LG severe AS when the multiview approach and the pressure recovery phenomenon correction were used. Aortic flow misevaluation, resulting from lack of use of multiple windows evaluation and pressure recovery phenomenon correction, accounts for a large proportion of incorrectly graded AS and considerable overestimation of the frequency of LG

  3. Quantitative assessment of paravalvular leakage after transcatheter aortic valve replacement using a patient-specific pulsatile flow model.

    PubMed

    Tanaka, Yutaka; Saito, Shigeru; Sasuga, Saeko; Takahashi, Azuma; Aoyama, Yusuke; Obama, Kazuto; Umezu, Mitsuo; Iwasaki, Kiyotaka

    2018-05-01

    Quantitative assessment of post-transcatheter aortic valve replacement (TAVR) aortic regurgitation (AR) remains challenging. We developed patient-specific anatomical models with pulsatile flow circuit and investigated factors associated with AR after TAVR. Based on pre-procedural computed tomography (CT) data of the six patients who underwent transfemoral TAVR using a 23-mm SAPIEN XT, anatomically and mechanically equivalent aortic valve models were developed. Forward flow and heart rate of each patient in two days after TAVR were duplicated under mean aortic pressure of 80mmHg. Paravalvular leakage (PVL) volume in basal and additional conditions was measured for each model using an electromagnetic flow sensor. Incompletely apposed tract between the transcatheter and aortic valves was examined using a micro-CT. PVL volume in each patient-specific model was consistent with each patient's PVL grade, and was affected by hemodynamic conditions. PVL and total regurgitation volume increased with the mean aortic pressure, whereas closing volume did not change. In contrast, closing volume increased proportionately with heart rate, but PVL did not change. The minimal cross-sectional gap had a positive correlation with the PVL volumes (r=0.89, P=0.02). The gap areas typically occurred in the vicinity of the bulky calcified nodules under the native commissure. PVL volume, which could be affected by hemodynamic conditions, was significantly associated with the minimal cross-sectional gap area between the aortic annulus and the stent frame. These data may improve our understanding of the mechanism of the occurrence of post-TAVR PVL. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  5. Continuous spinal anaesthesia with minimally invasive haemodynamic monitoring for surgical hip repair in two patients with severe aortic stenosis.

    PubMed

    López, María Mercedes; Guasch, Emilia; Schiraldi, Renato; Maggi, Genaro; Alonso, Eduardo; Gilsanz, Fernando

    2016-01-01

    Aortic stenosis increases perioperative morbidity and mortality, perioperative invasive monitoring is advised for patients with an aortic valve area <1.0 cm(2) or a mean aortic valve gradient >30 mmHg and it is important to avoid hypotension and arrhythmias. We report the anaesthetic management with continuous spinal anaesthesia and minimally invasive haemodynamic monitoring of two patients with severe aortic stenosis undergoing surgical hip repair. Two women with severe aortic stenosis were scheduled for hip fracture repair. Continuous spinal anaesthesia with minimally invasive haemodynamic monitoring was used for anaesthetic management of both. Surgery was performed successfully after two consecutive doses of 2mg of isobaric bupivacaine 0.5% in one of them and four consecutive doses in the other. Haemodynamic conditions remained stable throughout the intervention. Vital signs and haemodynamic parameters remained stable throughout the two interventions. Our report illustrates the use of continuous spinal anaesthesia with minimally invasive haemodynamic monitoring as a valid alternative to general or epidural anaesthesia in two patients with severe aortic stenosis who are undergoing lower limb surgery. However, controlled clinical trials would be required to establish that this technique is safe and effective in these type or patients. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model

    PubMed Central

    Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.

    2015-01-01

    Purpose To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Methods Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Results Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy (SHE), ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20-60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. Conclusions The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia (IH) resulting from low time-averaged WSS (TAWSS) and high oscillatory shear index (OSI). PMID:26643646

  7. Methodological inaccuracies in clinical aortic valve severity assessment: insights from computational fluid dynamic modeling of CT-derived aortic valve anatomy

    NASA Astrophysics Data System (ADS)

    Traeger, Brad; Srivatsa, Sanjay S.; Beussman, Kevin M.; Wang, Yechun; Suzen, Yildirim B.; Rybicki, Frank J.; Mazur, Wojciech; Miszalski-Jamka, Tomasz

    2016-04-01

    Aortic stenosis is the most common valvular heart disease. Assessing the contribution of the valve as a portion to total ventricular load is essential for the aging population. A CT scan for one patient was used to create one in vivo tricuspid aortic valve geometry and assessed with computational fluid dynamics (CFD). CFD simulated the pressure, velocity, and flow rate, which were used to assess the Gorlin formula and continuity equation, current clinical diagnostic standards. The results demonstrate an underestimation of the anatomic orifice area (AOA) by Gorlin formula and overestimation of AOA by the continuity equation, using peak velocities, as would be measured clinically by Doppler echocardiography. As a result, we suggest that the Gorlin formula is unable to achieve the intended estimation of AOA and largely underestimates AOA at the critical low-flow states present in heart failure. The disparity in the use of echocardiography with the continuity equation is due to the variation in velocity profile between the outflow tract and the valve orifice. Comparison of time-averaged orifice areas by Gorlin and continuity with instantaneous orifice areas by planimetry can mask the errors of these methods, which is a result of the assumption that the blood flow is inviscid.

  8. Distal re-entry closure with neobranching technique after thoracic endovascular aortic repair of Type B aortic dissection.

    PubMed

    Yamamoto, Masaki; Fukutomi, Takashi; Noguchi, Tatsuya; Orihashi, Kazumasa

    2018-04-01

    Retrograde false-lumen flow after thoracic endovascular aortic repair of Type B aortic dissection occurs occasionally and may have a negative impact on aortic remodelling and even prevent the decompression of the false lumen. A 67-year-old man with a Type B aortic dissection underwent thoracic endovascular aortic repair for severe compression of the true lumen and visceral malperfusion 7 weeks after the onset. Intraoperative angiography revealed proximal entry tear closure, but the false-lumen flow increased because of retrograde flow through the re-entry tear. Additional intervention including re-entry tear closure was performed with a neobranching technique with covered stent placement in the visceral artery from the aortic true lumen through the distal re-entry tear. We report a case of Type B aortic dissection and discuss the surgical techniques used.

  9. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  10. Maximal Aortic Valve Cusp Separation and Severity of Aortic Stenosis

    PubMed Central

    Dilu, VP; George, Raju

    2017-01-01

    Introduction An integrated approach that incorporates two dimensional, M mode and Doppler echocardiographic evaluation has become the standard means for accurate quantification of severity of valvular aortic stenosis. Maximal separation of the aortic valve cusps during systole has been shown to correlate well with the severity of aortic stenosis measured by other echocardiographic parameters. Aim To study the correlation between Maximal Aortic valve Cusp Separation (MACS) and severity of aortic valve stenosis and to find cut-off values of MACS for detecting severe and mild aortic stenosis. Materials and Methods In the present prospective observational study, we have compared the accuracy of MACS distance and the aortic valve area calculated by continuity equation in 59 patients with varying degrees of aortic valve stenosis. Aortic leaflet separation in M mode was identified as the distance between the inner edges of the tips of these structures at mid systole in the parasternal long axis view. Cuspal separation was also measured in 2D echocardiography from the parasternal long axis view and the average of the two values was taken as the MACS. Patients were grouped into mild, moderate and severe aortic stenosis based on the aortic valve area calculated by continuity equation. The resultant data regarding maximal leaflet separation on cross-sectional echocardiogram was then subjected to linear regression analysis in regard to correlation with the peak transvalvular aortic gradient as well as the calculated aortic valve area. A cut-off value for each group was derived using ROC curve. Results There was a strong correlation between MACS and aortic valve area measured by continuity equation and the peak and mean transvalvular aortic gradients. Mean MACS was 6.89 mm in severe aortic stenosis, 9.97 mm in moderate aortic stenosis and 12.36 mm in mild aortic stenosis. MACS below 8.25 mm reliably predicted severe aortic stenosis, with high sensitivity, specificity and

  11. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  12. Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Algabri, Y. A.; Rookkapan, S.; Chatpun, S.

    2017-09-01

    An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.

  13. Morphotype-Dependent Flow Characteristics in Bicuspid Aortic Valve Ascending Aortas: A Benchtop Particle Image Velocimetry Study

    PubMed Central

    McNally, Andrew; Madan, Ashish; Sucosky, Philippe

    2017-01-01

    The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative

  14. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  15. Evaluation of Intravascular Hemolysis With Erythrocyte Creatine in Patients With Aortic Stenosis.

    PubMed

    Sugiura, Tetsuro; Okumiya, Toshika; Kubo, Toru; Takeuchi, Hiroaki; Matsumura, Yoshihisa

    2016-07-27

    Chronic intravascular hemolysis has been identified in patients with cardiac valve prostheses, but only a few case reports have evaluated intravascular hemolysis in patients with native valvular heart disease. To detect intravascular hemolysis in patients with aortic stenosis, erythrocyte creatine was evaluated with hemodynamic indices obtained by echocardiography.Erythrocyte creatine, a marker of erythrocyte age, was assayed in 30 patients with aortic stenosis and 10 aged matched healthy volunteers. Peak flow velocity of the aortic valve was determined by continuous-wave Doppler echocardiography. Twenty of 30 patients with aortic stenosis had high erythrocyte creatine levels (> 1.8 µmol/g Hb) and erythrocyte creatine was significantly higher as compared with control subjects (1.98 ± 0.49 versus 1.52 ± 0.19 µmol/g Hb, P = 0.007). Peak transvalvular pressure gradient ranged from 46 to 142 mmHg and peak flow velocity ranged from 3.40 to 5.95 m/second. Patients with aortic stenosis had a significantly lower erythrocyte count (387 ± 40 versus 436 ± 42 × 10(4) µL, P = 0.002) and hemoglobin (119 ± 11 versus 135 ± 11 g/L, P < 0.001) as compared with control subjects. Erythrocyte creatine had a fair correlation with peak flow velocity (r = 0.55, P = 0.002).In conclusion, intravascular hemolysis due to destruction of erythrocytes was detected in patients with moderate to severe aortic stenosis and the severity of intravascular hemolysis was related to valvular flow velocity of the aortic valve.

  16. Continuous measurement of aortic dimensions in Turner syndrome: a cardiovascular magnetic resonance study.

    PubMed

    Subramaniam, Dhananjay Radhakrishnan; Stoddard, William A; Mortensen, Kristian H; Ringgaard, Steffen; Trolle, Christian; Gravholt, Claus H; Gutmark, Ephraim J; Mylavarapu, Goutham; Backeljauw, Philippe F; Gutmark-Little, Iris

    2017-02-24

    Severity of thoracic aortic disease in Turner syndrome (TS) patients is currently described through measures of aorta size and geometry at discrete locations. The objective of this study is to develop an improved measurement tool that quantifies changes in size and geometry over time, continuously along the length of the thoracic aorta. Cardiovascular magnetic resonance (CMR) scans for 15 TS patients [41 ± 9 years (mean age ± standard deviation (SD))] were acquired over a 10-year period and compared with ten healthy gender and age-matched controls. Three-dimensional aortic geometries were reconstructed, smoothed and clipped, which was followed by identification of centerlines and planes normal to the centerlines. Geometric variables, including maximum diameter and cross-sectional area, were evaluated continuously along the thoracic aorta. Distance maps were computed for TS and compared to the corresponding maps for controls, to highlight any asymmetry and dimensional differences between diseased and normal aortae. Furthermore, a registration scheme was proposed to estimate localized changes in aorta geometry between visits. The estimated maximum diameter from the continuous method was then compared with corresponding manual measurements at 7 discrete locations for each visit and for changes between visits. Manual measures at the seven positions and the corresponding continuous measurements of maximum diameter for all visits considered, correlated highly (R-value = 0.77, P < 0.01). There was good agreement between manual and continuous measurement methods for visit-to-visit changes in maximum diameter. The continuous method was less sensitive to inter-user variability [0.2 ± 2.3 mm (mean difference in diameters ± SD)] and choice of smoothing software [0.3 ± 1.3 mm]. Aortic diameters were larger in TS than controls in the ascending [TS: 13.4 ± 2.1 mm (mean distance ± SD), Controls: 12.6 ± 1 mm] and descending [TS

  17. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles

    PubMed Central

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2016-01-01

    Objective Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. Methods 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3–9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. Results A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=−0.67–−0.70 for all patients on room air, p<0.01 and R=−0.49–−0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. Conclusions There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. Trial Registration Number NCT02135081. PMID:26048877

  18. Transcatheter aortic valve replacement

    MedlinePlus

    ... fully will restrict blood flow. This is called aortic stenosis. If there is also a leak, it is ... TAVR is used for people with severe aortic stenosis who aren't ... valve . In adults, aortic stenosis usually occurs due to calcium ...

  19. Application of a novel particle tracking algorithm in the flow visualization of an artificial abdominal aortic aneurysm.

    PubMed

    Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin

    2014-01-01

    A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.

  20. End-diastolic flow reversal limits the efficacy of pediatric intra-aortic balloon pump counterpulsation.

    PubMed

    Bartoli, Carlo R; Rogers, Benjamin D; Ionan, Constantine E; Pantalos, George M

    2014-05-01

    Counterpulsation with an intra-aortic balloon pump (IABP) has not achieved the same success or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. In Yorkshire piglets (n = 19; weight, 13.0 ± 0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7 mL) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105 ± 3 beats per minute, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in

  1. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  2. In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.

    PubMed

    Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M

    2001-04-01

    OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.

  3. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  4. Distant downstream steady-state flow studies of a mechanical heart valve: PIV study of secondary flow in a model aortic arch

    NASA Astrophysics Data System (ADS)

    Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  5. [Value of fractional flow reserve measurement in endovascular therapy for patients with Stanford B type aortic dissection complicated with renal blood flow injury].

    PubMed

    Guo, Xi; Li, Peng; Liu, Guangrui; Huang, Xiaoyong; Yong, Qiang; Wang, Guoqin; Huang, Lianjun

    2015-10-01

    To analyze the value of fractional flow reserve (FFR) measurement on endovascular therapy for patients with renal artery stenosis. Clinical data of 12 patients with Stanford B type aortic dissection complicated with renal blood flow injury in Anzhen hospital hospitalized from May 2013 to February 2014 were retrospectively analyzed. Renal artery angiography was performed and fractional flow reserve (FFR) was measured before Thoracic endovascular aortic repair. After operation, renal artery FFR was measured again, and renal artery stenting was performed in patients with FFR ≤ 0.90 or average pressure difference between proximal and distal of renal artery > 20 mmHg (1 mmHg = 0.133 kPa) and not applied for patients with FFR > 0.90.The patients were then subsequently followed up clinically. Kidney function were measured after 1 month, and contrast-enhanced ultrasonography data were obtained at 1 and 3 months later, respectively. The FFR of 1 patient was 0.90, while the FFR of other patients were less than 0.90 before thoracic endovascular aortic repair. After the procedure,the angiography showed that the blood flow of renal artery in 8 patients were fluency, and the FFR index was over 0.90. There were 4 patients with FFR less than 0.90. After renal artery stenting, the FFR of these 4 patients were all above 0.90. Compared with pre-procedure, blood urea nitrogen ((8.84 ± 3.99) mmol/L vs. (5.18 ± 1.69) mmol/L, P = 0.011) and uric acid ((359.3 ± 77.3) µmol/L vs. (276.9 ± 108.3) µmol/L, P = 0.008) decreased significantly after 1 month, and there was no significant difference in serum creatinine (P = 0.760). Contrast-enhanced ultrasonography results showed that blood flow of renal artery were fluency after 1 month and 3 months. In patients with aortic dissection complicating renal blood flow injury, the FFR measurement is meaningful in evaluating the blood flow status of target organs and guide the endovascular revascularization.

  6. Flow-gradient patterns in severe aortic stenosis with preserved ejection fraction: clinical characteristics and predictors of survival.

    PubMed

    Eleid, Mackram F; Sorajja, Paul; Michelena, Hector I; Malouf, Joseph F; Scott, Christopher G; Pellikka, Patricia A

    2013-10-15

    Among patients with severe aortic stenosis (AS) and preserved ejection fraction, those with low gradient (LG) and reduced stroke volume may have an adverse prognosis. We investigated the prognostic impact of stroke volume using the recently proposed flow-gradient classification. We examined 1704 consecutive patients with severe AS (aortic valve area <1.0 cm(2)) and preserved ejection fraction (≥50%) using 2-dimensional and Doppler echocardiography. Patients were stratified by stroke volume index (<35 mL/m(2) [low flow, LF] versus ≥35 mL/m(2) [normal flow, NF]) and aortic gradient (<40 mm Hg [LG] versus ≥40 mm Hg [high gradient, HG]) into 4 groups: NF/HG, NF/LG, LF/HG, and LF/LG. NF/LG (n=352, 21%), was associated with favorable survival with medical management (2-year estimate, 82% versus 67% in NF/HG; P<0.0001). LF/LG severe AS (n=53, 3%) was characterized by lower ejection fraction, more prevalent atrial fibrillation and heart failure, reduced arterial compliance, and reduced survival (2-year estimate, 60% versus 82% in NF/HG; P<0.001). In multivariable analysis, the LF/LG pattern was the strongest predictor of mortality (hazard ratio, 3.26; 95% confidence interval, 1.71-6.22; P<0.001 versus NF/LG). Aortic valve replacement was associated with a 69% mortality reduction (hazard ratio, 0.31; 95% confidence interval, 0.25-0.39; P<0.0001) in LF/LG and NF/HG, with no survival benefit associated with aortic valve replacement in NF/LG and LF/HG. NF/LG severe AS with preserved ejection fraction exhibits favorable survival with medical management, and the impact of aortic valve replacement on survival was neutral. LF/LG severe AS is characterized by a high prevalence of atrial fibrillation, heart failure, and reduced survival, and aortic valve replacement was associated with improved survival. These findings have implications for the evaluation and subsequent management of AS severity.

  7. A new self-expandable aortic valved stent deployed above native leaflets for aortic insufficiency: an in vitro study.

    PubMed

    Huang, H; Zhou, Y; Shao, J; Cai, J; Mei, Y; Wang, Y

    2012-12-01

    The aim of this paper was to develop a new self-expandable aortic valved stent following the shape of the sinus of Valsalva, which can be deployed above native leaflets for aortic regurgitation, and study it's effect on coronary artery flow when orthotopic implantation in and above native leaflets. New self-expandable aortic valved stent consist of nitinol stent and bovine pericardium, and was designed following the shape of the sinus of Valsalva, the bovine pericardium was tailed as native leaflet. Thirty-six swine hearts were divided into three equal groups of twelve. In Group A (N.=12), the new self-expandable aortic valved stents deployed in native leaflets. In Group B (N.=12), the new self-expandable aortic valved stents deployed above native leaflets. In Group C (N.=12), the cylinder-like valved stents deployed only in native leaflets. The measurements of each coronary flow rate and endoscopic inspections were repeated post-implantation. In Group A and C, valve implantation in native leaflets resulted in a significant decrease in both left and right coronary flows. In Group B, no significant change in either right or left coronary flow was found after new self-expandable aortic valved stent placement. Endoscopic inspections showed that in group A and C the native leaflets sandwiched between valved stent and aortic wall, whereas, in group B the native leaflets were under the artificial leaflets. Two kinds of stents deployed in native leaflets affect left and right coronary flows significantly. No significant effect was found when the new self-expandable aortic valved stent deployed above native leaflets. This new self-expandable aortic valved stent can be deployed above the native leaflets, which avoids the obstruction of native leaflets on coronary flow.

  8. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles.

    PubMed

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Diaz Berenstein, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2015-08-01

    Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3-9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=-0.67--0.70 for all patients on room air, p<0.01 and R=-0.49--0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. NCT02135081. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Garcia, Julio; Gaillard, Emmanuel; Maftoon, Nima; Di Labbio, Giuseppe; Cloutier, Guy; Kadem, Lyes

    2014-03-01

    Blood flow in the aorta has been of particular interest from both fluid dynamics and physiology perspectives. Coarctation of the aorta (COA) is a congenital heart disease corresponding to a severe narrowing in the aortic arch. Up to 85 % of patients with COA have a pathological aortic valve, leading to a narrowing at the valve level. The aim of the present work was to advance the state of understanding of flow through a COA to investigate how narrowing in the aorta (COA) affects the characteristics of the velocity field and, in particular, turbulence development. For this purpose, particle image velocimetry measurements were conducted at physiological flow and pressure conditions, with three different aorta configurations: (1) normal case: normal aorta + normal aortic valve; (2) isolated COA: COA (with 75 % reduction in aortic cross-sectional area) + normal aortic valve and (3) complex COA: COA (with 75 % reduction in aortic cross-sectional area) + pathological aortic valve. Viscous shear stress (VSS), representing the physical shear stress, Reynolds shear stress (RSS), representing the turbulent shear stress, and turbulent kinetic energy (TKE), representing the intensity of fluctuations in the fluid flow environment, were calculated for all cases. Results show that, compared with a healthy aorta, the instantaneous velocity streamlines and vortices were deeply changed in the presence of the COA. The normal aorta did not display any regions of elevated VSS, RSS and TKE at any moment of the cardiac cycle. The magnitudes of these parameters were elevated for both isolated COA and complex COA, with their maximum values mainly being located inside the eccentric jet downstream of the COA. However, the presence of a pathologic aortic valve, in complex COA, amplifies VSS (e.g., average absolute peak value in the entire aorta for a total flow of 5 L/min: complex COA: = 36 N/m2; isolated COA = 19 N/m2), RSS (e.g., average peak value in the entire aorta for a total flow of 5

  10. A multicentre European registry to evaluate the Direct Flow Medical transcatheter aortic valve system for the treatment of patients with severe aortic stenosis.

    PubMed

    Naber, Christoph K; Pyxaras, Stylianos A; Ince, Hüseyin; Frambach, Peter; Colombo, Antonio; Butter, Christian; Gatto, Fernando; Hink, Ulrich; Nickenig, Georg; Bruschi, Giuseppe; Brueren, Guus; Tchétché, Didier; Den Heijer, Peter; Schillinger, Wolfgang; Scholtz, Smita; Van der Heyden, Jan; Lefèvre, Thierry; Gilard, Martine; Kuck, Karl-Heinz; Schofer, Joachim; Divchev, Dimitar; Baumgartner, Helmut; Asch, Federico; Wagner, Daniel; Latib, Azeem; De Marco, Federico; Kische, Stephan

    2016-12-10

    Our aim was to assess the clinical outcomes of the Direct Flow Medical Transcatheter Aortic Valve System (DFM-TAVS), when used in routine clinical practice. This is a prospective, open-label, multicentre, post-market registry of patients treated with DFM-TAVS according to approved commercial indications. Echocardiographic and angiographic data were evaluated by an independent core laboratory and adverse events were adjudicated and classified according to VARC-2 criteria by an independent clinical events committee. The primary endpoint was freedom from all-cause mortality at 30 days post procedure. Secondary endpoints included procedural, early safety and efficacy endpoints at 30 days. Two hundred and fifty patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI) with the DFM-TAVS were enrolled in 21 European centres. The primary endpoint, freedom from all-cause mortality at 30 days, was met in 98% (245/250) of patients. Device success was 83.8%. Moderate or severe aortic regurgitation was reported in 3% of patients, and none/trace regurgitation in 73% of patients. Post-procedural permanent pacemaker implantation was performed in 30 patients (12.0%). The DFM-TAVS was associated with good short-term outcomes in this real-world registry. The low pacemaker and aortic regurgitation rates confirm the advantages of this next-generation transcatheter heart valve (THV).

  11. Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    NASA Astrophysics Data System (ADS)

    Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.

    2016-04-01

    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.

  12. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  13. Correction of aortic insufficiency with an external adjustable prosthetic aortic ring.

    PubMed

    Gogbashian, Andrew; Ghanta, Ravi K; Umakanthan, Ramanan; Rangaraj, Aravind T; Laurence, Rita G; Fox, John A; Cohn, Lawrence H; Chen, Frederick Y

    2007-09-01

    Less invasive, valve-sparing options are needed for patients with aortic insufficiency (AI). We sought to evaluate the feasibility of reducing AI with an external adjustable aortic ring in an ovine model. To create AI, five sheep underwent patch plasty enlargement of the aortic annulus and root by placement of a 10 x 15 mm pericardial patch between the right and noncoronary cusps. An adjustable external ring composed of a nylon band was fabricated and placed around the aortic root. Aortic flow, aortic pressure, and left ventricular pressures were measured with the ring loose (off) and tightened (on). Mean regurgitant orifice area decreased by 86%, from 0.07 +/- 0.03 cm2 (ring loose, off) to 0.01 +/- 0.00 cm2 (ring tightened, on) [p < 0.01]. The regurgitant fraction decreased from 18 +/- 4% to 2 +/- 1% [p < 0.01]. The ring did not significantly affect stroke volume and aortic pressure. An ovine model of aortic root dilatation resulting in acute AI has been developed. In this model, application of an external, adjustable constricting aortic ring eliminated AI. An aortic ring may be a useful adjunct in reducing AI secondary to annular dilatation.

  14. Assessment of Correlation of Distal Mean Arterial Pressure with Aortic Blood Flow during Partial Resuscitative Endovascular Balloon Aortic Occlusion (P-REBOA) in a Swine (Sus scrofa) Controlled Hemorrhage Model

    DTIC Science & Technology

    2017-11-06

    60th Medical Group (AMC), Travis AFB, CA INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) FINAL REPORT SUMMARY (Please type all information. Use...Pressure with Aortic Blood Flow during Partial Resuscitative Endovascular Balloon Aortic Occlusion (P-REBOA) in a Swine (Sus scrofa) Controlled Hemorrhage...to Date Sus scrofa 8 8 2. PROTOCOL TYPE /CHARACTERISTICS: (Check all applicable terms in EACH column) _ Training: Live Animal Medical Readiness

  15. Intra-aortic balloon pumping in acute mitral regurgitation reduces aortic impedance and regurgitant fraction.

    PubMed

    Dekker, André L A J; Reesink, Koen D; van der Veen, Frederik H; van Ommen, G Vincent A; Geskes, Gijs G; Soemers, A Cecilia M; Maessen, Jos G

    2003-04-01

    Acute mitral regurgitation (MR) is present in 10% of patients presenting with cardiogenic shock. To stabilize these patients, intra-aortic balloon pumping (IABP) is recommended, but the mechanism of IABP support in these patients is unknown. This animal study was designed to describe the hemodynamic effect of intra-aortic balloon pumping during cardiogenic shock induced by acute MR. In eight calves, left ventricular pressure-volume loops, aortic and left atrial pressure, and aortic, carotid artery, and coronary blood flow were recorded. Acute MR (range 36%-79%) was created by placing a metal cage in the mitral valve. Hemodynamic data was obtained at control, during acute MR, and during acute MR with 1:1 IABP support. Acute MR caused a decrease in cardiac output (-32%, P = 0.018), blood pressure, and carotid artery flow, whereas left ventricular output (+127%, P = 0.018), end-diastolic volume, and left atrial pressure all significantly increased. Stroke work, ejection fraction, and coronary blood flow were not significantly changed, and no signs of ischemia were seen on the ECG. The IABP raised average cardiac output by 31% (P = 0.012) and significantly raised blood pressure and flow to the brain while decreasing systemic vascular resistance. Left ventricular function and mean coronary blood flow did not change, but diastolic coronary flow became more important as shown by the increase in diastolic fraction from 64% to 95%. (P = 0.028). Average MR dropped by 7.5% (P = 0.025). In conclusion, application of the IABP during acute MR lowers aortic impedance, resulting in less MR and more output toward the aorta without changing left ventricular function.

  16. Comparing characteristics and clinical and echocardiographic outcomes in low-flow vs normal-flow severe aortic stenosis with preserved ejection fraction in an Asian population.

    PubMed

    Ngiam, Jinghao Nicholas; Tan, Benjamin Yong-Qiang; Sia, Ching-Hui; Lee, Glenn K M; Kong, William K F; Chan, Yiong-Huak; Poh, Kian-Keong

    2017-05-01

    In severe aortic stenosis (AS), deterioration of left ventricular ejection fraction (LVEF) to <50% is an AHA/ACC class I indication for valve replacement, regardless of symptoms. Controversy surrounds prognosis of low-flow AS compared to normal-flow, and no study has examined LVEF deterioration. We compared factors associated with LVEF deterioration (to <50%) and clinical outcomes. Consecutive subjects with low-flow (stroke volume index <35 mL/m 2 , n=56) and normal-flow (n=72) severe AS (aortic valve area <1 cm 2 ) with preserved LVEF (>50%) and with paired echocardiography were studied. Univariate and multivariate analyses identified factors associated with LVEF deterioration. Clinical outcomes were determined on follow-up for more than 5 years. Significant LVEF deterioration (to <50%) was seen in 18% of low-flow (initial LVEF 63±8% to 32±9%) and 18% of normal-flow AS (61±7% to 31±12%). Independent factors in low-flow AS were hypertension (OR: 30.7, 95% CI: 2.0-467.6, P=.014) and higher end-systolic wall stress (OR: 1.086, 95% CI: 1.022-1.153, P=.008), compared to normal-flow, which were hypertension (OR: 15.9, 95% CI: 3.1-81.9, P=.001), higher septal E/E' ratio (OR: 1.16, 95% CI: 1.01-1.35, P=.043), lower septal S' velocity (OR: 0.204, 95% CI: 0.061-0.682, P=.010), and higher end-systolic wall stress (OR: 1.051, 95% CI: 1.001-1.104, P=.047). Overall, a third of the cohort experienced MACE, regardless of flow (log-rank 0.048, P=.827). However, aortic valve replacement (AVR) rates were lower in low-flow AS (20% vs 43%, P=.005). Low-flow AS despite normal LVEF appears similar to normal-flow in terms of LVEF deterioration and clinical outcomes in our Asian population. AVR rate was lower even though low-flow may not reflect less severe disease. © 2017, Wiley Periodicals, Inc.

  17. Percutaneous Transcatheter Interventions for Aortic Insufficiency in Continuous-Flow Left Ventricular Assist Device Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Phan, Kevin; Haswell, Joshua M; Xu, Joshua; Assem, Yusuf; Mick, Stephanie L; Kapadia, Samir R; Cheung, Anson; Ling, Frederick S; Yan, Tristan D; Tchantchaleishvili, Vakhtang

    De novo progressive aortic insufficiency (AI) is a side effect frequently related to prolonged support with continuous-flow left ventricular assist devices (CF-LVAD). Its progression can result in recurrent clinical heart failure symptoms and significantly increased mortality. Recently, percutaneous intervention methods, such as transcatheter aortic valve replacement (TAVR) and percutaneous occluder devices, have emerged. However, given the very scarce global experience with these approaches, evidence in the literature is lacking. We sought to assess the outcomes of CF-LVAD patients who had undergone percutaneous intervention for AI. A systematic search of six databases from inception to April 2016 was performed by two independent reviewers. Eligible studies were those that included series or cases where patients had percutaneous transcatheter interventions for AI in CF-LVAD patients. Data were extracted and meta-analyzed from the identified studies. A total of 29 patients from 15 published studies and 3 unpublished records were included in the analysis. Mean patient age was 56.6 ± 13.7 years, and 72.4% were male. The etiology of heart failure resulting in LVAD placement was ischemic cardiomyopathy in 17.2%. The two intervention groups were TAVR (27.6%) and occluder devices (72.4%). A transfemoral approach (69%), apical approach (10%), brachial approach (7%), subclavian approach (3%), and mini-sternotomy (3%) were used. The preintervention AI grade was severe with a median grade of 4 (interquartile range, 4-4). Postoperatively, the AI grade improved significantly to a median grade of 0 (0-2). At long-term follow-up AI grade was still trivial with a median AI grade of 1 (0-1). Subgrouping the treatments into the occluder device and TAVR, it was found that both interventional techniques were similarly effective in reducing the AI grade from severe to trivial. In terms of complications, from the occluder group, two patients were complicated with device migration

  18. Aortic valve surgery - open

    MedlinePlus

    ... and into a large blood vessel called the aorta. The aortic valve separates the heart and aorta. The aortic valve opens so blood can flow ... to be able to see your heart and aorta. You may need to be connected to a ...

  19. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.

    PubMed

    Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A

    2016-03-01

    The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan

  20. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  1. Aortic valve stenosis and aortic diameters determine the extent of increased wall shear stress in bicuspid aortic valve disease.

    PubMed

    Farag, Emile S; van Ooij, Pim; Planken, R Nils; Dukker, Kayleigh C P; de Heer, Frederiek; Bouma, Berto J; Robbers-Visser, Danielle; Groenink, Maarten; Nederveen, Aart J; de Mol, Bas A J M; Kluin, Jolanda; Boekholdt, S Matthijs

    2018-02-16

    Use of 4-dimensional flow magnetic resonance imaging (4D-flow MRI) derived wall shear stress (WSS) heat maps enables identification of regions in the ascending aorta with increased WSS. These regions are subject to dysregulation of the extracellular matrix and elastic fiber degeneration, which is associated with aortic dilatation and dissection. To evaluate the effect of the presence of aortic valve stenosis and the aortic diameter on the peak WSS and surface area of increased WSS in the ascending aorta. Prospective. In all, 48 bicuspid aortic valve (BAV) patients (38.1 ± 12.4 years) and 25 age- and gender-matched healthy individuals. Time-resolved 3D phase contrast MRI with three-directional velocity encoding at 3.0T. Peak systolic velocity, WSS, and aortic diameters were assessed in the ascending aorta and 3D heat maps were used to identify regions with elevated WSS. Comparisons between groups were performed by t-tests. Correlations were investigated by univariate and multivariate regression analysis. Elevated WSS was present in 15 ± 11% (range; 1-35%) of the surface area of the ascending aorta of BAV patients with aortic valve stenosis (AS) (n = 10) and in 6 ± 8% (range; 0-31%) of the ascending aorta of BAV patients without AS (P = 0.005). The mid-ascending aortic diameter negatively correlated with the peak ascending aortic WSS (R = -0.413, P = 0.004) and the surface area of elevated WSS (R = -0.419, P = 0.003). Multivariate linear regression analysis yielded that the height of peak WSS and the amount of elevated WSS depended individually on the presence of aortic valve stenosis and the diameter of the ascending aorta. The extent of increased WSS in the ascending aorta of BAV patients depends on the presence of aortic valve stenosis and aortic dilatation and is most pronounced in the presence of AS and a nondilated ascending aorta. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 The Authors Journal of

  2. Increase in coronary blood flow by intra-aortic balloon counterpulsation in a porcine model of myocardial reperfusion.

    PubMed

    Bonios, Michael J; Pierrakos, Charalampos N; Argiriou, Michael; Dalianis, Argirios; Terrovitis, John V; Dolou, Paraskevi; Drakos, Stavros G; Koudoumas, Dimitrios; Charitos, Christos E; Anastasiou-Nana, Maria I

    2010-02-04

    Studies of the IABP have reported variable effects on coronary blood flow (CBF). The purpose of the present study was to measure the changes in coronary blood flow induced by intra-aortic balloon pump (IABP) counterpulsation in normal and reperfused porcine myocardium. A 30-ml IABP was placed in the descending aorta of 6 open-chest pigs. Each pig underwent occlusion of the mid-left anterior descending (LAD) coronary artery for 1 h, followed by reperfusion for 2 h. The effects of IABP support on systolic aortic pressure (SAP) and aortic end-diastolic pressure were recorded. The mean CBF, distal to the LAD occlusion site was measured at baseline and during reperfusion, with and without IABP counterpulsation. The IABP decreased SAP and aortic end-diastolic pressure in normal and reperfused myocardium, and maintained a peak aortic diastolic augmentation at the level of SAP. In normal myocardium, the IABP decreased mean CBF by 8.4+/-2.2% (p<0.001). At 2, 15, 30, 60, 90 and 120 min of reperfusion, the IABP increased mean CBF by 11.5+/-6.8%, 8.0+/-7.0%, 11.2+/-6.9%, 12.4+/-12.9%, 23.5+/-9.9% and 8.9+/-6.9%, of the corresponding value without the assistance of the IABP (all p<0.05). In the normal heart, IABP counterpulsation decreased CBF, probably because of a decrease in myocardial oxygen demand from a decreased afterload. During reperfusion the IABP increased CBF, suggesting that it might effectively mitigate the no-reflow phenomenon. Copyright 2008 Elsevier Ireland Ltd. All rights reserved.

  3. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  4. Severe aortic stenosis patients with preserved ejection fraction according to flow and gradient classification: Prevalence and outcomes.

    PubMed

    González Gómez, Ariana; Fernández-Golfín, Covadonga; Monteagudo, Juan Manuel; Izurieta, Carlos; Hinojar, Rocío; García, Ana; Casas, Eduardo; Jiménez-Nacher, José Julio; Moya, José Luis; Ruiz, Soledad; Zamorano, José Luis

    2017-12-01

    Clinicians often encounter patients with apparently discordant echocardiographic findings, severe aortic stenosis (SAS) defined by aortic valve area (AVA) despite a low mean gradient. A new classification according to flow state and pressure gradient has been proposed. We sought to assess the prevalence, characteristics and outcomes of patients with asymptomatic SAS with preserved left-ventricular ejection fraction (LVEF) according to flow and gradient. In total 442 patients with SAS (AVAi<0.6 cm2/m2) and LVEF ≥50% (mean age 80+11years, 54,5% female) were included. Patients were classified according to flow state (≥ or <35ml/m 2 ) and mean pressure gradient (≥ or <40mmHg): Low Flow/Low Gradient (LF/LG): 21.3%(n=94); Normal Flow/Low Gradient (NF/LG): 32.1%(n=142); Low Flow/High Gradient (LF/HG): 6.8%(n=30); Normal Flow/High Gradient (NF/HG): 39,8%(n=176). Mean follow-up time was 20.5months (SD=10.3). Primary combined endpoint was cardiovascular mortality and hospital admission for SAS related symptom, secondary endpoint was aortic valve replacement (AVR), comparing HG group to LF/LG group. During follow-up 17 (18%) of LF/LG patients and 21 (10.2%) of HG patients met the primary endpoint. A lower free of event survival (cardiovascular mortality and hospital admission) was observed in patients with LF/LG AS (Breslow, p=0.002). Significant differences were noted between groups with a lower AVR free survival in the LF/LG group compared to HG groups (Breslow, p=0.002). Our study confirms the high prevalence and worse prognosis of LF/LG SAS. Clinicians must be aware of this entity to ensure appropriate patient management. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  5. Computational analysis of an aortic valve jet

    NASA Astrophysics Data System (ADS)

    Shadden, Shawn C.; Astorino, Matteo; Gerbeau, Jean-Frédéric

    2009-11-01

    In this work we employ a coupled FSI scheme using an immersed boundary method to simulate flow through a realistic deformable, 3D aortic valve model. This data was used to compute Lagrangian coherent structures, which revealed flow separation from the valve leaflets during systole, and correspondingly, the boundary between the jet of ejected fluid and the regions of separated, recirculating flow. Advantages of computing LCS in multi-dimensional FSI models of the aortic valve are twofold. For one, the quality and effectiveness of existing clinical indices used to measure aortic jet size can be tested by taking advantage of the accurate measure of the jet area derived from LCS. Secondly, as an ultimate goal, a reliable computational framework for the assessment of the aortic valve stenosis could be developed.

  6. Eight-year results of aortic root replacement with the freestyle stentless porcine aortic root bioprosthesis.

    PubMed

    Kon, Neal D; Riley, Robert D; Adair, Sandy M; Kitzman, Dalane W; Cordell, A Robert

    2002-06-01

    Stentless porcine aortic valves offer several advantages over traditional valves. Among these are superior hemodynamics, laminar flow patterns, lack of need for anticoagulation, and perhaps improved durability. One hundred four patients were operated on from September 17, 1992, to October 31, 1997, as part of a multicenter worldwide investigation of the Medtronic Freestyle stentless porcine bioprosthesis. All patients received a total aortic root replacement. The patients were evaluated postoperatively at discharge, at 3 to 6 months, and yearly by clinical examination and color flow Doppler echocardiography. Operative mortality was 3.9%. No patient experienced structural valve deterioration, nonstructural deterioration, perivalvular leak, or unacceptable hemodynamic performance. At 8 years, survival was 59.8%. Freedom from thromboembolic complications was 83.3%. Freedom from postoperative endocarditis was 96.9%. Freedom from reoperation was 100%. Mean systolic gradients did not change over the time period studied. They were 6.4 +/- 3.8 mm Hg at 1 year and 6.7 +/- 2.6 mm Hg at 8 years. Correspondingly, effective orifice area was 1.9 +/- 0.7 cm2 at 1 year and 1.8 +/- 0.8 cm2 at 8 years. The incidence of any aortic insufficiency also did not change over the length of follow-up. At 1 year, 98% of patients had no or trivial aortic insufficiency and 2% had mild aortic insufficiency. At 8 years, 100% of patients evaluated were free of any aortic insufficiency. The Medtronic Freestyle aortic root bioprosthesis can be used safely to replace the aortic root or aortic valve for aortic valve and aortic root pathology. Total root replacement allows optimal hemodynamic performance with no significant aortic regurgitation. Results up to 8 years show excellent survival and no signs of degeneration. Further follow-up is still needed to determine valve durability.

  7. Transcatheter valve implantation can alter fluid flow fields in aortic sinuses and ascending aorta

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yoganathan, Ajit

    2012-11-01

    Transcatheter aortic valves (TAVs) are valve replacements used to treat aortic stenosis. Currently, these have been used in elderly patients at high-risk for open-heart procedures. Since these devices are implanted under fluoroscopic guidance, the implantation position of the valve can vary with respect to the native aortic valve annulus. The current study characterizes the altered hemodynamics in the aortic sinus and ascending aorta under different implantation (high and low) and cardiac output (2.5 and 5.0 L/min) conditions. Two commonly used TAV designs are studied using 2-D Particle Image Velocimetry (PIV). 200 phase locked images are obtained at every 25ms in the cardiac cycle, and the resulting vector fields are ensemble averaged. High implantation of the TAV with respect to the annulus causes weaker sinus washout and weaker sinus vortex formation. Additionally, the longer TAV leaflets can also result in a weaker sinus vortex. The level of turbulent fluctuations in the ascending aorta did not appear to be affected by axial positioning of the valve, but varied with cardiac output. The results of this study indicates that TAV positioning is important to be considered clinically, since this can affect coronary perfusion and potential flow stagnation near the valve.

  8. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.

    PubMed

    Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J

    2017-03-01

    Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.

  9. Difference in hemodynamic and wall stress of ascending thoracic aortic aneurysms with bicuspid and tricuspid aortic valve

    PubMed Central

    Pasta, Salvatore; Rinaudo, Antonino; Luca, Angelo; Pilato, Michele; Scardulla, Cesare; Gleason, Thomas G.; Vorp, David A.

    2014-01-01

    The aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) initiates when the hemodynamic loads exerted on the aneurysmal wall overcome the adhesive forces holding the elastic layers together. Parallel coupled, two-way fluid–structure interaction (FSI) analyses were performed on patient-specific ATAAs obtained from patients with either bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) to evaluate hemodynamic predictors and wall stresses imparting aneurysm enlargement and AoD. Results showed a left-handed circumferential flow with slower-moving helical pattern in the aneurysm's center for BAV ATAAs whereas a slight deviation of the blood flow toward the anterolateral region of the ascending aorta was observed for TAV ATAAs. Blood pressure and wall shear stress were found key hemodynamic predictors of aneurysm dilatation, and their dissimilarities are likely associated to the morphological anatomy of the aortic valve. We also observed discontinues, wall stresses on aneurysmal aorta, which was modeled as a composite with two elastic layers (i.e., inhomogeneity of vessel structural organization). This stress distribution was caused by differences on elastic material properties of aortic layers. Wall stress distribution suggests AoD just above sinotubular junction. Moreover, abnormal flow and lower elastic material properties that are likely intrinsic in BAV individuals render the aneurysm susceptible to the initiation of AoD. PMID:23664314

  10. Scan-rescan reproducibility of segmental aortic wall shear stress as assessed by phase-specific segmentation with 4D flow MRI in healthy volunteers.

    PubMed

    van der Palen, Roel L F; Roest, Arno A W; van den Boogaard, Pieter J; de Roos, Albert; Blom, Nico A; Westenberg, Jos J M

    2018-05-26

    The aim was to investigate scan-rescan reproducibility and observer variability of segmental aortic 3D systolic wall shear stress (WSS) by phase-specific segmentation with 4D flow MRI in healthy volunteers. Ten healthy volunteers (age 26.5 ± 2.6 years) underwent aortic 4D flow MRI twice. Maximum 3D systolic WSS (WSSmax) and mean 3D systolic WSS (WSSmean) for five thoracic aortic segments over five systolic cardiac phases by phase-specific segmentations were calculated. Scan-rescan analysis and observer reproducibility analysis were performed. Scan-rescan data showed overall good reproducibility for WSSmean (coefficient of variation, COV 10-15%) with moderate-to-strong intraclass correlation coefficient (ICC 0.63-0.89). The variability in WSSmax was high (COV 16-31%) with moderate-to-good ICC (0.55-0.79) for different aortic segments. Intra- and interobserver reproducibility was good-to-excellent for regional aortic WSSmax (ICC ≥ 0.78; COV ≤ 17%) and strong-to-excellent for WSSmean (ICC ≥ 0.86; COV ≤ 11%). In general, ascending aortic segments showed more WSSmax/WSSmean variability compared to aortic arch or descending aortic segments for scan-rescan, intraobserver and interobserver comparison. Scan-rescan reproducibility was good for WSSmean and moderate for WSSmax for all thoracic aortic segments over multiple systolic phases in healthy volunteers. Intra/interobserver reproducibility for segmental WSS assessment was good-to-excellent. Variability of WSSmax is higher and should be taken into account in case of individual follow-up or in comparative rest-stress studies to avoid misinterpretation.

  11. Effects of Restoration of Blood Flow on the Development of Aortic Atherosclerosis in ApoE-/- Mice With Unilateral Renal Artery Stenosis.

    PubMed

    Pathak, Alokkumar S; Huang, Jianhua; Rojas, Mauricio; Bazemore, Taylor C; Zhou, Ruihai; Stouffer, George A

    2016-04-03

    Chronic unilateral renal artery stenosis (RAS) causes accelerated atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice, but effects of restoration of renal blood flow on aortic atherosclerosis are unknown. Male ApoE(-/-) mice underwent sham surgery (n=16) or had partial ligation of the right renal artery (n=41) with the ligature being removed 4 days later (D4LR; n=6), 8 days later (D8LR; n=11), or left in place for 90 days (chronic RAS; n=24). Ligature removal at 4 or 8 days resulted in improved renal blood flow, decreased plasma angiotensin II levels, a return of systolic blood pressure to baseline, and increased plasma levels of neutrophil gelatinase associated lipocalin. Chronic RAS resulted in increased lipid staining in the aortic arch (33.2% [24.4, 47.5] vs 11.6% [6.1, 14.2]; P<0.05) and descending thoracic aorta (10.2% [6.4, 25.9] vs 4.9% [2.8, 7.8]; P<0.05), compared to sham surgery. There was an increased amount of aortic arch lipid staining in the D8LR group (22.7% [22.1, 32.7]), compared to sham-surgery, but less than observed with chronic RAS. Lipid staining in the aortic arch was not increased in the D4LR group, and lipid staining in the descending aorta was not increased in either the D8LR or D4LR groups. There was less macrophage expression in infrarenal aortic atheroma in the D4LR and D8LR groups compared to the chronic RAS group. Restoration of renal blood flow at either 4 or 8 days after unilateral RAS had a beneficial effect on systolic blood pressure, aortic lipid deposition, and atheroma inflammation. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  12. Implementation of visual data mining for unsteady blood flow field in an aortic aneurysm.

    PubMed

    Morizawa, Seiichiro; Shimoyama, Koji; Obayashi, Shigeru; Funamoto, Kenichi; Hayase, Toshiyuki

    2011-12-01

    This study was performed to determine the relations between the features of wall shear stress and aneurysm rupture. For this purpose, visual data mining was performed in unsteady blood flow simulation data for an aortic aneurysm. The time-series data of wall shear stress given at each grid point were converted to spatial and temporal indices, and the grid points were sorted using a self-organizing map based on the similarity of these indices. Next, the results of cluster analysis were mapped onto the real space of the aortic aneurysm to specify the regions that may lead to aneurysm rupture. With reference to previous reports regarding aneurysm rupture, the visual data mining suggested specific hemodynamic features that cause aneurysm rupture. GRAPHICAL ABSTRACT:

  13. [Blood flow analysis in the left coronary artery in a patient with annulo-aortic-ectasia before and after Bentall's operation].

    PubMed

    Kondo, Y; Hanya, S; Hiyama, T; Ishihara, A

    1990-12-01

    It has not been established that Bentall's operation induces beneficial effect on a coronary circulation in a patient with Annulo-Aortic-Ectasia. Availability of a small subselective coronary Doppler catheter makes it possible to study the effects of the operation on coronary circulation. In a 49 year old man with Annulo-Aortic-Ectasia, phasic coronary flow velocity in the left main truncus was measured using a 3F steerable Doppler catheter (DC-101, Millar Inc.) pre- and postoperatively with assessment of vasodilator reserve capacity of individual coronary arteries. After the operation, the velocity wave form in the LMT changed to a diastolic-predominant normal pattern with a relatively small systolic component. That is, Bentall's operation caused a marked reduction of systolic- to diastolic flow component ratio from 0.32 to 0.19. The postoperative coronary flow configuration in the LMT was characterized by the presence of predominant diastolic spike. It coincided with "Water hammer wave" in the aortic pressure tracings caused by sudden closing of mechanical valve leaflets. Preoperative intracoronary papaverine increased the ratio of peak to resting velocity (coronary flow reserve) to 2.0 times at the rest, and 3.0 times after the operation. These results suggest that Bentall's operation seems to induce beneficial effect on the myocardial coronary circulation.

  14. Paradoxical low-flow aortic stenosis is defined by increased ventricular hydraulic load and reduced longitudinal strain.

    PubMed

    Holmes, Anthony A; Taub, Cynthia C; Garcia, Mario J; Shan, Jian; Slovut, David P

    2017-02-01

    Patients with paradoxical low-flow severe aortic stenosis (PLF-AS) reportedly have higher left ventricular hydraulic load and more systolic strain dysfunction than patients with normal-flow aortic stenosis. This study investigates the relationship of systolic loading and strain to PLF-AS to further define its pathophysiology. One hundred and twenty patients (age 79 ± 12 years, 37% men) with an indexed aortic valve area (AVAi) of 0.6 cm/m or less and an ejection fraction of 50% or higher were divided into two groups based on indexed stroke volume (SVi): PLF-AS, SVi ≤ 35 ml/m, N = 46; normal-flow aortic stenosis, SVi > 35 ml/m, N = 74). Valvular and arterial load were assessed using multiple measurements, and strain was assessed using speckle-tracking echocardiography. Patients with PLF-AS were found to have more valvular load (lower AVAi, P = 0.028; lower energy loss coefficient, P = 0.001), more arterial load [decreased arterial compliance and increased systemic vascular resistance (SVR), both P < 0.001] and more total hydraulic load [increased valvuloarterial impedance (Zva), P < 0.001]. Transvalvular gradients and arterial pressures were similar. Longitudinal strain was lower in PLF-AS (P < 0.001), but circumferential and rotation strains were similar. On adjusted regression, AVAi, SVR and longitudinal strain were associated with PLF-AS [odds ratio (OR) = 1.34, P = 0.043; OR = 1.31, P = 0.004; OR = 1.34, P = 0.011, respectively]. When SVR and AVAi were replaced with Zva, longitudinal strain and Zva (OR = 1.38, P = 0.015; OR = 1.33, P < 0.001 for both, respectively) were associated with PLF-AS. Increased hydraulic load, from more severe valvular stenosis and increased vascular resistance, and longitudinal strain impairment are associated with PLF-AS and their interplay is likely fundamental to its pathophysiology.

  15. The effect of inlet boundary conditions in image-based CFD modeling of aortic flow

    NASA Astrophysics Data System (ADS)

    Madhavan, Sudharsan; Kemmerling, Erica Cherry

    2016-11-01

    CFD of cardiovascular flow is a growing and useful field, but simulations are subject to a number of sources of uncertainty which must be quantified. Our work focuses on the uncertainty introduced by the selection of inlet boundary conditions in an image-based, patient-specific model of the aorta. Specifically, we examined the differences between plug flow, fully developed parabolic flow, linear shear flows, skewed parabolic flow profiles, and Womersley flow. Only the shape of the inlet velocity profile was varied-all other parameters were held constant between simulations, including the physiologically realistic inlet flow rate waveform and outlet flow resistance. We found that flow solutions with different inlet conditions did not exhibit significant differences beyond 1 . 75 inlet diameters from the aortic root. Time averaged wall shear stress (TAWSS) was also calculated. The linear shear velocity boundary condition solution exhibited the highest spatially averaged TAWSS, about 2 . 5 % higher than the fully developed parabolic velocity boundary condition, which had the lowest spatially averaged TAWSS.

  16. Effective regurgitant orifice area by the color Doppler flow convergence method for evaluating the severity of chronic aortic regurgitation. An animal study.

    PubMed

    Shiota, T; Jones, M; Yamada, I; Heinrich, R S; Ishii, M; Sinclair, B; Holcomb, S; Yoganathan, A P; Sahn, D J

    1996-02-01

    The aim of the present study was to evaluate dynamic changes in aortic regurgitant (AR) orifice area with the use of calibrated electromagnetic (EM) flowmeters and to validate a color Doppler flow convergence (FC) method for evaluating effective AR orifice area and regurgitant volume. In 6 sheep, 8 to 20 weeks after surgically induced AR, 22 hemodynamically different states were studied. Instantaneous regurgitant flow rates were obtained by aortic and pulmonary EM flowmeters balanced against each other. Instantaneous AR orifice areas were determined by dividing these actual AR flow rates by the corresponding continuous wave velocities (over 25 to 40 points during each diastole) matched for each steady state. Echo studies were performed to obtain maximal aliasing distances of the FC in a low range (0.20 to 0.32 m/s) and a high range (0.70 to 0.89 m/s) of aliasing velocities; the corresponding maximal AR flow rates were calculated using the hemispheric flow convergence assumption for the FC isovelocity surface. AR orifice areas were derived by dividing the maximal flow rates by the maximal continuous wave Doppler velocities. AR orifice sizes obtained with the use of EM flowmeters showed little change during diastole. Maximal and time-averaged AR orifice areas during diastole obtained by EM flowmeters ranged from 0.06 to 0.44 cm2 (mean, 0.24 +/- 0.11 cm2) and from 0.05 to 0.43 cm2 (mean, 0.21 +/- 0.06 cm2), respectively. Maximal AR orifice areas by FC using low aliasing velocities overestimated reference EM orifice areas; however, at high AV, FC predicted the reference areas more reliably (0.25 +/- 0.16 cm2, r = .82, difference = 0.04 +/- 0.07 cm2). The product of the maximal orifice area obtained by the FC method using high AV and the velocity time integral of the regurgitant orifice velocity showed good agreement with regurgitant volumes per beat (r = .81, difference = 0.9 +/- 7.9 mL/beat). This study, using strictly quantified AR volume, demonstrated little change

  17. Fluid dynamics of aortic valve stenosis

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Maftoon, Nima

    2009-11-01

    Aortic valve stenosis, which causes considerable constriction of the flow passage, is one of the most frequent cardiovascular diseases and is the most common cause of the valvular replacements which take place for around 100,000 per year in North America. Furthermore, it is considered as the most frequent cardiac disease after arterial hypertension and coronary artery disease. The objective of this study is to develop an analytical model considering the coupling effect between fluid flow and elastic deformation with reasonable boundary conditions to describe the effect of AS on the left ventricle and the aorta. The pulsatile and Newtonian blood flow through aortic stenosis with vascular wall deformability is analyzed and its effects are discussed in terms of flow parameters such as velocity, resistance to flow, shear stress distribution and pressure loss. Meanwhile we developed analytical expressions to improve the comprehension of the transvalvular hemodynamics and the aortic stenosis hemodynamics which is of great interest because of one main reason. To medical scientists, an accurate knowledge of the mechanical properties of whole blood flow in the aorta can suggest a new diagnostic tool.

  18. Aortic isthmus and cardiac monitoring of the growth-restricted fetus.

    PubMed

    Acharya, Ganesh; Tronnes, Ashlie; Rasanen, Juha

    2011-03-01

    Aortic isthmus acts as an arterial watershed between the cerebral and placental circulations, connecting 2 parallel fetal ventricular pumps. It plays a crucial role in the fetal circulatory dynamics. Information about aortic isthmus blood flow may improve the management of sick fetuses. However, perceived technical difficulties limit the clinical use of aortic isthmus Doppler for fetal hemodynamic monitoring. Changes in aortic isthmus blood flow pattern seem to reflect fetal cardiovascular status accurately and predict perinatal and long-term neurodevelopmental outcome in intrauterine growth restriction. This review evaluates the available scientific information and discusses the role of aortic isthmus in fetal circulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Continuous sedation-analgesia delays diagnosis of compartment syndrome in a patient with intra-aortic balloon pump.

    PubMed

    Barkhordari, Khosro; Yousefshahi, Fardin; Khajavi, Mohammad Reza; Karimi, Abbasali

    2012-06-01

    Compartment syndrome is a rare, devastating complication of coronary artery bypass grafting (CABG) and intra-aortic balloon pump (IABP). Prompt diagnosis is based on symptoms and signs and is paramount for limb rescue. This report describes a CABG patient with IABP in whom receiving continuous analgesia-sedation obscured the symptoms of compartment syndrome.

  20. Aortic valve bypass surgery in severe aortic valve stenosis: Insights from cardiac and brain magnetic resonance imaging.

    PubMed

    Mantini, Cesare; Caulo, Massimo; Marinelli, Daniele; Chiacchiaretta, Piero; Tartaro, Armando; Cotroneo, Antonio Raffaele; Di Giammarco, Gabriele

    2018-04-13

    To investigate and describe the distribution of aortic and cerebral blood flow (CBF) in patients with severe valvular aortic stenosis (AS) before and after aortic valve bypass (AVB) surgery. We enrolled 10 consecutive patients who underwent AVB surgery for severe AS. Cardiovascular magnetic resonance imaging (CMR) and brain magnetic resonance imaging were performed as baseline before surgery and twice after surgery. Quantitative flow measurements were obtained using 1.5-T magnetic resonance imaging (MRI) scanner phase-contrast images of the ascending aorta, descending thoracic aorta (3 cm proximally and distally from the conduit-to-aorta anastomosis), and ventricular outflow portion of the conduit. The evaluation of CBF was performed using 3.0-T MRI scanner arterial spin labeling (ASL) through sequences acquired at the gray matter, dorsal default-mode network, and sensorimotor levels. Conduit flow, expressed as the percentage of total antegrade flow through the conduit, was 63.5 ± 8% and 67.8 ± 7% on early and mid-term postoperative CMR, respectively (P < .05). Retrograde perfusion from the level of the conduit insertion in the descending thoracic aorta toward the aortic arch accounted for 6.9% of total cardiac output and 11% of total conduit flow. We did not observe any significant reduction in left ventricular stroke volume at postoperative evaluation compared with preoperative evaluation (P = .435). No differences were observed between preoperative and postoperative CBF at the gray matter, dorsal default-mode network, and sensorimotor levels (P = .394). After AVB surgery in patients with severe AS, cardiac output is split between the native left ventricular outflow tract and the apico-aortic bypass, with two-thirds of the total antegrade flow passing through the latter and one-third passing through the former. In our experience, CBF assessment confirms that the flow redistribution does not jeopardize cerebral blood supply. Copyright © 2018 The

  1. Vortex dynamics in Patient-Specific Stenotic Tricuspid and Bicuspid Aortic Valves pre- and post- Trans-catheter Aortic Valve Replacement

    NASA Astrophysics Data System (ADS)

    Hatoum, Hoda; Dasi, Lakshmi Prasad

    2017-11-01

    Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.

  2. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship.

    PubMed

    Mitchell, Gary F; Lacourcière, Yves; Ouellet, Jean-Pascal; Izzo, Joseph L; Neutel, Joel; Kerwin, Linda J; Block, Alan J; Pfeffer, Marc A

    2003-09-30

    Elevated pulse pressure (PP) is associated with increased cardiovascular risk and is thought to be secondary to elastin fragmentation with secondary collagen deposition and stiffening of the aortic wall, leading to a dilated, noncompliant vasculature. By use of calibrated tonometry and pulsed Doppler, arterial stiffness and pulsatile hemodynamics were assessed in 128 subjects with uncomplicated systolic hypertension (supine systolic pressure > or =140 mm Hg off medication) and 30 normotensive control subjects of comparable age and gender. Pulse-wave velocity was assessed from tonometry and body surface measurements. Characteristic impedance (Zc) was calculated from the ratio of change in carotid pressure and aortic flow in early systole. Effective aortic diameter was assessed by use of the water hammer equation. Hypertensives were heavier (P<0.001) and had higher PP (P<0.001), which was attributable primarily to higher Zc (P<0.001), especially in women. Pulse-wave velocity was higher in hypertensives (P=0.001); however, this difference was not significant after adjustment for differences in mean arterial pressure (MAP) (P>0.153), whereas increased Zc remained highly significant (P<0.001). Increased Zc in women and in hypertensive men was attributable to decreased effective aortic diameter, with no difference in wall stiffness at comparable MAP and body weight. Elevated PP in systolic hypertension was independent of MAP and was attributable primarily to elevated Zc and reduced effective diameter of the proximal aorta. These findings are not consistent with the hypothesis of secondary aortic degeneration, dilation, and wall stiffening but rather suggest that aortic function may play an active role in the pathophysiology of systolic hypertension.

  3. Doppler aortic flow velocity measurement in healthy children.

    PubMed Central

    Sohn, S.; Kim, H. S.

    2001-01-01

    To determine normal values for Doppler parameters of left ventricular function, ascending aortic blood flow velocity was measured by pulsed wave Doppler echocardiography in 63 healthy children with body surface area (BSA) < 1 m(2) (age < 10 yr). Peak velocity was independent of sex, but increased with body size. Mean acceleration was related to peak velocity (r = 0.75, p < 0.0001). Both stroke distance and ejection time had strong negative correlations with heart rate and positive correlations with BSA, suggesting that these parameters should be evaluated in relation to heart rate and body size. Mean intra- and interobserver variability for peak velocity, ejection time, stroke and minute distance ranged from 3 to 7%, whereas variability for acceleration time was 9 to 13%. These data may be used as reference values for the assessment of hemodynamic states in young children with cardiac disease. PMID:11306737

  4. Advances in aortic disease management: a year in review.

    PubMed

    Garg, Vinay; Ouzounian, Maral; Peterson, Mark D

    2016-03-01

    The medical and surgical management of aortic disease is continually changing in search for improved outcomes. Our objective is to highlight recent advances in a few select areas pertaining to aortic disease and aortic surgery: the genetics of aortopathy, medical therapy of aortic aneurysms, advances in cardiac imaging, and operative strategies for the aortic arch. As our understanding of the genetic basis for aortopathy continues to improve, routine genetic testing may be of value in assessing patients with genetically triggered forms of aortic disease. With regard to medical advances, treating patients with Marfan syndrome with either losartan or atenolol at an earlier stage in their disease course improves outcomes. In addition, novel imaging indices such as wall shear stress and aortic stiffness assessed by MRI may become useful markers of aortopathy and warrant further study. With regard to the optimal technique for cerebral perfusion in aortic arch surgery, high-quality data are still lacking. Finally, in patients with complex, multilevel aortic disease, the frozen elephant trunk is a viable single-stage option compared with the conventional elephant trunk, although with an increased risk for spinal cord injury. Based on recent advances, continued studies in genetics, cardiac imaging, and surgical trials will further elucidate the etiology of aortopathy and ultimately guide management, both medically and surgically.

  5. Apico-Aortic Conduit for severe aortic stenosis: Technique, applications, and systematic review

    PubMed Central

    Elmistekawy, Elsayed; Lapierre, Harry; Mesana, Thierry; Ruel, Marc

    2010-01-01

    Patients referred for aortic valve replacement are often elderly and may have increased surgical risk associated with ascending aortic calcification, left ventricular dysfunction, presence of coronary artery disease, previous surgery, and/or presence of several co-morbidities. Some of these patients may not be considered candidates for conventional surgery because of their high risk profile. While transcatheter aortic valve replacement constitutes a widely accepted alternative, some patients may not be eligible for this modality due to anatomic factors. Apico-Aortic Conduit (AAC) insertion (aortic valve bypass surgery) constitutes a possible option in those patients. Apico-Aortic Conduit is not a new technique, as it has been used for decades in both pediatric and adult populations. However, there is a resurging interest in this technique due to the expanding scope of elderly patients being considered for the treatment of aortic stenosis. Herein, we describe our surgical technique and provide a systematic review of recent publications on AAC insertion, reporting that there is continued use and several modifications of this technique, such as performing it through a small thoracotomy without the use of the cardiopulmonary bypass. PMID:23960619

  6. Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow

    PubMed Central

    Ha, Hojin; Ziegler, Magnus; Welander, Martin; Bjarnegård, Niclas; Carlhäll, Carl-Johan; Lindenberger, Marcus; Länne, Toste; Ebbers, Tino; Dyverfeldt, Petter

    2018-01-01

    Turbulent blood flow is implicated in the pathogenesis of several aortic diseases but the extent and degree of turbulent blood flow in the normal aorta is unknown. We aimed to quantify the extent and degree of turbulece in the normal aorta and to assess whether age impacts the degree of turbulence. 22 young normal males (23.7 ± 3.0 y.o.) and 20 old normal males (70.9 ± 3.5 y.o.) were examined using four dimensional flow magnetic resonance imaging (4D Flow MRI) to quantify the turbulent kinetic energy (TKE), a measure of the intensity of turbulence, in the aorta. All healthy subjects developed turbulent flow in the aorta, with total TKE of 3–19 mJ. The overall degree of turbulence in the entire aorta was similar between the groups, although the old subjects had about 73% more total TKE in the ascending aorta compared to the young subjects (young = 3.7 ± 1.8 mJ, old = 6.4 ± 2.4 mJ, p < 0.001). This increase in ascending aorta TKE in old subjects was associated with age-related dilation of the ascending aorta which increases the volume available for turbulence development. Conversely, age-related dilation of the descending and abdominal aorta decreased the average flow velocity and suppressed the development of turbulence. In conclusion, turbulent blood flow develops in the aorta of normal subjects and is impacted by age-related geometric changes. Non-invasive assessment enables the determination of normal levels of turbulent flow in the aorta which is a prerequisite for understanding the role of turbulence in the pathophysiology of cardiovascular disease. PMID:29422871

  7. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Dispersive aortic cannulas reduce aortic wall shear stress affecting atherosclerotic plaque embolization.

    PubMed

    Assmann, Alexander; Gül, Fethi; Benim, Ali Cemal; Joos, Franz; Akhyari, Payam; Lichtenberg, Artur

    2015-03-01

    Neurologic complications during on-pump cardiovascular surgery are often induced by mobilization of atherosclerotic plaques, which is directly related to enhanced wall shear stress. In the present study, we numerically evaluated the impact of dispersive aortic cannulas on aortic blood flow characteristics, with special regard to the resulting wall shear stress profiles. An idealized numerical model of the human aorta and its branches was created and used to model straight as well as bent dispersive aortic cannulas with meshlike tips inserted in the distal ascending aorta. Standard cannulas with straight beveled or bent tips served as controls. Using a recently optimized computing method, simulations of pulsatile and nonpulsatile extracorporeal circulation were performed. Dispersive aortic cannulas reduced the maximum and average aortic wall shear stress values to approximately 50% of those with control cannulas, while the difference in local values was even larger. Moreover, under pulsatile circulation, dispersive cannulas shortened the time period during which wall shear stress values were increased. The turbulent kinetic energy was also diminished by utilizing dispersive cannulas, reducing the risk of hemolysis. In summary, dispersive aortic cannulas decrease aortic wall shear stress and turbulence during extracorporeal circulation and may therefore reduce the risk of endothelial and blood cell damage as well as that of neurologic complications caused by atherosclerotic plaque mobilization. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography.

    PubMed

    Defrance, Carine; Bollache, Emilie; Kachenoura, Nadjia; Perdrix, Ludivine; Hrynchyshyn, Nataliya; Bruguière, Eric; Redheuil, Alban; Diebold, Benoit; Mousseaux, Elie

    2012-09-01

    Accurate quantification of aortic valve stenosis (AVS) is needed for relevant management decisions. However, transthoracic Doppler echocardiography (TTE) remains inconclusive in a significant number of patients. Previous studies demonstrated the usefulness of phase-contrast cardiovascular magnetic resonance (PC-CMR) in noninvasive AVS evaluation. We hypothesized that semiautomated analysis of aortic hemodynamics from PC-CMR might provide reproducible and accurate evaluation of aortic valve area (AVA), aortic velocities, and gradients in agreement with TTE. We studied 53 AVS patients (AVA(TTE)=0.87±0.44 cm(2)) and 21 controls (AVA(TTE)=2.96±0.59 cm(2)) who had TTE and PC-CMR of aortic valve and left ventricular outflow tract on the same day. PC-CMR data analysis included left ventricular outflow tract and aortic valve segmentation, and extraction of velocities, gradients, and flow rates. Three AVA measures were performed: AVA(CMR1) based on Hakki formula, AVA(CMR2) based on continuity equation, AVA(CMR3) simplified continuity equation=left ventricular outflow tract peak flow rate/aortic peak velocity. Our analysis was reproducible, as reflected by low interoperator variability (<4.56±4.40%). Comparison of PC-CMR and TTE aortic peak velocities and mean gradients resulted in good agreement (r=0.92 with mean bias=-29±62 cm/s and r=0.86 with mean bias=-12±15 mm Hg, respectively). Although good agreement was found between TTE and continuity equation-based CMR-AVA (r>0.94 and mean bias=-0.01±0.38 cm(2) for AVA(CMR2), -0.09±0.28 cm(2) for AVA(CMR3)), AVA(CMR1) values were lower than AVA(TTE) especially for higher AVA (mean bias=-0.45±0.52 cm(2)). Besides, ability of PC-CMR to detect severe AVS, defined by TTE, provided the best results for continuity equation-based methods (accuracy >94%). Our PC-CMR semiautomated AVS evaluation provided reproducible measurements that accurately detected severe AVS and were in good agreement with TTE.

  10. Aortic Disease in the Young: Genetic Aneurysm Syndromes, Connective Tissue Disorders, and Familial Aortic Aneurysms and Dissections

    PubMed Central

    Cury, Marcelo; Zeidan, Fernanda; Lobato, Armando C.

    2013-01-01

    There are many genetic syndromes associated with the aortic aneurysmal disease which include Marfan syndrome (MFS), Ehlers-Danlos syndrome (EDS), Loeys-Dietz syndrome (LDS), familial thoracic aortic aneurysms and dissections (TAAD), bicuspid aortic valve disease (BAV), and autosomal dominant polycystic kidney disease (ADPKD). In the absence of familial history and other clinical findings, the proportion of thoracic and abdominal aortic aneurysms and dissections resulting from a genetic predisposition is still unknown. In this study, we propose the review of the current genetic knowledge in the aortic disease, observing, in the results that the causative genes and molecular pathways involved in the pathophysiology of aortic aneurysm disease remain undiscovered and continue to be an area of intensive research. PMID:23401778

  11. Time course of pressure and flow in ascending aorta during ejection.

    PubMed

    Perlini, S; Soldà, P L; Piepoli, M; Calciati, A; Paro, M; Marchetti, G; Meno, F; Finardi, G; Bernardi, L

    1991-02-01

    To analyze aortic flow and pressure relationships, 10 closed-chest anaesthetised dogs were instrumented with electromagnetic aortic flow probes and micromanometers in the left ventricle and ascending aorta. Left ventricular ejection time was divided into: time to peak flow (T1) (both pressure and flow rising), peak flow to peak pressure time (T2) (pressure rising, flow decreasing), and peak pressure to dicrotic notch time (T3) (pressure and flow both decreasing). These time intervals were expressed as percent of total ejection time. Load-active interventions rose markedly T2 (from 4.2 +/- 5.5 to 19.4 +/- 3.5 after phenylephrine (p less than 0.02); from 4.2 +/- 6.5 to 21.2 +/- 5.3 after dextran (p less than 0.02)). Conversely, dobutamine reduced T2 from 4.4 +/- 5.9 to -2.5 +/- 6.5 (p less than 0.05). Thus, during load-active interventions aortic pressure increases for a longer T2 time although forward flow is decreasing, as a result of higher aortic elastic recoil during ejection. Conversely, beta 1-adrenergic stimulation significantly shortens T2. Dynamic pressure-flow relationship is thus continuously changing during ejection. T2 seems to be inversely related to the efficiency of left ventricular ejection dynamics.

  12. Totally normothermic aortic arch replacement without circulatory arrest.

    PubMed

    Touati, Gilles D; Marticho, Paul; Farag, Moataz; Carmi, Doron; Szymanski, Catherine; Barry, Misbaou; Trojette, Faouzi; Caus, Thierry

    2007-08-01

    Various techniques have been proposed for cerebral protection during the surgical treatment of complex aortic disease. The authors propose a revisited strategy of normothermic replacement of the aortic arch to avoid limitations and complications of profound hypothermic circulatory arrest. From April 2000 to May 2006, 19 patients with an aneurysm of the aortic arch and 10 patients with an acute (7) or a chronic (3) aortic dissection underwent a totally normothermic, complete replacement of the aortic arch using three pumps: One pump ensured antegrade cerebral perfusion, at a flow rate adapted to obtain a pressure of 70 mmHg in the right radial artery, and required a selective cannulation of the supra-aortic vessels. A second pump ensured body perfusion at a flow rate adapted to obtain a pressure of 55 mmHg in the left femoral artery and was situated between the right femoral artery and the right atrium. A special balloon aortic occlusion catheter was placed in the descending thoracic aorta. A third pump ensured intermittent normothermic myocardial perfusion via the coronary venous sinus. The arch reconstruction was performed with no time limit. There were two operative, in-hospital (6.8%) mortalities. All others patients were rapidly extubated, except one, with no neurological sequelae, and postoperative course was uneventful, without coagulopathy or hepato-renal impairment. In the light of these results, a normothermic procedure is possible for arch surgery and may ensure a more physiological autoregulation of cerebral blood flow while maintaining body perfusion without high vascular resistances.

  13. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements

    PubMed Central

    Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo

    2017-01-01

    Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720

  14. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-01-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities. PMID:27561388

  15. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-01

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  16. The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun

    2016-08-26

    Since the first observation of a helical flow pattern in aortic blood flow, the existence of helical blood flow has been found to be associated with various pathological conditions such as bicuspid aortic valve, aortic stenosis, and aortic dilatation. However, an understanding of the development of helical blood flow and its clinical implications are still lacking. In our present study, we hypothesized that the direction and angle of aortic inflow can influence helical flow patterns and related hemodynamic features in the thoracic aorta. Therefore, we investigated the hemodynamic features in the thoracic aorta and various aortic inflow angles using patient-specific vascular phantoms that were generated using a 3D printer and time-resolved, 3D, phase-contrast magnetic resonance imaging (PC-MRI). The results show that the rotational direction and strength of helical blood flow in the thoracic aorta largely vary according to the inflow direction of the aorta, and a higher helical velocity results in higher wall shear stress distributions. In addition, right-handed rotational flow conditions with higher rotational velocities imply a larger total kinetic energy than left-handed rotational flow conditions with lower rotational velocities.

  17. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  18. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.

    PubMed

    Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck

    2018-04-01

    The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Prevalence, clinical and echocardiographic characteristics of various flow and gradient patterns in mild or moderate aortic stenosis with normal left ventricular ejection fraction.

    PubMed

    Tan, Yong-Qiang Benjamin; Ngiam, Jinghao Nicholas; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong

    2016-10-15

    Paradoxical low-flow aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF) has only been described in severe AS. Controversy surrounds prognosis and management but no studies have reported this phenomenon in mild or moderate AS. We investigated the prevalence of flow and gradient patterns in this population, characterising their clinical and echocardiographic profile. Consecutive subjects (n=1362) with isolated AS: mild (n=462, aortic valve area≥1.5cm(2), 2.5m/s<aortic jet velocity≤3m/s) or moderate (n=900, 1cm(2)≤aortic valve area<1.5cm(2)) and normal LVEF (≥50%) were studied. Subjects with low-flow (stroke volume index<35ml/m(2)) were identified. Univariate and multivariate analyses were employed to compare the flow and gradient patterns. In mild AS, 130 (28%) had low-flow. Lower left ventricular mass index (LVMI) (97.0±28.5vs116.4±2.3g/m(2),p<0.001), higher percentage of concentric remodelling (40%vs6%,p<0.001) and hypertrophy (43%vs40%,p<0.001) and lower end-systolic wall stress (ESWS) (57.6±1.60vs67.7±19.6dyn/cm(2),p=0.014) were independently associated with low-flow. Similarly, in moderate AS, 297 (33%) had low-flow. Older age (73.4±14.8vs69.5±16.5,p=0.027), lower LVMI (88.6±25.9vs118.0±36.5,p<0.001), higher percentage of concentric remodelling (46%vs8%,p<0.001) and lower ESWS (59.9±18.3vs70.5±19.7,p<0.001) were independently associated with low-flow. Despite moderate AS, most had lower mean pressure gradients, especially subjects with concentric remodelling. In the entire cohort, low-flow patients had more concentric remodelling (43%vs7%,p<0.001) and less eccentric hypertrophy (2%vs27%,p<0.001) compared to normal flow. Low-flow AS with normal LVEF is observed in mild or moderate AS, in up to a third of the cases. These patients had different LV structure compared to normal-flow, with more concentric remodelling. Further studies are warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Relationship between Aortic Compliance and Impact of Cerebral Blood Flow Fluctuation to Dynamic Orthostatic Challenge in Endurance Athletes.

    PubMed

    Tomoto, Tsubasa; Imai, Tomoko; Ogoh, Shigehiko; Maeda, Seiji; Sugawara, Jun

    2018-01-01

    Aorta effectively buffers cardiac pulsatile fluctuation generated from the left ventricular (LV) which could be a mechanical force to high blood flow and low-resistance end-organs such as the brain. A dynamic orthostatic challenge may evoke substantial cardiac pulsatile fluctuation via the transient increases in venous return and stroke volume (SV). Particularly, this response may be greater in endurance-trained athletes (ET) who exhibit LV eccentric remodeling. The aim of this study was to determine the contribution of aortic compliance to the response of cerebral blood flow fluctuation to dynamic orthostatic challenge in ET and age-matched sedentary (SED) young healthy men. ET ( n = 10) and SED ( n = 10) underwent lower body negative pressure (LBNP) (-30 mmHg for 4 min) stimulation and release the pressure that initiates a rapid regain of limited venous return and consequent increase in SV. The recovery responses of central and middle cerebral arterial (MCA) hemodynamics from the release of LBNP (~15 s) were evaluated. SV (via Modeflow method) and pulsatile and systolic MCA (via transcranial Doppler) normalized by mean MCA velocity (MCAv) significantly increased after the cessation of LBNP in both groups. ET exhibited the higher ratio of SV to aortic pulse pressure (SV/ Ao PP), an index of aortic compliance, at the baseline compared with SED ( P < 0.01). Following the LBNP release, SV was significantly increased in SED by 14 ± 7% (mean ± SD) and more in ET by 30 ± 15%; nevertheless, normalized pulsatile, systolic, and diastolic MCAv remained constant in both groups. These results might be attributed to the concomitant with the increase in aortic compliance assessed by SV/ Ao PP. Importantly, the increase in SV/ Ao PP following the LBNP release was greater in ET than in SED ( P < 0.01), and significantly correlated with the baseline SV/ Ao PP ( r = 0.636, P < 0.01). These results suggest that the aortic compliance in the endurance athletes is able to

  1. ``Smart'' baroreception along the aortic arch, with reference to essential hypertension

    NASA Astrophysics Data System (ADS)

    Kember, G. C.; Zamir, M.; Armour, J. A.

    2004-11-01

    Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.

  2. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  3. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses.

    PubMed

    Nestola, M G C; Faggiano, E; Vergara, C; Lancellotti, R M; Ippolito, S; Antona, C; Filippi, S; Quarteroni, A; Scrofani, R

    2017-02-01

    We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.

  4. Asymptomatic Interrupted Aortic Arch, Severe Tricuspid Regurgitation, and Bicuspid Aortic Valve in a 76-Year-Old Woman.

    PubMed

    Tajdini, Masih; Sardari, Akram; Forouzannia, Seyed Khalil; Baradaran, Abdolvahab; Hosseini, Seyed Mohammad Reza; Kassaian, Seyed Ebrahim

    2016-10-01

    Interrupted aortic arch is a rare congenital abnormality with a high infancy mortality rate. The principal finding is loss of luminal continuity between the ascending and descending portions of the aorta. Because of the high mortality rate in infancy, interrupted aortic arch is very rare among adults. In this report, we describe the case of a 76-year-old woman with asymptomatic interrupted aortic arch, severe tricuspid regurgitation, and bicuspid aortic valve. To our knowledge, she is the oldest patient ever reported with this possibly unique combination of pathologic conditions. In addition to reporting her case, we review the relevant medical literature.

  5. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  6. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  7. Low-gradient aortic stenosis

    PubMed Central

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-01-01

    Abstract An important proportion of patients with aortic stenosis (AS) have a ‘low-gradient’ AS, i.e. a small aortic valve area (AVA <1.0 cm2) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA—low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. PMID:27190103

  8. Thrombogenic potential of transcatheter aortic valve implantation with trivial paravalvular leakage

    PubMed Central

    Siegel, Rolland

    2014-01-01

    Background Significant paravalvular leakage after transcatheter aortic valve implantation (TAVI) correlates with increased morbidity and mortality, but adverse consequences of trivial paravalvular leakage have stimulated few investigations. Using a unique method distinctly different from other diagnostic approaches, we previously reported elevated backflow velocities of short duration (transients) in mechanical valve closure. In this study, similar transients were found in a transcatheter valve paravalvular leakage avatar. Methods Paravalvular leakage rate (zero to 58 mL/second) and aortic valve incompetence (volumetric back flow/forward flow; zero to 32%) were made adjustable using a mock transcatheter aortic valve device and tested in quasi-steady and pulsatile flow test systems. Projected dynamic valve area (PDVA) from the back illuminated mock transcatheter aortic valve device was measured and regional backflow velocities were derived by dividing volumetric flow rate by the PDVA over the open and closing valve phase and the total closed valve area derived from backflow leakage. Results Aortic incompetence from 1-32% generated negative backflow transients from 8 to 267 meters/second, a range not dissimilar to that measured in mechanical valves with zero paravalvular leakage. Optimal paravalvular leakage was identified; not too small generating high backflow transients, not too large considering volume overload and cardiac energy loss caused by defective valve behavior and fluid motion. Conclusions Thrombogenic potential of transcatheter aortic valves with trivial aortic incompetence and high magnitude regional backflow velocity transients was comparable to mechanical valves. This may have relevance to stroke rate, asymptomatic microembolic episodes and indications for anticoagulation therapy after transcatheter valve insertion. PMID:25333018

  9. Functional Aortic Root Parameters and Expression of Aortopathy in Bicuspid Versus Tricuspid Aortic Valve Stenosis.

    PubMed

    Girdauskas, Evaldas; Rouman, Mina; Disha, Kushtrim; Fey, Beatrix; Dubslaff, Georg; Theis, Bernhard; Petersen, Iver; Gutberlet, Matthias; Borger, Michael A; Kuntze, Thomas

    2016-04-19

    The correlation between bicuspid aortic valve (BAV) disease and aortopathy is not fully defined. This study aimed to prospectively analyze the correlation between functional parameters of the aortic root and expression of aortopathy in patients undergoing surgery for BAV versus tricuspid aortic valve (TAV) stenosis. From January 1, 2012 through December 31, 2014, 190 consecutive patients (63 ± 8 years, 67% male) underwent aortic valve replacement ± proximal aortic surgery for BAV stenosis (n = 137, BAV group) and TAV stenosis (n = 53, TAV group). All patients underwent pre-operative cardiac magnetic resonance imaging to evaluate morphological/functional parameters of the aortic root. Aortic tissue was sampled during surgery on the basis of the location of eccentric blood flow contact with the aortic wall, as determined by cardiac magnetic resonance (i.e., jet sample and control sample). Aortic wall lesions were graded using a histological sum score (0 to 21). The largest cross-sectional aortic diameters were at the mid-ascending level in both groups and were larger in BAV patients (40.2 ± 7.2 mm vs. 36.6 ± 3.3 mm, respectively, p < 0.001). The histological sum score was 2.9 ± 1.4 in the BAV group versus 3.4 ± 2.6 in the TAV group (p = 0.4). The correlation was linear and comparable between the maximum indexed aortic diameter and the angle between the left ventricular outflow axis and aortic root (left ventricle/aorta angle) in both groups (BAV group: r = 0.6, p < 0.001 vs. TAV group r = 0.45, p = 0.03, z = 1.26, p = 0.2). Logistic regression identified the left ventricle/aorta angle as an indicator of indexed aortic diameter >22 mm/m(2) (odds ratio: 1.2; p < 0.001). Comparable correlation patterns between functional aortic root parameters and expression of aortopathy are found in patients with BAV versus TAV stenosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Enhancing 4D PC-MRI in an aortic phantom considering numerical simulations

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Schoch, Nicolai; Weis, Christian; Müller-Eschner, Matthias; Speidel, Stefanie; Farag, Mina; Beller, Carsten J.; Heuveline, Vincent

    2015-03-01

    To date, cardiovascular surgery enables the treatment of a wide range of aortic pathologies. One of the current challenges in this field is given by the detection of high-risk patients for adverse aortic events, who should be treated electively. Reliable diagnostic parameters, which indicate the urge of treatment, have to be determined. Functional imaging by means of 4D phase contrast-magnetic resonance imaging (PC-MRI) enables the time-resolved measurement of blood flow velocity in 3D. Applied to aortic phantoms, three dimensional blood flow properties and their relation to adverse dynamics can be investigated in vitro. Emerging "in silico" methods of numerical simulation can supplement these measurements in computing additional information on crucial parameters. We propose a framework that complements 4D PC-MRI imaging by means of numerical simulation based on the Finite Element Method (FEM). The framework is developed on the basis of a prototypic aortic phantom and validated by 4D PC-MRI measurements of the phantom. Based on physical principles of biomechanics, the derived simulation depicts aortic blood flow properties and characteristics. The framework might help identifying factors that induce aortic pathologies such as aortic dilatation or aortic dissection. Alarming thresholds of parameters such as wall shear stress distribution can be evaluated. The combined techniques of 4D PC-MRI and numerical simulation can be used as complementary tools for risk-stratification of aortic pathology.

  11. Effect of load alterations on the effective regurgitant orifice area in chronic aortic regurgitation.

    PubMed

    Kim, Y J; Jones, M; Shiota, T; Tsujino, H; Qin, J X; Bauer, F; Sitges, M; Kwan, J; Cardon, L A; Zetts, A D; Thomas, J D

    2002-10-01

    To evaluate the load dependence of effective regurgitant orifice area (ROA) in an animal model of chronic aortic regurgitation. Eight sheep were studied 10-20 weeks after the surgical creation of aortic regurgitation. After baseline studies, 500 ml of blood, angiotensin II, and nitroprusside were infused sequentially. Electromagnetic flow meters were used as reference standards to determine aortic regurgitation volume. The time-velocity integral was acquired using the continuous wave Doppler method. Baseline aortic regurgitant volume varied from 8 ml (regurgitant fraction 28%) to 29 ml (59%), with a mean (SD) value of 17 (8) ml; mean ROA was 0.15 (0.05) cm2. During angiotensin II infusion, aortic regurgitation volume (20 (8) ml) and mean diastolic aortoventricular pressure gradient (62 (18) mm Hg) increased by 26 (16)% and 48 (64)%, respectively (p < 0.01 for both). ROA did not change (0.16 (0.06) cm(2), p = 0.15). During nitroprusside infusion, aortic regurgitant volume (13 (7) ml, p = 0.05) and diastolic pressure gradient (25 (13) mm Hg, p < 0.05) decreased. ROA did not change (0.15 (0.05) cm2). When analysing 32 stages together, aortic regurgitant volume (r = 0.78, p < 0.01) and regurgitant fraction (r = 0.55, p < 0.01) correlated well with ROA. However, diastolic pressure gradient (r = 0.28) was not significantly correlated with ROA. In an animal model of chronic aortic regurgitation, ROA did not change with load alterations.

  12. [Intra-operative Acute Aortic Dissection during Aortic Root Reimplantation and Mitral Valve Reconstruction Surgery in a Patient with Marfan Syndrome;Report of a Case].

    PubMed

    Teramoto, Chikao; Kawaguchi, Osamu; Araki, Yoshimori; Yoshikawa, Masaharu; Uchida, Wataru; Takemura, Gennta; Makino, Naoki

    2016-08-01

    In patients with Marfan syndrome, cardiovascular complication due to aortic dissection represents the primary cause of death. Iatrogenic acute aortic dissection during cardiac surgery is a rare, but serious adverse event. A 51-year-old woman with Marfan syndrome underwent elective aortic surgery and mitral valve reconstruction surgery for the enlarged aortic root and severe mitral regurgitation. We replaced the aortic root and ascending aorta based on reimplantation technique. During subsequent mitral valve reconstruction, we found the heart pushed up from behind. Trans-esophageal echocardiography revealed a dissecting flap in the thoracic descending aorta. There was just weak signal of blood flow in the pseudolumen. We did not add any additional procedures such as an arch replacement. Cardio-pulmonary bypass was successfully discontinued. After protamine sulfate administration and blood transfusion, blood flow in the pseudolumen disappeared. The patient was successfully discharged from the hospital on 33th postoperative day without significant morbidities.

  13. Aortic valve orifice equation independent of valvular flow intervals: application to aortic valve area computation in aortic stenosis and comparison with the Gorlin formula.

    PubMed

    Seitz, W; Oppenheimer, L; McIlroy, M; Nelson, D; Operschall, J

    1986-12-01

    An orifice equation is derived relating the effective aortic valve area, A, the average aortic valve pressure gradient, dP, the stroke volume, SV, and the heart frequency, FH, through considerations of momentum conservation across the aortic valve. This leads to a formula consistent with Newton's second law of motion. The form of the new equation is A = (7.5 X 10(-5)) SV FH2/Pd, where A, VS, FH and Pd are expressed in cm2, ml, s-1 and mmHg, respectively. Aortic valve areas computed with the new orifice equation are found to correlate with those computed by the Gorlin formula in conditions of resting haemodynamic states at a level of r = 0.86, SE = 0.25 cm2, N = 120. The results suggest that the new formula may be considered as an independent orifice equation having a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships through combination with established cardiological formulas and applying it in a noninvasive Doppler ultrasonic or echocardiographic context.

  14. Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis.

    PubMed

    Clavel, Marie-Annick; Burwash, Ian G; Pibarot, Philippe

    2017-02-01

    Up to 40% of patients with aortic stenosis (AS) harbor discordant Doppler-echocardiographic findings, the most common of which is the presence of a small aortic valve area (≤1.0 cm 2 ) suggesting severe AS, but a low gradient (<40 mm Hg) suggesting nonsevere AS. The purpose of this paper is to present the role of multimodality imaging in the diagnostic and therapeutic management of this challenging entity referred to as low-gradient AS. Doppler-echocardiography is critical to determine the subtype of low-gradient AS: that is, classical low-flow, paradoxical low-flow, or normal-flow. Patients with low-flow, low-gradient AS generally have a worse prognosis compared with patients with high-gradient or with normal-flow, low-gradient AS. Patients with low-gradient AS and evidence of severe AS benefit from aortic valve replacement (AVR). However, confirmation of the presence of severe AS is particularly challenging in these patients and requires a multimodality imaging approach including low-dose dobutamine stress echocardiography and aortic valve calcium scoring by multidetector computed tomography. Transcatheter AVR using a transfemoral approach may be superior to surgical AVR in patients with low-flow, low-gradient AS. Further studies are needed to confirm the best valve replacement procedure and prosthetic valve for each category of low-gradient AS and to identify patients with low-gradient AS in whom AVR is likely to be futile. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Lagrangian coherent structures in the left ventricle in the presence of aortic valve regurgitation

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Vetel, Jerome; Kadem, Lyes

    2017-11-01

    Aortic valve regurgitation is a rather prevalent condition where the aortic valve improperly closes, allowing filling of the left ventricle of the heart to occur partly from backflow through the aortic valve. Although studies of intraventricular flow are rapidly gaining popularity in the fluid dynamics research community, much attention has been given to the left ventricular vortex and its potential for early detection of disease, particularly in the case of dilated cardiomyopathy. Notably, the subsequent flow in the left ventricle in the presence of aortic valve regurgitation ought to be appreciably disturbed and has yet to be described. Aortic valve regurgitation was simulated in vitro in a double-activation left heart duplicator and the ensuing flow was captured using two-dimensional time-resolved particle image velocimetry. Further insight into the regurgitant flow is obtained by computing attracting and repelling Lagrangian coherent structures. An interesting interplay between the two inflowing jets and their shear layer roll-up is observed for various grades of regurgitation. This study highlights flow features which may find use in further assessing regurgitation severity.

  16. INCLUDING AORTIC VALVE MORPHOLOGY IN COMPUTATIONAL FLUID DYNAMICS SIMULATIONS: INITIAL FINDINGS AND APPLICATION TO AORTIC COARCTATION

    PubMed Central

    Wendell, David C.; Samyn, Margaret M.; Cava, Joseph R.; Ellwein, Laura M.; Krolikowski, Mary M.; Gandy, Kimberly L.; Pelech, Andrew N.; Shadden, Shawn C.; LaDisa, John F.

    2012-01-01

    Computational fluid dynamics (CFD) simulations quantifying thoracic aortic flow patterns have not included disturbances from the aortic valve (AoV). 80% of patients with aortic coarctation (CoA) have a bicuspid aortic valve (BAV) which may cause adverse flow patterns contributing to morbidity. Our objectives were to develop a method to account for the AoV in CFD simulations, and quantify its impact on local hemodynamics. The method developed facilitates segmentation of the AoV, spatiotemporal interpolation of segments, and anatomic positioning of segments at the CFD model inlet. The AoV was included in CFD model examples of a normal (tricuspid AoV) and a post-surgical CoA patient (BAV). Velocity, turbulent kinetic energy (TKE), time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) results were compared to equivalent simulations using a plug inlet profile. The plug inlet greatly underestimated TKE for both examples. TAWSS differences extended throughout the thoracic aorta for the CoA BAV, but were limited to the arch for the normal example. OSI differences existed mainly in the ascending aorta for both cases. The impact of AoV can now be included with CFD simulations to identify regions of deleterious hemodynamics thereby advancing simulations of the thoracic aorta one step closer to reality. PMID:22917990

  17. Vascular Adaptations to Transverse Aortic Banding in Mice

    DTIC Science & Technology

    2001-10-25

    hypertrophy (B-C) via pressure overload. A Doppler probe (D) was used to measure flow velocity at the aortic valve (1), the mitral valve (2), the...L) carotid artery (CA), aortic, and mitral blood velocity 1 day later. At 7 days the heart- weight/body-weight ratio (HW/BW) was measured. Mean...aortic, mitral , and carotid velocities were similar in sham and banded mice, but peak RCA/LCA velocities were much higher in banded mice and were highly

  18. Continuous PECS II block for postoperative analgesia in patients undergoing transapical transcatheter aortic valve implantation.

    PubMed

    Shakuo, Tomoharu; Kakumoto, Shinichi; Kuribayashi, Junya; Oe, Katsunori; Seo, Katsuhiro

    2017-01-01

    It has been reported that PECS II block can alleviate postoperative pain following transapical transcatheter aortic valve implantation (TA-TAVI). However, the effectiveness of continuous PECS II block with catheterization has not yet been reported on the postoperative pain in patients undergoing TA-TAVI. We experienced two cases of TA-TAVI who received PECS II block with catheterization to manage postoperative pain. In the first case, a bolus injection for intraoperative pain and subsequent catheterization were performed before the implantation. However, the patient developed severe pain postoperatively in spite of the continuous block due to displacement of the catheter. In the second case, a bolus injection and the catheterization for the continuous block were performed before and after the implantation, respectively, which provided high-quality pain control. Continuous PECS II block may be useful to control perioperative pain associated with TA-TAVI. The insertion of the catheter after the implantation could be useful to avoid its displacement during the surgery.

  19. Comparable Cerebral Blood Flow in Both Hemispheres During Regional Cerebral Perfusion in Infant Aortic Arch Surgery.

    PubMed

    Rüffer, André; Tischer, Philip; Münch, Frank; Purbojo, Ariawan; Toka, Okan; Rascher, Wolfgang; Cesnjevar, Robert Anton; Jüngert, Jörg

    2017-01-01

    Cerebral protection during aortic arch repair can be provided by regional cerebral perfusion (RCP) through the innominate artery. This study addresses the question of an adequate bilateral blood flow in both hemispheres during RCP. Fourteen infants (median age 11 days [range, 3 to 108]; median weight, 3.6 kg [range, 2.8 to 6.0 kg]) undergoing RCP (flow rate 54 to 60 mL · kg -1 · min -1 ) were prospectively included. Using combined transfontanellar/transtemporal two- and three-dimensional power/color Doppler sonography, cerebral blood flow intensity in the main cerebral vessels was displayed. Mean time average velocities were measured with combined pulse-wave Doppler in the basilar artery, and both sides of the internal carotid, anterior, and medial cerebral arteries. In addition, bifrontal regional cerebral oximetry (rSO 2 ) was assessed. Comparing both hemispheres, measurements were performed at target temperature (28°C) during full-flow total body perfusion (TBP) and RCP. A regular circle of Willis with near-symmetric blood flow intensity to both hemispheres was visualized in all infants during both RCP and TBP. In the left internal carotid artery, blood flow direction was mixed (retrograde, n = 5; antegrade, n = 8) during TBP and retrograde during RCP. Comparison between sides showed comparable cerebral time average velocities and rSO 2 , except for higher time average velocities in the right internal carotid artery (TBP p = 0.019, RCP p = 0.09). Unilateral comparison between perfusion methods revealed significantly higher rSO 2 in the right hemisphere during TBP (82% ± 9%) compared with RCP (74% ± 11%, p = 0.036). Bilateral assessment of cerebral rSO 2 and time average velocity in the main great cerebral vessels suggests that RCP is associated with near-symmetric blood flow intensity to both hemispheres. Further neurodevelopmental studies are necessary to verify RCP for neuroprotection during aortic arch repair. Copyright © 2017 The Society of

  20. Dobutamine Stress Echocardiography for Management of Low-Flow, Low-Gradient Aortic Stenosis.

    PubMed

    Annabi, Mohamed-Salah; Touboul, Eden; Dahou, Abdellaziz; Burwash, Ian G; Bergler-Klein, Jutta; Enriquez-Sarano, Maurice; Orwat, Stefan; Baumgartner, Helmut; Mascherbauer, Julia; Mundigler, Gerald; Cavalcante, João L; Larose, Éric; Pibarot, Philippe; Clavel, Marie-Annick

    2018-02-06

    In the American College of Cardiology/American Heart Association guidelines, patients are considered to have true-severe stenosis when the mean gradient (MG) is ≥40 mm Hg with an aortic valve area (AVA) ≤1 cm 2 during dobutamine stress echocardiography (DSE). However, these criteria have not been previously validated. The aim of this study was to assess the value of these criteria to predict the presence of true-severe AS and the occurrence of death in patients with low-flow, low-gradient aortic stenosis (LF-LG AS). One hundred eighty-six patients with low left ventricular ejection fraction (LVEF) LF-LG AS were prospectively recruited and underwent DSE, with measurement of the MG, AVA, and the projected AVA (AVA Proj ), which is an estimate of the AVA at a standardized normal flow rate. Severity of AS was independently corroborated by macroscopic evaluation of the valve at the time of valve replacement in 54 patients, by measurement of the aortic valve calcium by computed tomography in 25 patients, and by both methods in 8 patients. According to these assessments, 50 of 87 (57%) patients in the study cohort had true-severe stenosis. Peak stress MG ≥40 mm Hg, peak stress AVA ≤1 cm 2 , and the combination of peak stress MG ≥40 mm Hg and peak stress AVA ≤1 cm 2 correctly classified AS severity in 48%, 60%, and 47% of patients, respectively, whereas AVA Proj  ≤1 cm 2 was better than all the previous markers (p < 0.007), with 70% correct classification. Among the subset of 88 patients managed conservatively (47% of the cohort), 52 died during a follow-up of 2.8 ± 2.5 years. After adjustment for age, sex, functional capacity, chronic kidney failure, and peak stress LVEF, peak stress MG and AVA were not predictors of mortality in this subset. In contrast, AVA Proj  ≤1 cm 2 was a strong predictor of mortality under medical management (hazard ratio: 3.65; p = 0.0003). In patients with low LVEF LF-LG AS, the DSE criteria of a peak

  1. Aortic flow conditions predict ejection efficiency in the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE).

    PubMed

    Doyle, Mark; Pohost, Gerald M; Bairey Merz, C Noel; Farah, Victor; Shaw, Leslee J; Sopko, George; Rogers, William J; Sharaf, Barry L; Pepine, Carl J; Thompson, Diane V; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F; Biederman, Robert W W

    2017-06-01

    The Windkessel model of the cardiovascular system, both in its original wind-chamber and flow-pipe form, and in its electrical circuit analog has been used for over a century to modeled left ventricular ejection conditions. Using parameters obtained from aortic flow we formed a Flow Index that is proportional to the impedance of such a "circuit". We show that the impedance varies with ejection fraction (EF) in a manner characteristic of a resonant circuit with multiple resonance points, with each resonance point centrally located in a small range of EF values, i.e., corresponding to multiple contiguous EF bands. Two target populations were used: (I) a development group comprising male and female subjects (n=112) undergoing cardiovascular magnetic resonance (CMR) imaging for a variety of cardiac conditions. The Flow Index was developed using aortic flow data and its relationship to left ventricular EF was shown. (II) An illustration group comprised of female subjects from the Women's Ischemia Syndrome Evaluation (WISE) (n=201) followed for 5 years for occurrence of major adverse cardiovascular events (MACE). Flow data was not available in this group but since the Flow Index was related to the EF we noted the MACE rate with respect to EF. The EFs of the development population covered a wide range (9%-76%) traversing six Flow Index resonance bands. Within each Flow Index resonance band the impedance varied from highly capacitive at the lower range of EF through minimal impedance at resonance, to highly inductive at the higher range of EF, which is characteristic of a resonant circuit. When transitioning from one EF band to a higher band, the Flow Index made a sudden transition from highly inductive to capacitive impedance modes. MACE occurred in 26 (13%) of the WISE (illustration) population. Distance in EF units (Delta center ) from the central location between peaks of MACE activity was derived from EF data and was predictive of MACE rate with an area under the

  2. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves.

    PubMed

    Seaman, Clara; Akingba, A George; Sucosky, Philippe

    2014-04-01

    The bicuspid aortic valve (BAV), which forms with two leaflets instead of three as in the normal tricuspid aortic valve (TAV), is associated with a spectrum of secondary valvulopathies and aortopathies potentially triggered by hemodynamic abnormalities. While studies have demonstrated an intrinsic degree of stenosis and the existence of a skewed orifice jet in the BAV, the impact of those abnormalities on BAV hemodynamic performance and energy loss has not been examined. This steady-flow study presents the comparative in vitro assessment of the flow field and energy loss in a TAV and type-I BAV under normal and simulated calcified states. Particle-image velocimetry (PIV) measurements were performed to quantify velocity, vorticity, viscous, and Reynolds shear stress fields in normal and simulated calcified porcine TAV and BAV models at six flow rates spanning the systolic phase. The BAV model was created by suturing the two coronary leaflets of a porcine TAV. Calcification was simulated via deposition of glue beads in the base of the leaflets. Valvular performance was characterized in terms of geometric orifice area (GOA), pressure drop, effective orifice area (EOA), energy loss (EL), and energy loss index (ELI). The BAV generated an elliptical orifice and a jet skewed toward the noncoronary leaflet. In contrast, the TAV featured a circular orifice and a jet aligned along the valve long axis. While the BAV exhibited an intrinsic degree of stenosis (18% increase in maximum jet velocity and 7% decrease in EOA relative to the TAV at the maximum flow rate), it generated only a 3% increase in EL and its average ELI (2.10 cm2/m2) remained above the clinical threshold characterizing severe aortic stenosis. The presence of simulated calcific lesions normalized the alignment of the BAV jet and resulted in the loss of jet axisymmetry in the TAV. It also amplified the degree of stenosis in the TAV and BAV, as indicated by the 342% and 404% increase in EL, 70% and 51% reduction

  3. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  4. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  5. Transesophageal echocardiography: first-line imaging for aortic diseases

    NASA Technical Reports Server (NTRS)

    Yalcin, F.; Thomas, J. D.; Homa, D.; Flachskampf, F. A.

    2000-01-01

    Transesophageal echocardiography (TEE) is now commonly used to evaluate the thoracic aorta, because it is widely available and provides high-resolution images and flow information by Doppler. This article reviews the essential features on TEE of acute and chronic aortic diseases, such as aortic dissection, aneurysm, and atherosclerosis, and discusses its strengths, weaknesses, and indications.

  6. Paradoxical aortic stenosis: A systematic review.

    PubMed

    Cavaca, Rita; Teixeira, Rogério; Vieira, Maria João; Gonçalves, Lino

    2017-04-01

    Aortic stenosis (AS) is a complex systemic valvular and vascular disease with a high prevalence in developed countries. The new entity "paradoxical low-flow, low-gradient aortic stenosis" refers to cases in which patients have severe AS based on assessment of aortic valve area (AVA) (≤1 cm 2 ) or indexed AVA (≤0.6 cm 2 /m 2 ), but paradoxically have a low mean transvalvular gradient (<40 mmHg) and a low stroke volume index (≤35 ml/m 2 ), despite preserved left ventricular ejection fraction (≥50%). A search was carried out in the PubMed database on paradoxical AS for the period 2007-2014. A total of 57 articles were included for this review. The prevalence of paradoxical AS ranged from 3% to 35% of the population with severe degenerative AS. It was more frequent in females and in older patients. Paradoxical AS was associated with characteristic left ventricular remodeling as well as an increase in systemic arterial stiffness. It was noted that there may be errors and inaccuracies in the calculation of AVA by the continuity equation, which could erroneously suggest the paradoxical phenotype. There are new diagnostic methods to facilitate the study of AS, such as aortic valve calcium score, valvuloarterial impedance and the longitudinal mechanics of the left ventricle. With regard to its natural history, it is not clear whether paradoxical AS corresponds to an advance stage of the disease or if paradoxical AS patients have a distinct phenotype with specific characteristics. Valve replacement, either surgical or percutaneous, may be indicated in patients with severe and symptomatic paradoxical AS. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity.

    PubMed

    Binter, Christian; Gotschy, Alexander; Sündermann, Simon H; Frank, Michelle; Tanner, Felix C; Lüscher, Thomas F; Manka, Robert; Kozerke, Sebastian

    2017-06-01

    Turbulent kinetic energy (TKE), assessed by 4-dimensional (4D) flow magnetic resonance imaging, is a measure of energy loss in disturbed flow as it occurs, for instance, in aortic stenosis (AS). This work investigates the additional information provided by quantifying TKE for the assessment of AS severity in comparison to clinical echocardiographic measures. Fifty-one patients with AS (67±15 years, 20 female) and 10 healthy age-matched controls (69±5 years, 5 female) were prospectively enrolled to undergo multipoint 4D flow magnetic resonance imaging. Patients were split into 2 groups (severe and mild/moderate AS) according to their echocardiographic mean pressure gradient. TKE values were integrated over the aortic arch to obtain peak TKE. Integrating over systole yielded total TKE sys and by normalizing for stroke volume, normalized TKE sys was obtained. Mean pressure gradient and TKE correlated only weakly ( R 2 =0.26 for peak TKE and R 2 =0.32 for normalized TKE sys ) in the entire study population including control subjects, while no significant correlation was observed in the AS patient group. In the patient population with dilated ascending aorta, both peak TKE and total TKE sys were significantly elevated ( P <0.01), whereas mean pressure gradient was significantly lower ( P <0.05). Patients with bicuspid aortic valves also showed significantly increased TKE metrics ( P <0.01), although no significant difference was found for mean pressure gradient. Elevated TKE levels imply higher energy losses associated with bicuspid aortic valves and dilated ascending aortic geometries that are not assessable by current echocardiographic measures. These findings indicate that TKE may provide complementary information to echocardiography, helping to distinguish within the heterogeneous population of patients with moderate to severe AS. © 2017 American Heart Association, Inc.

  8. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures.

    PubMed

    Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude

    2018-01-01

    Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression

  9. Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.

    2010-11-01

    Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.

  10. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  11. Transcatheter Replacement of Stenotic Aortic Valve Normalizes Cardiac-Coronary Interaction by Restoration of Systolic Coronary Flow Dynamics as Assessed by Wave Intensity Analysis.

    PubMed

    Rolandi, M Cristina; Wiegerinck, Esther M A; Casadonte, Lorena; Yong, Ze-Yie; Koch, Karel T; Vis, Marije; Piek, Jan J; Baan, Jan; Spaan, Jos A E; Siebes, Maria

    2016-04-01

    Aortic valve stenosis (AS) can cause angina despite unobstructed coronary arteries, which may be related to increased compression of the intramural microcirculation, especially at the subendocardium. We assessed coronary wave intensity and phasic flow velocity patterns to unravel changes in cardiac-coronary interaction because of transcatheter aortic valve implantation (TAVI). Intracoronary pressure and flow velocity were measured at rest and maximal hyperemia in undiseased vessels in 15 patients with AS before and after TAVI and in 12 control patients. Coronary flow reserve, systolic and diastolic velocity time integrals, and the energies of forward (aorta-originating) and backward (microcirculatory-originating) coronary waves were determined. Coronary flow reserve was 2.8±0.2 (mean±SEM) in control and 1.8±0.1 in AS (P<0.005) and was not restored by TAVI. Compared with control, the resting backward expansion wave was 45% higher in AS. The peak of the systolic forward compression wave was delayed in AS, consistent with a delayed peak aortic pressure, which was partially restored after TAVI. The energy of forward waves doubled after TAVI, whereas the backward expansion wave increased by >30%. The increase in forward compression wave with TAVI was related to an increase in systolic velocity time integral. AS or TAVI did not alter diastolic velocity time integral. Reduced coronary forward wave energy and systolic velocity time integral imply a compromised systolic flow velocity with AS that is restored after TAVI, suggesting an acute relief of excess compression in systole that likely benefits subendocardial perfusion. Vasodilation is observed to be a major determinant of backward waves. © 2016 American Heart Association, Inc.

  12. Concomitant transcatheter aortic valve and left ventricular assist device implantation.

    PubMed

    Baum, Christina; Seiffert, Moritz; Treede, Hendrik; Reichenspurner, Hermann; Deuse, Tobias

    2013-01-01

    Relevant aortic regurgitation (AR) requires surgical repair at the time of left ventricular assist device (LVAD) implantation to reduce recirculation and ensure adequate forward flow. We report here on a patient with moderate AR in a noncalcified aortic valve and extensive calcification of the ascending aorta. The latter precluded aortic-crossclamping and, thus, surgical intervention on the aortic valve. Although there were no valvular or annular calcifications, a JenaValve transcatheter heart valve was successfully placed transapically with subsequent LVAD implantation in one operation. We believe concomitant transcatheter aortic valve implantation (TAVI) and LVAD implantation is a promising hybrid procedure, even in patients with pure AR.

  13. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.

    PubMed

    Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E

    2009-08-01

    Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to

  14. Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress.

    PubMed

    Assmann, Alexander; Benim, Ali Cemal; Gül, Fethi; Lux, Philipp; Akhyari, Payam; Boeken, Udo; Joos, Franz; Feindt, Peter; Lichtenberg, Artur

    2012-01-03

    Controversy on superiority of pulsatile versus non-pulsatile extracorporeal circulation in cardiac surgery still continues. Stroke as one of the major adverse events during cardiopulmonary bypass is, in the majority of cases, caused by mobilization of aortic arteriosclerotic plaques that is inducible by pathologically elevated wall shear stress values. The present study employs computational fluid dynamics to evaluate the aortic blood flow and wall shear stress profiles under the influence of antegrade or retrograde perfusion with pulsatile versus non-pulsatile extracorporeal circulation. While, compared to physiological flow, a non-pulsatile perfusion resulted in generally decreased blood velocities and only moderately increased shear forces (48 Pa versus 20 Pa antegradely and 127 Pa versus 30 Pa retrogradely), a pulsatile perfusion extensively enhanced the occurrence of turbulences, maximum blood flow speed and maximum wall shear stress (1020 Pa versus 20 Pa antegradely and 1178 Pa versus 30 Pa retrogradely). Under these circumstances arteriosclerotic embolism has to be considered. Further simulations and experimental work are necessary to elucidate the impact of our findings on the scientific discourse of pulsatile versus non-pulsatile extracorporeal circulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Neonatal aortic stenosis.

    PubMed

    Drury, Nigel E; Veldtman, Gruschen R; Benson, Lee N

    2005-09-01

    Neonatal aortic stenosis is a complex and heterogeneous condition, defined as left ventricular outflow tract obstruction at valvular level, presenting and often requiring treatment in the first month of life. Initial presentation may be catastrophic, necessitating hemodynamic, respiratory and metabolic resuscitation. Subsequent management is focused on maintaining systemic blood flow, either via a univentricular Norwood palliation or a biventricular route, in which the effective aortic valve area is increased by balloon dilation or surgical valvotomy. In infants with aortic annular hypoplasia but adequately sized left ventricle, the Ross-Konno procedure is also an attractive option. Outcomes after biventricular management have improved in recent years as a consequence of better patient selection, perioperative management and advances in catheter technology. Exciting new developments are likely to significantly modify the natural history of this disorder, including fetal intervention for the salvage of the hypoplastic left ventricle; 3D echocardiography providing better definition of valve morphology and aiding patient selection for a surgical or catheter-based intervention; and new transcutaneous approaches, such as duel beam echo, to perforate the valve.

  16. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...

  17. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intra-aortic balloon and control system 870.3535... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic balloon and control system (a) Identification. A intra-aortic balloon and control system is a device that...

  18. Novel three-sinus enlargement technique for supravalvular aortic stenosis without aortic transection.

    PubMed

    Yokoyama, Shinya; Nagato, Hisao; Yoshida, Yuichi; Nagasaka, Shigeo; Kaneda, Kozo; Nishiwaki, Noboru

    2016-01-16

    Although repair of a supravalvular aortic stenosis (SVAS) can be performed with low mortality rates, surgery for the complex form of SVAS continues to be associated with a high incidence of residual stenosis. The patient was referred to our hospital at 1 month of age and was diagnosed with aortic valve stenosis (AS) by using echocardiography. Cardiac catheterization revealed moderate AS, and subsequent left ventriculography revealed discrete stenosis of the sino-tubular junction and a narrowed proximal ascending aorta. We performed a reconstructive operation for such heart defects involving novel three-sinus and ascending aorta enlargement without aortic root transection in a 6-month-old boy. Our novel three-sinus enlargement technique is suitable for treating each type of SVAS and is a useful method for a baby particularly less than 10 kg without disturbing the growth of the ascending aorta.

  19. Tissue Doppler Imaging in the evaluation of abdominal aortic pulsatility: a useful tool for the neonatologist.

    PubMed

    Valerio, Enrico; Grison, Alessandra; Capretta, Anna; Golin, Rosanna; Ferrarese, Paola; Bellettato, Massimo

    2017-03-01

    Sonographic cardiac evaluation of newborns with suspected aortic coarctation (AoC) should tend to demonstrate a good phasic and pulsatile flow and the absence of pressure gradient along a normally conformed aortic arch from the modified left parasternal and suprasternal echocardiographic views; these findings, however, may not necessarily rule out a more distal coarctation in the descending aorta. For this reason, the sonographic exam of newborns with suspected AoC should always include a Doppler evaluation of abdominal aortic blood flow from the subcostal view. Occasionally, however, a clearly pulsatile Doppler flow trace in abdominal aorta may be difficult to obtain due to the bad insonation angle existing between the probe and the vessel. In such suboptimal ultrasonic alignment situation, the use of Tissue Doppler Imaging instead of classic Doppler flow imaging may reveal a preserved aortic pulsatility by sampling the aortic wall motion induced by normal flow. We propose to take advantage of the TDI pattern as a surrogate of a normal pulsatile Doppler flow trace in abdominal aorta when the latter is difficult to obtain due to malalignment with the insonated vessel.

  20. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    PubMed Central

    Gomes, Bruno Alvares de Azevedo; Camargo, Gabriel Cordeiro; dos Santos, Jorge Roberto Lopes; Azevedo, Luis Fernando Alzuguir; Nieckele, Ângela Ourivio; Siqueira-Filho, Aristarco Gonçalves; de Oliveira, Glaucia Maria Moraes

    2017-01-01

    Background Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results The effective orifice at the -4º and -2º angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3º and +5º angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling. PMID:28793046

  1. Relationship Between Proximal Aorta Morphology and Progression Rate of Aortic Stenosis.

    PubMed

    Capoulade, Romain; Teoh, Jonathan G; Bartko, Philipp E; Teo, Eliza; Scholtz, Jan-Erik; Tastet, Lionel; Shen, Mylene; Mihos, Christos G; Park, Yong H; Garcia, Julio; Larose, Eric; Isselbacher, Eric M; Sundt, Thoralf M; MacGillivray, Thomas E; Melnitchouk, Serguei; Ghoshhajra, Brian B; Pibarot, Philippe; Hung, Judy

    2018-05-01

    The aim of this study was to examine the association between abnormal morphology of the proximal aorta and aortic stenosis (AS) progression rate. The main hypothesis was that morphologic changes of the proximal aorta, such as effacement of the sinotubular junction (STJ), result in increased biomechanical stresses and contribute to calcification and progression of AS. Between 2010 and 2012, 426 patients with mild to moderate AS were included in this study. Proximal aortic dimensions were measured at three different levels (i.e., sinus of Valsalva, STJ, and ascending aorta), and sinuses of Valsalva/STJ and ascending aorta/STJ ratios were used to determine degree of aortic deformity. AS progression rate was assessed by annualized increase in mean gradient (median follow-up time, 3.1 years; interquartile range, 2.6-3.9 years). The degree of aortic flow turbulence was examined in 18 matched patients with and without STJ effacement using cardiac magnetic resonance phase-contrast imaging. Patients' mean age was 71 ± 13 years, and 64% were men. Patients with low ratios had greater AS progression (P < .05). After comprehensive adjustment, sinuses of Valsalva/STJ (P = .025) and ascending aorta/STJ (P = .027) ratios were independently associated with greater AS progression rate. Compared with patients without STJ effacement, those with effacement of the STJ had higher degrees of aortic flow turbulence (24.4% vs 17.2%, P = .038). Effacement of the STJ is independently associated with greater AS progression, regardless of arterial hemodynamics, aortic valve phenotype, or baseline AS severity. Patients with abnormal proximal aortic geometry had disturbed aortic flow patterns. These findings suggest an interrelation between proximal aorta morphology and stenosis progression. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  2. [Pannus Formation Six-years after Aortic and Mitral Valve Replacement with Tissue Valves;Report of a Case].

    PubMed

    Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio

    2015-07-01

    A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.

  3. Load dependence of the effective regurgitant orifice area in a sheep model of aortic regurgitation.

    PubMed

    Reimold, S C; Byrne, J G; Caguioa, E S; Lee, C C; Laurence, R G; Peigh, P S; Cohn, L H; Lee, R T

    1991-10-01

    Treatment of patients with aortic regurgitation with vasodilators reduces regurgitant volume, ventricular dilation and left ventricular mass. Although these effects are presumably due to afterload reduction, it is also possible that the aortic regurgitant orifice area is not constant. To test the latter hypothesis, aortic regurgitation was created in 10 open chest sheep by partial resection of the noncoronary leaflet under direct visualization. Regurgitant flow was measured with an aortic supravalvular electromagnetic probe; aortic and left ventricular pressures were measured with catheter-tipped micromanometer pressure transducers. The effective regurgitant orifice area was calculated by a modification of the continuity equation in a manner similar to the Gorlin equation. The regurgitant orifice area was measured three times: after aortic regurgitation was created, after mean arterial pressure was increased by 15 to 25 mm Hg with intravenous dopamine and after mean arterial pressure was reduced by 15 to 25 mm Hg with intravenous sodium nitroprusside. Comparison of regurgitant volumes and areas obtained after creation of aortic regurgitation and at the conclusion of the experiment in the absence of dopamine or sodium nitroprusside demonstrated no significant change over time. Dopamine administration was associated with an 86 +/- 81% increase in regurgitant volume (p less than 0.01) and a 38 +/- 44% increase in regurgitant orifice area (p less than 0.01). Sodium nitroprusside administration resulted in a 51 +/- 14% decrease in regurgitant volume (p less than 0.001) and a 28 +/- 21% reduction in regurgitant orifice area (p = 0.007). In this model of acute aortic regurgitation, the effective regurgitant orifice area was altered by increasing or decreasing the aortic transvalvular pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  5. Smooth muscle-dependent changes in aortic wall dynamics during intra-aortic counterpulsation in an animal model of acute heart failure.

    PubMed

    Cabrera Fischer, Edmundo I; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L

    2009-06-01

    Intra-aortic balloon pumping (IABP) may modify arterial biomechanics; however, its effects on arterial wall properties during acute cardio-depression have not yet been fully explored. This dynamical study was designed to characterize the effects of IABP on aortic wall mechanics in an in vivo animal model of acute heart failure. Aortic pressure, diameter and blood flow were measured in six anesthetized sheep with acute cardio-depression by halothane (4%), before and during IABP (1:2). Aortic characteristic impedance and aortic wall stiffness indexes were calculated. acute experimental cardio-depression resulted in a reduction in mean aortic pressure (p<0.05) and an increase in the characteristic impedance (p<0.005), incremental elastic modulus (p<0.05), stiffness index (p<0.05) and Peterson elastic modulus (p<0.05). IABP caused an increase in the cardiac output (p<0.005) and a reduction in the systemic vascular resistances (p<0.05). In addition, the aortic impedance, incremental elastic modulus, stiffness index and Peterson modulus were significantly reduced during IABP (p<0.05). Our findings show that IABP caused changes in aortic wall impedance and intrinsic wall properties, improving the arterial functional capability and the left ventricular afterload by a reduction in both. Systemic vascular resistances and aortic stiffness were also improved by means of smooth muscle-dependent mechanisms.

  6. Ascending aortic curvature as an independent risk factor for type A dissection, and ascending aortic aneurysm formation: a mathematical model.

    PubMed

    Poullis, Michael P; Warwick, Richard; Oo, Aung; Poole, Robert J

    2008-06-01

    To develop a mathematical model to demonstrate that ascending aortic curvature is an independent risk factor for type A dissections, in addition to hypertension, bicuspid aortic valve, aneurysm of ascending aorta, and intrinsic aortic tissue abnormalities, like Marfan's syndrome. A steady state one-dimensional flow analysis was performed, utilising Newton's third law of motion. Five different clinical scenarios were evaluated: (1) effect of aortic curvature; (2) effect of beta-blockers, (3) effect of patient size, (4) forces on a Marfan's aorta, and (5) site of entry flap in aortic dissection. Aortic curvature increases the forces exerted on the ascending aorta by a factor of over 10-fold. Aortic curvature can cause patients with a systolic blood pressure of 8 0mmHg to have greater forces exerted on their aorta despite smaller diameters and lower cardiac outputs, than patients with systolic blood pressures of 120 mmHg. In normal diameter aortas, beta-blockers have minimal effect compared with aortic curvature. Aortic curvature may help to explain why normal diameter aortas can dissect, and also that the point of the entry tear may be potentially predictable. Aortic curvature has major effects on the forces exerted on the aorta in patients with Marfan's syndrome. Aortic curvature is relatively more important that aortic diameter, blood pressure, cardiac output, beta-blocker use, and patient size with regard to the force acting on the aortic wall. This may explain why some patients with normal diameter ascending aortas with or without Marfan's syndrome develop type A dissections and aneurysms. Aortic curvature may also help to explain the site of entry tear in acute type A dissection. Further clinical study is needed to validate this study's finding.

  7. Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions.

    PubMed

    Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2015-09-01

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.

  8. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  9. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  10. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  11. Implementing a Continuous Quality Improvement Program in a High-Volume Clinical Echocardiography Laboratory: Improving Care for Patients With Aortic Stenosis.

    PubMed

    Samad, Zainab; Minter, Stephanie; Armour, Alicia; Tinnemore, Amanda; Sivak, Joseph A; Sedberry, Brenda; Strub, Karen; Horan, Seanna M; Harrison, J Kevin; Kisslo, Joseph; Douglas, Pamela S; Velazquez, Eric J

    2016-03-01

    The management of aortic stenosis rests on accurate echocardiographic diagnosis. Hence, it was chosen as a test case to examine the utility of continuous quality improvement (CQI) approaches to increase echocardiographic data accuracy and reliability. A novel, multistep CQI program was designed and prospectively used to investigate whether it could minimize the difference in aortic valve mean gradients reported by echocardiography when compared with cardiac catheterization. The Duke Echo Laboratory compiled a multidisciplinary CQI team including 4 senior sonographers and MD faculty to develop a mapped CQI process that incorporated Intersocietal Accreditation Commission standards. Quarterly, the CQI team reviewed all moderate- or greater-severity aortic stenosis echocardiography studies with concomitant catheterization data, and deidentified individual and group results were shared at meetings attended by cardiologists and sonographers. After review of 2011 data, the CQI team proposed specific amendments implemented over 2012: the use of nontraditional imaging and Doppler windows as well as evaluation of aortic gradients by a second sonographer. The primary outcome measure was agreement between catheterization- and echocardiography-derived mean gradients calculated by using the coverage probability index with a prespecified acceptable echocardiography-catheterization difference of <10 mm Hg in mean gradient. Between January 2011 and January 2014, 2093 echocardiograms reported moderate or greater aortic stenosis. Among cases with available catheterization data pre- and post-CQI, the coverage probability index increased from 54% to 70% (P=0.03; 98 cases, year 2011; 70 cases, year 2013). The proportion of patients referred for invasive valve hemodynamics decreased from 47% pre-CQI to 19% post-CQI (P<0.001). A laboratory practice pattern that was amenable to reform was identified, and a multistep modification was designed and implemented that produced clinically

  12. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2018-02-01

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  13. Computational modelling of flow and tip variations of aortic cannulae in cardiopulmonary bypass procedure

    NASA Astrophysics Data System (ADS)

    Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md

    2017-09-01

    Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.

  14. A case of complete double aortic arch visualized by transthoracic echocardiography.

    PubMed

    Saito, Naka; Kato, Shingo; Saito, Noritaka; Nakachi, Tatsuya; Fukui, Kazuki; Iwasawa, Tae; Kosuge, Masami; Kimura, Kazuo

    2017-08-01

    A case of double aortic arch that was well visualized using transthoracic echocardiography is reported. A 38-year-old man underwent transthoracic echocardiography for the evaluation of dyspnea. A suprasternal view of transthoracic echocardiography showed the ascending aorta bifurcate to left and right aortic arches, with blood flow from the ascending aorta to bilateral aortic arches. The diagnosis of right side-dominant double aortic arch was made, and the patient's symptom was conceivably related to compression of the trachea due to a vascular ring. This report indicates the potential usefulness of transthoracic echocardiography for noninvasive detection of double aortic arch in adults. © 2017, Wiley Periodicals, Inc.

  15. Angiotensin converting enzyme inhibitors and aortic arch obstructive malformations.

    PubMed

    Maliheh, Kadivar; Abdorrazagh, Kiani; Armen, Kocharian; Reza, Shabanian

    2006-10-01

    We describe two newborn infants with aortic arch obstructive malformations who became anuric after initiation of captopril. Since angiotensin converting enzyme inhibitors can alter renal blood flow by reduction in angiotensin II and blocking autoregulation phenomenon, it is important to use them with great caution in neonates with aortic arch obstructive malformations, while monitoring their renal function closely.

  16. Supravalvular aortic stenosis in adult with anomalies of aortic arch vessels and aortic regurgitation

    PubMed Central

    Valente, Acrisio Sales; Alencar, Polyanna; Santos, Alana Neiva; Lobo, Roberto Augusto de Mesquita; de Mesquita, Fernando Antônio; Guimarães, Aloyra Guedis

    2013-01-01

    The supravalvular aortic stenosis is a rare congenital heart defect being very uncommon in adults. We present a case of supravalvular aortic stenosis in adult associated with anomalies of the aortic arch vessels and aortic regurgitation, which was submitted to aortic valve replacement and arterioplasty of the ascending aorta with a good postoperative course. PMID:24598962

  17. Minimally Invasive Transverse Aortic Constriction in Mice.

    PubMed

    Zaw, Aung Moe; Williams, Connor M; Law, Helen K W; Chow, Billy Kwok Chong

    2017-03-14

    Minimally invasive transverse aortic constriction (MTAC) is a more desirable method for the constriction of the transverse aorta in mice than standard open-chest transverse aortic constriction (TAC). Although transverse aortic constriction is a highly functional method for the induction of high pressure in the left ventricle, it is a more difficult and lengthy procedure due to its use of artificial ventilation with tracheal intubation. TAC is oftentimes also less survivable, as the newer method, MTAC, neither requires the cutting of the ribs and intercostal muscles nor tracheal intubation with a ventilation setup. In MTAC, as opposed to a thoracotomy to access to the chest cavity, the aortic arch is reached through a midline incision in the anterior neck. The thyroid is pulled back to reveal the sternal notch. The sternum is subsequently cut down to the second rib level, and the aortic arch is reached simply by separating the connective tissues and thymus. From there, a suture can be wrapped around the arch and tied with a spacer, and then the sternal cut and skin can be closed. MTAC is a much faster and less invasive way to induce left ventricular hypertension and enables the possibility for high-throughput studies. The success of the constriction can be verified using high-frequency trans-thoracic echocardiography, particularly color Doppler and pulsed-wave Doppler, to determine the flow velocities of the aortic arch and left and right carotid arteries, the dimension of the blood vessels, and the left ventricular function and morphology. A successful constriction will also trigger significant histopathological changes, such as cardiac muscle cell hypertrophy with interstitial and perivascular fibrosis. Here, the procedure of MTAC is described, demonstrating how the resulting flow changes in the carotid arteries can be examined with echocardiography, gross morphology, and histopathological changes in the heart.

  18. Applications of immobilized catalysts in continuous flow processes.

    PubMed

    Kirschning, Andreas; Jas, Gerhard

    2004-01-01

    As part of the dramatic changes associated with automation in pharmaceutical and agrochemical research laboratories, the search for new technologies has become a major topic in the chemical community. Commonly, high-throughput chemistry is still carried out in batches whereas flow-through processes are rather restricted to production processes, despite the fact that the latter concept allows facile automation, reproducibility, safety, and process reliability. Indeed, methods and technologies are missing that allow rapid transfer from the research level to process development. Continuous flow processes are considered as a universal lever to overcome these restrictions and only recently, joint efforts between synthetic and polymer chemists and chemical engineers have resulted in the first continuous flow devices and microreactors which allow rapid preparation of compounds with minimum workup. Importantly, more and more developments combine the use of immobilized reagents and catalysts with the concept of structured continuous flow reactors. Consequently, the present article focuses on this new research field, which is located at the interface of continuous flow processes and solid-phase-bound catalysts.

  19. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement.

    PubMed

    Lockie, Tim; Rolandi, M Cristina; Piek, Jan J

    2013-10-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping of the proximal aortic pressure trace. A problem with either of these requirements can be a source of serious error in the measurement of FFR. In each case we present here, despite a good aortic pressure trace at the start of the procedure, there is dynamic damping of the pressure trace during hyperemia, secondary to axial migration of the guiding catheter into the left main stem (LMS). In both cases, a normal aortic pressure trace (Pa) is present at baseline. After intracoronary adenosine injection, there was a fall in both mean Pa and distal coronary pressure (Pd) concomitant with damping of Pa, evidenced by loss of the dicrotic notch and ventricularization of the pressure trace. The resultant FFR value is underestimated. As hyperemia wears off, both pressure traces return to normal with good articulation of the dicrotic notch. When the procedure was repeated taking care to ensure that the guide did not move into the LMS during hyperemia, the Pa trace remained stable following intracoronary adenosine, while mean Pd decreased as before. In both cases, hemodynamically significant lesions were demonstrated that had been masked by the artifactual drop in Pa during the first attempt.

  20. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics

    PubMed Central

    Bollache, Emilie; van Ooij, Pim; Powell, Alex; Carr, James; Markl, Michael; Barker, Alex J.

    2016-01-01

    The purpose of this study was to compare aortic flow and velocity quantification using 4D flow MRI and 2D CINE phase-contrast (PC)-MRI with either one-directional (2D-1dir) or three-directional (2D-3dir) velocity encoding. 15 healthy volunteers (51 ± 19 years) underwent MRI including (1) breath-holding 2D-1dir and (2) free breathing 2D-3dir PC-MRI in planes orthogonal to the ascending (AA) and descending (DA) aorta, as well as (3) free breathing 4D flow MRI with full thoracic aorta coverage. Flow quantification included the co-registration of the 2D PC acquisition planes with 4D flow MRI data, AA and DA segmentation, and calculation of AA and DA peak systolic velocity, peak flow and net flow volume for all sequences. Additionally, the 2D-3dir velocity taking into account the through-plane component only was used to obtain results analogous to a free breathing 2D-1dir acquisition. Good agreement was found between 4D flow and 2D-3dir peak velocity (differences = −3 to 6 %), peak flow (−7 %) and net volume (−14 to −9 %). In contrast, breath-holding 2D-1dir measurements exhibited indices significantly lower than free breathing 2D-3dir and 2D-1dir (differences = −35 to −7 %, p < 0.05). Finally, high correlations (r ≥ 0.97) were obtained for indices estimated with or without eddy current correction, with the lowest correlation observed for net volume. 4D flow and 2D-3dir aortic hemodynamic indices were in concordance. However, differences between respiration state and 2D-1dir and 2D-3dir measurements indicate that reference values should be established according to the PC-MRI sequence, especially for the widely used net flow (e.g. stroke volume in the AA). PMID:27435230

  1. Full dimensional computer simulations to study pulsatile blood flow in vessels, aortic arch and bifurcated veins: Investigation of blood viscosity and turbulent effects.

    PubMed

    Sultanov, Renat A; Guster, Dennis

    2009-01-01

    We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels.

  2. Surgical Approaches to Aortic Valve Replacement and Repair—Insights and Challenges

    PubMed Central

    Ramchandani, Mahesh; Reardon, Michael J

    2014-01-01

    Since 1960, surgical aortic valve replacement (sAVR) had been the only effective treatment for symptomatic severe aortic stenosis until the recent development of transcatheter aortic valve replacement (TAVR). TAVR has offered an alternative, minimally invasive treatment approach particularly for patients whose age or co-morbidities make them unsuitable for sAVR. The rapid and enthusiastic utilization of this new technique has triggered some speculation about the imminent demise of sAVR. We believe that despite the recent advances in TAVR, surgical approach to aortic valve replacement has continued to develop and will continue to be highly relevant in the future. This article will discuss the recent developments and current approaches for sAVR, and how these approaches will keep pace with catheter-based technologies. PMID:29588775

  3. Transcatheter Aortic Valve Replacement for Native Aortic Valve Regurgitation

    PubMed Central

    Spina, Roberto; Anthony, Chris; Muller, David WM

    2015-01-01

    Transcatheter aortic valve replacement with either the balloon-expandable Edwards SAPIEN XT valve, or the self-expandable CoreValve prosthesis has become the established therapeutic modality for severe aortic valve stenosis in patients who are not deemed suitable for surgical intervention due to excessively high operative risk. Native aortic valve regurgitation, defined as primary aortic incompetence not associated with aortic stenosis or failed valve replacement, on the other hand, is still considered a relative contraindication for transcatheter aortic valve therapies, because of the absence of annular or leaflet calcification required for secure anchoring of the transcatheter heart valve. In addition, severe aortic regurgitation often coexists with aortic root or ascending aorta dilatation, the treatment of which mandates operative intervention. For these reasons, transcatheter aortic valve replacement has been only sporadically used to treat pure aortic incompetence, typically on a compassionate basis and in surgically inoperable patients. More recently, however, transcatheter aortic valve replacement for native aortic valve regurgitation has been trialled with newer-generation heart valves, with encouraging results, and new ancillary devices have emerged that are designed to stabilize the annulus–root complex. In this paper we review the clinical context, technical characteristics and outcomes associated with transcatheter treatment of native aortic valve regurgitation. PMID:29588674

  4. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  5. [Status of aortic valve reconstruction and Ross operation in aortic valve diseases].

    PubMed

    Sievers, Hans H

    2002-08-01

    At first glance the aortic valve is a relative simple valve mechanism connecting the left ventricle and the ascending aorta. Detailed analysis of the different components of the aortic valve including the leaflets and sinuses revealed a complex motion of each part leading to a perfect durable valve mechanism at rest and during exercise. Theoretically, the reconstruction or imitation of these structures in patients with aortic valve disease should lead to optimal results. Prerequisite is the exact knowledge of the important functional characteristics of the aortic valve. The dynamic behavior of the aortic root closely harmonizing with the leaflets not only warrants stress minimizing and valve durability, but also optimizes coronary flow, left ventricular function and aortic impedance. The newly discovered contractile capacity of the leaflets and the root components are important for tuning the dynamics. Isolated reconstruction of the aortic valve such as decalcification, commissurotomy, plication of ring or leaflets of a tricuspid aortic valve and cusp extension are seldom indicated in contrast to the reconstruction of the bicuspid insufficient valve. Proper indication and skilled techniques lead to excellent hemodynamic and clinical intermediate-term result up to 7 years after reconstruction. Latest follow-up revealed a mean aortic insufficiency of 0.7, maximal pressure gradient of 11.4 +/- 8.5 mm Hg with zero hospital or late mortality, reoperation or thromboembolic events in 22 patients. The reconstructive techniques for aortic root aneurysm and/or type A dissection according to David or Yacoub have become routine procedures in the last 10 years. The hemodynamic and clinical results are excellent with low reoperation rate and very low risk of thromboembolism. Generally, a maximal diameter of the root of 5 cm is indicative for performing the operation. In patients with Marfan's syndrome the reconstruction should be advanced even with smaller diameters especially

  6. Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice.

    PubMed

    Jung, Jae-Joon; Razavian, Mahmoud; Kim, Hye-Yeong; Ye, Yunpeng; Golestani, Reza; Toczek, Jakub; Zhang, Jiasheng; Sadeghi, Mehran M

    2016-09-13

    Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E(-/-) mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE(-/-) mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression.

  7. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  8. Aortic root dynamics and surgery: from craft to science.

    PubMed

    Cheng, Allen; Dagum, Paul; Miller, D Craig

    2007-08-29

    Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.

  9. Uncertainty Quantification applied to flow simulations in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2015-11-01

    The thoracic aortic aneurysm is a progressive dilatation of the thoracic aorta causing a weakness in the aortic wall, which may eventually cause life-threatening events. Clinical decisions on treatment strategies are currently based on empiric criteria, like the aortic diameter value or its growth rate. Numerical simulations can give the quantification of important indexes which are impossible to be obtained through in-vivo measurements and can provide supplementary information. Hemodynamic simulations are carried out by using the open-source tool SimVascular and considering patient-specific geometries. One of the main issues in these simulations is the choice of suitable boundary conditions, modeling the organs and vessels not included in the computational domain. The current practice is to use outflow conditions based on resistance and capacitance, whose values are tuned to obtain a physiological behavior of the patient pressure. However it is not known a priori how this choice affects the results of the simulation. The impact of the uncertainties in these outflow parameters is investigated here by using the generalized Polynomial Chaos approach. This analysis also permits to calibrate the outflow-boundary parameters when patient-specific in-vivo data are available.

  10. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing

    PubMed Central

    Arzani, Amirhossein; Les, Andrea S.; Dalman, Ronald L.; Shadden, Shawn C.

    2014-01-01

    SUMMARY Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. Magnetic resonance imaging was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields, and associated Lagrangian coherent structures, were computed from blood velocity data, and used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing, and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. PMID:24493404

  11. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    PubMed

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.

  12. A geometric approach to aortic root surgical anatomy.

    PubMed

    Contino, Monica; Mangini, Andrea; Lemma, Massimo Giovanni; Romagnoni, Claudia; Zerbi, Pietro; Gelpi, Guido; Antona, Carlo

    2016-01-01

    The aim of this study was the analysis of the geometrical relationships between the different structures constituting the aortic root, with particular attention to interleaflet triangles, haemodynamic ventriculo-arterial junction and functional aortic annulus in normal subjects. Sixteen formol-fixed human hearts with normal aortic roots were studied. The aortic root was isolated, sectioned at the midpoint of the non-coronary sinus, spread apart and photographed by a high-resolution digital camera. After calibration and picture resizing, the software AutoCAD 2004 was used to identify and measure all the elements of the interleaflets triangles and of the aortic root that were objects of our analysis. Multiple comparisons were performed with one-way analysis of variance for continuous data and with Kruskal-Wallis analysis for non-continuous data. Linear regression and Pearson's product correlation were used to correlate root element dimensions when appropriate. Student's t-test was used to compare means for unpaired data. Heron's formula was applied to estimate the functional aortic annular diameters. The non coronary-left coronary interleaflets triangles were larger, followed by inter-coronary and right-non-coronary ones. The apical angle is <60° and its standard deviation can be considered an asymmetry index. The sinu-tubular junction was shown to be 10% larger than the virtual basal ring (VBR). The mathematical relationship between the haemodynamic ventriculo-arterial junction and the VBR calculated by linear regression and expressed in terms of the diameter was: haemodynamic ventriculo-arterial junction = 2.29 VBR (diameter) + 47. Conservative aortic surgery is based on a better understanding of aortic root anatomy and physiology. The relationships among its elements are of paramount importance during aortic valve repair/sparing procedures and they can be useful also in echocardiographic analysis and in computed tomography reconstruction. © The Author 2015

  13. [Endovascular repair of primary retrograde Stanford type A aortic dissection].

    PubMed

    Wu, H W; Sun, L; Li, D M; Jing, H; Xu, B; Wang, C T; Zhang, L

    2016-10-01

    Objective: To summarize the short- and mid-term results on endovascular repair of primary retrograde Stanford type A aortic dissection with an entry tear in distal aortic arch or descending aorta. Methods: Between December 2009 and December 2014, 21 male patients of primary retrograde Stanford type A aortic dissection with a mean age of (52±9) years received endovascular repair in Department of Cardiothoracic Surgery, Jinling Hospital. Among the 21 cases, 17 patients were presented as ascending aortic intramural hematoma, 4 patients as active blood flow in false lumen and partial thrombosis, 8 patients as ulcer on descending aorta combined intramural hematoma in descending aorta, and 13 patients as typical dissection changes. All patients received endovascular stent-graft repair successfully, with 15 cases in acute phase and 6 cases in chronic phase. Results: Cone stent was implanted in 13 cases, while straight stent in 8 cases, including 1 case of left common carotid-left subclavian artery bypass surgery and 1 case of restrictive bare-metal stent implantation. No perioperative stroke, paraplegia, stent fracture or displacement, limbs or abdominal organ ischemia or other severe complications occured, except for tracheotomy in 2 patients. Active blood flow in ascending aorta or aortic arch disappeared, and intramural hematoma started being absorbed on CT angiography images before discharge. All patients were alive during follow-up (6 to 72 months), and intramural hematoma in ascending aorta and aortic arch was absorbed thoroughly. Type Ⅰ endoleak and ulcer expansion were found in 1 patient, and type Ⅳ endoleak in distal stent was found in another one patient. Secondary ascending aortic dissection was found in 1 case two years later, which was cured by hybrid procedure with cardiopulmonary bypass. Conclusion: Endovascular repair of primary retrograde Stanford type A aortic dissection was safe and effective, which correlated with favorable short- and mid

  14. Characterizing saccular aortic arch aneurysms from the geometry-flow dynamics relationship.

    PubMed

    Natsume, Kayoko; Shiiya, Norihiko; Takehara, Yasuo; Sugiyama, Masataka; Satoh, Hiroshi; Yamashita, Katsushi; Washiyama, Naoki

    2017-06-01

    Low wall shear stress (WSS) has been reported to be associated with accelerated atherosclerosis, aneurysm growth, or rupture. We evaluated the geometry of aortic arch aneurysms and their relationship with WSS by using the 4-dimensional flow magnetic resonance imaging to better characterize the saccular aneurysms. We analyzed the geometry in 100 patients using multiplanar reconstruction of computed tomography. We evaluated WSS and vortex flow using 4-dimensional flow magnetic resonance imaging in 16 of them, which were compared with 8 age-matched control subjects and eight healthy young volunteers. Eighty-two patients had a saccular aneurysm, and 18 had a fusiform aneurysm. External diameter/aneurysm length ratio and sac depth/neck width ratio of the fusiform aneurysms were constant at 0.76 ± 0.18 and 0.23 ± 0.09, whereas those of saccular aneurysms, especially those involving the outer curvature, were higher and more variable. Vortex flow was always present in the aneurysms, resulting in low WSS. When the sac depth/neck width ratio was less than 0.8, peak WSS correlated inversely with luminal diameter even in the saccular aneurysms. When this ratio exceeded 0.8, which was the case only with the saccular aneurysms, such correlation no longer existed and WSS was invariably low. Fusiform aneurysms elongate as they dilate, and WSS is lower as the diameter is larger. Saccular aneurysms dilate without proportionate elongation, and they, especially those occupying the inner curvature, have higher and variable sac depth/neck width ratio. When this ratio exceeds 0.8, WSS is low regardless of diameter, which may explain their malignant clinical behavior. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. An unusual cause of hemolysis in a patient with an aortic valved conduit replacement.

    PubMed

    Allman, Christine; Rajaratnam, Rohan; Kachwalla, Hashim; Hughes, Clifford F; Bannon, Paul; Leung, Dominic Y

    2003-02-01

    Hemolytic anemia is a well-known but uncommon complication in patients with prosthetic heart valves. It is most commonly a result of prosthetic valve dysfunction, periprosthetic valvular regurgitation, or both. We report a case of a 41-year-old man who had a previous aortic valve and root replacement for acute proximal aortic dissection, now presenting with hemolytic anemia. This was a result of flow obstruction at the distal anastomosis of the aortic conduit by the presence of multiple dissection flaps resulting in severe flow turbulence. Although the pathology was at the blind spot for transesophageal echocardiography, the dissection flaps, the flow turbulence, and the degree of obstruction were well-demonstrated by this technique after careful manipulation of the probe and a high index of suspicion.

  16. Chronic ETA antagonist reverses hypertension and impairment of structure and function of peripheral small arteries in aortic stiffening.

    PubMed

    Guo, Xiaomei; Chen, Huan; Han, Ling; Haulon, Stephan; Kassab, Ghassan S

    2018-02-15

    Arterial stiffness may contribute to the pathogenesis of hypertension. The goal of this study is to elucidate the role of Endothelin-1 (ET-1) in aortic stiffening-induced hypertension through ET A receptor activation. An increase in aortic stiffness was created by use of a non-constrictive restraint, NCR on the abdominal aortic surface. A group of rats underwent aortic NCR or sham operation for 12 weeks and were then treated with ET A receptor antagonist BQ-123 for 3 weeks. We found that 12 weeks of aortic NCR significantly increased pulse and mean pressure and altered peripheral flow pattern, accompanied by an increased serum ET-1 level (p < 0.05). The increase in aortic stiffness (evidenced by an elevated pulse wave velocity) caused hypertrophic structural remodeling and decreased arterial compliance, along with an impaired endothelial function in peripheral small arteries. BQ-123 treatment only partially attenuated peripheral arterial hypertrophy and restored arterial compliance, but completely recovered endothelium function, and consequently restored local flow and lowered blood pressure. Our findings underscore the hemodynamic coupling between aortic stiffening and peripheral arterial vessels and flow dynamics through an ET A -dependent mechanism. ET A receptor blockade may have therapeutic potential for improving peripheral vessel structure and function in the treatment of aortic stiffness-induced hypertension.

  17. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  18. Incremental balloon deflation following complete resuscitative endovascular balloon occlusion of the aorta results in steep inflection of flow and rapid reperfusion in a large animal model of hemorrhagic shock.

    PubMed

    Davidson, Anders J; Russo, Rachel M; Ferencz, Sarah-Ashley E; Cannon, Jeremy W; Rasmussen, Todd E; Neff, Lucas P; Johnson, M Austin; Williams, Timothy K

    2017-07-01

    To avoid potential cardiovascular collapse after resuscitative endovascular balloon occlusion of the aorta (REBOA), current guidelines recommend methodically deflating the balloon for 5 minutes to gradually reperfuse distal tissue beds. However, anecdotal evidence suggests that this approach may still result in unpredictable aortic flow rates and hemodynamic instability. We sought to characterize aortic flow dynamics following REBOA as the balloon is deflated in accordance with current practice guidelines. Eight Yorkshire-cross swine were splenectomized, instrumented, and subjected to rapid 25% total blood volume hemorrhage. After 30 minutes of shock, animals received 60 minutes of Zone 1 REBOA with a low-profile REBOA catheter. During subsequent resuscitation with shed blood, the aortic occlusion balloon was gradually deflated in stepwise fashion at the rate of 0.5 mL every 30 seconds until completely deflated. Aortic flow rate and proximal mean arterial pressure (MAP) were measured continuously over the period of balloon deflation. Graded balloon deflation resulted in variable initial return of aortic flow (median, 78 seconds; interquartile range [IQR], 68-105 seconds). A rapid increase in aortic flow during a single-balloon deflation step was observed in all animals (median, 819 mL/min; IQR, 664-1241 mL/min) and corresponded with an immediate decrease in proximal MAP (median, 30 mm Hg; IQR, 14.5-37 mm Hg). Total balloon volume and time to return of flow demonstrated no correlation (r = 0.016). This study is the first to characterize aortic flow during balloon deflation following REBOA. A steep inflection point occurs during balloon deflation that results in an abrupt increase in aortic flow and a concomitant decrease in MAP. Furthermore, the onset of distal aortic flow was inconsistent across study animals and did not correlate with initial balloon volume or relative deflation volume. Future studies to define the factors that affect aortic flow during balloon

  19. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  20. Bicuspid Aortic Valve

    DTIC Science & Technology

    2006-08-01

    severe aortic stenosis . Figure 1F. Oblique axial cine bright blood imaging through the valve plane of the aorta, demonstrates the aortic valve to...the ascending aorta. This moderate to large jet is consistent with moderate to severe aortic stenosis . No diastolic jet to suggest aortic ...conditions. Functional impairment of the aortic valve—namely aortic stenosis and aortic regurgitation—is the most common complication (in up to 68-85% of

  1. Aortic annulus and root characteristics in severe aortic stenosis due to bicuspid aortic valve and tricuspid aortic valves: implications for transcatheter aortic valve therapies.

    PubMed

    Philip, Femi; Faza, Nadine Nadar; Schoenhagen, Paul; Desai, Milind Y; Tuzcu, E Murat; Svensson, Lars G; Kapadia, Samir R

    2015-08-01

    Patients with severe aortic stenosis due to BAV are excluded from transcatheter aortic valve replacement (TAVR) due to concern for asymmetric expansion and valve dysfunction. We sought to characterize the aortic root and annulus in bicuspid aortic valve (BAV) and tricuspid aortic valves (TAV). We identified patients with severe AS who underwent multi-detector computed tomographic (MDCT) imaging prior to surgical aortic valve replacement (SAVR, n = 200) for BAV and TAVR (n = 200) for TAV from 2010 to 2013. The presence of a BAV was confirmed on surgical and pathological review. Annulus measurements of the basal ring (short- and long-axis, area-derived diameter), coronary ostia height, sinus area (SA), sino-tubular junction area (STJ), calcification and eccentricity index (EI, 1-short axis/long axis) were made. Patients with TAV were older (78.8 years vs. 57.8 years, P = 0.04) than those with BAV. The aortic annulus area (5.21 ± 2.1 cm(2) vs. 4.63 ± 2.0 cm(2) , P = 0.0001), sinus of Valsalva diameter (3.7 ± 0.9 cm vs. 3.1 ± 0.1 cm, P = 0.001) and ascending aorta diameter (3.5 ± 0.7 cm vs. 2.97 ± 0.6 cm, P = 0.001) were significantly larger with BAV. Bicuspid aortic annuli were significantly less elliptical (EI, 1.24 ± 0.1 vs. 1.29 ± 0.1, P = 0.006) and more circular (39% vs. 4%, P < 0.001) compared to the TAV annulus. There was more eccentric annular calcification in BAV vs. TAV (68% vs. 32%, P < 0.001). The mean distance from the aortic annulus to the left main coronary ostium was less than the right coronary ostium. Less than 10% of the BAV annuli would not fit a currently available valved stents. Bicuspid aortic valves have a larger annulus size, sinus of Valsalva and ascending aorta dimensions. In addition, the BAV aortic annuli appear circular and most will fit currently available commercial valved stents. © 2015 Wiley Periodicals, Inc.

  2. Deletion of CD73 in mice leads to aortic valve dysfunction.

    PubMed

    Zukowska, P; Kutryb-Zajac, B; Jasztal, A; Toczek, M; Zabielska, M; Borkowski, T; Khalpey, Z; Smolenski, R T; Slominska, E M

    2017-06-01

    Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca 2+ , Mg 2+ and PO 4 3- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Differential transesophageal echocardiographic diagnosis between linear artifacts and intraluminal flap of aortic dissection or disruption.

    PubMed

    Vignon, P; Spencer, K T; Rambaud, G; Preux, P M; Krauss, D; Balasia, B; Lang, R M

    2001-06-01

    The relatively low specificity of transesophageal echocardiography (TEE) for the diagnosis of aortic dissection (AD) or traumatic disruption of the aorta (TDA) has been attributed to linear artifacts. We sought to determine the incidence of intra-aortic linear artifacts in a cohort of patients with suspected AD or TDA, to establish the differential TEE diagnostic criteria between these artifacts and true aortic flaps, and to evaluate their impact on TEE diagnostic accuracy. During an 8-year period, patients at high risk of AD (n = 261) or TDA (n = 90) who underwent a TEE study and had confirmed final diagnoses were studied. In an initial retrospective series, linear artifacts were observed within the ascending and descending aorta in 59 of 230 patients (26%) and 17 of 230 patients (7%), respectively. TEE findings associated with linear artifacts in the ascending aorta were as follows: displacement parallel to aortic walls; similar blood flow velocities on both sides; angle with the aortic wall > 85 degrees; and thickness > 2.5 mm. Diagnostic criteria of reverberant images in the descending aorta were as follows: displacement parallel to aortic walls, overimposition of blood flow, and similar blood flow velocities on both sides of the image. In a subsequent prospective series (n = 121), systematic use of these diagnostic criteria resulted in improved TEE specificity for the identification of true intra-aortic flaps. Misleading intra-aortic linear artifacts are frequently observed in patients undergoing a TEE study for suspected AD or TDA. Routine use of the herein-proposed diagnostic criteria promises to further improve TEE diagnostic accuracy in the setting of severely ill patients with potential need for prompt surgery.

  4. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  5. Fault-tolerant continuous flow systems modelling

    NASA Astrophysics Data System (ADS)

    Tolbi, B.; Tebbikh, H.; Alla, H.

    2017-01-01

    This paper presents a structural modelling of faults with hybrid Petri nets (HPNs) for the analysis of a particular class of hybrid dynamic systems, continuous flow systems. HPNs are first used for the behavioural description of continuous flow systems without faults. Then, faults' modelling is considered using a structural method without having to rebuild the model to new. A translation method is given in hierarchical way, it gives a hybrid automata (HA) from an elementary HPN. This translation preserves the behavioural semantics (timed bisimilarity), and reflects the temporal behaviour by giving semantics for each model in terms of timed transition systems. Thus, advantages of the power modelling of HPNs and the analysis ability of HA are taken. A simple example is used to illustrate the ideas.

  6. Aortic insufficiency

    MedlinePlus

    ... Heart valve - aortic regurgitation; Valvular disease - aortic regurgitation; AI - aortic insufficiency ... BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  7. [Validation of a new hand-carried ultrasound device equipped with directional color power Doppler and continuous wave Doppler].

    PubMed

    Kawai, Junichi; Tanabe, Kazuaki; Matsuzaki, Masashi; Yamaguchi, Kazuto; Yagi, Toshikazu; Fujii, Yoko; Konda, Toshiko; Ui, Kazuyo; Sumida, Toshiaki; Okada, Midori; Tani, Tomoko; Morioka, Shigefumi

    2003-10-01

    This study evaluated the accuracy of the directional color power Doppler (DCPD) and continuous wave Doppler (CWD) methods incorporated in the new hand-carried SonoSite 180PLUS ultrasound device. The hand-held ultrasound system with 2.5 MHz transducer and SONOS 5500 was used as a standard ultrasound system with a 2 to 4 MHz wideband transducer. The experimental study used a Doppler wire phantom to evaluate the influence of target wire speed and angle of transducer on DCPD imaging. The clinical study included 48 consecutive patients. DCPD assessment of valvular regurgitation measured the distances of DCPD signals of mitral, aortic and tricuspid valve regurgitation using the apical four-chamber view for comparison with standard echocardiography. CWD assessment measured the peak velocities of the aortic flow and tricuspid valve regurgitant flow for comparison with standard echocardiography. In the experimental study, DCPD signals were not influenced by target wire speed changes and transducer incident angles. In the clinical study, agreements for mitral, aortic and tricuspid regurgitation between the two methods were 89.6%, 81.8% and 78.7%, respectively. The distances of DCPD valve regurgitant signals by the hand-carried ultrasound device showed good correlation (mitral regurgitation: y = 0.84x + 0.55; r = 0.93, aortic regurgitation: y = 0.95x + 0.27; r = 0.94, tricuspid regurgitation: y = 0.86x + 0.61; r = 0.90) with those by standard echocardiography. Evaluation of CWD velocity measurements showed good agreement for the lower flow velocities (< 2.0 m/sec). However, underestimation occurred for the high flow velocities (> 2.0 m/sec) compared with those by standard echocardiography (aortic flow: y = 0.80x + 0.11; r = 0.95, tricuspid regurgitation: y = 1.00x - 0.23; r = 0.90). The new hand-carried ultrasound device (SonoSite 180PLUS equipped with DCPD and CWD) is clinically useful for evaluating valvular regurgitations and flow velocities. Further studies are needed to

  8. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  9. Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    PubMed Central

    Pahlevan, Niema M.; Gharib, Morteza

    2011-01-01

    The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload. PMID:21853075

  10. Neuroprotective effect of pressure-oriented flow regulation and pH-stat management in selective antegrade brain perfusion during total aortic arch repair.

    PubMed

    Ito, Hisato; Mizumoto, Toru; Sawada, Yasuhiro; Fujinaga, Kazuya; Tempaku, Hironori; Yamamoto, Yasunori; Tsutsui, Katsuhiro; Shimpo, Hideto

    2017-10-01

    The aim of this study was to assess the safety and effectiveness of our selective antegrade brain perfusion (SABP) strategy, which is characterized by moderate hypothermic and low-pressure management under pH-stat using a completely closed cardiopulmonary bypass circuit with a single centrifugal pump. Forty-nine consecutive patients (median age, 74) underwent total aortic arch replacement using a 4-branched graft. SABP was conducted with individual cannulation in all arch vessels. The SABP flow rate was monitored, and the flow rates of each arch vessel were also measured in patients with available data. One patient died of cerebral infarction, and 7 had transient neurological deficits without apparent findings on postoperative imaging studies and without residual sequels at hospital discharge. The operation, cardiopulmonary bypass, cardiac arrest, circulatory arrest and SABP times were 327 min (interquartile range, 292-381), 211 (184-247), 107 (84.8-138.3), 54.0 (48-68) and 137 (114-158), respectively. The total flow of the SABP was 18.1 ml/kg/min (15.7-20.9). The flow rates of the brachiocephalic, the left carotid and the left subclavian arteries were 9.5 ml/kg/min (7.7-11.5), 4.2 (2.8-5.7) and 4.5 (3.7-5.5), respectively. Only the flow rate of the brachiocephalic artery was significantly correlated with the total SABP flow rate (Spearman rank correlation coefficient, r = 0.58, P < 0.01). The moderate hypothermic, high-flow, low-pressure SABP strategy with pH-stat management can be applied in adult aortic surgery; however, the feasibility and effectiveness of this concept need further evaluation in a prospective controlled study. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Understanding the pathogenesis of abdominal aortic aneurysms

    PubMed Central

    Kuivaniemi, Helena; Ryer, Evan J.; Elmore, James R.; Tromp, Gerard

    2016-01-01

    Summary An aortic aneurysm is a dilatation in which the aortic diameter is ≥ 3.0 cm. If left untreated, the aortic wall continues to weaken and becomes unable to withstand the forces of the luminal blood pressure resulting in progressive dilatation and rupture, a catastrophic event associated with a mortality of 50 – 80%. Smoking and positive family history are important risk factors for the development of abdominal aortic aneurysms (AAA). Several genetic risk factors have also been identified. On the histological level, visible hallmarks of AAA pathogenesis include inflammation, smooth muscle cell apoptosis, extracellular matrix degradation, and oxidative stress. We expect that large genetic, genomic, epigenetic, proteomic and metabolomic studies will be undertaken by international consortia to identify additional risk factors and biomarkers, and to enhance our understanding of the pathobiology of AAA. Collaboration between different research groups will be important in overcoming the challenges to develop pharmacological treatments for AAA. PMID:26308600

  12. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    PubMed

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  13. Aortic valve function after bicuspidization of the unicuspid aortic valve.

    PubMed

    Aicher, Diana; Bewarder, Moritz; Kindermann, Michael; Abdul-Khalique, Hashim; Schäfers, Hans-Joachim

    2013-05-01

    Unicuspid aortic valve (UAV) anatomy leads to dysfunction of the valve in young individuals. We introduced a reconstructive technique of bicuspidizing the UAV. Initially we copied the typical asymmetry of a normal bicuspid aortic valve (BAV) (I), later we created a symmetric BAV (II). This study compared the hemodynamic function of the two designs of a bicuspidized UAV. Aortic valve function was studied at rest and during exercise in 28 patients after repair of UAV (group I, n = 8; group II, n = 20). There were no differences among the groups I and II with respect to gender, age, body size, or weight. All patients were in New York Heart Association class I. Six healthy adults served as control individuals. All patients were studied with transthoracic echocardiography between 4 and 65 months postoperatively. Systolic gradients were assessed by continuous wave Doppler while patients were at rest and exercising on a bicycle ergometer. Aortic regurgitation was grade I or less in all patients. Resting gradients were significantly elevated in group I compared with group II and control individuals (group I, peak 33.8 ± 7.8 mm Hg; mean 19.1 ± 5.4 mm Hg; group II, peak 15.8 ± 5.4, mean 8.2 ± 2.8 mm Hg; control individuals, peak 6.0 ± 1.6, mean 3.2 ± 0.8 mm Hg; p < 0.001). At 100 W peak gradients were highest in group I (group I, 62.7 ± 16.7 mm Hg; group II, 28.1 ± 7.6 mm Hg; control individuals, 15.4 ± 4.6 mm Hg; p < 0.001). Converting a UAV into a symmetric bicuspid design results in adequate valve competence. A symmetric repair design leads to improved systolic aortic valve function at rest and during exercise. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Wall stress on ascending thoracic aortic aneurysms with bicuspid compared with tricuspid aortic valve.

    PubMed

    Xuan, Yue; Wang, Zhongjie; Liu, Raymond; Haraldsson, Henrik; Hope, Michael D; Saloner, David A; Guccione, Julius M; Ge, Liang; Tseng, Elaine

    2018-03-08

    Guidelines for repair of bicuspid aortic valve-associated ascending thoracic aortic aneurysms have been changing, most recently to the same criteria as tricuspid aortic valve-ascending thoracic aortic aneurysms. Rupture/dissection occurs when wall stress exceeds wall strength. Recent studies suggest similar strength of bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms; thus, comparative wall stress may better predict dissection in bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms. Our aim was to determine whether bicuspid aortic valve-ascending thoracic aortic aneurysms had higher wall stresses than their tricuspid aortic valve counterparts. Patients with bicuspid aortic valve- and tricuspid aortic valve-ascending thoracic aortic aneurysms (bicuspid aortic valve = 17, tricuspid aortic valve = 19) greater than 4.5 cm underwent electrocardiogram-gated computed tomography angiography. Patient-specific 3-dimensional geometry was reconstructed and loaded to systemic pressure after accounting for prestress geometry. Finite element analyses were performed using the LS-DYNA solver (LSTC Inc, Livermore, Calif) with user-defined fiber-embedded material model to determine ascending thoracic aortic aneurysm wall stress. Bicuspid aortic valve-ascending thoracic aortic aneurysms 99th-percentile longitudinal stresses were 280 kPa versus 242 kPa (P = .028) for tricuspid aortic valve-ascending thoracic aortic aneurysms in systole. These stresses did not correlate to diameter for bicuspid aortic valve-ascending thoracic aortic aneurysms (r = -0.004) but had better correlation to tricuspid aortic valve-ascending thoracic aortic aneurysms diameter (r = 0.677). Longitudinal stresses on sinotubular junction were significantly higher in bicuspid aortic valve-ascending thoracic aortic aneurysms than in tricuspid aortic valve-ascending thoracic aortic aneurysms (405 vs 329 kPa, P = .023). Bicuspid

  15. Suspension string: a new method of aortic valvuloplasty for aortic insufficiency and ventricular septal defect.

    PubMed

    Huang, Zhixiong

    2006-09-01

    In a 4-year-old boy with ventricular septal defect, severe aortic insufficiency, and mild infundibular stenosis, a new method was used to reconstruct the prolapsed aortic cusp. Two ends of a pledged stitch were passed through the aorta at each side of the right, noncoronary commissure and then through another pledget, and were then tied repeatedly in a row. The length of the row of knots was equal to that of the free edge of left coronary or noncoronary leaflet. The remainder of the stitch was passed through a pledget and then the aortic wall at each side of the left and right coronary commissure to the extraaortic wall pledget and were tied. A suspension string was formed by the row of knots and supported by a Teflon (Dupont Teflon, Wilmington, DE) felt pledget sandwich at each of two commissures. The free margin of the prolapsed cusp was attached to the suspension string by a continuous suture. The concomitant anomalies were corrected. The result was satisfactory.

  16. Endovascular thoracic aortic repair and previous or concomitant abdominal aortic repair: is the increased risk of spinal cord ischemia real?

    PubMed

    Baril, Donald T; Carroccio, Alfio; Ellozy, Sharif H; Palchik, Eugene; Addis, Michael D; Jacobs, Tikva S; Teodorescu, Victoria; Marin, Michael L

    2006-03-01

    Spinal cord ischemia after endovascular thoracic aortic repair remains a significant risk. Previous or concomitant abdominal aortic repair may increase this risk. This investigation reviews the occurrence of spinal cord ischemia after endovascular repair of the descending thoracic aorta in patients with previous or concomitant abdominal aortic repair. Over an 8-year period, 125 patients underwent endovascular exclusion of the thoracic aorta at the Mount Sinai Medical Center. Twenty-eight of these patients had previous or concomitant abdominal aortic repair. The 27 patients who underwent staged repairs all had cerebrospinal fluid (CSF) drainage during and following repair. This population was analyzed for the complication of spinal cord ischemia and factors related to its occurrence. Mean follow-up was 19.3 months (range 1-61). Spinal cord ischemia developed in four of the 28 patients (14.3%) who underwent endovascular thoracic aortic repair with previous or concomitant abdominal aortic repair, while one of 97 patients (1.0%) developed ischemia among the remaining thoracic endograft population. One patient with concomitant abdominal aortic repair developed cord ischemia that manifested 12 hr following the procedure. The remaining three patients with previous abdominal aortic repair developed more delayed-onset paralysis ranging from the third postoperative day to 7 weeks following repair. Irreversible cord ischemia occurred in three patients, with full recovery in one patient. Major complications from CSF drainage occurred in one patient (3.7%). Spinal cord ischemia occurred at a markedly higher rate in patients with previous or concomitant abdominal aortic repair. This risk continued beyond the immediate postoperative period. The benefit of perioperative and salvage CSF drainage remains to be determined.

  17. Double aortic arch

    MedlinePlus

    Aortic arch anomaly; Double arch; Congenital heart defect - double aortic arch; Birth defect heart - double aortic arch ... aorta is a single arch that leaves the heart and moves leftward. In double aortic arch, some ...

  18. Aortic Dissection in Patients With Bicuspid Aortic Valve–Associated Aneurysms

    PubMed Central

    Wojnarski, Charles M.; Svensson, Lars G.; Roselli, Eric E.; Idrees, Jay J.; Lowry, Ashley M.; Ehrlinger, John; Pettersson, Gösta B.; Gillinov, A. Marc; Johnston, Douglas R.; Soltesz, Edward G.; Navia, Jose L.; Hammer, Donald F.; Griffin, Brian; Thamilarasan, Maran; Kalahasti, Vidyasagar; Sabik, Joseph F.; Blackstone, Eugene H.; Lytle, Bruce W.

    2016-01-01

    Background Data regarding the risk of aortic dissection in patients with bicuspid aortic valve and large ascending aortic diameter are limited, and appropriate timing of prophylactic ascending aortic replacement lacks consensus. Thus our objectives were to determine the risk of aortic dissection based on initial cross-sectional imaging data and clinical variables and to isolate predictors of aortic intervention in those initially prescribed serial surveillance imaging. Methods From January 1995 to January 2014, 1,181 patients with bicuspid aortic valve underwent cross-sectional computed tomography (CT) or magnetic resonance imaging (MRI) to ascertain sinus or tubular ascending aortic diameter greater than or equal to 4.7 cm. Random Forest classification was used to identify risk factors for aortic dissection, and among patients undergoing surveillance, time-related analysis was used to identify risk factors for aortic intervention. Results Prevalence of type A dissection that was detected by imaging or was found at operation or on follow-up was 5.3% (n = 63). Probability of type A dissection increased gradually at a sinus diameter of 5.0 cm—from 4.1% to 13% at 7.2 cm—and then increased steeply at an ascending aortic diameter of 5.3 cm—from 3.8% to 35% at 8.4 cm—corresponding to a cross-sectional area to height ratio of 10 cm2/m for sinuses of Valsalva and 13 cm2/m for the tubular ascending aorta. Cross-sectional area to height ratio was the best predictor of type A dissection (area under the curve [AUC] = 0.73). Conclusions Early prophylactic ascending aortic replacement in patients with bicuspid aortic valve should be considered at high-volume aortic centers to reduce the high risk of preventable type A dissection in those with aortas larger than approximately 5.0 cm or with a cross-sectional area to height ratio greater than approximately 10 cm2/m. PMID:26209494

  19. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  20. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.

    PubMed

    Hoettges, Kai F; McDonnell, Martin B; Hughes, Michael P

    2014-02-01

    Achieving real-time detection of environmental pathogens such as viruses and bacterial spores requires detectors with both rapid action and a suitable detection threshold. However, most biosensors have detection limits of an order of magnitude or more above the potential infection threshold, limiting their usefulness. This can be improved through the use of automated sample preparation techniques such as preconcentration. In this paper, we describe the use of AC electroosmosis to concentrate nanoparticles from a continuous flow. Electrodes at an optimized angle across a flow cell, and energized by a 1 kHz signal, were used to push nanoparticles to one side of a flow cell, and to extract the resulting stream with a high particle concentration from that side of the flow cell. A simple model of the behavior of particles in the flow cell has been developed, which shows good agreement with experimental results. The method indicates potential for higher concentration factors through cascading devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Ostrach, S.

    1978-01-01

    The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.

  2. De novo aortic insufficiency during long-term support on a left ventricular assist device: a systematic review and meta-analysis.

    PubMed

    Deo, Salil V; Sharma, Vikas; Cho, Yang Hyun; Shah, Ishan K; Park, Soon J

    2014-01-01

    Aortic insufficiency (AI) may occur while supported on a left ventricular assist device (LVAD). We conducted a systematic review to determine the incidence, predictors, and consequences of AI during LVAD support. MEDLINE was searched for original studies presenting clinical data regarding patients who developed AI during LVAD implant. Seven observational studies (657 patients) were selected for review; 65% of patients underwent implantation with a continuous-flow device (Cf-LVAD). The incidence of AI was 25% (11-42%) (Support period: 412 ± 281 days). AI increased by 4% (1-6%) per month of support (p < 0.01). AI-positive patients were older at implant (weighted mean difference, 7.7 [4.3; 11.1]; p < 0.01). Female sex (0.002 ± 0.001; p = 0.01) and smaller body surface area (-0.003 ± 0.001 per m; p < 0.01) correlated with progressive AI. Destination therapy patients (odds ratio [OR], 5.3 [1.2, 24]; p = 0.02) and those with Cf-LVAD pumps were likely to develop AI (hazard ratio [HR], 2.2 [1.2, 3.8]; p < 0.01). A closed aortic valve was associated with AI (OR, 4.7 [1.9, 11.8]; p < 0.01). Survival was comparable in both cohorts (HR, 1.5 [0.81, 2.8]; p = 0.2). A significant number of patients develop de novo AI during LVAD support. Advanced age, longer support duration, continuous-flow pumps, and a closed aortic valve are associated with AI. Large cohort studies would improve our understanding of this condition.

  3. Continuous stroke volume estimation from aortic pressure using zero dimensional cardiovascular model: proof of concept study from porcine experiments.

    PubMed

    Kamoi, Shun; Pretty, Christopher; Docherty, Paul; Squire, Dougie; Revie, James; Chiew, Yeong Shiong; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-01-01

    Accurate, continuous, left ventricular stroke volume (SV) measurements can convey large amounts of information about patient hemodynamic status and response to therapy. However, direct measurements are highly invasive in clinical practice, and current procedures for estimating SV require specialized devices and significant approximation. This study investigates the accuracy of a three element Windkessel model combined with an aortic pressure waveform to estimate SV. Aortic pressure is separated into two components capturing; 1) resistance and compliance, 2) characteristic impedance. This separation provides model-element relationships enabling SV to be estimated while requiring only one of the three element values to be known or estimated. Beat-to-beat SV estimation was performed using population-representative optimal values for each model element. This method was validated using measured SV data from porcine experiments (N = 3 female Pietrain pigs, 29-37 kg) in which both ventricular volume and aortic pressure waveforms were measured simultaneously. The median difference between measured SV from left ventricle (LV) output and estimated SV was 0.6 ml with a 90% range (5th-95th percentile) -12.4 ml-14.3 ml. During periods when changes in SV were induced, cross correlations in between estimated and measured SV were above R = 0.65 for all cases. The method presented demonstrates that the magnitude and trends of SV can be accurately estimated from pressure waveforms alone, without the need for identification of complex physiological metrics where strength of correlations may vary significantly from patient to patient.

  4. Aortic valve dysfunction and aortic dilation in adults with coarctation of the aorta.

    PubMed

    Clair, Mathieu; Fernandes, Susan M; Khairy, Paul; Graham, Dionne A; Krieger, Eric V; Opotowsky, Alexander R; Singh, Michael N; Colan, Steven D; Meijboom, Erik J; Landzberg, Michael J

    2014-01-01

    To determine the prevalence of aortic valve dysfunction, aortic dilation, and aortic valve and ascending aortic intervention in adults with coarctation of the aorta (CoA). Aortic valve dysfunction and aortic dilation are rare among children and adolescents with CoA. With longer follow-up, adults may be more likely to have progressive disease. We retrospectively reviewed all adults with CoA, repaired or unrepaired, seen at our center between 2004 and 2010. Two hundred sixteen adults (56.0% male) with CoA were identified. Median age at last evaluation was 28.3 (range 18.0 to 75.3) years. Bicuspid aortic valve (BAV) was present in 65.7%. At last follow-up, 3.2% had moderate or severe aortic stenosis, and 3.7% had moderate or severe aortic regurgitation. Dilation of the aortic root or ascending aorta was present in 28.0% and 41.6% of patients, respectively. Moderate or severe aortic root or ascending aortic dilation (z-score > 4) was present in 8.2% and 13.7%, respectively. Patients with BAV were more likely to have moderate or severe ascending aortic dilation compared with those without BAV (19.5% vs. 0%; P < 0.001). Age was associated with ascending aortic dilation (P = 0.04). At most recent follow-up, 5.6% had undergone aortic valve intervention, and 3.2% had aortic root or ascending aortic replacement. In adults with CoA, significant aortic valve dysfunction and interventions during early adulthood were uncommon. However, aortic dilation was prevalent, especially of the ascending aorta, in patients with BAV. © 2013 Wiley Periodicals, Inc.

  5. Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2010-11-01

    Clinical and epidemiologic studies have shown that hypertension plays a key role in development of left ventricular (LV) hypertrophy and ultimately heart failure mostly due to increased LV workload. Therefore, it is crucial to diagnose and treat abnormal high LV workload at early stages. The pumping mechanism of the heart is pulsatile, thus it sends pressure and flow wave into the compliant aorta. The wave dynamics in the aorta is dominated by interplay of heart rate (HR), aortic rigidity, and location of reflection sites. We hypothesized that for a fixed cardiac output (CO) and peripheral resistance (PR), interplay of HR and aortic compliance can create conditions that minimize LV power requirement. We used a computational approach to test our hypothesis. Finite element method with direct coupling method of fluid-structure interaction (FSI) was used. Blood was assumed to be incompressible Newtonian fluid and aortic wall was considered elastic isotropic. Simulations were performed for various heart rates and aortic rigidities while inflow wave, CO, and PR were kept constant. For any aortic compliance, LV power requirement becomes minimal at a specific heart rate. The minimum shifts to higher heart rates as aortic rigidity increases.

  6. Early in vivo experience with the pediatric continuous-flow total artificial heart.

    PubMed

    Karimov, Jamshid H; Horvath, David J; Byram, Nicole; Sunagawa, Gengo; Kuban, Barry D; Gao, Shengqiang; Dessoffy, Raymond; Fukamachi, Kiyotaka

    2018-03-30

    Heart transplantation in infants and children is an accepted therapy for end-stage heart failure, but donor organ availability is low and always uncertain. Mechanical circulatory support is another standard option, but there is a lack of intracorporeal devices due to size and functional range. The purpose of this study was to evaluate the in vivo performance of our initial prototype of a pediatric continuous-flow total artificial heart (P-CFTAH), comprising a dual pump with one motor and one rotating assembly, supported by a hydrodynamic bearing. In acute studies, the P-CFTAH was implanted in 4 lambs (average weight: 28.7 ± 2.3 kg) via a median sternotomy under cardiopulmonary bypass. Pulmonary and systemic pump performance parameters were recorded. The experiments showed good anatomical fit and easy implantation, with an average aortic cross-clamp time of 98 ± 18 minutes. Baseline hemodynamics were stable in all 4 animals (pump speed: 3.4 ± 0.2 krpm; pump flow: 2.1 ± 0.9 liters/min; power: 3.0 ± 0.8 W; arterial pressure: 68 ± 10 mm Hg; left and right atrial pressures: 6 ± 1 mm Hg, for both). Any differences between left and right atrial pressures were maintained within the intended limit of ±5 mm Hg over a wide range of ratios of systemic-to-pulmonary vascular resistance (0.7 to 12), with and without pump-speed modulation. Pump-speed modulation was successfully performed to create arterial pulsation. This initial P-CFTAH prototype met the proposed requirements for self-regulation, performance, and pulse modulation. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  7. The closing behavior of mechanical aortic heart valve prostheses.

    PubMed

    Lu, Po-Chien; Liu, Jia-Shing; Huang, Ren-Hong; Lo, Chi-Wen; Lai, Ho-Cheng; Hwang, Ned H C

    2004-01-01

    Mechanical artificial heart valves rely on reverse flow to close their leaflets. This mechanism creates regurgitation and water hammer effects that may form cavitations, damage blood cells, and cause thromboembolism. This study analyzes closing mechanisms of monoleaflet (Medtronic Hall 27), bileaflet (Carbo-Medics 27; St. Jude Medical 27; Duromedics 29), and trileaflet valves in a circulatory mock loop, including an aortic root with three sinuses. Downstream flow field velocity was measured via digital particle image velocimetry (DPIV). A high speed camera (PIVCAM 10-30 CCD video camera) tracked leaflet movement at 1000 frames/s. All valves open in 40-50 msec, but monoleaflet and bileaflet valves close in much less time (< 35 msec) than the trileaflet valve (>75 msec). During acceleration phase of systole, the monoleaflet forms a major and minor flow, the bileaflet has three jet flows, and the trileaflet produces a single central flow like physiologic valves. In deceleration phase, the aortic sinus vortices hinder monoleaflet and bileaflet valve closure until reverse flows and high negative transvalvular pressure push the leaflets rapidly for a hard closure. Conversely, the vortices help close the trileaflet valve more softly, probably causing less damage, lessening back flow, and providing a washing effect that may prevent thrombosis formation.

  8. Computational Modeling of Aortic Valvular Stenosis to Asses the Range of Validity of Gorlin Equation

    NASA Astrophysics Data System (ADS)

    Okpara, Emanuel; Agarwal, Ramesh; Rifkin, Robert; Wendl, Mike

    2003-11-01

    It is well known from clinical observations that the underestimation errors occur with the use of Gorlin formula (1) for the calculation of valve area of the stenotic aortic valve in patients with low cardiac output, that is in low flow states. Since 1951, empirical modifications to Gorlin formula have been proposed in the literaure by many researchers. In this paper, we study the mild to severe aortic valve stenosis for low to high flow rates by employing a simplified model of aortic valve. The aortic valve stenosis is modeled by a circular orifice in a flat plate embedded in the cross-section of a rigid tube (aorta). Experimental results are available for this configuration for the validation of a CFD solver "FLUENT". The numerical data base generated for this model for various degrees of stenoses and flow rates is employed to asses the range of validity of Gorlin's equation. Modifications to Gorlin formula are suggested to make it valid for all flow rates to determine the valve area for clinical use. (1) R. Gorlin and S. Gorlin," Hydraulic Formula for Calculation of the Area of Stenotic Mitral Valve, Other Cardiac Valves and Central Circulatory Shunts," Am. Heart Journal, Vol. 41, 1951, pp. 1-29.

  9. Quantification of abdominal aortic deformation after EVAR

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  10. Pulsatile flow in the aorta of the LVAD supported heart studied using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Moyedi, Zahra

    Currently many patients die because of the end-stage heart failure, mainly due to the reduced number of donor heart transplant organs. Studies show that a permanent left ventricular assist device (LVAD), a battery driven pump which is surgically implanted, increased the survival rate of patients with end-stage heart failure and improved considerably their quality of life. The inlet conduit of the LVAD is attached to the left ventricle and the outflow conduit anastomosed to the ascending aorta. The purpose of LVAD support is to help a weakened heart to pump blood to the rest of the body. However LVAD can cause some alterations of the natural blood flow. When your blood comes in contact with something that isn't a natural part of your body blood clots can occur and disrupt blood flow. Aortic valve integrity is vital for optimal support of left ventricular assist LVAD. Due to the existence of high continuous transvalvular pressure on the aortic valve, the opening frequency of the valve is reduced. To prevent the development of aortic insufficiency, aortic valve closure during LVAD implantation has been performed. However, the closed aortic valve reduces wash out of the aortic root, which causes blood stagnation and potential thrombus formation. So for this reason, there is a need to minimize the risks of occurring blood clot, by having more knowledge about the flow structure in the aorta during LVAD use. The current study focuses on measuring the flow field in the aorta of the LVAD assisted heart with two different types of aortic valve (Flat and Finned) using the SDSU cardiac simulator. The pulsatile pump that mimics the natural pulsing action of the heart also added to the system. The flow field is visualized using Particle Image Velocimetry (PIV). Furthermore, The fluid mechanics of aorta has been studied when LVAD conduit attached to two different locations (proximal and distal to the aortic valve) with pump speeds of 8,000 to 10,000 revolutions per minute (RPM

  11. Temporal variability of vena contracta and jet areas with color Doppler in aortic regurgitation: a chronic animal model study.

    PubMed

    Ishii, M; Jones, M; Shiota, T; Yamada, I; Sinclair, B; Heinrich, R S; Yoganathan, A P; Sahn, D J

    1998-11-01

    The purpose of our study was to determine the temporal variability of regurgitant color Doppler jet areas and the width of the color Doppler imaged vena contracta for evaluating the severity of aortic regurgitation. Twenty-nine hemodynamically different states were obtained pharmacologically in 8 sheep 20 weeks after surgery to produce aortic regurgitation. Aortic regurgitation was quantified by peak and mean regurgitant flow rates, regurgitant stroke volumes, and regurgitant fractions determined using pulmonary and aortic electromagnetic flow probes and meters balanced against each other. The regurgitant jet areas and the widths of color Doppler imaged vena contracta were measured at 4 different times during diastole to determine the temporal variability of this parameter. When measured at 4 different temporal points in diastole, a significant change was observed in the size of the color Doppler imaged regurgitant jet (percent of difference: from 31.1% to 904%; 233% +/- 245%). Simple linear regression analysis between each color jet area at 4 different periods in diastole and flow meter-based severity of the aortic regurgitation showed only weak correlation (0.23 < r < 0.49). In contrast, for most conditions only a slight change was observed in the width of the color Doppler imaged vena contracta during the diastolic regurgitant period (percent of difference, vena contracta: from 2.4% to 12.9%, 5.8% +/- 3.2%). In addition, for each period the width of the color Doppler imaged vena contracta at the 4 different time periods in diastole correlated quite strongly with volumetric measures of the severity of aortic regurgitation (0.81 < r < 0.90) and with the instantaneous flow rate for the corresponding period (0.85 < r < 0.87). Color Doppler imaged vena contracta may provide a simple, practical, and accurate method for quantifying aortic regurgitation, even when using a single frame color Doppler flow mapping image.

  12. Human Thiel-Embalmed Cadaveric Aortic Model with Perfusion for Endovascular Intervention Training and Medical Device Evaluation.

    PubMed

    McLeod, Helen; Cox, Ben F; Robertson, James; Duncan, Robyn; Matthew, Shona; Bhat, Raj; Barclay, Avril; Anwar, J; Wilkinson, Tracey; Melzer, Andreas; Houston, J Graeme

    2017-09-01

    The purpose of this investigation was to evaluate human Thiel-embalmed cadavers with the addition of extracorporeal driven ante-grade pulsatile flow in the aorta as a model for simulation training in interventional techniques and endovascular device testing. Three human cadavers embalmed according to the method of Thiel were selected. Extracorporeal pulsatile ante-grade flow of 2.5 L per min was delivered directly into the aorta of the cadavers via a surgically placed connection. During perfusion, aortic pressure and temperature were recorded and optimized for physiologically similar parameters. Pre- and post-procedure CT imaging was conducted to plan and follow up thoracic and abdominal endovascular aortic repair as it would be in a clinical scenario. Thoracic endovascular aortic repair (TEVAR) and endovascular abdominal repair (EVAR) procedures were conducted in simulation of a clinical case, under fluoroscopic guidance with a multidisciplinary team present. The Thiel cadaveric aortic perfusion model provided pulsatile ante-grade flow, with pressure and temperature, sufficient to conduct a realistic simulation of TEVAR and EVAR procedures. Fluoroscopic imaging provided guidance during the intervention. Pre- and post-procedure CT imaging facilitated planning and follow-up evaluation of the procedure. The human Thiel-embalmed cadavers with the addition of extracorporeal flow within the aorta offer an anatomically appropriate, physiologically similar robust model to simulate aortic endovascular procedures, with potential applications in interventional radiology training and medical device testing as a pre-clinical model.

  13. Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

    PubMed Central

    Dyverfeldt, Petter; Hope, Michael D.; Tseng, Elaine E.; Saloner, David

    2013-01-01

    OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance–measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R2 = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss

  14. [Application and analysis of abdominal aortic branch malperfusion pattern in thoracic endovascular aortic repair for Stanford B aortic dissection].

    PubMed

    Han, X F; Guo, X; Li, T Z; Liu, G R; Huang, L J

    2017-12-18

    To evaluate the efficiency of thoracic endovascular aortic repair (TEVAR) in dealing with abdominal aortic branch malperfusion based on the analysis of aortic computed tomography angiography (CTA) images in pre- and post-TEVAR. Retrospective analysis from September 2015 to March 2016 in single institution to 32 patients, diagnosed as Stanford B aortic dissection with abdominal aortic branch malperfusion, CTA images in pre- and post-TEVAR were collected. Based on the aortic branch malperfusion pattern redefined by Nagamine, we identified and characterized branch malperfusion pattern for four abdominal aortic branches (celiac trunk, superior mesenteric artery, bilateral renal artery) in statistical analysis. In the four abdominal aortic branches (total 128 branches), 86 branches (67.2%) expressed with Class I patterns, in which subtype I-b presented with 0.8%, subtype I-c with 5.5%; 14 branches (10.9%) expressed with Class II patterns, in which subtype II-b-1 with 3.9%, subtype II-b-2 with 3.1%; 16 branches (12.5%) expressed with Class III patterns, all with subtype III-a, no subtype III-b and III-c presented. The remaining 12 branches were normal. The 100% successful rate of TEVAR obtained in 32 patients performed. The mean following-up was 4 months. Aortic CTA showed that among the 14 "high-risk" abdominal aortic branch malperfusion, 13 (92.9%) with obvious branch malperfusion in post-TEVAR were observed to improve, and the remaining one branch malperfusion (7.1%) was observed to change from subtype I-b to I-c. Few ratios in abdominal aortic branches suffered with obvious malperfusion complicated by Stanford B aortic dissection. For branches with "high-risk" malperfusion pattern, optimal changes were observed in abdominal aortic branch without revascularization in post-TEVAR, as well other branches with non-"high-risk" pattern perfusion were mostly stable in post-TEVAR. It could be of profound benefit to extend branch malperfusion patterns redefined by Nagamine in

  15. Effect of aorto-iliac bifurcation and iliac stenosis on flow dynamics in an abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Patel, Shivam; Usmani, Abdullah Y.; Muralidhar, K.

    2017-06-01

    Physiological flows in rigid diseased arterial flow phantoms emulating an abdominal aortic aneurysm (AAA) under rest conditions with aorto-iliac bifurcation and iliac stenosis are examined in vitro through 2D PIV measurements. Flow characteristics are first established in the model resembling a symmetric AAA with a straight outlet tube. The influence of aorto-iliac bifurcation and iliac stenosis on AAA flow dynamics is then explored through a comparison of the nature of flow patterns, vorticity evolution, vortex core trajectory and hemodynamic factors against the reference configuration. Specifically, wall shear stress and oscillatory shear index in the bulge portion of the models are of interest. The results of this investigation indicate overall phenomenological similarity in AAA flow patterns across the models. The pattern is characterized by a central jet and wall-bounded vortices whose strength increases during the deceleration phase as it moves forward. The central jet impacts the wall of AAA at its distal end. In the presence of an aorto-iliac bifurcation as well as iliac stenosis, the flow patterns show diminished strength, expanse and speed of propagation of the primary vortices. The positions of the instantaneous vortex cores, determined using the Q-function, correlate with flow separation in the bulge, flow resistance due to a bifurcation, and the break in symmetry introduced by a stenosis in one of the legs of the model. Time-averaged WSS in a healthy aorta is around 0.70 N m-2 and is lowered to the range ±0.2 N m-2 in the presence of the downstream bifurcation with a stenosed common iliac artery. The consequence of changes in the flow pattern within the aneurysm on disease progression is discussed.

  16. Stent-assisted, balloon-induced intimal disruption and relamination of aortic dissection in patients with Marfan syndrome: Midterm outcomes and aortic remodeling.

    PubMed

    Faure, Elsa Madeleine; El Batti, Salma; Abou Rjeili, Marwan; Ben Abdallah, Iannis; Julia, Pierre; Alsac, Jean-Marc

    2018-05-17

    The study objective was to assess the midterm outcomes and aortic remodeling in patients with Marfan syndrome with complicated acute type B aortic dissection treated with stent-assisted, balloon-induced intimal disruption and relamination. We reviewed all patients treated with stent-assisted, balloon-induced intimal disruption and relamination for a complicated acute type B aortic dissection associated with Marfan syndrome according to the revised Ghent criteria. Between 2015 and November 2017, 7 patients with Marfan syndrome underwent stent-assisted, balloon-induced intimal disruption and relamination for a complicated acute type B aortic dissection. The median age of patients was 47 years (range, 23-70). Four patients had a history of aortic root replacement. Technical success was achieved in 100%. Three patients required an adjunctive procedure for renal artery stenting (n = 2) and iliac artery stenting (n = 1). There was no in-hospital death, 30-day postoperative stroke, spinal cord ischemia, ischemic colitis, or renal failure requiring dialysis. At a median follow-up of 15 months (range, 7-28), 1 patient required aortic arch replacement for aneurysmal degeneration associated with a type Ia endoleak at 2 years, giving a late reintervention rate of 14%. There was no other secondary endoleak. The primary visceral patency rate was 100%. There were no all-cause deaths reported. At last computed tomography scan, all patients had complete aortic remodeling of the treated thoracoabdominal aorta. Distally, at the nonstented infrarenal aortoiliac level, 6 patients had persistent false lumen flow with stable aorto-iliac diameter in 5. One patient had iliac diameter growth (27 mm diameter at last computed tomography scan). Stent-assisted, balloon-induced intimal disruption and relamination of aortic dissection in patients with Marfan syndrome is feasible, safe, and associated with an immediate and midterm persisting thoracoabdominal aortic remodeling. Copyright

  17. Echocardiographic evaluation of aortic atheromas in patients with aortic stenosis.

    PubMed

    Vizzardi, Enrico; D'Aloia, Antonio; Sciatti, Edoardo; Bonadei, Ivano; Gelsomino, Sandro; Lorusso, Roberto; Metra, Marco

    2015-01-01

    The association of aortic atheromas in patients with isolated aortic stenosis has recently been acknowledged, probably because the pathogenic mechanisms are similar. Therefore, this study evaluated the extent and severity of thoracic aortic atheromas in patients with different grades of aortic stenosis using transesophageal echocardiography. We retrospectively evaluated transesophageal echocardiographic examinations of 686 consecutive patients with a diagnosis of aortic stenosis. The prevalence and morphologic characteristics of atheromas in 3 segments of the thoracic aorta were assessed. Plaque thickness was measured at each segment, and the thickest plaque was used to establish severity. Atheromas were graded as mild, moderate, or severe according to plaque thickness (<2, 2-4, or >4 mm, respectively). Aortic stenosis was graded as mild, moderate, or severe on the basis of the gradient and anatomic aortic valve area (>1.5, 1.0-1.5, or <1.0 cm(2)). A total of 382 patients were men, and 304 were women (mean age ± SD, 74 ± 15 years); 86% of the patients had aortic atheromas. The severe stenosis group had a significantly higher rate of atheromas (95% versus 40%; P < .001) than the mild stenosis group, with more complex atheromas (52% versus 22%; P< .001). There was no significant difference in the atheroma grades between the severe and moderate stenosis groups, but moderate cases had more moderate and severe atheromas than mild cases (45% and 15% versus 19% and 3%; P < .01). This study showed a correlation in the extent of aortic atheromas across several degrees of aortic stenosis. Patients with moderate and severe stenosis had more extensive atherosclerotic atheromas than those with mild stenosis. © 2015 by the American Institute of Ultrasound in Medicine.

  18. A Quantitative Study of Simulated Bicuspid Aortic Valves

    NASA Astrophysics Data System (ADS)

    Szeto, Kai; Nguyen, Tran; Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan

    2010-11-01

    Previous studies have shown that congentially bicuspid aortic valves develop degenerative diseases earlier than the standard trileaflet, but the causes are not well understood. It has been hypothesized that the asymmetrical flow patterns and turbulence found in the bileaflet valves together with abnormally high levels of strain may result in an early thickening and eventually calcification and stenosis. Central to this hypothesis is the need for a precise quantification of the differences in the strain rate levels between bileaflets and trileaflet valves. We present here some in-vitro dynamic measurements of the spatial variation of the strain rate in pig aortic vales conducted in a left ventricular heart flow simulator device. We measure the strain rate of each leaflet during the whole cardiac cycle using phase-locked stereoscopic three-dimensional image surface reconstruction techniques. The bicuspid case is simulated by surgically stitching two of the leaflets in a normal valve.

  19. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices.

    PubMed

    Pak, Sang-Woo; Uriel, Nir; Takayama, Hiroo; Cappleman, Sarah; Song, Robert; Colombo, Paolo C; Charles, Sandy; Mancini, Donna; Gillam, Linda; Naka, Yoshifumi; Jorde, Ulrich P

    2010-10-01

    Left ventricular assist devices (LVADs) are increasingly used as long-term therapy for end-stage heart failure patients. We compared the prevalence of aortic insufficiency (AI) after HeartMate II (HMII) vs HeartMate XVE (HMI) support and assessed the role of aortic root diameter and aortic valve opening in the development of AI. Pre-operative and post-operative echocardiograms of 93 HMI and 73 HMII patients who received implants at our center between January 2004 and September 2009 were retrospectively reviewed. After excluding patients with prior or concurrent surgical manipulation of the aortic valve, with baseline AI, or without baseline echoes, 67 HMI and 63 HMII patients were studied. AI was deemed significant if mild to moderate or greater. Pathology reports were reviewed for 77 patients who underwent heart transplant. AI developed in 4 of 67 HMI (6.0%) and in 9 of 63 HMII patients (14.3%). The median times to AI development were 48 days for HMI patients and 90 days for HMII patients. For patients who remained on device support at 6 and 12 months, freedom from AI was 94.5% and 88.9% in HMI patients and 83.6% and 75.2% in HMII patients (log rank p = 0.194). Aortic root diameters, as determined by echocardiography for the patients with AI, trended to be larger at baseline (3.43 ± 0.43 vs 3.15 ± 0.40; p = 0.067) and follow-up (3.58 ± 0.54 vs 3.29 ± 0.50; p = 0.130) compared with those who did not have AI. Aortic root circumferences were assessed directly by a pathologist in those patients who underwent transplant and were significantly larger in HMII patients who had developed AI compared with those patients who did not (8.44 ± 0.89 vs 7.36 ± 1.02 cm; p = 0.034). Lastly, AI was more common in patients whose aortic valve did not open (11 of 26 vs 1 of 14; p = 0.03). Aortic insufficiency occurs frequently in patients who receive continuous-flow support with a HMII LVAD, and may be associated with aortic root diameter enlargement and aortic valve opening

  20. Time to aortic occlusion: It's all about access.

    PubMed

    Romagnoli, Anna; Teeter, William; Pasley, Jason; Hu, Peter; Hoehn, Melanie; Stein, Deborah; Scalea, Thomas; Brenner, Megan

    2017-12-01

    Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a less invasive method of proximal aortic occlusion compared with resuscitative thoracotomy with aortic cross-clamping (RTACC). This study compared time to aortic occlusion with REBOA and RTACC, both including and excluding time required for common femoral artery (CFA) cannulation. This was a retrospective, single-institution review of REBOA or RTACC performed between February 2013 and January 2016. Time of skin incision to aortic cross-clamp for RTACC, time required for CFA cannulation by percutaneous and open methods, and time from guide-wire insertion to balloon inflation at Zone 1 for REBOA, were obtained from videographic recordings. Eighteen RTACC and 21 REBOAs were performed. Median (Q1, Q3) time from skin incision to aortic cross-clamping was 317 seconds (227, 551 seconds). Median (Q1, Q3) time from start of arterial access to Zone 1 balloon occlusion was 474 seconds (431, 572 seconds) (vs. RTACC, p = 0.01). All REBOA procedures were performed with the same device. The median time to complete CFA cannulation was 247 seconds (range, 164-343 seconds), with no difference between percutaneous or open procedures (p = 0.07). The median (Q1, Q3) time to aortic occlusion in REBOA once arterial access had been established was 245 seconds (179, 295.5 seconds), which was significantly shorter than RTACC (p = 0.003). Once CFA access is achieved, time to aortic occlusion is faster with REBOA. Time to aortic occlusion is less than the time required to cannulate the CFA either by percutaneous or open approaches, emphasizing the importance of accurate and expedient CFA access. Resuscitative endovascular balloon occlusion of the aorta may represent a feasible alternative to thoracotomy for aortic occlusion. Time to aortic occlusion will likely decrease with the advent of newer REBOA technology. The rate-limiting portion of REBOA continues to be obtaining CFA access. Therapeutic, level V.

  1. Aortic valve replacement for aortic stenosis caused by alkaptonuria.

    PubMed

    Hiroyoshi, Junko; Saito, Aya; Panthee, Nirmal; Imai, Yasushi; Kawashima, Dai; Motomura, Noboru; Ono, Minoru

    2013-03-01

    We report a case of aortic stenosis associated with ochronosis in a 70-year-old man who underwent biologic aortic valve replacement. Intraoperative findings included ochronosis of a severely calcified pigmented aortic valve along with pigmentation of the intima of the aorta. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Valve-sparing aortic root replacement in patients with Marfan syndrome enrolled in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions.

    PubMed

    Song, Howard K; Preiss, Liliana R; Maslen, Cheryl L; Kroner, Barbara; Devereux, Richard B; Roman, Mary J; Holmes, Kathryn W; Tolunay, H Eser; Desvigne-Nickens, Patrice; Asch, Federico M; Milewski, Rita K; Bavaria, Joseph; LeMaire, Scott A

    2014-05-01

    The long-term outcomes of aortic valve-sparing (AVS) root replacement in Marfan syndrome (MFS) patients remain uncertain. The study aim was to determine the utilization and outcomes of AVS root replacement in MFS patients enrolled in the Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). At the time of this analysis, 788 patients with MFS were enrolled in the GenTAC Registry, of whom 288 had undergone aortic root replacement. Patients who had undergone AVS procedures were compared to those who had undergone aortic valve replacement (AVR). AVS root replacement was performed in 43.5% of MFS patients, and the frequency of AVS was increased over the past five years. AVS patients were younger at the time of surgery (31.0 versus 36.3 years, p = 0.006) and more likely to have had elective rather than emergency surgery compared to AVR patients, in whom aortic valve dysfunction and aortic dissection was the more likely primary indication for surgery. After a mean follow up of 6.2 +/- 3.6 years, none of the 87 AVS patients had required reoperation; in contrast, after a mean follow up of 10.5 +/- 7.6 years, 11.5% of AVR patients required aortic root reoperation. Aortic valve function has been durable, with 95.8% of AVS patients having aortic insufficiency that was graded as mild or less. AVS root replacement is performed commonly among the MFS population, and the durability of the aortic repair and aortic valve function have been excellent to date. These results justify a continued use of the procedure in an elective setting. The GenTAC Registry will be a useful resource to assess the long-term durability of AVS root replacement in the future.

  3. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  4. Intraoperative colon mucosal oxygen saturation during aortic surgery.

    PubMed

    Lee, Eugene S; Bass, Arie; Arko, Frank R; Heikkinen, Maarit; Harris, E John; Zarins, Christopher K; van der Starre, Pieter; Olcott, Cornelius

    2006-11-01

    Colonic ischemia after aortic reconstruction is a devastating complication with high mortality rates. This study evaluates whether Colon Mucosal Oxygen Saturation (CMOS) correlates with colon ischemia during aortic surgery. Aortic reconstruction was performed in 25 patients, using a spectrophotometer probe that was inserted in each patient's rectum before the surgical procedure. Continuous CMOS, buccal mucosal oxygen saturation, systemic mean arterial pressure, heart rate, pulse oximetry, and pivotal intra-operative events were collected. Endovascular aneurysm repair (EVAR) was performed in 20 and open repair in 5 patients with a mean age of 75 +/- 10 (+/-SE) years. CMOS reliably decreased in EVAR from a baseline of 56% +/- 8% to 26 +/- 17% (P < 0.0001) during infrarenal aortic balloon occlusion and femoral arterial sheath placement. CMOS similarly decreased during open repair from 56% +/- 9% to 15 +/- 19% (P < 0.0001) when the infrarenal aorta and iliac arteries were clamped. When aortic circulation was restored in both EVAR and open surgery, CMOS returned to baseline values 56.5 +/- 10% (P = 0.81). Mean recovery time in CMOS after an aortic intervention was 6.4 +/- 3.3 min. Simultaneous buccal mucosal oxygen saturation was stable (82% +/- 6%) during aortic manipulation but would fall significantly during active bleeding. There were no device related CMOS measurement complications. Intra-operative CMOS is a sensitive measure of colon ischemia where intraoperative events correlated well with changes in mucosal oxygen saturation. Transient changes demonstrate no problem. However, persistently low CMOS suggests colon ischemia, thus providing an opportunity to revascularize the inferior mesenteric artery or hypogastric arteries to prevent colon infarction.

  5. Alkaptonuric aortic stenosis: a case report.

    PubMed

    Gonzales, M E

    1999-04-01

    Alkaptonuria is a rare disease of phenylalanine, aromatic amino acids, and tyrosine metabolism. Because of a genetic deficiency of the enzyme homogentisic acid oxidase, an accumulation of homogentisic acid causes ochronotic pigment deposition. The most common clinical manifestations are arthropathy, urinary calculi and discoloration, cutaneous and cartilaginous pigmentation, and cardiac valvular disease. Arthropathy and aortic stenosis are the most debilitating manifestations of the disease. A case of alkaptonuric aortic stenosis is described. A 75-year-old woman with a history of alkaptonuria presented in the emergency department with complaints of progressive dyspnea. Upon examination, the patient was hypertensive, tachypneic, and tachycardic with premature ventricular contractions. She had pitting edema of the lower extremities and complaints of generalized weakness. Chest x-rays revealed congestive heart failure and pulmonary edema. Diuretics were administered, and a continuous nitroglycerin infusion was initiated in the emergency department. The patient was admitted for further evaluation. The patient's respiratory status continued to decline. She was intubated endotracheally 1 day after admission. Subsequent cardiac evaluation revealed an ejection fraction of 35%, severe aortic stenosis, mild coronary artery disease, ischemic cardiomyopathy, and anteroapical akinesis. A dobutamine infusion was instituted for persistent hypotension, and renal dose dopamine was initiated for oliguric renal failure. The patient underwent an emergency operation for an aortic valve replacement with a Dacron patch 10 days after admission. Cardiopulmonary bypass and mild hypothermia were used during the procedure. The patient's hemodynamic status remained tenuous throughout the procedure. Although the first attempt to wean off cardiopulmonary bypass failed, the second attempt was successful with the aid of an intra-aortic balloon pump, inotropic support, and atrioventricular pacing

  6. Valve-sparing aortic root replacement in bicuspid aortic valves: a reasonable option?

    PubMed

    Aicher, Diana; Langer, Frank; Kissinger, Anke; Lausberg, Henning; Fries, Roland; Schäfers, Hans-Joachim

    2004-11-01

    Aortic dilatation occurs in many patients with bicuspid aortic valves. We have added root replacement using the remodeling technique originally designed for tricuspid aortic valves to bicuspid aortic valve repair for treatment of the dilated root. We compared the results of remodeling in bicuspid aortic valves with those in tricuspid aortic valves. From October 1995 through January 2004, 60 patients underwent root remodeling for bicuspid aortic valves (group A), and 130 patients underwent root remodeling for tricuspid aortic valves (group B). Correction of cusp prolapse was more often performed in group A (group A, 50/60; group B, 47/130; P < .0001). Transthoracic echocardiography was performed at 1 week, 6 and 12 months, and every year thereafter. Cumulative follow-up was 527 patient-years (mean, 2.9 +/- 2 years). No patient died in group A. Hospital mortality in group B was 5% (5/100; 95% confidence interval,1.6%-11.3%) after elective operations and 10% (3/30; 95% confidence interval, 2.1%-26.5%) after emergency operations. Mean systolic gradients were identical at 1 year (group A, 4.8 +/- 2.1 mm Hg; group B, 4.0 +/- 2 mm Hg) and 5 years (group A, 4.5 +/- 2.3 mm Hg; group B, 3.9 +/- 2.2 mm Hg). Freedom from aortic regurgitation of grade 2 or higher at 5 years was 96% in group A and 83% in group B ( P = .07), and freedom from reoperation at 5 years was 98% in group A and 98% in group B ( P = .73). Valve-sparing aortic replacement with root remodeling can be applied to aortic dilatation and a regurgitant bicuspid aortic valve. Hemodynamic function and valve stability of a repaired bicuspid aortic valve are comparable with those seen in cases of tricuspid anatomy.

  7. Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves

    NASA Astrophysics Data System (ADS)

    Yao, Jianyao; Liu, G. R.; Narmoneva, Daria A.; Hinton, Robert B.; Zhang, Zhi-Qian

    2012-12-01

    This paper presents a novel numerical method for simulating the fluid-structure interaction (FSI) problems when blood flows over aortic valves. The method uses the immersed boundary/element method and the smoothed finite element method and hence it is termed as IS-FEM. The IS-FEM is a partitioned approach and does not need a body-fitted mesh for FSI simulations. It consists of three main modules: the fluid solver, the solid solver and the FSI force solver. In this work, the blood is modeled as incompressible viscous flow and solved using the characteristic-based-split scheme with FEM for spacial discretization. The leaflets of the aortic valve are modeled as Mooney-Rivlin hyperelastic materials and solved using smoothed finite element method (or S-FEM). The FSI force is calculated on the Lagrangian fictitious fluid mesh that is identical to the moving solid mesh. The octree search and neighbor-to-neighbor schemes are used to detect efficiently the FSI pairs of fluid and solid cells. As an example, a 3D idealized model of aortic valve is modeled, and the opening process of the valve is simulated using the proposed IS-FEM. Numerical results indicate that the IS-FEM can serve as an efficient tool in the study of aortic valve dynamics to reveal the details of stresses in the aortic valves, the flow velocities in the blood, and the shear forces on the interfaces. This tool can also be applied to animal models studying disease processes and may ultimately translate to a new adaptive methods working with magnetic resonance images, leading to improvements on diagnostic and prognostic paradigms, as well as surgical planning, in the care of patients.

  8. Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations.

    PubMed

    Ngo, Doan Tm; Stafford, Irene; Sverdlov, Aaron L; Qi, Weier; Wuttke, Ronald D; Zhang, Yuan; Kelly, Darren J; Weedon, Helen; Smith, Malcolm D; Kennedy, Jennifer A; Horowitz, John D

    2011-02-01

    Aortic valve stenosis (AVS) is associated with significant cardiovascular morbidity and mortality. To date, no therapeutic modality has been shown to be effective in retarding AVS progression. We evaluated the effect of angiotensin-converting enzyme inhibition with ramipril on disease progression in a recently developed rabbit model of AVS. The effects of 8 weeks of treatment with either vitamin D₂ at 25,000 IU for 4 days a week alone or in combination with ramipril (0.5 mg·kg⁻¹) on aortic valve structure and function were examined in New Zealand white rabbits. Echocardiographic aortic valve backscatter (AV(BS)) and aortic valve:outflow tract flow velocity ratio were utilized to quantify changes in valve structure and function. Treatment with ramipril significantly reduced AV(BS) and improved aortic valve :outflow tract flow velocity ratio. The intravalvular content of the pro-oxidant thioredoxin-interacting protein was decreased significantly with ramipril treatment. Endothelial function, as measured by asymmetric dimethylarginine concentrations and vascular responses to ACh, was improved significantly with ramipril treatment. Ramipril retards the development of AVS, reduces valvular thioredoxin-interacting protein accumulation and limits endothelial dysfunction in this animal model. These findings provide important insights into the mechanisms of AVS development and an impetus for future human studies of AVS retardation using an angiotensin-converting enzyme inhibitor. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Fluid Dynamics of Coarctation of the Aorta and Effect of Bicuspid Aortic Valve

    PubMed Central

    Keshavarz-Motamed, Zahra; Garcia, Julio; Kadem, Lyes

    2013-01-01

    Up to 80% of patients with coarctation of the aorta (COA) have a bicuspid aortic valve (BAV). Patients with COA and BAV have elevated risks of aortic complications despite successful surgical repair. The development of such complications involves the interplay between the mechanical forces applied on the artery and the biological processes occurring at the cellular level. The focus of this study is on hemodynamic modifications induced in the aorta in the presence of a COA and a BAV. For this purpose, numerical investigations and magnetic resonance imaging measurements were conducted with different configurations: (1) normal: normal aorta and normal aortic valve; (2) isolated COA: aorta with COA (75% reduction by area) and normal aortic valve; (3) complex COA: aorta with the same severity of COA (75% reduction by area) and BAV. The results show that the coexistence of COA and BAV significantly alters blood flow in the aorta with a significant increase in the maximal velocity, secondary flow, pressure loss, time-averaged wall shear stress and oscillatory shear index downstream of the COA. These findings can contribute to a better understanding of why patients with complex COA have adverse outcome even following a successful surgery. PMID:24015239

  10. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  11. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; hide

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  12. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta.

    PubMed

    Shiota, T; Jones, M; Agler, D A; McDonald, R W; Marcella, C P; Qin, J X; Zetts, A D; Greenberg, N L; Cardon, L A; Sun, J P; Sahn, D J; Thomas, J D

    1999-04-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  13. COMBINED REPLACEMENT OF THE AORTIC VALVE AND ASCENDING AORTA IN JEHOVAH'S WITNESSES: REPORT OF TWO CASES

    PubMed Central

    Beddermann, Christoph; Norman, John C.; Cooley, Denton A.

    1979-01-01

    Two Jehovah's Witnesses with large ascending thoracic aortic aneurysms and aortic insufficiency secondary to annuloaortic ectasia underwent successful combined replacement of the aortic valve and the ascending aorta. One patient received a composite graft containing an aortic valve prosthesis, which necessitated supravalvular coronary ostia reimplantation; the other patient underwent separate aortic valve and left supracoronary ascending aneurysm replacement, with reimplantation of the right coronary ostium into the graft. No blood or blood derivatives were administered. Both patients had uneventful recoveries and continue to do well. To our knowledge, they represent the first reported cases of successful combined replacement of the aortic valve and ascending aorta in Jehovah's Witnesses. Images PMID:15216324

  14. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study.

    PubMed

    Stugaard, Marie; Koriyama, Hikaru; Katsuki, Keiko; Masuda, Kasumi; Asanuma, Toshihiko; Takeda, Yasuharu; Sakata, Yasushi; Itatani, Keiichi; Nakatani, Satoshi

    2015-07-01

    In aortic regurgitation (AR), energy loss (EL) produced by inefficient turbulent flow may be a burden to the heart predicting decompensation. We attempted to quantify EL in AR induced in an acute dog model and in patients with chronic AR using novel echocardiographic method vector flow mapping (VFM). In 11 anaesthetized open-chest dogs, AR was induced by distorting the aortic valve with a pigtail catheter, in totally 20 cases. Regurgitant fraction was determined using pulsed Doppler echocardiography, <30% considered mild to moderate (Group 1, n = 11) and ≥30% moderate to severe (Group 2, n = 9). The clinical study consisted of 22 patients with various degrees of AR; 11 mild to moderate (Group 1) and 11 moderate to severe (Group 2), and compared with 12 normals. VFM is based on continuity equation applied to colour Doppler and speckle tracking velocities, acquired from apical long-axis image. EL was calculated frame by frame, averaged from three beats. In the dog study, diastolic EL increased significantly with severity of AR (baseline vs. Group 1 vs. Group 2: 3.8 ± 1.6 vs. 13.0 ± 5.0 vs. 22.4 ± 14.0 [J/(m s)], ANOVA P = 0.0001). Similar to dogs, diastolic EL also increased in humans by the severity of AR (control vs. Group 1 vs. Group 2: 2.8 ± 1.5 vs. 14.3 ± 11.5 vs. 18.6 ± 2.3 [J/(m s)], ANOVA P = 0.001). VFM provides a promising method to quantify diastolic EL in AR. Diastolic EL increases in AR proportional to its severity. EL may be useful to determine the severity of disease from the aspect of cardiac load. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    PubMed

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American

  16. Unusual Congenital Aortic Anomaly with Rare Common Celiamesenteric Trunk Variation: MR Angiography and Digital Substraction Angiography Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tosun, Ozgur; Sanlidilek, Umman; Cetin, Huseyin

    2007-09-15

    Magnetic resonance angiography and digital substraction angiography (DSA) findings in a case with a rare congenital thoracoabdominal aortic hypoplasia and common celiamesenteric trunk variation with occlusion of infrarenal abdominal aorta are described here. To our knowledge, this aortic anomaly has not been previously described in the English literature. DSA is the optimum imaging modality for determination of aortic hypoplasia, associated vascular malformations, collateral vessels, and direction of flow within vessels.

  17. Quantification of Regional Aortic Stiffness Using MR Elastography: A Phantom and Ex-vivo Porcine Aorta Study

    PubMed Central

    Zhang, Nan; Chen, Jun; Yin, Meng; Glaser, Kevin J.; Xu, Lei; Ehman, Richard L.

    2015-01-01

    MR Elastography (MRE) is a noninvasive technique for measuring tissue stiffness that has been used to assess the average stiffness of the abdominal aorta. The utility of aortic MRE would be improved if it could provide information about local variations in aortic stiffness. We hypothesize that regional variations in aortic stiffness can also be measured with MRE and the purpose of this work was to demonstrate that MRE can measure regional stiffness variations in a vascular phantom and in ex vivo porcine aortas. A vascular phantom was fabricated, containing two silicone tubes embedded in gel. A segment of one of the tubes was modified to increase its stiffness. MRE was performed on the phantom with a continuous flow of water through the tubes. The stiffness distribution along the modified tube was measured and compared to the reference tube. MRE was also performed in porcine aortas embedded in gel with segments treated with saline or formalin for 4 days. The stiffness difference between saline- and formalin-treated aortic segments was measured by MRE and mechanical tests. A positive correlation was found between the regional stiffnesses measured by MRE and mechanical tests. The results indicate that MRE can be used to evaluate the local stiffness distribution in silicone tubes and ex vivo porcine aortas. It may therefore be possible to apply MRE to measure regional stiffness variations of the aorta in vivo. PMID:26597836

  18. Computational models of aortic coarctation in hypoplastic left heart syndrome: considerations on validation of a detailed 3D model.

    PubMed

    Biglino, Giovanni; Corsini, Chiara; Schievano, Silvia; Dubini, Gabriele; Giardini, Alessandro; Hsia, Tain-Yen; Pennati, Giancarlo; Taylor, Andrew M

    2014-05-01

    Reliability of computational models for cardiovascular investigations strongly depends on their validation against physical data. This study aims to experimentally validate a computational model of complex congenital heart disease (i.e., surgically palliated hypoplastic left heart syndrome with aortic coarctation) thus demonstrating that hemodynamic information can be reliably extrapolated from the model for clinically meaningful investigations. A patient-specific aortic arch model was tested in a mock circulatory system and the same flow conditions were re-created in silico, by setting an appropriate lumped parameter network (LPN) attached to the same three-dimensional (3D) aortic model (i.e., multi-scale approach). The model included a modified Blalock-Taussig shunt and coarctation of the aorta. Different flow regimes were tested as well as the impact of uncertainty in viscosity. Computational flow and pressure results were in good agreement with the experimental signals, both qualitatively, in terms of the shape of the waveforms, and quantitatively (mean aortic pressure 62.3 vs. 65.1 mmHg, 4.8% difference; mean aortic flow 28.0 vs. 28.4% inlet flow, 1.4% difference; coarctation pressure drop 30.0 vs. 33.5 mmHg, 10.4% difference), proving the reliability of the numerical approach. It was observed that substantial changes in fluid viscosity or using a turbulent model in the numerical simulations did not significantly affect flows and pressures of the investigated physiology. Results highlighted how the non-linear fluid dynamic phenomena occurring in vitro must be properly described to ensure satisfactory agreement. This study presents methodological considerations for using experimental data to preliminarily set up a computational model, and then simulate a complex congenital physiology using a multi-scale approach.

  19. Continuous flow measurements using fixed ultrasonic meters

    USGS Publications Warehouse

    Oltmann, Rick

    1993-01-01

    USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.

  20. Spectrum of Aortic Valve Abnormalities Associated with Aortic Dilation Across Age Groups in Turner Syndrome

    PubMed Central

    Olivieri, Laura J.; Baba, Ridhwan Y.; Arai, Andrew E.; Bandettini, W. Patricia; Rosing, Douglas R.; Bakalov, Vladimir; Sachdev, Vandana; Bondy, Carolyn A.

    2014-01-01

    Background Congenital aortic valve fusion is associated with aortic dilation, aneurysm and rupture in girls and women with Turner syndrome (TS). Our objective was to characterize aortic valve structure in subjects with TS, and determine the prevalence of aortic dilation and valve dysfunction associated with different types of aortic valves. Methods and Results The aortic valve and thoracic aorta were characterized by cardiovascular magnetic resonance imaging in 208 subjects with TS in an IRB-approved natural history study. Echocardiography was used to measure peak velocities across the aortic valve, and the degree of aortic regurgitation. Four distinct valve morphologies were identified: tricuspid aortic valve (TAV) 64%(n=133), partially fused aortic valve (PF) 12%(n=25), bicuspid aortic valve (BAV) 23%(n=47), and unicuspid aortic valve (UAV) 1%(n=3). Age and body surface area (BSA) were similar in the 4 valve morphology groups. There was a significant trend, independent of age, towards larger BSA-indexed ascending aortic diameters (AADi) with increasing valve fusion. AADi were (mean +/− SD) 16.9 +/− 3.3 mm/m2, 18.3 +/− 3.3 mm/m2, and 19.8 +/− 3.9 mm/m2 (p<0.0001) for TAV, PF and BAV+UAV respectively. PF, BAV, and UAV were significantly associated with mild aortic regurgitation and elevated peak velocities across the aortic valve. Conclusions Aortic valve abnormalities in TS occur with a spectrum of severity, and are associated with aortic root dilation across age groups. Partial fusion of the aortic valve, traditionally regarded as an acquired valve problem, had an equal age distribution and was associated with an increased AADi. PMID:24084490

  1. Aortic angiography

    MedlinePlus

    Angiography - aorta; Aortography; Abdominal aorta angiogram; Aortic arteriogram; Aneurysm - aortic arteriogram ... this needle. The catheter is moved into the aorta. The doctor can see live images of the ...

  2. Jet length/velocity ratio: a new index for echocardiographic evaluation of chronic aortic regurgitation.

    PubMed

    Güvenç, Tolga Sinan; Karaçimen, Denizhan; Erer, Hatice Betül; İlhan, Erkan; Sayar, Nurten; Karakuş, Gültekin; Çekirdekçi, Elif; Eren, Mehmet

    2015-01-01

    Management of aortic regurgitation depends on the assessment for severity. Echocardiography remains as the most widely available tool for evaluation of aortic regurgitation. In this manuscript, we describe a novel parameter, jet length/velocity ratio, for the diagnosis of severe aortic regurgitation. A total of 30 patients with aortic regurgitation were included to this study. Severity of aortic regurgitation was assessed with an aortic regurgitation index incorporating five echocardiographic parameters. Jet length/velocity ratio is calculated as the ratio of maximum jet penetrance to mean velocity of regurgitant flow. Jet length/velocity ratio was significantly higher in patients with severe aortic regurgitation (2.03 ± 0.53) compared to patients with less than severe aortic regurgitation (1.24 ± 0.32, P < 0.001). Correlation of jet length/velocity ratio with aortic regurgitation index was very good (r(2) = 0.86) and correlation coefficient was higher for jet length/velocity ratio compared to vena contracta, jet width/LVOT ratio and pressure half time. For a cutoff value of 1.61, jet length/velocity ratio had a sensitivity of 92% and specificity of 88%, with an AUC value of 0.955. Jet length/velocity ratio is a novel parameter that can be used to assess severity of chronic aortic regurgitation. Main limitation for usage of this novel parameter is jet impringement to left ventricular wall. © 2014, Wiley Periodicals, Inc.

  3. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  4. Total vascular resistance and blood flow frequency during left ventricular assistance using a vibrating flow pump.

    PubMed

    Kobayashi, S; Owada, N; Yambe, T; Nitta, S; Fukuju, T; Hongoh, T; Hashimoto, H

    1999-08-01

    A vibrating flow pump (VFP) can generate high frequency oscillated blood flow within 10-30 Hz by the oscillation of its central tube. A totally implantable artificial heart using a VFP is being developed as a unique type of blood pump. In this study, left ventricular (LV) assist circulation was performed using a VFP. The total vascular resistance and driving frequency of the VFP were estimated from their relationship. The effect of oscillation on the vascular system was studied by the frequency analysis method and vascular impedance. Adult goats were anesthetized by halothane using an inhaler and a left fourth thoracotomy was performed. The inflow cannula was inserted into the left ventricle, and the outflow cannula was sutured to the descending aorta. The VFP and a centrifugal pump were set in parallel for alternation and comparison. The driving frequency of the VFP was changed and included 15, 20, 25, and 30 Hz. The hemodynamic parameters were continuously recorded during experiments by a digital audio tape (DAT) data recorder. The internal pressure of the left ventricular cavity and aortic pressure were monitored by the pressure manometers continuously. One hundred percent LV assistance was judged by the separation of LV and aortic pressure. The total vascular resistance was decreased by the start of operation of each pump. The decrease during flow using the VFP was not as large as that using a centrifugal pump (CP). The arterial input impedance during oscillated blood flow by the VFP showed a slow curve appearance. It was similar to the frequency characteristics curve of natural heart beats within the lower frequencies. The study of arterial impedance may be important for the estimation of the reflection of the pulsatile wave from the arterial branch, among other things.

  5. Incidence and crash mechanisms of aortic injury during the past decade.

    PubMed

    Schulman, Carl I; Carvajal, Daniel; Lopez, Peter P; Soffer, Dror; Habib, Fahim; Augenstein, Jeffrey

    2007-03-01

    Aortic injuries were traditionally thought to be the result of severe frontal crashes. Newer data has suggested other crash types such as nearside crashes may also be important in aortic injury. We hypothesized the implementation of recent safety measures would decrease the incidence of aortic injury associated with fatal motor vehicle crashes. The autopsy reports of all traffic fatalities for motor vehicle occupants in a large urban county for the years 1993 to 2004 were examined. The demographics, impact types, safety measures used, and the presence of any aortic injury were recorded. Trends were evaluated for significance by weighted linear regression. The incidence of aortic injury associated with fatal motor vehicle crashes has remained unchanged during the past 12 years (r = 0.057, p = 0.45). There is a trend toward decreased aortic injuries associated with frontal crashes (r = 0.26, p = 0.089) but no change in aortic injuries associated with nearside or farside crashes (r = 0.053, p = 0.47), when the crash resulted in a fatality. This is despite an increase in seat belt use and increased presence of airbags during the same time period. Despite improved safety measures designed to minimize the occurrence of aortic injuries, the incidence of blunt aortic injury in fatal motor vehicle crashes has not decreased during the past decade. Although not statistically significant, there is a trend toward decreased frontal impacts in fatal motor vehicle crashes associated with aortic injuries. The nearside crash mechanism continues to play a prominent role, and efforts at improving vehicle safety should be focused on crash mechanisms as they relate to aortic injury.

  6. Valve repair in aortic regurgitation without root dilatation--aortic valve repair.

    PubMed

    Lausberg, H F; Aicher, D; Kissinger, A; Langer, F; Fries, R; Schäfers, H-J

    2006-02-01

    Aortic valve repair was established in the context of aortic root remodeling. Variable results have been reported for isolated valve repair. We analyzed our experience with isolated valve repair and compared the results with those of aortic root remodeling. Between October 1995 and August 2003, isolated repair of the aortic valve was performed in 83 patients (REP), remodeling of the aortic valve in 175 patients (REMO). The demographics of the two groups were comparable (REP: mean age 54.4 +/- 20.7 yrs, male-female ratio 2.1 : 1; REMO: mean age 60.8 +/- 13.6 yrs, male-female ratio 2.4 : 1; p = ns). In both groups the number of bicuspid valves was comparable (REP: 41 %, REMO: 32 %; p = ns). All patients were followed by echocardiography for a cumulative follow-up of 8204 patient months (mean 32 +/- 23 months). Overall in-hospital mortality was 2.4 % in REP and 4.6 % in REMO ( p = 0.62). Systolic gradients were comparable in both groups (REP: 5.8 +/- 2.2, REMO: 6.5 +/- 3.1 mm Hg, p = 0.09). The mean degree of aortic regurgitation 12 months postoperatively was 0.8 +/- 0.7 after REP and 0.7 +/- 0.7 after REMO ( p = 0.29). Freedom from significant regurgitation (> or = II degrees ) after 5 years was 86 % in REP and 89 % in REMO ( p = 0.17). Freedom from re-operation after 5 years was 94.4 % in REP and 98.2 % in REMO ( p = 0.33). Aortic regurgitation without concomitant root dilatation can be treated effectively by aortic valve repair. The functional results are equivalent to those obtained with valve-preserving root replacement. Aortic valve repair appears to be an alternative to valve replacement in aortic regurgitation.

  7. Long-Term Risk for Aortic Complications After Aortic Valve Replacement in Patients With Bicuspid Aortic Valve Versus Marfan Syndrome.

    PubMed

    Itagaki, Shinobu; Chikwe, Joanna P; Chiang, Yuting P; Egorova, Natalia N; Adams, David H

    2015-06-09

    Bicuspid aortic valves are associated with valve dysfunction, ascending aortic aneurysm and dissection. Management of the ascending aorta at the time of aortic valve replacement (AVR) in these patients is controversial and has been extrapolated from experience with Marfan syndrome, despite the absence of comparative long-term outcome data. This study sought to assess whether the natural history of thoracic aortopathy after AVR in patients with bicuspid aortic valve disease is substantially different from that seen in patients with Marfan syndrome. In this retrospective comparison, outcomes of 13,205 adults (2,079 with bicuspid aortic valves, 73 with Marfan syndrome, and 11,053 control patients with acquired aortic valve disease) who underwent primary AVR without replacement of the ascending aorta in New York State between 1995 and 2010 were compared. The median follow-up time was 6.6 years. The long-term incidence of thoracic aortic dissection was significantly higher in patients with Marfan syndrome (5.5 ± 2.7%) compared with those with bicuspid valves (0.55 ± 0.21%) and control group patients (0.41 ± 0.08%, p < 0.001). Thoracic aortic aneurysms were significantly more likely to be diagnosed in late follow-up in patients with Marfan syndrome (10.8 ± 4.4%) compared with those with bicuspid valves (4.8 ± 0.8%) and control group patients (1.4 ± 0.2%) (p < 0.001). Patients with Marfan syndrome were significantly more likely to undergo thoracic aortic surgery in late follow-up (10.4 ± 4.3%) compared with those with bicuspid valves (2.5 ± 0.6%) and control group patients (0.50 ± 0.09%) (p < 0.001). The much higher long-term rates of aortic complications after AVR observed in patients with Marfan syndrome compared with those with bicuspid aortic valves confirm that operative management of patients with bicuspid aortic valves should not be extrapolated from Marfan syndrome and support discrete treatment algorithms for these different clinical entities

  8. Suprasternal notch echocardiography: a potential alternative for the measurement of respiratory variation in aortic blood flow peak velocity in mechanically ventilated children.

    PubMed

    Devauchelle, Pauline; de Queiroz Siqueira, Mathilde; Lilot, Marc; Chassard, Dominique; Desgranges, François-Pierrick

    2018-06-01

    We conducted a prospective, observational study to investigate the relationship between the respiratory variation in aortic blood flow peak velocity (ΔVPeak) measured by echocardiography in the proximal ascending aorta from the suprasternal notch window and the ΔVPeak measured at the level of the aortic annulus from the classical apical five-chamber view. We studied children aged from 1 to 10 years referred for surgery under general anesthesia with positive pressure ventilation, after induction of general anesthesia. Twenty-two children (mean age = 5 ± 3 years) were recruited. There was a significant relationship between the ΔVPeak recorded via the suprasternal notch view and the ΔVPeak recorded via the apical five-chamber view (r = 0.62 [95% confidence interval 0.25-0.84], P = 0.003). The ΔVPeak measured using the suprasternal notch route could be considered to predict fluid responsiveness in children under mechanical ventilation, notably when the access to the chest wall is limited during surgery.

  9. Analysis of the cooling of continuous flow helium cryostats

    NASA Astrophysics Data System (ADS)

    Pust, L.

    A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.

  10. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  11. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  12. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  13. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B [Livermore, CA

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  14. Trans-catheter aortic valve implantation after previous aortic homograft surgery.

    PubMed

    Drews, Thorsten; Pasic, Miralem; Buz, Semih; Unbehaun, Axel

    2011-12-01

    In patients with previous heart surgery, the operative risk is elevated during conventional aortic valve re-operations. Trans-catheter aortic valve implantation is a new method for the treatment of high-risk patients. Nevertheless, this new procedure carries potential risks in patients with previous homograft implantation in aortic position. Between April 2008 and February 2011, 345 consecutive patients (mean EuroSCORE (European System for Cardiac Operative Risk Evaluation): 38 ± 20%; mean Society of Thoracic Surgeons (STS) Mortality Score: 19 ± 16%; mean age: 80 ± 8 years; 111 men and 234 women) underwent trans-apical aortic valve implantation. In three patients, previous aortic homograft implantation had been performed. Homograft degeneration causing combined valve stenosis and incompetence made re-operation necessary. In all three patients, the aortic valve could be implanted using the trans-apical approach, and the procedure was successful. In two patients, there was slight paravalvular leakage of the aortic prosthesis and the other patient had slight central leakage. Neither ostium obstruction nor mitral valve damage was observed. Trans-catheter valve implantation can be performed successfully after previous homograft implantation. Particular care should be taken to achieve optimal valve positioning, not to obstruct the ostium of the coronary vessels due to the changed anatomic situation and not to cause annulus rupture. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  15. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  16. The aortic reservoir-wave as a paradigm for arterial haemodynamics: insights from three-dimensional fluid-structure interaction simulations in a model of aortic coarctation.

    PubMed

    Segers, Patrick; Taelman, Liesbeth; Degroote, Joris; Bols, Joris; Vierendeels, Jan

    2015-03-01

    The reservoir-wave paradigm considers aortic pressure as the superposition of a 'reservoir pressure', directly related to changes in reservoir volume, and an 'excess' component ascribed to wave dynamics. The change in reservoir pressure is assumed to be proportional to the difference between aortic inflow and outflow (i.e. aortic volume changes), an assumption that is virtually impossible to validate in vivo. The aim of this study is therefore to apply the reservoir-wave paradigm to aortic pressure and flow waves obtained from three-dimensional fluid-structure interaction simulations in a model of a normal aorta, aortic coarctation (narrowed descending aorta) and stented coarctation (stiff segment in descending aorta). We found no unequivocal relation between the intraaortic volume and the reservoir pressure for any of the simulated cases. When plotted in a pressure-volume diagram, hysteresis loops are found that are looped in a clockwise way indicating that the reservoir pressure is lower than the pressure associated with the change in volume. The reservoir-wave analysis leads to very high excess pressures, especially for the coarctation models, but to surprisingly little changes of the reservoir component despite the impediment of the buffer capacity of the aorta. With the observation that reservoir pressure is not related to the volume in the aortic reservoir in systole, an intrinsic assumption in the wave-reservoir concept is invalidated and, consequently, also the assumption that the excess pressure is the component of pressure that can be attributed to wave travel and reflection.

  17. Deformation Differences between Tricuspid and Bicuspid Aortic Valves in Vitro

    NASA Astrophysics Data System (ADS)

    Szeto, Kai; Rodriguez-Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan C.

    2011-11-01

    It has been shown in clinical studies that patients with congenital bicuspid aortic valves (CBAVs) develop degenerative calcification of the leaflets at young ages compared to patients with the normal tricuspid aortic valves (TAVs). It has been hypothesized that the asymmetrical geometry of the leaflets in CBAVs, flow shear stresses (SS), disturbed flow, and excessive strain rate levels are possible causes for the early calcification and stenosis. Central to the validation of this hypothesis is the need to quantify the differences in strain rate levels between the BAVs and TAVs. We simulate the CBAVs by surgically stitching two of the leaflets of a porcine aortic valve together. To quantify strain differences, we performed in-vitro experiments in both trileaflet and bileaflet valves by tracking the motion of small ink dots marked on each leaflet surface. We then used phase-locked stereo photogrammetry to reconstruct at each instant of time the 3D surface of the leaflets and measure the strain rates in both radial and circumferential directions during the whole cardiac cycle. Our results indicate that the total strain rate of the simulated BAVs is about 15 to 20% higher than the normal leaflets of TAVs at systole. In the BAVs' case, the fused leaflet stretches radially up to 25% higher than the reference length. The excessive stretching in both directions in the fused leaflet results in large changes in the flow patterns and associated wall SS.

  18. A computational analysis of different endograft designs for Zone 0 aortic arch repair.

    PubMed

    van Bakel, Theodorus M; Arthurs, Christopher J; van Herwaarden, Joost A; Moll, Frans L; Eagle, Kim A; Patel, Himanshu J; Trimarchi, Santi; Figueroa, C Alberto

    2018-03-15

    Aortic arch repair remains a major surgical challenge. Multiple manufacturers are developing branched endografts for Zone 0 endovascular repair, extending the armamentarium for minimally invasive treatment of aortic arch pathologies. We hypothesize that the design of the Zone 0 endograft has a significant impact on the postoperative haemodynamic performance, particularly in the cervical arteries. The goal of our study was to compare the postoperative haemodynamic performance of different Zone 0 endograft designs. Patient-specific, clinically validated, computational fluid dynamics simulations were performed in a 71-year-old woman with a 6.5-cm saccular aortic arch aneurysm. Additionally, 4 endovascular repair scenarios using different endograft designs were created. Haemodynamic performance was evaluated by calculation of postoperative changes in blood flow and platelet activation potential (PLAP) in the cervical arteries. Preoperative cervical blood flow and mean PLAP were 1080 ml/min and 151.75, respectively. Cervical blood flow decreased and PLAP increased following endovascular repair in all scenarios. Endografts with 2 antegrade inner branches performed better compared to single-branch endografts. Scenario 3 performed the worst with a decrease in the total cervical blood flow of 4.8%, a decrease in the left hemisphere flow of 6.7% and an increase in the mean PLAP of 74.3%. Endograft design has a significant impact on haemodynamic performance following Zone 0 endovascular repair, potentially affecting cerebral blood flow during follow-up. Our results demonstrate the use of computational modelling for virtual testing of therapeutic interventions and underline the need to monitor the long-term outcomes in this cohort of patients.

  19. Aortic cusp extension for surgical correction of rheumatic aortic valve insufficiency in children.

    PubMed

    Kalangos, Afksendiyos; Myers, Patrick O

    2013-10-01

    Surgical management of aortic insufficiency in the young is problematic because of the lack of an ideal valve substitute. Potential advantages of aortic valve repair include low incidences of thromboembolism and endocarditis, avoiding conduit replacements, the maintenance of growth potential, and improved quality of life. Aortic valve repair is still far from fulfilling the three key factors that have allowed the phenomenal development of mitral valve repair (standardization, reproducibility, and stable long-term results); however, techniques of aortic valve repair have been refined, and subsets of patients amenable to repair have been identified. We have focused on the oldest technique of aortic valve repair, cusp extension, focusing on children with rheumatic aortic insufficiency. Among 77 children operated from 2003 to 2007, there was one early death from ventricular failure and one late death from sudden cardiac arrhythmia. During a mean follow-up of 12.8 ± 5.9 years, there were 16 (20.5%) reoperations on the aortic valve, at a median of 3.4 years (range, 2 months to 18.3 years) from repair. Freedom from aortic valve reoperation was 96.2% ± 2.2% at 1 year, 94.9% ± 2.5% at 2 years, 88.5% ± 3.6% at 5 years, 81.7% ± 4.4% at 10 years, 79.7% ± 4.8% at 15 years, and 76.2% ± 5.7% at 20 years. Although aortic cusp extension is technically more demanding, it remains particularly more suitable in the context of evolving rheumatic aortic insufficiency in children with a small aortic annulus as a bridge surgical approach to late aortic valve replacement with a larger valvular prosthesis.

  20. Bicuspid aortic valve hemodynamics: a fluid-structure interaction study

    NASA Astrophysics Data System (ADS)

    Chandra, Santanu; Seaman, Clara; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.

  1. The intraventricular filling vortex under heightened aortic blood pressure

    NASA Astrophysics Data System (ADS)

    Nelsen, Nicholas; Gaddam, Manikantam; Santhanakrishnan, Arvind

    2017-11-01

    Hypertension, or high aortic blood pressure, can induce structural changes in the left ventricle (LV) such as concentric hypertrophy. Previous studies have identified that the intraventricular filling vortex serves as an effective means of blood transport during diastolic filling. However, a fundamental understanding of how hypertension affects this vortex is unavailable. This knowledge can be useful for improving diagnosis and treatment of related heart disease conditions, including hypertensive heart failure. In this experimental study, we hypothesized that the circulation of the filling vortex would diminish with increased aortic pressure. Using a LV physical model within a left heart simulator, we performed hemodynamic measurements to acquire pressure and volumetric inflow profiles and 2D particle image velocimetry to visualize the intraventricular flow fields. Peak aortic pressures of 120 mm Hg, 140 mm Hg, and 160 mm Hg were each tested at heart rates of 70, 100, and 110 beats per minute, under: 1) reduced ejection fraction (EF), and 2) constant EF. Our results indicate that peak vortex circulation is reduced under elevated aortic pressures. Hemodynamics and characteristics of the intraventricular filling vortex in all examined experimental cases will be presented.

  2. Hemodynamics of the Aortic Jet and Implications for Detection of Aortic Stenosis Murmurs

    NASA Astrophysics Data System (ADS)

    Zhu, Chi; Seo, Junghee; Bakhshaee, Hani; Mittal, Rajat

    2016-11-01

    Cardiac auscultation with a stethoscope has served as the primary method for qualitative screening of cardiovascular conditions for over a hundred years. However, a lack of quantitative understanding of the flow mechanism(s) responsible for the generation of the murmurs, as well as the effect of intervening tissue on the propagation of these murmurs has been a significant limiting factor in the advancement of automated cardiac auscultation. In this study, a multiphysics computational modeling approach is used to investigate these issues. Direct numerical simulation (DNS) is used to explore the fluid dynamics of the jets formed at the aortic valve and the pressure fluctuations generated by the interaction of this jet with the aortic wall. Subsequently, structural wave propagation in the tissue is resolved by a high-order, linear viscoelastic wave solver in order to explore the propagation of the murmurs through a tissue-like material. The implications of these results for cardiac auscultation are discussed. The authors would like to acknowledge the financial support from NSF Grants IIS-1344772, CBET-1511200, and computational resource by XSEDE NSF Grant TG-CTS100002.

  3. Hemiarch Reconstruction Vs Clamped Aortic Anastomosis for Concomitant Ascending Aortic Aneurysm.

    PubMed

    Sultan, Ibrahim; Bianco, Valentino; Yajzi, Ibrahim; Kilic, Arman; Dufendach, Keith; Cardounel, Arturo; Althouse, Andrew D; Masri, Ahmad; Navid, Forozan; Gleason, Thomas G

    2018-05-03

    Deep hypothermic circulatory arrest (DHCA) is often avoided in patients with concomitant ascending aortic pathology when treating other cardiac disease to avoid increased risk of morbidity and mortality. We hypothesized that the use of DHCA with retrograde cerebral perfusion (RCP) does not add incremental risk to ascending aortic replacement alone in the setting of concomitant cardiac surgery. 408 ascending aortic ± hemiarch replacements and aortic (root)/mitral/tricuspid valve(s), CABG, or MAZE procedures were performed for concomitant cardiac disease. DHCA with RCP was used for all hemiarch replacements or the ascending aorta was replaced with an aortic cross-clamp proximal to the innominate artery. Propensity-score matching was used to match similar ascending patients vs. hemiarch patients; the final propensity score matched patients on age, gender, BMI, previous heart surgery, pre-op aortic insufficiency, pre-op aortic stenosis, pre-op EF, and operative variables. Propensity-score matching yielded 116 pairs of Non-hemiarch patients vs. 116 hemiarch patients. Within the propensity-score matched cohort, there were no differences in postoperative stroke (1.7% vs. 3.4%, p = 0.41), new postoperative dialysis (6.0% vs. 5.2%, p = 0.78), postoperative renal insufficiency (27.6% vs. 19.8%, p = 0.16), 30-day mortality (2.6% vs. 3.4%, p = 0.701), or 1-year mortality (4.3% vs. 4.3%, p = 1.00) CONCLUSIONS: Hemiarch replacement using DHCA with RCP does not increase the risk of operative complications compared to a normothermic, clamped-distal aortic anastomosis, and therefore its use should not be limited when planning complex multi-procedural reconstructions during elective ascending thoracic aortic replacement with concomitant cardiac surgery. Copyright © 2018. Published by Elsevier Inc.

  4. Changes in renal function after implantation of continuous-flow left ventricular assist devices.

    PubMed

    Hasin, Tal; Topilsky, Yan; Schirger, John A; Li, Zhuo; Zhao, Yanjun; Boilson, Barry A; Clavell, Alfredo L; Rodeheffer, Richard J; Frantz, Robert P; Edwards, Brooks S; Pereira, Naveen L; Joyce, Lyle; Daly, Richard; Park, Soon J; Kushwaha, Sudhir S

    2012-01-03

    The aim of this study was to determine renal outcomes after left ventricular assist device (LVAD) implantation. Renal dysfunction before LVAD placement is frequent, and it is unclear whether it is due to primary renal disease or to poor perfusion. A retrospective single-center analysis was conducted in 83 consecutive patients implanted with HeartMate II continuous-flow LVADs (Thoratec Corp., Pleasanton, California). Calculated glomerular filtration rate (GFR) was assessed on admission and 1, 3, and 6 months after implantation. To define predictors for improvement in GFR, clinical variables were examined in patients with decreased renal function (GFR <60 ml/min/1.73 m(2)) before LVAD, surviving and dialysis-free at 1 month (n = 44). GFR significantly increased from admission (53.2 ± 21.4 ml/min/1.73 m(2)) to 1 month after LVAD implantation (87.4 ± 27.9 ml/min/1.73 m(2)) (p < 0.0001). Subsequently, at 3 and 6 months, GFR remained significantly (p < 0.0001) above pre-LVAD values. Of the 51 patients with GFRs <60 ml/min/1.73 m(2) before LVAD surviving at 1 month, 34 (67%) improved to GFRs >60 ml/min/1.73 m(2). Univariate pre-operative predictors for improvement in renal function at 1 month included younger age (p = 0.049), GFR improvement with optimal medical therapy (p < 0.001), intra-aortic balloon pump use (p = 0.004), kidney length above 10 cm (p = 0.023), no treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (p = 0.029), higher bilirubin (p = 0.002), higher Lietz-Miller score (p = 0.019), and atrial fibrillation (p = 0.007). Multivariate analysis indicated pre-operative improved GFR (slope = 0.5 U per unit improved; 95% confidence interval: 0.2 to 0.8; p = 0.003), atrial fibrillation (slope = 27; 95% confidence interval: 8 to 46; p = 0.006), and intra-aortic balloon pump use (slope = 14; 95% confidence interval: 2 to 26; p = 0.02) as independent predictors. In most patients with end-stage heart failure considered for LVAD

  5. Medium-term outcome of Toronto aortic valve replacement: single center experience.

    PubMed

    Li, Wei; Price, Susanna; O'Sullivan, Christine A; Kumar, Pankaj; Jin, Xu Y; Henein, Michael Y; Pepper, John R

    2008-09-26

    Long-term competence of any aortic prosthesis is critical to its clinical durability. Bioprosthetic valves, and in particular the stentless type have been proposed to offer superior haemodynamic profiles with consequent potential for superior left-ventricular mass regression. These benefits however are balanced by the potential longevity of the implanted valve. The aims of this study were to assess medium-term Toronto aortic valve function and its effect on left-ventricular function. Between 1992 and 1996 86 patients underwent Toronto aortic valve replacement for aortic valve disease and were followed up annually. Prospectively collected data was analyzed for all patients where detailed echocardiographic follow-up was available. Echocardiographic studies were analyzed at 2+/-0.6 and 6+/-1.4 years after valve replacement. Data collected included left-ventricular systolic and diastolic dimensions, fractional shortening and left-ventricular mass. In addition, data on aortic valve and root morphology, peak aortic velocities, time velocity integral, stroke volume and the mechanism of valve failure where relevant, were also collected. Complete echocardiographic data were available for eighty-four patients, age 69+/-9 years, 62 male. Additional coronary artery bypass grafting was performed in 38% of patients. Twelve (14%) valves had failed during follow-up, 7 (8%) requiring re-operation. Valve failure was associated with morphologically bicuspid native aortic valve (9/12), and progressive dilatation of the aortic sinuses, sino-tubular junction and ascending aorta (11/12). Left-ventricular mass index remained high (184+/-75 g/m(2)) and did not continue to regress between early and medium-term follow-up (175.8+/-77 g/m(2)). Although more than 90% of implanted Toronto aortic valves remained haemodynamically stable with low gradient at medium-term follow-up, young age and larger aortic dimensions in patients with valve failure suggest better outcome if used in the elderly

  6. A Novel Idea to Improve Cardiac Output of Mechanical Circulatory Support Devices by Optimizing Kinetic Energy Transfer Available in Forward Moving Aortic Blood Flow.

    PubMed

    Qureshi, Muhammad B; Glower, Jacob; Ewert, Daniel L; Koenig, Steven C

    2017-06-01

    Mechanical circulatory support devices (MCSDs) have gained widespread clinical acceptance as an effective heart failure (HF) therapy. The concept of harnessing the kinetic energy (KE) available in the forward aortic flow (AOF) is proposed as a novel control strategy to further increase the cardiac output (CO) provided by MCSDs. A complete mathematical development of the proposed theory and its application to an example MCSDs (two-segment extra-aortic cuff) are presented. To achieve improved device performance and physiologic benefit, the example MCSD timing is regulated to maximize the forward AOF KE and minimize retrograde flow. The proof-of-concept was tested to provide support with and without KE control in a computational HF model over a wide range of HF test conditions. The simulation predicted increased stroke volume (SV) by 20% (9 mL), CO by 23% (0.50 L/min), left ventricle ejection fraction (LVEF) by 23%, and diastolic coronary artery flow (CAF) by 55% (3 mL) in severe HF at a heart rate (HR) of 60 beats per minute (BPM) during counterpulsation (CP) support with KE control. The proposed KE control concept may improve performance of other MCSDs to further enhance their potential clinical benefits, which warrants further investigation. The next step is to investigate various assist technologies and determine where this concept is best applied. Then bench-test the combination of kinetic energy optimization and its associated technology choice and finally test the combination in animals.

  7. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  8. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...

  9. 21 CFR 870.3535 - Intra-aortic balloon and control system

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3535 Intra-aortic... consists of an inflatable balloon, which is placed in the aorta to improve cardiovascular functioning...

  10. Aortic Elongation and Stanford B Dissection: The Tübingen Aortic Pathoanatomy (TAIPAN) Project.

    PubMed

    Lescan, M; Veseli, K; Oikonomou, A; Walker, T; Lausberg, H; Blumenstock, G; Bamberg, F; Schlensak, C; Krüger, T

    2017-08-01

    Aortic elongation has not yet been considered as a potential risk factor for Stanford type B dissection (TBD). The role of both aortic elongation and dilatation in patients with TBD was evaluated. The aortic morphology of a healthy control group (n = 236) and patients with TBD (n = 96) was retrospectively examined using three dimensional computed tomography imaging. Curved multiplanar reformats were used to examine aortic diameters at defined landmarks and aortic segment lengths. Diameters at all landmarks were significantly larger in the TBD group. The greatest diameter difference (56%) was measured in dissected descending aortas (p < .001). The segment with the most considerable difference between the study groups with regard to elongation was the non-dissected aortic arch of patients with TBD (36%; p < .001). Elongation in the aortic arch was accompanied by a diameter increase of 21% (p < .001). In receiver-operating curve analysis, the area under the curve was .85 for the diameter and .86 for the length of the aortic arch. In addition to dilatation, aortic arch elongation is associated with the development of TBD. The diameter and length of the non-dissected aortic arch may be predictive for TBD and may possibly be used for risk assessment in the future. This study provides the basis for further prospective evaluation of these parameters. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of the structure of the aortic valve and ascending aorta in adults having aortic valve replacement for aortic stenosis versus for pure aortic regurgitation and resection of the ascending aorta for aneurysm.

    PubMed

    Roberts, William Clifford; Vowels, Travis James; Ko, Jong Mi; Filardo, Giovanni; Hebeler, Robert Frederick; Henry, Albert Carl; Matter, Gregory John; Hamman, Baron Lloyd

    2011-03-01

    There is debate concerning whether an aneurysmal ascending aorta should be replaced when associated with a dysfunctioning aortic valve that is to be replaced. To examine this issue, we divided the patients by type of aortic valve dysfunction-either aortic stenosis (AS) or pure aortic regurgitation (AR)-something not previously undertaken. Of 122 patients with ascending aortic aneurysm (unassociated with aortitis or acute dissection), the aortic valve was congenitally malformed (unicuspid or bicuspid) in 58 (98%) of the 59 AS patients, and in 38 (60%) of the 63 pure AR patients. Ascending aortic medial elastic fiber loss (EFL) (graded 0 to 4+) was zero or 1+ in 53 (90%) of the AS patients, in 20 (53%) of the 38 AR patients with bicuspid valves, and in all 12 AR patients with tricuspid valves unassociated with the Marfan syndrome. An unadjusted analysis showed that, among the 96 patients with congenitally malformed valves, the 38 AR patients had a significantly higher likelihood of 2+ to 4+ EFL than the 58 AS patients (crude odds ratio: 8.78; 95% confidence interval: 2.95, 28.13). These data strongly suggest that the type of aortic valve dysfunction-AS versus pure AR-is very helpful in predicting loss of aortic medial elastic fibers in patients with ascending aortic aneurysms and aortic valve disease.

  12. Single center experience of aortic bypass graft for aortic arch obstruction in children.

    PubMed

    Shinkawa, Takeshi; Chipman, Carl; Holloway, Jessica; Tang, Xinyu; Gossett, Jeffrey M; Imamura, Michiaki

    2017-01-01

    The purpose of this study is to access the outcomes of aortic bypass graft placement in children. This is a retrospective review of all children having aortic bypass graft placement for aortic arch obstruction for the first time between 1982 and 2013 at a single institution. The actuarial survival and the freedom from aortic arch reoperation were calculated and compared between the groups. Seventy consecutive children underwent aortic bypass graft placements. The median age and body weight at the operation were 14 days and 3.6 kg. There were 7 early deaths, 6 late deaths, and 7 heart transplants during the median follow-up of 10.8 years (0.0-31.5 years). The actuarial transplant free survival was 64.7 % at 20 years and the freedom from aortic arch reoperation was 50.5 % at 10 years. Between the children younger than 1 year old and older than 1 year old, there were significant differences in actuarial transplant free survival (56.4 vs. 100 % at 15 years, p = 0.0042) and in the freedom from aortic arch reoperation (18.7 vs. 100 % at 10 years, p < 0.001). The children who received aortic bypass graft larger than 16 mm in size had no aortic arch reoperation at 15 years. The aortic bypass graft placement for aortic arch obstruction can be done with low mortality and morbidity for children who can receive bypass graft larger than 16 mm in size. However, it should be avoided for the neonates and infants except selected situations.

  13. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  14. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  15. Left Ventricular Assist Device Implantation with Concomitant Aortic Valve and Ascending Aortic Replacement.

    PubMed

    Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad

    2018-01-01

    Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.

  16. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  17. The protective role of sex hormones in females and exercise prehabilitation in males on sternotomy-induced cranial hypoperfusion in aortic banded mini-swine.

    PubMed

    Olver, T Dylan; Hiemstra, Jessica A; Edwards, Jenna C; Ferguson, Brian S; Laughlin, M Harold; Emter, Craig A

    2017-03-01

    During cardiac surgery, specifically sternotomy, cranial hypoperfusion is linked to cerebral ischemia, increased risk of perioperative watershed stroke, and other neurocognitive complications. The purpose of this study was to retrospectively examine the effect of sex hormones in females and exercise prehabilitation in males on median sternotomy-induced changes in cranial perfusion in a large animal model of heart failure. Cranial blood flow (CBF) before and 10 and 60 min poststernotomy was analyzed in eight groups of Yucatan mini-swine: female control, aortic banded, ovariectomized, and ovariectomized + aortic banded; male control, aortic banded, aortic banded + continuous exercise trained, and aortic banded + interval exercise trained. A median sternotomy decreased cranial perfusion during surgery in all pigs (~24 ± 2% relative to baseline; P ≤ 0.05). CBF was 30 ± 7% lower across all time points in all females vs. all males ( P ≤ 0.05) and sternotomy decreased cranial perfusion ( P ≤ 0.05) independent of sex (females = 34 ± 3% and males = 14 ± 3%) and aortic banding (intact control = 31 ± 5% and intact aortic banded = 31 ± 4%). CBF recovery at 60 min tended to be better in females vs. males (relative to 10 min poststernotomy, females = 23 ± 13% vs. males = -1 ± 5%) and intact aortic banded vs. control pigs (relative to 10 min poststernotomy, aortic banded = 43 ± 20% vs. control = 6 ± 16%; P ≤ 0.05) at 60 min poststernotomy. Ovariectomy impaired CBF recovery during cranial reperfusion 60 min following sternotomy (relative to baseline, all intact females = -1 ± 9% vs. all ovariectomized females = -15 ± 4%; P ≤ 0.05). Chronic exercise training completely prevented significant sternotomy-induced cranial hypoperfusion independent of aortic banding (sternotomy-induced deficit, all sedentary males = -24 ± 6% vs. all exercise-trained males = -7 ± 3%; P ≤ 0.05). Female sex hormones protected against impaired CBF recovery during reperfusion, while

  18. Management of concomitant large aortic aneurysm and severe stenosis of aortic arc.

    PubMed

    Ren, Shiyan; Sun, Guang; Yang, Yuguang; Liu, Peng

    2014-01-01

    Primary large saccular aortic aneurysm with high grade stenosis of aortic arc is rare, and no standard therapy is available. We have encountered one case and successfully treated using a hybrid interventional approach. A 59-year-old woman with a 7-day history of headache, dizziness and chest pain, and a 5-year history of hypertension admitted and was diagnosed with transverse aortic aneurysm with sever aortic stenosis, the huge saccular aneurysm was located behind the transverse aortic arc. During surgery, a bypass with graft from ascending aorta to left external iliac artery was made initially in order to ensure the blood supply to the left leg, afterward, a 40 mm × 160 mm covered stent was implanted to cover the orifice of aneurysm and was used as a supporting anchorage in the descending aorta, a second covered stent (20 mm × 100 mm) was implanted to expand the stenosis of aortic arc. Follow-up at 1.5-year after surgery, the patient has been doing well without any surgical complication. A collateral pathway between internal mammary artery and inferior epigastric artery via the superior epigastric artery was found on3-dimensional reconstruction before surgery. Interruption of the compensatory arterial collateral pathway in the patient with severe stenosis of aortic arc should be prevented if possible in order to ensure the satisfactory perfusion of the lower limbs of the body.In conclusion, a patient with transverse aortic aneurysm accompanied with severe aortic stenosis can be treated by hybrid surgery.

  19. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  20. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  1. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  2. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  3. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  4. Low-flow-frequency characteristics for continuous-record streamflow stations in Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Lorenz, D.L.

    1987-01-01

    Annual and summer (May 1 to September 30) low-flow frequency curves are presented for 175 continuous-record streamflow stations in Minnesota. The curves were developed for all stations with 10 or more years of continuous record. The 1-, 7-, and 30-day low-flow discharges at selected recurrence intervals obtained from these curves are listed. Low-flow characteristics can and will vary for a station depending upon the number of years of record and the period gaged. When comparing low-flow characteristics between two or more stations, it should be remembered that no provisions were made to use concurrent periods of record for stations along the same stream.

  5. Abdominal aortic aneurysm neck remodeling after Anaconda stent graft implantation.

    PubMed

    Vukovic, Elisabeth; Czerny, Martin; Beyersdorf, Friedhelm; Wolkewitz, Martin; Berezowski, Mikolaj; Siepe, Matthias; Blanke, Philipp; Rylski, Bartosz

    2018-05-24

    The aim of this study was to define how the proximal landing zone changes geometrically after endovascular abdominal aortic aneurysm repair (EVAR) with the Anaconda (Vascutek, Inchinnan, United Kingdom) stent graft. Among 230 patients who underwent Anaconda stent graft implantation between 2005 and 2014, we included 126 with adequate computed tomography (CT) image quality and follow-up. CT analysis entailed the geometric changes in the main body, proximal rings, and proximal landing zone. The median CT follow-up was 2.0 years (345.8 patients-years). The proximal portion of the main body ring system flattened within the first year after EVAR, resulting in an up to 30° increase in the upper ring's angle in 40% patients and up to 40° increase in 24% patients. One year after EVAR, the upper ring angle increase slowed down. Aortic diameter measured at the level of the upper and lower ring expanded by 2 to 4 mm within 1 year, but remained unchanged afterward. The main body migrated continuously down toward the aortic bifurcation, attaining an average 6-mm increase in the distance between the superior mesenteric artery and main body within 4 years. Freedom from endoleak type IA was 95 ± 2% and 93 ± 3% after 1 and 4 years, respectively. The Anaconda main body ring system in its proximal portion flattens within the first year after EVAR, leading to an increase of 2 to 4 mm in the proximal landing zone's aortic diameter. The main body migrates slowly but continuously down toward the aortic bifurcation. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Early Results of Chimney Technique for Type B Aortic Dissections Extending to the Aortic Arch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen; Tang, Hanfei; Qiao, Tong

    ObjectiveTo summarize our early experience gained from the chimney technique for type B aortic dissection (TBAD) extending to the aortic arch and to evaluate the aortic remodeling in the follow-up period.MethodsFrom September 2011 to July 2014, 27 consecutive TBAD patients without adequate proximal landing zones were retrograde analyzed. Chimney stent-grafts were deployed parallel to the main endografts to reserve flow to branch vessels while extending the landing zones. In the follow-up period, aortic remodeling was observed with computed tomography angiography.ResultsThe technical success rate was 100 %, and endografts were deployed in zone 0 (n = 3, 11.1 %), zone 1 (n = 18, 66.7 %), and zonemore » 2 (n = 6, 22.2 %). Immediately, proximal endoleaks were detected in 5 patients (18.5 %). During a mean follow-up period of 17.6 months, computed tomography angiography showed all the aortic stent-grafts and chimney grafts to be patent. Favorable remodeling was observed at the level of maximum descending aorta and left subclavian artery with expansion of true lumen (from 18.4 ± 4.8 to 25 ± 0.86 mm, p < 0.001 and 27.1 ± 0.62 to 28.5 ± 0.37 mm, p < 0.001) and depressurization of false lumen (from 23.7 ± 2.7 to 8.7 ± 3.8 mm, p < 0.001, from 5.3 ± 1.2 to 2.1 ± 2.1 mm, p < 0.001). While at the level of maximum abdominal aorta, suboptimal remodeling of the total aorta (from 24.1 ± 0.4 to 23.6 ± 1.5 mm, p = 0.06) and true lumen (from 13.8 ± 0.6 to 14.5 ± 0.4 mm, p = 0.08) was observed.ConclusionBased on our limited experience, the chimney technique with thoracic endovascular repair is demonstrated to be promising for TBAD extending to the arch with favorable aortic remodeling.« less

  7. Left Ventricular Assist Device Implantation with Concomitant Aortic Valve and Ascending Aortic Replacement

    PubMed Central

    Panholzer, Bernd; Cremer, Jochen; Haneya, Assad

    2018-01-01

    Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed. PMID:29552039

  8. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  9. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. The Generation of Diazo Compounds in Continuous-Flow.

    PubMed

    Hock, Katharina J; Koenigs, Rene M

    2018-03-25

    Toxic, cancerogenic and explosive - these attributes are typically associated with diazo compounds. Nonetheless, diazo compounds are nowadays a highly demanded class of reagents for organic synthesis, yet the concerns with regards to safe and scalable transformations of these compounds are still exceptionally high. Lately, the research area of the continuous-flow synthesis of diazo compounds attracted significant interest and a whole variety of protocols for their "on-demand" preparation have been realized to date. This concept article focuses on the recent developments using continuous-flow technologies to access diazo compounds; thus minimizing risks and hazards when working with this particular class of compounds. In this article we discuss these concepts and highlight different pre-requisites to access and to perform downstream functionalization reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Aberrant left subclavian artery occlusion in right-sided aortic artery associated with left cerebral infarction: A case report.

    PubMed

    Tempaku, Akira; Kuroiwa, Terumasa; Nishio, Akimasa

    2018-06-01

    Purpose Right-sided aortic arch is a rare vessel anomaly with an incidence of 0.1% worldwide. Supra-aortic branches form a mirror image of the left-sided aortic arch or an aberrant left subclavian artery associated with Kommerell diverticulum. Most patients are diagnosed by a difference in blood pressure in each upper extremity or by the presence of left subclavian steal syndrome in their younger age. The diagnosis of onset of ischemic stroke in middle age is rare. Methods We present the case of a female patient who presented with an ischemic stroke in the left posterior circulation area. She had no history of congenital heart malformation. We performed head magnetic resonance imaging, cerebral angiography, and enhanced computed tomography of the aortic arch and major branches. Results The patient had a right-sided aortic arch and an aberrant left subclavian artery. The left subclavian artery was occluded at the proximal portion with a fibrous string. Collateral flow in the anterior cervical subcutaneous area supported left limb perfusion. Conclusion An atheromatous change reduced shunt flow via collateral networks at the anterior cervical region. Congenital subclavian steal supported the ischemic stroke.

  12. Mitral annular calcification in patients undergoing aortic valve replacement for aortic valve stenosis.

    PubMed

    Takami, Yoshiyuki; Tajima, Kazuyoshi

    2016-02-01

    Limited data exis t on clinical relevance of aortic valve stenosis (AVS) and mitral annular calcification (MAC), although with similar pathophysiologic basis. We sought to reveal the prevalence of MAC and its clinical features in the patients undergoing aortic valve replacement (AVR) for AVS. We reviewed 106 consecutive patients who underwent isolated AVR from 2004 to 2010. Before AVR, CT scans were performed to identify MAC, whose severity was graded on a scale of 0-4, with grade 0 denoting no MAC and grade 4 indicating severe MAC. Echocardiography was performed before AVR and at follow-up over 2 years after AVR. MAC was identified in 56 patients with grade 1 (30 %), 2 (39 %), 3 (18 %), and 4 (13 %), respectively. Patients with MAC presented older age (72 ± 8 versus 66 ± 11 years), higher rate of dialysis-dependent renal failure (43 versus 4 %), and less frequency of bicuspid aortic valve (9 versus 36 %), when compared to those without MAC. No significant differences were seen in short- and mid-term mortality after AVR between the groups. In patients with MAC, progression of neither mitral regurgitation nor stenosis was observed at follow-up of 53 ± 23 months for 102 survivors, although the transmitral flow velocities were higher than in those without MAC. In conclusion, MAC represented 53 % of the patients undergoing isolated AVR for AVS, usually appeared in dialysis-dependent elder patients with tricuspid AVS. MAC does not affect adversely upon the survival, without progression of mitral valve disease, at least within 2 years after AVR.

  13. Hemodynamics of Aortic Stenosis and Implications for Non-invasive Diagnosis via Auscultation

    NASA Astrophysics Data System (ADS)

    Zhu, Chi; Seo, Jung-Hee; Mittal, Rajat

    2017-11-01

    Aortic stenosis refers to the abnormal narrowing of the aortic valve and it is one of the most common valvular diseases. It is also known to generate ejection murmurs, which contain valuable disease-related information. However, an incomplete understanding of the flow mechanism(s) responsible for the murmur generation, as well as the effect of intervening tissue on murmur propagation has limited the diagnostic information can be extracted through cardiac auscultation. In this study, a canonical model of the aorta with stenosis is used, and a multiphysics computational modeling approach is employed to investigate the generation and propagation of the murmurs. First, direct numerical simulation (DNS) is used to explore the hemodynamics of the post-stenotic flow. Then, a high-order, linear viscoelastic wave solver is used to investigate the wave propagation in a modeled thorax. The results show that both the aortic jet and the secondary flow contribute significantly to the murmur generation. The murmur signals on the epidermal surface are measured and analyzed. The break frequencies obtained from the spectra of cases with different degrees of stenosis are found to follow a universal scaling. The implications of these results for cardiac auscultation are discussed. The authors would like to acknowledge support from NSF Grants IIS-1344772, CBET-1511200, and NSF XSEDE Grant TG-CTS100002.

  14. Mechanical assistance by intra-aortic balloon pump counterpulsation during reperfusion increases coronary blood flow and mitigates the no-reflow phenomenon: an experimental study.

    PubMed

    Pierrakos, Charalampos N; Bonios, Michael J; Drakos, Stavros G; Charitos, Efstratios I; Tsolakis, Elias J; Ntalianis, Argirios; Nanas, Serafim N; Charitos, Christos E; Nanas, John N; Terrovitis, John V

    2011-09-01

    The effects of the intra-aortic balloon pump (IABP) counterpulsation on the extent of myocardial infarction (MI), the no-reflow phenomenon (NRP), and coronary blood flow (CBF) during reperfusion in an ischemia-reperfusion experimental model have not been clarified. Eleven pigs underwent occlusion of the mid left anterior descending coronary artery for 1 h, followed by reperfusion for 2 h. CBF, distal to the occlusion site, was measured. In six experiments, IABP support began 10 min before, and continued throughout reperfusion (IABP Group). Five pigs without IABP support served as controls. At the end of each experiment, the myocardial area at risk (MAR) of infarction and the extent of MI and NRP were measured. Hemodynamic measurements at baseline and during coronary occlusion were similar in both groups. During reperfusion, systolic aortic blood pressure was significantly lower in the IABP Group than in controls. In the IABP Group, CBF reached a peak at 5 min of reperfusion, gradually decreased, but remained higher than at baseline, and significantly higher than in controls throughout the 2 h of reperfusion. In controls, CBF increased significantly above baseline immediately after the onset of reperfusion, then returned to baseline within 90 min. The extent of NRP (37 ± 25% vs. 68 ± 17%, P = 0.047) and MI (39 ± 23% vs. 67 ± 13%, P = 0.036), both expressed as percentage of MAR, was significantly less in the IABP group than in controls. After prolonged myocardial ischemia, IABP assistance started just 10 min before and throughout reperfusion increased CBF and limited infarct size and extent of NRP. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Outcome and Impact of Aortic Valve Replacement in Patients With Preserved LVEF and Low-Gradient Aortic Stenosis.

    PubMed

    Dayan, Victor; Vignolo, Gustavo; Magne, Julien; Clavel, Marie-Annick; Mohty, Dania; Pibarot, Philippe

    2015-12-15

    Low mean transvalvular gradient (<40 mm Hg) and small aortic valve area (<1.0 cm(2)) in patients with aortic stenosis (AS) and preserved left ventricular ejection fraction raises uncertainty about the actual severity of the stenosis and survival benefit of aortic valve replacement (AVR). This study analyzed studies of mortality and survival impact of AVR in patients with low-gradient (LG) AS and preserved left ventricular ejection fraction, including paradoxical low-flow (i.e., stroke volume index <35 ml/m(2)), low-gradient (LF-LG) and normal-flow, low-gradient (NF-LG), and those with high-gradient (≥ 40 mm Hg) AS or moderate AS. Studies published between 2005 and 2015 were analyzed. Primary outcome was the survival benefit associated with AVR. Secondary outcome was overall mortality regardless of treatment. Eighteen studies were included in the analysis. Patients with LF-LG AS have increased mortality compared with patients with moderate AS (hazard ratio [HR]: 1.68; 95% confidence interval [CI]: 1.31 to 2.17), NF-LG (HR: 1.80; 95% CI: 1.29 to 2.51), and high-gradient (HR: 1.67; 95% CI: 1.16 to 2.39) AS. AVR was associated with reduced mortality in patients with LF-LG (HR: 0.44; 95% CI: 0.25 to 0.77). Similar benefit occurred with AVR in patients with NF-LG (HR: 0.48; 95% CI: 0.28 to 0.83). Compared with patients with high-gradient AS, those with LF-LG were less likely to be referred to AVR (odds ratio: 0.32; 95% CI: 0.21 to 0.49). Patients with paradoxical LF-LG AS and NF-LG AS have increased risk of mortality compared with other subtypes of AS with preserved left ventricular ejection fraction, and improved outcome with AVR. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  17. Aortic wrapping for a dilated ascending aorta in bicuspid aortic stenosis.

    PubMed

    Choi, Min Suk; Jeong, Dong Seop; Lee, Hae Young; Sung, Kiick; Kim, Wook Sung; Lee, Young Tak; Park, Pyo Won

    2015-01-01

    Ascending aorta wrapping is rarely recommended for the management of dilated aorta, because of late complications. The aim of the present study was to analyze the early and late outcomes of the aortic wrapping technique at the time of aortic valve replacement (AVR) for bicuspid aortic stenosis (BAS). Among patients who underwent primary AVR for BAS between 2002 and 2011, 79 who underwent ascending aortic wrapping (wrapping group) were compared with 144 patients who underwent AVR alone. The preoperative ascending aortic diameters were larger in the wrapping group (40.9±4.2 mm vs. 48.6±4.0 mm, P<0.001). Operative technique was to wrap the ascending aorta transversely with a semi-elliptically resected Dacron graft. The follow-up for the wrapping group was 76.5±35.5 (median 71.1) months. There were no early deaths. Early and late morbidity did not differ between groups. The 24 late deaths, including 10 cardiac-related deaths, occurred in the entire group; 3 sudden deaths occurred only in the AVR group. The 10-year overall survival in the wrapping group was higher than the AVR group (88.1±6.8% vs. 80.0±4.6%, P=0.048). No late aortic complications were detected. The aortic diameter was reduced from 49.5±4.1 mm to 45.3±5.0 mm after wrapping (P<0.001). The aortic wrapping technique may be an option for treating a moderately dilated ascending aorta in selected patients undergoing AVR for BAS. Longer follow-up, however, is necessary to verify later complications.

  18. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  19. Myocardial blood flow reserve is impaired in patients with aortic valve calcification and unobstructed epicardial coronary arteries.

    PubMed

    Nel, Karen; Nam, Michael C Y; Anstey, Chris; Boos, Christopher J; Carlton, Edward; Senior, Roxy; Kaski, Juan Carlos; Khattab, Ahmed; Shamley, Delva; Byrne, Christopher D; Stanton, Tony; Greaves, Kim

    2017-12-01

    Although calcific aortic valve disease (CAVD) is associated with coronary atherosclerosis, it is not known whether early CAVD is associated with coronary microcirculatory dysfunction (CMD). We sought to investigate the relationship between myocardial blood flow reserve (MBFR) - a measure of CMD, and early CAVD in the absence of obstructive epicardial coronary artery disease. We also determined whether this relationship was independent of coronary artery disease (CAD) and hs-CRP, a marker of systemic inflammation. 183 patients with chest pain and unobstructed coronary arteries were studied. Aortic valve calcification score (AVCS), coronary total plaque length (TPL), and coronary calcium score were quantified from multislice CT. MBFR was assessed using vasodilator myocardial contrast echocardiography. Hs-CRP was measured from venous blood using a particle-enhanced immunoassay. Mean (±SD) participant age was 59.8 (9.6) years. Mean AVCS was 68 (258) AU, TPL was 15.6 (22.2) mm, and median coronary calcification score was 43.5AU. Mean MBFR was 2.20 (0.52). Mean hs-CRP was 2.52 (3.86) mg/l. Multivariable linear regression modelling incorporating demographics, coronary plaque characteristics, MBFR, and inflammatory markers, demonstrated that age (β=0.05, 95% CI: 0.02, 0.08, P=0.007), hs-CRP (β=0.09, CI: 0.02, 0.16, P=0.010) and diabetes (β=1.03, CI: 0.08, 1.98, P=0.033), were positively associated with AVCS. MBFR (β=-0.87, CI: -1.44, -0.30, P=0.003), BMI (β=-0.11, CI: -0.21, -0.01, P=0.033), and LDL (β=-0.32, CI: -0.61, -0.03, P=0.029) were negatively associated with AVCS. TPL and coronary calcium score were not independently associated with AVCS when included in the regression model. Coronary microvascular function as determined by measurement of myocardial blood flow reserve is independently associated with early CAVD. This effect is independent of the presence of coronary artery disease and also systemic inflammation. Copyright © 2017 Elsevier B.V. All rights

  20. Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.

    PubMed

    Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred

    2017-02-01

    The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow

  1. Preservation of the bicuspid aortic valve.

    PubMed

    Schäfers, Hans-Joachim; Aicher, Diana; Langer, Frank; Lausberg, Henning F

    2007-02-01

    Bicuspid anatomy of the aortic valve is a common reason for aortic regurgitation and is associated with aortic dilatation in more than 50% of patients. We have observed different patterns of aortic dilatation and used different approaches preserving the valve. Between October 1995 and February 2006, a regurgitant bicuspid valve was repaired in 173 patients. The aorta was normal in 57 patients who underwent isolated repair. Aortic dilatation mainly above commissural level (n = 38) was treated by separate valve repair plus supracommissural aortic replacement. In 78 patients, aortic dilatation involved the root and was treated by root remodeling. Hospital mortality and perioperative morbidity were low in all three groups. Myocardial ischemia was significantly shorter in repair plus aortic replacement than remodeling (p < 0.001). Freedom from aortic regurgitation II or greater at 5 years varied between 91% and 96%. Freedom from reoperation at 5 years was 97% after remodeling, but only 53% after repair plus aortic replacement (p = 0.33). Symmetric prolapse was the most frequent cause for reoperation. The long-term stability of bicuspid aortic valve repair is excellent in the absence of aortic pathology. In the presence of aortic dilatation, root remodeling leads to equally stable valve durability. In patients with less pronounced root dilatation, separate valve repair plus aortic replacement may be a less complex alternative. Symmetric prolapse should be avoided if the ascending aorta is replaced.

  2. Improved aortic enhancement in CT angiography using slope-based triggering with table speed optimization: a pilot study.

    PubMed

    Bashir, Mustafa R; Weber, Paul W; Husarik, Daniela B; Howle, Laurens E; Nelson, Rendon C

    2012-08-01

    To assess whether a scan triggering technique based on the slope of the time-attenuation curve combined with table speed optimization may improve arterial enhancement in aortic CT angiography compared to conventional threshold-based triggering techniques. Measurements of arterial enhancement were performed in a physiologic flow phantom over a range of simulated cardiac outputs (2.2-8.1 L/min) using contrast media boluses of 80 and 150 mL injected at 4 mL/s. These measurements were used to construct computer models of aortic attenuation in CT angiography, using cardiac output, aortic diameter, and CT table speed as input parameters. In-plane enhancement was calculated for normal and aneurysmal aortic diameters. Calculated arterial enhancement was poor (<150 HU) along most of the scan length using the threshold-based triggering technique for low cardiac outputs and the aneurysmal aorta model. Implementation of the slope-based triggering technique with table speed optimization improved enhancement in all scenarios and yielded good- (>200 HU; 13/16 scenarios) to excellent-quality (>300 HU; 3/16 scenarios) enhancement in all cases. Slope-based triggering with table speed optimization may improve the technical quality of aortic CT angiography over conventional threshold-based techniques, and may reduce technical failures related to low cardiac output and slow flow through an aneurysmal aorta.

  3. Diagnosis, imaging and clinical management of aortic coarctation.

    PubMed

    Dijkema, Elles J; Leiner, Tim; Grotenhuis, Heynric B

    2017-08-01

    Coarctation of the aorta (CoA ) is a well-known congenital heart disease (CHD) , which is often associated with several other cardiac and vascular anomalies, such as bicuspid aortic valve (BAV), ventricular septal defect, patent ductus arteriosus and aortic arch hypoplasia. Despite echocardiographic screening, prenatal diagnosis of C o A remains difficult. Most patients with CoA present in infancy with absent, delayed or reduced femoral pulses, a supine arm-leg blood pressure gradient (> 20 mm Hg), or a murmur due to rapid blood flow across the CoA or associated lesions (BAV). Transthoracic echocardiography is the primary imaging modality for suspected CoA. However, cardiac magnetic resonance imaging is the preferred advanced imaging modality for non-invasive diagnosis and follow-up of CoA. Adequate and timely diagnosis of CoA is crucial for good prognosis, as early treatment is associated with lower risks of long-term morbidity and mortality. Numerous surgical and transcatheter treatment strategies have been reported for CoA. Surgical resection is the treatment of choice in neonates, infants and young children. In older children (> 25 kg) and adults, transcatheter treatment is the treatment of choice. In the current era, patients with CoA continue to have a reduced life expectancy and an increased risk of cardiovascular sequelae later in life, despite adequate relief of the aortic stenosis. Intensive and adequate follow-up of the left ventricular function, valvular function, blood pressure and the anatomy of the heart and the aorta are , therefore, critical in the management of CoA. This review provides an overview of the current state-of-the-art clinical diagnosis, diagnostic imaging algori thms, treatment and follow-up of patients with CoA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Transfemoral aortic valve implantation in severe aortic stenosis patients with prior mitral valve prosthesis

    PubMed Central

    Sarı, Cenk; Baştuğ, Serdal; Kasapkara, Hacı Ahmet; Durmaz, Tahir; Keleş, Telat; Akçay, Murat; Aslan, Abdullah Nabi; Bayram, Nihal Akar; Bozkurt, Engin

    2015-01-01

    Introduction Transcatheter aortic valve implantation for severe symptomatic aortic stenosis in patients with a previous mitral valve prosthesis is technically challenging, and pre-procedural comprehensive assessment of these patients before transcatheter aortic valve implantation is vital for an uncomplicated and successful procedure. Aim We want to share our experience with transcatheter aortic valve implantation in patients with a preexisting functional mitral valve prosthesis and describe a series of important technical and pre-procedural details. Material and methods At our center, 135 patients with symptomatic severe aortic stenosis were treated with transcatheter aortic valve implantation. Six of them with a preexisting mitral valve prosthesis received an Edwards SAPIEN XT valve through the transfemoral route. Results Transcatheter aortic valve implantation was performed successfully in all 6 patients without any deformation of the cobalt-chromium/steel stents of the aortic valve bioprosthesis. Also no distortion or malfunction in the mitral valve prosthesis was observed after the procedure. There were no complications during the hospitalization period. Post-procedural echocardiography revealed no or mild aortic paravalvular regurgitation and normal valve function in all the patients. In addition, serial echocardiographic examination demonstrated that both the stability and function of the aortic and mitral prosthetic valves were normal without any deterioration in the gradients and the degree of the regurgitation at long-term follow-ups. Conclusions Our experience confirms that transcatheter aortic valve implantation is technically feasible in patients with previous mitral valve replacement but comprehensive evaluation of patients by multimodal imaging techniques such as transesophageal echocardiography and multislice computed tomography is mandatory for a successful and safe procedure. PMID:26677380

  5. Pathological Investigation of Congenital Bicuspid Aortic Valve Stenosis, Compared with Atherosclerotic Tricuspid Aortic Valve Stenosis and Congenital Bicuspid Aortic Valve Regurgitation

    PubMed Central

    Hamatani, Yasuhiro; Ishibashi-Ueda, Hatsue; Nagai, Toshiyuki; Sugano, Yasuo; Kanzaki, Hideaki; Yasuda, Satoshi; Fujita, Tomoyuki; Kobayashi, Junjiro; Anzai, Toshihisa

    2016-01-01

    Background Congenital bicuspid aortic valve (CBAV) is the main cause of aortic stenosis (AS) in young adults. However, the histopathological features of AS in patients with CBAV have not been fully investigated. Methods and Results We examined specimens of aortic valve leaflets obtained from patients who had undergone aortic valve re/placement at our institution for severe AS with CBAV (n = 24, CBAV-AS group), severe AS with tricuspid aortic valve (n = 24, TAV-AS group), and severe aortic regurgitation (AR) with CBAV (n = 24, CBAV-AR group). We compared the histopathological features among the three groups. Pathological features were classified using semi-quantitative methods (graded on a scale 0 to 3) by experienced pathologists without knowledge of the patients’ backgrounds. The severity of inflammation, neovascularization, and calcium and cholesterol deposition did not differ between the CBAV-AS and TAV-AS groups, and these four parameters were less marked in the CBAV-AR group than in the CBAV-AS (all p<0.01). Meanwhile, the grade of valvular fibrosis was greater in the CBAV-AS group, compared with the TAV-AS and CBAV-AR groups (both p<0.01). In AS patients, thickness of fibrotic lesions was greater on the aortic side than on the ventricular side (both p<0.01). Meanwhile, thickness of fibrotic lesions was comparable between the aortic and ventricular sides in CBAV-AR patients (p = 0.35). Conclusions Valvular fibrosis, especially on the aortic side, was greater in patients with CBAV-AS than in those without, suggesting a difference in the pathogenesis of AS between CBAV and TAV. PMID:27479126

  6. Modelling of aortic aneurysm and aortic dissection through 3D printing.

    PubMed

    Ho, Daniel; Squelch, Andrew; Sun, Zhonghua

    2017-03-01

    The aim of this study was to assess if the complex anatomy of aortic aneurysm and aortic dissection can be accurately reproduced from a contrast-enhanced computed tomography (CT) scan into a three-dimensional (3D) printed model. Contrast-enhanced cardiac CT scans from two patients were post-processed and produced as 3D printed thoracic aorta models of aortic aneurysm and aortic dissection. The transverse diameter was measured at five anatomical landmarks for both models, compared across three stages: the original contrast-enhanced CT images, the stereolithography (STL) format computerised model prepared for 3D printing and the contrast-enhanced CT of the 3D printed model. For the model with aortic dissection, measurements of the true and false lumen were taken and compared at two points on the descending aorta. Three-dimensional printed models were generated with strong and flexible plastic material with successful replication of anatomical details of aortic structures and pathologies. The mean difference in transverse vessel diameter between the contrast-enhanced CT images before and after 3D printing was 1.0 and 1.2 mm, for the first and second models respectively (standard deviation: 1.0 mm and 0.9 mm). Additionally, for the second model, the mean luminal diameter difference between the 3D printed model and CT images was 0.5 mm. Encouraging results were achieved with regards to reproducing 3D models depicting aortic aneurysm and aortic dissection. Variances in vessel diameter measurement outside a standard deviation of 1 mm tolerance indicate further work is required into the assessment and accuracy of 3D model reproduction. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  7. Thoracic Endovascular Aortic Repair With Single/Double Chimney Technique for Aortic Arch Pathologies.

    PubMed

    Wang, Tun; Shu, Chang; Li, Ming; Li, Quan-Ming; Li, Xin; Qiu, Jian; Fang, Kun; Dardik, Alan; Yang, Chen-Zi

    2017-06-01

    To summarize a single-center experience using the single/double chimney technique in association with thoracic endovascular aortic repairs (TEVAR) for aortic arch pathologies. From November 2007 to March 2016, 122 patients (mean age 50.4±12.7 years, range 29-80; 92 men) with aortic arch pathologies underwent TEVAR combined with single (n=101) or double (n=21) chimney grafts to reconstruct the supra-aortic branches: 21 innominate arteries, 114 left common carotid arteries, and 8 left subclavian arteries (LSA). Pathologies included type B aortic dissection (n=47), aortic arch dissection (n=49), retrograde type A aortic dissection (n=8), thoracic aortic aneurysm (n=7), penetrating aortic arch ulcer (n=9), and post-TEVAR type I endoleak (n=2). Follow-up examinations included computed tomography at 0.5, 3, 6, and 12 months and yearly thereafter. The aortic stent-grafts were deployed in zone 0 (n=21), zone 1 (n=93), and zone 2 (n=8). One (0.8%) of the 122 patients died at 4 days due to a perforated peptic ulcer. Type Ia endoleaks were found intraoperatively in 13 (10.7%) patients, including 3 with the double chimney technique. Type II endoleaks occurred in 6 (4.9%) patients; 3 were treated with duct occluders in the LSA. Postoperative chimney graft migration occurred in 1 (0.8%) patient with double chimneys; additional stent-grafts were deployed in both chimneys. Median follow-up was 32.3 months, during which 1 (0.8%) patient died after a stroke at 3 months. Chimney stent-graft patency was observed in the remaining 120 patients. Two (1.7%) secondary TEVARs were performed for distal aortic dissection. Nine asymptomatic type Ia endoleaks and 1 type II endoleak persisted in follow-up; a type II endoleak in 1 patient with Marfan syndrome sealed in 52 months. TEVAR with the chimney technique provides a safe, minimally invasive alternative with good chimney graft patency and low postoperative mortality during midterm follow-up. The double chimney technique should be used

  8. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve.

    PubMed

    Allen, Bradley D; van Ooij, Pim; Barker, Alex J; Carr, Maria; Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly B; Carr, James C; Markl, Michael; Rigsby, Cynthia; Robinson, Joshua D

    2015-10-01

    To evaluate the 3D hemodynamics in the thoracic aorta of pediatric and young adult bicuspid aortic valve (BAV) patients. 4D flow MRI was performed in 30 pediatric and young adult BAV patients (age: 13.9 ± 4.4 (range: [3.4, 20.7]) years old, M:F = 17:13) as part of this Institutional Review Board-approved study. Nomogram-based aortic root Z-scores were calculated to assess aortic dilatation and degree of aortic stenosis (AS) severity was assessed on MRI. Data analysis included calculation of time-averaged systolic 3D wall shear stress (WSSsys ) along the entire aorta wall, and regional quantification of maximum and mean WSSsys and peak systolic velocity (velsys ) in the ascending aorta (AAo), arch, and descending aorta (DAo). The 4D flow MRI AAo velsys was also compared with echocardiography peak velocity measurements. There was a positive correlation with both mean and max AAo WSSsys and peak AAo velsys (mean: r = 0.84, P < 0.001, max: r = 0.94, P < 0.001) and AS (mean: rS  = 0.43, P = 0.02, max: rS  = 0.70, P < 0.001). AAo peak velocity was significantly higher when measured with echo compared with 4D flow MRI (2.1 ± 0.98 m/s versus 1.27 ± 0.49 m/s, P < 0.001). In pediatric and young adult patients with BAV, AS and peak ascending aorta velocity are associated with increased AAo WSS, while aortic dilation, age, and body surface area do not significantly impact AAo hemodynamics. Prospective studies are required to establish the role of WSS as a risk-stratification tool in these patients. © 2015 Wiley Periodicals, Inc.

  9. Maximal aortic diameter affects outcome after endovascular repair of abdominal aortic aneurysms.

    PubMed

    Huang, Ying; Gloviczki, Peter; Duncan, Audra A; Kalra, Manju; Oderich, Gustavo S; Fleming, Mark D; Harmsen, William S; Bower, Thomas C

    2017-05-01

    The purpose of this study was to evaluate whether maximal aortic diameter affects outcome after endovascular aneurysm repair (EVAR) of abdominal aortic aneurysm (AAA). Clinical data of patients undergoing EVAR between 1997 and 2011 for nonruptured asymptomatic AAAs in a tertiary center were reviewed. Patients were classified according to diameter of AAA: group 1, <5.0 cm; group 2, 5.0 to 5.4 cm; group 3, 5.5 to 5.9 cm; and group 4, ≥6.0 cm. The primary end point was all-cause mortality; secondary end points were complications, reinterventions, and ruptures. There were 874 patients studied (female, 108 [12%]; group 1, 119; group 2, 246; group 3, 243; group 4, 266); mean age was 76 ± 7.2 years. The 30-day mortality rate was 1.0%, not significantly different between groups (P = .22); complication and reintervention rates were 13% and 4.1%, respectively, similar between groups (P < .05). Five-year survival was 68%; freedom from complications and reinterventions was 65% and 74%, respectively; rupture rate was 0.5%. Multivariate analysis revealed that factors associated with all-cause mortality included maximal aortic diameter, age, gender, surgical risk, cancer history, and endograft type (P < .05). Group 4 had increased risks of mortality (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.38-2.85; P = .002) and complications (HR, 1.6; 95% CI, 1.2-2.7; P = .009) relative to group 1. Reinterventions were more frequent for aneurysms ≥6.0 cm (HR, 2.0; 95% CI, 1.2-3.3; P = .01). Late rupture rate after EVAR was not different between groups. Maximal aortic diameter is associated with long-term outcomes after elective EVAR. Patients with large AAAs (≥6.0 cm) have higher all-cause mortality, complication, and reintervention rates after EVAR than those with smaller aneurysms. We continue to recommend that AAAs be repaired when they reach 5.5 cm as recommended by the guidelines of the Society for Vascular Surgery. On the basis of our data, EVAR

  10. Systemic vascular load in calcific degenerative aortic valve stenosis: insight from percutaneous valve replacement.

    PubMed

    Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco

    2015-02-10

    Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump.

    PubMed

    Kolyva, Christina; Biglino, Giovanni; Pepper, John R; Khir, Ashraf W

    2012-03-01

    A mock circulatory system (MCS) was designed to replicate a physiological environment for in vitro testing and was assessed with the intra-aortic balloon pump (IABP). The MCS was comprised of an artificial left ventricle (LV), connected to a 14-branch polyurethane-compound aortic model. Physiological distribution of terminal resistance and compliance according to published data was implemented with capillary tubes of different sizes and syringes of varying air volume, respectively, fitted at the outlets of the branches. The ends of the aortic branches were connected to a common tube representing the venous system and an overhead reservoir provided atrial pressure. An IABP operating a 40-cc balloon was set to counterpulsate with the LV. Total arterial compliance of the system was 0.94 mL/mm Hg and total arterial resistance was 20.3 ± 3.3 mm Hg/L/min. At control, physiological flow distribution was achieved and both mean and phasic aortic pressure and flow were physiological. With the IABP, aortic pressure exhibited the major features of counterpulsation: diastolic augmentation during inflation, inflection point at onset of deflation, and end-diastolic reduction at the end of deflation. The contribution of balloon inflation and deflation was also evident on the aortic flow pattern. This MCS was verified to be suitable for IABP testing and with further adaptations it could be used for studying other hemodynamic problems and ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia.

    PubMed

    Lara, D A; Morris, S A; Maskatia, S A; Challman, M; Nguyen, M; Feagin, D K; Schoppe, L; Zhang, J; Bhatt, A; Sexson-Tejtel, S K; Lopez, K N; Lawrence, E J; Andreas, S; Wang, Y; Belfort, M A; Ruano, R; Ayres, N A; Altman, C A; Aagaard, K M; Becker, J

    2016-09-01

    Acute maternal hyperoxygenation (AMH) results in increased fetal left heart blood flow. Our aim was to perform a pilot study to determine the safety, feasibility and direction and magnitude of effect of chronic maternal hyperoxygenation (CMH) on mitral and aortic valve annular dimensions in fetuses with left heart hypoplasia (LHH) after CMH. Gravidae with fetal LHH were eligible for inclusion in a prospective evaluation of CMH. LHH was defined as: sum of aortic and mitral valve annuli Z-scores < -4.5, arch flow reversal and left-to-right or bidirectional atrial level shunting without hypoplastic left heart syndrome or severe aortic stenosis. Gravidae with an affected fetus and with ≥ 10% increase in aortic/combined cardiac output flow after 10 min of AMH at 8 L/min 100% fraction of inspired oxygen were offered enrollment. Nine gravidae were enrolled from February 2014 to January 2015. The goal therapy was ≥ 8 h daily CMH from enrollment until delivery. Gravidae who were cared for from July 2012 to October 2014 with fetal LHH and no CMH were identified as historical controls (n = 9). Rates of growth in aortic and mitral annuli over the final trimester were compared between groups using longitudinal regression. There were no significant maternal or fetal complications in the CMH cohort. Mean gestational age at study initiation was 29.6 ± 3.2 weeks for the intervention group and 28.4 ± 1.8 weeks for controls (P = 0.35). Mean relative increase in aortic/combined cardiac output after AMH was 35.3% (range, 18.1-47.9%). Median number of hours per day on CMH therapy was 9.3 (range, 6.5-14.6) and median duration of CMH was 48 (range, 33-84) days. Mean mitral annular growth was 0.19 ± 0.05 mm/week compared with 0.14 ± 0.05 mm/week in CMH vs controls (mean difference 0.05 ± 0.05 mm/week, P = 0.33). Mean aortic annular growth was 0.14 ± 0.03 mm/week compared with 0.13 ± 0.03 mm/week in CMH vs

  13. Aortic blood pressure measured via EIT: investigation of different measurement settings.

    PubMed

    Braun, Fabian; Proença, Martin; Rapin, Michael; Lemay, Mathieu; Adler, Andy; Grychtol, Bartłomiej; Solà, Josep; Thiran, Jean-Philippe

    2015-06-01

    Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.

  14. Minimally Invasive Aortic Valve Replacement Following Root Enlargement on too Narrow Annulus to Perform Transcatheter Aortic Valve Implantation.

    PubMed

    Sakamoto, Kosuke; Totsugawa, Toshinori; Hiraoka, Arudo; Tamura, Kentaro; Yoshitaka, Hidenori; Sakaguchi, Taichi

    2018-05-30

    An 88-year-old woman was diagnosed with aortic stenosis and an aortic annulus that was too narrow to perform transcatheter aortic valve implantation. Surgery was performed through a 7-cm right mini-thoracotomy at the fourth intercostal space. A 19-mm aortic valve bioprosthesis was implanted after root enlargement. The fourth intercostal space was a suitable site for aortic root enlargement because of the shorter skin-to-root distance and the detailed exposure of the aortic valve after cutting the aortic wall. This study concluded that minimally-invasive aortic valve replacement following root enlargement can be an option for the treatment of elderly patients with aortic stenosis accompanied by an annulus that is too small to perform transcatheter aortic valve implantation.

  15. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    PubMed

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  16. Mycobacterium chimaera Infection After Aortic Valve Replacement Presenting With Aortic Dissection and Pseudoaneurysm.

    PubMed

    O'Neil, C R; Taylor, G; Smith, S; Joffe, A M; Antonation, K; Shafran, S; Kunimoto, D

    2018-02-01

    We present a case of Mycobacterium chimaera infection presenting with aortic dissection and pseudoaneuysm in a 22-year-old man with a past history of aortic valve replacement. Clinicians should consider M. chimaera infection in those presenting with aortic dissection as a late complication of cardiovascular surgery.

  17. Unusual Case of Overt Aortic Dissection Mimicking Aortic Intramural Hematoma

    PubMed Central

    Disha, Kushtrim; Kuntze, Thomas; Girdauskas, Evaldas

    2016-01-01

    We report an interesting case in which overt aortic dissection mimicked two episodes of aortic intramural hematoma (IMH) (Stanford A, DeBakey I). This took place over the course of four days and had a major influence on the surgical treatment strategy. The first episode of IMH regressed completely within 15 hours after it was clinically diagnosed and verified using imaging techniques. The recurrence of IMH was detected three days thereafter, resulting in an urgent surgical intervention. Overt aortic dissection with evidence of an intimal tear was diagnosed intraoperatively. PMID:27066437

  18. Polystyrene latex separations by continuous flow electrophoresis on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.

    1986-01-01

    The seventh mission of the Space Shuttle carried two NASA experiments in the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system. The objectives were to test the operation of continuous flow electrophoresis in a reduced gravity environment using stable particles with established electrokinetic properties and specifically to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoretic device. Polystrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread compared to the second experiment under matched conductivity conditions. It is proposed that the sample of higher electrical conductivity distorted the electric field near the sample stream so that the polystyrene latex particles migrated toward the chamber walls where electroosmosis retarded and spread the sample.

  19. Continuous spinal labor analgesia for two deliveries in a parturient with severe subvalvular aortic stenosis.

    PubMed

    Hyuga, Shunsuke; Okutomi, Toshiyuki; Kato, Rie; Hosokawa, Yuki

    2016-12-01

    Various degrees of left ventricular outflow tract (LVOT) obstruction have been seen in patients with subvalvular aortic stenosis (SAS). Regional analgesia during labor for parturients with SAS is relatively contraindicated because it has a potential risk for hemodynamic instability due to sympathetic blockade as a result of vasodilation by local anesthetics. We thought continuous spinal analgesia (CSA) using an opioid and minimal doses of local anesthetic could provide more stable hemodynamic status. We demonstrate the management of a 28-year-old pregnant patient with SAS who received CSA for her two deliveries. For her first delivery (peak pressure gradient (∆P) between LV and aorta was approximately 55 mmHg), intrathecal fentanyl was used as a basal infusion, but we needed a small amount of bupivacaine to provide supplemental intrathecal analgesia as labor progressed. Although there were mild fluctuations in hemodynamics, she was asymptomatic. For her second delivery (∆P between LV and aorta was approximately 90 mmHg), minimal doses of continuous bupivacaine were used as a basal infusion. For her additional analgesic requests, bolus co-administration of fentanyl was effective. There were no fluctuations in her hemodynamics. Although her SAS in her second pregnancy was more severe than in the first, her hemodynamics exhibited less fluctuation during the second delivery with this method. In conclusion, CSA using fentanyl combined with minimal doses of bupivacaine provided satisfactory analgesia and stable hemodynamics in parturient with severe SAS.

  20. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes.

    PubMed

    Tjeerdema, Nathanja; Van Schinkel, Linda D; Westenberg, Jos J; Van Elderen, Saskia G; Van Buchem, Mark A; Smit, Johannes W; Van der Grond, Jeroen; De Roos, Albert

    2014-09-01

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. Aortic stiffness is associated with brain injury. Aortic stiffness exposes small vessels to high pressure fluctuations and flow. Aortic stiffness is associated with microvascular brain injury in diabetes. This suggests a vascular contribution to early subtle microstructural deficits.

  1. Natural history of the ascending aorta after aortic valve replacement: risk factor analysis for late aortic complications after aortic valve replacement.

    PubMed

    Tsutsumi, Koji; Hashizume, Kenichi; Inoue, Yoshito

    2016-05-01

    The purpose of this study was to clarify the natural history of the ascending aorta and to identify risk factors for late ascending aortic events after first isolated aortic valve replacement (AVR). A total of 287 patients undergoing AVR were enrolled. The patients were categorized into two groups based on the diameter of the ascending aorta at the time of AVR, as determined by computed tomography: Group A (n = 233) was defined as an ascending aortic diameter <40 mm, and Group B (n = 54) was defined as an ascending aortic diameter ≥40 mm. The mean follow-up period was 7.6 years. The baseline diameter of the ascending aorta was 31.4 ± 4.8 mm in Group A and 44.7 ± 4.2 mm in Group B. These values increased to 35.9 ± 7.4 mm in Group A and 50.1 ± 7.3 mm in Group B during the follow-up period (P < 0.001). Ten patients had acute type A aortic dissection (Group A: 1 patient vs. Group B: 9 patients; P < 0.001), and three patients had enlargement of the ascending aorta to ≥55 mm in diameter (Group A: 1 patient vs. Group B: 2 patients). Multivariate analysis revealed that the baseline ascending aortic diameter was the only significant risk factor for developing late ascending aortic events (P < 0.001). AVR alone may not prevent further enlargement of the ascending aorta. An ascending aorta ≥40 mm in diameter at the time of AVR increased the risk of late ascending aortic events.

  2. Continuous-flow cold therapy for outpatient anterior cruciate ligament reconstruction.

    PubMed

    Barber, F A; McGuire, D A; Click, S

    1998-03-01

    This prospective, randomized study evaluated continuous-flow cold therapy for postoperative pain in outpatient arthroscopic anterior cruciate ligament (ACL) reconstructions. In group 1, cold therapy was constant for 3 days then as needed in days 4 through 7. Group 2 had no cold therapy. Evaluations and diaries were kept at 1, 2, and 8 hours after surgery, and then daily. Pain was assessed using the VAS and Likert scales. There were 51 cold and 49 noncold patients included. Continuous passive movement (CPM) use averaged 54 hours for cold and 41 hours for noncold groups (P=.003). Prone hangs were done for 192 minutes in the cold group and 151 minutes in the noncold group. Motion at 1 week averaged 5/88 for the cold group and 5/79 the noncold group. The noncold group average visual analog scale (VAS) pain and Likert pain scores were always greater than the cold group. The noncold group average Vicodin use (Knoll, Mt. Olive, NJ) was always greater than the cold group use (P=.001). Continuous-flow cold therapy lowered VAS and Likert scores, reduced Vicodin use, increased prone hangs, CPM, and knee flexion. Continuous-flow cold therapy is safe and effective for outpatient ACL reconstruction reducing pain medication requirements.

  3. Numerical analysis of wall shear stress in ascending aorta before tearing in type A aortic dissection.

    PubMed

    Chi, Qingzhuo; He, Ying; Luan, Yong; Qin, Kairong; Mu, Lizhong

    2017-10-01

    Although the incidence of many cardiovascular diseases has declined as medical treatments have improved, the prevalence of aortic dissection (AD) has increased. Compared to type B dissections, type A dissections are more severe, and most patients with type A dissections require surgical treatment. The objective of this study was to investigate the relationships between the wall shear stress (WSS) on the aortic endothelium and the frequent tearing positions using computational fluid dynamics. Five type A dissection cases and two normal aortas were included in the study. First, the structures of the aortas before the type A dissection were reconstructed on the basis of the original imaging data. Analyses of flow in the reconstructed premorbid structures reveals that the rupture positions in three of the five cases corresponded to the area of maximum elevated WSS. Moreover, the WSS at the junction of the aortic arch and descending aorta was found to be elevated, which is considered to be related to the locally disturbed helical flow. Meanwhile, the highest WSS in the patients with premorbid AD was found to be almost double that of the control group. Due to the noticeable morphological differences between the AD cases and the control group, the WSSs in the premorbid structures without vasodilation in the ascending part were estimated. The computational results revealed that the WSS was lower in the aorta without vasodilation, but the pressure drop in this situation was higher than that with vasodilation in the ascending aorta. Significant differences were seen between the AD cases and the control group in the angles of the side branches of the aortic arch and its bending degree. Dilation of the ascending aorta and alterations in the branching angles may be the key determinants of a high WSS that leads to type A dissection. Greater tortuosity of the aortic arch leads to stronger helical flow through the distal aortic arch, which may be related to tears in this region

  4. Abdominal aortic aneurysm

    MedlinePlus

    ... this problem include: Smoking High blood pressure Male gender Genetic factors An abdominal aortic aneurysm is most ... body from an aortic aneurysm, you will need surgery right away. If the aneurysm is small and ...

  5. Predicting changes in flow category in patients with severe aortic stenosis and preserved left ventricular ejection fraction on medical therapy.

    PubMed

    Ngiam, Jinghao Nicholas; Kuntjoro, Ivandito; Tan, Benjamin Y Q; Sim, Hui-Wen; Kong, William K F; Yeo, Tiong-Cheng; Poh, Kian-Keong

    2017-11-01

    Controversy surrounds the prognosis and management of patients with paradoxical low-flow severe aortic stenosis (AS) with preserved left ventricular ejection fraction (LVEF). It was not certain if patients in a particular flow category remained in the same category as disease progressed. We investigated whether there were switches in categories and if so, their predictors. Consecutive subjects (n = 203) with isolated severe AS and paired echocardiography (>180 days apart) were studied. They were divided into 4 groups, based on their flow categories and if they progressed on subsequent echocardiography to switch or remain in the same flow category. Univariate analyses of clinical and echocardiographic parameters identified predictors of these changes in flow category. One hundred eighteen were normal flow (SVI ≥ 35 mL/m 2 ), while 85 were low flow on index echocardiography. In the patients with normal flow, 33% switched to low flow. This was associated with higher valvuloarterial impedance (Zva, P < .001) and lower systemic arterial compliance (SAC, P < .001) compared to index echocardiography, and predicted by higher initial Zva (optimized cutoff >4.77 mm Hg/mL/m 2 , AUC = 0.81 [95% CI:0.75-0.87, P < .001]). In patients with low flow, 25% switched to normal flow, which was associated with lower Zva and higher SAC and the switch was predicted by a higher initial mean transaortic pressure gradient. A significant number of patients switched flow categories in severe AS with preserved LVEF on subsequent echocardiography. Changes in flow were reflected by respective changes in Zva and SAC. Identifying echocardiographic predictors of a switch in category may guide prognostication and management of such patients. © 2017, Wiley Periodicals, Inc.

  6. New-generation devices for transcatheter aortic valve implantation.

    PubMed

    Gatto, Laura; Biondi-Zoccai, Giuseppe; Romagnoli, Enrico; Frati, Giacomo; Prati, Francesco; Giordano, Arturo

    2018-04-20

    Transcatheter aortic valve implantation (TAVI) has overcome the pioneering phase and thanks to accrued clinical evidence has become a mainstay alternative to surgical aortic valve replacement (SAVR) in patients at high risk for post-operative complications. Despite these successes, TAVI remains a junior technology facing momentous developments in techniques and devices. Indeed, several new-generation devices for TAVI have become available in the last few years, including Acurate, Allegra, Evolut, Lotus, JenaValve, Portico, and SAPIEN3. Despite the inevitable setbacks, such as the one represented by DirectFlow, these new devices appear associated with comparative benefits, especially for minimal invasiveness, rates of permanent pacemaker implantation, and risk of residual aortic regurgitation. Indeed, no single device appears clearly better than the others, and a tailored and individualized approach should be sought in using these prostheses, taking into account operator and institutional expertise, on top of patient features. Few comparative effectiveness studies are available to date to guide decision making, and thus careful scrutiny is needed even in everyday clinical practice, especially if seeking to expand the current indications of TAVI. Further guidance will however come from long-term follow-up of completed studies and from results of ongoing trials.

  7. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model.

    PubMed

    Spühler, Jeannette H; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

  8. 3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model

    PubMed Central

    Spühler, Jeannette H.; Jansson, Johan; Jansson, Niclas; Hoffman, Johan

    2018-01-01

    Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework. PMID:29713288

  9. Pathogenetic Basis of Aortopathy and Aortic Valve Disease

    ClinicalTrials.gov

    2018-02-19

    Aortopathies; Thoracic Aortic Aneurysm; Aortic Valve Disease; Thoracic Aortic Disease; Thoracic Aortic Dissection; Thoracic Aortic Rupture; Ascending Aortic Disease; Descending Aortic Disease; Ascending Aortic Aneurysm; Descending Aortic Aneurysm; Marfan Syndrome; Loeys-Dietz Syndrome; Ehlers-Danlos Syndrome; Shprintzen-Goldberg Syndrome; Turner Syndrome; PHACE Syndrome; Autosomal Recessive Cutis Laxa; Congenital Contractural Arachnodactyly; Arterial Tortuosity Syndrome

  10. Loss of unc45a precipitates arteriovenous shunting in the aortic arches

    PubMed Central

    Anderson, Matthew J.; Pham, Van N.; Vogel, Andreas M.; Weinstein, Brant M.; Roman, Beth L.

    2008-01-01

    Aortic arch malformations are common congenital disorders that are frequently of unknown etiology. To gain insight into the factors that guide branchial aortic arch development, we examined the process by which these vessels assemble in wild type zebrafish embryos and in kurzschlusstr12 (kus tr12) mutants. In wild type embryos, each branchial aortic arch first appears as an island of angioblasts in the lateral pharyngeal mesoderm, then elaborates by angiogenesis to connect to the lateral dorsal aorta and ventral aorta. In kustr12 mutants, angioblast formation and initial sprouting are normal, but aortic arches 5 and 6 fail to form a lumenized connection to the lateral dorsal aorta. Blood enters these blind-ending vessels from the ventral aorta, distending the arteries and precipitating fusion with an adjacent vein. This arteriovenous malformation (AVM), which shunts nearly all blood directly back to the heart, is not genetically programmed, as its formation correlates with blood flow and aortic arch enlargement. By positional cloning, we have identified a nonsense mutation in unc45a in kustr12 mutants. Our results are the first to ascribe a role for Unc45a, a putative myosin chaperone, in vertebrate development, and identify a novel mechanism by which an AVM can form. PMID:18462713

  11. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    PubMed Central

    Álvarez-Diéguez, Miguel Á; Kohl, Thomas M; Tsanaktsidis, John

    2017-01-01

    This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times. PMID:28228853

  12. Retrograde Ascending Aortic Dissection after Stent Grafting for Stanford Type B Aortic Dissection with Severe Limb Ischemia.

    PubMed

    Higuchi, Yoshiro; Tochii, Masato; Takami, Yoshiyuki; Kobayashi, Akihiro; Yanagisawa, Tsutomu; Amano, Kentaro; Sakurai, Yusuke; Ishida, Michiko; Ishikawa, Hiroshi; Hattori, Koji; Takagi, Yasushi

    2017-03-24

    We report a rare case of retrograde Stanford type A aortic dissection after endovascular repair for complicated Stanford type B aortic dissection. A 45-year-old man presented with a sudden onset of back pain and was transferred to our hospital. Computed tomography demonstrated acute Stanford type B aortic dissection with lower limb ischemia. Emergency endovascular surgery was planned for repair of the Stanford type B aortic dissection. The patient suddenly developed recurrent chest pain 10 days after the initial procedure. Computed tomography revealed retrograde Stanford type A aortic dissection involving the ascending aorta and aortic arch. The patient underwent a successful emergency total aortic arch replacement.

  13. Initial in vitro testing of a paediatric continuous-flow total artificial heart.

    PubMed

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Horvath, David J; Sunagawa, Gengo; Byram, Nicole A; Kuban, Barry D; Moazami, Nader

    2018-06-01

    Mechanical circulatory support has become standard therapy for adult patients with end-stage heart failure; however, in paediatric patients with congenital heart disease, the options for chronic mechanical circulatory support are limited to paracorporeal devices or off-label use of devices intended for implantation in adults. Congenital heart disease and cardiomyopathy often involve both the left and right ventricles; in such cases, heart transplantation, a biventricular assist device or a total artificial heart is needed to adequately sustain both pulmonary and systemic circulations. We aimed to evaluate the in vitro performance of the initial prototype of our paediatric continuous-flow total artificial heart. The paediatric continuous-flow total artificial heart pump was downsized from the adult continuous-flow total artificial heart configuration by a scale factor of 0.70 (1/3 of total volume) to enable implantation in infants. System performance of this prototype was evaluated using the continuous-flow total artificial heart mock loop set to mimic paediatric circulation. We generated maps of pump performance and atrial pressure differences over a wide range of systemic vascular resistance/pulmonary vascular resistance and pump speeds. Performance data indicated left pump flow range of 0.4-4.7 l/min at 100 mmHg delta pressure. The left/right atrial pressure difference was maintained within ±5 mmHg with systemic vascular resistance/pulmonary vascular resistance ratios between 1.4 and 35, with/without pump speed modulation, verifying expected passive self-regulation of atrial pressure balance. The paediatric continuous-flow total artificial heart prototype met design requirements for self-regulation and performance; in vivo pump performance studies are ongoing.

  14. Transcatheter aortic valve implantation and cerebrovascular accidents.

    PubMed

    Stortecky, Stefan; Wenaweser, Peter; Windecker, Stephan

    2012-09-01

    Transcatheter aortic valve implantation (TAVI) is an evidence-based treatment alternative for selected high-risk patients with symptomatic severe aortic stenosis as acknowledged in the most recent edition of the ESC Guidelines on Valvular Heart Disease 2012. However, periprocedural complications and in particular cerebrovascular accidents remain a matter of concern. While transcatheter heart valve technology continuously improves and the development of novel and even less invasive implantation techniques is on-going, cerebrovascular events complicating TAVI may abrogate the usual improvement in terms of prognosis and quality of life. This article describes the incidence of cerebrovascular events after cardiovascular procedures, provides an overview of the pathophysiological mechanisms as well as the impact on outcomes and provides some insights into preventive strategies as well as the acute management of these events.

  15. Ascending aortic blood flow velocity is increased in children with primary snoring/mild sleep-disordered breathing and associated with an increase in CD8 +  T cells expressing TNFα and IFNγ.

    PubMed

    Kontos, Anna; Willoughby, Scott; van den Heuvel, Cameron; Kennedy, Declan; Martin, James; Hodge, Greg; Worthley, Matthew; Chin, Adelene Kaihui; Nelson, Adam; Teo, Karen; Baumert, Mathias; Pamula, Yvonne; Lushington, Kurt

    2018-05-01

    Sleep-disordered breathing (SDB) is associated with cardiovascular disease and systemic inflammation in adults but this remains to be explored in children, especially in children with the most common form of SDB, i.e. primary snoring/mild SDB. This pilot study investigated the relationship between the cardiovascular function and inflammation in children with mild SDB. Nineteen participants aged 5-14 years underwent overnight polysomnography, cardiac magnetic resonance imaging (aortic blood flow velocity and left and right ventricular systolic function) and assessment for inflammatory markers (intracellular cytokine analysis of T cells by flow cytometry). Parents also completed the Sleep Disturbances Scale for Children (SDSC). Children with mild SDB exhibited increased ascending aortic peak systolic velocity compared to controls (SDB 119.95 m/s vs. control 101.49 m/s, p < 0.05). No significant group differences were observed for left and right ventricular ejection fraction or mean aortic blood flow velocity from either the ascending aorta or pulmonary artery. Children with mild SDB had increased inflammatory markers as demonstrated by elevated T cell interferon gamma (IFNγ) (SDB 52 ± 4% vs. control 25 ± 3% positive cells, p < 0.005) and tumour necrosis factor alpha (TNFα) (SDB 39 ± 4% vs. control 20 ± 2% positive cells, p < 0.005) expression from CD8 + cells. A strong positive correlation was observed between ascending aorta peak blood flow velocity and both TNFα and IFNγ (TNFα, r = 0.54, p < 0.03; IFNγ, r = 0.63, p < 0.005, respectively). Polysomnography revealed that oxygen saturation (SaO 2 ) nadir was significantly lower in children with mild SDB compared to controls (SDB 92.3 ± 2.7% vs. control 94.4 ± 1.6%, p < 0.05). A lower SaO 2 nadir was associated with an increased ascending aorta peak systolic velocity (r = - 0.48, p < 0.05). As well, both a lower SaO 2 nadir and an increased ascending aorta peak systolic

  16. Mitral regurgitation after previous aortic valve surgery for bicuspid aortic valve insufficiency.

    PubMed

    Girdauskas, Evaldas; Disha, Kushtrim; Espinoza, Andres; Misfeld, Martin; Reichenspurner, Hermann; Borger, Michael A; Kuntze, Thomas

    2017-06-01

    Regurgitant bicuspid aortic valves (BAV) are reported to be associated with myxomatous degeneration of the anterior mitral leaflet. We examined the risk of late new-onset mitral regurgitation (MR) in patients who underwent aortic valve/aortic root surgery for BAV regurgitation and concomitant root dilatation. A total of 97 consecutive patients (47±11 years, 94% men) were identified from our institutional BAV database (N.=640) based on the following criteria: 1) BAV regurgitation; 2) aortic root diameter >40 mm; 3) no relevant mitral valve disease (i.e., MR<2+) and no simultaneous mitral intervention at the time of BAV surgery. All patients underwent isolated aortic valve replacement (AVR subgroup, N.=59) or aortic root replacement with a composite graft (i.e., for root aneurysm >50 mm) (ARR subgroup, N.=38) from 1995 through 2008. Echocardiographic follow-up (1009 patient-years) was obtained for all 96 (100%) hospital survivors. The primary endpoint was freedom from new-onset MR>2+ and redo mitral valve surgery. Nine patients (9.4%) showed new-onset MR>2+ after mean echocardiographic follow-up of 10.4±4.0 years postoperatively. Myxomatous degeneration and prolapse of the anterior mitral leaflet was found in all 9 patients, and the posterior leaflet was involved in 3 of them. Two patients (2%) in AVR subgroup underwent re-do mitral surgery. No MR>2+ occurred in ARR subgroup. Freedom from MR>2+ or mitral surgery at 15 years was significantly lower in AVR subgroup vs. ARR subgroup (i.e., 38% vs. 100%, P=0.01). The risk of new-onset MR is significantly increased in patients with BAV regurgitation and aortic root dilatation who undergo isolated AVR rather than root replacement. The mechanism by which aortic root replacement may prevent the occurrence of late MR in BAV root phenotype patients is to be determined.

  17. Aortic propagation velocity does not correlate with classical aortic stiffness parameters in healthy individuals.

    PubMed

    Arı, Hatem; Kahraman, Fatih; Türker, Yasin; Güler, Serdar; Baş, Hasan Aydın; Erdoğan, Doğan

    2017-10-30

    Aortic stiffness is an important cardiovascular risk marker, which can be determined using different noninvasive techniques. Aortic propagation velocity (APV) has recently been established as a novel echocardiographic parameter of aortic stiffness. This study aimed to investigate the association between APV and the classical echocardiography-derived aortic stiffness parameters, aortic distensibility (AD) and aortic strain (AS), in a group of otherwise healthy individuals. In total, 97 consecutive healthy subjects were recruited in this observational study. APV was measured using color M-mode echocardiography from the suprasternal window in the descending aorta. AS and AD were calculated using clinical blood pressure and the M-mode echocardiography-derived aortic diameters. Correlation analyses were performed between cardiovascular risk factors related to increased aortic stiffness (age, obesity, and blood pressure) and measured stiffness parameters (APV, AS, and AD). Correlation analyses were also performed among the measured stiffness parameters. Good correlation of age, blood pressure, and BMI with AS and AD was observed. One-on-one correlation of age, blood pressure, and BMI with APV was not observed. No correlation was observed between APV and AS (r=-0.05, p=0.6) or between APV and AD (r=-0.17, p=0.8). Although APV has been proposed as a novel and practical echocardiographic parameter of aortic stiffness, especially in patients with coronary artery disease, correlations between classical stiffness parameters (AS and AD) and APV were absent in healthy individuals at low-intermediate risk. The clinical and research applicability of APV should be further evaluated.

  18. Neurodevelopmental Outcomes Following Regional Cerebral Perfusion with Neuromonitoring for Neonatal Aortic Arch Reconstruction

    PubMed Central

    Andropoulos, Dean B.; Easley, R. Blaine; Brady, Ken; McKenzie, E. Dean; Heinle, Jeffrey S.; Dickerson, Heather A.; Shekerdemian, Lara S.; Meador, Marcie; Eisenman, Carol; Hunter, Jill V.; Turcich, Marie; Voigt, Robert G.; Fraser, Charles D.

    2013-01-01

    Background In this study we report magnetic resonance imaging (MRI) brain injury, and 12 month neurodevelopmental outcomes, when regional cerebral perfusion (RCP) is utilized for neonatal aortic arch reconstruction. Methods Fifty seven neonates receiving RCP during aortic arch reconstruction were enrolled in a prospective outcome study. RCP flows were determined by near-infrared spectroscopy and transcranial Doppler monitoring. Brain MRI were performed preoperatively and 7 days postoperatively. Bayley Scales of Infant Development III was performed at 12 months. Results Mean RCP time was 71 ± 28 minutes (range 5–121), mean flow 56.6 ± 10.6 ml/kg/min. New postoperative MRI brain injury was seen in 40% of patients. For 35 RCP patients at age 12 months, mean Bayley III composite standard scores were: Cognitive = 100.1 ± 14.6,(range 75–125); Language = 87.2 ± 15.0, (range 62–132); Motor = 87.9 ± 16.8, (range 58–121).Increasing duration of RCP was not associated with adverse neurodevelopmental outcomes. Conclusions Neonatal aortic arch repair with RCP utilizing a neuromonitoring strategy results in 12-month cognitive outcomes that are at reference population norms; language and motor outcomes are lower than the reference population norms by 0.8–0.9 standard deviation. This largest RCP group with neurodevelopmental outcomes published to date demonstrates that this technique is effective and safe in supporting the brain during neonatal aortic arch reconstruction. PMID:22766302

  19. Response of the Cardiovascular System to Vibration and Combined Stresses

    DTIC Science & Technology

    1975-08-31

    Canines were chronically instrumented for continuous measurements of ascending aortic flow ( Zepeda ), left ventricular pressure (Konigsberg), circum- flex...different animals. Each dog was chronically instrumented for continuous measuremernt of ascending aortic flow ( Zepeda ), left ventricular pressure...vibration protocol as those animals restrained vertically. METHODS Canines (16 to 22 kg) were chronically instrumented with electromagnetic flow cuffs ( Zepeda

  20. Stroke Volume estimation using aortic pressure measurements and aortic cross sectional area: Proof of concept.

    PubMed

    Kamoi, S; Pretty, C G; Chiew, Y S; Pironet, A; Davidson, S; Desaive, T; Shaw, G M; Chase, J G

    2015-08-01

    Accurate Stroke Volume (SV) monitoring is essential for patient with cardiovascular dysfunction patients. However, direct SV measurements are not clinically feasible due to the highly invasive nature of measurement devices. Current devices for indirect monitoring of SV are shown to be inaccurate during sudden hemodynamic changes. This paper presents a novel SV estimation using readily available aortic pressure measurements and aortic cross sectional area, using data from a porcine experiment where medical interventions such as fluid replacement, dobutamine infusions, and recruitment maneuvers induced SV changes in a pig with circulatory shock. Measurement of left ventricular volume, proximal aortic pressure, and descending aortic pressure waveforms were made simultaneously during the experiment. From measured data, proximal aortic pressure was separated into reservoir and excess pressures. Beat-to-beat aortic characteristic impedance values were calculated using both aortic pressure measurements and an estimate of the aortic cross sectional area. SV was estimated using the calculated aortic characteristic impedance and excess component of the proximal aorta. The median difference between directly measured SV and estimated SV was -1.4ml with 95% limit of agreement +/- 6.6ml. This method demonstrates that SV can be accurately captured beat-to-beat during sudden changes in hemodynamic state. This novel SV estimation could enable improved cardiac and circulatory treatment in the critical care environment by titrating treatment to the effect on SV.

  1. Evolution and prognostic impact of low flow after transcatheter aortic valve replacement.

    PubMed

    Le Ven, Florent; Thébault, Christophe; Dahou, Abdellaziz; Ribeiro, Henrique B; Capoulade, Romain; Mahjoub, Haïfa; Urena, Marina; Nombela-Franco, Luis; Allende Carrera, Ricardo; Clavel, Marie-Annick; Dumont, Éric; Dumesnil, Jean; De Larochellière, Robert; Rodés-Cabau, Josep; Pibarot, Philippe

    2015-08-01

    Low flow (LF), defined as stroke volume index (SVi) <35 mL/m(2), prior to the procedure has been recently identified as a powerful independent predictor of early and late mortality in patients undergoing transcatheter aortic valve replacement (TAVR). The objectives of this study were to determine the evolution of SVi following TAVR and to assess the determinants and impact on mortality of early postprocedural SVi (EP-SVi). We retrospectively analysed the clinical, Doppler echocardiographic and outcome data prospectively collected in 255 patients who underwent TAVR. Echocardiograms were performed before (baseline), within 5 days after procedure (early post procedure) and 6 months to 1 year following TAVR (late post procedure). Patients with EP-SVi <35 mL/m(2) (n=138; 54%) had increased mortality (HR 1.97, p=0.003) compared with those with EP-SVi ≥35 mL/m(2) (n=117; 46%). Furthermore, patients with baseline SVi (B-SVi) <35 mL/m(2) and EP-SVI ≥35 mL/m(2), that is, normalised flow, had better survival (HR 0.46, p=0.03) than those with both B-SVi and EP-SVi <35 mL/m(2), that is, persistent LF, and similar survival compared with those with both B-SVi and EP-SVi ≥35 mL/m(2), that is, maintained normal flow. In a multivariable model analysis, EP-SVi was independently associated with increased risk of mortality (HR 1.41 per 10 mL/m(2) decrease, p=0.03). The preprocedural/intraprocedural factors associated with lower EP-SVi were lower B-SVi (standardised β [β] 0.36, p<0.001) atrial fibrillation (β -0.13, p=0.02) and transapical approach (β -0.22, p<0.001). The measurement of EP-SVi is useful to assess the immediate haemodynamic benefit of TAVR and to predict the risk of late mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. [Transcatheter aortic valve implantation for aortic stenosis. Initial experience].

    PubMed

    Careaga-Reyna, Guillermo; Lázaro-Castillo, José Luis; Lezama-Urtecho, Carlos Alberto; Macías-Miranda, Enriqueta; Dosta-Herrera, Juan José; Galván Díaz, José

    Aortic stenosis is a frequent disease in the elderly, and is associated with other systemic pathologies that may contraindicate the surgical procedure. Another option for these patients is percutaneous aortic valve implantation, which is less invasive. We present our initial experience with this procedure. Patients with aortic stenosis were included once selection criteria were accomplished. Under general anaesthesia and echocardiographic and fluosocopic control, a transcatheter aortic valve was implanted following s valvuloplasty. Once concluded the procedure, angiographic and pressure control was realized in order to confirm the valve function. Between November 2014 and May 2015, 6 patients were treated (4 males and 2 females), with a mean age of 78.83±5.66 years-old. The preoperative transvalvular gradient was 90.16±28.53mmHg and posterior to valve implant was 3.33±2.92mmHg (P<.05). Two patients had concomitant coronary artery disease which had been treated previously. One patient presented with acute right coronary artery occlusion which was immediately treated. However due to previous renal failure, postoperative sepsis and respiratory failure, the patient died one month later. It was concluded that our preliminary results showed that in selected patients percutaneous aortic valve implantation is a safe procedure with clinical improvement for treated patients. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  3. Regional aortic distensibility and its relationship with age and aortic stenosis: a computed tomography study.

    PubMed

    Wong, Dennis T L; Narayan, Om; Leong, Darryl P; Bertaso, Angela G; Maia, Murilo G; Ko, Brian S H; Baillie, Timothy; Seneviratne, Sujith K; Worthley, Matthew I; Meredith, Ian T; Cameron, James D

    2015-06-01

    Aortic distensibility (AD) decreases with age and increased aortic stiffness is independently associated with adverse cardiovascular outcomes. The association of severe aortic stenosis (AS) with AD in different aortic regions has not been evaluated. Elderly subjects with severe AS and a cohort of patients without AS of similar age were studied. Proximal aortic cross-sectional-area changes during the cardiac cycle were determined using retrospective-ECG-gating on 128-detector row computed-tomography. Using oscillometric-brachial-blood-pressure measurements, the AD at the ascending-aorta (AA), proximal-descending-aorta (PDA) and distal-descending-aorta (DDA) was determined. Linear mixed effects modelling was used to determine the association of age and aortic stenosis on regional AD. 102 patients were evaluated: 36 AS patients (70-85 years), 24 AS patients (>85 years) and 42 patients without AS (9 patients <50 years, 20 patients between 51-70 years and 13 patients 70-85 years). When comparing patients 70-85 years, AA distensibility was significantly lower in those with AS compared to those without AS (0.9 ± 0.9 vs. 1.4 ± 1.1, P = 0.03) while there was no difference in the PDA (1.0 ± 1.1 vs. 1.0 ± 1.2, P = 0.26) and DDA (1.1 ± 1.2 vs. 1.2 ± 0.8, P = 0.97). In patients without AS, AD decreased with age in all aortic regions (P < 0.001). The AA in patients <50 years were the most distensible compared to other aortic regions. There is regional variation in aortic distensibility with aging. Patients with aortic stenosis demonstrated regional differences in aortic distensibility with lower distensibility demonstrated in the proximal ascending aorta compared to an age-matched cohort.

  4. Product differentiation during continuous-flow thermal gradient PCR.

    PubMed

    Crews, Niel; Wittwer, Carl; Palais, Robert; Gale, Bruce

    2008-06-01

    A continuous-flow PCR microfluidic device was developed in which the target DNA product can be detected and identified during its amplification. This in situ characterization potentially eliminates the requirement for further post-PCR analysis. Multiple small targets have been amplified from human genomic DNA, having sizes of 108, 122, and 134 bp. With a DNA dye in the PCR mixture, the amplification and unique melting behavior of each sample is observed from a single fluorescent image. The melting behavior of the amplifying DNA, which depends on its molecular composition, occurs spatially in the thermal gradient PCR device, and can be observed with an optical resolution of 0.1 degrees C pixel(-1). Since many PCR cycles are within the field of view of the CCD camera, melting analysis can be performed at any cycle that contains a significant quantity of amplicon, thereby eliminating the cycle-selection challenges typically associated with continuous-flow PCR microfluidics.

  5. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm.

    PubMed

    Wang, Guofu; Bi, Lechang; Wang, Gaofeng; Huang, Feilai; Lu, Mingjing; Zhu, Kai

    2018-06-01

    Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive

  6. Retrograde cerebral perfusion (RCP) in aortic arch surgery: efficacy and possible mechanisms of brain protection.

    PubMed

    Bavaria, J E; Pochettino, A

    1997-07-01

    Retrograde cerebral perfusion (RCP) was first introduced to treat air embolism during cardiopulmonary bypass (CPB). Its use was reintroduced to extend the safety of hypothermic circulatory arrest (HCA) during operations involving an open aortic arch. RCP seems to prevent cerebral rewarming during HCA. Both clinical and animal data suggest that RCP provides between 10% and 30% of baseline cerebral blood flow when administered through the superior vena cava (SVC) at jugular pressures of 20 to 25 mm Hg. RCP flows producing jugular venous pressures higher than 30 mm Hg may cause cerebral edema. Cerebral blood flow generated by RCP is able to sustain some cerebral metabolic activity, yet is not able to fully meet cerebral energy demands even at temperatures of 12 degrees to 18 degrees C. RCP may further prevent embolic events during aortic arch surgery when administered at moderate jugular vein pressures (< 40 mm Hg). Clinical results suggest that RCP, when applied during aortic arch reconstruction, may extend the safe HCA period and improve morbidity and mortality, especially when HCA times are more than 60 minutes. RCP applied in patients and severe carotid and brachiocephalic occlusive disease may be ineffective, and caution is in order when RCP times are greater than 90 minutes.

  7. Multimodality Imaging Approach towards Primary Aortic Sarcomas Arising after Endovascular Abdominal Aortic Aneurysm Repair: Case Series Report.

    PubMed

    Kamran, Mudassar; Fowler, Kathryn J; Mellnick, Vincent M; Sicard, Gregorio A; Narra, Vamsi R

    2016-06-01

    Primary aortic neoplasms are rare. Aortic sarcoma arising after endovascular aneurysm repair (EVAR) is a scarce subset of primary aortic malignancies, reports of which are infrequent in the published literature. The diagnosis of aortic sarcoma is challenging due to its non-specific clinical presentation, and the prognosis is poor due to delayed diagnosis, rapid proliferation, and propensity for metastasis. Post-EVAR, aortic sarcomas may mimic other more common aortic processes on surveillance imaging. Radiologists are rarely knowledgeable about this rare entity for which multimodality imaging and awareness are invaluable in early diagnosis. A series of three pathologically confirmed cases are presented to display the multimodality imaging features and clinical presentations of aortic sarcoma arising after EVAR.

  8. Aortic Dissection in Turner Syndrome

    PubMed Central

    Bondy, Carolyn A.

    2009-01-01

    Purpose of review Turner syndrome (TS) is a relatively common disorder of female development with cardinal features of short stature and congenital cardiovascular defects (CHD). TS is the most common established cause of aortic dissection in young women, but has received little attention outside of pediatric literature. This review focuses on emerging knowledge of the characteristics of aortic disease in TS in comparison with Marfan-like syndromes and isolated aortic valve disease. Recent findings The incidence of aortic dissection is significantly increased in individuals with TS at all ages, highest during young adult years and in pregnancy. Pediatric patients with dissection have known CHD, but adults often have aortic valve and arch abnormalities detected only by screening cardiac MR (CMR). Thoracic aortic dilation in TS must be evaluated in relation to body surface area (BSA). Dilation is most prominent at the ascending aorta similar to the pattern seen in non-syndromic bicuspid aortic valve (BAV), is equally prevalent (20-30%) in children and adults, and does not seem to be rapidly progressive. Cardiovascular anomalies and risk for aortic dissection in TS are strongly linked to a history of fetal lymphedema, evidenced by the presence of neck webbing and shield chest. Summary Risk for acute aortic dissection is increased by more than 100-fold in young and middle-aged women with TS. Monitoring frequency and treatment modalities are decided on an individual basis until more information on outcomes becomes available. PMID:18839441

  9. Aortic dimensions in Turner syndrome.

    PubMed

    Quezada, Emilio; Lapidus, Jodi; Shaughnessy, Robin; Chen, Zunqiu; Silberbach, Michael

    2015-11-01

    In Turner syndrome, linear growth is less than the general population. Consequently, to assess stature in Turner syndrome, condition-specific comparators have been employed. Similar reference curves for cardiac structures in Turner syndrome are currently unavailable. Accurate assessment of the aorta is particularly critical in Turner syndrome because aortic dissection and rupture occur more frequently than in the general population. Furthermore, comparisons to references calculated from the taller general population with the shorter Turner syndrome population can lead to over-estimation of aortic size causing stigmatization, medicalization, and potentially over-treatment. We used echocardiography to measure aortic diameters at eight levels of the thoracic aorta in 481 healthy girls and women with Turner syndrome who ranged in age from two to seventy years. Univariate and multivariate linear regression analyses were performed to assess the influence of karyotype, age, body mass index, bicuspid aortic valve, blood pressure, history of renal disease, thyroid disease, or growth hormone therapy. Because only bicuspid aortic valve was found to independently affect aortic size, subjects with bicuspid aortic valve were excluded from the analysis. Regression equations for aortic diameters were calculated and Z-scores corresponding to 1, 2, and 3 standard deviations from the mean were plotted against body surface area. The information presented here will allow clinicians and other caregivers to calculate aortic Z-scores using a Turner-based reference population. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms.

    PubMed

    Sho, Eiketsu; Sho, Mien; Nanjo, Hiroshi; Kawamura, Koichi; Masuda, Hirotake; Dalman, Ronald L

    2005-05-01

    Abdominal aortic aneurysm (AAA) progression and disease resistance are related to mural cellularity; adventitial macrophages and neocapillaries predominate in larger, advanced aneurysms, whereas smaller AAAs have fewer macrophages and retain more medial smooth muscle cells (SMCs). Expression analysis of mRNA derived from the entire aorta may mask the role that specific cell types play in modulating disease progression. We used laser capture microdissection (LCM) to isolate SMC and macrophage-predominant mural cell populations for gene expression analysis in variable-flow AAA. Rat AAAs were created via porcine pancreatic elastase (PPE) infusion. Aortic flow was increased via femoral arteriovenous fistula creation (HF-AAA) or reduced via unilateral iliac ligation (LF-AAA) in selected cohorts. SMC and macrophage-predominant cell populations were isolated via LCM and analyzed for expression of pro-inflammatory transcription factors and chemokines, cytokines, and proteolytic enzymes via real-time polymerase chain reaction. Aortic PPE infusion precipitated endothelial cell (EC) denudation, SMC apoptosis, and elastic lamellar degeneration. Increased aortic flow (HF > NF > LF) stimulated restorative EC and SMC proliferation (45.8 +/- 6.6 > 30.5 +/- 2.1 > 21 +/- 3.6 and 212.2 +/- 9.8 > 136.5 +/- 8.9 > 110 +/- 13.5, respectively, for both cell types; P < .05) at 5 days after PPE infusion, while simultaneously reducing medial SMC apoptosis and transmural macrophage infiltration. Expression of nuclear factor kappa B (NF-kappab), granulocyte macrophage-colony stimulating factor (GM-CSF), macrophage migration inhibitory (MIF), heparin-binding EGF-like factor (HB-EGF) and inducible nitric oxide synthase (iNOS) varied between cell types and flow conditions at all time points examined. Gelatinolytic protease expression varied by cell type in response to flow loading (eg, increased in SMCs, decreased in macrophages), consistent with observed patterns of elastolysis and SMC

  11. Effects of bileaflet mechanical heart valve orientation on coronary flow

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2015-11-01

    The aortic sinus is approximately tri-radially symmetric, but bileaflet mechanical heart valves (BMHVs), which are commonly used to replace diseased aortic valves, are bilaterally symmetric. This mismatch in symmetry suggests that the orientation in which a BMHV is implanted within the aortic sinus affects the flow characteristics downstream of it. This study examines the effect of BMHV orientation on the flow in the coronary arteries, which originate in the aortic sinus and supply the heart tissue with blood. Planar particle image velocimetry measurements were made past a BMHV mounted at the inlet of an anatomical aorta model under physiological flow conditions. The complex interactions between the valve jets, the sinus vortex and the flow in the right coronary artery were elucidated for three valve orientations. The coronary flow rate was directly affected by the size, orientation, and time evolution of the vortex in the sinus, all of which were sensitive to the valve's orientation. The total flow through the artery was highest when the valve was oriented with its axis of symmetry intersecting the artery's opening. The findings of this research may assist surgeons in choosing the best orientation for BMHV implantation. The bileaflet valve was donated by St. Jude Medical. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

  12. Scalable clustering algorithms for continuous environmental flow cytometry.

    PubMed

    Hyrkas, Jeremy; Clayton, Sophie; Ribalet, Francois; Halperin, Daniel; Armbrust, E Virginia; Howe, Bill

    2016-02-01

    Recent technological innovations in flow cytometry now allow oceanographers to collect high-frequency flow cytometry data from particles in aquatic environments on a scale far surpassing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial phytoplankton populations across thousands of kilometers of the surface ocean. The data streams produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in cytometric analysis and highlight the need for scalable clustering algorithms to extract population information from these large-scale, high-frequency flow cytometers. We explore how available algorithms commonly used for medical applications perform at classification of such a large-scale, environmental flow cytometry data. We apply large-scale Gaussian mixture models to massive datasets using Hadoop. This approach outperforms current state-of-the-art cytometry classification algorithms in accuracy and can be coupled with manual or automatic partitioning of data into homogeneous sections for further classification gains. We propose the Gaussian mixture model with partitioning approach for classification of large-scale, high-frequency flow cytometry data. Source code available for download at https://github.com/jhyrkas/seaflow_cluster, implemented in Java for use with Hadoop. hyrkas@cs.washington.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation.

    PubMed

    Jansen, F A R; van Zwet, E W; Rijlaarsdam, M E B; Pajkrt, E; van Velzen, C L; Zuurveen, H R; Kragt, A; Bax, C L; Clur, S-A B; van Lith, J M M; Blom, N A; Haak, M C

    2016-09-01

    Congenital heart defects (CHDs) are reported to be associated with a smaller fetal head circumference (HC) and neurodevelopmental delay. Recent studies suggest that altered intrauterine brain hemodynamics may explain these findings. Our objectives were to evaluate the pattern of head growth in a large cohort of fetuses with various types of CHD, analyze these patterns according to the type of CHD and estimate the effect of cerebral hemodynamics with advancing gestation in the second and third trimesters. Singleton fetuses with an isolated CHD were selected from three fetal medicine units (n = 436). Cases with placental insufficiency or genetic syndromes were excluded. CHD types were clustered according to the flow and oxygen saturation in the aorta. Z-scores of biometric data were constructed using growth charts of a normal population. HC at different gestational ages was evaluated and univariate and multivariate mixed regression analyses were performed to examine the patterns of prenatal HC growth. Fetuses with severe and less severe types of CHD demonstrated statistically significant HC growth restriction with increasing gestational age (slope of -0.017/day); however, there was no statistically significant effect of fetal hemodynamics on HC growth. Fetuses with CHD but normal brain oxygenation and normal aortic flow showed a significant decrease in HC growth (slope of -0.024/day). Only fetuses with isolated tetralogy of Fallot demonstrated a smaller HC z-score at 20 weeks of gestation (-0.67 (95% CI, -1.16 to -0.18)). Despite the decline in head growth in fetuses with a prenatally detected isolated CHD, HC values were within the normal range, raising the question of its clinical significance. Furthermore, in contrast to other studies, this large cohort did not establish a significant correlation between aortic flow or oxygen saturation and HC growth. Factors other than altered fetal cerebral hemodynamics may contribute to HC growth restriction with increasing

  14. Is Decellularized Porcine Small Intestine Sub-mucosa Patch Suitable for Aortic Arch Repair?

    PubMed Central

    Corno, Antonio F.; Smith, Paul; Bezuska, Laurynas; Mimic, Branko

    2018-01-01

    Introduction: We reviewed our experience with decellularized porcine small intestine sub-mucosa (DPSIS) patch, recently introduced for congenital heart defects. Materials and Methods: Between 10/2011 and 04/2016 a DPSIS patch was used in 51 patients, median age 1.1 months (5 days to 14.5 years), for aortic arch reconstruction (45/51 = 88.2%) or aortic coarctation repair (6/51 = 11.8%). All medical records were retrospectively reviewed, with primary endpoints interventional procedure (balloon dilatation) or surgery (DPSIS patch replacement) due to patch-related complications. Results: In a median follow-up time of 1.5 ± 1.1 years (0.6–2.3years) in 13/51 patients (25.5%) a re-intervention, percutaneous interventional procedure (5/51 = 9.8%) or re-operation (8/51 = 15.7%) was required because of obstruction in the correspondence of the DPSIS patch used to enlarge the aortic arch/isthmus, with median max velocity flow at Doppler interrogation of 4.0 ± 0.51 m/s. Two patients required surgery after failed interventional cardiology. The mean interval between DPSIS patch implantation and re-intervention (percutaneous procedure or re-operation) was 6 months (1–17 months). While there were 3 hospital deaths (3/51 = 5.9%) not related to the patch implantation, no early or late mortality occurred for the subsequent procedure required for DPSIS patch interventional cardiology or surgery. The median max velocity flow at Doppler interrogation through the aortic arch/isthmus for the patients who did not require interventional procedure or surgery was 1.7 ± 0.57 m/s. Conclusions: High incidence of re-interventions with DPSIS patch for aortic arch and/or coarctation forced us to use alternative materials (homografts and decellularized gluteraldehyde preserved bovine pericardial matrix). PMID:29900163

  15. Association Between Gout and Aortic Stenosis

    PubMed Central

    Chang, Kevin; Yokose, Chio; Tenner, Craig; Oh, Cheongeun; Donnino, Robert; Choy-Shan, Alana; Pike, Virginia C.; Shah, Binita D.; Lorin, Jeffrey D.; Krasnokutsky, Svetlana; Sedlis, Steven P.; Pillinger, Michael H.

    2017-01-01

    Background An independent association between gout and coronary artery disease is well established. The relationship between gout and valvular heart disease, however, is unclear. The aim of this study was to assess the association between gout and aortic stenosis. Methods We performed a retrospective case-control study. Aortic stenosis cases were identified through a review of outpatient transthoracic echocardiography (TTE) reports. Age-matched controls were randomly selected from patients who had undergone TTE and did not have aortic stenosis. Charts were reviewed to identify diagnoses of gout and the earliest dates of gout and aortic stenosis diagnosis. Results Among 1085 patients who underwent TTE, 112 aortic stenosis cases were identified. Cases and non-aortic stenosis controls (n=224) were similar in age and cardiovascular comorbidities. A history of gout was present in 21.4% (n=24) of aortic stenosis subjects compared with 12.5% (n=28) of controls (unadjusted OR 1.90, 95% CI 1.05–3.48, p=0.038). Multivariate analysis retained significance only for gout (adjusted OR 2.08, 95% CI 1.00–4.32, p=0.049). Among subjects with aortic stenosis and gout, gout diagnosis preceded aortic stenosis diagnosis by 5.8 ± 1.6 years. The age at onset of aortic stenosis was similar among patients with and without gout (78.7 ± 1.8 vs. 75.8 ± 1.0 years old, p=0.16). Conclusions Aortic stenosis patients had a markedly higher prevalence of precedent gout than age-matched controls. Whether gout is a marker of, or a risk factor for the development of aortic stenosis remains uncertain. Studies investigating the potential role of gout in the pathophysiology of aortic stenosis are warranted and could have therapeutic implications. PMID:27720853

  16. Association of Low-Density Lipoprotein Cholesterol–Related Genetic Variants With Aortic Valve Calcium and Incident Aortic Stenosis

    PubMed Central

    Smith, J. Gustav; Luk, Kevin; Schulz, Christina-Alexandra; Engert, James C.; Do, Ron; Hindy, George; Rukh, Gull; Dufresne, Line; Almgren, Peter; Owens, David S.; Harris, Tamara B.; Peloso, Gina M.; Kerr, Kathleen F.; Wong, Quenna; Smith, Albert V.; Budoff, Matthew J.; Rotter, Jerome I.; Cupples, L. Adrienne; Rich, Stephen; Kathiresan, Sekar; Orho-Melander, Marju; Gudnason, Vilmundur; O’Donnell, Christopher J.; Post, Wendy S.; Thanassoulis, George

    2014-01-01

    IMPORTANCE Plasma low-density lipoprotein cholesterol (LDL-C) has been associated with aortic stenosis in observational studies; however, randomized trials with cholesterol-lowering therapies in individuals with established valve disease have failed to demonstrate reduced disease progression. OBJECTIVE To evaluate whether genetic data are consistent with an association between LDL-C, high-density lipoprotein cholesterol (HDL-C), or triglycerides (TG) and aortic valve disease. DESIGN, SETTING, AND PARTICIPANTS Using a Mendelian randomization study design, we evaluated whether weighted genetic risk scores (GRSs), a measure of the genetic predisposition to elevations in plasma lipids, constructed using single-nucleotide polymorphisms identified in genome-wide association studies for plasma lipids, were associated with aortic valve disease. We included community-based cohorts participating in the CHARGE consortium (n = 6942), including the Framingham Heart Study (cohort inception to last follow-up: 1971-2013; n = 1295), Multi-Ethnic Study of Atherosclerosis (2000-2012; n = 2527), Age Gene/Environment Study-Reykjavik (2000-2012; n = 3120), and the Malmö Diet and Cancer Study (MDCS, 1991-2010; n = 28 461). MAIN OUTCOMES AND MEASURES Aortic valve calcium quantified by computed tomography in CHARGE and incident aortic stenosis in the MDCS. RESULTS The prevalence of aortic valve calcium across the 3 CHARGE cohorts was 32% (n = 2245). In the MDCS, over a median follow-up time of 16.1 years, aortic stenosis developed in 17 per 1000 participants (n = 473) and aortic valve replacement for aortic stenosis occurred in 7 per 1000 (n = 205). Plasma LDL-C, but not HDL-C or TG, was significantly associated with incident aortic stenosis (hazard ratio [HR] per mmol/L, 1.28; 95% CI, 1.04-1.57; P = .02; aortic stenosis incidence: 1.3% and 2.4% in lowest and highest LDL-C quartiles, respectively). The LDL-C GRS, but not HDL-C or TG GRS, was significantly associated with presence of

  17. Hybrid Continuous-Flow Total Artificial Heart.

    PubMed

    Fox, Carson; Chopski, Steven; Murad, Nohra; Allaire, Paul; Mentzer, Robert; Rossano, Joseph; Arabia, Francisco; Throckmorton, Amy

    2018-05-01

    Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Current indications for stentless aortic bioprostheses.

    PubMed

    Hegazy, Yasser Y; Rayan, Amr; Bauer, Stefan; Keshk, Noha; Bauer, Kerstin; Ennker, Ina; Ennker, Jürgen

    2018-01-01

    The best aortic prostheses have been debated for decades. The introduction of stentless aortic bioprostheses was aimed at improving hemodynamics and potentially the durability of aortic bioprostheses. Despite the good short- and long-term outcomes after implantation of stentless aortic bioprostheses, their use remains limited owing to the technically demanding implantation techniques. Nevertheless, stentless aortic bioprostheses might be of special benefit in certain indications, where they could be a valuable addition to the surgical armamentarium.

  19. Transapical implantation of a second-generation transcatheter heart valve in patients with noncalcified aortic regurgitation.

    PubMed

    Seiffert, Moritz; Diemert, Patrick; Koschyk, Dietmar; Schirmer, Johannes; Conradi, Lenard; Schnabel, Renate; Blankenberg, Stefan; Reichenspurner, Hermann; Baldus, Stephan; Treede, Hendrik

    2013-06-01

    This study sought to report on the feasibility and early results of transcatheter aortic valve implantation employing a second-generation device in a series of patients with pure aortic regurgitation. Efficacy and safety of transcatheter aortic valve implantation in patients with calcific aortic stenosis and high surgical risk has been demonstrated. However, experience with implantation for severe noncalcified aortic regurgitation has been limited due to increased risk for valve dislocation or annular rupture. Five patients (mean age: 66.6 ± 7 years) underwent transapical implantation of a JenaValve (JenaValve Technology GmbH, Munich, Germany) transcatheter heart valve for moderate to severe, noncalcified aortic regurgitation. All patients were considered high risk for surgical aortic valve replacement after evaluation by an interdisciplinary heart team (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation] range 3.1% to 38.9%). Procedural and acute clinical outcomes were analyzed. Implantation was successful in all cases without relevant remaining aortic regurgitation or signs of stenosis in any of the patients. No major device- or procedure-related adverse events occurred and all 5 patients were alive with improved exercise tolerance at 3-month follow-up. Noncalcified aortic regurgitation continues to be a challenging pathology for transcatheter aortic valve implantation due to the risk for insufficient anchoring of the valve stent within the aortic annulus. This report provides first evidence that the JenaValve prosthesis may be a reasonable option in these specific patients due to its unique stent design, clipping the native aortic valve leaflets, and offering promising early results. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    PubMed

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  2. 3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography.

    PubMed

    Mediratta, Anuj; Addetia, Karima; Medvedofsky, Diego; Schneider, Robert J; Kruse, Eric; Shah, Atman P; Nathan, Sandeep; Paul, Jonathan D; Blair, John E; Ota, Takeyoshi; Balkhy, Husam H; Patel, Amit R; Mor-Avi, Victor; Lang, Roberto M

    2017-05-01

    With the increasing use of transcatheter aortic valve replacement (TAVR) in patients with aortic stenosis (AS), computed tomography (CT) remains the standard for annulus sizing. However, 3D transesophageal echocardiography (TEE) has been an alternative in patients with contraindications to CT. We sought to (1) test the feasibility, accuracy, and reproducibility of prototype 3DTEE analysis software (Philips) for aortic annular measurements and (2) compare the new approach to the existing echocardiographic techniques. We prospectively studied 52 patients who underwent gated contrast CT, procedural 3DTEE, and TAVR. 3DTEE images were analyzed using novel semi-automated software designed for 3D measurements of the aortic root, which uses multiplanar reconstruction, similar to CT analysis. Aortic annulus measurements included area, perimeter, and diameter calculations from these measurements. The results were compared to CT-derived values. Additionally, 3D echocardiographic measurements (3D planimetry and mitral valve analysis software adapted for the aortic valve) were also compared to the CT reference values. 3DTEE image quality was sufficient in 90% of patients for aortic annulus measurements using the new software, which were in good agreement with CT (r-values: .89-.91) and small (<4%) inter-modality nonsignificant biases. Repeated measurements showed <10% measurements variability. The new 3D analysis was the more accurate and reproducible of the existing echocardiographic techniques. Novel semi-automated 3DTEE analysis software can accurately measure aortic annulus in patients with severe AS undergoing TAVR, in better agreement with CT than the existing methodology. Accordingly, intra-procedural TEE could potentially replace CT in patients where CT carries significant risk. © 2017, Wiley Periodicals, Inc.

  3. Comparison of aortic media changes in patients with bicuspid aortic valve stenosis versus bicuspid valve insufficiency and proximal aortic aneurysm.

    PubMed

    Girdauskas, Evaldas; Rouman, Mina; Borger, Michael A; Kuntze, Thomas

    2013-12-01

    The aim of this study was to evaluate aortic media changes in bicuspid aortic valve (BAV) patients who underwent aortic valve replacement (AVR) and simultaneous replacement of the proximal aorta for BAV stenosis vs BAV insufficiency. Review of our institutional BAV database identified a subgroup of 79 consecutive BAV patients (mean age 52.3 ± 13 years, 81% men) with BAV stenosis or insufficiency and concomitant proximal aortic dilatation of ≥50 mm who underwent AVR and simultaneous replacement of proximal aorta from 1995 through 2005. All cases of BAV disease and concomitant ascending aortic dilatation of 40-50 mm underwent isolated AVR and therefore were excluded from this analysis. Proximal aortic media elastic fibre loss (EFL) was assessed (graded 0 to 3+) and compared between patients with BAV stenosis (Group I, n = 44) vs BAV insufficiency (Group II, n = 35). Follow-up (690 patient-years) was 100% complete and 9.1 ± 4.6 years long. Mean aortic media EFL was 1.3 ± 0.7 in Group I vs 2.5 ± 0.8 in Group II (P = 0.03). Moderate/severe EFL (i.e. defined as grade 2+/3+) was found in 13 patients (29%) in Group I vs 28 patients (80%) in Group II (P < 0.001). Logistic regression identified BAV insufficiency as the strongest predictor of moderate/severe EFL (OR 9.3; 95% CI 3.2-29.8, P < 0.001). Valve-related event-free survival was 64 ± 8% in Group I vs 93% ± 5% in Group II at 10 years postoperatively (P = 0.05). A total of 4 patients (5%, 3 from Group I and 1 from Group II) underwent redo aortic root surgery for prosthetic valve endocarditis during follow-up. Patients with BAV insufficiency and a proximal aorta of ≥50 mm have a significantly higher rate of moderate/severe EFL as compared to their counterparts with BAV stenosis.

  4. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    PubMed Central

    2015-01-01

    Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  5. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry.

    PubMed

    Baumann, Marcus; Baxendale, Ian R

    2015-01-01

    The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process.

  6. The role of jet eccentricity in generating disproportionately elevated transaortic pressure gradients in patients with aortic stenosis.

    PubMed

    Abbas, Amr E; Franey, Laura M; Lester, Steven; Raff, Gilbert; Gallagher, Michael J; Hanzel, George; Safian, Robert D; Pibarot, Philippe

    2015-02-01

    In patients with aortic stenosis (AS) and eccentric transaortic flow, greater pressure loss occurs as the jet collides with the aortic wall together with delayed and diminished pressure recovery. This leads to the elevated transaortic valve pressure gradients noted on both Doppler and cardiac catheterization. Such situations may present a diagnostic dilemma where traditional measures of stenosis severity indicate severe AS, while imaging modalities of the aortic valve geometric aortic valve area (GOA) suggest less than severe stenosis. In this study, we present a series of cases exemplifying this clinical dilemma and demonstrate how color M-mode, 2D and 3D transthoracic (TTE) and transesophageal (TEE) echocardiography, cardiac computed tomography angiography (CTA), and magnetic resonance imaging (MRI), may be used to resolve such discrepancies. © 2014, Wiley Periodicals, Inc.

  7. The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Madhavan, Sudharsan; Cherry Kemmerling, Erica

    2017-11-01

    Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.

  8. Blunt traumatic aortic injuries of the ascending aorta and aortic arch: a clinical multicentre study.

    PubMed

    Mosquera, Victor X; Marini, Milagros; Muñiz, Javier; Gulias, Daniel; Asorey-Veiga, Vanesa; Adrio-Nazar, Belen; Herrera, José M; Pradas-Montilla, Gonzalo; Cuenca, José J

    2013-09-01

    To report the clinical and radiological characteristics, management and outcomes of traumatic ascending aorta and aortic arch injuries. Historic cohort multicentre study including 17 major trauma patients with traumatic aortic injury from January 2000 to January 2011. The most common mechanism of blunt trauma was motor-vehicle crash (47%) followed by motorcycle crash (41%). Patients sustaining traumatic ascending aorta or aortic arch injuries presented a high proportion of myocardial contusion (41%); moderate or greater aortic valve regurgitation (12%); haemopericardium (35%); severe head injuries (65%) and spinal cord injury (23%). The 58.8% of the patients presented a high degree aortic injury (types III and IV). Expected in-hospital mortality was over 50% as defined by mean TRISS 59.7 (SD 38.6) and mean ISS 48.2 (SD 21.6) on admission. Observed in-hospital mortality was 53%. The cause of death was directly related to the ATAI in 45% of cases, head and abdominal injuries being the cause of death in the remaining 55% cases. Long-term survival was 46% at 1 year, 39% at 5 years, and 19% at 10 years. Traumatic aortic injuries of the ascending aorta/arch should be considered in any major thoracic trauma patient presenting cardiac tamponade, aortic valve regurgitation and/or myocardial contusion. These aortic injuries are also associated with a high incidence of neurological injuries, which can be just as lethal as the aortic injury, so treatment priorities should be modulated on an individual basis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Association Between Gout and Aortic Stenosis.

    PubMed

    Chang, Kevin; Yokose, Chio; Tenner, Craig; Oh, Cheongeun; Donnino, Robert; Choy-Shan, Alana; Pike, Virginia C; Shah, Binita D; Lorin, Jeffrey D; Krasnokutsky, Svetlana; Sedlis, Steven P; Pillinger, Michael H

    2017-02-01

    An independent association between gout and coronary artery disease is well established. The relationship between gout and valvular heart disease, however, is unclear. The aim of this study was to assess the association between gout and aortic stenosis. We performed a retrospective case-control study. Aortic stenosis cases were identified through a review of outpatient transthoracic echocardiography (TTE) reports. Age-matched controls were randomly selected from patients who had undergone TTE and did not have aortic stenosis. Charts were reviewed to identify diagnoses of gout and the earliest dates of gout and aortic stenosis diagnosis. Among 1085 patients who underwent TTE, 112 aortic stenosis cases were identified. Cases and nonaortic stenosis controls (n = 224) were similar in age and cardiovascular comorbidities. A history of gout was present in 21.4% (n = 24) of aortic stenosis subjects compared with 12.5% (n = 28) of controls (unadjusted odds ratio 1.90, 95% confidence interval 1.05-3.48, P = .038). Multivariate analysis retained significance only for gout (adjusted odds ratio 2.08, 95% confidence interval 1.00-4.32, P = .049). Among subjects with aortic stenosis and gout, gout diagnosis preceded aortic stenosis diagnosis by 5.8 ± 1.6 years. The age at onset of aortic stenosis was similar among patients with and without gout (78.7 ± 1.8 vs 75.8 ± 1.0 years old, P = .16). Aortic stenosis patients had a markedly higher prevalence of precedent gout than age-matched controls. Whether gout is a marker of, or a risk factor for, the development of aortic stenosis remains uncertain. Studies investigating the potential role of gout in the pathophysiology of aortic stenosis are warranted and could have therapeutic implications. Published by Elsevier Inc.

  10. Aortic root dilatation in athletic population.

    PubMed

    Pelliccia, Antonio; Di Paolo, Fernando M; Quattrini, Filippo M

    2012-01-01

    Remodeling of the aortic root may be expected to occur in athletes as a consequence of hemodynamic overload associated with exercise training; however, there are few data reporting its presence or extent. This review reports the current knowledge regarding the prevalence, upper limits, and clinical significance of aortic remodeling induced by athletic training. Several determinants impact aortic dimension in healthy, nonathletic individuals, including height, body size, age, sex, and blood pressure. Of these factors, anthropometric variables have the greatest impact. In athletes, the effect of exercise training appears to have only a modest additional influence on aortic dimension, although previous studies have produced some conflicting results. Specifically, data derived from the largest available athletic cohort suggest that the most hemodynamically intense endurance disciplines (eg, cycling and swimming) are associated with a significant but mild increase in aortic dimensions. Power disciplines, instead, (eg, weight lifting, throwing events) have only trivial, if any, impact. In contrast, selected data from a different athlete population suggest a more significant dimensional aortic remodeling in strength-trained individuals. In our experience, the 99th percentile value of aortic root diameter corresponds to 40 mm in males and 34 mm in females, which can reasonably be considered the upper limits of physiologic aortic root remodeling. However, a small proportion of apparently healthy male athletes (approximately 1%) show aortic enlargement above the upper limits, in the absence of systemic disease (ie, Marfan syndrome). Athletes presenting with aortic enlargement may demonstrate a further dimensional increase in midlife leading to clinically relevant aortic dilatation. Occasionally, dilation may be severe enough to warrant consideration for surgical treatment. Therefore, serial clinical and echocardiographic evaluations are recommended in athletes when aortic

  11. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  13. Primary infrarenal aortic stenting with or without iliac stenting for isolated and aortoiliac stenoses: single-centre experience with long-term follow-up.

    PubMed

    Tapping, C R; Ahmed, M; Scott, P M; Lakshminarayan, R; Robinson, G J; Ettles, D F; Shrivastava, V

    2013-02-01

    The purpose of this study was to evaluate the technical success, complications, long-term clinical outcome, and patency after primary infrarenal aortic stenting for aortic and aortoiliac stenosis. Between January 1999 and January 2006, 22 consecutive patients underwent endovascular treatment because of infrarenal aortic stenosis with and without common iliac stenosis (10 men; mean age 64 ± 14 years). Eleven (11 of 22) patients had an isolated aortic stenosis, whereas 11 of 22 had aortic stenosis that extended into the common iliac arteries (CIAs). Thirteen patients were Rutherford classification type 3, and 9 patients were type 4. Statistical analysis included paired Student t test and Kaplan-Meier life table analysis; p < 0.05 was considered significant. Technical and initial clinical success was achieved in all patients. There were three (14 %) procedure-related complications, which included two access-point pseudoaneurysms and one non-flow-limiting left external iliac dissection. Patients were followed-up for a mean period of 88 months (range 60-132). Mean preprocedure ankle brachial pressure indexes (ABPI) were 0.60 ± -0.15 (right) and 0.61 ± -0.16 (left). After the procedure they were 0.86 ± -0.07 (right) and 0.90 ± -0.09 (left). The increase in ABPI was significant (p < 0.05), and this continued throughout follow-up. Four (18 %) patients had recurrence of symptoms during follow-up. These occurred at 36, 48, 48, and 50 months after the original procedure. All four patients were successfully treated with repeat angioplasty procedures. There was a significant difference in primary patency between isolated aortic stenosis (100 %) and aortoiliac stenosis (60 %) (p = 0.031). Cumulative follow-up was 1920 months yielding a reintervention rate of 0.025/events/year. Primary stenting of infrarenal stenosis is safe and successful with a low reintervention rate. It should be considered as first-line treatment for patients with infrarenal

  14. Advanced Continuous Flow Platform for On-Demand Pharmaceutical Manufacturing.

    PubMed

    Zhang, Ping; Weeranoppanant, Nopphon; Thomas, Dale A; Tahara, Kohei; Stelzer, Torsten; Russell, Mary Grace; O'Mahony, Marcus; Myerson, Allan S; Lin, Hongkun; Kelly, Liam P; Jensen, Klavs F; Jamison, Timothy F; Dai, Chunhui; Cui, Yuqing; Briggs, Naomi; Beingessner, Rachel L; Adamo, Andrea

    2018-02-21

    As a demonstration of an alternative to the challenges faced with batch pharmaceutical manufacturing including the large production footprint and lengthy time-scale, we previously reported a refrigerator-sized continuous flow system for the on-demand production of essential medicines. Building on this technology, herein we report a second-generation, reconfigurable and 25 % smaller (by volume) continuous flow pharmaceutical manufacturing platform featuring advances in reaction and purification equipment. Consisting of two compact [0.7 (L)×0.5 (D)×1.3 m (H)] stand-alone units for synthesis and purification/formulation processes, the capabilities of this automated system are demonstrated with the synthesis of nicardipine hydrochloride and the production of concentrated liquid doses of ciprofloxacin hydrochloride, neostigmine methylsulfate and rufinamide that meet US Pharmacopeia standards. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recently patented transcatheter aortic valves in clinical trials.

    PubMed

    Neragi-Miandoab, Siyamek; Skripochnik, Edvard; Salemi, Arash; Girardi, Leonard

    2013-12-01

    The most widely used heart valve worldwide is the Edwards Sapien, which currently has 60% of the worldwide transcatheter aortic valve implantation (TAVI) market. The CoreValve is next in line in popularity, encompassing 35% of the worldwide TAVI market. Although these two valves dominate the TAVI market, a number of newer transcatheter valves have been introduced and others are in early clinical evaluation. The new valves are designed to reduce catheter delivery diameter, improve ease of positioning and sealing, and facilitate repositioning or removal. The most recent transcatheter valves for transapical use include Acurate TA (Symetis), Engager (Medtronic), and JenaValve the Portico (St Jude), Sadra Lotus Medical (Boston Scientific), and the Direct Flow Medical. These new inventions may introduce more effective treatment options for high-risk patients with severe aortic stenosis. Improvements in transcatheter valves and the developing variability among them may allow for more tailored approaches with respect to patient's anatomy, while giving operators the opportunity to choose devices they feel more comfortable with. Moreover, introducing new devices to the market will create a competitive environment among producers that will reduce high prices and expand availability. The present review article includes a discussion of recent patents related to Transcatheter Aortic Valves.

  16. Quantifying Turbulent Kinetic Energy in an Aortic Coarctation with Large Eddy Simulation and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2012-11-01

    In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.

  17. The risk of stanford type-A aortic dissection with different tear size and location: a numerical study.

    PubMed

    Shi, Yue; Zhu, Minjia; Chang, Yu; Qiao, Huanyu; Liu, Yongmin

    2016-12-28

    This study is to investigate the influence of hemodynamics on Stanford type-A aortic dissection with different tear size and location, to provide some support for the relationships between the risks (rupture, reverse tearing and further tearing) and tear size and location for clinical treatment. Four numerical models of Stanford type-A aortic dissection were established, with different size and location of the tears. The ratio of the area between the entry and re-entry tears(RA) is various within the model; while, the size and the location of the re-entry in the distal descending aorta are fixed. In model A11 and A21, the entry tears are located near the ascending aorta. The RA in these models are 1 and 2, respectively; In the model B11 and B21, the entry tears are located near the proximal descending aorta and the RA in these models are again assigned to 1 and 2, respectively. Then hemodynamics in these models was solved with numerically and the flow patterns and loading distributions were investigated. The flow velocity of the true lumen in model A21, B21 is lower than that in A11, B11, respectively; the time-averaged wall shear stress (TAWSS) of the false lumen in model A21 and B21 is higher, and for ascending aorta false lumen, A11, A21 are higher than B11, B21, respectively. False lumen intimal wall pressure of A11, A21 are always higher than the true lumen ones. The variation of the RA can significantly affect the dynamics of blood within the aortic dissection. When the entry tear size is larger than the re-entry tear ones, the false lumen, proximal descending aorta and the wall near re-entry tear are prone to cracking. Entry tear location can significantly alter the hemodynamics of aortic dissection as well. When entry tear location is closer to proximal ascending aorta, false lumen continues to expand and compress the true lumen resulting in the true lumen reduction. For proximal ascending aorta, high pressure in false lumen predicts a higher risk of

  18. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  19. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-01

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  20. Neurodevelopmental outcomes after regional cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction.

    PubMed

    Andropoulos, Dean B; Easley, R Blaine; Brady, Ken; McKenzie, E Dean; Heinle, Jeffrey S; Dickerson, Heather A; Shekerdemian, Lara S; Meador, Marcie; Eisenman, Carol; Hunter, Jill V; Turcich, Marie; Voigt, Robert G; Fraser, Charles D

    2013-02-01

    In this study we report magnetic resonance imaging (MRI) brain injury and 12-month neurodevelopmental outcomes when regional cerebral perfusion (RCP) is used for neonatal aortic arch reconstruction. Fifty-seven neonates receiving RCP during aortic arch reconstruction were enrolled in a prospective outcome study. RCP flows were determined by near-infrared spectroscopy and transcranial Doppler monitoring. Brain MRI was performed preoperatively and 7 days postoperatively. Bayley Scales of Infant Development III was performed at 12 months. Mean RCP time was 71 ± 28 minutes (range, 5 to 121 minutes) and mean flow was 56.6 ± 10.6 mL/kg/min. New postoperative MRI brain injury was seen in 40% of patients. For 35 RCP patients at age 12 months, mean Bayley Scales III Composite standard scores were: Cognitive, 100.1 ± 14.6 (range, 75 to 125); Language, 87.2 ± 15.0 (range, 62 to 132); and Motor, 87.9 ± 16.8 (range, 58 to 121). Increasing duration of RCP was not associated with adverse neurodevelopmental outcomes. Neonatal aortic arch repair with RCP using a neuromonitoring strategy results in 12-month cognitive outcomes that are at reference population norms. Language and motor outcomes are lower than the reference population norms by 0.8 to 0.9 standard deviations. The neurodevelopmental outcomes in this RCP cohort demonstrate that this technique is effective and safe in supporting the brain during neonatal aortic arch reconstruction. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Effect of personalized external aortic root support on aortic root motion and distension in Marfan syndrome patients.

    PubMed

    Izgi, Cemil; Nyktari, Evangelia; Alpendurada, Francisco; Bruengger, Annina Studer; Pepper, John; Treasure, Tom; Mohiaddin, Raad

    2015-10-15

    Personalized external aortic root support (PEARS) is a novel surgical approach with the aim of stabilizing the aortic root size and decreasing risk of dissection in Marfan syndrome patients. A bespoke polymer mesh tailored to each patient's individual aorta shape is produced by modeling and then surgically implanted. The aim of this study is to assess the mechanical effects of PEARS on the aortic root systolic downward motion (an important determinant of aortic wall stress), aortic root distension and on the left ventricle (LV). A cohort of 27 Marfan patients had a prophylactic PEARS surgery between 2004 and 2012 with 24 having preoperative and follow-up cardiovascular magnetic resonance imaging studies. Systolic downward aortic root motion, aortic root distension, LV volumes/mass and mitral annular systolic excursion before the operation and in the latest follow-up were measured randomly and blinded. After a median follow-up of 50.5 (IQR 25.5-72) months following implantation of PEARS, systolic downward motion of aortic root was significantly decreased (12.6±3.6mm pre-operation vs 7.9±2.9mm latest follow-up, p<0.00001). There was a tendency for a decrease in systolic aortic root distension but this was not significant (median 4.5% vs 2%, p=0.35). There was no significant change in LV volumes, ejection fraction, mass and mitral annular systolic excursion in follow-up. PEARS surgery decreases systolic downward aortic root motion which is an important determinant of longitudinal aortic wall stress. Aortic wall distension and Windkessel function are not significantly impaired in the follow-up after implantation of the mesh which is also supported by the lack of deterioration of LV volumes or mass. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Bovine aortic arch with supravalvular aortic stenosis.

    PubMed

    Idhrees, Mohammed; Cherian, Vijay Thomas; Menon, Sabarinath; Mathew, Thomas; Dharan, Baiju S; Jayakumar, K

    2016-09-01

    A 5-year-old boy was diagnosed to have supravalvular aortic stenosis (SVAS). On evaluation of CT angiogram, there was associated bovine aortic arch (BAA). Association of BAA with SVAS has not been previously reported in literature, and to best of our knowledge, this is the first case report of SVAS with BAA. Recent studies show BAA as a marker for aortopathy. SVAS is also an arteriopathy. In light of this, SVAS can also possibly be a manifestation of aortopathy associated with BAA. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  3. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.

    PubMed

    Boutsianis, Evangelos; Guala, Michele; Olgac, Ufuk; Wildermuth, Simon; Hoyer, Klaus; Ventikos, Yiannis; Poulikakos, Dimos

    2009-01-01

    There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA

  4. Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows

    NASA Astrophysics Data System (ADS)

    Şengül, Taylan; Wang, Shouhong

    2018-02-01

    The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple

  5. The Effect of Infrarenal Aortic Balloon Occlusion on Weaning from Supraceliac Aortic Balloon Occlusion in a Porcine Model (Sus scrofa) of Hemorrhagic Shock

    DTIC Science & Technology

    2017-06-15

    all animals , and continued for six hours. Half of the animals were randomly assigned to Zone-3 REBOA for an additional 45 minutes following Zone-1...concentration or resuscitation requirements.Conclusion: In an animal model of hemorrhagic shock and Zone-1 REBOA, subsequent Zone-3 aortic occlusion did not add

  6. Restoration of Pulsatile Flow Reduces Sympathetic Nerve Activity Among Individuals With Continuous-Flow Left Ventricular Assist Devices.

    PubMed

    Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D

    2015-12-15

    Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.

  7. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  8. Heated, humidified high-flow nasal cannula therapy: yet another way to deliver continuous positive airway pressure?

    PubMed

    Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A

    2008-01-01

    The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.

  9. Thoracic Endovascular Aortic Repair Combined with Assistant Techniques and Devices for the Treatment of Acute Complicated Stanford Type B Aortic Dissections Involving Aortic Arch.

    PubMed

    Zhang, Tianhua; Jiang, Weiliang; Lu, Haitao; Liu, Jianfeng

    2016-04-01

    The present study retrospectively reviewed and evaluated the effectiveness of thoracic endovascular aortic repair (TEVAR) combined with assistant techniques and devices for the treatment of acute complicated Stanford type B aortic dissections involving aortic arch. Fifty-six patients with acute complicated Stanford type B aortic dissection involving aortic arch were treated with TEVAR combined with hybrid procedure, chimney-graft technique, and branched stent grafts from January 2009 to March 2014. Seventeen patients undergone TEVAR combined with hybrid technique. Technical success was achieved in 94.1% with 5.8% of early mortality. Strokes occurred in a patient developing paraplegia, who completely recovered after lumbar drainage. Cardiocirculatory and pulmonary complications, bypass dysfunction or severe endoleak was not observed. Thirty patients undergone TEVAR combined with chimney technique with 100% technical success rate. Chimney-stent compression was observed in 1 patient, and another bare stent was deployed inside the first one. Three patients (10%) died during the study period. Immediate postoperative type I endoleak was detected in 4 cases (13.3%). TEVAR assisted by Castor branched aortic stent grafts in 9 patients was successful. Mortality during perioperative period and 30 days after TEVAR was null. No serious complications such as strokes, acute myocardial infarction, and ischemia of arms occurred. The results indicate that TEVAR combined with hybrid technique, chimney technique, and branched stent grafts is proven to be a technically feasible and effective treatment for acute complicated Stanford type B aortic dissection involving aortic arch in small cohort. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Indication for percutaneous aortic valve implantation

    PubMed Central

    Akin, Ibrahim; Kische, Stephan; Rehders, Tim C.; Nienaber, Christoph A.; Rauchhaus, Mathias; Schneider, Henrik; Liebold, Andreas

    2010-01-01

    The incidence of valvular aortic stenosis has increased over the past decades due to improved life expectancy. Surgical aortic valve replacement is currently the only treatment option for severe symptomatic aortic stenosis that has been shown to improve survival. However, up to one third of patients who require lifesaving surgical aortic valve replacement are denied surgery due to high comorbidities resulting in a higher operative mortality rate. In the past such patients could only be treated with medical therapy or percutaneous aortic valvuloplasty, neither of which has been shown to improve mortality. With advances in interventional cardiology, transcatheter methods have been developed for aortic valve replacement with the goal of offering a therapeutic solution for patients who are unfit for surgical therapy. Currently there are two catheter-based treatment systems in clinical application (the Edwards SAPIEN aortic valve and the CoreValve ReValving System), utilizing either a balloon-expandable or a self-expanding stent platform, respectively. PMID:22371763

  11. Swirling flow in bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  12. A gravimetric technique for evaluating flow continuity from two infusion devices.

    PubMed

    Leff, R D; True, W R; Roberts, R J

    1987-06-01

    A computerized gravimetric technique for examining the flow continuity from infusion devices was developed, and two infusion devices with different mechanisms of pump operation were evaluated to illustrate this technique. A BASIC program that records serial weight measurements and calculates weight change from previous determinations was written for and interfaced with a gravimetric balance and IBM PC. A plot of effused weight (normalized weight change that reflects the difference between desired timed-sample interval and actual time) versus time (desired timed-sample interval) was constructed. The gravimetric technique was evaluated using both a peristaltic-type and a piston-type infusion pump. Intravenous solution (5% dextrose and 0.9% sodium chloride) was effused at 10 mL/hr and collected in a beaker. Weights were measured at 10-second intervals over a two-hour infusion period, and the weights of the effused solution were plotted versus time. Flow continuity differed between the two infusion devices. Actual effused weight decreased to 0.007 g/10 sec during the refill cycle of the piston-type pump; the mean (+/- S.D.) effused weight was 0.029 +/- 0.002 g/10 sec. The desired effusion rate was 0.028 g/10 sec. The peristaltic pump had greater flow continuity, with a mean effusion weight of 0.028 +/- 0.003 g/10 sec. The gravimetric technique described in this report can be used to quantitatively depict the effusion profiles of infusion devices. Further studies are needed to identify the degree of flow continuity that is clinically acceptable for infusion devices.

  13. Aortic Sca-1+ Progenitor Cells Arise from the Somitic Mesoderm Lineage in Mice.

    PubMed

    Steinbach, Sarah K; Wang, Tao; Carruthers, Martha H; Li, Angela; Besla, Rickvinder; Johnston, Adam P; Robbins, Clinton S; Husain, Mansoor

    2018-05-31

    Sca-1 + progenitor cells in the adult mouse aorta are known to generate vascular smooth muscle cells (VSMCs), but their embryological origins and temporal abundance are not known. Using tamoxifen-inducible Myf5-Cre ER mice, we demonstrate that Sca-1 + adult aortic cells arise from the somitic mesoderm beginning at E8.5 and continue throughout somitogenesis. Myf5 lineage-derived Sca-1 + cells greatly expand in situ, starting at 4 weeks of age, and become a major source of aortic Sca-1 + cells by 6 weeks of age. Myf5-derived adult aortic cells are capable of forming multicellular sphere-like structures in vitro and express the pluripotency marker Sox2. Exposure to transforming growth factor-β3 induces these spheres to differentiate into calponin-expressing VSMCs. Pulse-chase experiments using tamoxifen-inducible Sox2-Cre ERT2 mice at 8 weeks of age demonstrate that ∼35% of all adult aortic Sca-1 + cells are derived from Sox2 + cells. The present study demonstrates that aortic Sca-1 + progenitor cells are derived from the somitic mesoderm formed at the earliest stages of somitogenesis and from Sox2-expressing progenitors in adult mice.

  14. Abdominal Aortic Dissections

    PubMed Central

    Borioni, Raoul; Garofalo, Mariano; De Paulis, Ruggero; Nardi, Paolo; Scaffa, Raffaele; Chiariello, Luigi

    2005-01-01

    Isolated abdominal aortic dissections are rare events. Their anatomic and clinical features are different from those of atherosclerotic aneurysms. We report 4 cases of isolated abdominal aortic dissection that were successfully treated with surgical or endovascular intervention. The anatomic and clinical features and a review of the literature are also presented. PMID:15902826

  15. Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk

    2016-11-01

    The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.

  16. Degree of fusiform dilatation of the proximal descending aorta in type B acute aortic dissection can predict late aortic events.

    PubMed

    Marui, Akira; Mochizuki, Takaaki; Koyama, Tadaaki; Mitsui, Norimasa

    2007-11-01

    Predicting the risk factors for late aortic events in patients with type B acute aortic dissection without complications may help to determine a therapeutic strategy for this disorder. We investigated whether late aortic events in type B acute aortic dissection can be predicted accurately by an index that expresses the degree of fusiform dilatation of the proximal descending aorta during the acute phase; this index can be calculated as follows: (maximum diameter of the proximal descending aorta)/(diameter of the distal aortic arch + diameter of the descending aorta at the pulmonary artery level). Patients with type B acute aortic dissection without complications (n = 141) were retrospectively analyzed to determine the predictors of late aortic events; these include aortic dilatation, rupture, refractory pain, organ ischemia, rapid aortic enlargement, and rapid enlargement of ulcer-like projections. The fusiform index in patients with late aortic events (0.59) was higher than that in patients without late aortic events (0.53, P < .01). Patients with a higher fusiform index exhibited aortic dilatation earlier than those with a lower fusiform index. By multivariate analysis, we conclude that the predominant independent predictors of late aortic events were a maximum aortic diameter of 40 mm or more, a patent false lumen, and a fusiform index of 0.64 or more (hazard ratios, 3.18, 2.64, and 2.73, respectively). The values of actuarial freedom from aortic events for patients with all 3 predictors at 1, 5, and 10 years were 22%, 17%, and 8%, respectively, whereas the values in those without these predictors were 97%, 94%, and 90%, respectively. The degree of fusiform dilatation of the proximal descending aorta, a patent false lumen, and a large aortic diameter can be predominant predictors of late aortic events in patients with type B acute aortic dissection. Patients with these predictors should be recommended to undergo early interventions (surgery or stent

  17. Aortic valve replacement for papillary fibroelastoma.

    PubMed

    Arikan, Ali Ahmet; Omay, Oğuz; Aydın, Fatih; Kanko, Muhip; Gür, Sibel; Derviş, Emir; Yılmaz, Cansu Eda; Müezzinoğlu, Bahar

    2017-06-01

    Surgery is indicated for symptomatic patients with papillary fibroelastomas (PFE) on the aortic valve. The valve is commonly spared during tumor excision. Rarely, aortic valve replacement (AVR) is needed. We present a case requiring AVR for an aortic valve PFE and review the literature to determine the risk factors for failure of aortic valve-sparing techniques in patients with PFE. © 2017 Wiley Periodicals, Inc.

  18. Hemolytic anemia caused by aortic flap and inversion of felt strip after ascending aorta replacement.

    PubMed

    Sakaguchi, Masayuki; Takano, Tamaki

    2016-08-02

    Hemolysis related to a kinked prosthetic graft or inner felt strip is a very rare complication after aortic surgery. We describe herein a case of hemolytic anemia that developed due to aortic flap of the dissection and inversion of an inner felt strip that was applied at the proximal anastomosis of a replaced ascending aorta 10 years previously. A 74-year-old woman presented with consistent hemolytic anemia 10 years after replacement of the ascending aorta to treat Stanford type A acute aortic dissection. The cause of hemolysis was attributed to mechanical injury of red blood cells at a site of stenosis caused by aortic flap of the dissection and inversion of the felt strip used for the proximal anastomosis. Repeated resection of the strip and graft replacement of the ascending aorta resolved this problem. We considered that blood flow disrupted by a jet of blood at the site of the proximal inner felt strip was the cause of severe hemolysis, we describe rare hemolytic anemia at the site of aortic flap and inverted felt strip after replacement of the ascending aorta.

  19. Effects of acute dietary nitrate supplementation on aortic blood pressure and aortic augmentation index in young and older adults.

    PubMed

    Hughes, William E; Ueda, Kenichi; Treichler, David P; Casey, Darren P

    2016-09-30

    Aging is associated with elevated blood pressure (peripheral and aortic; BP) and aortic augmentation index (AIx) which may contribute to aortic BP. Although inorganic nitrate consumption reduces peripheral BP in both young and older adults, the effects of nitrate consumption on aortic BP and wave reflection in young and older adults is unknown. Therefore, we sought to characterize the effects of nitrate consumption on aortic BP and AIx in young and older adults. Noninvasive aortic pressure waveforms were synthesized from high-fidelity radial pressure waveforms via applanation tonometry before and following (60, 90, 120, 150, and 180 min) consumption of a nitrate-rich beetroot juice in 26 healthy adults (young: 25 ± 4 years, n = 14; older: 64 ± 5 years, n = 12). Aortic BP and indices of aortic wave reflection (AIx and AIx normalized for heart rate; AIx@75bpm) were calculated from the generated aortic pressure waveform. Nitrate consumption increased plasma nitrite in both groups 60-180 min following beetroot consumption (P < 0.001). Nitrate consumption reduced peripheral and aortic BP in both young and older adults (P < 0.05), with the change being similar between age groups. Conversely, indices of aortic wave reflection were reduced only in young adults following nitrate consumption (range of change from baseline over time: AIx@75bpm, -4.3 to -8.8%, P < 0.05), whereas aortic AIx remained unchanged in the older adults. Taken together, our results suggest that acute dietary nitrate supplementation reduces peripheral and aortic BP similarly in young and older adults despite differential effects on aortic AIx between age groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aortic Cross-Sectional Area/Height Ratio and Outcomes in Patients With Bicuspid Aortic Valve and a Dilated Ascending Aorta.

    PubMed

    Masri, Ahmad; Kalahasti, Vidyasagar; Svensson, Lars G; Alashi, Alaa; Schoenhagen, Paul; Roselli, Eric E; Johnston, Douglas R; Rodriguez, L Leonardo; Griffin, Brian P; Desai, Milind Y

    2017-06-01

    In patients with bicuspid aortic valve and dilated proximal ascending aorta, we sought to assess (1) factors associated with increased longer-term cardiovascular mortality and (2) incremental prognostic use of indexing aortic root to patient height. We studied 969 consecutive bicuspid aortic valve patients (50±13 years; 87% men) with proximal aorta ≥4 cm, who also had a gated contrast-enhanced thoracic computed tomography or magnetic resonance angiography. A ratio of ascending aortic area/height was calculated on tomography, and ≥10 cm 2 /m was considered abnormal, as previously reported. Society of Thoracic Surgeons score and cardiovascular death were recorded. Greater than or equal to III+ aortic regurgitation and severe aortic stenosis were seen in 37% and 10%, respectively. Society of Thoracic Surgeons score and right ventricular systolic pressure were 2±3 and 15±16 mm Hg, respectively. Abnormal ascending aortic area/height ratio was noted in 33%; 44% underwent ascending aortic surgery at 34 days. At 10.8 years (interquartile range, 9.6-12.3), 82 (9%) died (0.4% in-hospital postoperative mortality). On multivariable Cox survival analysis, ascending aortic area/height ratio (hazard ratio, 2; 95% confidence interval, 1.20-3.35) was associated with cardiovascular death, whereas aortic surgery (hazard ratio, 0.46; confidence interval, 0.26-0.80) was associated with improved survival (both P <0.01). Of the 405 patients with ascending aortic diameter of 4.5 to 5.5 cm, 64% had an abnormal ascending aortic area/height ratio, and 70% deaths occurred in patients with an abnormal ratio. In bicuspid aortic valve patients with dilated proximal ascending aorta, ascending aortic area/height ratio was independently associated with cardiovascular death. © 2017 American Heart Association, Inc.

  1. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Aortic cusp extension valvuloplasty with or without tricuspidization in children and adolescents: long-term results and freedom from aortic valve replacement.

    PubMed

    Polimenakos, Anastasios C; Sathanandam, Shyam; Elzein, Chawki; Barth, Mary J; Higgins, Robert S D; Ilbawi, Michel N

    2010-04-01

    Aortic cusp extension valvuloplasty is increasingly used in the management of children and adolescents with aortic stenosis or regurgitation. The durability of this approach and the freedom from valve replacement are not well defined. A study was undertaken to investigate outcomes. From July 1987 to November 2008, 142 patients aged less than 19 years underwent aortic cusp extension valvuloplasty in the form of pericardial cusp extension and tricuspidization (when needed). Three patients with truncus arteriosus and severe truncal valve insufficiency were excluded. From the available follow-up data of 139 patients, 50 had bicuspid aortic valves, 40 had congenital aortic valve stenosis, 41 had combined congenital aortic valve stenosis/insufficiency, and 8 had other diagnoses. Median follow-up was 14.4 years (0.1-21.4). Long-term mortality and freedom from aortic valve replacement were studied. There were no early, intermediate, or late deaths. Z-values of left ventricular end-diastolic dimension, aortic annulus, aortic sinus diameter, and sinotubular junction diameter before aortic valve replacement were 4.2 +/- 3.11, 2.3 +/- 1.25, 4.4 +/- 1.23, and 1.84 +/- 1.28, respectively. During the follow-up period, 64 patients underwent aortic valve reinterventions. The Ross procedure was performed in 32 of 139 patients (23%) undergoing aortic cusp extension valvuloplasty. Other aortic valve replacements were undertaken after 16 aortic cusp extension valvuloplasties (11.5%). Freedom from a second aortic cusp extension valvuloplasty or aortic valve replacement at 18 years was 82.1% +/- 4.2% and 60.0% +/- 7.2%, respectively. Aortic cusp extension valvuloplasty is a safe and effective surgical option with excellent survival and good long-term outcomes in children and adolescents. The procedure provides acceptable durability and satisfactory freedom from aortic valve replacement. Copyright 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights

  3. Continuous-flow water sampler for real-time isotopic water measurements

    NASA Astrophysics Data System (ADS)

    Carter, J.; Dennis, K.

    2013-12-01

    Measuring the stable isotopes of liquid water (δ18O and δD) is a tool familiar to many Earth scientists, but most current techniques require discrete sampling. For example, isotope ratio mass spectrometry requires the collection of aliquots of water that are then converted to CO2, CO or H2 for analysis. Similarly, laser-based techniques, such as Cavity Ring-Down Spectroscopy (CRDS) convert discrete samples (typically < 2μL) of liquid water to water vapor using a flash vaporization process. By requiring the use of discrete samples fine-scale spatial and temporal studies of changes in δ18O and δD are limited. Here we present a continuous-flow water sampler that will enable scientists to probe isotopic changes in real-time, with applications including, but not limited to, quantification of the 'amount effect' (Dansgaard, 1964) during an individual precipitation event or storm track, real-time mixing of water in river systems, and shipboard continuous water measurements (Munksgaard et al., 2012). Due to the inherent ability of CRDS to measure a continuous flow of water vapor it is an ideal candidate for interfacing with a continuous water sampling system. Here we present results from the first commercially available continuous-flow water sampler, developed by engineers at Picarro. This peripheral device is compatible with Picarro CRDS isotopic water analyzers, allowing real-time, continuous isotopic measurements of liquid water. The new device, which expands upon the design of Munskgaard et al. (2011), utilizes expanded polytetrafluoroethylene (ePTFE) membrane technology to continuously generate gas-phase water, while liquid water is pumped through the system. The water vapor subsequently travels to the CRDS analyzer where the isotopic ratios are measured and recorded. The generation of water vapor using membrane technology is sensitive to environmental conditions, which if not actively control, lead to sustainable experimental noise and drift. Consequently, our

  4. Thoracic aortic aneurysms and dissections: endovascular treatment.

    PubMed

    Baril, Donald T; Cho, Jae S; Chaer, Rabih A; Makaroun, Michel S

    2010-01-01

    The treatment of thoracic aortic disease has changed radically with the advances made in endovascular therapy since the concept of thoracic endovascular aortic repair was first described 15 years ago. Currently, there is a diverse array of endografts that are commercially available to treat the thoracic aorta. Multiple studies, including industry-sponsored and single-institution reports, have demonstrated excellent outcomes of thoracic endovascular aortic repair for the treatment of thoracic aortic aneurysms, with less reported perioperative morbidity and mortality in comparison with conventional open repair. Additionally, similar outcomes have been demonstrated for the treatment of type B dissections. However, the technology remains relatively novel, and larger studies with longer term outcomes are necessary to more fully evaluate the role of endovascular therapy for the treatment of thoracic aortic disease. This review examines the currently available thoracic endografts, preoperative planning for thoracic endovascular aortic repair, and outcomes of thoracic endovascular aortic repair for the treatment of both thoracic aortic aneurysms and type B aortic dissections. Mt Sinai J Med 77:256-269, 2010. (c) 2010 Mount Sinai School of Medicine.

  5. Aortic annulus eccentricity before and after transcatheter aortic valve implantation: Comparison of balloon-expandable and self-expanding prostheses.

    PubMed

    Schuhbaeck, Annika; Weingartner, Christina; Arnold, Martin; Schmid, Jasmin; Pflederer, Tobias; Marwan, Mohamed; Rixe, Johannes; Nef, Holger; Schneider, Christian; Lell, Michael; Uder, Michael; Ensminger, Stephan; Feyrer, Richard; Weyand, Michael; Achenbach, Stephan

    2015-07-01

    The geometry of the aortic annulus and implanted transcatheter aortic valve prosthesis might influence valve function. We investigated the influence of valve type and aortic valve calcification on post-implant geometry of catheter-based aortic valve prostheses. Eighty consecutive patients with severe aortic valve stenosis (mean age 82 ± 6 years) underwent computed tomography before and after TAVI. Aortic annulus diameters were determined. Influence of prosthesis type and degree of aortic valve calcification on post-implant eccentricity were analysed. Aortic annulus eccentricity was reduced in patients after TAVI (0.21 ± 0.06 vs. 0.08 ± 0.06, p<0.0001). Post-TAVI eccentricity was significantly lower in 65 patients following implantation of a balloon-expandable prosthesis as compared to 15 patients who received a self-expanding prosthesis (0.06 ± 0.05 vs. 0.15 ± 0.07, p<0.0001), even though the extent of aortic valve calcification was not different. After TAVI, patients with a higher calcium amount retained a significantly higher eccentricity compared to patients with lower amounts of calcium. Patients undergoing TAVI with a balloon-expandable prosthesis show a more circular shape of the implanted prosthesis as compared to patients with a self-expanding prosthesis. Eccentricity of the deployed prosthesis is affected by the extent of aortic valve calcification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Genetics Home Reference: supravalvular aortic stenosis

    MedlinePlus

    ... Twitter Home Health Conditions Supravalvular aortic stenosis Supravalvular aortic stenosis Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Supravalvular aortic stenosis (SVAS) is a heart defect that develops before ...

  7. Aortic annulus and ascending aorta: comparison of preoperative and periooperative measurement in patients with aortic stenosis.

    PubMed

    Smíd, Michal; Ferda, Jirí; Baxa, Jan; Cech, Jakub; Hájek, Tomás; Kreuzberg, Boris; Rokyta, Richard

    2010-04-01

    Precise determination of the aortic annulus size constitutes an integral part of the preoperative evaluation prior to aortic valve replacement. It enables the estimation of the size of prosthesis to be implanted. Knowledge of the size of the ascending aorta is required in the preoperative analysis and monitoring of its dilation enables the precise timing of the operation. Our goal was to compare the precision of measurement of the aortic annulus and ascending aorta using magnetic resonance (MR), multidetector-row computed tomography (MDCT), transthoracic echocardiography (TTE), and transoesophageal echocardiography (TEE) in patients with degenerative aortic stenosis. A total of 15 patients scheduled to have aortic valve replacement were enrolled into this prospective study. TTE was performed in all patients and was supplemented with TEE, CT and MR in the majority of patients. The values obtained were compared with perioperative measurements. For the measurement of aortic annulus, MR was found to be the most precise technique, followed by MDCT, TTE, and TEE. For the measurement of ascending aorta, MR again was found to be the most precise technique, followed by MDCT, TEE, and TTE. In our study, magnetic resonance was found to be the most precise technique for the measurement of aortic annulus and ascending aorta in patients with severe degenerative aortic stenosis. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Surgical Treatment of Synchronous Type B Acute Aortic Dissection and Abdominal Aortic Aneurysm.

    PubMed

    Bellosta, Raffaello; Gelpi, Guido; Lomazzi, Chiara; Romagnoni, Claudia; Castelli, Patrizio; Trimarchi, Santi; Piffaretti, Gabriele

    2018-05-01

    We report the results of the operative treatment of synchronous type B acute aortic dissection (TBAAD) and infrarenal abdominal aortic aneurysm (AAA). It is an observational, descriptive multicenter case series. Inclusion criterion was patients with diagnosis of TBAAD and AAA detected synchronously for the first time at clinical onset of dissection. Follow-up imaging protocol included triple-phase spiral/computed tomography angiography performed at 1, 6, and 12 months after thoracic endovascular aortic repair (TEVAR), and annually thereafter. Major end points were perioperative mortality and long-term survival, freedom from aortic events, and freedom from reintervention. We identified and treated 15 cases. All TBAADs were treated by TEVAR in the acute phase: infrarenal aortic repair was performed with stent graft (SG) in 10 (66.7%) patients, with open repair in 5 (33.3%). Overall, staged repair was used in 11 (73.3%) patients. Mean descending aortic endovascular length coverage was 21 cm ± 7 (range, 10-35; interquartile range [IQR], 150-265). Overall, early perioperative mortality occurred in 1 (6.7%) patient. Median radiologic follow-up was 48 months (range, 6-120; IQR, 36-67). During the follow-up, TEVAR-related mortality was not observed. Aortic remodeling after TEVAR was obtained in 12 (85.7%) patients; abdominal sac shrinkage after SG was obtained in 8 (80.0%) patients. Freedom from aortic event rate was 79% ± 10 (95% confidence interval [CI]: 53.1-92.6) at 1 year and 64% ± 13 (95% CI: 38.1-83.5) at 5 year. Freedom from reintervention rate at 1 and 5 year was 85% ± 10 (95% CI: 57.8-95.7). In our experience, the association of TBAAD and AAA was a rare finding. Because of the lack of available evidence to opt for a single intervention or a staged approach, selective approach with TEVAR and endovascular/open conventional treatment of the abdominal aorta yielded satisfactory results at midterm follow-up. Copyright © 2018 Elsevier Inc. All rights

  9. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  10. External carotid compression: a novel technique to improve cerebral perfusion during selective antegrade cerebral perfusion for aortic arch surgery.

    PubMed

    Grocott, Hilary P; Ambrose, Emma; Moon, Mike

    2016-10-01

    Selective antegrade cerebral perfusion (SACP) involving cannulation of either the axillary or innominate artery is a commonly used technique for maintaining cerebral blood flow (CBF) during the use of hypothermic cardiac arrest (HCA) for operations on the aortic arch. Nevertheless, asymmetrical CBF with hypoperfusion of the left cerebral hemisphere is a common occurrence during SACP. The purpose of this report is to describe an adjunctive maneuver to improve left hemispheric CBF during SACP by applying extrinsic compression to the left carotid artery. A 77-yr-old male patient with a history of aortic valve replacement presented for emergent surgical repair of an acute type A aortic dissection of a previously known ascending aortic aneurysm. His intraoperative course included cannulation of the right axillary artery, which was used as the aortic inflow during cardiopulmonary bypass and also allowed for subsequent SACP during HCA. After the onset of HCA, the innominate artery was clamped at its origin to allow for SACP. Shortly thereafter, however, the left-sided cerebral oxygen saturation (SrO2) began to decrease. Augmenting the PaO2, PaCO2 and both SACP pressure and flow failed to increase left hemispheric SrO2. Following the use of ultrasound guidance to confirm the absence of atherosclerotic disease in the carotid artery, external pressure was applied partially compressing the artery. With the carotid compression, the left cerebral saturation abruptly increased, suggesting pressurization of the left cerebral hemispheric circulation and augmentation of CBF. Direct ultrasound visualization and cautious partial compression of the left carotid artery may address asymmetrical CBF that occurs with SACP during HCA for aortic arch surgery. This strategy may lead to improved symmetry of CBF and corresponding cerebral oximetry measurements during aortic arch surgery.

  11. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    ERIC Educational Resources Information Center

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  12. Sex differences in aortic valve calcification measured by multidetector computed tomography in aortic stenosis.

    PubMed

    Aggarwal, Shivani R; Clavel, Marie-Annick; Messika-Zeitoun, David; Cueff, Caroline; Malouf, Joseph; Araoz, Philip A; Mankad, Rekha; Michelena, Hector; Vahanian, Alec; Enriquez-Sarano, Maurice

    2013-01-01

    Aortic valve calcification (AVC) is the intrinsic mechanism of valvular obstruction leading to aortic stenosis (AS) and is measurable by multidetector computed tomography. The link between sex and AS is controversial and that with AVC is unknown. We prospectively performed multidetector computed tomography in 665 patients with AS (aortic valve area, 1.05±0.35 cm(2); mean gradient, 39±19 mm Hg) to measure AVC and to assess the impact of sex on the AVC-AS severity link in men and women. AS severity was comparable between women and men (peak aortic jet velocity: 4.05±0.99 versus 3.93±0.91 m/s, P=0.11; aortic valve area index: 0.55±0.20 versus 0.56±0.18 cm(2)/m(2); P=0.46). Conversely, AVC load was lower in women versus men (1703±1321 versus 2694±1628 arbitrary units; P<0.0001) even after adjustment for their smaller body surface area or aortic annular area (both P<0.0001). Thus, odds of high-AVC load were much greater in men than in women (odds ratio, 5.07; P<0.0001). Although AVC showed good associations with hemodynamic AS severity in men and women (all r>0.67; P<0.0001), for any level of AS severity measured by peak aortic jet velocity or aortic valve area index, AVC load, absolute or indexed, was higher in men versus women (all P≤0.01). In this large AS population, women incurred similar AS severity than men for lower AVC loads, even after indexing for their smaller body size. Hence, the relationship between valvular calcification process and AS severity differs in women and men, warranting further pathophysiological inquiry. For AS severity diagnostic purposes, interpretation of AVC load should be different in men and in women.

  13. Aortic Arch Morphology and Aortic Length in Patients with Dissection, Traumatic, and Aneurysmal Disease.

    PubMed

    Alberta, H B; Takayama, T; Smits, T C; Wendorff, B B; Cambria, R P; Farber, M A; Jordan, W D; Patel, V; Azizzadeh, A; Rovin, J D; Matsumura, J S

    2015-12-01

    To assess aortic arch morphology and aortic length in patients with dissection, traumatic injury, and aneurysm undergoing TEVAR, and to identify characteristics specific to different pathologies. This was a retrospective analysis of the aortic arch morphology and aortic length of dissection, traumatic injury, and aneurysmal patients. Computed tomography imaging was evaluated of 210 patients (49 dissection, 99 traumatic injury, 62 aneurysm) enrolled in three trials that received the conformable GORE TAG thoracic endoprosthesis. The mean age of trauma patients was 43 ± 19.6 years, 57 ± 11.7 years for dissection and 72 ± 9.6 years for aneurysm patients. A standardized protocol was used to measure aortic arch diameter, length, and take-off angle and clockface orientation of branch vessels. Differences in arch anatomy and length were assessed using ANOVA and independent t tests. Of the 210 arches evaluated, 22% had arch vessel common trunk configurations. The aortic diameter and the distance from the left main coronary (LMC) to the left common carotid (LCC) were greater in dissection patients than in trauma or aneurysm patients (p < .001). Aortic diameter in aneurysm patients was greater compared with trauma patients (p < .05). The distances from the branch vessels to the celiac artery (CA) were greater in dissection and aneurysm patients than in trauma patients (p < .001). The take-off angle of the innominate (I), LCCA, and left subclavian (LS) were greater, between 19% and 36%, in trauma patients than in dissection and aneurysm patients (p < .001). Clockface orientation of the arch vessels varies between pathologies. Arch anatomy has significant morphologic differences when comparing aortic pathologies. Describing these differences in a large sample of patients is beneficial for device designs and patient selection. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Ross procedure for ascending aortic replacement.

    PubMed

    Elkins, R C; Lane, M M; McCue, C

    1999-06-01

    Patients with aortic valve disease and aneurysm or dilatation of the ascending aorta require both aortic valve replacement and treatment of their ascending aortic disease. In children and young adults, the Ross operation is preferred when the aortic valve requires replacement, but the efficacy of extending this operation to include replacement of the ascending aorta or reduction of the dilated aorta has not been tested. We reviewed the medical records of 18 (5.9%) patients with aortic valve disease and an ascending aortic aneurysm and 26 (8.5%) patients with dilation of the ascending aorta, subgroups of 307 patients who had a Ross operation between August 1986 and February 1998. We examined operative and midterm results, including recent echocardiographic assessment of autograft valve function and ability of the autograft root and ascending aortic repair or replacement to maintain normal structural integrity. There was one operative death (2%) related to a perioperative stroke. Forty-two of 43 survivors have normal autograft valve function, with trace to mild autograft valve insufficiency, and one patient has moderate insufficiency at the most recent echocardiographic evaluation. None of the patients has dilatation of the autograft root or of the replaced or reduced ascending aorta. Early results with extension of the Ross operation to include replacement of an ascending aortic aneurysm or vertical aortoplasty for reduction of a dilated ascending aorta are excellent, with autograft valve function equal to that seen in similar patients without ascending aortic disease.

  15. Ascending aortic injuries following blunt trauma.

    PubMed

    Sun, Xiumei; Hong, Jenny; Lowery, Robert; Goldstein, Steven; Wang, Zuyue; Lindsay, Joseph; Hill, Peter C; Corso, Paul J

    2013-11-01

    The diagnosis and the management of traumatic thoracic aortic injuries have undergone significant changes due to new technology and improved prehospital care. Most of the discussions have focused on descending aortic injuries. In this review, we discuss the recent management of ascending aortic injuries. We found 5 cohort studies on traumatic aortic injuries and 11 case reports describing ascending aortic injuries between 1998 to the present through Medline research. Among case reports, 78.9% of cases were caused by motor vehicle accidents (MVA). 42.1% of patients underwent emergent open repair and the operative mortality was 12.5%. 36.8% underwent delayed repair. Associated injuries occurred in 84.2% of patients. Aortic valve injury was concurrent in 26.3% of patients. The incidence of ascending aortic injury ranged 1.9-20% in cohort studies. Traumatic injuries to the ascending aorta are relatively uncommon among survivors following blunt trauma. Aortography has been replaced by computed tomography and echocardiography as a diagnostic tool. Open repair, either emergent or delayed, remains the treatment of choice. © 2013 Wiley Periodicals, Inc.

  16. Aortic root dynamism, geometry, and function after the remodeling operation: Clinical relevance.

    PubMed

    Yacoub, Magdi H; Aguib, Heba; Gamrah, Mazen Abou; Shehata, Nairouz; Nagy, Mohamed; Donia, Mohamed; Aguib, Yasmine; Saad, Hesham; Romeih, Soha; Torii, Ryo; Afifi, Ahmed; Lee, Su-Lin

    2018-04-13

    Valve-conserving operations for aneurysms of the ascending aorta and root offer many advantages, and their use is steadily increasing. Optimizing the results of these operations depends on providing the best conditions for normal function and durability of the new root. Multimodality imaging including 2-dimensional echocardiography, multislice computed tomography, and cardiovascular magnetic resonance combined with image processing and computational fluid dynamics were used to define geometry, dynamism and aortic root function, before and after the remodeling operation. This was compared with 4 age-matched controls. The size and shape of the ascending aorta, aortic root, and its component parts showed considerable changes postoperatively, with preservation of dynamism. The postoperative size of the aortic annulus was reduced without the use of external bands or foreign material. Importantly, the elliptical shape of the annulus was maintained and changed during the cardiac cycle (Δ ellipticity index was 15% and 28% in patients 1 and 2, respectively). The "cyclic" area of the annulus changed in size (Δarea: 11.3% in patient 1 and 13.1% in patient 2). Functional analysis showed preserved reservoir function of the aortic root, and computational fluid dynamics demonstrated normalized pattern of flow in the ascending aorta, sinuses of Valsalva, and distal aorta. The remodeling operation results in near-normal geometry of the aortic root while maintaining dynamism of the aortic root and its components. This could have very important functional implications; the influence of these effects on both early- and long-term outcomes needs to be studied further. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  17. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    PubMed

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  18. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.

    PubMed

    Pamme, Nicole; Manz, Andreas

    2004-12-15

    The separation of magnetic microparticles was achieved by on-chip free-flow magnetophoresis. In continuous flow, magnetic particles were deflected from the direction of laminar flow by a perpendicular magnetic field depending on their magnetic susceptibility and size and on the flow rate. Magnetic particles could thus be separated from each other and from nonmagnetic materials. Magnetic and nonmagnetic particles were introduced into a microfluidic separation chamber, and their deflection was studied under the microscope. The magnetic particles were 2.0 and 4.5 microm in diameter with magnetic susceptibilities of 1.12 x 10(-4) and 1.6 x 10(-4) m(3) kg(-1), respectively. The 4.5-microm particles with the larger susceptibility were deflected further from the direction of laminar flow than the 2.0-microm magnetic particles. Nonmagnetic 6-microm polystyrene beads, however, were not deflected at all. Furthermore, agglomerates of magnetic particles were found to be deflected to a larger extent than single magnetic particles. The applied flow rate and the strength and gradient of the applied magnetic field were the key parameters in controlling the deflection. This separation method has a wide applicability since magnetic particles are commonly used in bioanalysis as a solid support material for antigens, antibodies, DNA, and even cells. Free-flow magnetophoretic separations could be hyphenated with other microfluidic devices for reaction and analysis steps to form a micro total analysis system.

  19. A History of Thoracic Aortic Surgery.

    PubMed

    McFadden, Paul Michael; Wiggins, Luke M; Boys, Joshua A

    2017-08-01

    Ancient historical texts describe the presence of aortic pathology conditions, although the surgical treatment of thoracic aortic disease remained insurmountable until the 19th century. Surgical treatment of thoracic aortic disease then progressed along with advances in surgical technique, conduit production, cardiopulmonary bypass, and endovascular technology. Despite radical advances in aortic surgery, principles established by surgical pioneers of the 19th century hold firm to this day. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The incidence and effect of noncylindrical neck morphology on outcomes after endovascular aortic aneurysm repair in the Global Registry for Endovascular Aortic Treatment.

    PubMed

    Shutze, William; Suominem, Velipekka; Jordan, William; Cao, Piergiorgio; Oweida, Steven; Milner, Ross

    2018-05-23

    The Gore Global Registry for Endovascular Aortic Treatment (GREAT) was designed to evaluate real-world outcomes after treatment with Gore aortic endografts used in a real-world, global setting. We retrospectively analyzed the GREAT data to evaluate the incidence and effects of noncylindrical neck anatomy in patients undergoing endovascular aortic aneurysm repair. The present analysis included patients with data in the GREAT who had been treated with the EXCLUDER endograft from August 2010 to October 2016. A noncylindrical neck was defined when the proximal aortic landing zone diameter had changed ≥2 mm over the first 15 mm of the proximal landing zone, indicating a tapered, conical, or hourglass morphology. Cox multivariate regression analyses were performed for any reintervention (including reinterventions on aortic branch vessels), device-related reinterventions, and reintervention specifically for endoleak. Independent binary (cylindrical vs noncylindrical necks) and continuous (percentage of neck diameter change) variables were assessed. The abdominal aortic aneurysm (AAA) diameter, proximal neck length, maximal infrarenal neck angle, gender, and use of aortic extender cuffs were also assessed. Of 3077 GREAT patients with available proximal aortic landing zone diameter measurements available, 1765 were found to have cylindrical necks and 1312 had noncylindrical necks. The noncylindrical neck cohort had a significantly greater proportion of women (17.4% vs 12.6%; P < .001) and more severe infrarenal angulation (33.8° vs 28.4°; P < .001). A total 14.7% of noncylindrical neck patients and 11.2% cylindrical neck patients underwent implantation outside of the EXCLUDER instructions for use regarding the anatomic inclusion criteria (P = .004). The procedural characteristics were similar between the two cohorts; however, noncylindrical neck patients required significantly more aortic extender cuffs (P = .004). The average follow-up was 21.2 ± 17.5

  1. Continuous-flow automation and hemolysis index: a crucial combination.

    PubMed

    Lippi, Giuseppe; Plebani, Mario

    2013-04-01

    A paradigm shift has occurred in the role and organization of laboratory diagnostics over the past decades, wherein consolidation or networking of small laboratories into larger factories and point-of-care testing have simultaneously evolved and now seem to favorably coexist. There is now evidence, however, that the growing implementation of continuous-flow automation, especially in closed systems, has not eased the identification of hemolyzed specimens since the integration of preanalytical and analytical workstations would hide them from visual scrutiny, with an inherent risk that unreliable test results may be released to the stakeholders. Along with other technical breakthroughs, the new generation of laboratory instrumentation is increasingly equipped with systems that can systematically and automatically be tested for a broad series of interferences, the so-called serum indices, which also include the hemolysis index. The routine implementation of these technical tools in clinical laboratories equipped with continuous-flow automation carries several advantages and some drawbacks that are discussed in this article.

  2. Aortic Cross-Sectional Area/Height Ratio and Outcomes in Patients With a Trileaflet Aortic Valve and a Dilated Aorta.

    PubMed

    Masri, Ahmad; Kalahasti, Vidyasagar; Svensson, Lars G; Roselli, Eric E; Johnston, Douglas; Hammer, Donald; Schoenhagen, Paul; Griffin, Brian P; Desai, Milind Y

    2016-11-29

    In patients with a dilated proximal ascending aorta and trileaflet aortic valve, we aimed to assess (1) factors independently associated with increased long-term mortality and (2) the incremental prognostic utility of indexing aortic root to patient height. We studied consecutive patients with a dilated aortic root (≥4 cm) that underwent echocardiography and gated contrast-enhanced thoracic aortic computed tomography or magnetic resonance angiography between 2003 and 2007. A ratio of aortic root area over height was calculated (cm 2 /m) on tomography, and a cutoff of 10 cm 2 /m was chosen as abnormal, on the basis of previous reports. All-cause death was recorded. The cohort comprised 771 patients (63 years [interquartile range, 53-71], 87% men, 85% hypertension, 51% hyperlipidemia, 56% smokers). Inherited aortopathies, moderate to severe aortic regurgitation, and severe aortic stenosis were seen in 7%, 18%, and 2%, whereas 91% and 54% were on β-blockers and angiotensin-converting enzyme inhibitors, respectively. Aortic root area/height ratio was ≥10 cm 2 /m in 24%. The Society of Thoracic Surgeons score and right ventricular systolic pressure were 3.3±3 and 31±7 mm Hg, respectively. At 7.8 years (interquartile range, 6.6-8.9), 280 (36%) patients underwent aortic surgery (76% within 1 year) and 130 (17%) died (1% in-hospital postoperative mortality). A lower proportion of patients in the surgical (versus nonsurgical) group died (13% versus 19%, P<0.01). On multivariable Cox proportional hazard analysis, aortic root area/height ratio (hazard ratio, 4.04; 95% confidence interval [CI], 2.69-6.231) was associated with death, whereas aortic surgery (hazard ratio, 0.47; 95% CI, 0.27-0.81) was associated with improved survival (both P<0.01). For longer-term mortality, the addition of aortic root area/height ratio ≥10 cm 2 /m to a clinical model (Society of Thoracic Surgeons score, inherited aortopathies, hypertension, hyperlipidemia, medications, aortic

  3. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  4. Chronobiology of Acute Aortic Syndromes.

    PubMed

    Siddiqi, Hasan K; Bossone, Eduardo; Pyeritz, Reed E; Eagle, Kim A

    2017-10-01

    Acute aortic syndromes are highly morbid conditions that require prompt diagnosis and management. Aortic dissections have rhythmic patterns, with notable peaks at certain points in every 24 hours as well as weekly and seasonal variations. Several retrospective studies have assessed the chronobiology of acute aortic dissections and there seems to be a winter seasonal peak and morning daily peak in incidence. Although the pathophysiology of this chronobiology is unclear, there are several environmental and physiologic possibilities. This article reviews the major studies examining the chronobiology of acute aortic dissection, and summarizes some theories on the pathophysiology of this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Echocardiographic aortic valve calcification and outcomes in women and men with aortic stenosis

    PubMed Central

    Thomassen, Henrik K; Cioffi, Giovanni; Gerdts, Eva; Einarsen, Eigir; Midtbø, Helga Bergljot; Mancusi, Costantino; Cramariuc, Dana

    2017-01-01

    Objective Sex differences in risk factors of aortic valve calcification (AVC) by echocardiography have not been reported from a large prospective study in aortic stenosis (AS). Methods AVC was assessed using a prognostically validated visual score and grouped into none/mild or moderate/severe AVC in 1725 men and women with asymptomatic AS in the Simvastatin Ezetimibe in Aortic Stenosis study. The severity of AS was assessed by the energy loss index (ELI) taking pressure recovery in the aortic root into account. Results More men than women had moderate/severe AVC at baseline despite less severe AS by ELI (p<0.01). Moderate/severe AVC at baseline was independently associated with lower aortic compliance and more severe AS in both sexes, and with increased high-sensitive C reactive protein (hs-CRP) only in men (all p<0.01). In Cox regression analyses, moderate/severe AVC at baseline was associated with a 2.5-fold (95% CI 1.64 to 3.80) higher hazard rate of major cardiovascular events in women, and a 2.2-fold higher hazard rate in men (95% CI 1.54 to 3.17) (both p<0.001), after adjustment for age, hypertension, study treatment, aortic compliance, left ventricular (LV) mass and systolic function, AS severity and hs-CRP. Moderate/severe AVC at baseline also predicted a 1.8-fold higher hazard rate of all-cause mortality in men (95% CI 1.04 to 3.06, p<0.05) independent of age, AS severity, LV mass and aortic compliance, but not in women. Conclusion In conclusion, AVC scored by echocardiography has sex-specific characteristics in AS. Moderate/severe AVC is associated with higher cardiovascular morbidity in both sexes, and with higher all-cause mortality in men. Trial registration number ClinicalTrials.gov identifier: NCT00092677 PMID:28698175

  6. Robotic aortic surgery.

    PubMed

    Duran, Cassidy; Kashef, Elika; El-Sayed, Hosam F; Bismuth, Jean

    2011-01-01

    Surgical robotics was first utilized to facilitate neurosurgical biopsies in 1985, and it has since found application in orthopedics, urology, gynecology, and cardiothoracic, general, and vascular surgery. Surgical assistance systems provide intelligent, versatile tools that augment the physician's ability to treat patients by eliminating hand tremor and enabling dexterous operation inside the patient's body. Surgical robotics systems have enabled surgeons to treat otherwise untreatable conditions while also reducing morbidity and error rates, shortening operative times, reducing radiation exposure, and improving overall workflow. These capabilities have begun to be realized in two important realms of aortic vascular surgery, namely, flexible robotics for exclusion of complex aortic aneurysms using branched endografts, and robot-assisted laparoscopic aortic surgery for occlusive and aneurysmal disease.

  7. Changes in phasic coronary blood flow velocity profile in relation to changes in hemodynamic parameters during stress in patients with aortic valve stenosis.

    PubMed

    Petropoulakis, P N; Kyriakidis, M K; Tentolouris, C A; Kourouclis, C V; Toutouzas, P K

    1995-09-15

    Alterations in phasic coronary flow profile have been demonstrated at rest in patients with aortic valve stenosis (AVS) but have never been studied under conditions of hemodynamic stress. Thirty-four patients with significant pure AVS (21 with exertional symptoms [group 1], 13 asymptomatic [group 2]) and 9 control subjects (group 3), all with normal coronary arteries, were studied successively at rest, during rapid atrial pacing, and after dobutamine infusion (5 to 30 micrograms.kg-1.min-1 i.v.) by proximal left anterior descending (LAD) intracoronary Doppler flow velocimetry concomitant with hemodynamic measurements. Systolic retrograde coronary flow velocity (CFV) was recorded only in patients with AVS, and its resting peak value was positively correlated with peak aortic pressure gradient (APG) (r = .63, P < .001). In group 1, there was lower aortic valve area (0.58 +/- 0.10 versus 0.75 +/- 0.08 cm2, P < .001) and higher resting APG and peak systolic retrograde CFV than in group 2, and also higher resting peak diastolic and mean CFV than in groups 2 and 3. In the two AVS groups, there were no changes from rest in APG and retrograde CFV at peak pacing rate; however, these parameters increased concomitantly and significantly at peak dobutamine stress. The ratio of the resting systolic to diastolic CFV curve area was inversely correlated with mean APG (r = -.54, P < .001); it was significantly lower in group 1 than in groups 2 and 3 (0.19 +/- 0.07 versus 0.29 +/- 0.10 and 0.30 +/- 0.04, respectively, both P < .005) and increased at peak pacing (group 1, to 0.29 +/- 0.14; group 2, to 0.39 +/- 0.12; group 3, to 0.38 +/- 0.07; all P < .001). At peak dobutamine stress, it decreased in patients with AVS (group 1, to 0.05 +/- 0.05; group 2, to 0.08 +/- 0.03; both P < .001) but did not change in group 3 (0.25 +/- 0.05). From rest to peak dobutamine stress, in both AVS groups there was increased retrograde systolic (group 1, 441 +/- 483%; group 2, 681 +/- 356%; both P

  8. Closed transventricular dilation of discrete subvalvular aortic stenosis in dogs.

    PubMed

    Linn, K; Orton, E C

    1992-01-01

    Discrete subvalvular aortic stenosis with peak systolic pressure gradients of more than 60 mm Hg was treated by closed transventricular dilation in six young dogs. Peak systolic pressure gradients were measured by direct catheterization before surgery, immediately after dilation, and 3 months after surgery. Maximum instantaneous pressure gradients were measured by continuous wave Doppler echocardiography before surgery and 6 weeks to 9 months after surgery. All dogs survived the procedure, and two dogs were clinically normal after 9 and 14 months. Two dogs died at week 6 and month 7. One dog was receiving medication for pulmonary edema 15 months after surgery. One dog underwent open resection of the subvalvular ring at month 3, and was clinically normal 6 months after the second procedure. Complications included intraoperative ventricular fibrillation in one dog, and mild postoperative aortic insufficiency in one dog. Closed transventricular dilation resulted in an immediate 83% decrease in the peak systolic pressure gradient from a preoperative mean of 97 +/- 22 mm Hg to a mean of 14 +/- 15 mm Hg. However, systolic pressure gradients measured by direct catheterization at month 3 (77 +/- 26 mm Hg), and by Doppler echocardiography at week 6 to month 9 (85 +/- 32 mm Hg) were not significantly different from preoperative values, which suggested recurrence of the aortic stenosis. Closed transventricular dilation should not be considered a definitive treatment for discrete subvalvular aortic stenosis in dogs, but may be useful in young dogs with critical aortic stenosis as a bridge to more definitive surgery.

  9. Microvascular Function Contributes to the Relation Between Aortic Stiffness and Cardiovascular Events: The Framingham Heart Study.

    PubMed

    Cooper, Leroy L; Palmisano, Joseph N; Benjamin, Emelia J; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Hamburg, Naomi M

    2016-12-01

    Arterial dysfunction contributes to cardiovascular disease (CVD) progression and clinical events. Inter-relations of aortic stiffness and vasodilator function with incident CVD remain incompletely studied. We used proportional hazards models to relate individual measures of vascular function to incident CVD in 4547 participants (mean age, 51±11 years; 54% women) in 2 generations of Framingham Heart Study participants. During follow-up (0.02-13.83 years), 232 participants (5%) experienced new-onset CVD events. In multivariable models adjusted for cardiovascular risk factors, both higher carotid-femoral pulse wave velocity (hazard ratio [HR], 1.32; 95% confidence interval [CI], 1.07-1.63; P=0.01) and lower hyperemic mean flow velocity (HR, 0.84; 95% CI, 0.71-0.99; P=0.04) were associated significantly with incident CVD, whereas primary pressure wave amplitude (HR, 1.12; 95% CI, 0.99-1.27; P=0.06), baseline brachial diameter (HR, 1.09; 95% CI, 0.90-1.31; P=0.39), and flow-mediated vasodilation (HR, 0.85; 95% CI, 0.69-1.04; P=0.12) were not. In mediation analyses, 8% to 13% of the relation between aortic stiffness and CVD events was mediated by hyperemic mean flow velocity. Our results suggest that associations between aortic stiffness and CVD events are mediated by pathways that include microvascular damage and remodeling. © 2016 American Heart Association, Inc.

  10. MDCT evaluation of acute aortic syndrome (AAS)

    PubMed Central

    Rossi, Giovanni; Lassandro, Francesco; Rea, Gaetano; Marino, Maurizio; Muto, Maurizio; Molino, Antonio; Scaglione, Mariano

    2016-01-01

    Non-traumatic acute thoracic aortic syndromes (AAS) describe a spectrum of life-threatening aortic pathologies with significant implications on diagnosis, therapy and management. There is a common pathway for the various manifestations of AAS that eventually leads to a breakdown of the aortic intima and media. Improvements in biology and health policy and diffusion of technology into the community resulted in an associated decrease in mortality and morbidity related to aortic therapeutic interventions. Hybrid procedures, branched and fenestrated endografts, and percutaneous aortic valves have emerged as potent and viable alternatives to traditional surgeries. In this context, current state-of-the art multidetector CT (MDCT) is actually the gold standard in the emergency setting because of its intrinsic diagnostic value. Management of acute aortic disease has changed with the increasing realization that endovascular therapies may offer distinct advantages in these situations. This article provides a summary of AAS, focusing especially on the MDCT technique, typical and atypical findings and common pitfalls of AAS, as well as recent concepts regarding the subtypes of AAS, consisting of aortic dissection, intramural haematoma, penetrating atherosclerotic ulcer and unstable aortic aneurysm or contained aortic rupture. MDCT findings will be related to pathophysiology, timing and management options to achieve a definite and timely diagnostic and therapeutic definition. In the present article, we review the aetiology, pathophysiology, clinical presentation, outcomes and therapeutic approaches to acute aortic syndromes. PMID:27033344

  11. Bicuspid aortic valves: diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT.

    PubMed

    Murphy, David J; McEvoy, Sinead H; Iyengar, Sri; Feuchtner, Gudrun; Cury, Ricardo C; Roobottom, Carl; Baumueller, Stephan; Alkadhi, Hatem; Dodd, Jonathan D

    2014-08-01

    To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P=0.001). Kappa analysis=0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥ 3.8 cm(2), 3.2 cm and 1.6mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P<0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54-1.0), 100%, 100% and 70% respectively. The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT features. Copyright © 2014 Elsevier Ireland Ltd. All rights

  12. Current Management of Calcific Aortic Stenosis

    PubMed Central

    Lindman, Brian R.; Bonow, Robert O.; Otto, Catherine M.

    2014-01-01

    Calcific aortic stenosis (AS) is a progressive disease with no effective medical therapy that ultimately requires aortic valve replacement (AVR) for severe valve obstruction. Echocardiography is the primary diagnostic approach to define valve anatomy, measure AS severity and evaluate the left ventricular (LV) response to chronic pressure overload. In asymptomatic patients, markers of disease progression include the degree of leaflet calcification, hemodynamic severity of stenosis, adverse LV remodeling, reduced LV longitudinal strain, myocardial fibrosis and pulmonary hypertension. The onset of symptoms portends a predictably high mortality rate unless AVR is performed. In symptomatic patients, AVR improves symptoms, improves survival and, in patients with LV dysfunction, improves systolic function. Poor outcomes after AVR are associated with low-flow low-gradient AS, severe ventricular fibrosis, oxygen dependent lung disease, frailty, advanced renal dysfunction and a high comorbidity score. However, in most patients with severe symptoms, AVR is lifesaving. Bioprosthetic valves are recommended for patients over the age of 65 years. Transcatheter AVR is now available for patients with severe comorbidities, is recommended in patients who are deemed inoperable and is a reasonable alternative to surgical AVR in high risk patients. PMID:23833296

  13. The Potential of Computational Fluid Dynamics Simulation on Serial Monitoring of Hemodynamic Change in Type B Aortic Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Simon C. H., E-mail: simonyu@cuhk.edu.hk; Liu, Wen; Wong, Randolph H. L.

    PurposeWe aimed to assess the potential of computational fluid dynamics simulation (CFD) in detecting changes in pressure and flow velocity in response to morphological changes in type B aortic dissection.Materials and MethodsPressure and velocity in four morphological models of type B aortic dissection before and after closure of the entry tear were calculated with CFD and analyzed for changes among the different scenarios. The control model (Model 1) was patient specific and built from the DICOM data of CTA, which bore one entry tear and three re-entry tears. Models 2–4 were modifications of Model 1, with two re-entry tears lessmore » in Model 2, one re-entry tear more in Model 3, and a larger entry tear in Model 4.ResultsThe pressure and velocity pertaining to each of the morphological models were unique. Changes in pressure and velocity findings were accountable by the changes in morphological features of the different models. There was no blood flow in the false lumen across the entry tear after its closure, the blood flow direction across the re-entry tears was reversed after closure of the entry tear.ConclusionCFD simulation is probably useful to detect hemodynamic changes in the true and false lumens of type B aortic dissection in response to morphological changes, it may potentially be developed into a non-invasive and patient-specific tool for serial monitoring of hemodynamic changes of type B aortic dissection before and after treatment.« less

  14. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  15. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  16. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Prosthetic Aortic Valves: Challenges and Solutions

    PubMed Central

    Musumeci, Lucia; Jacques, Nicolas; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio; Oury, Cécile

    2018-01-01

    Aortic Valve Disease (AVD) is the most common Valvular Heart Disease (VHD), affecting millions of people worldwide. Severe AVD is treated in most cases with prosthetic aortic valve replacement, which involves the substitution of the native aortic valve with a prosthetic one. In this review we will discuss the different types of prosthetic aortic valves available for implantation and the challenges faced by patients, medical doctors, researchers and manufacturers, as well as the approaches that are taken to overcome them. PMID:29868612

  18. Computer-aided design of the human aortic root.

    PubMed

    Ovcharenko, E A; Klyshnikov, K U; Vlad, A R; Sizova, I N; Kokov, A N; Nushtaev, D V; Yuzhalin, A E; Zhuravleva, I U

    2014-11-01

    The development of computer-based 3D models of the aortic root is one of the most important problems in constructing the prostheses for transcatheter aortic valve implantation. In the current study, we analyzed data from 117 patients with and without aortic valve disease and computed tomography data from 20 patients without aortic valvular diseases in order to estimate the average values of the diameter of the aortic annulus and other aortic root parameters. Based on these data, we developed a 3D model of human aortic root with unique geometry. Furthermore, in this study we show that by applying different material properties to the aortic annulus zone in our model, we can significantly improve the quality of the results of finite element analysis. To summarize, here we present four 3D models of human aortic root with unique geometry based on computational analysis of ECHO and CT data. We suggest that our models can be utilized for the development of better prostheses for transcatheter aortic valve implantation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Neonatal repair of right interrupted aortic arch with cerebro-myocardial perfusion technique.

    PubMed

    Takeuchi, Koh; Masuzawa, Akihiro; Kobayashi, Jotaro; Tsuchiya, Keiji

    2011-10-01

    Right interrupted aortic arch and descending aorta is exceedingly rare and most likely cause respiratory presentation, since patent ductus arteriosus (PDA) courses over the right mainstem bronchus. We report a case of successful neonatal biventricular repair of a right interrupted aortic arch (type B), with an aberrant right subclavian artery ventricular septal defect (VSD) in a 2.7 kg term neonate with DiGeorge syndrome. Patient presented in severe respiratory distress and acidosis at one day old. Two-dimensional (2D) echocardiography revealed aortic arch interruption beyond the common carotid arteries with large perimembranous outlet VSD. Aortic annulus diameter was 4.8 mm and there was no left ventricle (LV) outflow tract obstruction. Three-dimensional (3D) CT-scan confirmed these findings and identified a right-sided ductal arch that continued over the right mainstem bronchus into a right-sided descending aorta and aberrant right subclavian artery. Brachiocephalic perfusion and ductal perfusion was employed for cooling during cardiopulmonary bypass. Under deep hypothermia (27 °C rectal temperature), selective cerebro-myocardial perfusion was used for successful aortic arch repair without sacrificing the aberrant right subclavian artery. A direct tension-free anastomosis was attained. Her postoperative course was uneventful and her respiratory symptoms disappeared postoperatively. Early surgical correction is mandatory for these patients with unique anatomy and presentation.

  20. Development of an Experimental Model to Study the Relationship Between Day-to-Day Variability in Blood Pressure and Aortic Stiffness

    PubMed Central

    Bouissou-Schurtz, Camille; Lindesay, Georges; Regnault, Véronique; Renet, Sophie; Safar, Michel E.; Molinie, Vincent; Dabire, Hubert; Bezie, Yvonnick

    2015-01-01

    We aimed to develop an animal model of long-term blood pressure variability (BPV) and to investigate its consequences on aortic damage. We hypothesized that day-to-day BPV produced by discontinuous treatment of spontaneously hypertensive rats (SHR) by valsartan may increase arterial stiffness. For that purpose, rats were discontinuously treated, 2 days a week, or continuously treated by valsartan (30 mg/kg/d in chow) or placebo. Telemetered BP was recorded during 2 min every 15 min, 3 days a week during 8 weeks to cover the full BP variations in response to the treatment schedule. Pulse wave velocity (PWV) and aortic structure evaluated by immunohistochemistry were investigated in a second set of rats treated under the same conditions. Continuous treatment with valsartan reduced systolic BP (SBP) and reversed the aortic structural alterations observed in placebo treated SHR (decrease of medial cross-sectional area). Discontinuous treatment with valsartan decreased SBP to a similar extent but increased the day-to-day BPV, short term BPV, diastolic blood pressure (DBP), and PWV as compared with continuous treatment. Despite no modifications in the elastin/collagen ratio and aortic thickness, an increase in PWV was observed following discontinuous treatment and was associated with a specific accumulation of fibronectin and its αv-integrin receptor compared with both groups of rats. Taken together the present results indicate that a discontinuous treatment with valsartan is able to induce a significant increase in day-to-day BPV coupled to an aortic phenotype close to that observed in hypertension. This experimental model should pave the way for future experimental and clinical studies aimed at assessing how long-term BPV increases aortic stiffness. PMID:26696902

  1. Postoperative Aortic Neck Dilation: Myth or Fact?

    PubMed

    Ribner, A S; Tassiopoulos, A K

    2018-06-01

    The abdominal aorta is the most common site of an aortic aneurysm. The visceral and most proximal infrarenal segment (aneurysm neck) are usually spared and considered more resistant to aneurysmal degeneration. However, if an abdominal aortic aneurysm (AAA) is left untreated, the natural history of the aortic neck is progressive dilatation and shortening. This may have significant implications for patients undergoing endovascular repair of AAAs (EVAR) as endograft stability and integrity of the repair are dependent on an intact proximal seal zone. Compromised seal zones, caused by progressive diameter enlargement and foreshortening of the aortic neck, may lead to distal endograft migration, type Ia endoleak, aortic sac repressurization, and, ultimately, aortic rupture.

  2. Combustion efficiency of a premixed continuous flow combustor

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Gouldin, F. C.

    1985-01-01

    Exhaust gas temperature, velocity, and composition measurements at various radial locations at the combustor exit are presented for a swirling-flow continuous combustor of a confined concentric jet configuration operating on premixed propane or methane and air. The main objective of the study is to determine the effect of fuel substitution and of changes in outer flow swirl conditions on the combustor performance. It is found that there is no difference in observed properties for propane and methane firing; the use of either of the fuels results in nearly the same exit temperature and velocity profiles and the same efficiency for a given operating condition. A mechanism for combustion is proposed which explains qualitatively the changes in efficiency and pollutant emissions observed with changing swirl.

  3. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation.

    PubMed

    Koos, Ralf; Mahnken, Andreas Horst; Dohmen, Guido; Brehmer, Kathrin; Günther, Rolf W; Autschbach, Rüdiger; Marx, Nikolaus; Hoffmann, Rainer

    2011-07-15

    This study sought to examine a possible relationship between the severity of aortic valve calcification (AVC), the distribution of AVC and the degree of aortic valve regurgitation (AR) after transcatheter aortic valve implantation (TAVI) for severe aortic stenosis (AS). 57 patients (22 men, 81 ± 5 years) with symptomatic AS and with a logistic EuroSCORE of 24 ± 12 were included. 38 patients (67%) received a third (18F)-generation CoreValve® aortic valve prosthesis, in 19 patients (33%) an Edwards SAPIEN™ prosthesis was implanted. Prior to TAVI dual-source computed tomography for assessment of AVC was performed. To determine the distribution of AVC the percentage of the calcium load of the most severely calcified cusp was calculated. After TAVI the degree of AR was determined by angiography and echocardiography. The severity of AR after TAVI was related to the severity and distribution of AVC. There was no association between the distribution of AVC and the degree of paravalvular AR after TAVI as assessed by angiography (r = -0.02, p = 0.88). Agatston AVC scores were significantly higher in patients with AR grade ≥ 3 (5055 ± 1753, n = 3) than in patients with AR grade < 3 (1723 ± 967, p = 0.03, n = 54). Agatston AVC scores > 3000 were associated with a relevant paravalvular AR and showed a trend for increased need for second manoeuvres. There was a significant correlation between the severity of AVC and the degree of AR after AVR (r = 0.50, p < 0.001). Patients with severe AVC have an increased risk for a relevant AR after TAVI as well as a trend for increased need for additional procedures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Molecular and cellular mechanisms of aortic stenosis.

    PubMed

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  5. Application of thoracic endovascular aortic repair (TEVAR) in treating dwarfism with Stanford B aortic dissection

    PubMed Central

    Qiu, Jian; Cai, Wenwu; Shu, Chang; Li, Ming; Xiong, Qinggen; Li, Quanming; Li, Xin

    2018-01-01

    Abstract Rationale: To apply thoracic endovascular aortic repair (TEVAR) to treat dwarfism complicated with Stanford B aortic dissection. Patient concerns: In this report, we presented a 63-year-old male patient of dwarfism complicated with Stanford B aortic dissection successfully treated with TEVAR. Diagnoses: He was diagnosed with dwarfism complicated with Stanford B aortic dissection. Interventions: After conservative treatment, the male patient underwent TEVAR at 1 week after hospitalization. After operation, he presented with numbness and weakness of his bilateral lower extremities, and these symptoms were significantly mitigated after effective treatment. At 1- and 3-week after TEVAR, the aorta status was maintained stable and restored. Outcomes: The patient obtained favorable clinical prognosis and was smoothly discharged. During subsequent follow-up, he remained physically stable. Lessons: TEVAR is probably an option for treating dwarfism complicated with Stanford B aortic dissection, which remains to be validated by subsequent studies with larger sample size. PMID:29703033

  6. Transcatheter aortic valve implantation in patients with bicuspid aortic valve stenosis.

    PubMed

    Wijesinghe, Namal; Ye, Jian; Rodés-Cabau, Josep; Cheung, Anson; Velianou, James L; Natarajan, Madhu K; Dumont, Eric; Nietlispach, Fabian; Gurvitch, Ronen; Wood, David A; Tay, Edgar; Webb, John G

    2010-11-01

    We evaluated transcatheter aortic valve implantation (TAVI) in high-risk patients with bicuspid aortic valve (BAV) stenosis. TAVI shows promise in the treatment of severe stenosis of triscupid aortic valves, especially in high-risk patients. However, BAV stenosis has been considered a contraindication to TAVI. Eleven patients (age 52 to 90 years) with symptomatic severe BAV stenosis underwent TAVI at 3 Canadian tertiary hospitals between May 2006 and April 2010. All patients were considered high risk for surgical aortic valve replacement. Edwards-SAPIEN transcatheter heart valves (Edwards Lifesciences, Inc., Irvine, California) were used. Transfemoral or transapical access was selected, depending on the adequacy of femoral access. Access was transfemoral in 7 patients and transapical in 4 patients. There were no intraprocedural complications. Significant symptomatic and hemodynamic improvement was observed in 10 of 11 patients. Baseline aortic valve area of 0.65 ± 0.17 cm(2) and mean transaortic pressure gradient of 41 ± 22.4 mm Hg were improved to 1.45 ± 0.3 cm(2) and 13.4 ± 5.7 mm Hg, respectively. Two patients had moderate perivalvular leaks. At the 30-day follow-up there were 2 deaths due to multisystem failure in 2 transapical patients. In 1 patient an undersized, suboptimally positioned, unstable valve required late conversion to open surgery. TAVI in selected high-risk patients with severe BAV stenosis can be successfully performed with acceptable clinical outcomes but will require further evaluation. Copyright © 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    PubMed Central

    Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher

    2013-01-01

    Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407

  8. Transcatheter aortic valve-in-valve implantation of a CoreValve in a JenaValve prosthesis: a case report.

    PubMed

    Lotfi, Shahram; Becker, Michael; Moza, Ajay; Autschbach, Rüdiger; Marx, Nikolaus; Schröder, Jörg

    2017-09-10

    Transcatheter aortic valve implantation has become an accepted treatment modality for inoperable or high-risk surgical patients with symptomatic severe aortic stenosis. We report the case of a 70-year-old white man who was treated for severe symptomatic aortic regurgitation using transcatheter aortic valve implantation from the apical approach. Because of recurrent cardiac decompensation 4 weeks after implantation he underwent the implantation of a left ventricular assist device system. A year later echocardiography showed a severe transvalvular central insufficiency. Our heart team decided to choose a valve-in-valve approach while reducing the flow rate of left ventricular assist device to minimum and pacing with a frequency of 140 beats/minute. There was an excellent result and our patient is doing well with no relevant insufficiency of the aortic valve at 12-month follow-up. This is the first report about a successful treatment of a stenotic JenaValve using a CoreValve Evolut R; the use of a CoreValve Evolut R prosthesis may be an optimal option for valve-in-valve procedures.

  9. [Quick Start-up and Sustaining of Shortcut Nitrification in Continuous Flow Reactor].

    PubMed

    Wu, Peng; Zhang Shi-ying; Song, Yin-ling; Xu, Yue-zhong; Shen, Yao-liang

    2016-04-15

    How to achieve fast and stable startup of shortcut nitrification has a very important practical value for treatment of low C/N ratio wastewater. Thus, the quick start-up and sustaining of shortcut nitrification were investigated in continuous flow reactor targeting at the current situation of urban wastewater treatment plant using a continuous flow process. The results showed that quick start-up of shortcut nitrification could be successfully achieved in a continuous flow reactor after 60 days' operation with intermittent aeration and controlling of three stages of stop/aeration time (15 min/45 min, 45 min/45 min and 30 min/30 min). The nitrification rates could reach 90% or 95% respectively, while influent ammonia concentrations were 50 or 100 mg · L⁻¹ with stop/aeration time of 30 min/30 min. In addition, intermittent aeration could inhibit the activity of nitrite oxidizing bacteria (NOB), while short hydraulic retention time (HRT) may wash out NOB. And a combined use of both measures was beneficial to sustain shortcut nitrification.

  10. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    PubMed Central

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823

  11. Ultrasonic delineation of aortic microstructure: The relative contribution of elastin and collagen to aortic elasticity

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Takiuchi, Shin; Lin, Shiow Jiuan; Lanza, Gregory M.; Wickline, Samuel A.

    2004-05-01

    Aortic elasticity is an important factor in hemodynamic health, and compromised aortic compliance affects not only arterial dynamics but also myocardial function. A variety of pathologic processes (e.g., diabetes, Marfan's syndrome, hypertension) can affect aortic elasticity by altering the microstructure and composition of the elastin and collagen fiber networks within the tunica media. Ultrasound tissue characterization techniques can be used to obtain direct measurements of the stiffness coefficients of aorta by measurement of the speed of sound in specific directions. In this study we sought to define the contributions of elastin and collagen to the mechanical properties of aortic media by measuring the magnitude and directional dependence of the speed of sound before and after selective isolation of either the collagen or elastin fiber matrix. Formalin-fixed porcine aortas were sectioned for insonification in the circumferential, longitudinal, or radial direction and examined using high-frequency (50 MHz) ultrasound microscopy. Isolation of the collagen or elastin fiber matrices was accomplished through treatment with NaOH or formic acid, respectively. The results suggest that elastin is the primary contributor to aortic medial stiffness in the unloaded state, and that there is relatively little anisotropy in the speed of sound or stiffness in the aortic wall.

  12. [Persistence of the 5th aortic arch associated with interruption of the aortic arch].

    PubMed

    Houssa, Mahdi Ait; Atmani, Noureddine; Bamous, Mehdi; Abdou, Abdessamad; Nya, Fouad; Seghrouchni, Anis; Amahzoune, Brahim; El Bekkali, Youssef; Drissi, Mohamed; Boulahya, Abdelatif

    2017-01-01

    We report a case of persistence of the 5th aortic arch associated with total interruption of the aortic arch. This clinical case shows the diagnostic pitfall of the persistence of the 5th aortic arch and its beneficial hemodynamic effect. Preoperative clinical picture was misleading, due to the persistence of femoral pulses and clinical signs of left-to-right shunt via a wide ductus arteriosus. The diagnosis was intraoperatively adjusted on the basis of blood pressure monitoring using catheter placed into the femoral artery.

  13. Aortic valve ochronosis: a rare manifestation of alkaptonuria

    PubMed Central

    Steger, Christina Maria

    2011-01-01

    Alkaptonuric ochronosis is a heritable disorder of tyrosine metabolism, with various systemic abnormalities related to pigment deposition and degeneration of collagen and other tissues, including the heart and aorta. A 65-year-old woman with alkaptonuric ochronosis and a history of four joint replacements required aortic valve replacement for severe aortic stenosis. Operative findings included ochronosis of a partly calcified aortic valve and the aortic intima. The aortic valve was removed at surgery and histologically investigated. Light microscopic examination of the aortic valve revealed intracellular and extracellular deposits of ochronotic pigment and a chronic inflammatory infiltrate. Beside the case representation, the disease history, aetiology, pathogenesis, clinical presentation and treatment of aortic valve ochronosis are reviewed. PMID:22689837

  14. Aortic valve ochronosis: a rare manifestation of alkaptonuria.

    PubMed

    Steger, Christina Maria

    2011-07-28

    Alkaptonuric ochronosis is a heritable disorder of tyrosine metabolism, with various systemic abnormalities related to pigment deposition and degeneration of collagen and other tissues, including the heart and aorta. A 65-year-old woman with alkaptonuric ochronosis and a history of four joint replacements required aortic valve replacement for severe aortic stenosis. Operative findings included ochronosis of a partly calcified aortic valve and the aortic intima. The aortic valve was removed at surgery and histologically investigated. Light microscopic examination of the aortic valve revealed intracellular and extracellular deposits of ochronotic pigment and a chronic inflammatory infiltrate. Beside the case representation, the disease history, aetiology, pathogenesis, clinical presentation and treatment of aortic valve ochronosis are reviewed.

  15. [Comparison of aortic valve dysfunction and ascending aorta dimension between patients with different bicuspid aortic valve morphology].

    PubMed

    Ren, X S; Yu, Y T; Liu, K; Hou, Z H; Gao, Y; Yin, W H; Lyu, B

    2017-06-24

    Objective: To compare the characteristics of aortic valve dysfunction and ascending aorta dimension in patients with different bicuspid aortic valve (BAV) morphology. Methods: A total of 197 patients who underwent aortic valve replacement between April 2014 and March 2015 and were diagnosed with BAV by pathology were included, and their clinical data were retrospectively analyzed. Patients were divided into raphe(+) group(109 cases) and raphe(-) group(88 cases) according to the presence or absence of raphe, and L-R group(fusion of left and right cusp, 125 cases) and L/R-N group(fusion of left or right and noncoronary cusp, 72 cases) according to fusion type of the cusps. The characteristics of aortic valve dysfunction and ascending aorta dimension in patients with different BAV morphology were compared. Results: (1) Aortic stenosis incidence was lower in raphe(+) group than in raphe(-) group(22.9%(25/109) vs. 69.3%(61/88), P <0.001). Aortic regurgitation incidence was higher in raphe(+) group than in raphe(-) group (61.5%(67/109) vs. 22.7%(20/88), P <0.001). Incidence of type 1 of aortic root dilation was higher in raphe(+) group than in raphe(-) group (23.9%(26/109)vs.10.2%(9/88), P =0.024). (2) Aortic stenosis incidence was lower in L-R group than in L/R-N group(29.6%(37/125) vs. 68.1%(49/72), P <0.001). Aortic regurgitation incidence was higher in L-R group than in L/R-N group (59.2%(74/125) vs. 18.1%(13/72), P <0.001). Incidence of type 3 of aortic root dilation was lower in L-R group than in L/R-N group(10.4%(13/125) vs. 37.5%(27/72), P =0.006). (3) Aortic stenosis incidence was lower in L-R patients than in L/R-N patients(15.1%(13/86)vs. 52.2%(12/23), P =0.001), and aortic regurgitation incidence was higher in L-R patients than in L/R-N patients in raphe(+) group(73.3%(63/86)vs. 17.4%(4/23), P <0.001). Conclusion: There is significant difference in the type of valvular dysfunction and ascending aorta dilatation in patients with different morphological

  16. CT predictors of post-procedural aortic regurgitation in patients referred for transcatheter aortic valve implantation: an analysis of 105 patients.

    PubMed

    Marwan, Mohamed; Achenbach, Stephan; Ensminger, Stefan M; Pflederer, Tobias; Ropers, Dieter; Ludwig, Josef; Weyand, Michael; Daniel, Werner G; Arnold, Martin

    2013-06-01

    Cardiac computed tomography (CT) allows accurate and detailed analysis of the anatomy of the aortic root and valve, including quantification of calcium. We evaluated the correlation between different CT parameters and the degree of post-procedural aortic regurgitation (AR) after transcatheter aortic valve implantation (TAVI) using the balloon-expandable Edwards Sapien prosthesis. Pre-intervention contrast-enhanced dual source CT data sets of 105 consecutive patients (48 males, mean age 81 ± 6 years, mean logEuroSCORE 34 ± 13%) with symptomatic severe aortic valve stenosis referred for TAVI using the Edwards Sapien prosthesis (Edwards lifesciences, Inc., CA, USA) were analysed. The degrees of aortic valve commissural calcification and annular calcification were visually assessed on a scale from 0 to 3. Furthermore, the degree of aortic valve calcification as quantified by the Agatston score, aortic annulus eccentricity, aortic diameter at the level of the sinus of valsalva and at the sinotubular junction were assessed. Early post-procedural AR was assessed using aortography. Significant AR was defined as angiographic AR of at least moderate degree (AR ≥ 2). Visual assessment of the degree of aortic annular calcification as well as the Agatston score of aortic valve calcium correlated weakly, yet significantly with the degree of post-procedural AR (r = 0.31 and 0.24, p = 0.001 and 0.013, respectively). Compared to patients with AR < 2, patients with AR ≥ 2 showed more severe calcification of the aortic annulus (mean visual scores 1.9 ± 0.6 vs. 1.5 ± 0.6, p = 0.003) as well as higher aortic valve Agatston scores (1,517 ± 861 vs. 1,062 ± 688, p = 0.005). Visual score for commissural calcification did not differ significantly between both groups (mean scores 2.4 ± 0.5 vs. 2.5 ± 0.5, respectively, p = 0.117). No significant correlation was observed between the degree of AR and commissural calcification, aortic annulus eccentricity index or aortic diameters

  17. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart.

    PubMed

    Poelmann, Robert E; Gittenberger-de Groot, Adriana C; Biermans, Marcel W M; Dolfing, Anne I; Jagessar, Armand; van Hattum, Sam; Hoogenboom, Amanda; Wisse, Lambertus J; Vicente-Steijn, Rebecca; de Bakker, Merijn A G; Vonk, Freek J; Hirasawa, Tatsuya; Kuratani, Shigeru; Richardson, Michael K

    2017-01-01

    Cardiac outflow tract patterning and cell contribution are studied using an evo-devo approach to reveal insight into the development of aorto-pulmonary septation. We studied embryonic stages of reptile hearts (lizard, turtle and crocodile) and compared these to avian and mammalian development. Immunohistochemistry allowed us to indicate where the essential cell components in the outflow tract and aortic sac were deployed, more specifically endocardial, neural crest and second heart field cells. The neural crest-derived aorto-pulmonary septum separates the pulmonary trunk from both aortae in reptiles, presenting with a left visceral and a right systemic aorta arising from the unseptated ventricle. Second heart field-derived cells function as flow dividers between both aortae and between the two pulmonary arteries. In birds, the left visceral aorta disappears early in development, while the right systemic aorta persists. This leads to a fusion of the aorto-pulmonary septum and the aortic flow divider (second heart field population) forming an avian aorto-pulmonary septal complex. In mammals, there is also a second heart field-derived aortic flow divider, albeit at a more distal site, while the aorto-pulmonary septum separates the aortic trunk from the pulmonary trunk. As in birds there is fusion with second heart field-derived cells albeit from the pulmonary flow divider as the right 6th pharyngeal arch artery disappears, resulting in a mammalian aorto-pulmonary septal complex. In crocodiles, birds and mammals, the main septal and parietal endocardial cushions receive neural crest cells that are functional in fusion and myocardialization of the outflow tract septum. Longer-lasting septation in crocodiles demonstrates a heterochrony in development. In other reptiles with no indication of incursion of neural crest cells, there is either no myocardialized outflow tract septum (lizard) or it is vestigial (turtle). Crocodiles are unique in bearing a central shunt, the

  18. Aortic events in a nationwide Marfan syndrome cohort.

    PubMed

    Groth, Kristian A; Stochholm, Kirstine; Hove, Hanne; Kyhl, Kasper; Gregersen, Pernille A; Vejlstrup, Niels; Østergaard, John R; Gravholt, Claus H; Andersen, Niels H

    2017-02-01

    Marfan syndrome is associated with morbidity and mortality due to aortic dilatation and dissection. Preventive aortic root replacement has been the standard treatment in Marfan syndrome patients with aortic dilatation. In this study, we present aortic event data from a nationwide Marfan syndrome cohort. The nationwide cohort of Danish Marfan syndrome patients was established from the Danish National Patient Registry and the Cause of Death Register, where we retrieved information about aortic surgery and dissections. We associated aortic events with age, sex, and Marfan syndrome diagnosis prior or after the first aortic event. From the total cohort of 412 patients, 150 (36.4 %) had an aortic event. Fifty percent were event free at age 49.6. Eighty patients (53.3 %) had prophylactic surgery and seventy patients (46.7 %) a dissection. The yearly event rate was 0.02 events/year/patient in the period 1994-2014. Male patients had a significant higher risk of an aortic event at a younger age with a hazard ratio of 1.75 (CI 1.26-2.42, p = 0.001) compared with women. Fifty-three patients (12.9 %) were diagnosed with MFS after their first aortic event which primarily was aortic dissection [n = 44 (83.0 %)]. More than a third of MFS patients experienced an aortic event and male patients had significantly more aortic events than females. More than half of the total number of dissections was in patients undiagnosed with MFS at the time of their event. This emphasizes that diagnosing MFS is lifesaving and improves mortality risk by reducing the risk of aorta dissection.

  19. A novel approach: trans-ascending aorta balloon aortic valvuloplasty via sternotomy for treating severe valvular aortic stenosis in a low-weight infant.

    PubMed

    Gao, Lei; Wu, Qin; Xu, Xinhua; Zhao, Tianli; Jin, Wancun; Yang, Yifeng

    2014-02-01

    Severe congenital aortic stenosis in infants is a life-threatening congenital heart anomaly that is typically treated using percutaneous balloon aortic valvuloplasty. The usual route is the femoral artery under radiographic guidance. However, this procedure may be limited by the small size of the femoral artery in low-weight infants. An infant weighing only 7 kg with severe aortic stenosis (peak gradient was 103 mmHg) was successfully treated with a novel approach, that is trans-ascending aorta balloon aortic valvuloplasty guided by transesophageal echocardiography. The patient tolerated the procedure well, and no major complications developed. After the intervention, transesophageal echocardiography indicated a significant reduction of the aortic valvular peak gradient from 103 mmHg to 22 mmHg, no aortic regurgitation was found. Eighteen months after the intervention, echocardiography revealed that the aortic valvular peak gradient had increased to 38 mmHg and that still no aortic regurgitation had occurred. In our limited experience, trans-ascending aorta balloon aortic valvuloplasty for severe aortic stenosis under transesophageal echocardiography guidance effectively reduces the aortic peak gradient. As this is a new procedure, long-term follow up and management will need to be established. It may be an alternative technique to treat congenital aortic stenosis in low-weight patients.

  20. Early outcomes of transcatheter aortic valve replacement in patients with severe aortic stenosis: single center experience

    PubMed Central

    Bozkurt, Engin; Keleş, Telat; Durmaz, Tahir; Akçay, Murat; Ayhan, Hüseyin; Bayram, Nihal Akar; Aslan, Abdullah Nabi; Baştuğ, Serdal; Bilen, Emine

    2014-01-01

    Introduction Transcatheter aortic valve implantation is a promising alternative to high risk surgical aortic valve replacement. The procedure is mainly indicated in patients with severe symptomatic aortic stenosis who cannot undergo surgery or who are at very high surgical risk. Aim Description early results of our single-center experience with balloon expandable aortic valve implantation. Material and methods Between July 2011 and August 2012, we screened in total 75 consecutive patients with severe aortic stenosis and high risk for surgery. Twenty-one of them were found ineligible for transcatheter aortic valve implantation (TAVI) because of various reasons, and finally we treated a total of 54 patients with symptomatic severe aortic stenosis (AS) who could not be treated by open heart surgery (inoperable) because of high-risk criteria. The average age of the patients was 77.4 ±7.1; 27.8% were male and 72.2% were female. The number of patients in NYHA class II was 7 while the number of patients in class III and class IV was 47. Results The average mortality score of patients according to the STS scoring system was 8.5%. Pre-implantation mean and maximal aortic valve gradients were measured as 53.2 ±14.1 mm Hg and 85.5 ±18.9 mm Hg, respectively. Post-implantation mean and maximal aortic valve gradients were 9.0 ±3.0 and 18.2 ±5.6, respectively (p < 0.0001). The left ventricular ejection fraction was calculated as 54.7 ±14.4% before the operation and 58.0 ±11.1% after the operation (p < 0.0001). The duration of discharge after the operation was 5.29 days, and a statistically significant correlation between the duration of discharge after the operation and STS was found (r = 0385, p = 0.004). Conclusions We consider that with decreasing cost and increasing treatment experience, TAVI will be used more frequently in broader indications. Our experience with TAVI using the Edwards-Sapien XT (Edwards Lifesciences, Irvine, CA) devices suggests that this is an