Science.gov

Sample records for continuous aortic flow

  1. Is a Bioprosthetic Valve in the Aortic Position Desirable with a Continuous Flow LVAD?

    PubMed

    Doi, Atsuo; Marasco, Silvana F; McGiffin, David C

    2015-05-01

    Commissural fusion of the native aortic valve in a patient with a continuous flow left ventricular assist device (LVAD) is a known phenomenon. This may result in aortic insufficiency (AI) leading to symptomatic heart failure. In patients with AI at the time of LVAD implantation, repairing, or replacing the aortic valve is advisable. We describe a patient who had a severe dilated cardiomyopathy and moderate AI who underwent implantation of an LVAD and aortic valve replacement with a bioprosthesis that subsequently developed commissural fusion which was found at the time of heart transplantation. This case highlights the conundrum of the management of AI in patients requiring LVAD support.

  2. Durability of central aortic valve closure in patients with continuous flow left ventricular assist devices.

    PubMed

    McKellar, Stephen H; Deo, Salil; Daly, Richard C; Durham, Lucian A; Joyce, Lyle D; Stulak, John M; Park, Soon J

    2014-01-01

    A competent aortic valve is essential to providing effective left ventricular assist device support. We have adopted a practice of central aortic valve closure by placing a simple coaptation stitch at left ventricular assist device implantation in patients with significant aortic insufficiency. We conducted a follow-up study to evaluate the efficacy and durability of this procedure. The study included patients who had undergone continuous flow left ventricular assist device implantation. The patients were divided into 2 groups, those who did not require any aortic procedure because the valve was competent and those who underwent central aortic valve closure for mild or greater aortic regurgitation. The clinical endpoints were mortality, progression or recurrence of aortic insufficiency, and reoperation for aortic valve pathologic features. Aortic insufficiency was measured qualitatively from mild to severe on a scale of 0 to 5. A total of 123 patients received continuous flow left ventricular assist devices from February 2007 to August 2011. Of those, 18 (15%) underwent central aortic valve closure at left ventricular assist device implantation because of significant aortic insufficiency (1.8 ± 1.4) and 105 who did not (competent aortic valve, 0.15 ± 0.43; P < .01). At follow-up (median, 312 days; range, 0-1429 days), the mean aortic insufficiency score remained low for the patients with central aortic valve closure (0.27 ± 0.46) in contrast to those without central aortic valve closure who experienced aortic insufficiency progression (0.78 ± 0.89; P = .02). In addition, the proportion of patients with more than mild aortic insufficiency was significantly less in the central aortic valve closure group (0% vs 18%; P = .05). The patients in the central aortic valve closure group were significantly older and had a greater incidence of renal failure at baseline. The 30-day mortality was greater in the central aortic valve closure group, but the late survival

  3. VASCULAR INFLAMMATION AND ABNORMAL AORTIC HISTOMORPHOMETRY IN PATIENTS FOLLOWING PULSATILE AND CONTINUOUS FLOW LEFT VENTRICULAR ASSIST DEVICE PLACEMENT

    PubMed Central

    Lee, Mike; Akashi, Hirokazu; Kato, Tomoko S.; Takayama, Hiroo; Wu, Christina; Xu, Katherine; Collado, Elias; Weber, Matthew P.; Kennel, Peter J.; Brunjes, Danielle L; Ji, Ruiping; Naka, Yoshifumi; George, Isaac; Mancini, Donna; Farr, Maryjane; Schulze, P. Christian

    2017-01-01

    Objective Left ventricular assist devices are increasingly used in patients with advanced heart failure as both destination therapy and bridge-to-transplantation. We aimed to analyze histomorphometric, structural and inflammatory changes following pulsatile and continuous flow left ventricular assist device placement. Method Clinical and echocardiographic data were collected from medical records. Aortic wall diameter, cellularity and inflammation were assessed by immunohistochemistry on aortic tissue collected at left ventricular assist device placement and at explantation during heart transplantation. Expression of adhesion molecules was quantified by western blot. Results Decellularization of the aortic tunica media was observed in patients receiving continuous flow support. Both device types showed an increased inflammatory response following left ventricular assist device placement with variable T cell and macrophage accumulations and increased expression of vascular E-selectin, ICAM and VCAM in the aortic wall. Conclusion Left ventricular assist device implantation is associated with distinct vascular derangements with development of vascular inflammation. These changes are pronounced in patients on continuous flow left ventricular assist and associated with aortic media decellularization. These findings help to explain the progressive aortic root dilation and vascular dysfunction in patients following continuous flow device placement. PMID:26899764

  4. Neurohumoral response and clinical effectiveness of continuous aortic flow augmentation in patients with decompensated heart failure.

    PubMed

    Neumann, Till; Aidonides, Georg; Konorza, Thomas; Krings, Peter; Erbel, Raimund

    2009-01-01

    The increasing number of patients with progressive or exacerbated heart failure that is refractory to medical treatment necessitates the development of innovative cardiac assist devices. The aim of this study was to investigate whether a new percutaneously inserted system, which allows continuous aortic flow augmentation (CAFA), could be shown to be clinically effective with neurohormonal benefit in patients admitted with decompensated heart failure. Patients with exacerbations of chronic heart failure were recruited for the study. A percutaneous circulation assist device (Cancion system) promoting CAFA was implanted for up to 4 days in each patient. Clinical improvement was evaluated by measuring the clinical status according to the New York Heart Association (NYHA) classification and biochemical parameters including troponin and B-type natriuretic peptide (BNP) as markers of cardiac necrosis and cardiac overload; these parameters were measured before, during, and after CAFA treatment. The decrease in BNP was determined after implantation, reaching, on average, a maximum decrease of 57% at 72 h (P = 0.04). The neurohumoral response remained significant (P < 0.05) up to 120 h after implantation, with a decrease in BNP levels of 37%, on average, compared to baseline values. Troponin I did not show any significant change during mechanical assistance (P > 0.2). All patients had improved clinical status according to the NYHA classification, and the improvement lasted for more than 1 week. Percutaneous heart-assist devices promoting CAFA offer clinical improvement and a neurohumoral response, with a significant BNP reduction in severe exacerbation of chronic heart failure that is refractory to medical treatment.

  5. Percutaneous continuous aortic flow augmentation for cardiac recovery in a chronic heart failure patient with peripheral vascular disease.

    PubMed

    Saberin, Amir; Mueller, Bettina; Konstam, Marvin A; Wagner, Daniel R

    2006-01-01

    Peripheral vascular disease is an obstacle to the use of continuous aortic flow augmentation (CAFA). The authors used CAFA in a patient with a 50% stenosis of the left iliac artery. Five hours after initiating therapy, flow rates dropped from 1.47 L/min to 0.2 L/min, possibly due to obstruction around the inflow cannula near the site of the iliac artery stenosis. Flow was stabilized by adequate fluid infusion and successfully restored by slightly withdrawing the tip of the inflow catheter. This finding suggests that peripheral vascular disease is a relative-not an absolute-contraindication for CAFA, but requires close monitoring of flow during CAFA therapy.

  6. Rationale, design, and methods for a pivotal randomized clinical trial of continuous aortic flow augmentation in patients with exacerbation of heart failure: the MOMENTUM trial.

    PubMed

    Greenberg, Barry; Czerska, Barbara; Abraham, William T; Neaton, James D; Delgado, Reynolds M; Mather, Paul; Bourge, Robert; Parker, Irene C; Konstam, Marvin A

    2007-11-01

    For patients hospitalized with heart failure (HF) who are inadequately responsive to medical therapy, the options include ventricular assist devices and cardiac transplant. In animal models and patients, continuous aortic flow augmentation using the Orqis Medical Cancion System (Orqis Medical Corporation, Lake Forest, California), a percutaneously placed arterial-to-arterial circuit (continuous flow up to 1.5 L/min) with an extracorporeal, magnetic, centrifugal pump, improves hemodynamics and renal function with benefits persisting 24 hours after discontinuation. The Multi-center Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy is enrolling patients hospitalized with HF who are randomized to continuous aortic flow augmentation or medical therapy alone. Entry requires persistent HF, elevated pulmonary capillary wedge pressure, reduced cardiac index, and impaired renal function or substantial diuretic requirement despite intravenous inotrope or vasodilator treatment. The primary efficacy end point is a composite including the components of 72- to 96-hour pulmonary capillary wedge pressure reduction and days alive out of hospital with no mechanical support for more than 35 days. Additional end points include changes in serum creatinine, N-terminal pro-B-type natriuretic peptide, and health-related quality of life. The Multi-center Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy tests the hypothesis that continuous aortic flow augmentation improves the clinical status and outcomes in patients hospitalized with HF exacerbation who are inadequately responsive to medical therapy.

  7. Replacement of the aortic valve with a bioprosthesis at the time of continuous flow ventricular assist device implantation for preexisting aortic valve dysfunction

    PubMed Central

    Chamogeorgakis, Themistokles; Mountis, Maria; Gonzalez-Stawinski, Gonzalo V.

    2015-01-01

    Left ventricular assist device (LVAD) implantation has become a mainstay of therapy for advanced heart failure patients who are either ineligible for, or awaiting, cardiac transplantation. Controversy remains over the optimal therapeutic strategy for preexisting aortic valvular dysfunction in these patients at the time of LVAD implant. In patients with moderate to severe aortic regurgitation, surgical approaches are center specific and range from variable leaflet closure techniques to concomitant aortic valve replacement (AVR) with a bioprosthesis. In the present study, we retrospectively analyzed our outcomes in patients who underwent simultaneous AVR and LVAD implantation secondary to antecedent aortic valve pathology. Between January 2004 and June 2010, 144 patients underwent LVAD implantation at a single institution. Of these, 7 patients (4.8%) required concomitant AVR. Five of the 7 patients (71%) survived to hospital discharge and suffered no adverse events in the perioperative period. One-year survival for the discharged patients was 80%, and no prosthetic valve-related adverse events were observed in long-term follow-up. Given our experience, we conclude that bioprosthetic AVR is a plausible alternative for end-stage heart failure patients at the time of LVAD implantation. PMID:26424939

  8. Coronary Flow Impacts Aortic Leaflet Mechanics and Aortic Sinus Hemodynamics.

    PubMed

    Moore, Brandon L; Dasi, Lakshmi Prasad

    2015-09-01

    Mechanical stresses on aortic valve leaflets are well-known mediators for initiating processes leading to calcific aortic valve disease. Given that non-coronary leaflets calcify first, it may be hypothesized that coronary flow originating from the ostia significantly influences aortic leaflet mechanics and sinus hemodynamics. High resolution time-resolved particle image velocimetry (PIV) measurements were conducted to map the spatiotemporal characteristics of aortic sinus blood flow and leaflet motion with and without physiological coronary flow in a well-controlled in vitro setup. The in vitro setup consists of a porcine aortic valve mounted in a physiological aorta sinus chamber with dynamically controlled coronary resistance to emulate physiological coronary flow. Results were analyzed using qualitative streak plots illustrating the spatiotemporal complexity of blood flow patterns, and quantitative velocity vector and shear stress contour plots to show differences in the mechanical environments between the coronary and non-coronary sinuses. It is shown that the presence of coronary flow pulls the classical sinus vorticity deeper into the sinus and increases flow velocity near the leaflet base. This creates a beneficial increase in shear stress and washout near the leaflet that is not seen in the non-coronary sinus. Further, leaflet opens approximately 10% farther into the sinus with coronary flow case indicating superior valve opening area. The presence of coronary flow significantly improves leaflet mechanics and sinus hemodynamics in a manner that would reduce low wall shear stress conditions while improving washout at the base of the leaflet.

  9. Flow in an Aortic Coarctation

    NASA Astrophysics Data System (ADS)

    Loma, Luis; Miller, Paul; Hertzberg, Jean

    2009-11-01

    Coarctation of the aorta is a congenital cardiovascular defect that causes a constriction in the descending thoracic aorta. To gain a better understanding of the cause of post-surgical problems, a rigid glass and a compliant in vitro model of the aortic arch and descending aorta with a coarctation were constructed. Near-physiologic compliance was obtained using a silicone elastomer. Stereoscopic PIV was used to obtain 3D velocity maps. Results show a high speed turbulent jet formed at the exit of the coarctation. Flow in the rigid model was significantly different from in the compliant model. In the rigid model, the jet was symmetric, creating a toroidal recirculation area. In the compliant model, the jet was directed towards the medial wall, inducing flow reversal only at the lateral wall. Peak velocities and turbulence intensities were higher in the rigid model, however shear rate values in the compliant model were significantly above both the rigid model and normal in vivo values at the medial wall. In both models the reattachment region fluctuated, creating oscillatory shear.

  10. [Aortic flow measurement by transesophageal Doppler effect].

    PubMed

    Cathignol, D; Lavandier, B; Muchada, R

    1985-01-01

    Continuous measurement of cardiac output by thermodilution is invasive, impractical and unpleasant for the patient. We propose to measure descending aortic blood flow with a specially designed intra-oesophageal Doppler echo probe. The apparatus is composed of two main parts. First an A scan system makes possible the measurement of the diameter of the vessel, second a continuous wave velocimeter is used to measure the spatial mean velocity of the blood. An output calculator determines the descending aortic blood flow. The oesophageal catheter contains three ultrasonic transducers at its tip mounted on an epoxy resin bracket produced by moulding. They are connected to a flexible hose placed inside a flexible polyvinyl sheath whose outer diameter is 6.8 mm and length is 50 cm. A cylindrical latex balloon is mounted on this sheath which is water inflated to minimum pressure, ensuring a good ultrasonic coupling between the transducers and the oesophageal wall. Connection between the probe and the apparatus is made by three coaxial cables. Three isolator-transformers are built into the connector cable to ensure a safe electrical circuit. After having bled the probe of any air, the balloon is deflated. The probe is gently introduced into the oesophagus by nasal or oral route until the transducers are situated between the 5th and 6th vertebra. The balloon is then inflated to minimum pressure with 10 ml of distilled water contained in a syringe. To find the aorta, the velocimeter is first used like a Doppler stethoscope. The probe is rotated into a position corresponding to the maximum level of Doppler signal.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Blood flow characteristics in the aortic arch

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  12. Effects of aortic irregularities on blood flow.

    PubMed

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.

  13. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics.

    PubMed

    Finol, E A; Amon, C H

    2001-10-01

    Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Reynolds numbers 262.5< or =Re(peak) < or = 1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure (p(w)), wall shear stress (tau(w)), and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.

  14. Pulsatile blood flow in Abdominal Aortic Aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  15. Chaotic flow in an aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Parashar, Abhinav; Singh, Rahul; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    Oscillatory flow in straight and deformed geometries is seen in various biomedical applications. The nature of flow plays a significant role in the pathogenesis of an abdominal aortic aneurysm. The present study examines the onset of chaotic flow inside a bulged tube under oscillating flow conditions. An experimental facility is set up for generating the oscillatory flow field inside the model. A fusiform shaped model is hollowed out in a rectangular silicone model. A mixture of water and glycerin is used as the working liquid. Two-camera imaging system placed at right angles is used for three-component velocity measurement of a spherical particle inside the model. Images recorded as a time sequence are analyzed by a particle tracking algorithm. The particle trajectories in space and instantaneous velocities within the bulge have been obtained from experiments as well as numerical simulation. The frequency of oscillation considered is 1.2 Hz and the peak Reynolds numbers are in the range of 650-1200 (experiments) and 1000-3500 (simulation). The dimensionless frequency defined by the Womersely number is in the range of 10-12. Velocity signals obtained from the experiment have been analyzed to study chaotic behavior of fluid flow. Chaos is quantified in terms of the largest Lyapunov exponent, positive values being a signature of chaos. The Lyapunov exponent increases with Reynolds number and is significantly higher in the bulged geometry compared to that of the straight tube. The signature of chaotic flow is also seen in power spectra and Poincaré plots.

  16. Myocardial blood flow during induced aortic hypertension in dogs

    SciTech Connect

    Thai, B.N.; Levesque, M.J.; Nerem, R.M.

    1986-03-01

    Myocardial blood flow was measured in anesthetized dogs during control conditions and under conditions where the aortic pressure was increased due to aortic constriction or during infusion. Blood flow was measured using the radioactive microsphere technique. Radioactive microspheres (15 m Ce-141, Sr-85, and Sc-46) were injected under control, aortic constriction and arterenol infusion in four dogs and under control conditions in two others. All microsphere injections were performed under stabilized conditions. It was found that coronary blood flow rose by 80% during aortic constriction and by 158% during arterenol infusion (P < 0.05). This increase in blood flow was not uniform throughout the heart, and higher increases were observed in the middle and apex regions of the left ventricle. Furthermore, under hypertension the increase in blood flow in LAD (left anterior descending) perfused territories was slightly higher than that in CFX (left circumflex) perfused territories.

  17. Validation of a third-generation Doppler system for studies of detailed aortic flow.

    PubMed

    Rumberger, J A; Fastenow, C F; Laughlin, D L; Marcus, M L

    1984-11-01

    A multigated, third-generation Doppler velocity system has been developed and validated for detailed studies of aortic hemodynamics. The Doppler system employs a single 3-mm, 5-MHz crystal applied to the aorta at a fixed angle with respect to the flow axis and is capable of measuring velocity profile, blood vessel diameter, and integrated volume flow on a continuous, real-time basis. This represents a major developmental advance over existing first-generation, continuous-wave and second-generation, single-gated pulsed Doppler systems. Validation studies have been performed in vitro and in dogs. Aortic diameter was measured simultaneously with the volumetric Doppler system and with sonomicrometer probes. During changes in aortic diameter between 8 and 18 mm (n = 18), produced by temporary pulmonary artery occlusion or epinephrine infusion, quantitative agreement between the Doppler and sonomicrometer probes was found (r = 0.96). Velocity profile measurements and axial velocity values made with the Doppler system compared favorably with hot-film anemometry studies in vitro and in vivo. Although the current system is nondirectional, measurements of phasic aortic volume flow and absolute-time-averaged changes in flow rates showed an excellent correlation with chronically placed electromagnetic flow probes over a broad range of flow rates in vivo (1-5 l/min, n = 36, r = 0.95). This third-generation Doppler system should prove useful in clinical and research studies of detailed aortic hemodynamics.

  18. Effects of increasing flow rate on aortic stenotic indices: evidence from percutaneous transvenous balloon dilatation of the mitral valve in patients with combined aortic and mitral stenosis.

    PubMed Central

    Lee, T. M.; Su, S. F.; Chen, M. F.; Liau, C. S.; Lee, Y. T.

    1996-01-01

    OBJECTIVES: To investigate the effects of transvalvar flow rate on aortic valve resistance and valve area after percutaneous transvenous balloon dilatation of the mitral valve in a homogeneous group of patients with rheumatic heart disease. DESIGN: Retrospective analysis of 12 patients with combined aortic and mitral stenosis who had undergone balloon dilatation of the mitral valve over a period of 9 years. SETTING: Tertiary referral centre. PATIENTS: Twelve (8 women, 4 men; mean (SD) age 37 (9) of 227 consecutive patients with critical mitral stenosis undergoing transvenous balloon dilation of the mitral valve in the centre also had aortic stenosis, defined as a transaortic pressure gradient of more than 25 mm Hg measured at a catheterisation study before valvuloplasty. INTERVENTIONS: Echocardiographic variables (mitral valve area measured by the pressure half-time method and planimetry, and the aortic valve area derived from the continuity equation) and haemodynamic measurements (cardiac output, left ventricular mean systolic pressure, aortic mean pressure, transaortic valve pressure gradient, mitral valve and aortic valve areas derived from the Gorlin formula, and aortic valve resistance) were assessed before and after transvenous balloon dilatation of the mitral valve. Follow up catheterisation to measure haemodynamic variables was performed one week after mitral valvuloplasty. RESULTS: Mean transaortic flow rate increased 33% after mitral valvuloplasty (from 198 (68) to 254 (41) ml/s, P = 0.002). Aortic valve areas derived from the Gorlin formula were significantly increased from 0.57 (0.12) to 0.73 (0.14) cm2 (P = 0.006) after mitral valvuloplasty. However, aortic valve area and valve resistance derived from the continuity equation were independent of the increase in flow rate after mitral valvuloplasty (from 1.29 (0.35) to 1.30 (0.29) cm2 and from 317 (65) to 259 (75) dyn.s.cm-5, both P = NS). CONCLUSION: The Gorlin-derived aortic valve area tends to be flow

  19. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function.

  20. 4D Flow MRI in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity

    PubMed Central

    Lorenz, R.; Bock, J.; Barker, A. J.; von Knobelsdorff-Brenkenhoff, F.; Wallis, W.; Korvink, J. G.; Bissell, M. M.; Schulz-Menger, J.; Markl, M.

    2013-01-01

    Purpose Changes in aortic geometry or presence of aortic valve disease can result in substantially altered aortic hemodynamics. Dilatation of the ascending aorta or aortic valve abnormalities can result in an increase in helical flow. Methods 4D flow MRI was used to test the feasibility of quantitative helicity analysis using equidistantly distributed 2D planes along the entire aorta. The evaluation of the method included three parts: 1) the quantification of helicity in 12 healthy subjects, 2) an evaluation of observer variability and test-retest reliability, and 3) the quantification of helical flow in 16 patients with congenitally altered bicuspid aortic valves. Results Helicity quantification in healthy subjects revealed consistent directions of flow rotation along the entire aorta with high clockwise helicity in the aortic arch and an opposite rotation sense in the ascending and descending aorta. The results demonstrated good scan-rescan and inter- and intra-observer agreement of the helicity parameters. Helicity quantification in patients revealed a significant increase of absolute peak relative helicity during systole and a considerably greater heterogeneous distribution of mean helicity in the aorta. Conclusion The method has the potential to serve as a reference distribution for comparisons of helical flow between healthy subjects and patients or between different patient groups. PMID:23716466

  1. Asymmetric reactions in continuous flow

    PubMed Central

    Mak, Xiao Yin; Laurino, Paola

    2009-01-01

    Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913

  2. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  3. Viscous energy loss in the presence of abnormal aortic flow.

    PubMed

    Barker, Alex J; van Ooij, Pim; Bandi, Krishna; Garcia, Julio; Albaghdadi, Mazen; McCarthy, Patrick; Bonow, Robert O; Carr, James; Collins, Jeremy; Malaisrie, S Chris; Markl, Michael

    2014-09-01

    To present a theoretical basis for noninvasively characterizing in vivo fluid-mechanical energy losses and to apply it in a pilot study of patients known to express abnormal aortic flow patterns. Four-dimensional flow MRI was used to characterize laminar viscous energy losses in the aorta of normal controls (n = 12, age = 37 ± 10 yr), patients with aortic dilation (n = 16, age = 52 ± 8 yr), and patients with aortic valve stenosis matched for age and aortic size (n = 14, age = 46 ± 15 yr), using a relationship between the three-dimensional velocity field and viscous energy dissipation. Viscous energy loss was elevated significantly in the thoracic aorta in patients with dilated aorta (3.6 ± 1.3 mW, P = 0.024) and patients with aortic stenosis (14.3 ± 8.2 mW, P < 0.001) compared with healthy volunteers (2.3 ± 0.9 mW). The same pattern of significant differences was seen in the ascending aorta, where viscous energy losses in patients with dilated aortas (2.2 ± 1.1 mW, P = 0.021) and patients with aortic stenosis (10.9 ± 6.8 mW, P < 0.001) were elevated compared with healthy volunteers (1.2 ± 0.6 mW). This technique provides a capability to quantify the contribution of abnormal laminar blood flow to increased ventricular afterload. In this pilot study, viscous energy loss in patient cohorts was significantly elevated and indicates that cardiac afterload is increased due to abnormal flow. Copyright © 2013 Wiley Periodicals, Inc.

  4. Continuous information flow fluctuations

    NASA Astrophysics Data System (ADS)

    Rosinberg, Martin Luc; Horowitz, Jordan M.

    2016-10-01

    Information plays a pivotal role in the thermodynamics of nonequilibrium processes with feedback. However, much remains to be learned about the nature of information fluctuations in small-scale devices and their relation with fluctuations in other thermodynamics quantities, like heat and work. Here we derive a series of fluctuation theorems for information flow and partial entropy production in a Brownian particle model of feedback cooling and extend them to arbitrary driven diffusion processes. We then analyze the long-time behavior of the feedback-cooling model in detail. Our results provide insights into the structure and origin of large deviations of information and thermodynamic quantities in autonomous Maxwell's demons.

  5. Continuous flow photochemistry.

    PubMed

    Gilmore, Kerry; Seeberger, Peter H

    2014-06-01

    Due to the narrow width of tubing/reactors used, photochemistry performed in micro- and mesoflow systems is significantly more efficient than when performed in batch due to the Beer-Lambert Law. Owing to the constant removal of product and facility of flow chemical scalability, the degree of degradation observed is generally decreased and the productivity of photochemical processes is increased. In this Personal Account, we describe a wide range of photochemical transformations we have examined using both visible and UV light, covering cyclizations, intermolecular couplings, radical polymerizations, as well as singlet oxygen oxygenations. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of continuous aortic flow augmentation in patients with exacerbation of heart failure inadequately responsive to medical therapy: results of the Multicenter Trial of the Orqis Medical Cancion System for the Enhanced Treatment of Heart Failure Unresponsive to Medical Therapy (MOMENTUM).

    PubMed

    Greenberg, Barry; Czerska, Barbara; Delgado, Reynolds M; Bourge, Robert; Zile, Michael R; Silver, Marc; Klapholz, Marc; Haeusslein, Ernest; Mehra, Mandeep R; Mather, Paul; Abraham, William T; Neaton, James D; Brown, B Scott; Parker, Irene C; Konstam, Marvin A

    2008-09-16

    Prior investigations suggest that superimposing continuous flow on aortic flow (continuous aortic flow augmentation) produces vasodilation, cardiac unloading, and improved cardiac performance. We compared percutaneous continuous aortic flow augmentation (flow

  7. The relation between transaortic pressure difference and flow during dobutamine stress echocardiography in patients with aortic stenosis

    PubMed Central

    Takeda, S; Rimington, H; Chambers, J

    1999-01-01

    OBJECTIVE—To investigate the relation between transaortic pressure difference and flow in patients with aortic stenosis.
METHODS—50 asymptomatic patients with all grades of aortic stenosis were studied using dobutamine stress echocardiography. Individual plots of mean pressure drop against flow were drawn. Comparisons were made between grades of aortic stenosis as defined by the continuity equation.
RESULTS—A significant linear relation between pressure difference and flow was found in 34 patients (68%). There was a significant curvilinear relation in four (8%), while no significant regression line could be fitted in 12 (24%). In the 34 patients with linear fits, the slopes (mean (SD)) were 0.08 (0.07) in mild, 0.10 (0.04) in moderate, and 0.22 (0.16) in severe aortic stenosis (p = 0.0055).
CONCLUSIONS—Transaortic pressure difference can be related directly to flow in many patients with all grades of aortic stenosis. However, there are individual differences in slope and intercept suggesting that resistance calculated at rest may not always be representative. Raw pressure drop/flow plots may be an alternative method of describing valve function.


Keywords: aortic stenosis; continuity equation; resistance; Doppler echocardiography PMID:10377300

  8. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  9. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  10. Impact of aortic repair based on flow field computer simulation within the thoracic aorta.

    PubMed

    Filipovic, Nenad; Milasinovic, Danko; Zdravkovic, Nebojsa; Böckler, Dittmar; von Tengg-Kobligk, Hendrik

    2011-03-01

    Purpose of this computational study is to examine the hemodynamic parameters of velocity fields and shear stress in the thoracic aorta with and without aneurysm, based on an individual patient case and virtual surgical intervention. These two cases, case I (with aneurysm) and II (without aneurysm), are analyzed by computational fluid dynamics. The 3D Navier-Stokes equations and the continuity equation are solved with an unsteady stabilized finite element method. The vascular geometries are reconstructed based on computed tomography angiography images to generate a patient-specific 3D finite element mesh. The input data for the flow waveforms are derived from MR phase contrast flow measurements of a patient before surgical intervention. The computed results show velocity profiles skewed towards the inner aortic wall for both cases in the ascending aorta and in the aortic arch, while in the descending aorta these velocity profiles are skewed towards the outer aortic wall. Computed streamlines indicate that flow separation occurs at the proximal edge of the aneurysm, i.e. computed flow enters the aneurysm in the distal region, and that there is essentially a single, slowly rotating, vortex within the aneurysm during most of the systole. In summary, after virtual surgical intervention in case II higher shear stress distribution along the descending aorta could be found, which may produce more healthy reactions in the endothelium and benefit of vascular reconstruction of an aortic aneurysm at this particular location. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Transcatheter aortic valve implantation for paradoxical low-flow low-gradient aortic stenosis patients.

    PubMed

    Debry, Nicolas; Sudre, Arnaud; Amr, Gilles; Delhaye, Cédric; Schurtz, Guillaume; Montaigne, David; Koussa, Mohamad; Modine, Thomas

    2016-03-01

    We compared the outcomes of transcatheter aortic valve implantation (TAVI) in three different aortic stenosis syndromes: paradoxical low-flow low-gradient aortic stenosis (PLFLG), high-gradient aortic stenosis (HGAS), and low ejection fraction low-gradient severe aortic stenosis (LEF-LG). Outcomes for PLFLG patients after TAVI procedure are not well known. Between 2010 and 2013, patients with severe (indexed aortic valve area iAVA≤0.6 cm(2)/m(2)) symptomatic aortic stenosis were consecutively referred to our institution for TAVI because of multiple comorbidities and excessive surgical risk. About 262 patients were split into three groups as following, PLFLG: mean gradient MG≤40 mm Hg, stroke volume index SVI≤35 mL/m(2), ejection fraction EF≥55%, valvuloarterial impedance Zva>4.5 mm Hg/mL/m(2), maximal aortic jet velocity MaxV<4 m/s; MG≤40 mm Hg, MaxV<4 m/s, EF≤50%, SVI≤35 mL/m(2); and HGAS: MaxV>4 m/s, MG>40 mm Hg, EF>55%. The primary endpoint of our study was to evaluate mid-term global and cardiovascular mortalities; secondary endpoints included recommended VARC-2 variables. PLFLG (n = 31) mid-term survival was similar to HGAS (n = 172) (mean follow-up = 13.2 months [4.6-26]). Conversely LEF-LG patients (n = 59) displayed significant higher rates of all-cause (P = 0.01) and cardiovascular mortalities (P = 0.05). Postprocedural outcomes (VARC-2 criteria) were similar in the PLFLG and HGAS groups except regarding major bleeding (P = 0.02), while the LEF-LG group had more congestive heart failure and a higher BNP before discharge (both P < 0.001) than the other groups. 30-days deaths were significantly more frequent in LEF-LG and PLFLG in comparison to HGAS (P = 0.03). As opposed to LEF-LG patients, mid-term prognosis after TAVI procedure in PLFLG patients is similar to HGAS patients despite higher perioperative mortality. © 2015 Wiley Periodicals, Inc.

  12. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.

    PubMed

    Finol, Ender A; Amon, Cristina H

    2002-08-01

    In continuing the investigation of AAA hemodynamics, unsteady flow-induced stresses are presented for pulsatile blood flow through the double-aneurysm model described in Part I. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-average Reynolds numbers 50< or =Re(m) < or =300. Hemodynamic disturbance is evaluated for a modified set of indicator functions which include wall pressure (p(w)), wall shear stress (tau(w)), Wall Shear Stress Gradient (WSSG), time-average wall shear stress (tau(w)*), and time-average Wall Shear Stress Gradient WSSG*. At peak flow, the highest shear stress and WSSG levels are obtained at the distal end of both aneurysms, in a pattern similar to that of steady flow. The maximum values of wall shear stresses and wall shear stress gradients are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between numerical predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.

  13. Complications of Continuous-Flow Mechanical Circulatory Support Devices

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Left ventricular assist devices (LVADs), more importantly the continuous-flow subclass, have revolutionized the medical field by improving New York Heart Association (NYHA) functional class status, quality of life, and survival rates in patients with advanced systolic heart failure. From the first pulsatile device to modern day continuous-flow devices, LVADs have continued to improve, but they are still associated with several complications. These complications include infection, bleeding, thrombosis, hemolysis, aortic valvular dysfunction, right heart failure, and ventricular arrhythmias. In this article, we aim to review these complications to understand the most appropriate approach for their prevention and to discuss the available therapeutic modalities. PMID:26052234

  14. Obstetric analgesia and fetal aortic blood flow during labour.

    PubMed

    Lindblad, A; Bernow, J; Marsál, K

    1987-04-01

    Fetal aortic blood flow was studied in 50 women during labour, using a method combining real-time ultrasonography and a pulsed Doppler technique. Eleven women had no analgesia, 24 women received 75-100 mg pethidine intramuscularly, 12 epidural analgesia with 0.25% bupivacaine and three paracervical block with 0.125% bupivacaine. Fetal aortic blood flow increased during labour from 200 to 245 ml/min/kg in the group without analgesia (P less than 0.05) and from 211 to 236 ml/min/kg in the group with epidural analgesia (P less than 0.05) but decreased insignificantly from 216 to 204 ml/min/kg after pethidine. After paracervical block the aortic blood flow fell in two out of three fetuses. Not only is epidural analgesia the most effective means of pain relief during labour, it is also the type of obstetric analgesia that interferes least with the physiological response to labour in terms of its effect on the fetal blood flow.

  15. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  16. Does altered aortic flow in marfan syndrome relate to aortic root dilatation?

    PubMed Central

    Wang, Hung‐Hsuan; Chiu, Hsin‐Hui; Tseng, Wen‐Yih Isaac

    2016-01-01

    Purpose To examine possible hemodynamic alterations in adolescent to adult Marfan syndrome (MFS) patients with aortic root dilatation. Materials and Methods Four‐dimensional flow MRI was performed in 20 MFS patients and 12 age‐matched normal subjects with a 3T system. The cross‐sectional areas of 10 planes along the aorta were segmented for calculating the axial and circumferential wall shear stress (WSSaxial, WSScirc), oscillatory shear index (OSIaxial, OSIcirc), and the nonroundness (NR), presenting the asymmetry of segmental WSS. Pearson's correlation analysis was performed to present the correlations between the quantified indices and the body surface area (BSA), aortic root diameter (ARD), and Z score of the ARD. P < 0.05 indicated statistical significance. Results Patients exhibited lower WSSaxial in the aortic root and the WSScirc in the arch (P < 0.05–0.001). MFS patients exhibited higher OSIaxial and OSIcirc in the sinotubular junction and arch, but lower OSIcirc in the descending aorta (all P < 0.05). The NR values were lower in patients (P < 0.05). The WSSaxial or WSScirc exhibited moderate to strong correlations with BSA, ARD, or Z score (R2 = 0.50–0.72) in MFS patients. Conclusion The significant differences in the quantified indices, which were associated with BSA, ARD, or Z score, in MFS were opposite to previous reports for younger MFS patients, indicating that altered flows in MFS patients may depend on the disease progress. The possible time dependency of hemodynamic alterations in MFS patients strongly suggests that longitudinal follow‐up of 4D Flow is needed to comprehend disease progress. J. Magn. Reson. Imaging 2016;44:500–508. PMID:26854646

  17. Four-dimensional magnetic resonance imaging-derived ascending aortic flow eccentricity and flow compression are linked to aneurysm morphology†

    PubMed Central

    Kari, Fabian A.; Kocher, Nadja; Beyersdorf, Friedhelm; Tscheuschler, Anke; Meffert, Philipp; Rylski, Bartosz; Siepe, Matthias; Russe, Maximilian F.; Hope, Michael D.

    2015-01-01

    OBJECTIVES The impact of specific blood flow patterns within ascending aortic and/or aortic root aneurysms on aortic morphology is unknown. We investigated the interrelation of ascending aortic flow compression/peripheralization and aneurysm morphology with respect to sinotubuar junction (STJ) definition. METHODS Thirty-one patients (aortic root/ascending aortic aneurysm >45 mm) underwent flow-sensitive 4D magnetic resonance thoracic aortic flow measurement at 3 Tesla (Siemens, Germany) at two different institutions (Freiburg, Germany, and San Francisco, CA, USA). Time-resolved image data post-processing and visualization of mid-systolic, mid-ascending aortic flow were performed using local vector fields. The Flow Compression Index (FCI) was calculated individually as a fraction of the area of high-velocity mid-systolic flow over the complete cross-sectional ascending aortic area. According to aortic aneurysm morphology, patients were grouped as (i) small root, eccentric ascending aortic aneurysm (STJ definition) and (ii) enlarged aortic root, non-eccentric ascending aortic aneurysm with diffuse root and tubular enlargement. RESULTS The mean FCI over all patients was 0.47 ± 0.5 (0.37–0.99). High levels of flow compression/peripheralization (FCI <0.6) were linked to eccentric aneurysm morphology (Group A, n = 11), while low levels or absence of aortic flow compression/peripheralization (FCI >0.8) occurred more often in Group B (n = 20). The FCI was 0.48 ± 0.05 in Group A and 0.78 ± 0.14 in Group B (P < 0.001). Distribution of bicuspid aortic valve (P = 0.6) and type of valve dysfunction (P = 0.22 for aortic stenosis) was not found to be different between groups. CONCLUSIONS Irrespective of aortic valve morphology and function, ascending aortic blood flow patterns are linked to distinct patterns of ascending aortic aneurysm morphology. Implementation of quantitative local blood flow analyses might help to improve aneurysm risk stratification in the future. PMID

  18. Aortic arch replacement with a beating heart: a simple method using continuous 3-way perfusion.

    PubMed

    Abu-Omar, Y; Ali, J M; Colah, S; Dunning, J J

    2014-01-01

    We describe a simplified 3-way perfusion strategy that could be used in complex aortic procedures, which ensures continuous end-organ perfusion and minimizes the potential risks of cardiac, cerebral and peripheral ischaemic complications.

  19. Stress echocardiography in differentiation of fixed vs. low flow-low gradient and pseudo severe aortic stenosis.

    PubMed

    Sokolovic, Sekib; Mundigler, G; Naser, Nabil

    2010-01-01

    To present the importance of stress echocardiography in diagnosis of low flow-low gradient aortic stenosis (AS). Two patients were tested, one male patient, aged 62, weight 72 kg, height 172 cm, and BSA 1.86 cm2, and the other one was female, aged 59, weight 83 kg, height 168 cm and BSA, were found to have at least moderate ASs with low flow and low gradients at rest. Dobutamine stress test was performed using standard protocol starting at 2.5 mcg/kg/min at rest as continuous infusion and increasing every five minutes intervals with stepwise increase up to 20 mcg/kg/min. Monitoring with 12-lead ECG and blood pressure measurements at each step was performed. After completing the test, transthoracic echocardiography (TTE) showed in male patient increasing in transvalvular flow and gradients across aortic valve and ejection fraction (EF) measured by Simpson method increased from 33% at rest up to 40% following Dobutamine administration. EOA (effective aortic valve area) from 0.8 cm2 at rest increased insignificantly to 0.85 cm, (0.425 m2) afterwards. Final diagnosis therefore was severe aortic stenosis with preserved contractile reserve. The patient was scheduled for surgical valve replacement. In female patient after DST, the area of aortic valve increased significantly from 0.75 cm2 up to 1.05 cm2, while all transvalvular gradients remained almost unchanged. Pseudo-Aortic Stenosis and surgical valve replacement had not been indicated at this time.

  20. Influence of Beta-Blocker Therapy on Aortic Blood Flow in Patients with Bicuspid Aortic Valve

    PubMed Central

    Allen, Bradley D.; Markl, Michael; Barker, Alex J.; van Ooij, Pim; Carr, James C.; Malaisrie, S Chris; McCarthy, Patrick; Bonow, Robert O.; Kansal, Preeti

    2016-01-01

    Purpose In patients with bicuspid aortic valve (BAV), beta-blockers (BB) are assumed to slow ascending aorta (AAo) dilation by reducing wall shear stress (WSS) on the aneurysmal segment. The aim of this study was to assess differences in AAo peak velocity and WSS in BAV patients with and without BB therapy. Methods BAV patients receiving BB (BB+, n=30, age:47±11 years) or not on BB (BB−, n=30, age:46±13 years) and healthy controls (n=15, age:43±11 years) underwent 4D flow MRI for the assessment of in-vivo aortic 3D blood flow. Peak systolic velocities and 3D WSS were calculated at the anterior and posterior walls of the AAo. Results Both patient groups had higher maximum and mean WSS relative to the control group (p=0.001 to p=0.04). WSS was not reduced in the BB+ group compared to BB− patients in the anterior AAo (maximum: 1.49±0.47N/m2 vs. 1.38±0.49N/m2, p=0.99, mean: 0.76±0.2N/m2 vs. 0.74±0.18N/m2, p=1.00) or posterior AAo (maximum: 1.45±0.42N/m2 vs. 1.39±0.58N/m2, p=1.00; mean: 0.65±0.16N/m2 vs. 0.63±0.16N/m2, p=1.00). AAo peak velocity was elevated in patients compared to controls (p<0.01) but similar for BB+ and BB− groups (p=0.42). Linear models identified significant relationships between aortic stenosis severity and increased maximum WSS (β=0.186, p=0.007) and between diameter at the sinus of Valsalva and reduced mean WSS (β=−0.151, p=0.045). Conclusions Peak velocity and systolic WSS were similar for BAV patients irrespective of BB therapy. Further prospective studies are needed to investigate the impact of dosage and duration of BB therapy on aortic hemodynamics and development of aortopathy. PMID:26817758

  1. Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve.

    PubMed

    Allen, Bradley D; Markl, Michael; Barker, Alex J; van Ooij, Pim; Carr, James C; Malaisrie, S Chris; McCarthy, Patrick; Bonow, Robert O; Kansal, Preeti

    2016-04-01

    In patients with bicuspid aortic valve (BAV), beta-blockers (BB) are assumed to slow ascending aorta (AAo) dilation by reducing wall shear stress (WSS) on the aneurysmal segment. The aim of this study was to assess differences in AAo peak velocity and WSS in BAV patients with and without BB therapy. BAV patients receiving BB (BB+, n = 30, age: 47 ± 11 years) or not on BB (BB-, n = 30, age: 46 ± 13 years) and healthy controls (n = 15, age: 43 ± 11 years) underwent 4D flow MRI for the assessment of in vivo aortic 3D blood flow. Peak systolic velocities and 3D WSS were calculated at the anterior and posterior walls of the AAo. Both patient groups had higher maximum and mean WSS relative to the control group (p = 0.001 to p = 0.04). WSS was not reduced in the BB+ group compared to BB- patients in the anterior AAo (maximum: 1.49 ± 0.47 vs. 1.38 ± 0.49 N/m(2), p = 0.99, mean: 0.76 ± 0.2 vs. 0.74 ± 0.18 N/m(2), p = 1.00) or posterior AAo (maximum: 1.45 ± 0.42 vs. 1.39 ± 0.58 N/m(2), p = 1.00; mean: 0.65 ± 0.16 vs. 0.63 ± 0.16 N/m(2), p = 1.00). AAo peak velocity was elevated in patients compared to controls (p < 0.01) but similar for BB+ and BB- groups (p = 0.42). Linear models identified significant relationships between aortic stenosis severity and increased maximum WSS (β = 0.186, p = 0.007) and between diameter at the sinus of Valsalva and reduced mean WSS (β = -0.151, p = 0.045). Peak velocity and systolic WSS were similar for BAV patients irrespective of BB therapy. Further prospective studies are needed to investigate the impact of dosage and duration of BB therapy on aortic hemodynamics and development of aortopathy.

  2. Flow dynamics of stenotic aortic valves assessed by signal processing of Doppler spectrograms.

    PubMed

    Bermejo, J; Antoranz, J C; García-Fernández, M A; Moreno, M M; Delcán, J L

    2000-03-01

    Clinical assessment of aortic stenosis (AS) is sometimes challenging, because all hemodynamic indexes of severity are modified by flow rate. However, the mechanisms underlying flow dependence remain controversial. Analysis of instantaneous flow dynamics has provided crucial information in a number of cardiovascular disorders and may add new insight into this phenomenon. This study was designed to analyze in vivo the effects of flow interventions on instantaneous valvular dynamics of stenotic valves. For this purpose, a custom algorithm for signal processing of Doppler spectrograms was developed and validated against a control population. Digital Doppler recordings at the aortic valve and left ventricular outflow tract were obtained in 15 patients with AS, at baseline and during low-dose dobutamine infusion; 10 normal subjects were studied as controls. Spectrograms were processed by signal averaging, time alignment, modal-velocity enhancement, envelope tracing, and numerical interpolation. Instantaneous relative aortic valve area (rAVA) was obtained by the continuity equation and plotted against normalized ejection time. Curves were classified as either type A (rapid, early-systolic opening) or type B (slow, end-systolic opening). Curves from controls closely matched prior knowledge of normal valve dynamics, but curves from patients were clearly different: all controls except 2 (80%) had type A, whereas all patients except 3 (80%) had a type B pattern (p = 0.03). Dobutamine infusion in patients increased and slightly anticipated peak rAVA by accelerating valve opening. Despite similar values of area and pressure difference, type B dynamics were associated with lower blood pressure (p = 0.01) and worse long-term outcome (>3 years) than type A flow dynamics (p = 0.02). Signal processing of Doppler spectrograms allows a comprehensive assessment of aortic flow dynamics. Differences in timing of valve aperture and in maximal leaflet excursion account for flow

  3. Evaluation of Aortic Blood Flow and Wall Shear Stress in Aortic Stenosis and Its Association With Left Ventricular Remodeling

    PubMed Central

    von Knobelsdorff-Brenkenhoff, Florian; Karunaharamoorthy, Achudhan; Trauzeddel, Ralf Felix; Barker, Alex J; Blaszczyk, Edyta; Markl, Michael; Schulz-Menger, Jeanette

    2016-01-01

    Background Aortic stenosis (AS) leads to variable stress for the left ventricle (LV) and consequently a broad range of LV remodeling. Study aim was to describe blood flow patterns in the ascending aorta of AS patients and determine their association with remodeling. Methods and Results Thirty-seven patients with AS (14 mild, 8 moderate, 15 severe; age 63±13 years) and 37 healthy controls (age 60±10 years) underwent 4D-flow MRI. Helical and vortical flow formations and flow eccentricity were assessed in the ascending aorta. Normalized flow displacement from the vessel center and peak systolic wall shear stress (WSSpeak) in the ascending aorta were quantified. LV remodeling was assessed based on LV mass index (LVMI-I) and the ratio of LV mass to enddiastolic volume (relative wall mass; RWM). Marked helical and vortical flow formation and eccentricity were more prevalent in patients with AS than in healthy subjects, and AS patients exhibited an asymmetric and elevated distribution of WSSpeak. In AS, aortic orifice area was strongly negatively associated with vortical flow formation (p=0.0274), eccentricity (p=0.0070) and flow displacement (p=0.0021). Bicuspid aortic valve was associated with more intense helical (p=0.0098) and vortical flow formation (p=0.0536), higher flow displacement (p=0.11) and higher WSSpeak (p=0.0926). LVM-I and RWM were significantly associated with aortic orifice area (p=0.0611, p=0.0058) and flow displacement (p=0.0058, p=0.0283). Conclusions In this pilot study, AS leads to abnormal blood flow pattern and WSSpeak in the ascending aorta. In addition to aortic orifice area, normalized flow displacement was significantly associated with LV remodeling. PMID:26917824

  4. Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients.

    PubMed

    Granegger, Marcus; Masetti, Marco; Laohasurayodhin, Ravi; Schloeglhofer, Thomas; Zimpfer, Daniel; Schima, Heinrich; Moscato, Francesco

    2016-06-01

    Rotary blood pumps (RBPs) typically support the left ventricle by pumping blood from the ventricle to the aorta, partially bypassing the aortic valve (AV). Monitoring the AV opening during RBP support would provide important information about cardiac-pump interaction. However, currently this information is not continuously available. In this study, an algorithm to determine AV opening using available pump signals was evaluated in humans. Pump speed changes were performed in 15 RBP patients to elicit opening of the AV. Simultaneously to pump data recordings, the AV was continuously monitored using echocardiography. The algorithm, which classifies the AV state utilizing three features (skewness, kurtosis, and crest factor) calculated from the pump flow waveform, was compared to echocardiography by using cross-validation analysis. Additionally, numerical simulation was used to evaluate effects of different pump characteristics and cannula length, as well as mitral valve insufficiency on the AV opening detection method. More than 7000 heart beats were analyzed. The correct classification rate using the developed algorithm was 91.1% (sensitivity 91.0%, specificity 91.2%). Numerical simulations showed that the flow waveform shape used for AV opening detection is preserved under the different conditions studied. This study demonstrates that the AV opening can be reliably detected in RBP patients using available pump data. Once implemented in RBP controllers, this method will provide a novel tool to improve the management of RBP patients, particularly for adjustments of the pump speed and flow and for the evaluation of the assisted cardiac function.

  5. The effect of flow recirculation on abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar

    2012-06-01

    The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.

  6. Continuous flow dielectrophoretic particle concentrator

    SciTech Connect

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  7. Thermodynamics with Continuous Information Flow

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan M.; Esposito, Massimiliano

    2014-07-01

    We provide a unified thermodynamic formalism describing information transfers in autonomous as well as nonautonomous systems described by stochastic thermodynamics. We demonstrate how information is continuously generated in an auxiliary system and then transferred to a relevant system that can utilize it to fuel otherwise impossible processes. Indeed, while the joint system satisfies the second law, the entropy balance for the relevant system is modified by an information term related to the mutual information rate between the two systems. We show that many important results previously derived for nonautonomous Maxwell demons can be recovered from our formalism and use a cycle decomposition to analyze the continuous information flow in autonomous systems operating at a steady state. A model system is used to illustrate our findings.

  8. Evaluation of descending aortic flow volumes and effective orifice area through aortic coarctation by spatiotemporal integration of color Doppler data: An in vitro study.

    PubMed

    Wanitkun, S; Gharib, M; Zarandi, M; Shiota, T; Sahn, D J

    1999-06-01

    Flow volumes in an in vitro model of the aorta with 3 different degrees of stiffness (stiff, moderately stiff, and compliant) proximal to a coarctation were calculated by using a digital color Doppler echocardiography flow calculation method that semiautomatically integrates spatial and temporal color flow velocity data. These flow volumes were compared with those obtained by the conventional pulsed Doppler method with reference to ultrasonic flowmeter. Flow volumes determined by the automated method agreed well with those obtained by ultrasonic flowmeter, even in this compliant aorta model with vessel size changing with pulsation, whereas the pulsed Doppler method overestimated the reference data, especially for more compliant descending aortic segments. The combination of flow data with continuous wave Doppler allows definition of effective orifice area for coarctation.

  9. Effects of Aortic Irregularities on the Blood Flow

    NASA Astrophysics Data System (ADS)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  10. Doppler aortic flow velocity measurement in healthy children.

    PubMed Central

    Sohn, S.; Kim, H. S.

    2001-01-01

    To determine normal values for Doppler parameters of left ventricular function, ascending aortic blood flow velocity was measured by pulsed wave Doppler echocardiography in 63 healthy children with body surface area (BSA) < 1 m(2) (age < 10 yr). Peak velocity was independent of sex, but increased with body size. Mean acceleration was related to peak velocity (r = 0.75, p < 0.0001). Both stroke distance and ejection time had strong negative correlations with heart rate and positive correlations with BSA, suggesting that these parameters should be evaluated in relation to heart rate and body size. Mean intra- and interobserver variability for peak velocity, ejection time, stroke and minute distance ranged from 3 to 7%, whereas variability for acceleration time was 9 to 13%. These data may be used as reference values for the assessment of hemodynamic states in young children with cardiac disease. PMID:11306737

  11. Abnormal distribution of pulmonary blood flow in aortic valve disease

    PubMed Central

    Goodenday, Lucy S.; Simon, George; Craig, Hazel; Dalby, Lola

    1970-01-01

    Wasted ventilatory volume (VD) and its ratio to tidal volume (VD/VT) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered VD/VT to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0·05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation. Images PMID:5420086

  12. Aortic stiffness determines diastolic blood flow reversal in the descending thoracic aorta: potential implication for retrograde embolic stroke in hypertension.

    PubMed

    Hashimoto, Junichiro; Ito, Sadayoshi

    2013-09-01

    Aortic stiffening often precedes cardiovascular diseases, including stroke, but the underlying pathophysiological mechanisms remain obscure. We hypothesized that such abnormalities could be attributable to altered central blood flow dynamics. In 296 patients with uncomplicated hypertension, Doppler velocity pulse waveforms were recorded at the proximal descending aorta and carotid artery to calculate the reverse/forward flow ratio and diastolic/systolic flow index, respectively. Tonometric waveforms were recorded on the radial artery to estimate aortic pressure and characteristic impedance (Z0) and to determine carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities. In all subjects, the aortic flow waveform was bidirectional, comprising systolic forward and diastolic reverse flows. The aortic reverse/forward flow ratio (35 ± 10%) was positively associated with parameters of aortic stiffness (including pulse wave velocity, Z0, and aortic/peripheral pulse wave velocity ratio), independent of age, body mass index, aortic diameter, and aortic pressure. The carotid flow waveform was unidirectional and bimodal with systolic and diastolic maximal peaks. There was a positive relationship between the carotid diastolic/systolic flow index (28 ± 9%) and aortic reverse/forward flow ratio, which remained significant after adjustment for aortic stiffness and other related parameters. The Bland-Altman plots showed a close time correspondence between aortic reverse and carotid diastolic flow peaks. In conclusion, aortic stiffness determines the extent of flow reversal from the descending aorta to the aortic arch, which contributes to the diastolic antegrade flow into the carotid artery. This hemodynamic relationship constitutes a potential mechanism linking increased aortic stiffness, altered flow dynamics, and increased stroke risk in hypertension.

  13. Flow structure in continuous flow electrophoresis chambers

    NASA Technical Reports Server (NTRS)

    Deiber, J. A.; Saville, D. A.

    1982-01-01

    There are at least two ways that hydrodynamic processes can limit continiuous flow electrophoresis. One arises from the sensitivity of the flow to small temerature gradients, especially at low flow rates and power levels. This sensitivity can be suppressed, at least in principle, by providing a carefully tailored, stabilizing temperature gradient in the cooling system that surrounds the flow channel. At higher power levels another limitation arises due to a restructuring of the main flow. This restructuring is caused by buoyancy, which is in turn affected by the electro-osmotic crossflow. Approximate solutions to appropriate partial differential equations have been computed by finite difference methods. One set of results is described here to illustrate the strong coupling between the structure of the main (axial) flow and the electro-osmotic flow.

  14. Flow velocity and turbulence in the transverse aorta of a proximally directed aortic cannula: hydrodynamic study in a transparent model.

    PubMed

    Fukuda, Ikuo; Fujimori, Shingo; Daitoku, Kazuyuki; Yanaoka, Hideki; Inamura, Takao

    2009-06-01

    The objective of this study was to visualize and characterize the effect of cannula tip direction on flow within transverse aortic arch. A hydrodynamic analysis of the Dispersion arterial cannula (Edwards Lifescience LLC, Irvine, CA) was performed using particle image velocimetry in glass perfusion models of healthy and aneurysmal aortic arches. Flow velocity, streamline, distribution of magnitude of the strain rate tensor (function of shear stress), and degree of flow turbulence were comparatively analyzed for cannula tip directed toward the aortic arch (standard direction) and toward the aortic root (root direction). Standard direction cannulation in the model of the healthy aorta showed the flow velocity in the transverse aortic arch was rapid, the streamlines were nonlinear, and the magnitude of the strain rate tensor was high along aortic curvatures. Conversely, directing the cannula tip toward the aortic root generated slower and less turbulent flow in the transverse aortic arch despite high velocity and turbulence and nonlinear streamlines in the ascending aorta. In the aneurysmal aortic arch model, the flow velocity was more rapid in the area where aortic arch vessels originated, and a reversely directed vortex was observed between the aneurysm and the origination of the arch vessels. In the root direction model, the flow velocity distribution was slower than that in the standard direction. Directing the cannula tip of the Dispersion cannula toward the aortic root generated slower and less turbulent flow in the transverse arch of the glass models of both healthy and aneurysmal aortic arches.

  15. Flow Mediated Dilatation and Progression of Abdominal Aortic Aneurysms

    PubMed Central

    Lee, Regent; Bellamkonda, Kirthi; Jones, Amy; Killough, Nicholas; Woodgate, Felicity; Williams, Matthew; Cassimjee, Ismail; Handa, Ashok

    2017-01-01

    Objective/Background Biomarker(s) for prediction of the future progression rate of abdominal aortic aneurysms (AAA) may be useful to stratify the management of individual patients. AAAs are associated with features of systemic inflammation and endothelial dysfunction. Flow mediated dilatation (FMD) of the brachial artery is a recognised non-invasive measurement for endothelial function. We hypothesised that FMD is a potential biomarker of AAA progression and reflects the temporal changes of endothelial function during AAA progression. Methods In a prospectively recruited cohort of patients with AAAs (Oxford Abdominal Aortic Aneurysm Study), AAA size was recorded by antero-posterior diameter (APD) (outer to outer) on ultrasound. Annual AAA progression was calculated by (ΔAPD/APD at baseline)/(number of days lapsed/365 days). FMD was assessed at the same time as AAA size measurement. Analyses of data were performed in the overall cohort, and further in subgroups of AAA by size (small: 30–39 mm; moderate: 40–55 mm; large: > 55 mm). Results FMD is inversely correlated with the diameter of AAAs in all patients (n = 162, Spearman’s r = −.28, p < .001). FMD is inversely correlated with AAA diameter progression in the future 12 months (Spearman’s r = −.35, p = .001), particularly in the moderate size group. Furthermore, FMD deteriorates during the course of AAA surveillance (from a median of 2.0% at baseline to 1.2% at follow-up; p = .004), while surgical repair of AAAs (n = 50 [open repair n = 22, endovascular repair n = 28)] leads to an improvement in FMD (from 1.1% pre-operatively to 3.8% post-operatively; p < .001), irrespective of the type of surgery. Conclusion FMD is inversely correlated with future AAA progression in humans. FMD deteriorates during the natural history of AAA, and is improved by surgery. The utility of FMD as a potential biomarker in the context of AAA warrants further investigation. PMID:28416190

  16. Extended 3D Approach for Quantification of Abnormal Ascending Aortic Flow

    PubMed Central

    Sigovan, Monica; Dyverfeldt, Petter; Wrenn, Jarrett; Tseng, Elaine E.; Saloner, David; Hope, Michael D.

    2015-01-01

    Background Flow displacement quantifies eccentric flow, a potential risk factor for aneurysms in the ascending aorta, but only at a single anatomic location. The aim of this study is to extend flow displacement analysis to 3D in patients with aortic and aortic valve pathologies. Methods 43 individuals were studied with 4DFlow MRI in 6 groups: healthy, tricuspid aortic valve (TAV) with aortic stenosis (AS) but no dilatation, TAV with dilatation but no AS, and TAV with both AS and dilatation, BAV without AS or dilatation, BAV without AS but with dilation. The protocol was approved by our institutional review board, and informed consent was obtained. Flow displacement was calculated for multiple planes along the ascending aorta, and 2D and 3D analyses were compared. Results Good correlation was found between 2D flow displacement and both maximum and average 3D values (r>0.8). Healthy controls had significantly lower flow displacement values with all approaches (p<0.05). The highest flow displacement was seen with stenotic TAV and aortic dilation (0.24±0.02 with maximum flow displacement). The 2D approach underestimated the maximum flow displacement by more than 20% in 13 out of 36 patients (36%). Conclusions The extended 3D flow displacement analysis offers a more comprehensive quantitative evaluation of abnormal systolic flow in the ascending aorta than 2D analysis. Differences between patient subgroups are better demonstrated, and maximum flow displacement is more reliable assessed. PMID:25721998

  17. Flow Behavior in the Left Heart Ventricle Following Apico-Aortic Bypass Surgery

    NASA Astrophysics Data System (ADS)

    Shahriari, Shahrokh; Jeyhani, Morteza; Labrosse, Michel; Kadem, Lyes

    2013-11-01

    Apico-aortic bypass (AAB) surgery is an alternative for transcatheter aortic valve implantation (TAVI) to reduce left ventricle (LV) overload in patients with severe aortic stenosis (AS). It consists in connecting the apex of the LV to the descending thoracic aorta with a valved conduit. Postoperative flow assessments show that two thirds of the outflow is conducted from the LV apex to the conduit, while only one third crosses the native aortic valve. In this study, we performed high speed particle image velocimetry (PIV) measurements of flow pattern within an in vitro elastic model of LV in the presence of a very severe AS, before and after AAB. Results indicate that AAB effectively relieves the LV outflow obstruction; however, it also leads to abnormal ventricular flow patterns. Normal LV flow dynamics is characterized by an emerging mitral jet flow followed by the development of a vortical flow with velocities directed towards the aortic valve, while measurements in the presence of AAB show systolic flow bifurcating to the apical conduit and to the aortic valve outflow tract. This study provides the first insight into the LV flow structure after AAB including outflow jets and disturbed stagnation regions.

  18. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement.

    PubMed

    Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2016-03-01

    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p < 0.001 and p = 0.001). TAVI showed significantly more extensive vortical flow than controls (p < 0.001). Both TAVI and AVR revealed marked blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow.

  19. Blood flow competition after aortic valve bypass: an evaluation using computational fluid dynamics.

    PubMed

    Kawahito, Koji; Kimura, Naoyuki; Komiya, Kenji; Nakamura, Masanori; Misawa, Yoshio

    2017-01-24

    Aortic valve bypass (AVB) (apico-aortic conduit) remains an effective surgical alternative for patients in whom surgical aortic valve replacement or transcatheter aortic valve implantation is not feasible. However, specific complications include thrombus formation, possibly caused by stagnation arising from flow competition between the antegrade and retrograde flow, but this has not been fully investigated. The aim of this study was to analyse flow characteristics after AVB and to elucidate mechanisms of intra-aortic thrombus using computational fluid dynamics (CFD). Flow simulation was performed on data obtained from a 73-year-old postoperative AVB patient. Three-dimensional cine phase-contrast magnetic resonance imaging at 3 Tesla was used to acquire flow data and to set up the simulation. The vascular geometry was reconstructed using computed tomography angiograms. Flow simulations were implemented at various ratios of the flow rate between the ascending aorta and the graft. Results were visualized by streamline and particle tracing. CFD demonstrated stagnation in the ascending aorta-arch when retrograde flow was dominant, indicating that the risk of thrombus formation exists in the ascending arch in cases with severe aortic stenosis and/or poor left ventricular function. Meanwhile, stagnation was observed in the proximal descending aorta when the antegrade and retrograde flow were equivalent, suggesting that the descending aorta is critical when aortic stenosis is not severe. Flow stagnation in the aorta which may cause thrombus was observed when retrograde flow was dominant and antegrade/retrograde flows were equivalent. Our results suggest that anticoagulants might be recommended even in patients who receive biological valves. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  20. Blood flow competition after aortic valve bypass: an evaluation using computational fluid dynamics.

    PubMed

    Kawahito, Koji; Kimura, Naoyuki; Komiya, Kenji; Nakamura, Masanori; Misawa, Yoshio

    2017-05-01

    Aortic valve bypass (AVB) (apico-aortic conduit) remains an effective surgical alternative for patients in whom surgical aortic valve replacement or transcatheter aortic valve implantation is not feasible. However, specific complications include thrombus formation, possibly caused by stagnation arising from flow competition between the antegrade and retrograde flow, but this has not been fully investigated. The aim of this study was to analyse flow characteristics after AVB and to elucidate mechanisms of intra-aortic thrombus using computational fluid dynamics (CFD). Flow simulation was performed on data obtained from a 73-year-old postoperative AVB patient. Three-dimensional cine phase-contrast magnetic resonance imaging at 3 Tesla was used to acquire flow data and to set up the simulation. The vascular geometry was reconstructed using computed tomography angiograms. Flow simulations were implemented at various ratios of the flow rate between the ascending aorta and the graft. Results were visualized by streamline and particle tracing. CFD demonstrated stagnation in the ascending aorta-arch when retrograde flow was dominant, indicating that the risk of thrombus formation exists in the ascending arch in cases with severe aortic stenosis and/or poor left ventricular function. Meanwhile, stagnation was observed in the proximal descending aorta when the antegrade and retrograde flow were equivalent, suggesting that the descending aorta is critical when aortic stenosis is not severe. Flow stagnation in the aorta which may cause thrombus was observed when retrograde flow was dominant and antegrade/retrograde flows were equivalent. Our results suggest that anticoagulants might be recommended even in patients who receive biological valves.

  1. Valve morphology effect in aortic coarctation flow using realistic silicon models and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Marrufo, Oscar; Solis-Najera, Sergio; Pibarot, Philippe; Kadem, Lyes; Kesharvarz-Motamed, Zahra; Rodriguez, Alfredo O.; Garcia, Julio

    2014-11-01

    Aortic valve morphology and phenotype may alter the aortic wall structure and its normal flow hemodynamics. However, the relationship between altered flow patterns and progression of wall pathology is often not fully understood in patients with aortic coartation and needs larger experimental work. In this study, we introduced a compatible experimental setup with magnetic resonance imaging (MRI) using a realistic aortic coarctation (AoCo) silicon model which can replicate physiological flow conditions (pressure, flow-wave, and systemic load). We evaluated the aortic valve hemodynamics of a normal tricuspid valve and a stenotic bicuspid valve using valve effective orifice area (EOA), peak and mean transvalvular pressure gradient (TPG). AoCo severity was assessed by the AoCo pressure gradient. For the tricuspid valve we obtained an EOA = 1.89 cm2, a peak TPG = 10 mmHg, and a mean TPG = 5 mmHg. For the bicuspid valve we obtained an EOA = 1.03 cm2, a peak TPG = 37 mmHg and a mean TPG = 13 mmHg. Furthermore, AoCo with tricuspid valve led to a peak AoCo pressure gradient (PG) = 11 mmHg and a mean PG = 5 mmHg. AoCo with bicuspid valve led to a peak PG = 6 mmHg and a mean PG = 3 mmHg. Aortic flow reattachment was more evident in presence of bicuspid valve and helical flow was present in all cases. This study showed that silicon prototyping in combination with MRI velocity measurements could successfully be used to assess hemodynamic effects of aortic valve morphology in aortic coarctation flow.

  2. Direct numerical simulation of a 2D-stented aortic heart valve at physiological flow rates.

    PubMed

    Dimakopoulos, Y; Bogaerds, A C B; Anderson, P D; Hulsen, M A; Baaijens, F P T

    2012-01-01

    We study the nonlinear interaction of an aortic heart valve, composed of hyperelastic corrugated leaflets of finite density attached to a stented vessel under physiological flow conditions. In our numerical simulations, we use a 2D idealised representation of this arrangement. Blood flow is caused by a time-varying pressure gradient that mimics that of the aortic valve and corresponds to a peak Reynolds number equal to 4050. Here, we fully account for the shear-thinning behaviour of the blood and large deformations and contact between the leaflets by solving the momentum and mass balances for blood and leaflets. The mixed finite element/Galerkin method along with linear discontinuous Lagrange multipliers for coupling the fluid and elastic domains is adopted. Moreover, a series of challenging numerical issues such as the finite length of the computational domain and the conditions that should be imposed on its inflow/outflow boundaries, the accurate time integration of the parabolic and hyperbolic momentum equations, the contact between the leaflets and the non-conforming mesh refinement in part of the domain are successfully resolved. Calculations for the velocity and the shear stress fields of the blood reveal that boundary layers appear on both sides of a leaflet. The one along the ventricular side transfers blood with high momentum from the core region of the vessel to the annulus or the sinusoidal expansion, causing the continuous development of flow instabilities. At peak systole, vortices are convected in the flow direction along the annulus of the vessel, whereas during the closure stage of the valve, an extremely large vortex develops in each half of the flow domain.

  3. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    PubMed

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  4. Assessment of baroreflex sensitivity by continuous noninvasive monitoring of peripheral and central aortic pressure.

    PubMed

    Kouchaki, Zahra; Butlin, Mark; Qasem, Ahmed; Avolio, Alberto P

    2014-01-01

    Noninvasive assessment of baroreceptor sensitivity (BRS) facilitates clinical investigation of autonomic function. The spontaneous sequence method estimates BRS using the continuous measurement of arterial pressure in the finger. Since the baroreceptors are centrally located (aortic arch, carotid arteries), this study assessed the use of a continuous aortic pressure signal derived from the peripheral pressure pulse to compute the BRS from changes in systolic pressure (SBP) and pulse interval (PI). BRS computed from central aortic (cBRS) and peripheral pressure (pBRS) was calculated in 12 healthy subjects (25-62 years, 7 females). The difference between pBRS and cBRS was calculated for four levels of pulse lags between changes in SBP and PI. For each lag and for the pooled data for all lags, cBRS was significantly correlated with pBRS (r(2)=0.82). The within subject difference ranged from -41.2% to 59.2%. This difference was not related to age, gender of hemodynamic parameters (systolic or diastolic pressure, heart rate, aortic pulse wave velocity). However 18.2% of the variance was due to the difference in the number of spontaneous pulse sequences used to determine values of cBRS and pBRS. The differences between pBRS and cBRS are in the range of values of BRS as those found, in other studies, to discriminate between patient groups with different levels of autonomic function. Findings of this study suggest that, given the heart rate dependent amplification of the arterial pressure pulse between the central aorta and the peripheral limbs, BRS determined from central aortic pressure derived from the peripheral pulse may provide an improved method for noninvasive assessment of baroreceptor function.

  5. A numerical study of the hemodynamic effect of the aortic valve on coronary flow.

    PubMed

    Wald, Shaily; Liberzon, Alex; Avrahami, Idit

    2017-09-19

    During diastole, coronary perfusion depends on the pressure drop between the myocardial tissue and the coronary origin located at the aortic root. This pressure difference is influenced by the flow field near the closing valve leaflets. Clinical evidence is conclusive that patients with severe aortic stenosis (AS) suffer from diastolic dysfunction during hyperemia, but show increased coronary blood flow (CBF) during rest. Transcatheter aortic valve implantation (TAVI) was shown to decrease rest CBF along with its main purpose of improving the aortic flow and reducing the risk of heart failure. Physiological or pathological factors do not provide a clear explanation for the increase in rest CBF due to AS and its decrease immediately after TAVI. In this manuscript, we present a numerical study that examines the impact of AS and TAVI on CBF during rest conditions. The study compares the hemodynamics of five different 2D numerical models: a baseline "healthy valve" case, two AS cases and two TAVI cases. The analysis used time-dependent computational fluid-structure interaction simulations of blood flow in the aortic root including the dynamics of the flexible valve leaflets and the varying resistance of the coronary arteries. Despite its simplifications, our 2D model succeeded to capture the major effects that dominate the hemodynamics in the aortic root and to explain the hemodynamic effect that leads to the changes in CBF found in in vitro and clinical studies.

  6. Impairment of flow-mediated dilation correlates with aortic dilation in patients with Marfan syndrome.

    PubMed

    Takata, Munenori; Amiya, Eisuke; Watanabe, Masafumi; Omori, Kazuko; Imai, Yasushi; Fujita, Daishi; Nishimura, Hiroshi; Kato, Masayoshi; Morota, Tetsuro; Nawata, Kan; Ozeki, Atsuko; Watanabe, Aya; Kawarasaki, Shuichi; Hosoya, Yumiko; Nakao, Tomoko; Maemura, Koji; Nagai, Ryozo; Hirata, Yasunobu; Komuro, Issei

    2014-07-01

    Marfan syndrome is an inherited disorder characterized by genetic abnormality of microfibrillar connective tissue proteins. Endothelial dysfunction is thought to cause aortic dilation in subjects with a bicuspid aortic valve; however, the role of endothelial dysfunction and endothelial damaging factors has not been elucidated in Marfan syndrome. Flow-mediated dilation, a noninvasive measurement of endothelial function, was evaluated in 39 patients with Marfan syndrome. Aortic diameter was measured at the aortic annulus, aortic root at the sinus of Valsalva, sinotubular junction and ascending aorta by echocardiography, and adjusted for body surface area (BSA). The mean value of flow-mediated dilation was 6.5 ± 2.4 %. Flow-mediated dilation had a negative correlation with the diameter of the ascending thoracic aorta (AscAd)/BSA (R = -0.39, p = 0.020) and multivariate analysis revealed that flow-mediated dilation was an independent factor predicting AscAd/BSA, whereas other segments of the aorta had no association. Furthermore, Brinkman index had a somewhat greater influence on flow-mediated dilation (R = -0.42, p = 0.008). Although subjects who smoked tended to have a larger AscAd compared with non-smokers (AscA/BSA: 17.3 ± 1.8 versus 15.2 ± 3.0 mm/m(2), p = 0.013), there was no significant change in flow-mediated dilation, suggesting that smoking might affect aortic dilation via an independent pathway. Common atherogenic risks, such as impairment of flow-mediated dilation and smoking status, affected aortic dilation in subjects with Marfan syndrome.

  7. Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm

    PubMed Central

    Yeow, Siang Lin; Leo, Hwa Liang

    2016-01-01

    This study investigates the effect of a novel flow remodeling stent graft (FRSG) on the hemodynamic characteristics in highly angulated abdominal aortic aneurysm based on computational fluid dynamics (CFD) approach. An idealized aortic aneurysm with varying aortic neck angulations was constructed and CFD simulations were performed on nonstented models and stented models with FRSG. The influence of FRSG intervention on the hemodynamic performance is analyzed and compared in terms of flow patterns, wall shear stress (WSS), and pressure distribution in the aneurysm. The findings showed that aortic neck angulations significantly influence the velocity flow field in nonstented models, with larger angulations shifting the mainstream blood flow towards the center of the aorta. By introducing FRSG treatment into the aneurysm, erratic flow recirculation pattern in the aneurysm sac diminishes while the average velocity magnitude in the aneurysm sac was reduced in the range of 39% to 53%. FRSG intervention protects the aneurysm against the impacts of high velocity concentrated flow and decreases wall shear stress by more than 50%. The simulation results highlighted that FRSG may effectively treat aneurysm with high aortic neck angulations via the mechanism of promoting thrombus formation and subsequently led to the resorption of the aneurysm. PMID:27247612

  8. Improved Semiautomated 4D Flow MRI Analysis in the Aorta in Patients With Congenital Aortic Valve Anomalies Versus Tricuspid Aortic Valves.

    PubMed

    Schnell, Susanne; Entezari, Pegah; Mahadewia, Riti J; Malaisrie, S Chris; McCarthy, Patrick M; Collins, Jeremy D; Carr, James; Markl, Michael

    2016-01-01

    The aim of this study was to systematically investigate a newly developed semiautomated workflow for the analysis of aortic 4-dimensional flow MRI and its ability to detect hemodynamic differences in patients with congenitally altered aortic valve (bicuspid or quadricuspid valves) compared with tricuspid aortic valves. Four-dimensional flow MRI data were acquired in 20 patients with aortic dilatation (9 tricuspid aortic valves, 11 congenitally altered aortic valves). A semiautomated workflow was evaluated regarding interobserver variability, accuracy of net flow, regurgitant fraction and peak systolic velocity, and the ability to detect differences between cohorts. Results were compared with manual segmentation of vessel contours. Despite the significantly reduced analysis time, a good interobserver agreement was found for net flow and peak systolic velocity, and a moderate agreement was found for regurgitation. Significant differences in peak velocities in the descending aorta (P = 0.014) could be detected. Four-dimensional flow MRI-based semiautomated analysis of aortic hemodynamics can be performed with good reproducibility and accuracy.

  9. Paradoxical low flow aortic valve stenosis: incidence, evaluation, and clinical significance.

    PubMed

    Clavel, Marie-Annick; Pibarot, Philippe; Dumesnil, Jean G

    2014-01-01

    Paradoxical low-flow (PLF) aortic stenosis is defined by a stroke volume index <35 ml/m(2) despite the presence of preserved LV ejection fraction (≥ 50 %). This entity is typically characterized by pronounced LV concentric remodeling with small LV cavity, impaired LV filling, increased arterial load, and reduced LV longitudinal shortening. Patients with PLF also have a worse prognosis compared to patients with normal flow. Because of the low flow state, these patients often have a low gradient despite the presence of severe stenosis, thus leading to discordant AS grading (i.e., aortic valve area < 1.0 cm(2) but mean gradient < 40 mmHg) and thus uncertainty about the indication of aortic valve replacement. Stress echocardiography and aortic valve calcium score by computed tomography may be helpful to differentiate true from pseudo severe stenosis and thereby guide therapeutic management in these patients. Aortic valve replacement improves outcomes in patients with PLF low gradient AS having evidence of severe stenosis. Transcatheter aortic valve replacement may provide an interesting alternative to surgery in these patients.

  10. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  11. Combustion synthesis continuous flow reactor

    DOEpatents

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  12. Continuous Flow Microfluidic Bioparticle Concentrator.

    PubMed

    Martel, Joseph M; Smith, Kyle C; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A; Kapur, Ravi; Toner, Mehmet

    2015-06-10

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  13. Continuous Flow Microfluidic Bioparticle Concentrator

    PubMed Central

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-01-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies. PMID:26061253

  14. Continuous Flow Microfluidic Bioparticle Concentrator

    NASA Astrophysics Data System (ADS)

    Martel, Joseph M.; Smith, Kyle C.; Dlamini, Mcolisi; Pletcher, Kendall; Yang, Jennifer; Karabacak, Murat; Haber, Daniel A.; Kapur, Ravi; Toner, Mehmet

    2015-06-01

    Innovative microfluidic technology has enabled massively parallelized and extremely efficient biological and clinical assays. Many biological applications developed and executed with traditional bulk processing techniques have been translated and streamlined through microfluidic processing with the notable exception of sample volume reduction or centrifugation, one of the most widely utilized processes in the biological sciences. We utilize the high-speed phenomenon known as inertial focusing combined with hydraulic resistance controlled multiplexed micro-siphoning allowing for the continuous concentration of suspended cells into pre-determined volumes up to more than 400 times smaller than the input with a yield routinely above 95% at a throughput of 240 ml/hour. Highlighted applications are presented for how the technology can be successfully used for live animal imaging studies, in a system to increase the efficient use of small clinical samples, and finally, as a means of macro-to-micro interfacing allowing large samples to be directly coupled to a variety of powerful microfluidic technologies.

  15. Continuous flow measurements using fixed ultrasonic meters

    USGS Publications Warehouse

    Oltmann, Rick

    1993-01-01

    USGS has or soon will be installing four continuous flow-monitoring stations in the delta that will use ultrasonic velocity meters (DVM). Funding for the stations has been provided by USGS, DWR, USBR, and Contra Costa Water District.

  16. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  17. Electrohydrodynamic effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.; Roberts, G. O.; Baygents, J. C.

    1991-01-01

    We demonstrate experimentally and theoretically the importance of electrohydrodynamic (EHD) flows in continuous-flow electrophoresis (CFE) separations. These flows are associated with variations in the conductivity or dielectric constant, and are quadratic in the field strength. They appear to be the main cause of extraneous and undesired flows in CFE which have degraded separation performance and have until now not been explained. We discuss the importance of EHD flows relative to other effects. We also describe possible techniques for reducing the associated degradation of CFE separations.

  18. Assessment of left ventricular function by indices derived from aortic flow velocity.

    PubMed Central

    Kolettis, M; Jenkins, B S; Webb-Peploe, M M

    1976-01-01

    The velocity and acceleration of aortic blood flow were measured by means of a catheter velocity probe in 40 patients during routine diagnostic cardiac catheterization. Ten different variables were derived from the aortic velocity measurements, and their ability to discriminate between good and bad left ventricular (LV) function was tested. By means of eight conventional indices of LV function derived from pressure, mean flow, and quantitative cineangiography, the patients were divided into 3 groups: group 1, good LV function; group 2, moderate LV function; group 3, poor LV function. Aortic peak velocity and maximal acceleration correlated well with stroke volume and were thus indices of LV pump function. Aortic peak velocity also showed a significant correlation with LV stroke work. Both aortic peak velocity and maximal acceleration failed to discriminate between the three groups of patients, and correlated poorly with conventional indices of LV function. The mean values of stroke volume differed significantly between groups 1 and 2, and between groups 1 and 3, and also correlated better with the conventional functional indices. The best discrimination between normal and abnormal LV function was provided by dividing stroke volume by maximal acceleration, but stroke volume divided by peak velocity discriminated better than stroke volume alone. Stroke volume divided by maximal acceleration also gave more significant individual correlations with the conventional functional indices than did any other variable derived from aortic velocity. PMID:1252292

  19. Evaluating the Hemodynamic Basis of Age-Related Central Blood Pressure Change Using Aortic Flow Triangulation.

    PubMed

    Namasivayam, Mayooran; Adji, Audrey; O'Rourke, Michael F

    2016-02-01

    Pulsatile blood pressure rises with age, especially in the aorta. The comparative role of forward and reflected pressure waves (FW and RW, respectively), determined by aortic flow triangulation has not previously been explored in a large clinical cohort. This study aimed to identify the role of FW and RW in the rise in aortic pulse pressure with age. For 879 outpatients, aortic pressure waveforms were generated using a validated generalized transfer function applied to radial pressure waves recorded using applanation tonometry. FW and RW were subsequently determined using aortic flow triangulation. Contributions of FW and RW to rise in aortic pulse pressure with age were determined using multivariate linear regression and product of coefficient mediation analysis, with adjustment for height, weight, heart rate, and mean arterial pressure. Comparisons were made by gender and before and after age 60. In subjects aged 60 and below, RW was an important contributor to pulsatile pressure elevation with age, but FW was non-contributory in either gender after multivariate correction. In subjects aged above 60, both FW and RW were significant and equal contributors in both genders. In a clinical setting, both FW and RW are important to pulsatile aortic blood pressure across the lifespan, but RW appears to have a more pronounced effect across all ages, whereas FW has less effect in younger persons. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept

    PubMed Central

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi

    2015-01-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  1. Noninvasive calculation of the aortic blood pressure waveform from the flow velocity waveform: a proof of concept.

    PubMed

    Vennin, Samuel; Mayer, Alexia; Li, Ye; Fok, Henry; Clapp, Brian; Alastruey, Jordi; Chowienczyk, Phil

    2015-09-01

    Estimation of aortic and left ventricular (LV) pressure usually requires measurements that are difficult to acquire during the imaging required to obtain concurrent LV dimensions essential for determination of LV mechanical properties. We describe a novel method for deriving aortic pressure from the aortic flow velocity. The target pressure waveform is divided into an early systolic upstroke, determined by the water hammer equation, and a diastolic decay equal to that in the peripheral arterial tree, interposed by a late systolic portion described by a second-order polynomial constrained by conditions of continuity and conservation of mean arterial pressure. Pulse wave velocity (PWV, which can be obtained through imaging), mean arterial pressure, diastolic pressure, and diastolic decay are required inputs for the algorithm. The algorithm was tested using 1) pressure data derived theoretically from prespecified flow waveforms and properties of the arterial tree using a single-tube 1-D model of the arterial tree, and 2) experimental data acquired from a pressure/Doppler flow velocity transducer placed in the ascending aorta in 18 patients (mean ± SD: age 63 ± 11 yr, aortic BP 136 ± 23/73 ± 13 mmHg) at the time of cardiac catheterization. For experimental data, PWV was calculated from measured pressures/flows, and mean and diastolic pressures and diastolic decay were taken from measured pressure (i.e., were assumed to be known). Pressure reconstructed from measured flow agreed well with theoretical pressure: mean ± SD root mean square (RMS) error 0.7 ± 0.1 mmHg. Similarly, for experimental data, pressure reconstructed from measured flow agreed well with measured pressure (mean RMS error 2.4 ± 1.0 mmHg). First systolic shoulder and systolic peak pressures were also accurately rendered (mean ± SD difference 1.4 ± 2.0 mmHg for peak systolic pressure). This is the first noninvasive derivation of aortic pressure based on fluid dynamics (flow and wave speed) in the

  2. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  3. Increasing Sensitivity In Continuous-Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Sensitivity of continuous-flow electrophoresis (CFE) chamber increased by introducing lateral gradients in concentration of buffer solution and thickness of chamber. Such gradients, with resulting enhanced separation, achieved in CFE chamber with wedge-shaped cross section and collateral flow. Enables improved separations of homogeneous components of mixtures of variety of biologically important substances.

  4. Instrument continuously measures density of flowing fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, R. B.; Macinko, J.; Miller, C. E.

    1967-01-01

    Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.

  5. Predicting flow in aortic dissection: comparison of computational model with PC-MRI velocity measurements.

    PubMed

    Cheng, Z; Juli, C; Wood, N B; Gibbs, R G J; Xu, X Y

    2014-09-01

    Aortic dissection is a life-threatening process in which the weakened wall develops a tear, causing separation of wall layers. The dissected layers separate the original true aortic lumen and a newly created false lumen. If untreated, the condition can be fatal. Flow rate in the false lumen is a key feature for false lumen patency, which has been regarded as one of the most important predictors of adverse early and later outcomes. Detailed flow analysis in the dissected aorta may assist vascular surgeons in making treatment decisions, but computational models to simulate flow in aortic dissections often involve several assumptions. The purpose of this study is to assess the computational models adopted in previous studies by comparison with in vivo velocity data obtained by means of phase-contrast magnetic resonance imaging (PC-MRI). Aortic dissection geometry was reconstructed from computed tomography (CT) images, while PC-MRI velocity data were used to define inflow conditions and to provide distal velocity components for comparison with the simulation results. The computational fluid dynamics (CFD) simulation incorporated a laminar-turbulent transition model, which is necessary for adequate flow simulation in aortic conditions. Velocity contours from PC-MRI and CFD in the two lumens at the distal plane were compared at four representative time points in the pulse cycle. The computational model successfully captured the complex regions of flow reversal and recirculation qualitatively, although quantitative differences exist. With a rigid wall assumption and exclusion of arch branches, the CFD model over-predicted the false lumen flow rate by 25% at peak systole. Nevertheless, an overall good agreement was achieved, confirming the physiological relevance and validity of the computational model for type B aortic dissection with a relatively stiff dissection flap.

  6. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  7. Simulations of blood flow in patient-specific aortic dissections with a deformable wall model

    NASA Astrophysics Data System (ADS)

    Baeumler, Kathrin; Vedula, Vijay; Sailer Karmann, Anna; Marsden, Alison; Fleischmann, Dominik

    2016-11-01

    Aortic dissection is a life-threatening condition in which blood penetrates into the vessel wall, creating a second flow channel, often requiring emergency surgical repair. Up to 50% of patients who survive the acute event face late complications like aortic dilatation and eventual rupture. Prediction of late complications, however, remains challenging. We therefore aim to perform accurate and reliable patient-specific simulations of blood flow in aortic dissections, validated by 4D-Flow MRI. Among other factors, this is a computational challenge due to the compliance of the vessel walls and the large degree of membrane deformation between the two flow channels. We construct an anatomic patient-specific model from CT data including both flow channels and the membrane between them. We then run fluid structure interaction simulations using an arbitrary Lagrangian-Eulerian (ALE) formulation within a multiscale variational framework, employing stabilized finite element methods. We compare hemodynamics between a rigid and a deformable wall model and examine membrane dynamics and pressure differences between the two flow channels. The study focuses on the computational and modeling challenges emphasizing the importance of employing a deformable wall model for aortic dissections.

  8. Aortic Relative Pressure Components Derived from Four-Dimensional Flow Cardiovascular Magnetic Resonance

    PubMed Central

    Lamata, Pablo; Pitcher, Alex; Krittian, Sebastian; Nordsletten, David; Bissell, Malenka M; Cassar, Thomas; Barker, Alex J; Markl, Michael; Neubauer, Stefan; Smith, Nicolas P

    2014-01-01

    Purpose To describe the assessment of the spatiotemporal distribution of relative aortic pressure quantifying the magnitude of its three major components. Methods Nine healthy volunteers and three patients with aortic disease (bicuspid aortic valve, dissection, and Marfan syndrome) underwent 4D-flow CMR. Spatiotemporal pressure maps were computed from the CMR flow fields solving the pressure Poisson equation. The individual components of pressure were separated into time-varying inertial (“transient”), spatially varying inertial (“convective”), and viscous components. Results Relative aortic pressure is primarily caused by transient effects followed by the convective and small viscous contributions (64.5, 13.6, and 0.3 mmHg/m, respectively, in healthy subjects), although regional analysis revealed prevalent convective effects in specific contexts, e.g., Sinus of Valsalva and aortic arch at instants of peak velocity. Patients showed differences in peak transient values and duration, and localized abrupt convective changes explained by abnormalities in aortic geometry, including the presence of an aneurysm, a pseudo-coarctation, the inlet of a dissection, or by complex flow patterns. Conclusion The evaluation of the three components of relative pressure enables the quantification of mechanistic information for understanding and stratifying aortic disease, with potential future implications for guiding therapy. Magn Reson Med 72:1162–1169, 2014. © 2013 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:24243444

  9. Acute increase in reversal blood flow during counterpulsation is associated with vasoconstriction and changes in the aortic mechanics.

    PubMed

    Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo; de Forteza, Eduardo; Cabrera-Fischer, Edmundo

    2007-01-01

    While the effects of increases in forward blood flow on the arterial diameter and elasticity are known, the effects of reversal flow on the arterial properties remain to be characterized. The intra-aortic balloon pumping (IABP), the device most frequently used in circulatory support, acts generating changes in aortic flow (i.e. increasing reversal flow). Recently, in vitro studies showed that flow reversion reduces the endothelial release of relaxing factors. Hence, vascular smooth muscle (VSM) dependent changes in the aortic properties would be expected during IABP. The aim was to analyze the changes in flow during IABP and to characterize the potential effects of reversal blood flow on the aortic biomechanics. Pressure, flow and diameter were measured in sheep, before and during IABP circulatory support. Potential effects of IABP-dependent high reversal flow conditions on viscous and elastic aortic modulus were analyzed, using isobaric analysis. Flow and pressure waveforms were analyzed in the time domain, and the contribution of oscillatory forward and backward waves to the IABP-dependent changes in flow patterns were evaluated. We found that IABP changed mainly diastolic blood flow, with an increase in the reversal flow, secondary to an increase in the oscillatory backward wave amplitude. The acute increase in reversal flow during IABP was associated with vasoconstriction and changes in the aortic mechanics, possibly due to VSM activation.

  10. Uncertainty Quantification applied to flow simulations in thoracic aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2015-11-01

    The thoracic aortic aneurysm is a progressive dilatation of the thoracic aorta causing a weakness in the aortic wall, which may eventually cause life-threatening events. Clinical decisions on treatment strategies are currently based on empiric criteria, like the aortic diameter value or its growth rate. Numerical simulations can give the quantification of important indexes which are impossible to be obtained through in-vivo measurements and can provide supplementary information. Hemodynamic simulations are carried out by using the open-source tool SimVascular and considering patient-specific geometries. One of the main issues in these simulations is the choice of suitable boundary conditions, modeling the organs and vessels not included in the computational domain. The current practice is to use outflow conditions based on resistance and capacitance, whose values are tuned to obtain a physiological behavior of the patient pressure. However it is not known a priori how this choice affects the results of the simulation. The impact of the uncertainties in these outflow parameters is investigated here by using the generalized Polynomial Chaos approach. This analysis also permits to calibrate the outflow-boundary parameters when patient-specific in-vivo data are available.

  11. Flow and thermal effects in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Rhodes, P. H.; Snyder, R. S.

    1979-01-01

    In continuous flow electrophoresis the axial flow structure changes from a fully developed rectilinear form to one characterized by meandering as power levels are increased. The origin of this meandering is postulated to lie in a hydrodynamic instability driven by axial (and possibly lateral) temperature gradients. Experiments done at MSFC show agreement with the theory.

  12. Continuous spinal anaesthesia with minimally invasive haemodynamic monitoring for surgical hip repair in two patients with severe aortic stenosis.

    PubMed

    López, María Mercedes; Guasch, Emilia; Schiraldi, Renato; Maggi, Genaro; Alonso, Eduardo; Gilsanz, Fernando

    2016-01-01

    Aortic stenosis increases perioperative morbidity and mortality, perioperative invasive monitoring is advised for patients with an aortic valve area <1.0 cm(2) or a mean aortic valve gradient >30 mmHg and it is important to avoid hypotension and arrhythmias. We report the anaesthetic management with continuous spinal anaesthesia and minimally invasive haemodynamic monitoring of two patients with severe aortic stenosis undergoing surgical hip repair. Two women with severe aortic stenosis were scheduled for hip fracture repair. Continuous spinal anaesthesia with minimally invasive haemodynamic monitoring was used for anaesthetic management of both. Surgery was performed successfully after two consecutive doses of 2mg of isobaric bupivacaine 0.5% in one of them and four consecutive doses in the other. Haemodynamic conditions remained stable throughout the intervention. Vital signs and haemodynamic parameters remained stable throughout the two interventions. Our report illustrates the use of continuous spinal anaesthesia with minimally invasive haemodynamic monitoring as a valid alternative to general or epidural anaesthesia in two patients with severe aortic stenosis who are undergoing lower limb surgery. However, controlled clinical trials would be required to establish that this technique is safe and effective in these type or patients. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Aortic pressure reduction redistributes transmural blood flow in dog left ventricle

    SciTech Connect

    Smolich, J.J.; Weissberg, P.L.; Broughton, A.; Korner, P.I. )

    1988-02-01

    The authors studied the effect of graded aortic blood pressure reduction on left ventricular (LV) blood flow in anesthetized, autonomically blocked, open-chest dogs at constant heart rate and mean left atrial pressure. Aortic diastolic pressure (ADP) was lowered from rest to 90, 75, and 60 mmHg with an arteriovenous fistula. Global and regional LV blood flow was measured with radioactive microspheres. Mean LV blood flow fell stepwise from 145 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at rest to 116 ml {center dot} min{sup {minus}1} {center dot} 100 g{sup {minus}1} at ADP of 60 mmHg, whereas the endocardial-to-epicardial flow ratio decreased from 1.20 to 084. The transmural redistribution of LV blood flow was not accompanied by increases in LV oxygen extraction, depression of LV contractility, LV dilatation or LV electrical dysfunction and also occurred in the presence of considerable coronary vasodilator flow reserve. Electrical evidence of subendocardial ischemia appeared at ADP of 32 mmHg and an endocardial-to-epicardial flow ratio of 0.41 in a subgroup of animals. They conclude that the redistribution of LV flow during moderate aortic pressure reduction was an appropriate physiological adjustment to uneven transmural alterations in regional LV wall stress and that it preceded a more pronounced redistribution evident with myocardial ischemia.

  14. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  15. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  16. Right ventricular coronary blood flow patterns during aortic pressure reduction in renal hypertensive dogs.

    PubMed

    Smolich, J J; Weissberg, P L; Friberg, P; Korner, P I

    1991-04-01

    We measured right ventricular coronary blood flow with radioactive microspheres during graded aortic pressure reduction in 13 normal dogs and in 13 renal hypertensive dogs with left ventricular hypertrophy. Under anaesthesia and controlled loading conditions, mean aortic pressure was lowered from control (128 mmHg in normal and 146 mmHg in hypertensive dogs) to approximately 100, 90 and 80 mmHg. In normal dogs, right ventricular blood flow was not affected by this pressure reduction, consistent with effective right ventricular autoregulation. In hypertensive dogs, however, right ventricular blood flow was maintained between a mean aortic pressure of 146 and 90 mmHg (range 75-79 ml min(-1) 100 g(-1] but fell by 18% to 63 ml min 100 g(-1) at a mean aortic pressure of 80 mmHg (P less than 0.005). We conclude that autoregulation of right ventricular blood flow was preserved in chronic hypertension but that, compared to normal dogs, the lower limit of autoregulation was reset to a higher pressure level. Moreover, the similarity of right ventricular-to-body weight ratios in the two groups implied that this change was a consequence of hypertension-induced structural changes in the coronary vasculature.

  17. Anterior mitral valve aneurysm perforation secondary to aortic valve endocarditis detected by Doppler colour flow mapping.

    PubMed

    Decroly, P; Vandenbossche, J L; Englert, M

    1989-02-01

    We report a case of mitral valve aneurysm formation and perforation, secondary to Streptococcus sanguis endocarditis of the aortic valve. Aneurysm formation was documented by cross-sectional echocardiography and its perforation was established by Doppler colour flow mapping, and subsequently confirmed at surgery.

  18. Fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Ostrach, S.

    1978-01-01

    The following aspects of continuous flow electrophoresis were studied: (1) flow and temperature fields; (2) hydrodynamic stability; (3) separation efficiency, and (4) characteristics of wide gap chambers (the SPAR apparatus). Simplified mathematical models were developed so as to furnish a basis for understanding the phenomena and comparison of different chambers and operating conditions. Studies of the hydrodynamic stability disclosed that a wide gap chamber may be particularly sensitive to axial temperature variations which could be due to uneven heating or cooling. The mathematical model of the separation process includes effects due to the axial velocity, electro-osmotic cross flow and electrophoretic migration, all including the effects of temperature dependent properties.

  19. The Relationship Between Pulsatile Flow Impingement and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms.

    PubMed

    Lozowy, Richard J; Kuhn, David C S; Ducas, Annie A; Boyd, April J

    2017-03-01

    Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.

  20. IMPROVED SEMI-AUTOMATED 4D-FLOW MRI ANALYSIS IN THE AORTA IN PATIENTS WITH CONGENITAL AORTIC VALVE ANOMALIES VS TRICUSPID AORTIC VALVES

    PubMed Central

    Schnell, Susanne; Entezari, Pegah; Mahadewia, Riti J.; Malaisrie, S. Chris; McCarthy, Patrick M.; Collins, Jeremy D.; Carr, James; Markl, Michael

    2015-01-01

    Objective To systematically investigate a newly developed semi-automated workflow for the analysis of aortic 4D-flow MRI and its ability to detect hemodynamic differences in patients with congenitally altered aortic valve (CAV, bicuspid or quadricuspid valves) compared to tricuspid aortic valves (TAV). Methods 4D-flow MRI data were acquired in 20 aortic dilation patients (9 TAV, 11 CAV). A semi-automated workflow was evaluated regarding inter-observer variability, accuracy of net flow, regurgitant fraction and peak systolic velocity, and the ability to detect differences between cohorts. Results were compared to manual segmentation of vessel contours. Results Despite the significantly reduced analysis time a good inter-observer agreement was found for net flow and peak systolic velocity and moderate agreement for regurgitation. Significant differences in peak velocities in the descending aorta (P=0.014) could be detected. Conclusions 4D-flow MRI-based semi-automated analysis of aortic hemodynamics can be performed with good reproducibility and accuracy. PMID:26466113

  1. [Determination of transmitral blood flow by pulsed echodoppler. Correlation with aortic blood flow in 30 patients].

    PubMed

    Tribouilloy, C; Slama, M A; Choquet, D; Delonca, J; Mertl, C; Dufosse, H; Lesbre, J P

    1991-07-01

    The aim of this study was to assess the validity of mitral valve blood flow measured by pulsed Doppler echocardiography (PDE) with the sample volume positioned at the tips of the mitral leaflets. Thirty patients with a mean age of 38.4 years underwent calculation of transmitral blood flow: by Touche's method (A) in which the mitral orifice is assumed to be an ellipse with a constant long axis equal to the diameter of the mitral annulus and a variable short axis equal to the distance between the mitral leaflets measured on the M mode recording. The velocities are recorded by PDE with the sample volume at the tips of the mitral leaflets. The instantaneous cardiac output is equal to the surface multiplied by the instantaneous velocity. The integration of the instantaneous outputs throughout the whole of diastole by a computer programme provides the stroke volume; by a simplification of this method (B) which considers the short axis of the mitral ellipse to be constant and equal to the mean mitral valve leaflet separation measured from the M mode recording, and; by Hoit's method (C) which calculates mitral valve surface area from the M mode recording alone. The transmitral blood flow was calculated by these three methods and compared to the classical PDE aortic cardiac output measurement during the same examination, the accuracy of which has been previously demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Transcatheter aortic valve implantation with the direct flow medical prosthesis: Impact of native aortic valve calcification degree on outcomes.

    PubMed

    D'Ancona, Giuseppe; Agma, Hüseyin U; Ince, Hüseyin; El-Achkar, Gihan; Dißmann, Martin; Ortak, Jasmin; Kische, Stephan

    2017-01-01

    We present our single center experience with the direct flow medical (DFM) prosthesis addressing the impact of native aortic valve (AV) calcification degree on outcomes. The DFM® has been introduced for transcatheter aortic valve implantation (TAVI). The valve has a nonmetallic and inflatable support structure. Patients were divided in two groups according to preoperative cardiac computed tomography (CT): group I moderate calcification and group II heavy calcification of the total AV area. We evaluated 118 patients: 53 (45%) group I and 65 (55%) group II. Preoperative trans-AV gradient and calcification extension across the aortic unit were significantly higher in group II (P = 0.008 and P < 0.0001). CT perimeter derived annular diameter (group I 24.7 ± 2.1 mm vs. group II 24.8 ± 1.9; P = 0.6) and implanted prosthesis size (group I 26.1 ± 1.5 mm vs. group II 25.7 ± 1.5; P = 0.1) were similar. Hemodynamics were similar: mean gradient 16.1 ± 5.9 mm Hg (group I) vs. 17.3 ± 6.5 mm Hg (group II) (P = 0.3). Total aortic regurgitation (AR) was mild in 5.7% in group I and 20% in group II (P = 0.03). None developed moderate/severe AR. Heavy AV calcification was the sole independent determinant for mild regurgitation (P = 0.02; OR = 7; 95% CI: 1.2-37.6). Follow-up (289 days; 40-760 days) estimated survival was 88.1% (group I) and 93.8% (group II) (P = 0.3). Independent of AV calcification degree, adequate sizing and implantation can be achieved with the DFM®. Although higher burden of calcification increases the rate of mild AR, no patient developed moderate and severe AR. Short-term estimated survival was not influenced by calcification degree. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  4. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  5. Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass.

    PubMed

    Menon, Prahlad G; Teslovich, Nikola; Chen, Chia-Yuan; Undar, Akif; Pekkan, Kerem

    2013-01-18

    During pediatric and neonatal cardiopulmonary bypass (CPB), tiny aortic outflow cannulae (2-3 mm inner diameter), with micro-scale blood-wetting features transport relatively large blood volumes (0.3 to 1.0 L/min) resulting in high blood flow velocities (2 to 5 m/s). These severe flow conditions are likely to complement platelet activation, release pro-inflammatory cytokines, and further result in vascular and blood damage. Hemodynamically efficient aortic outflow cannulae are required to provide high blood volume flow rates at low exit force. In addition, optimal aortic insertion strategies are necessary in order to alleviate hemolytic risk, post-surgical neurological complications and developmental defects, by improving cerebral perfusion in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae. In this study, direct numerical simulation (DNS) computational fluid dynamics (CFD) was employed to delineate baseline hemodynamic performance of jet wakes emanating from microCT scanned state-of-the-art pediatric cannula tips in a cuboidal test rig operating at physiologically relevant laminar and turbulent Reynolds numbers (Re: 650-2150 , steady inflow). Qualitative and quantitative validation of CFD simulated device-specific jet wakes was established using time-resolved flow visualization and particle image velocimetry (PIV). For the standard end-hole cannula tip design, blood damage indices were further numerically assessed in a subject-specific cross-clamped neonatal aorta model for different cannula insertion configurations. Based on these results, a novel diffuser type cannula tip is proposed for improved jet flow-control, decreased blood damage and exit force and increased permissible flow rates. This study also suggests that surgically relevant cannula orientation parameters such as outflow angle and insertion depth may be important for improved hemodynamic performance. The jet

  6. Moving wall, continuous flow electronphoresis apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor)

    1988-01-01

    This invention relates generally to electrophoresis devices and more particularly to a moving wall, continuous flow device in which an electrophoresis chamber is angularly positionable with respect to the direction of moving belt walls. A frame with an electrophoresis chamber is rotatably supported between two synchronously driven belt walls. This allows the chamber to be angularly positionable with respect to the direction of belt travel, which compensates for electroosmotic flow within the electrophoresis chamber. Injection of a buffer solution via an opening and a homogenous sample stream via another opening is performed at the end of a chamber, and collection of buffer and the fractionated species particles is done by a conventional collection array at an opposite end of the chamber. Belts are driven at a rate which exactly matches the flow of buffer and sample through the chamber, which entrains the buffer to behave as a rigid electrophoretic medium, eliminating flow distortions (Poiseuille effect). Additionally, belt material for each belt is stored at one end of the device and is taken up by drive wheels at an opposite end. The novelty of this invention particularly lies in the electrophoresis chamber being angularly positionable between two moving belt walls in order to compensate for electroosmotic flow. Additionally, new belt material is continuously exposed within the chamber, minimizing flow distortion due to contamination of the belt material by the sample.

  7. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  8. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  9. Mathematical Models of Continuous Flow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.; Snyder, R. S.

    1985-01-01

    Development of high resolution continuous flow electrophoresis devices ultimately requires comprehensive understanding of the ways various phenomena and processes facilitate or hinder separation. A comprehensive model of the actual three dimensional flow, temperature and electric fields was developed to provide guidance in the design of electrophoresis chambers for specific tasks and means of interpreting test data on a given chamber. Part of the process of model development includes experimental and theoretical studies of hydrodynamic stability. This is necessary to understand the origin of mixing flows observed with wide gap gravitational effects. To insure that the model accurately reflects the flow field and particle motion requires extensive experimental work. Another part of the investigation is concerned with the behavior of concentrated sample suspensions with regard to sample stream stability particle-particle interactions which might affect separation in an electric field, especially at high field strengths. Mathematical models will be developed and tested to establish the roles of the various interactions.

  10. Echocardiographic vs Invasive Measurement of the Direct Flow Transcatheter Aortic Heart Valve Mean Gradient: Contradictory or Complementary?

    PubMed

    Panoulas, Vasileios F; Latib, Azeem; Agricola, Eustachio; Baumgartner, Helmut; Alfieri, Ottavio; Colombo, Antonio

    2015-10-01

    In this case report, we explain the reason behind observed differences in echocardiographic and invasively measured mean aortic valve gradient after transcatheter aortic valve implantation. A 25-mm Direct Flow valve (Direct Flow Medical Inc, Santa Rosa, CA) was successfully implanted in a patient with severe aortic stenosis via the transfemoral route. The discrepancy between invasive and echocardiographic measurements could be explained by the combination of a non-flat velocity profile inside the tubular structure of the Direct Flow valve, which can cause local low pressure fields that result in true high gradients detected using Doppler, and pressure recovery. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. The fluid mechanics of continuous flow electrophoresis

    NASA Astrophysics Data System (ADS)

    Saville, D. A.

    1990-11-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  12. The fluid mechanics of continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  13. Sensitivity Optimization in Continuous-Flow FTNMR

    NASA Astrophysics Data System (ADS)

    Sudmeier, James L.; Günther, Ulrich L.; Albert, Klaus; Bachovchin, William W.

    Equations simulating the steady-state magnetization of liquids in continuous-flow FTNMR are derived using a classical vector model, assuming plug flow. These equations are applied to calculation of ( S/ N) t, the relative signal/noise per unit time of any nucleus undergoing any degree of Overhauser enhancement either in the detection cell or upstream, or both, and to optimization of experimental conditions, including pulse repetition time Trep, pulse angle β, and flow rate. Ideal parameters include a pulse angle of 90° and a Trepvalue equal to sample residence time in the NMR detection cell. Optimal flow rates are directly proportional to the premagnetization volume (the portion of sample equilibrated with the magnetic field prior to detection) and inversely proportional to spin-lattice relaxation times T1. Optimal premagnetization times are smaller than previously assumed, varying from about 1.1 to 1.9 T1values. ( S/ N) tfor static FTNMR is discussed in some detail, and a new graphical method is presented for its optimization. Flow advantage, the ( S/ N) tof optimized flow FTNMR experiments compared to that of static FTNMR in a given detection cell, is proportional to the square root of the ratio of premagnetization to detection cell volumes, and virtually independent of[formula]where[formula]is the apparent transverse-relaxation time. The theory is applied to examples from recent literature, including dynamic electron-nuclear polarization, and the literature is critically reviewed. The analysis shows that claims by previous authors of recycled flow FTNMR by itself leading to increased ( S/ N) tfor slowly relaxing resonances are misleading, owing to underdetermination of ( S/ N) tin static measurements and failure to account for greater sample sizes required in flow experiments. For monitoring and control of chemical processes, the theory presented here enables the first rational basis for the design of a flow FTNMR apparatus and for the selection of acquisition

  14. Preservation Of Native Aortic Valve Flow And Full Hemodynamic Support With The TORVAD™ Using A Computational Model Of The Cardiovascular System

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Chang, Kay-Won; Larson, Erik R.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2014-01-01

    This paper describes the stroke volume selection and operational design for the TORVAD™, a synchronous, positive-displacement ventricular assist device (VAD). A lumped parameter model was used to simulate hemodynamics with the TORVAD™ compared to those under continuous flow VAD support. Results from the simulation demonstrated that a TORVAD™ with a 30 mL stroke volume ejecting with an early diastolic counterpulse provides comparable systemic support to the HeartMate II® (HMII) (cardiac output 5.7 L/min up from 3.1 L/min in simulated heart failure). By taking advantage of synchronous pulsatility, the TORVAD™ delivers full hemodynamic support with nearly half the VAD flow rate (2.7 L/min compared to 5.3 L/min for the HMII) by allowing the left ventricle to eject during systole, thus preserving native aortic valve flow (3.0 L/min compared to 0.4 L/min for the HMII, down from 3.1 L/min at baseline). The TORVAD™ also preserves pulse pressure (26.7 mmHg compared to 12.8 mmHg for the HMII, down from 29.1 mmHg at baseline). Preservation of aortic valve flow with synchronous pulsatile support could reduce the high incidence of aortic insufficiency and valve cusp fusion reported in patients supported with continuous flow VADs. PMID:25485562

  15. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  16. A comparison of two forms of the continuity equation in the Trifecta bovine pericardial aortic valve

    PubMed Central

    Parkin, Denise; Roxburgh, James; Bapat, Vinayak; Young, Christopher

    2016-01-01

    Abstract Aim To compare the classical and simplified form of the continuity equation in small Trifecta valves. Methods This is a retrospective analysis of post-operative echocardiograms performed for clinical reasons after implantation of Trifecta bioprosthetic valves. Results There were 60 patients aged 74 (range 38–89) years. For the valves of size 19, 21 and 23mm, the mean gradient was 11.3, 10.7 and 9.7mmHg, respectively. The effective orifice areas by the classical form of the continuity equation were 1.4, 1.7 and 1.9cm2, respectively. There was a good correlation between the two forms of the continuity equation, but they were significantly different using a t-test (P<0.00001). Results using the classical form were a mean 0.11 (s.d. 0.18)cm2 larger than those using the simple formula. Conclusion Haemodynamic function of the Trifecta valve in the small aortic root is good. There are significant differences between the classical and simplified forms of the continuity equation. PMID:27249811

  17. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

  18. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    NASA Astrophysics Data System (ADS)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  19. Causes of death and predictors of survival after aortic valve replacement in low flow vs. normal flow severe aortic stenosis with preserved ejection fraction

    PubMed Central

    Eleid, Mackram F.; Michelena, Hector I.; Nkomo, Vuyisile T.; Nishimura, Rick A.; Malouf, Joseph F.; Scott, Christopher G.; Pellikka, Patricia A.

    2015-01-01

    Abstracts Aims Reduced stroke volume index (SVI) in patients with severe aortic stenosis (AS) and preserved ejection fraction (EF) is associated with adverse outcomes even after aortic valve replacement (AVR), although specific reasons for impaired survival in this group are unknown. We investigated predictors of post-AVR survival and specific cause of death in patients with AS according to SVI. Methods and results Among 1120 consecutive patients with severe AS (aortic valve area <1.0 cm2) and preserved EF (≥50%) using 2-D and Doppler echocardiography who had AVR, 61 (5%) patients had reduced SVI [<35 mL/m2 (low flow, LF)] and 1059 (95%) had normal SVI [≥35 mL/m2 (normal flow, NF)]. Survival post-AVR was lower in patients with LF compared with NF [3-year survival in LF group 76% (95% CI 70–82) vs. 89% (95% CI 88–90%), P = 0.03] primarily due to higher cardiac mortality [3-year event rate 13% (95% CI 8–18%) in LF vs. 5% (95% CI 5–7%) in NF, P = 0.02]. Congestive heart failure (CHF) was the most common cause of cardiac death in the LF group (57% of post-AVR cardiac deaths) and was a more frequent cause of death in LF compared with NF (3-year risk 7 vs. 2%, P = 0.008). Multivariable predictors of post-AVR mortality included age, creatinine, haemoglobin, right ventricular systolic pressure, SVI, and cognitive impairment. Conclusion Reduced SVI is associated with higher cardiac mortality after AVR. CHF is the predominant cause of cardiac mortality after AVR in patients with LF, suggesting the presence of persistent myocardial impairment in this population. PMID:25896358

  20. Influence of aortic blood flow velocity on changes of middle cerebral artery blood flow velocity during isoflurane and sevoflurane anaesthesia.

    PubMed

    Holzer, A; Greher, M; Hetz, H; Standhardt, H; Donner, A; Heinzl, H; Zimpfer, M; Illievich, U M

    2001-04-01

    We studied the influence of systemic (aortic) blood flow velocity on changes of cerebral blood flow velocity under isoflurane or sevoflurane anaesthesia. Forty patients (age: isoflurane 24-62 years; sevoflurane 24-61 years; ASA I-III) requiring general anaesthesia undergoing routine spinal surgery were randomly assigned to either group. Cerebral blood flow velocity was measured in the middle cerebral artery by transcranial Doppler sonography (depth: 50-60 mm). Systemic blood flow velocity was determined by transthoracic Doppler sonography at the aortic valve. Heart rate, arterial pressure, arterial oxygen saturation and body temperature were monitored. After standardized anaesthesia induction (propofol, remifentanil, vecuronium) sevoflurane or isoflurane were used as single agent anaesthetics. Cerebral blood flow velocity and systemic blood flow velocity were measured in the awake patient (baseline) and repeated 5 min after reaching a steady state of inspiratory and end-expiratory concentrations of 0.75, 1.00, and 1.25 mean alveolar concentrations of either anaesthetic. To calculate the influence of systemic blood flow velocity on cerebral blood flow velocity, we defined the cerebral-systemic blood flow velocity index (CSvI). CSvI of 100% indicates a 1:1 relationship of changes of cerebral blood flow velocity and systemic blood flow velocity. Isoflurane and sevoflurane reduced both cerebral blood flow velocity and systemic blood flow velocity. The CSvI decreased significantly at all three concentrations vs. 100% (isoflurane/sevoflurane: 0.75 MAC: 85 +/- 25%/81 +/- 23%, 1.0 MAC: 79 +/- 19%/74 +/- 16%, 1.25 MAC: 71 +/- 16%/79 +/- 21%; [mean +/- SD] P = 0.0001). The reduction of the CSvI vs. 100% indicates a direct reduction of cerebral blood flow velocity caused by isoflurane/sevoflurane, independently of systemic blood flow velocity.

  1. Nonlinear analysis of aortic flow in living dogs.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.; Letzing, W. G.; Patel, D. J.

    1973-01-01

    A nonlinear theory which considered the convective accelerations of blood and the nonlinear elastic behavior and taper angle of the vascular wall was used to study the nature of blood flow in the descending thoracic aorta of living dogs under a wide range of pressures and flows. Velocity profiles, wall friction, and discharge waves were predicted from locally measured input data about the pressure-gradient wave and arterial distention. The results indicated that a major part of the mean pressure gradient was balanced by convective accelerations; the theory, which took this factor into account, predicted the correct velocity distributions and flow waves.

  2. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium

    PubMed Central

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M.; Jan, Kung-ming

    2015-01-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. PMID:25659484

  3. Aquaporin-1 facilitates pressure-driven water flow across the aortic endothelium.

    PubMed

    Nguyen, Tieuvi; Toussaint, Jimmy; Xue, Yan; Raval, Chirag; Cancel, Limary; Russell, Stewart; Shou, Yixin; Sedes, Omer; Sun, Yu; Yakobov, Roman; Tarbell, John M; Jan, Kung-ming; Rumschitzki, David S

    2015-05-01

    Aquaporin-1, a ubiquitous water channel membrane protein, is a major contributor to cell membrane osmotic water permeability. Arteries are the physiological system where hydrostatic dominates osmotic pressure differences. In the present study, we show that the walls of large conduit arteries constitute the first example where hydrostatic pressure drives aquaporin-1-mediated transcellular/transendothelial flow. We studied cultured aortic endothelial cell monolayers and excised whole aortas of male Sprague-Dawley rats with intact and inhibited aquaporin-1 activity and with normal and knocked down aquaporin-1 expression. We subjected these systems to transmural hydrostatic pressure differences at zero osmotic pressure differences. Impaired aquaporin-1 endothelia consistently showed reduced engineering flow metrics (transendothelial water flux and hydraulic conductivity). In vitro experiments with tracers that only cross the endothelium paracellularly showed that changes in junctional transport cannot explain these reductions. Percent reductions in whole aortic wall hydraulic conductivity with either chemical blocking or knockdown of aquaporin-1 differed at low and high transmural pressures. This observation highlights how aquaporin-1 expression likely directly influences aortic wall mechanics by changing the critical transmural pressure at which its sparse subendothelial intima compresses. Such compression increases transwall flow resistance. Our endothelial and historic erythrocyte membrane aquaporin density estimates were consistent. In conclusion, aquaporin-1 significantly contributes to hydrostatic pressure-driven water transport across aortic endothelial monolayers, both in culture and in whole rat aortas. This transport, and parallel junctional flow, can dilute solutes that entered the wall paracellularly or through endothelial monolayer disruptions. Lower atherogenic precursor solute concentrations may slow their intimal entrainment kinetics. Copyright © 2015

  4. Transcatheter valve implantation can alter fluid flow fields in aortic sinuses and ascending aorta

    NASA Astrophysics Data System (ADS)

    Saikrishnan, Neelakantan; Yoganathan, Ajit

    2012-11-01

    Transcatheter aortic valves (TAVs) are valve replacements used to treat aortic stenosis. Currently, these have been used in elderly patients at high-risk for open-heart procedures. Since these devices are implanted under fluoroscopic guidance, the implantation position of the valve can vary with respect to the native aortic valve annulus. The current study characterizes the altered hemodynamics in the aortic sinus and ascending aorta under different implantation (high and low) and cardiac output (2.5 and 5.0 L/min) conditions. Two commonly used TAV designs are studied using 2-D Particle Image Velocimetry (PIV). 200 phase locked images are obtained at every 25ms in the cardiac cycle, and the resulting vector fields are ensemble averaged. High implantation of the TAV with respect to the annulus causes weaker sinus washout and weaker sinus vortex formation. Additionally, the longer TAV leaflets can also result in a weaker sinus vortex. The level of turbulent fluctuations in the ascending aorta did not appear to be affected by axial positioning of the valve, but varied with cardiac output. The results of this study indicates that TAV positioning is important to be considered clinically, since this can affect coronary perfusion and potential flow stagnation near the valve.

  5. Comparison of tricuspid and bicuspid aortic valve hemodynamics under steady flow conditions

    NASA Astrophysics Data System (ADS)

    Seaman, Clara; Ward, James; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV), a congenital valvular defect consisting of two leaflets instead of three, is associated with a high prevalence of calcific aortic valve disease (CAVD). CAVD also develops in the normal tricuspid aortic valve (TAV) but its progression in the BAV is more severe and rapid. Although hemodynamic abnormalities are increasingly considered potential pathogenic contributor, the native BAV hemodynamics remain largely unknown. Therefore, this study aims at comparing experimentally the hemodynamic environments in TAV and BAV anatomies. Particle-image velocimetry was used to characterize the flow downstream of a native TAV and a model BAV mounted in a left-heart simulator and subjected to three steady flow rates characterizing different phases of the cardiac cycle. While the TAV developed a jet aligned along the valve axis, the BAV was shown to develop a skewed systolic jet with skewness decreasing with increasing flow rate. Measurement of the transvalvular pressure revealed a valvular resistance up to 50% larger in the BAV than in the TAV. The increase in velocity between the TAV and BAV leads to an increase in shear stress downstream of the valve. This study reveals strong hemodynamic abnormalities in the BAV, which may contribute to CAVD pathogenesis.

  6. Fluid-structure interaction analysis of the flow through a stenotic aortic valve

    NASA Astrophysics Data System (ADS)

    Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes

    2009-11-01

    In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.

  7. Analysis of flow patterns in a patient-specific aortic dissection model.

    PubMed

    Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y

    2010-05-01

    Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.

  8. Age and gender related differences in aortic blood flow

    NASA Astrophysics Data System (ADS)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  9. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.

    PubMed

    Shahcheraghi, N; Dwyer, H A; Cheer, A Y; Barakat, A I; Rutaganira, T

    2002-08-01

    A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.

  10. Continuous spinal labor analgesia for two deliveries in a parturient with severe subvalvular aortic stenosis.

    PubMed

    Hyuga, Shunsuke; Okutomi, Toshiyuki; Kato, Rie; Hosokawa, Yuki

    2016-12-01

    Various degrees of left ventricular outflow tract (LVOT) obstruction have been seen in patients with subvalvular aortic stenosis (SAS). Regional analgesia during labor for parturients with SAS is relatively contraindicated because it has a potential risk for hemodynamic instability due to sympathetic blockade as a result of vasodilation by local anesthetics. We thought continuous spinal analgesia (CSA) using an opioid and minimal doses of local anesthetic could provide more stable hemodynamic status. We demonstrate the management of a 28-year-old pregnant patient with SAS who received CSA for her two deliveries. For her first delivery (peak pressure gradient (∆P) between LV and aorta was approximately 55 mmHg), intrathecal fentanyl was used as a basal infusion, but we needed a small amount of bupivacaine to provide supplemental intrathecal analgesia as labor progressed. Although there were mild fluctuations in hemodynamics, she was asymptomatic. For her second delivery (∆P between LV and aorta was approximately 90 mmHg), minimal doses of continuous bupivacaine were used as a basal infusion. For her additional analgesic requests, bolus co-administration of fentanyl was effective. There were no fluctuations in her hemodynamics. Although her SAS in her second pregnancy was more severe than in the first, her hemodynamics exhibited less fluctuation during the second delivery with this method. In conclusion, CSA using fentanyl combined with minimal doses of bupivacaine provided satisfactory analgesia and stable hemodynamics in parturient with severe SAS.

  11. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A multicentre European registry to evaluate the Direct Flow Medical transcatheter aortic valve system for the treatment of patients with severe aortic stenosis.

    PubMed

    Naber, Christoph K; Pyxaras, Stylianos A; Ince, Hüseyin; Frambach, Peter; Colombo, Antonio; Butter, Christian; Gatto, Fernando; Hink, Ulrich; Nickenig, Georg; Bruschi, Giuseppe; Brueren, Guus; Tchétché, Didier; Den Heijer, Peter; Schillinger, Wolfgang; Scholtz, Smita; Van der Heyden, Jan; Lefèvre, Thierry; Gilard, Martine; Kuck, Karl-Heinz; Schofer, Joachim; Divchev, Dimitar; Baumgartner, Helmut; Asch, Federico; Wagner, Daniel; Latib, Azeem; De Marco, Federico; Kische, Stephan

    2016-12-10

    Our aim was to assess the clinical outcomes of the Direct Flow Medical Transcatheter Aortic Valve System (DFM-TAVS), when used in routine clinical practice. This is a prospective, open-label, multicentre, post-market registry of patients treated with DFM-TAVS according to approved commercial indications. Echocardiographic and angiographic data were evaluated by an independent core laboratory and adverse events were adjudicated and classified according to VARC-2 criteria by an independent clinical events committee. The primary endpoint was freedom from all-cause mortality at 30 days post procedure. Secondary endpoints included procedural, early safety and efficacy endpoints at 30 days. Two hundred and fifty patients with severe aortic stenosis undergoing transcatheter aortic valve implantation (TAVI) with the DFM-TAVS were enrolled in 21 European centres. The primary endpoint, freedom from all-cause mortality at 30 days, was met in 98% (245/250) of patients. Device success was 83.8%. Moderate or severe aortic regurgitation was reported in 3% of patients, and none/trace regurgitation in 73% of patients. Post-procedural permanent pacemaker implantation was performed in 30 patients (12.0%). The DFM-TAVS was associated with good short-term outcomes in this real-world registry. The low pacemaker and aortic regurgitation rates confirm the advantages of this next-generation transcatheter heart valve (THV).

  13. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    NASA Astrophysics Data System (ADS)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  14. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  15. Flow Through Surface Mounted Continuous Slits

    NASA Astrophysics Data System (ADS)

    Tariq, A.; Ali, M. A.; Gad-El-Hak, M.

    2014-11-01

    Ribs are used inside certain gas-turbine blades as passive devices to enhance heat transfer. Slits in those ribs are utilized to control the primary shear layer. The role of secondary flow through a continuous slit behind a surface mounted rib is investigated herein in a rectangular duct using hotwire anemometry and particle image velocimetry. Changing the open-area-ratio and the slit's location within the rib dominate the observed shear layer. The behavior of discrete Fourier modes of the velocity fluctuations generated by different configurations is explored. Two distinct flow mechanisms are observed in the rib's wake. Both mechanisms are explained on the basis of large-scale spectral peak in the shear layer. The results show the successful impact of changing the open-area-ratio by manipulating the small-scale vortices at the leeward corner of the rib, which is suspected to be the potential cause of surface ``hot spots'' in a variety of engineering devices with heat transfer. Eventually, the size and location of the slit are seen to be an additional parameter that can be used to control the fluid flow structures behind rib turbulators.

  16. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  17. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  18. Feasibility of patient specific aortic blood flow CFD simulation.

    PubMed

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts

    2006-01-01

    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data.

  19. [Measurement of fractional flow reserve in patients with severe aortic stenosis: A valid test?

    PubMed

    Kikoïne, J; Lebon, M; Gouffran, G; Millischer, D; Cattan, S; Nallet, O

    2016-11-01

    A 54-year-old woman was hospitalized for an acute pulmonary oedema revealing a severe aortic stenosis (AS) associated with an aortic aneurysm and a left ventricular hypertrophy (LVH). The coronary angiography found an equivocal left main lesion. Fractional flow reserve (FFR) showed hemodynamic significance (FFR=0.78) and optical coherence tomography confirmed this result with a minimal lumen area of 4.9mm(2). FFR-guided percutaneous intervention is reported to improve outcome in patients with stable coronary disease. However, only few data are available in cases of AS. In this condition, secondary LVH is associated with microcirculatory dysfunction, which interferes with optimal hyperemia. An elevated right atrial pressure could also modify FFR measurement. This risk of underestimation of a coronary lesion in patients with severe AS has to be taken into consideration in clinical practice.

  20. Aortic stiffness and flow-mediated dilatation in normotensive offspring of parents with hypertension.

    PubMed

    Evrengul, Harun; Tanriverdi, Halil; Kilic, Ismail D; Dursunoglu, Dursun; Ozcan, Emin E; Kaftan, Asuman; Kilic, Mustafa

    2012-08-01

    Although hypertension has been shown to be one of the most important risk factors for atherosclerosis, data about the presence of subclinical atherosclerosis in normotensive offspring with parental history of hypertension are scarce. Accordingly, the current study was designated to evaluate flow-mediated dilatation and aortic stiffness, which are early signs of atherosclerosis in young subjects with parental history of hypertension. A total of 140 [corrected] healthy, non-obese subjects in the age group of 18-22 years were included in this study and divided into two groups. The first group included 70 offspring of hypertensive parents and the second group included 70 offspring of normotensive parents as controls. In all subjects, endothelium-dependent and endothelium-independent vasodilatation of the brachial artery and aortic elastic parameters were investigated using high-resolution Doppler echocardiography. Offspring of hypertensive parents demonstrated higher values of aortic stiffness (7.1 plus or minus 1.88 and 6.42 plus or minus 1.56, respectively) but lower distensibility (9.47 plus or minus 1.33 and 11.8 plus or minus 3.36 square centimetres per dyne per 106) and flow-mediated dilatation (4.57 plus or minus 1.3 versus 6.34 plus or minus 0.83 percent, p equals 0.0001, respectively) than offspring of hypertensive parents. We observed blunted endothelium-dependent dilatation and aortic stiffness in offspring of hypertensive parents compared with offspring of normotensive [corrected] parents. This is evident in the absence of overt hypertension and other diseases, suggesting that parental history of hypertension is a risk for subclinical atherosclerosis and it may contribute to the progression to hypertension and overt atherosclerosis in later life.

  1. Continuous flow peritoneal dialysis: clinical applications.

    PubMed

    Diaz-Buxo, José A

    2002-01-01

    Continuous flow peritoneal dialysis (CFPD) can be considered a special form of hemodialysis, during which peritoneal effluent, rather than blood, is being dialyzed using standard hemodialysis technology. Preliminary clinical data have identified poor mixing of the dialysis solution, streaming and recirculation as a significant limitation in achieving maximal solute removal and ultrafiltration. Better catheter designs remain a research priority in this field. Although the clinical experience is limited to short-lasting experiments with CFPD, the preliminary data strongly support the superiority of CFPD as the most effective peritoneal dialysis modality in removing small solutes and providing high ultrafiltration rates. The levels of clearance attained are similar to quotidian hemodialysis. In addition, it is expected that the current methodology will provide a new standard of solution biocompatibility.

  2. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  3. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  4. In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV.

    PubMed

    Büsen, Martin; Kaufmann, Tim A S; Neidlin, Michael; Steinseifer, Ulrich; Sonntag, Simon J

    2015-07-16

    The cardiopulmonary bypass is related to complications like stroke or hypoxia. The cannula jet is suspected to be one reason for these complications, due to the sandblast effect on the vessel wall. Several in silico and in vitro studies investigated the underlying mechanisms, but the applied experimental flow measurement techniques were not able to address the highly three-dimensional flow character with a satisfying resolution. In this work in vitro flow measurements in a cannulated and a non-cannulated aortic silicone model are presented. Stereo particle image velocimetry measurements in multiple planes were carried out. By assembling the data of the different measurement planes, quasi 3D velocity fields with a resolution of~1.5×1.5×2.5 mm(3) were obtained. The resulting velocity fields have been compared regarding magnitude, streamlines and vorticity. The presented method shows to be a suitable in vitro technique to measure and address the three-dimensional aortic CPB cannula flow with a high temporal and spatial resolution.

  5. Endothelial adaptations in aortic stenosis. Correlation with flow parameters.

    PubMed Central

    Zand, T.; Nunnari, J. J.; Hoffman, A. H.; Savilonis, B. J.; MacWilliams, B.; Majno, G.; Joris, I.

    1988-01-01

    A 69 +/- 5% stenosis was produced in the rat aorta, with the purpose of correlating endothelial changes with local flow patterns and with levels of shear stress; the hydrodynamic data were obtained from a scaled-up model of the stenosed aorta. In the throat of the stenosis, where shear stress values were 15-25 times normal, the endothelium was stripped off within 1 hour. It regenerated at half the rate of controls but modulated into a cell type that could withstand the increased shear stress. Adaptations included changes in cell orientation, number, length, width, thickness, stress fibers, and anchoring structures, as well as changes in the length, argyrophilia, and permeability of the junctions. Areas of either elongated or "polygonal" cells consistently developed at the same sites in relation to the stenosis, but the hydrodynamic data showed that they did not always correspond (as had been anticipated) to high and low shear, respectively. It is concluded that endothelial cell shape in the living artery must be determined by some other factor(s) in addition to shear stress. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:3189514

  6. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement.

    PubMed

    Lockie, Tim; Rolandi, M Cristina; Piek, Jan J

    2013-10-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping of the proximal aortic pressure trace. A problem with either of these requirements can be a source of serious error in the measurement of FFR. In each case we present here, despite a good aortic pressure trace at the start of the procedure, there is dynamic damping of the pressure trace during hyperemia, secondary to axial migration of the guiding catheter into the left main stem (LMS). In both cases, a normal aortic pressure trace (Pa) is present at baseline. After intracoronary adenosine injection, there was a fall in both mean Pa and distal coronary pressure (Pd) concomitant with damping of Pa, evidenced by loss of the dicrotic notch and ventricularization of the pressure trace. The resultant FFR value is underestimated. As hyperemia wears off, both pressure traces return to normal with good articulation of the dicrotic notch. When the procedure was repeated taking care to ensure that the guide did not move into the LMS during hyperemia, the Pa trace remained stable following intracoronary adenosine, while mean Pd decreased as before. In both cases, hemodynamically significant lesions were demonstrated that had been masked by the artifactual drop in Pa during the first attempt.

  7. Quantitative Measurements on the Human Ascending Aortic Flow Using 2D Cine Phase-Contrast Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Yokosawa, Suguru; Nakamura, Masanori; Wada, Shigeo; Isoda, Haruo; Takeda, Hiroyasu; Yamaguchi, Takami

    The flow in the human ascending aorta was quantified using two-dimensional (2D) cine phase-contrast magnetic resonance imaging (MRI). The quality and reliability of the method were demonstrated with a specially designed phantom model; the flow rate determined with the MRI agreed well with that obtained with a measuring cylinder. The method was then used to measure the aortic blood flow of three healthy human volunteers. The velocity profiles at the supra-aortic valvular plane and ascending aortic plane (approximately 2 and 5cm distal to the aortic valve, respectively) were significantly different. At the peak of systole, the profile was almost axisymmetric at the supra-aortic valvular plane, while it was skewed towards the anterior side of the vessel at the ascending aorta. The Reynolds number, volume flow rate, and stroke volume were all within the normal physiological range. This study demonstrated that the 2D cine phase-contrast MRI technique can be used to provide detailed information on the flow velocity and configuration of a blood vessel, making it a promising tool for analyzing complex hemodynamics in the aorta.

  8. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    PubMed

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  9. Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions.

    PubMed

    Andersson, Magnus; Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2015-09-01

    Turbulence and flow eccentricity can be measured by magnetic resonance imaging (MRI) and may play an important role in the pathogenesis of numerous cardiovascular diseases. In the present study, we propose quantitative techniques to assess turbulent kinetic energy (TKE) and flow eccentricity that could assist in the evaluation and treatment of stenotic severities. These hemodynamic parameters were studied in a pre-treated aortic coarctation (CoA) and after several virtual interventions using computational fluid dynamics (CFD), to demonstrate the effect of different dilatation options on the flow field. Patient-specific geometry and flow conditions were derived from MRI data. The unsteady pulsatile flow was resolved by large eddy simulation including non-Newtonian blood rheology. Results showed an inverse asymptotic relationship between the total amount of TKE and degree of dilatation of the stenosis, where turbulent flow proximal the constriction limits the possible improvement by treating the CoA alone. Spatiotemporal maps of TKE and flow eccentricity could be linked to the characteristics of the jet, where improved flow conditions were favored by an eccentric dilatation of the CoA. By including these flow markers into a combined MRI-CFD intervention framework, CoA therapy has not only the possibility to produce predictions via simulation, but can also be validated pre- and immediate post treatment, as well as during follow-up studies.

  10. A novel counterpulse drive mode of continuous-flow left ventricular assist devices can minimize intracircuit backward flow during pump weaning.

    PubMed

    Ando, Masahiko; Nishimura, Takashi; Takewa, Yoshiaki; Ogawa, Daisuke; Yamazaki, Kenji; Kashiwa, Koichi; Kyo, Shunei; Ono, Minoru; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2011-03-01

    Recent developments in adjunct therapeutic options for end-stage heart failure have enabled us to remove implanted left ventricular assist devices (LVADs) from more patients than before. However, a safe and proper protocol for pump-off trials is yet to be established, because diastolic backward flow in a pump circuit turns up when it is driven at low-flow conditions. We have developed a novel drive mode of centrifugal pumps that can change its rotational speed in synchronization with the cardiac cycle of the native heart. The purpose of this study was to test-drive this novel system of a centrifugal pump in a mock circulation and to evaluate the effect of the counterpulse mode, which increases pump speed just in diastole, on the amount of this nonphysiological intracircuit retrograde flow. A rotary pump (EVAHEART, Sun Medical Technology Research Corporation) was connected to the mock circulation by left ventricular uptake and ascending aortic return. We drove it in the following four conditions: (A) continuous mode at 1500 rpm, (B) counterpulse mode (systolic 1500 rpm, diastolic 2500 rpm), (C) continuous mode at 2000 rpm, and (D) counterpulse mode (systolic 2000 rpm, diastolic 2500 rpm). Data concerning the rotation speed, pump flow, left ventricular pressure, aortic pressure, and pressure head (i.e., aortic pressure-left ventricular pressure) in each condition were collected. After data collection, we analyzed pump flow, and calculated its forward and backward flow. Counterpulse mode decreased the amounts of pump backward flow compared with the continuous mode [mean backward flow, -4, -1, -0.5, 0 l/min, in (A), (B), (C), and (D) conditions, respectively]. The actual amounts of mean backward flow can be different from those in clinical situations; however, this novel drive mode for rotary pumps can relatively decrease pump backward flow during pump weaning and can be beneficial for safe and proper pump-off trials. Further investigations in in vivo settings are

  11. Relationship of cerebral blood flow to aortic-to-pulmonary collateral/shunt flow in single ventricles

    PubMed Central

    Fogel, Mark A; Li, Christine; Wilson, Felice; Pawlowski, Tom; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Clancy, Robert; Elci, Okan; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2016-01-01

    Objective Patients with single ventricle can develop aortic-to-pulmonary collaterals (APCs). Along with systemic-to-pulmonary artery shunts, these structures represent a direct pathway from systemic to pulmonary circulations, and may limit cerebral blood flow (CBF). This study investigated the relationship between CBF and APC flow on room air and in hypercarbia, which increases CBF in patients with single ventricle. Methods 106 consecutive patients with single ventricle underwent 118 cardiac magnetic resonance (CMR) scans in this cross-sectional study; 34 prior to bidirectional Glenn (BDG) (0.50±0.30 years old), 50 prior to Fontan (3.19±1.03 years old) and 34 3–9 months after Fontan (3.98±1.39 years old). Velocity mapping measured flows in the aorta, cavae and jugular veins. Analysis of variance (ANOVA) and multiple linear regression were used. Significance was p<0.05. Results A strong inverse correlation was noted between CBF and APC/shunt both on room air and with hypercarbia whether CBF was indexed to aortic flow or body surface area, independent of age, cardiopulmonary bypass time, Po2 and Pco2 (R=−0.67–−0.70 for all patients on room air, p<0.01 and R=−0.49–−0.90 in hypercarbia, p<0.01). Correlations were not different between surgical stages. CBF was lower, and APCs/shunt flow was higher prior to BDG than in other stages. Conclusions There is a strong inverse relationship between CBF and APC/shunt flow in patients with single ventricle throughout surgical reconstruction on room air and in hypercarbia independent of other factors. We speculate that APC/shunt flow may have a negative impact on cerebral development and neurodevelopmental outcome. Interventions on APC may modify CBF, holding out the prospect for improving neurodevelopmental trajectory. Trial Registration Number NCT02135081. PMID:26048877

  12. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  13. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  14. Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow

    PubMed Central

    Sharma, Ritu; Yellowley, Clare E.; Civelek, Mete; Ainslie, Kristy; Hodgson, Louis; Tarbell, John M.; Donahue, Henry J.

    2015-01-01

    Vascular smooth muscle cells (VSM) are normally exposed to transmural fluid flow shear stresses, and after vascular injury, blood flow shear stresses are imposed upon them. Since Ca2+ is a ubiquitous intracellular signaling molecule, we examined the effects of fluid flow on intracellular Ca2+ concentration in rat aortic smooth muscle cells to assess VSM responsiveness to shear stress. Cells loaded with fura 2 were exposed to steady flow shear stress levels of 0.5–10.0 dyn/cm2 in a parallel-plate flow chamber. The percentage of cells displaying a rise in cytosolic Ca2+ ion concentration ([Ca2+]i) increased in response to increasing flow, but there was no effect of flow on the ([Ca2+]i) amplitude of responding cells. Addition of Gd3+ (10 μM) or thapsigargin (50 nM) significantly reduced the percentage of cells responding and the response amplitude, suggesting that influx of Ca2+ through ion channels and release from intracellular stores contribute to the rise in ([Ca2+]i) in response to flow. The addition of nifedipine (1 or 10 μM) or ryanodine (10 μM) also significantly reduced the response amplitude, further defining the role of ion channels and intracellular stores in the Ca2+ response. PMID:12051621

  15. Continuous-flow electrophoretic separator for biologicals

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.; Locker, R. J.

    1976-01-01

    In the near absence of gravity, a continuous-flow type of electrophoretic separator can be operated with a much thicker separation chamber than is possible under 1 g conditions. This should permit either better resolution or shorter separation time per unit of sample. An apparatus to perform experiments on sounding rockets is under development and will be described. The electrophoresis cell is 5 mm thick by 5 cm wide with 10 cm long electrodes. It is supplied with buffer, sample, and coolant at about 4 C through the use of a passive refrigerant system. UV sample detection and provision for recovery and cold storage of up to 50 sample fractions are now being added to the basic unit. A wide range of operating conditions are electronically programmable into the unit, even up to a short time before flight, and a further range of some parameters can be achieved by exchanging power supplies and by changing gears in the motor drive units of the pump. The preliminary results of some separation studies on various biological products using a commercially available electrophoretic separator are also presented.

  16. FSI simulation of intra-ventricular flow in patient-specific ventricular model with both mitral and aortic valves.

    PubMed

    Zhong, Liang; Su, Boyang; Zhang, Jun-Mei; Leo, Hwa Liang; Tan, Ru San

    2013-01-01

    Investigating the intra-ventricular flow is the most important to understand the left ventricular function. In this study, we proposed a fluid-structure interaction (FSI) approach to simulate the blood flow in patient-specific model by combining both mitral and aortic valves. To accommodate the large mesh deformation, moving arbitrary Lagrangian-Eulerian (ALE) meshes were used for moving ventricular wall and rotating leaflets of valves. The left ventricular wall was predescribed according to the points acquired from magnetic resonance image (MRI). Mitral and aortic valves were integrated into the model by assuming each leaflet as a rigid body. Fluid-structure interaction (FSI) approach was adopted to capture the rapid motion of leaflets. The simulation results were qualitatively similar to the measurements reported in literatures. To the best of our knowledge, this is the first to simulate the patient-specific ventricular flow with the presence of both mitral and aortic valves.

  17. Role of Transesophageal Echocardiography in the Diagnosis of Paradoxical Low Flow, Low Gradient Severe Aortic Stenosis

    PubMed Central

    Abudiab, Muaz M.; Pandit, Anil

    2017-01-01

    Background and Objectives Prior studies indicate that up to 35% of cases of severe aortic stenosis (AS) have paradoxical low flow, low gradient despite preserved left ventricular ejection fraction (LVEF). However, error in left ventricular outflow tract (LVOT) diameter may lead to misclassification. Herein, we determined whether measurement of LVOT diameter by transesophageal echocardiography (TEE) results in reclassification of cases to non-severe AS. Subjects and Methods Patients with severe AS with aortic valve area (AVA) <1 cm2 by transthoracic echocardiography (TTE) within 6 months were studied. Paradoxical low flow, low gradient was defined as mean Doppler gradient (MG) <40 mm Hg and stroke volume index (SVI) ≤35 mL/m2. Preserved LVEF was defined as ≥0.50. Results Among 108 patients, 12 (15%) had paradoxical low flow, low gradient severe AS despite preserved LVEF based on TTE measurement. When LVOT diameter by TEE in 2D was used, only 5 (6.3%) patients had low flow, low gradient severe AS (p<0.001). Coefficients of variability for intraobserver and interobserver measurement of LVOT were <10%. However, the limits of agreement between TTE and TEE measurement of LVOT ranged from 0.43 cm (95% confidence interval [CI]: 0.36 to 0.5) to -0.31 cm (95% CI: -0.38 to -0.23). Conclusion TEE measured LVOT diameter may result in reclassification to moderate AS in some patients due to low prevalence of true paradoxical low flow, low gradient (PLFLG) severe AS. PMID:28154595

  18. Aortic valve orifice equation independent of valvular flow intervals: application to aortic valve area computation in aortic stenosis and comparison with the Gorlin formula.

    PubMed

    Seitz, W; Oppenheimer, L; McIlroy, M; Nelson, D; Operschall, J

    1986-12-01

    An orifice equation is derived relating the effective aortic valve area, A, the average aortic valve pressure gradient, dP, the stroke volume, SV, and the heart frequency, FH, through considerations of momentum conservation across the aortic valve. This leads to a formula consistent with Newton's second law of motion. The form of the new equation is A = (7.5 X 10(-5)) SV FH2/Pd, where A, VS, FH and Pd are expressed in cm2, ml, s-1 and mmHg, respectively. Aortic valve areas computed with the new orifice equation are found to correlate with those computed by the Gorlin formula in conditions of resting haemodynamic states at a level of r = 0.86, SE = 0.25 cm2, N = 120. The results suggest that the new formula may be considered as an independent orifice equation having a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships through combination with established cardiological formulas and applying it in a noninvasive Doppler ultrasonic or echocardiographic context.

  19. MRI-based aortic blood flow model in 3D ballistocardiography.

    PubMed

    Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F

    2015-01-01

    Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections.

  20. On the flow through the normal fetal aortic arc at late gestation

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  1. Flow topology in patient-specific abdominal aortic aneurysms during rest and exercise

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn

    2012-11-01

    Abdominal aortic aneurysm (AAA) is a permanent, localized widening of the abdominal aorta. Flow in AAA is dominated by recirculation, transitional turbulence and low wall shear stress. Image-based CFD has recently enabled high resolution flow data in patient-specific AAA. This study aims to characterize transport in different AAAs, and understand flow topology changes from rest to exercise, which has been a hypothesized therapy due to potential acute changes in flow. Velocity data in 6 patients with different AAA morphology were obtained using image-based CFD under rest and exercise conditions. Finite-time Lyapunov exponent (FTLE) fields were computed from integration of the velocity data to identify dominant Lagrangian coherent structures. The flow topology was compared between rest and exercise conditions. For all patients, the systolic inflow jet resulted in coherent vortex formation. The evolution of this vortex varied greatly between patients and was a major determinant of transport inside the AAA during diastole. During exercise, previously observed stagnant regions were either replaced with undisturbed flow, regions of uniform high mixing, or persisted relatively unchanged. A mix norm measure provided a quantitative assessment of mixing. This work was supported by the National Institutes of Health, grant number 5R21HL108272.

  2. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  3. Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer

    SciTech Connect

    Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung; Engelhard, Mark H.

    2013-01-01

    Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.

  4. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors.

    PubMed

    Irfan, Muhammad; Glasnov, Toma N; Kappe, C Oliver

    2011-03-21

    Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. Heterogeneous catalytic hydrogenation reactions under continuous flow conditions offer significant benefits compared to batch processes which are related to the unique gas-liquid-solid triphasic reaction conditions present in these transformations. In this review article recent developments in continuous flow heterogeneous catalytic hydrogenation reactions using molecular hydrogen are summarized. Available flow hydrogenation techniques, reactors, commonly used catalysts and examples of synthetic applications with an emphasis on laboratory-scale flow hydrogenation reactions are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluation of pulsed Doppler echocardiography for measurement of aortic blood flow in the fetal lamb.

    PubMed

    Veille, J C; Tavill, M; Sivakoff, M; Cohen, I; Ben-Ami, M; Yang, Y C; Jovkovsky, V

    1989-12-01

    The purpose of this study was to assess the accuracy of a quantitative, range-gated, two-dimensional Doppler echocardiography method for measurement of blood flow in the fetal lamb descending aorta. Comparison was made between this method and measurements determined by an electromagnetic flowmeter placed directly on the aorta in the chest of the fetus. Stroke volume was manipulated acutely either by the removal of blood, the addition of fluid by injection, or by pharmacologic means. During each procedure, descending aortic blood flow was estimated by the Doppler ultrasonography method and compared to the flowmeter recording. The size of the lumen of the aorta determined by echocardiography was correlated with direct measurement during surgery and at autopsy. A total of 359 flow measurements were obtained in 15 fetuses. Doppler ultrasonographic flow studies and electromagnetic flowmeter measurements were found to be highly correlated (r = 0.93). The study demonstrates the accuracy and reliability of the two-dimensional pulsed Doppler echocardiography method for measurement of blood flow in the descending aorta in the fetal lamb.

  6. Studying the flow dynamics in an aortic endograft with crossed-limbs.

    PubMed

    Georgakarakos, Efstratios; Xenakis, Antonios; Manopoulos, Christos; Georgiadis, George S; Argyriou, Christos; Tsangaris, Sokrates; Lazarides, Miltos K

    2014-01-01

    To evaluate the flow phenomena within an aortic endograft with crossed-limbs, comparing to an endograft with the ordinary limb bifurcation. An endograft model with crossed-limbs was computationally reconstructed based on Computed Tomography patient-specific data, using commercially available software. Accordingly, its analogue model was reconstructed in the ordinary fashion (ordinary bifurcation). Computational fluid dynamics analysis was performed to determine and compare the flow fields, velocity profiles, pressure and shear stress distribution throughout the different parts of both endograft configurations, in different phases of the cardiac cycle. The flow patterns between the "Ballerina" and the classic endograft were similar, with flow disturbance near the inlet zone at late diastole and smooth flow patterns during the systolic phase. Both configurations presented similar pressure distribution patterns throughout the cardiac cycle. The highest and lowest pressures were demonstrated in the inlet-main body area and the iliac limbs, respectively. Marked differences were observed in the velocity profiles of the proximal limb segments between the two configurations, mostly in the peak- and end-systolic phase. The regions of lower velocities correlated well to low shear values. Differences in the shear stress distribution were noted between the two configurations in the systolic and, predominantly, in the diastolic phase. There are differences in the velocity profiles and shear distribution between the limbs of the two endograft configurations. The pathophysiologic implication of our findings and their possible association with clinical events, such as thrombus apposition, deserves further investigation.

  7. Aortic angiography

    MedlinePlus

    ... problem with the aorta or its branches, including: Aortic aneurysm Aortic dissection Congenital (present from birth) problems AV ... Mean Abnormal results may be due to: Abdominal aortic aneurysm Aortic dissection Aortic regurgitation Aortic stenosis Congenital (present ...

  8. Comparable Cerebral Blood Flow in Both Hemispheres During Regional Cerebral Perfusion in Infant Aortic Arch Surgery.

    PubMed

    Rüffer, André; Tischer, Philip; Münch, Frank; Purbojo, Ariawan; Toka, Okan; Rascher, Wolfgang; Cesnjevar, Robert Anton; Jüngert, Jörg

    2017-01-01

    Cerebral protection during aortic arch repair can be provided by regional cerebral perfusion (RCP) through the innominate artery. This study addresses the question of an adequate bilateral blood flow in both hemispheres during RCP. Fourteen infants (median age 11 days [range, 3 to 108]; median weight, 3.6 kg [range, 2.8 to 6.0 kg]) undergoing RCP (flow rate 54 to 60 mL · kg(-1) · min(-1)) were prospectively included. Using combined transfontanellar/transtemporal two- and three-dimensional power/color Doppler sonography, cerebral blood flow intensity in the main cerebral vessels was displayed. Mean time average velocities were measured with combined pulse-wave Doppler in the basilar artery, and both sides of the internal carotid, anterior, and medial cerebral arteries. In addition, bifrontal regional cerebral oximetry (rSO2) was assessed. Comparing both hemispheres, measurements were performed at target temperature (28°C) during full-flow total body perfusion (TBP) and RCP. A regular circle of Willis with near-symmetric blood flow intensity to both hemispheres was visualized in all infants during both RCP and TBP. In the left internal carotid artery, blood flow direction was mixed (retrograde, n = 5; antegrade, n = 8) during TBP and retrograde during RCP. Comparison between sides showed comparable cerebral time average velocities and rSO2, except for higher time average velocities in the right internal carotid artery (TBP p = 0.019, RCP p = 0.09). Unilateral comparison between perfusion methods revealed significantly higher rSO2 in the right hemisphere during TBP (82% ± 9%) compared with RCP (74% ± 11%, p = 0.036). Bilateral assessment of cerebral rSO2 and time average velocity in the main great cerebral vessels suggests that RCP is associated with near-symmetric blood flow intensity to both hemispheres. Further neurodevelopmental studies are necessary to verify RCP for neuroprotection during aortic arch repair. Copyright © 2017 The Society of Thoracic

  9. Noninvasive pressure difference mapping derived from 4D flow MRI in patients with unrepaired and repaired aortic coarctation.

    PubMed

    Rengier, Fabian; Delles, Michael; Eichhorn, Joachim; Azad, Yoo-Jin; von Tengg-Kobligk, Hendrik; Ley-Zaporozhan, Julia; Dillmann, Rüdiger; Kauczor, Hans-Ulrich; Unterhinninghofen, Roland; Ley, Sebastian

    2014-04-01

    To develop a method for computing and visualizing pressure differences derived from time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and to compare pressure difference maps of patients with unrepaired and repaired aortic coarctation to young healthy volunteers. 4D flow MRI data of four patients with aortic coarctation either before or after repair (mean age 17 years, age range 3-28, one female, three males) and four young healthy volunteers without history of cardiovascular disease (mean age 24 years, age range 20-27, one female, three males) was acquired using a 1.5-T clinical MR scanner. Image analysis was performed with in-house developed image processing software. Relative pressures were computed based on the Navier-Stokes equation. A standardized method for intuitive visualization of pressure difference maps was developed and successfully applied to all included patients and volunteers. Young healthy volunteers exhibited smooth and regular distribution of relative pressures in the thoracic aorta at mid systole with very similar distribution in all analyzed volunteers. Patients demonstrated disturbed pressures compared to volunteers. Changes included a pressure drop at the aortic isthmus in all patients, increased relative pressures in the aortic arch in patients with residual narrowing after repair, and increased relative pressures in the descending aorta in a patient after patch aortoplasty. Pressure difference maps derived from 4D flow MRI can depict alterations of spatial pressure distribution in patients with repaired and unrepaired aortic coarctation. The technique might allow identifying pathophysiological conditions underlying complications after aortic coarctation repair.

  10. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling.

    PubMed

    Deplano, Valérie; Knapp, Yannick; Bailly, Lucie; Bertrand, Eric

    2014-04-11

    The aim of this work is to develop a unique in vitro set-up in order to analyse the influence of the shear thinning fluid-properties on the flow dynamics within the bulge of an abdominal aortic aneurysm (AAA). From an experimental point of view, the goals are to elaborate an analogue shear thinning fluid mimicking the macroscopic blood behaviour, to characterise its rheology at low shear rates and to propose an experimental device able to manage such an analogue fluid without altering its feature while reproducing physiological flow rate and pressure, through compliant AAA. Once these experimental prerequisites achieved, the results obtained in the present work show that the flow dynamics is highly dependent on the fluid rheology. The main results point out that the propagation of the vortex ring, generated in the AAA bulge, is slower for shear thinning fluids inducing a smaller travelled distance by the vortex ring so that it never impacts the anterior wall in the distal region, in opposition to Newtonian fluids. Moreover, scalar shear rate values are globally lower for shear thinning fluids inducing higher maximum stress values than those for the Newtonian fluids. Consequently, this work highlights that a Newtonian fluid model is finally inadequate to obtain a reliable prediction of the flow dynamics within AAA.

  11. Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

    PubMed

    Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao

    2014-05-01

    Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.

  12. Liquid phase oxidation chemistry in continuous-flow microreactors.

    PubMed

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  13. Late presentation of double aortic arch in school-age children presumed to have asthma: the benefits of spirometry and examination of the flow-volume curve.

    PubMed

    Uchida, Derek A

    2009-10-01

    Children with double aortic arch most often present in infancy. This report presents 3 patients in whom the diagnosis of double aortic arch was not revealed until later in childhood. They were all given a misdiagnosis of asthma, but abnormalities detected on the flow-volume curve led to the true diagnosis.

  14. Morphotype-Dependent Flow Characteristics in Bicuspid Aortic Valve Ascending Aortas: A Benchtop Particle Image Velocimetry Study

    PubMed Central

    McNally, Andrew; Madan, Ashish; Sucosky, Philippe

    2017-01-01

    The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative

  15. Morphotype-Dependent Flow Characteristics in Bicuspid Aortic Valve Ascending Aortas: A Benchtop Particle Image Velocimetry Study.

    PubMed

    McNally, Andrew; Madan, Ashish; Sucosky, Philippe

    2017-01-01

    The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative

  16. Myocardial blood flow in patients with low-flow, low-gradient aortic stenosis: differences between true and pseudo-severe aortic stenosis. Results from the multicentre TOPAS (Truly or Pseudo-Severe Aortic Stenosis) study.

    PubMed

    Burwash, I G; Lortie, M; Pibarot, P; de Kemp, R A; Graf, S; Mundigler, G; Khorsand, A; Blais, C; Baumgartner, H; Dumesnil, J G; Hachicha, Z; DaSilva, J; Beanlands, R S B

    2008-12-01

    Impairment of myocardial flow reserve (MFR) in aortic stenosis (AS) with normal left ventricular function relates to the haemodynamic severity. To investigate whether myocardial blood flow (MBF) and MFR differ in low-flow, low-gradient AS depending on whether there is underlying true-severe AS (TSAS) or pseudo-severe AS (PSAS). In 36 patients with low-flow, low-gradient AS, dynamic [13N]ammonia PET perfusion imaging was performed at rest (n = 36) and during dipyridamole stress (n = 20) to quantify MBF and MFR. Dobutamine echocardiography was used to classify patients as TSAS (n = 18) or PSAS (n = 18) based on the indexed projected effective orifice area (EOA) at a normal flow rate of 250 ml/s (EOAI(proj )0.55 cm(2)/m(2)). Compared with healthy controls (n = 14), patients with low-flow, low-gradient AS had higher resting mean (SD) MBF (0.83 (0.21) vs 0.69 (0.09) ml/min/g, p = 0.001), reduced hyperaemic MBF (1.16 (0.31) vs 2.71 (0.50) ml/min/g, p<0.001) and impaired MFR (1.44 (0.44) vs 4.00 (0.91), p<0.001). Resting MBF and MFR correlated with indices of AS severity in low-flow, low-gradient AS with the strongest relationship observed for EOAI(proj) (r(s) = -0.50, p = 0.002 and r(s) = 0.61, p = 0.004, respectively). Compared with PSAS, TSAS had a trend to a higher resting MBF (0.90 (0.19) vs 0.77 (0.21) ml/min/g, p = 0.06), similar hyperaemic MBF (1.16 (0.31) vs 1.17 (0.32) ml/min/g, p = NS), but a significantly smaller MFR (1.19 (0.26) vs 1.76 (0.41), p = 0.003). An MFR <1.8 had an accuracy of 85% for distinguishing TSAS from PSAS. Low-flow, low-gradient AS is characterised by higher resting MBF and reduced MFR that relates to the AS severity. The degree of MFR impairment differs between TSAS and PSAS and may be of value for distinguishing these entities.

  17. Adaptive Flow Simulation of Turbulence in Subject-Specific Abdominal Aortic Aneurysm on Massively Parallel Computers

    NASA Astrophysics Data System (ADS)

    Sahni, Onkar; Jansen, Kenneth; Shephard, Mark; Taylor, Charles

    2007-11-01

    Flow within the healthy human vascular system is typically laminar but diseased conditions can alter the geometry sufficiently to produce transitional/turbulent flows in regions focal (and immediately downstream) of the diseased section. The mean unsteadiness (pulsatile or respiratory cycle) further complicates the situation making traditional turbulence simulation techniques (e.g., Reynolds-averaged Navier-Stokes simulations (RANSS)) suspect. At the other extreme, direct numerical simulation (DNS) while fully appropriate can lead to large computational expense, particularly when the simulations must be done quickly since they are intended to affect the outcome of a medical treatment (e.g., virtual surgical planning). To produce simulations in a clinically relevant time frame requires; 1) adaptive meshing technique that closely matches the desired local mesh resolution in all three directions to the highly anisotropic physical length scales in the flow, 2) efficient solution algorithms, and 3) excellent scaling on massively parallel computers. In this presentation we will demonstrate results for a subject-specific simulation of an abdominal aortic aneurysm using stabilized finite element method on anisotropically adapted meshes consisting of O(10^8) elements over O(10^4) processors.

  18. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    PubMed

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole.

  19. Transcatheter aortic valve replacement

    MedlinePlus

    ... fully will restrict blood flow. This is called aortic stenosis. If there is also a leak, it is ... TAVR is used for people with severe aortic stenosis who aren't ... valve . In adults, aortic stenosis usually occurs due to calcium ...

  20. A continuous method for gene flow.

    PubMed

    Palczewski, Michal; Beerli, Peter

    2013-07-01

    Most modern population genetics inference methods are based on the coalescence framework. Methods that allow estimating parameters of structured populations commonly insert migration events into the genealogies. For these methods the calculation of the coalescence probability density of a genealogy requires a product over all time periods between events. Data sets that contain populations with high rates of gene flow among them require an enormous number of calculations. A new method, transition probability-structured coalescence (TPSC), replaces the discrete migration events with probability statements. Because the speed of calculation is independent of the amount of gene flow, this method allows calculating the coalescence densities efficiently. The current implementation of TPSC uses an approximation simplifying the interaction among lineages. Simulations and coverage comparisons of TPSC vs. MIGRATE show that TPSC allows estimation of high migration rates more precisely, but because of the approximation the estimation of low migration rates is biased. The implementation of TPSC into programs that calculate quantities on phylogenetic tree structures is straightforward, so the TPSC approach will facilitate more general inferences in many computer programs.

  1. Energy-Efficient, Continuous-Flow Ash Lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, Jerry W.; Dubis, David

    1989-01-01

    Pressure balance in control gas prevents loss of reactor gas. Energy efficiency of continuous-flow ash lockhopper increased by preventing hot gases from flowing out of reactor vessel through ash-hopper outlet and carrying away heat energy. Stopping loss of reactor gases also important for reasons other than energy efficiency; desired reaction product toxic or contained to prevent pollution. In improved continuous-flow ash lockhopper, pressure-driven loss of hot gas from reactor vessel through ash-hopper outlet prevented by using control gas in fluidic flow-control device to equalize pressure in reactor vessel. Also enables reactor to attain highest possible product yield with continuous processing while permitting controllable, continuous flow of ash.

  2. Energy Flow Continuity in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1984-01-01

    The models for sunspots are combined into an active region model with consideration for the energy flow beneath active regions. An apparent average energy balance exists between the sunspot deficit and the facular excess, i.e., no 11 year variations in solar luminosity associated with the activity centers. This is seen as a consequence of the upper convection zone's inability to store these significant amounts of energy for periods greatly in excess of weeks. This view is supported by observed active region behavior and detailed numerical modelling. Increases in facular and spot brightness are nearly commensurate, with the faculae outlasting the spots on time scales of the order of weeks to a couple of months. Foukal finds the radiation (deficit from a sunspot blocking model) recovers slowly on a timescale of approximately 83 days.

  3. Evaluation of aortic stenosis: an update--including low-flow States, myocardial mechanics, and stress testing.

    PubMed

    Pierard, Luc A; Dulgheru, Raluca

    2015-06-01

    Degenerative aortic stenosis (AS) is one of the most frequent valvular heart diseases in Western countries. Echocardiography plays a central role in the evaluation and management of patients with AS. To overcome the inherent inconsistencies between the echocardiographic parameters defining severe AS and to unify concepts, a new classification based on the interplay between flow and gradients has recently been adopted. Outcome studies of asymptomatic patients with preserved left ventricular ejection fraction (LVEF), as classified by this new approach, have shown that low-flow (LF) states are associated with poor outcome, that the classical normal-flow/high-gradient pattern has an intermediate outcome, while normal-flow/low-gradient severe AS seems to have an outcome comparable to moderate AS and such patients do not benefit from aortic valve replacement. Patients with LF/low-gradient severe AS with preserved LVEF, also known as "paradoxical LF/low-gradient AS," have the worst outcome and benefit greatly from surgical or percutaneous valve replacement, provided that severity is proven. In patients with LF/low-gradient and depressed LVEF, dobutamine stress echocardiography has an important role to distinguish severe from pseudo-severe AS and to assess surgical risk. Assessment of aortic valve calcium score, as well as computation of projected effective orifice aortic area at normal trans-valvular flow rates, has proved to be very useful to distinguish severe from pseudo-severe AS in LF/low-gradient AS with both reduced and preserved LVEF. Asymptomatic patients with normal flow/gradient should be submitted to an exercise test; exercise echocardiography can identify patients at increased risk when mean gradient increases by >18-20 mmHg and/or pulmonary arterial hypertension develops during exercise.

  4. Vortex and energy characteristics of flow in the left ventricle following progressive severities of aortic valve regurgitation

    NASA Astrophysics Data System (ADS)

    di Labbio, Giuseppe; Kadem, Lyes

    2016-11-01

    During the heart's filling phase, a notorious vortex is known to develop in the left ventricle (LV). Improper development and poor energetic behavior of this vortex can be correlated with cardiac disease. In particular, during aortic valve regurgitation (leakage of blood through the aortic valve during LV filling), this vortex is forced to interact with a jet emanating from a regurgitant orifice in the valve. The ensuing flow in the left ventricle subject to this disease has yet to be fully characterized and may lead to new indices for evaluation of its severity. As such, this experimental work investigates flow in a model LV subject to aortic regurgitation on a novel double-activation left heart duplicator for six progressive grades of regurgitation (beginning from the healthy case). Double-activation (independent activation of the atrium and ventricle) is critical to the simulation of this pathology. Regurgitation is induced by restricting the closure of the aortic valve to a centralized orifice. The velocity fields for each case are acquired using 2D time-resolved particle image velocimetry. Viscous energy dissipation and vortex formation time are investigated and found to significantly increase as the pathology progresses, while a histogram of vorticity tends toward a shifted and depressed Gaussian distribution. Proper orthogonal decomposition reveals significant disruption of the dominant energetic coherent structures.

  5. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  6. Development Study of a Two-Stage Continuous Flow Impactor.

    DTIC Science & Technology

    1980-03-01

    AD-AO83 3B7 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/6 1/2 DEVELOPMENT STUDY OF A TWO-STAGE CONTINUOUS FLOW IMPACTOR.(U) MAR 80 N GAT...80009 r DEVELOPMENT STUDY OF A TWO-STAGE CONTINUOUS FLOW IMPACTOR Final Report , + by Nahum Gat March, 1980 TRW DEFENSE AND SPACE SYSTEMS GROUP...SYSTEMS LABORATORY CONTRACTOR REPORT ARCSL-CR-80009 DEVELOPMENT STUDY OF A TWO-STAGE CONTINUOUS FLOW IMPACTOR Final Report by Nahum Gat March, 1980 TRW

  7. Difluorocarbene Addition to Alkenes and Alkynes in Continuous Flow.

    PubMed

    Rullière, Pauline; Cyr, Patrick; Charette, André B

    2016-05-06

    The first in-flow difluorocarbene generation and addition to alkenes and alkynes is reported. The application of continuous flow technology allowed for the controlled generation of difluorocarbene from TMSCF3 and a catalytic quantity of NaI. The in situ generated electrophilic carbene reacts smoothly with a broad range of alkenes and alkynes, allowing the synthesis of the corresponding difluorocyclopropanes and difluorocyclopropenes. The reaction is complete within a 10 min residence time at high reaction concentrations. With a production flow rate of 1 mmol/min, continuous flow chemistry enables scale up of this process in a green, atom-economic, and safe manner.

  8. A numerical study of aortic flow stability and comparison with in vivo flow measurements.

    PubMed

    Kousera, C A; Wood, N B; Seed, W A; Torii, R; O'Regan, D; Xu, X Y

    2013-01-01

    The development of an engineering transitional turbulence model and its subsequent evaluation and validation for some diseased cardiovascular flows have been suggestive of its likely utility in normal aortas. The existence of experimental data from human aortas, acquired in the early 1970s with catheter-mounted hot film velocimeters, provided the opportunity to compare the performance of the model on such flows. A generic human aorta, derived from magnetic resonance anatomical and velocity images of a young volunteer, was used as the basis for varying both Reynolds number (Re) and Womersley parameter (α) to match four experimental data points from human ascending aortas, comprising two with disturbed flow and two with apparently undisturbed flow. Trials were made with three different levels of inflow turbulence intensity (Tu) to find if a single level could represent the four different cases with 4000 < Re < 10,000 and 17 < α < 26. A necessary boundary condition includes the inflow "turbulence" level, and convincing results were obtained for all four cases with inflow Tu = 1.0%, providing additional confidence in the application of the transitional model in flows in larger arteries. The Reynolds-averaged Navier-Stokes (RANS)-based shear stress transport (SST) transitional model is capable of capturing the correct flow state in the human aorta when low inflow turbulence intensity (1.0%) is specified.

  9. A minimally invasive monitoring system of cardiac output using aortic flow velocity and peripheral arterial pressure profile.

    PubMed

    Uemura, Kazunori; Kawada, Toru; Inagaki, Masashi; Sugimachi, Masaru

    2013-05-01

    In managing patients with unstable hemodynamics, monitoring cardiac output (CO) can provide critical diagnostic data. However, conventional CO measurements are invasive, intermittent, and/or inaccurate. The purpose of this study was to validate our newly developed CO monitoring system. This system automatically determines peak velocity of the ascending aortic flow using continuous-wave Doppler transthoracic echocardiography and estimates cardiac ejection time and aortic cross-sectional area using the pulse contour of the radial arterial pressure. These parameters are continuously processed to estimate CO (CO(est)). In 10 anesthetized closed-chest dogs instrumented with an aortic flowprobe to measure reference CO (CO(ref)), hemodynamic conditions were varied over wide ranges by infusing cardiovascular drugs or by random atrial pacing. Under each condition, CO(ref) and CO(est) were determined. Absolute changes of CO(ref) (ΔCOref) and CO(est) (ΔCO(est)), and relative changes of CO(ref) (%ΔCO(ref)) and CO(est) (%ΔCO(est)) from the corresponding baseline values were determined in each animal. We calibrated CO(est) against CO(ref) to obtain proportionally scaled CO(est) (CO(est)(N)). A total of 1335 datasets of CO(ref) and CO(est) were obtained, in which CO(ref) ranged from 0.17 to 5.34 L/min. Bland-Altman analysis between CO(ref) and CO(est) indicated that the limits of agreement (the bias ± 1.96 × SD of the difference) and the percentage error (1.96 × [SD of the difference]/[mean CO] × 100) were from -1.01 to 1.13 L/min (95% confidence interval, -1.76 to 1.88 L/min) and 43%, respectively. The agreement between CO(ref) and CO(est)(N) was improved, with limits of agreement from -0.53 to 0.49 L/min (95% confidence interval, -0.62 to 0.59 L/min) and the percentage error of 20%. Polar plot analysis between ΔCO(ref) and ΔCO(est) indicated that mean ± 1.96 × SD of polar angle was -2° ± 22°. Four quadrant plot analysis indicated that %ΔCO(est) correlated

  10. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.

    PubMed

    Marrero, Victor L; Tichy, John A; Sahni, Onkar; Jansen, Kenneth E

    2014-10-01

    It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive

  11. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  12. Arrhythmia burden in elderly patients with severe aortic stenosis as determined by continuous electrocardiographic recording: toward a better understanding of arrhythmic events after transcatheter aortic valve replacement.

    PubMed

    Urena, Marina; Hayek, Salim; Cheema, Asim N; Serra, Vicenç; Amat-Santos, Ignacio J; Nombela-Franco, Luis; Ribeiro, Henrique B; Allende, Ricardo; Paradis, Jean-Michel; Dumont, Eric; Thourani, Vinod H; Babaliaros, Vasilis; Francisco Pascual, Jaume; Cortés, Carlos; Del Blanco, Bruno García; Philippon, François; Lerakis, Stamatios; Rodés-Cabau, Josep

    2015-02-03

    This study sought to evaluate the prevalence of previously undiagnosed arrhythmias in candidates for transcatheter aortic valve replacement (TAVR) and to determine the impact on therapy changes and arrhythmic events after the procedure. A total of 435 candidates for TAVR underwent 24-hour continuous ECG monitoring the day before the procedure. Newly diagnosed arrhythmias were observed in 70 patients (16.1%) before TAVR: paroxysmal atrial fibrillation (AF)/atrial tachycardia (AT) in 28, advanced atrioventricular block or severe bradycardia in 24, nonsustained ventricular tachycardia in 26, and intermittent left bundle-branch block in 3 patients. All arrhythmic events but one were asymptomatic and led to a therapy change in 43% of patients. In patients without known AF/AT, the occurrence of AF/AT during 24-hour ECG recording was associated with a higher rate of 30-day cerebrovascular events (7.1% versus 0.4%; P=0.030). Among the 53 patients with new-onset AF/AT after TAVR, 30.2% had newly diagnosed paroxysmal AF/AT before the procedure. In patients who needed permanent pacemaker implantation after the procedure (n=35), 31.4% had newly diagnosed advanced atrioventricular block or severe bradycardia before TAVR. New-onset persistent left bundle-branch block after TAVR occurred in 37 patients, 8.1% of whom had intermittent left bundle-branch block before the procedure. Newly diagnosed arrhythmias were observed in approximately a fifth of TAVR candidates, led to a higher rate of cerebrovascular events, and accounted for a third of arrhythmic events after the procedure. This high arrhythmia burden highlights the importance of an early diagnosis of arrhythmic events in such patients to implement the appropriate therapeutic measures earlier. © 2014 American Heart Association, Inc.

  13. Continuous Morse-Smale flows with three equilibrium positions

    NASA Astrophysics Data System (ADS)

    Zhuzhoma, E. V.; Medvedev, V. S.

    2016-05-01

    Continuous Morse-Smale flows on closed manifolds whose nonwandering set consists of three equilibrium positions are considered. Necessary and sufficient conditions for topological equivalence of such flows are obtained and the topological structure of the underlying manifolds is described. Bibliography: 36 titles.

  14. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  15. Relation between symptoms and profiles of coronary artery blood flow velocities in patients with aortic valve stenosis: a study using transoesophageal Doppler echocardiography.

    PubMed Central

    Omran, H.; Fehske, W.; Rabahieh, R.; Hagendorff, A.; Lüderitz, B.

    1996-01-01

    OBJECTIVE: To analyse profiles of coronary artery flow velocity at rest in patients with aortic stenosis and to determine whether changes of the coronary artery flow velocities are related to symptoms in patients with aortic stenosis. DESIGN: A prospective study investigating the significance of aortic valve area, pressure gradient across the aortic valve, systolic left ventricular wall stress index, ejection fraction, and left ventricular mass index in the coronary flow velocity profile of aortic stenosis; and comparing flow velocity profiles between symptomatic and asymptomatic patients with aortic stenosis using transoesophageal Doppler echocardiography to obtain coronary artery flow velocities of the left anterior descending coronary artery. SETTING: Tertiary referral cardiac centre. PATIENTS: Fifty eight patients with aortic stenosis and 15 controls with normal coronary arteries. RESULTS: Adequate recordings of the profile of coronary artery flow velocities were obtained in 46 patients (79%). Left ventricular wall stress was the only significant haemodynamic variable for determining peak systolic velocity (r = -0.83, F = 88.5, P < 0.001). The pressure gradient across the aortic valve was the only contributor for explaining peak diastolic velocity (r = 0.56, F = 20.9, P < 0.001). Controls and asymptomatic patients with aortic stenosis (n = 12) did not differ for peak systolic velocity [32.8 (SEM 9.7) v 27.0 (8.7) cm/s, NS] and peak diastolic velocity [58.3 (18.7) v 61.9 (13.5) cm/s, NS]. In contrast, patients with angina (n = 12) or syncope (n = 8) had lower peak systolic velocities and higher peak diastolic velocities than asymptomatic patients (P < 0.01). Peak systolic and diastolic velocities were -7.7 (22.5) cm/s and 81.7 (17.6) cm/s for patients with angina, and -19.5 (22.3) cm/s and 94.0 (20.9) cm/s for patients with syncope. Asymptomatic patients and patients with dyspnoea (n = 14) did not differ. CONCLUSIONS: Increased pressure gradient across the

  16. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; Sahn, D. J.; Thomas, J. D.

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  17. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; hide

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  18. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  19. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  20. The fluid mechanics of continuous flow electrophoresis in perspective

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1980-01-01

    Buoyancy alters the flow in continuous flow electrophoresis chambers through the mechanism of hydrodynamic instability and, when the instability is supressed by careful cooling of the chamber boundaries, by restructuring the axial flow. The expanded roles of buoyancy follow upon adapting the size of the chamber and the electric field so as to fractionate certain sorts of cell populations. Scale-up problems, hydrodynamic stability and the altered flow fields are discussed to show how phenomena overlooked in the design and operations of narrow-gap devices take on an overwhelming importance in wide-gap chambers

  1. Assessment of severity of aortic regurgitation by M-mode colour Doppler flow imaging.

    PubMed

    Tribouilloy, C; Shen, W F; Slama, M; Rey, J L; Dufossé, H; Choquet, D; Lesbre, J P

    1991-03-01

    To assess the value of measuring the aortic regurgitant jet diameter at its origin by M-mode colour Doppler imaging, 82 patients with aortic regurgitation underwent, within 72 h of each other, colour Doppler examination and angiography. After excluding one patient without colour Doppler aortic regurgitation and five with a highly eccentric regurgitant jet, we found a close relationship between the jet diameter at its origin measured by M-mode colour Doppler and the angiographic grade of aortic regurgitation (r = 0.88). A jet diameter greater than or equal to 12 mm identified severe aortic regurgitation (grade III or IV) with a sensitivity of 86.4% and a specificity of 94.4%. In 38 patients, the jet diameter correlated well with the regurgitant fraction measured by a combined haemodynamic-angiographic method (r = 0.88). A jet diameter greater than or equal to 12 mm identified a regurgitant fraction greater than or equal to 40% with a sensitivity of 88.2% and a specificity of 95.2%. This study indicates that the size of the regurgitant jet diameter at its origin measured by M-mode colour Doppler provides a simple and useful measure of the severity of aortic regurgitation. It may allow differentiation between mild or moderate and severe aortic regurgitation and evaluation of regurgitant fraction.

  2. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves--II. Results on five models.

    PubMed

    Stevenson, D M; Yoganathan, A P; Williams, F P

    1985-01-01

    Turbulent flow simulations are run for five aortic trileaflet valve geometries, ranging from a valve leaflet orifice area of 1.1 cm2 (Model A1--very stenotic) to 5.0 cm2 (Model A5--natural valve). The simulated data compares well with experimental measurements made downstream of various aortic trileaflet valves by Woo (PhD Thesis, 1984). The location and approximate width and length of recirculation regions are correctly predicted. The less stenotic valve models reattach at the end of the aortic sinus region, 1.1 diameters downstream of the valve. The central jet exiting the less stenotic valve models is not significantly different from fully developed flow, and therefore recovers very quickly downstream of the reattachment point. The more stenotic valves disturb the flow to a greater degree, generating recirculation regions large enough to escape the sinuses and reattach further downstream. Peak turbulent shear stress values downstream of the aortic valve models which approximated prosthetic valves are 125 and 300 Nm-2, very near experimental observations of 150 to 350 Nm-2. The predicted Reynolds stress profiles also present the correct shape, a double peak profile, with the location of the peak occurring at the location of maximum velocity gradient, which occurs near the recirculation region. The pressure drop across model A2 (leaflet orifice area 1.6 cm2) is 20 mmHg at 1.6 diameters downstream. This compares well with values ranging from 19.5 to 26.2 mmHg for valves of similar orifice areas. The pressure drop decreases with decreasing valve stenosis, to a negligible value across the least stenotic valve model. Based on the good agreement between experimental measurements of velocity, shear stress and pressure drop, compared to the simulated data, the model has the potential to be a valuable tool in the analysis of heart valve designs.

  3. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  4. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device.

    PubMed

    Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W

    2013-01-01

    The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.

  5. Assessment of low-flow, low-gradient aortic stenosis: multimodality imaging is the key to success.

    PubMed

    Clavel, Marie-Annick; Pibarot, Philippe

    2014-09-01

    In patients with aortic stenosis (AS), a low-flow state may occur with reduced LV ejection fraction (LVEF) (i.e., classic low flow) or with preserved LVEF (i.e., paradoxical low flow) and it is often associated with low gradient because the gradient is highly flow-dependent. Low-flow, low-gradient (LF-LG) AS is a frequent clinical entity generally associated with worse outcomes. A multimodality imaging approach, including comprehensive resting echocardiography, dobutamine stress echocardiography (DSE), and multidetector computed tomography (MDCT), is the key to successful management of patients with LF-LG AS, who represent a highly challenging subset from both a diagnostic and a therapeutic standpoint. DSE and quantification of aortic valve calcification by MDCT provide important information that is crucial to differentiate true-severe from pseudo-severe AS and therefore select the most appropriate therapy (i.e., AVR vs. medical). The assessment of LV flow reserve by DSE is useful to stratify the operative risk and guide decision making between surgical and transcatheter AVR. Other imaging biomarkers, such as the global LV longitudinal strain measured during DSE or the amount of myocardial fibrosis assessed by cardiac magnetic resonance imaging, may provide incremental information for risk stratification and therapeutic management in LF-LG AS, but additional studies are needed to validate and refine these emerging biomarkers further.

  6. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.

    PubMed

    Boutsianis, Evangelos; Guala, Michele; Olgac, Ufuk; Wildermuth, Simon; Hoyer, Klaus; Ventikos, Yiannis; Poulikakos, Dimos

    2009-01-01

    There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA

  7. Aortic root stiffness affects the kinematics of bioprosthetic aortic valves.

    PubMed

    Jahren, Silje Ekroll; Winkler, Bernhard Michael; Heinisch, Paul Philipp; Wirz, Jessica; Carrel, Thierry; Obrist, Dominik

    2017-02-01

    In this study, the influence of aortic root distensibility on the haemodynamic parameters and valve kinematics of a bioprosthetic aortic valve was investigated in a controlled in vitro experiment. An Edwards INTUITY Elite 21 mm sutureless aortic valve (Edwards Lifesciences, Irvine, CA, USA) was inserted in three transparent aortic root phantoms with different wall thicknesses (0.55, 0.85 and 1.50 mm) mimicking different physiological distensibilities. Haemodynamic measurements were performed in an in vitro flow loop at heart rates of 60, 80 and 100 bpm with corresponding cardiac outputs of 3.5, 4.0 and 5.0 l/min and aortic pressures of 100/60, 120/90 and 145/110 mmHg, respectively. Aortic valve kinematics were assessed using a high-speed camera. The geometric orifice area (GOA) was measured by counting pixels in the lumen of the open aortic valve. The effective orifice area (EOA) was calculated from the root-mean-square value of the systolic aortic valve flow rate and the mean systolic trans-valvular pressure gradient. The tested aortic root phantoms reproduce physiological distensibilities of healthy individuals in age groups ranging from 40 to 70 years (±10 years). The haemodynamic results show only minor differences between the aortic root phantoms: the trans-valvular pressure gradient tends to increase for stiffer aortic roots, whereas the systolic aortic valve flow rate remains constant. As a consequence, the EOA decreased slightly for less distensible aortic roots. The GOA and the aortic valve opening and closing velocities increase significantly with reduced distensibility for all haemodynamic measurements. The resulting mean systolic flow velocity in the aortic valve orifice is lower for the stiffer aortic root. Aortic root distensibility may influence GOA and aortic valve kinematics, which affects the mechanical load on the aortic valve cusps. Whether these changes have a significant effect on the onset of structural valve deterioration of bioprosthetic

  8. Evaluation of Aortic Stenosis Severity using 4D Flow Jet Shear Layer Detection for the Measurement of Valve Effective Orifice Area

    PubMed Central

    Garcia, Julio; Markl, Michael; Schnell, Susanne; Allen, Bradley; Entezari, Pegah; Mahadevia, Riti; Malaisrie, S Chris; Pibarot, Philippe; Carr, James; Barker, Alex J

    2014-01-01

    Aims The objective of this study was to evaluate the potential of 4D flow MRI to assess valve effective orifice area (EOA) in patients with aortic stenosis as determined by the jet shear layer detection (JSLD) method. Methods and Results An in-vitro stenosis phantom was used for validation and in-vivo imaging was performed in 10 healthy controls and 40 patients with aortic stenosis. EOA was calculated by the JSLD method using standard 2D phase contrast MRI (PC-MRI) and 4D flow MRI measurements (EOAJSLD-2D and EOAJSLD-4D, respectively). As a reference standard, the continuity equation was used to calculate EOA (EOACE) with the 2D PC-MRI velocity field and compared to the EOAJSLD measurements. The in-vitro results exhibited excellent agreement between flow theory (EOA=0.78 cm2) and experimental measurement (EOAJSLD-4D=0.78±0.01 cm2) for peak velocities ranging from 0.9 to 3.7 m/s. In-vivo results showed good correlation and agreement between EOAJSLD-2D and EOACE (r=0.91, p<0.001; bias: −0.01±0.38cm2; agreement limits: 0.75 to −0.77cm2), and between EOAJSLD-4D and EOACE (r=0.95, p<0.001; bias: −0.09±0.26cm2; limits: 0.43 to −0.62cm2). Conclusion This study demonstrates the feasibility of measuring EOAJSLD using 4D flow MRI. The technique allows for optimization of the EOA measurement position by visualizing the 3D vena contracta, and avoids potential sources of EOACE measurement variability. PMID:24865143

  9. Preliminary results by flow-sensitive magnetic resonance imaging after Tiron David I procedure with an anatomically shaped ascending aortic graft.

    PubMed

    Frydrychowicz, Alex; Berger, Alexander; Stalder, Aurélien F; Markl, Michael

    2009-08-01

    We present preliminary data of the vascular hemodynamics in a novel, anatomically shaped ascending aortic graft in comparison to non-operated individuals by use of 3D magnetic resonance (MR) flow measurements. We examined a 72-year-old male patient after Tiron David I valve sparing aortic root reconstruction and replacement of the ascending aorta (AAo) with an anatomically curved prosthesis. Results from flow-sensitive MR at 3T were compared to 12 age-matched individuals with comparable diameters of the AAo. For 3D flow visualization, streamlines and time-resolved particle traces were applied. A visual analysis of hemodynamic properties including blood flow helicity, vorticity and retrograde flow was performed. In contrast to reported highly disturbed flow of straight aortic grafts in the literature, the patient analysis revealed smooth blood flow through the graft which gave rise to a right-handed helical flow in the reconstructed aorta. In comparison to non-operated volunteers, blood flow helicity was more pronounced. Flow jets or vortices were not encountered. While physiological retrograde flow was seen in the volunteers, it was absent in the patient which may be explained by the altered aortic compliance and thus reduced Windkessel effect. This promising finding will have to prove its validity in further comparative studies.

  10. Sorting and Manipulation of Magnetic Droplets in Continuous Flow

    NASA Astrophysics Data System (ADS)

    Al-Hetlani, Entesar; Hatt, Oliver J.; Vojtíšek, Martin; Tarn, Mark D.; Iles, Alexander; Pamme, Nicole

    2010-12-01

    We report the rapid on-chip generation and subsequent manipulation of magnetic droplets in continuous flow. Magnetic droplets were formed using aqueous-based ferrofluid as the dispersed phase and fluorocarbon oil as the continuous phase. Droplet manipulation was demonstrated with simple permanent magnets using two microfluidic platforms: (i) flow focusing droplet generation followed by their splitting into daughter droplets containing different amounts of magnetic nanoparticles, and (ii) droplet generation at a T-junction and their downstream deflection across a chamber for sorting based on the applied magnetic field and magnetite loading of the droplet. Both systems show great potential for performing a wide range of high throughput continuous flow processes including sample dilution, cell sorting and screening, and microparticle fabrication.

  11. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions.

    PubMed

    Khanafer, Khalil M; Bull, Joseph L; Upchurch, Gilbert R; Berguer, Ramon

    2007-01-01

    The numerical models of abdominal aortic aneurysm (AAA) in use do not take into account the non-Newtonian behavior of blood and the development of local turbulence. This study examines the influence of pulsatile, turbulent, non-Newtonian flow on fluid shear stresses and pressure changes under rest and exercise conditions. We numerically analyzed pulsatile turbulent flow, using simulated physiological rest and exercise waveforms, in axisymmetric-rigid aortic aneurysm models (AAMs). Discretization of governing equations was achieved using a finite element scheme. Maximum turbulence-induced shear stress was found at the distal end of an AAM. In large AAMs (dilated to undilated diameter ratio = 3.33) at peak systolic flow velocity, fluid shear stress during exercise is 70.4% higher than at rest. Our study provides a numerical, noninvasive method for obtaining detailed data on the forces generated by pulsatile turbulent flow in AAAs that are difficult to study in humans and in physical models. Our data suggest that increased flow turbulence results in increased shear stress in aneurysms. While pressure readings are fairly uniform along the length of an aneurysm, the kinetic energy generated by turbulence impacting on the wall of the distal half of the aneurysm increases fluid and wall shear stress at this site. If the increased fluid shear stress results in further dilation and hence further turbulence, wall stress may be a mechanism for aneurysmal growth and eventual rupture.

  12. A three-layer model for buckling of a human aortic segment under specific flow-pressure conditions.

    PubMed

    Amabili, M; Karazis, K; Mongrain, R; Païdoussis, M P; Cartier, R

    2012-05-01

    Human aortas are subjected to large mechanical stresses because of blood flow pressurization and through contact with the surrounding tissue. It is essential that the aorta does not lose stability by buckling with deformation of the cross-section (shell-like buckling) (i) for its proper functioning to ensure blood flow and (ii) to avoid high stresses in the aortic wall. A numerical bifurcation analysis employs a refined reduced-order model to investigate the stability of a straight aorta segment conveying blood flow. The structural model assumes a nonlinear cylindrical orthotropic laminated composite shell composed of three layers representing the tunica intima, media and adventitia. Residual stresses because of pressurization are evaluated and included in the model. The fluid is formulated using a hybrid model that contains the unsteady effects obtained from linear potential flow theory and the steady viscous effects obtained from the time-averaged Navier-Stokes equations. The aortic segment loses stability by divergence with deformation of the cross-section at a critical flow velocity for a given static pressure, exhibiting a strong subcritical behaviour with partial or total collapse of the inner wall. Preliminary results suggest directions for further study in relation to the appearance and growth of dissection in the aorta. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Controlled synthesis of poly(3-hexylthiophene) in continuous flow.

    PubMed

    Seyler, Helga; Subbiah, Jegadesan; Jones, David John; Holmes, Andrew Bruce; Wong, Wallace Wing Ho

    2013-01-01

    There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene), P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  14. Distant downstream steady-state flow studies of a mechanical heart valve: PIV study of secondary flow in a model aortic arch

    NASA Astrophysics Data System (ADS)

    Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  15. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  16. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  17. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  18. Aortic Dissection

    MedlinePlus

    ... arteries (atherosclerosis) Weakened and bulging artery (pre-existing aortic aneurysm) An aortic valve defect (bicuspid aortic valve) A ... valve, tell your doctor. If you have an aortic aneurysm, find out how often you need monitoring and ...

  19. Improvement of thoracic aortic vasoreactivity by continuous and intermittent exercise in high-fat diet-induced obese rats.

    PubMed

    Liu, Hongpeng; Yang, Zhen; Hu, Jian; Luo, Yan; Zhu, Lingqin; Yang, Huifang; Li, Guanghua

    2015-07-01

    The aim of the present study was to explore the effects of continuous and intermittent exercise on the thoracic aortic vasoreactivity and free radical metabolism in rats fed with a high-fat diet (HD). Sprague-Dawley (SD) rats were randomly divided into four groups (n=8, each group): Conventional diet (CD), HD, HD with continuous exercise (HCE) and HD with intermittent exercise (HIE). HCE rats swam once/day for 90 min; HIE rats performed swimming exercises 3 times/day, 30 min each time with an interval of 4 h. In these two groups, the exercise was conducted 5 days a week for 8 weeks. Rats in the CD and HD groups were fed without swimming training. At the end of the exercise, all the rats were sacrificed and the blood, thoracic aorta and myocardium were collected immediately. The thoracic aortic vasoreactivity, the plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), malondialdehyde (MDA) and vascular endothelial nitric oxide synthase (eNOS) gene expression were measured. Compared to the control group, in the HD group the enhanced contractile response of the thoracic aortic rings to noradrenaline (NA) was observed (P<0.01). The levels of TC and LDL (P<0.01) were also increased in serum while the HDL level was reduced without statistical significance. In addition, the MDA content was upregulated in the myocardium, but the SOD level decreased (P<0.01). Furthermore, the expression of vascular eNOS mRNA was reduced (P<0.01). However, following the exercise the contraction of the thoracic aorta vascular rings to NA was reduced in the HCE and HIE groups (P<0.01), and the decreased contractile response was more evident in the HIE group compared to the HCE group (P<0.01). Additionally, in the HCE group the level of TG (P<0.01) was decreased, while the HDL (P<0.01) level was increased. Although the reduction of the TC and LDL level was also observed there was no significant difference

  20. Nasal deformities resulting from flow driver continuous positive airway pressure.

    PubMed Central

    Robertson, N J; McCarthy, L S; Hamilton, P A; Moss, A L

    1996-01-01

    Over a period of six months, seven cases were documented of trauma to the nose as a result of flow driver continuous positive airway pressure in babies of very low birthweight (VLBW). There was a complication rate of 20% in the babies who required it. Deformities consisted of columella nasi necrosis which can occur within three days, flaring of nostrils which worsens with duration of continuous positive airway pressure, and snubbing of the nose which persists after prolonged continuous positive airway pressure. These complications should be preventable by modifications to the mechanism and method of use. Images PMID:8976689

  1. Mathematical models of continuous flow electrophoresis: Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Saville, Dudley A.

    1986-01-01

    Two aspects of continuous flow electrophoresis were studied: (1) the structure of the flow field in continuous flow devices; and (2) the electrokinetic properties of suspended particles relevant to electrophoretic separations. Mathematical models were developed to describe flow structure and stability, with particular emphasis on effects due to buoyancy. To describe the fractionation of an arbitrary particulate sample by continuous flow electrophoresis, a general mathematical model was constructed. In this model, chamber dimensions, field strength, buffer composition, and other design variables can be altered at will to study their effects on resolution and throughput. All these mathematical models were implemented on a digital computer and the codes are available for general use. Experimental and theoretical work with particulate samples probed how particle mobility is related to buffer composition. It was found that ions on the surface of small particles are mobile, contrary to the widely accepted view. This influences particle mobility and suspension conductivity. A novel technique was used to measure the mobility of particles in concentrated suspensions.

  2. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  3. Coupled chemo(enzymatic) reactions in continuous flow.

    PubMed

    Yuryev, Ruslan; Strompen, Simon; Liese, Andreas

    2011-01-01

    This review highlights the state of the art in the field of coupled chemo(enzymatic) reactions in continuous flow. Three different approaches to such reaction systems are presented herein and discussed in view of their advantages and disadvantages as well as trends for their future development.

  4. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  5. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  6. Continuous-flow synthesis of vitamin D3.

    PubMed

    Fuse, Shinichiro; Tanabe, Nobutake; Yoshida, Masahito; Yoshida, Hayato; Doi, Takayuki; Takahashi, Takashi

    2010-12-14

    A highly efficient, two-stage, continuous-flow synthesis of vitamin D(3) from provitamin D(3) was achieved. The developed method afforded the desired product in high yield (HPLC-UV: 60%, isolated: 32%) and required neither intermediate purification nor high-dilution conditions.

  7. Implementing a Continuous Quality Improvement Program in a High-Volume Clinical Echocardiography Laboratory: Improving Care for Patients With Aortic Stenosis.

    PubMed

    Samad, Zainab; Minter, Stephanie; Armour, Alicia; Tinnemore, Amanda; Sivak, Joseph A; Sedberry, Brenda; Strub, Karen; Horan, Seanna M; Harrison, J Kevin; Kisslo, Joseph; Douglas, Pamela S; Velazquez, Eric J

    2016-03-01

    The management of aortic stenosis rests on accurate echocardiographic diagnosis. Hence, it was chosen as a test case to examine the utility of continuous quality improvement (CQI) approaches to increase echocardiographic data accuracy and reliability. A novel, multistep CQI program was designed and prospectively used to investigate whether it could minimize the difference in aortic valve mean gradients reported by echocardiography when compared with cardiac catheterization. The Duke Echo Laboratory compiled a multidisciplinary CQI team including 4 senior sonographers and MD faculty to develop a mapped CQI process that incorporated Intersocietal Accreditation Commission standards. Quarterly, the CQI team reviewed all moderate- or greater-severity aortic stenosis echocardiography studies with concomitant catheterization data, and deidentified individual and group results were shared at meetings attended by cardiologists and sonographers. After review of 2011 data, the CQI team proposed specific amendments implemented over 2012: the use of nontraditional imaging and Doppler windows as well as evaluation of aortic gradients by a second sonographer. The primary outcome measure was agreement between catheterization- and echocardiography-derived mean gradients calculated by using the coverage probability index with a prespecified acceptable echocardiography-catheterization difference of <10 mm Hg in mean gradient. Between January 2011 and January 2014, 2093 echocardiograms reported moderate or greater aortic stenosis. Among cases with available catheterization data pre- and post-CQI, the coverage probability index increased from 54% to 70% (P=0.03; 98 cases, year 2011; 70 cases, year 2013). The proportion of patients referred for invasive valve hemodynamics decreased from 47% pre-CQI to 19% post-CQI (P<0.001). A laboratory practice pattern that was amenable to reform was identified, and a multistep modification was designed and implemented that produced clinically

  8. Scalable clustering algorithms for continuous environmental flow cytometry.

    PubMed

    Hyrkas, Jeremy; Clayton, Sophie; Ribalet, Francois; Halperin, Daniel; Armbrust, E Virginia; Howe, Bill

    2016-02-01

    Recent technological innovations in flow cytometry now allow oceanographers to collect high-frequency flow cytometry data from particles in aquatic environments on a scale far surpassing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial phytoplankton populations across thousands of kilometers of the surface ocean. The data streams produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in cytometric analysis and highlight the need for scalable clustering algorithms to extract population information from these large-scale, high-frequency flow cytometers. We explore how available algorithms commonly used for medical applications perform at classification of such a large-scale, environmental flow cytometry data. We apply large-scale Gaussian mixture models to massive datasets using Hadoop. This approach outperforms current state-of-the-art cytometry classification algorithms in accuracy and can be coupled with manual or automatic partitioning of data into homogeneous sections for further classification gains. We propose the Gaussian mixture model with partitioning approach for classification of large-scale, high-frequency flow cytometry data. Source code available for download at https://github.com/jhyrkas/seaflow_cluster, implemented in Java for use with Hadoop. hyrkas@cs.washington.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  10. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study

    PubMed Central

    Zhang, Qi; Gao, Bin; Chang, Yu

    2016-01-01

    Background The BJUT-II VAD is a novel left ventricular assist device (LVAD), which is thought to have significant effects on the characteristics of aortic swirling flow. However, the precise mechanism of the rotational direction of BJTU-II VAD in the aortic swirling flow is unclear. Material/Methods A patient-specific aortic geometric model was reconstructed based on the CT data. Three pump’s output flow profiles with varied rotational direction, termed “counterclockwise”, “flat profile”, and “clockwise”, were used as the boundary conditions. The helicity density, area-weighted average of helicity density (Ha), localized normalized helicity (LNH), wall shear stress (WSS), and WSS spatial gradient (WSSG) were calculated to evaluate the swirling flow characteristics in the aorta. Results The results demonstrated that the swirling flow characteristics in the aorta and 3 branches are directly affected by the output blood flow of BJUT-II VAD. In the aortic arch, the helicity density, supported by the clockwise case, achieved the highest value. In the 3 branches, the flat profile case achieved the highest helicity density, whereas the maximum WSS and WSSG generated by clockwise case were lower than in other cases. Conclusions The outflow of the BJUT-II VAD has significant effects on the aortic hemodynamics and swirling flow characteristics. The helical blood profiles can enhance the strength of aortic swirling flow, and reduce the areas of low WSS and WSSG regions. The clockwise case may have a benefit for preventing development of atherosclerosis in the aorta. PMID:27440399

  11. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    PubMed

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/.

  12. Oscillatory control of sample dispersion in a continuous flow system.

    PubMed

    Bruno, H; Andrade, F; Iñón, F; Tudino, M; Troccoli, O

    2001-03-01

    A new strategy for the instrumental control of sample dispersion in continuous flow systems is presented. The method is based on shaking a loosely held straight reactor while the sample travels through the flow injection manifold. This external disturbance yields a sample transport more similar to the plug flow type because of the changes promoted on the flow pattern. Up to a three-fold increase in peak height, a comparable reduction in peak width and a more Gaussian peak profile are observed when the signals obtained with the shaken reactor are compared with those obtained with the same reactor but static. Improvements in the analytical performance as a function of different operational variables are shown for systems with or without a chemical reaction. Analytical implications and possible uses are discussed since this strategy allows the control of dispersion by simply selecting the frequency and amplitude of oscillation.

  13. Renal flow studies after abdominal aortic aneurysmectomy and axillo-bifemoral bypass graft: case report

    SciTech Connect

    LaManna, M.M.; Yussen, P.S.

    1988-03-01

    Vascular disorders affecting the kidneys are either acquired or congenital. Included in this category are common multiplicity of renal arteries, the rare arteriovenous malformation, stresses due to fibromuscular disease or atherosclerosis including abdominal aortic aneurysms, arterial thrombosis, venous thrombosis, and infarction. In contrast to the group of cystic and neoplastic kidneys where scintigraphic or pathologic are not diagnostic, scintigraphic or pathologic anatomy in vascular disease is often diagnostic by nuclear medicine techniques. The authors present an interesting case of evaluation of acute renal failure in a patient abdominal aortic aneurysmectomy and axillo-bifemoral bypass graft.

  14. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  15. Visualization periodic flows in a continuously stratified fluid.

    NASA Astrophysics Data System (ADS)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  16. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing.

    PubMed

    Sochol, Ryan D; Li, Song; Lee, Luke P; Lin, Liwei

    2012-10-21

    "Multi-stage" fluidic reactions are integral to diverse biochemical assays; however, such processes typically require laborious and time-intensive fluidic mixing procedures in which distinct reagents and/or washes must be loaded sequentially and separately (i.e., one-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e.g., microbeads and cells) to be performed autonomously could greatly extend the efficacy of lab-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing methodology to passively transport suspended microbeads and cells into distinct, adjacent laminar flow streams for rapid fluidic mixing and assaying. Four distinct molecular synthesis processes (i.e., consisting of 48 discrete fluidic mixing stages in total) were accomplished on polystyrene microbead substrates (15 μm in diameter) in parallel, without the need for external observation or regulation during device operation. Experimental results also revealed successful railing of suspended bovine aortic endothelial cells (approximately 13 to 17 μm in diameter). The presented railing system provides an effective continuous flow methodology to achieve bead-based and cell-based microfluidic reactors for applications including point-of-care (POC) molecular diagnostics, pharmacological screening, and quantitative cell biology.

  17. Selective Pinacol-Coupling Reaction using a Continuous Flow System.

    PubMed

    Sotto, Nicolas; Cazorla, Clément; Villette, Carole; Billamboz, Muriel; Len, Christophe

    2016-11-18

    The first continuous flow pinacol coupling reaction of carbonyl compounds was successfully achieved within only 2 min during a single pass through a cartridge filled with zinc(0). The optimized method allowed the efficient production of gram-scale value-added compounds with high productivity. The developed methodology is efficient for aromatic or α,β-unsaturated aldehydes but gives moderate results for more stable acetophenone derivatives. Moreover, the flow method displayed better results in terms of yield and selectivity in comparison to the corresponding batch methodology.

  18. Aortic flow conditions predict ejection efficiency in the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE)

    PubMed Central

    Pohost, Gerald M.; Bairey Merz, C. Noel; Farah, Victor; Shaw, Leslee J.; Sopko, George; Rogers, William J.; Sharaf, Barry L.; Pepine, Carl J.; Thompson, Diane V.; Rayarao, Geetha; Tauxe, Lindsey; Kelsey, Sheryl F.; Biederman, Robert W. W.

    2017-01-01

    Background The Windkessel model of the cardiovascular system, both in its original wind-chamber and flow-pipe form, and in its electrical circuit analog has been used for over a century to modeled left ventricular ejection conditions. Using parameters obtained from aortic flow we formed a Flow Index that is proportional to the impedance of such a “circuit”. We show that the impedance varies with ejection fraction (EF) in a manner characteristic of a resonant circuit with multiple resonance points, with each resonance point centrally located in a small range of EF values, i.e., corresponding to multiple contiguous EF bands. Methods Two target populations were used: (I) a development group comprising male and female subjects (n=112) undergoing cardiovascular magnetic resonance (CMR) imaging for a variety of cardiac conditions. The Flow Index was developed using aortic flow data and its relationship to left ventricular EF was shown. (II) An illustration group comprised of female subjects from the Women’s Ischemia Syndrome Evaluation (WISE) (n=201) followed for 5 years for occurrence of major adverse cardiovascular events (MACE). Flow data was not available in this group but since the Flow Index was related to the EF we noted the MACE rate with respect to EF. Results The EFs of the development population covered a wide range (9%–76%) traversing six Flow Index resonance bands. Within each Flow Index resonance band the impedance varied from highly capacitive at the lower range of EF through minimal impedance at resonance, to highly inductive at the higher range of EF, which is characteristic of a resonant circuit. When transitioning from one EF band to a higher band, the Flow Index made a sudden transition from highly inductive to capacitive impedance modes. MACE occurred in 26 (13%) of the WISE (illustration) population. Distance in EF units (Deltacenter) from the central location between peaks of MACE activity was derived from EF data and was predictive of MACE

  19. Validation of conventional and simplified methods to calculate projected valve area at normal flow rate in patients with low flow, low gradient aortic stenosis: the multicenter TOPAS (True or Pseudo Severe Aortic Stenosis) study.

    PubMed

    Clavel, Marie-Annick; Burwash, Ian G; Mundigler, Gerald; Dumesnil, Jean G; Baumgartner, Helmut; Bergler-Klein, Jutta; Sénéchal, Mario; Mathieu, Patrick; Couture, Christian; Beanlands, Rob; Pibarot, Philippe

    2010-04-01

    It has been previously demonstrated that a new index of aortic stenosis (AS) severity derived from dobutamine stress echocardiography (DSE), the projected aortic valve area (AVA) at a normal transvalvular flow rate (AVA(proj)), is superior to traditional Doppler echocardiographic indices to discriminate true severe from pseudosevere low-gradient AS. The objectives of this study were to prospectively validate the diagnostic and prognostic value of AVA(proj) in a large series of patients and to propose a new clinically applicable simplified method to estimate AVA(proj). AVA(proj) was calculated in 142 patients with low-flow AS using 2 methods. In the conventional method, AVA was plotted against mean transvalvular flow (Q) at each stage of DSE, and AVA at a standardized flow rate of 250 ml/s was projected from the slope of the regression line fitting the plot of AVA versus Q: AVA(proj) = AVA(rest) + slope x (250 - Q(rest)). In the simplified method, using this equation, the slope of the regression line was estimated by dividing the DSE-induced change in AVA from baseline to the peak stage of DSE by the change in Q. There was a strong correlation between AVA(proj) calculated by the two methods (r = 0.95, P < .0001). Among the 142 patients, 52 underwent aortic valve replacement and had underlying AS severity assessed by the surgeon. Conventional and simplified AVA(proj) demonstrated similar performance in discriminating true severe from pseudosevere AS (percentage of correct classification of AVA(proj) < or = 1 cm(2), 94% and 92%, respectively) and were superior to traditional dobutamine stress echocardiographic indices (percentage of correct classification, 60%-77%). Both conventional and simplified AVA(proj) correlated well with valve weight (r = 0.52 and r = 0.58, respectively), whereas traditional dobutamine stress echocardiographic indices did not. In the 84 patients who were treated medically, conventional AVA(proj) < or = 1.2 cm(2) (hazard ratio, 1.65; P = .02

  20. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity of aortic regurgitation: a combined experimental and clinical study.

    PubMed

    Stugaard, Marie; Koriyama, Hikaru; Katsuki, Keiko; Masuda, Kasumi; Asanuma, Toshihiko; Takeda, Yasuharu; Sakata, Yasushi; Itatani, Keiichi; Nakatani, Satoshi

    2015-07-01

    In aortic regurgitation (AR), energy loss (EL) produced by inefficient turbulent flow may be a burden to the heart predicting decompensation. We attempted to quantify EL in AR induced in an acute dog model and in patients with chronic AR using novel echocardiographic method vector flow mapping (VFM). In 11 anaesthetized open-chest dogs, AR was induced by distorting the aortic valve with a pigtail catheter, in totally 20 cases. Regurgitant fraction was determined using pulsed Doppler echocardiography, <30% considered mild to moderate (Group 1, n = 11) and ≥30% moderate to severe (Group 2, n = 9). The clinical study consisted of 22 patients with various degrees of AR; 11 mild to moderate (Group 1) and 11 moderate to severe (Group 2), and compared with 12 normals. VFM is based on continuity equation applied to colour Doppler and speckle tracking velocities, acquired from apical long-axis image. EL was calculated frame by frame, averaged from three beats. In the dog study, diastolic EL increased significantly with severity of AR (baseline vs. Group 1 vs. Group 2: 3.8 ± 1.6 vs. 13.0 ± 5.0 vs. 22.4 ± 14.0 [J/(m s)], ANOVA P = 0.0001). Similar to dogs, diastolic EL also increased in humans by the severity of AR (control vs. Group 1 vs. Group 2: 2.8 ± 1.5 vs. 14.3 ± 11.5 vs. 18.6 ± 2.3 [J/(m s)], ANOVA P = 0.001). VFM provides a promising method to quantify diastolic EL in AR. Diastolic EL increases in AR proportional to its severity. EL may be useful to determine the severity of disease from the aspect of cardiac load. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  1. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis.

    PubMed

    Di Marco, Lorenzo; Hans, Morgan; Delaude, Lionel; Monbaliu, Jean-Christophe M

    2016-03-18

    Two methods were assessed for the generation of common N-heterocyclic carbenes (NHCs) from stable imidazol(in)ium precursors using convenient and straightforward continuous-flow setups with either a heterogeneous inorganic base (Cs2CO3 or K3PO4) or a homogeneous organic base (KN(SiMe3)2). In-line quenching with carbon disulfide revealed that the homogeneous strategy was most efficient for the preparation of a small library of NHCs. The generation of free nucleophilic carbenes was next telescoped with two benchmark NHC-catalyzed reactions; namely, the transesterification of vinyl acetate with benzyl alcohol and the amidation of N-Boc-glycine methyl ester with ethanolamine. Both organocatalytic transformations proceeded with total conversion and excellent yields were achieved after extraction, showcasing the first examples of continuous-flow organocatalysis with NHCs.

  2. Continuous-flow sheathless diamagnetic particle separation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Zhou, Yilong; Song, Le; Yu, Liandong; Xuan, Xiangchun

    2016-08-01

    Separating particles from a complex mixture is often necessary in many chemical and biomedical applications. This work presents a continuous-flow sheathless diamagnetic particle separation in ferrofluids through U-shaped microchannels. Due to the action of a size-dependent magnetic force, diamagnetic particles are focused into a single stream in the inlet branch of the U-turn and then continuously separated into two streams in its outlet branch. A 3D numerical model is developed to predict and understand the diamagnetic particle transport during this separation process. The numerical predictions are found to agree well with the experimental observations in a systematic study of the effects of multiple parameters including ferrofluid flow rate, concentration and magnet-channel distance. Additional numerical studies of the geometric effects of the U-turn reveal that increasing the outlet-branch width of the U-turn can significantly enhance the diamagnetic particle separation in ferrofluids.

  3. Nonidentical Continuous-Flow Devices For Biventricular Support

    PubMed Central

    Baldwin, Andrew C.W.; Sandoval, Elena; Cohn, William E.; Mallidi, Hari R.; Frazier, O.H.

    2017-01-01

    Although biventricular heart failure has been successfully managed with dual continuous-flow ventricular assist devices, the long-term use of 2 mechanically dissimilar pumps has traditionally been discouraged. We present the case of a 52-year-old man whose treatment with a HeartMate II left ventricular assist device was complicated by right ventricular failure, necessitating the implantation of a long-term right ventricular assist device. A HeartWare left ventricular assist device was placed along the right ventricular base to avoid interference with the HeartMate II housing. The patient was discharged from the hospital after routine postoperative care and dual-device training. This case shows that, despite logistical complexities, nonidentical continuous-flow device pairings can successfully provide long-term biventricular support. PMID:28461802

  4. Continuous heatable Langmuir probe for flowing afterglow measurements

    NASA Astrophysics Data System (ADS)

    Laubé, Sylvain; Mostefaoui, Toufik; Rowe, Bertrand

    2000-02-01

    A heatable Langmuir probe consisting of a continuous dc-heating-current loop of tungsten wire is presented. This technique is efficient to keep the probe surface clean for flowing afterglow measurements. In our experimental conditions, the perturbations on the electron density determination can be considered as very small. The measurement of the well-known rate for the dissociative recombination of O2+ shows that the gas surrounding the probe is not heated for estimated probe temperature up to 700 K.

  5. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  6. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  7. Giant Volume Change of Active Gels under Continuous Flow

    DTIC Science & Technology

    2014-04-21

    communication17 of BZ droplets and chemical self-organiza- tion,18 the properties and potential of self-oscillating gels in a microfluidic system have yet to be...active gels driven by the Belousov−Zhabotinsky reaction. These results demon- strate that microfluidics offers a useful and facile experimental...soft materials and microfluidic systems. ■ INTRODUCTION This paper reports the use of a continuous reactant flow in a microfluidic system to achieve

  8. Apparatus for irradiating a continuously flowing stream of fluid

    DOEpatents

    Speir, Leslie G.; Adams, Edwin L.

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  9. Application of Digital Ultrasound Speckle Image Velocimetry(DUSIV) for Quantitative Flow Measurements in Aortic Vessel- an In Vitro Study

    NASA Astrophysics Data System (ADS)

    Zarandi, Mehrdad; Dabiri, Dana; Gharib, Morteza

    2001-11-01

    A new method is developed to use speckle signals for obtaining quantitative information about the flow field and its related properties such as wall shear stress. Speckle imaging allows for mapping flows at normal angles to the probe where Doppler technique render little information. Our custom developed method of Digital Ultrasound Speckle Image Velocimetry is used to measure the flow field and wall shear stress in a model of aortic vessel. The method has great potential for other applications such as flow in curved vessels, branching vessels, heart chambers and through valves for quantitative blood flow measurements. It also allows us to correct for the errors in ultrasound measurements caused by the angle of interrogation , or signal attenuation with distance from the ultrasound probe. Speckle velocimetry also allows calibration of the results obtained from the conventional Doppler shift based ultrasound methods and should therefore contribute to more accurate quantitative measurements of blood flow by ultrasound. Providing quantitative information with much higher resolution than Color Doppler measurements and applicability to optically inaccessible flows are the other advantages of this method.

  10. Fluoride removal by a continuous flow electrocoagulation reactor.

    PubMed

    Emamjomeh, Mohammad M; Sivakumar, Muttucumaru

    2009-02-01

    Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. Electrocoagulation (EC) is an electrochemical technique, in which a variety of unwanted dissolved particles and suspended matter can be effectively removed from an aqueous solution by electrolysis. Continuous flow experiments with monopolar aluminium electrodes for fluoride removal were undertaken to investigate the effects of the different parameters such as: current density (12.5-50A/m(2)), flow rate (150-400 mL/min), initial pH (4-8), and initial fluoride concentration (5-25mg/L). The highest treatment efficiency was obtained for the largest current and the removal efficiency was found to be dependent on the current density, the flow rate and the initial fluoride concentration when the final pH ranged between 6 and 8. The composition of the sludge produced was analysed using the X-ray diffraction (XRD) spectrum. The strong presence of the aluminium hydroxide [Al(OH)(3)] in the above pH range, which maximizes the formation of aluminium fluoride hydroxide complex [Al(n)F(m)(OH)(3n-m)], is the main reason for defluoridation by electrocoagulation. The results obtained showed that the continuous flow electrocoagulation technology is an effective process for defluoridation of potable water supplies and could also be utilized for the defluoridation of industrial wastewater.

  11. Control of continuous polyhydroxybutyrate synthesis using calorimetry and flow cytometry.

    PubMed

    Maskow, Thomas; Müller, Susann; Lösche, Andreas; Harms, Hauke; Kemp, Richard

    2006-02-20

    The substrate-carbon flow can be controlled in continuous bioreactor cultures by the medium composition, for example, by the C/N ratio. The carbon distribution is optimal when a maximum fraction flows into the desired product and the residual is just sufficient to compensate for the dilution of the microbial catalyst. Undershooting of the latter condition is reflected immediately by changes in the Gibbs energy dissipation and cellular states. Two calorimetric measurement principles were applied to optimize the continuous synthesis of polyhydroxybutyrate (PHB) by Variovorax paradoxus DSM4065 during growth with constantly increasing supply rates of fructose or toxic phenol. Firstly, the changed slope of the heat production rate in a complete heat balanced bioreactor (CHB) indicated optimum carbon channeling into PHB. The extent of the alteration depended directly on the toxic properties of the substrate. Secondly, a flow through calorimeter was connected with the bioreactor as a "measurement loop." The optimum substrate carbon distribution was indicated by a sudden change in the heat production rate independent of substrate toxicity. The sudden change was explained mathematically and exploited for the long-term control of phenol conversion into PHB. LASER flow cytometry measurements distinguished between subpopulations with completely different PHB-content. Populations grown on fructose preserved a constant ratio of two subpopulations with double and quadruple sets of DNA. Cells grown on phenol comprised a third subpopulation with a single DNA set. Rising phenol concentrations caused this subpopulation to increase. It may thus be considered as an indicator of chemostress.

  12. Innovative Method for Greatly Reducing Flow Resistance and Obtaining Well-Ordered Continuous Flow

    NASA Astrophysics Data System (ADS)

    Lin, Weiyi

    2009-11-01

    In this paper, firstly, the experiment on the flow resistance of the aerated pipe flow is introduced. And some experimental research on comparison between different volumes of air entrained is presented. Secondly, the characteristics of Gravity Pipe Flow under the action of Torricelli's Vacuum, shortly called as GPFUTV are dissertated, including creative and functional design, fundamental principle, etc. Under GPFUTV condition the water flow in the tube is full-pipe and continuous, colorless and non-aerated, high-speed and non-rotational as distinguished from laminar flow. Thirdly, an appeal in relation to the experimental research, the applied studies and basic theory research is given. For instance, the well-known Reynolds' experiment under GPFUTV condition, the potential for GPFUTV to be developed for deep seawater suction technology, seawater intake pipe of OTEC and lifting technology for deep ocean mining in Fe-Mn concretions, flow stability and flow resistance under GPFUTV condition, etc.

  13. Microdevice for continuous flow magnetic separation for bioengineering applications

    NASA Astrophysics Data System (ADS)

    Khashan, Saud A.; Dagher, Sawsan; Alazzam, Anas; Mathew, Bobby; Hilal-Alnaqbi, Ali

    2017-05-01

    A novel continuous flow microfluidic device, integrated with soft-magnetic wire (permalloy), is fabricated and tested for magnetophoresis based separation. The flow-invasive permalloy wire, magnetized using an external bias field, is positioned perpendicular to the external magnetic field and with its length traversing the introduced sample flow. The microfluidic device is realized in PDMS; the mold for PDMS microstructures is cut out of Plexiglas® sheets with controllable dimensions. Microfluidic devices with microchannel height ranging between 0.5 mm and 2 mm are fabricated. Experiments are carried out with and without sheath flow; with sheath flow the microparticles are focused at the center of the microchannel. When focusing is not employed, the microdevice can exhibit a complete separation (or filtration) with the introduction of the sample at rates lower than a maximum threshold. However, this complete separation is attributed to the fact that part of the particles, once they approach the repulsive field of the wire, will find their way into the attractive region of the wire while the remaining will be indefinitely trapped at the channel walls. On the other hand, when the focused sample is flowing at the same rate but alongside an appropriate sheath flow, the complete separation can be achieved with all (initially repelled) particles being captured on the attractive region of the wire itself. This microdevice design is well suited for purification, enrichment, and detection of microparticles in lab-on-a-chip devices due to its ability to handle high throughput without compromising capture efficiency while exhibiting excellent reliability and flexibility.

  14. Tc-99m Sulfur Colloid Scintigraphy for Detecting Perigraft Flow Following Endovascular Aortic Aneurysm Repair: A Feasibility Study

    SciTech Connect

    Hovsepian, David M.; Siegel, Barry A.; Kimbiris, George; Sicard, Gregorio A.; Allen, Brent T.; Picus, Daniel

    1999-11-15

    Purpose: To determine if scintigraphy with Tc-99m sulfur colloid can be used to detect perigraft flow after stent-graft repair of abdominal aortic aneurysm (AAA). Methods: Twenty-three men and two women aged 56-84 years (mean 71 years) underwent endoluminal AAA repair as part of the EVT Phase II trial [EVT = Endovascular Technologies (Menlo Park, CA, USA)]. Aneurysm size averaged 5.4 cm (range 3-8 cm). Sixteen bifurcated, seven tube, and two aorto-uniiliac grafts were placed. Two days after stent-graft placement, patients underwent both contrast-enhanced computed tomography (CT), including delayed views, and Tc-99m sulfur colloid scintigraphy. Results: Perigraft flow was found in only one patient at completion of angiography. Four additional patients had perigraft flow, discovered during their postoperative follow-up CT. Four patients had leaks at an attachment site and one had retrograde branch flow. Tc-99m sulfur colloid scintigraphy failed to diagnose any of the five leaks prospectively. In two of these patients, however, some abnormal paraaortic activity was noted in retrospect. Conclusion: Tc-99m sulfur colloid scintigraphy was unable to demonstrate endoleak with either rapid flow (attachment site leak) or slow filling (branch flow)

  15. False Lumen Flow Patterns and their Relation with Morphological and Biomechanical Characteristics of Chronic Aortic Dissections. Computational Model Compared with Magnetic Resonance Imaging Measurements

    PubMed Central

    Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo

    2017-01-01

    Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720

  16. Aortic cross-clamping and reperfusion in pigs reduces microvascular oxygenation by altered systemic and regional blood flow distribution.

    PubMed

    Siegemund, Martin; van Bommel, Jasper; Stegenga, Michiel E; Studer, Wolfgang; van Iterson, Mat; Annaheim, Sandra; Mebazaa, Alexandre; Ince, Can

    2010-08-01

    In this study, we tested the hypothesis that aortic cross-clamping (ACC) and reperfusion cause distributive alterations of oxygenation and perfusion in the microcirculation of the gut and kidneys despite normal systemic hemodynamics and oxygenation. Fifteen anesthetized pigs were randomized between an ACC group (n = 10), undergoing 45 minutes of aortic clamping above the superior mesenteric artery, and a time-matched sham surgery control group (n = 5). Systemic, intestinal, and renal hemodynamics and oxygenation variables were monitored during 4 hours of reperfusion. Microvascular oxygen partial pressure (microPo(2)) was measured in the intestinal serosa and mucosa and the renal cortex, using the Pd-porphyrin phosphorescence technique. Intestinal luminal Pco(2) was determined by air tonometry and the serosal microvascular flow by orthogonal polarization spectral imaging. Organ blood flow and renal and intestinal microPo(2) decreased significantly during ACC, whereas the intestinal oxygen extraction and Pco(2) gap increased. The intestinal response to reperfusion after ACC was a sustained reactive hyperemia but no such effect was seen in the kidney. Despite a sustained high intestinal O(2) delivery, serosal microPo(2) (median [range], 49 mm Hg [41-67 mm Hg] versus 37 mm Hg [27-41 mm Hg]; P < 0.05 baseline versus 4 hours reperfusion) and the absolute number of perfused microvessels decreased along with an increased intestinal Pco(2) gap (17 mm Hg [10-19 mm Hg] versus 23 mm Hg [19-30 mm Hg]; P < 0.05). In contrast, the kidney showed a progressive O(2) delivery decrease accompanied by a decrease in renal cortex oxygenation (70 mm Hg [52-93 mm Hg] versus 57 mm Hg [33-64 mm Hg]; P < 0.05). Increased systemic and regional blood flow and oxygen supply after ACC does not ensure adequate regional blood flow and microcirculatory oxygenation in all organs.

  17. Aortic valve area, stroke volume, left ventricular hypertrophy, remodeling, and fibrosis in aortic stenosis assessed by cardiac magnetic resonance imaging: comparison between high and low gradient and normal and low flow aortic stenosis.

    PubMed

    Barone-Rochette, Gilles; Piérard, Sophie; Seldrum, Stéphanie; de Meester de Ravenstein, Christophe; Melchior, Julie; Maes, Frédéric; Pouleur, Anne-Catherine; Vancraeynest, David; Pasquet, Agnes; Vanoverschelde, Jean-Louis; Gerber, Bernhard L

    2013-11-01

    Recent works using echocardiography suggested that low gradient (LG), low flow (LF) aortic stenosis (AS) has more pronounced left ventricular (LV) concentric remodeling, smaller LV cavity size, and more interstitial fibrosis compared with high gradient (HG) normal flow (NF) AS. Therefore, we evaluated the accuracy of echocardiographic measurements and compared remodeling and fibrosis in different types of AS by cardiac magnetic resonance (CMR). A total of 128 patients (73±11 years of age; 75 men) with aortic valve area (AVA) <0.6 cm(2)/m(2) and ejection fraction >50% by echocardiography underwent CMR to measure planimetric AVA, phase-contrast indexed stroke volume, LV mass, and focal fibrosis. Using <40 mm Hg and indexed stroke volume <35 mL/m(2) by echocardiography as criteria for LG and LF, 69 (54%) patients were HG/NF, 28 (22%) HG/LF, 17 (13%) LG/NF, and 14 (11%) LG/LF AS. LV outflow tract area, indexed stroke volume, and AVA correlated well between echocardiography and CMR (r=0.7, 0.61, and 0.65, respectively; P<0.001 for all). By CMR, however, planimetric AVA was larger in LF/LG (0.54±0.08 cm(2)/m(2)) and LG/NF (0.61±0.08 cm(2)/m(2)) than in HG/LF (0.46±0.07 cm(2)/m(2); P<0.05) AS, and indexed LV mass was lower in LG/LF (75±12 g/m(2)) and LG/NF (81±18 g/m(2)) than in HG/LF (100±27 g/m(2); P<0.05) AS. All groups of AS had similar LV volumes, predominantly concentric hypertrophy remodeling, and similar amounts of focal fibrosis. CMR confirmed overall accuracy of echocardiographic classification of AS but demonstrated that LG/LF and LG/NF AS have larger AVA, less LV hypertrophy, and similar focal fibrosis compared with HG/LF AS. This challenges the view that LG/LF AS is a more advanced state of AS.

  18. Effect of aorto-iliac bifurcation and iliac stenosis on flow dynamics in an abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Patel, Shivam; Usmani, Abdullah Y.; Muralidhar, K.

    2017-06-01

    Physiological flows in rigid diseased arterial flow phantoms emulating an abdominal aortic aneurysm (AAA) under rest conditions with aorto-iliac bifurcation and iliac stenosis are examined in vitro through 2D PIV measurements. Flow characteristics are first established in the model resembling a symmetric AAA with a straight outlet tube. The influence of aorto-iliac bifurcation and iliac stenosis on AAA flow dynamics is then explored through a comparison of the nature of flow patterns, vorticity evolution, vortex core trajectory and hemodynamic factors against the reference configuration. Specifically, wall shear stress and oscillatory shear index in the bulge portion of the models are of interest. The results of this investigation indicate overall phenomenological similarity in AAA flow patterns across the models. The pattern is characterized by a central jet and wall-bounded vortices whose strength increases during the deceleration phase as it moves forward. The central jet impacts the wall of AAA at its distal end. In the presence of an aorto-iliac bifurcation as well as iliac stenosis, the flow patterns show diminished strength, expanse and speed of propagation of the primary vortices. The positions of the instantaneous vortex cores, determined using the Q-function, correlate with flow separation in the bulge, flow resistance due to a bifurcation, and the break in symmetry introduced by a stenosis in one of the legs of the model. Time-averaged WSS in a healthy aorta is around 0.70 N m-2 and is lowered to the range ±0.2 N m-2 in the presence of the downstream bifurcation with a stenosed common iliac artery. The consequence of changes in the flow pattern within the aneurysm on disease progression is discussed.

  19. Electricity generation using continuously recirculated flow electrodes in reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Coronell, Orlando; Call, Douglas F.

    2017-07-01

    Capacitive flow electrode systems that generate electricity from salinity gradients are limited by low power densities, inefficient electrical current collection, and complex system operation. We show here the proof-of-concept that a single reverse electrodialysis cell using continuously recirculated activated carbon flow electrodes can generate uninterrupted electricity from an artificial sea/river water gradient. Power densities reached 61 ± 5.7 mW m-2 (normalized to total membrane surface area) and current densities 2.4 ± 0.13 A m-2 when a 10% by weight carbon loading was used with graphite plate current collectors. Using high-surface area graphite brush current collectors, maximum power densities increased more than 320% to 260 ± 8.7 mW m-2 and maximum current densities more than 400% to 14 ± 0.59 A m-2. The performance improvements were attributed to a more than 80% decrease in electrode resistances when brushes were used instead of plates. A control static capacitive electrode system obtained slightly higher average power densities (290 ± 8.7 mW m-2), but could not produce it continuously, highlighting the operational advantage of the recirculated flow electrode design.

  20. Aortic dissection

    MedlinePlus

    Aortic aneurysm - dissecting; Chest pain - aortic dissection; Thoracic aortic aneurysm - dissection ... also cause abnormal widening or ballooning of the aorta ( aneurysm ). The exact cause is unknown, but more common ...

  1. Aortic Aneurysm

    MedlinePlus

    ... chest and abdomen. There are two types of aortic aneurysm: Thoracic aortic aneurysms (TAA) - these occur in the part of the aorta running through the chest Abdominal aortic aneurysms (AAA) - these occur in the part of the ...

  2. The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S.

    1982-01-01

    Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.

  3. Analytical solutions for flow fields near continuous wall reactive barriers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk

    2008-05-01

    Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.

  4. A Continuous-Flow, Microfluidic Fraction Collection Device

    PubMed Central

    Baker, Christopher; Roper, Michael G.

    2010-01-01

    A microfluidic device is presented that performs electrophoretic separation coupled with fraction collection. Effluent from the 3.5 cm separation channel was focused via two sheath flow channels into one of seven collection channels. By holding the collection channels at ground potential and varying the voltage ratio at the two sheath flow channels, the separation effluent was directed to either specific collection channels, or could be swept past all channels in a defined time period. As the sum of the voltages applied to the two sheath flow channels was constant, the electric field remained at 275 V/cm during the separation regardless of the collection channel used. The constant potential in the separation channel allowed uninterrupted separation for late-migrating peaks while early-migrating peaks were being collected. To minimize the potential for carryover between fractions, the device geometry was optimized using a three-level factorial model. The optimum conditions were a 22.5° angle between the sheath flow channels and the separation channel, and a 350 µm length of channel between the separation outlet and the fraction channels. Using these optimized dimensions, the device performance was evaluated by separation and fraction collection of a fluorescently-labeled amino acid mixture. The ability to fraction collect on a microfluidic platform will be especially useful during automated or continuous operation of these devices or to collect precious samples. PMID:20730040

  5. Continuous flow magnetic cell fractionation based on antigen expression level.

    PubMed

    Schneider, Thomas; Moore, Lee R; Jing, Ying; Haam, Seungjoo; Williams, P Stephen; Fleischman, Aaron J; Roy, Shuvo; Chalmers, Jeffrey J; Zborowski, Maciej

    2006-07-31

    Cell separation is important in medical and biological research and plays an increasingly important role in clinical therapy and diagnostics, such as rare cancer cell detection in blood. The immunomagnetic labeling of cells with antibodies conjugated to magnetic nanospheres gives rise to a proportional relationship between the number of magnetic nanospheres attached to the cell and the cell surface marker number. This enables the potential fractionation of cell populations by magnetophoretic mobility (MM). We exploit this feature with our apparatus, the Dipole Magnet Flow Fractionator (DMFF), which consists of an isodynamic magnetic field, an orthogonally-oriented thin ribbon of cell suspension in continuous sheath flow, and ten outlet flows. From a sample containing a 1:1 mixture of immunomagnetically labeled (label+) and unlabeled (label-) cells, we achieved an increase in enrichment of the label+ cell fraction with increasing outlet numbers in the direction of the magnetic field gradient (up to 10-fold). The total recovery of the ten outlet fractions was 90.0+/-7.7%. The mean MM of label+ cells increased with increasing outlet number by up to a factor of 2.3. The postulated proportionality between the number of attached magnetic beads and the number of cell surface markers was validated by comparison of MM measured by cell tracking velocimetry (CTV) with cell florescence intensity measured by flow cytometry.

  6. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  7. Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1989-01-01

    Continuous flow electrophoresis experiments were carried out, using an electrolyte and a sample both made of aqueous solutions of phosphate buffer (with polystyrene latex added for visibility), to investigate causes of the sample spreading in this procedure. It is shown theoretically that an electric field perpendicular to a circular filament of conducting fluid surrounded by a fluid of different conductivity produces an electrohydrodynamic flow, which distorts the filament into an ellipse. Experimental results were found to be fully consistent with theretical predictions. It was found that the rate of distortion of the sample stream into a ribbon was proportional to the square of the applied voltage gradient. Furthermore, the orientation of the ribbon depends on the ratios of dielectric constant and electrical conductivity between the buffer and the sample.

  8. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2017-09-18

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m(3) while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  9. Synthesis of nanomaterials by continuous-flow microfluidics: a review.

    PubMed

    Makgwane, Peter Ramashadi; Ray, Suprakas Sinha

    2014-02-01

    The development of controlled synthesis protocols of nanostructured materials with tailored particle size and shape has been a significant research area in nanoscience and nanotechnology. Much innovative research efforts had been focused on finding suitable chemical reagents and synthetic methodologies that offer opportunities to produce the desired structure-function controlled nanomaterials. On the other hand, the reactor equipment for the synthesis of these tailored nanomaterials is of prime importance not only at laboratory-scale but also with view of up-scaling the synthetic processes into large-scale productions. Whilst the sequential three-stage scale-up from the conventional process (i.e., lab-scale/pilot-scale/large-scale) using multi-purpose batch reactor is masked with complications, on the other hand, the interface of nanomaterials synthesis processes and continuous-flow microfluidic chemistry has demonstrated relatively superior process performance over conventional technologies. Consequently, the uses of continuous-flow microfluidics systems have recently attracted much research attention as versatile tools for the synthesis of various structured nanomaterials. In this review, we highlight and analyze the key achievements to date of adopting microfluidics technologies for the controlled synthesis of nanomaterials with well-defined structural properties desirable for the intended applications. We devote the significant emphasis on demonstrating the improved potential characteristics features of continuous-flow microfluidics as a capable technology to provide efficient synthesis processes for the production of various nanosized scale structured materials with precise control of the involved chemistry. Moreover, we discuss the novel process window opportunities of hyphenated microfluidics nanoparticles synthesis with the in-situ or in-line structure characterization during synthesis under real-time reaction conditions which provide interesting insights

  10. [The assessment of mechanical heart valves stenosis in adults after aortic valve replacement: the advantage of full-flow design of mechanical valve].

    PubMed

    Bokeria, L A; Bokeria, O L; Fadeev, A A; Makhachev, O A; Kosareva, T I; Averina, I I

    2013-01-01

    The analysis of transprosthetic hemodynamics in adults after aortic valve replacement in the Bakoulev Center for Cardiovascular Surgery in 2007-2010 demonstrated the hemodynamic advantage of the concept of new full-flow mechanical aortic valve prosthesis "CorBeat". Having the same size of internal orifice and tissue annulus diameters, the values of transprosthetic parameters (peak and mean gradients, blood flow velocities) through "CorBeat" were close to physiological values of transvalvular native aortic parameters and had a tendency to be not dependent on the size of prosthesis (p = 0.63). In the article for the first time a morphometric database of geometric values of internal orifice area of normal native aortic valves in adults was used taking into account both the gender and the body surface area's of a patient. There was also used the standardized prosthesis size Z-score which represents the number of SDs by which the internal prosthesis area differs from the mean normal native aortic valve area for the patient's body surface area. The article emphasizes the need of the personal selection of the size and the type of prosthesis for any patient as well as the need for new design development of prosthetic heart valves.

  11. Comparison of continuous and discontinuous discretizations for the Stokes flow

    NASA Astrophysics Data System (ADS)

    Lehmann, Ragnar; Kaus, Boris J. P.; Lukáčová-Medvid'ová, Maria

    2013-04-01

    Finite element methods (FEM) of various types are widely used to solve incompressible flow problems in general and Stokes flow in particular. We present first results of a study comparing two numerical methods: the continuous Galerkin and the discontinuous Galerkin (DG) method. For this purpose a Matlab code was developed employing 2D Stokes flow in a model setup with known analytical solution. [2] Nonlinearities of, e.g., the viscosity can lead to discontinuities in the velocity-pressure solution. Hence, using continuous approximations may result in avoidable inaccuracies. In contrast to the FEM, the DG method allows for discontinuities of velocity and pressure across interior mesh edges. This increases the number of degrees of freedom by a constant factor depending on the chosen element. A parameter is introduced to penalize the jumps in the velocity. The DG method provides the capability to locally adapt the polynomial degree of the shape functions. Moreover, it only needs communication between directly adjacent mesh cells, which makes it highly flexible and easy to parallelize. The velocity and pressure errors of the methods are measured in the L1-norm [1]. Orders of convergence are determined and compared. [1] Duretz, T., May, D.A., Garya, T.V. and Tackley, P.J., 2011. Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical Study, Geochem. Geophys. Geosyst., 12, Q07004, doi:10.1029/2011GC003567. [2] Zhong, S., 1996. Analytic solution for Stokes' flow with lateral variations in viscosity, Geophys. J. Int., 124, 18-128, doi:10.1111/j.1365-246X.1996.tb06349.x.

  12. Acquired aortic atresia: Catheter therapy using covered stents.

    PubMed

    Momenah, Tarek S; Khan, Muhammad A; Qureshi, Shakeel; Hijazi, Ziyad M

    2015-11-15

    To maintain aortic continuity, aortic arch interruption is usually treated surgically. We present our experience of aortic arch reconstruction using percutaneous implantation of covered stents and mid-term follow-up. To describe the feasibility, safety, and effectiveness using percutaneous placement of covered stents for functional aortic atresia and mid-term follow-up. Nine patients (7 males), mean age of 30.8 ±16.2 years (range 13-58 years) and mean body weight of 65.7± 14.9 kg (range 52-95 kg), were investigated for systemic hypertension and found to have functional aortic interruption. All were treated with percutaneous perforation, combined with balloon dilation and implantation of covered stents. After stent implantation, control angiograms were performed. All the patients had functional aortic interruption and continuity was established by perforating the atretic segment with trans-septal Brockenbrough needle or the stiff end of a guide wire. A covered Cheatham-Platinum CP stent was used to establish the luminal continuity of the aortic arch. Angiograms after stent deployment showed good forward flow through the stent and hemodynamic assessment revealed minimal gradients across the stent. The mean invasive descending aortic systolic blood pressure before stenting was 86.6 ± 14.3 mm Hg, which increased to 116.5 ± 16.3 mm Hg, after stenting (P = 0.004). The mean invasive descending aortic diastolic blood pressure before stenting was 63.6 ± 8.1 mm Hg, which increased to 79.7 ± 13.3 mm Hg after stenting (P = 0.002). Percutaneous treatment of functional aortic atresia with covered stents is feasible, safe, and effective alternative to surgery with excellent short- and mid-term results. © 2015 Wiley Periodicals, Inc.

  13. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.

    1993-01-01

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.

  14. Method and apparatus for chemically altering fluids in continuous flow

    DOEpatents

    Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.

    1993-10-19

    The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.

  15. Prilezhaev dihydroxylation of olefins in a continuous flow process.

    PubMed

    van den Broek, Bas A M W; Becker, René; Kössl, Florian; Delville, Mariëlle M E; Nieuwland, Pieter J; Koch, Kaspar; Rutjes, Floris P J T

    2012-02-13

    Epoxidation of both terminal and non-terminal olefins with peroxy acids is a well-established and powerful tool in a wide variety of chemical processes. In an additional step, the epoxide can be readily converted into the corresponding trans-diol. Batch-wise scale-up, however, is often troublesome because of the thermal instability and explosive character of the peroxy acids involved. This article describes the design and semi-automated optimization of a continuous flow process and subsequent scale-up to preparative production volumes in an intrinsically safe manner.

  16. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  17. Continuous-flow thermolysis for the preparation of vinylglycine derivatives.

    PubMed

    Lamborelle, Nicolas; Simon, Justine F; Luxen, André; Monbaliu, Jean-Christophe M

    2015-12-28

    Syn sulfoxide elimination was carried out under continuous-flow conditions in a mesofluidic thermolysis reactor. The design of the reactor enabled accurate control of reaction time and conditions, affording a convenient scale-independent procedure for the production of N,C-protected vinylglycine derivatives. Thermolysis at 270 °C under 1000 psi of pressure in superheated toluene enabled typical daily outputs ranging from 11 to 46 g per day with excellent selectivities and ee (>97%). The various competitive reaction pathways were studied and rationalized according to a computational study.

  18. Use Of Infrared Imagery In Continuous Flow Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Stallings, D. W.; Whetsel, R. G.

    1983-03-01

    Thermal mapping with infrared imagery is a very useful test technique in continuous flow wind tunnels. Convective-heating patterns over large areas of a model can be obtained through remote sensing of the surface temperature. A system has been developed at AEDC which uses a commercially available infrared scanning camera to produce these heat-transfer maps. In addition to the camera, the system includes video monitors, an analog tape recording, an analog-to-digital converter, a digitizer control, and two minicomputers. This paper will describe the individual components, data reduction techniques, and typical applications. *

  19. A Simple Chaotic Flow with a Continuously Adjustable Attractor Dimension

    NASA Astrophysics Data System (ADS)

    Munmuangsaen, Buncha; Sprott, Julien Clinton; Thio, Wesley Joo-Chen; Buscarino, Arturo; Fortuna, Luigi

    This paper describes two simple three-dimensional autonomous chaotic flows whose attractor dimensions can be adjusted continuously from 2.0 to 3.0 by a single control parameter. Such a parameter provides a means to explore the route through limit cycles, period-doubling, dissipative chaos, and eventually conservative chaos. With an absolute-value nonlinearity and certain choices of parameters, the systems have a vast and smooth continual transition path from dissipative chaos to conservative chaos. One system is analyzed in detail by means of the largest Lyapunov exponent, Kaplan-Yorke dimension, bifurcations, coexisting attractors and eigenvalues of the Jacobian matrix. An electronic version of the system has been constructed and shown to perform in accordance with expectations.

  20. Continuous-flow automation and hemolysis index: a crucial combination.

    PubMed

    Lippi, Giuseppe; Plebani, Mario

    2013-04-01

    A paradigm shift has occurred in the role and organization of laboratory diagnostics over the past decades, wherein consolidation or networking of small laboratories into larger factories and point-of-care testing have simultaneously evolved and now seem to favorably coexist. There is now evidence, however, that the growing implementation of continuous-flow automation, especially in closed systems, has not eased the identification of hemolyzed specimens since the integration of preanalytical and analytical workstations would hide them from visual scrutiny, with an inherent risk that unreliable test results may be released to the stakeholders. Along with other technical breakthroughs, the new generation of laboratory instrumentation is increasingly equipped with systems that can systematically and automatically be tested for a broad series of interferences, the so-called serum indices, which also include the hemolysis index. The routine implementation of these technical tools in clinical laboratories equipped with continuous-flow automation carries several advantages and some drawbacks that are discussed in this article.

  1. Continuous flow system for controlling phases separation near λ transition

    SciTech Connect

    Chorowski, M.; Poliński, J.; Kempiński, W.; Trybuła, Z.; Łoś, Sz.; Chołast, K.; Kociemba, A.

    2014-01-29

    As demands on 3He are increasing and conventional 3He production through tritium decay is decreasing, alternative 3He production methods are becoming economically viable. One such possibility is to use entropy filters for extraction of the 3He isotope from natural gas. According to the phase diagram of the 3He, its solidification is impossible by only lowering of the temperature. Hence during the cooling process at stable pressure we can reach λ-point and pass to the special phase - He II. The total density of HeII is a sum of the two phases: normal the superfluid ones. It is possible to separate these two phases with an entropy filter - the barrier for the classically-behaving normal phase. This barrier can also be used to separate the two main isotopes of He: 4He and 3He, because at temperatures close to the 4He-λ-point the 3He isotope is part of the normal phase. The paper presents continuous flow schemes of different separation methods of 3He from helium commodity coming from natural gas cryogenic processing. An overall thermodynamic efficiency of the 3He/4He separation process is presented. A simplified model of continuous flow HeI -HeII recuperative heat exchanger is given. Ceramic and carbon porous plugs have been tested in entropy filter applications.

  2. Direct and Continuous Numerical Simulations of Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Lu, Tianshi; Samulyak, Roman; Glimm, James

    2003-11-01

    We have studied numerically the propagation of linear and nonlinear waves in bubbly flows using direct and continuous approaches. The direct method represents a mixture of gas bubbles in a liquid as a system of one phase domains separated by free interfaces. FronTier, a front tracking hydro code was used for numerical simulations. It is capable of tracking simultaneously a large number of interfaces and resolving their topological changes (the breakup and merger of bubbles) in two- and three-dimensional spaces. The continuous method describes a bubbly fluid as a homogeneous system or pseudofluid that obeys an equation of state of single-component flow. Homogeneous equation of state models based on the Rayleigh-Plesset equation have been developed for the FronTier code. We have compared results of our numerical simulations with theoretical predictions and experimental data on the propagation of shocks and linear sound waves in bubbly fluids. The two methods can be applied to estimate the efficiency of gas bubble mitigation in reducing the cavitation erosion of the container of the Spallation Neutron Source liquid mercury target.

  3. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  4. A continuous-flow process for the synthesis of artemisinin.

    PubMed

    Kopetzki, Daniel; Lévesque, François; Seeberger, Peter H

    2013-04-22

    Isolation of the most effective antimalarial drug, artemisinin, from the plant sweet wormwood, does not yield sufficient quantities to provide the more than 300 million treatments needed each year. The high prices for the drug are a consequence of the unreliable and often insufficient supply of artemisinin. Large quantities of ineffective fake drugs find a market in Africa. Semisynthesis of artemisinin from inactive biological precursors, either dihydroartemisinic acid (DHAA) or artemisinic acid, offers a potentially attractive route to increase artemisinin production. Conversion of the plant waste product, DHAA, into artemisinin requires use of photochemically generated singlet oxygen at large scale. We met this challenge by developing a one-pot photochemical continuous-flow process for the semisynthesis of artemisinin from DHAA that yields 65 % product. Careful optimization resulted in a process characterized by short residence times. A method to extract DHAA from the mother liquor accumulated during commercial artemisinin extractions, a material that is currently discarded as waste, is also reported. The synthetic continuous-flow process described here is an effective means to supplement the limited availability of artemisinin and ensure increased supplies of the drug for those in need.

  5. Continuous-Flow Bioseparation Using Microfabricated Anisotropic Nanofluidic Sieving Structures

    PubMed Central

    Fu, Jianping; Mao, Pan; Han, Jongyoon

    2010-01-01

    The anisotropic nanofluidic filter (nanofilter) array (ANA) is a unique molecular sieving structure for separating biomolecules. Here we describe fabrication of planar and vertical ANA chips and how to perform continuous-flow bioseparation using them. This protocol is most useful for bioengineers that are interested in developing automated multistep chip-based bioanalysis systems and assumes prior cleanroom microfabrication knowledge. The ANA consists of a two-dimensional periodic nanofilter array, and the designed structural anisotropy of the ANA causes different sized- or charged-biomolecules to follow distinct trajectories under applied electric fields, leading to efficient continuous-flow separation. Using microfluidic channels surrounding the ANA, the fractionated biomolecule streams are collected and routed to different fluid channels or reservoirs for convenient sample recovery and downstream bioanalysis. The ANA is physically robust and can be reused repeatedly. Compared to conventional gel-based separation techniques, the ANA offers the potential for faster separation, higher throughput, and more convenient sample recovery. PMID:19876028

  6. Continuous cerebral and myocardial perfusion during one-stage repair for aortic coarctation with ventricular septal defect.

    PubMed

    Chen, Huiwen; Hong, Haifa; Zhu, Zhongqun; Liu, Jinfen

    2013-04-01

    Controversy still exists concerning the use of deep hypothermic circulatory arrest (DHCA) and selective antegrade cerebral perfusion (SACP) for repair of aortic coarctation (CoA) with ventricular septal defect (VSD). This report therefore describes outcomes of patients undergoing continuous cerebral and myocardial perfusion (CCMP) under mild hypothermia compared with DHCA and SACP. Retrospective analysis was performed for 110 consecutive patients undergoing anatomic reconstruction of CoA with VSD closure between 1999 and 2011. Patients repaired under CCMP with mild hypothermia (32 °C) (group A, n = 60) were compared with those repaired under DHCA (18 °C) and SACP (group B, n = 50). In group A, the single arterial cannula perfusion technique was used for 15 patients (25 %), and the dual arterial cannula perfusion technique was used for 45 patients (75 %). The preoperative data were similar in the two groups. Group A had no hospital mortalities, compared with two mortalities (4 %) in group B. Group A had shorter myocardial ischemic and cardiopulmonary times, fewer delayed sternal closures, a shorter time to extubation, lower postoperative lactate levels, and fewer patients with low cardiac output requiring extracorporeal membrane oxygenation or with multiorgan failure than group B. During the postoperative course, no clinical or electrical neurologic events occurred in either group. The mean follow-up period was 5.2 ± 3.2 years for group A and 7.5 ± 3.1 years for group B (P = 0.048). One late death occurred in group B and no late deaths in group A. The actuarial survival for the two groups was similar (100 % for group A vs 96 % for group B; P = 0.264). The freedom from all types of cardiac reintervention was 96.7 % in group A and 89.6 % in group B (P = 0.688). All the patients were free of neurologic symptoms. The authors' perfusion strategy using CCMP with mild hypothermia for repair of CoA with VSD is feasible, safe, and associated with improved postoperative

  7. Clinical implications of physiological flow adjustment in continuous-flow left ventricular assist devices.

    PubMed

    Tchantchaleishvili, Vakhtang; Luc, Jessica G Y; Cohan, Caitlin M; Phan, Kevin; Hübbert, Laila; Day, Steven W; Massey, H Todd

    2016-11-15

    There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow. With current therapy, flow cannot be adjusted with changes in venous return, which can vary significantly with volume status. This limits the performance and safety of CF-LVAD. Active flow adjustment strategies have been proposed to improve the synchrony between the pump and the native cardiovascular system, mimicking the Frank-Starling mechanism of the heart. These flow adjustment strategies include modulation by CF-LVAD pump speed by synchrony and maintenance of constant flow or constant pressure head, or a combination of these variables. However, none of these adjustment strategies have evolved sufficiently to gain widespread attention. Herein we review the current challenges and future directions of CF-LVAD therapy and sensor technology focusing on the development of a physiologic, long-term active flow adjustment strategy for CF-LVADs.

  8. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    NASA Astrophysics Data System (ADS)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  9. Non-Newtonian Study of Blood Flow in an Abdominal Aortic Aneurysm with a Stabilized Finite Element Method

    NASA Astrophysics Data System (ADS)

    Marrero, Victor; Sahni, Onkar; Jansen, Kenneth; Tichy, John; Taylor, Charles

    2008-11-01

    In recent years the methods of computational fluid dynamics (CFD) have been applied to the human cardiovascular system to better understand the relationship between arterial blood flow and the disease process, for example in an abdominal aortic aneurysm (AAA). Obviously, the technical challenges associated with such modeling are formidable. Among the many problems to be addressed, in this paper we add yet another complication -- the known non-Newtonian nature of blood. In this preliminary study, we used a patient-based AAA model with rigid walls. The pulsatile nature of the flow and the RCR outflow boundary condition are considered. We use the Carreau-Yasuda model to describe the non-Newtonian viscosity variation. Preliminary results for 200K, 2M, and 8M elements mesh are presented for the Newtonian and non-Newtonian cases. The broad fundamental issue we wish to eventually resolve is whether or not non-Newtonian effects in blood flow are sufficiently strong in unhealthy vessels that they must be addressed in meaningful simulations. Interesting differences during the flow cycle shed light on the problem, but further research is needed.

  10. PDBD with continuous liquids flows in a discharge reactor

    NASA Astrophysics Data System (ADS)

    Rodríguez-Méndez, B. G.; Gutiérrez-León, D. G.; Belman-Flores, J. M.; López-Callejas, R.; Valencia-Alvarado, R.; Muñoz-Castro, A. E.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; de la Piedad-Beneitez, A.

    2015-03-01

    This paper presents the design, construction and testing of a cylindrical pulsed dielectric barrier discharge (PDBD) reactor aimed to microbiological elimination of Escherichia coli ATCC 8739 bacteria. In the reactor, water flowed continuously and to countercurrent an oxygen gas was injected. The water pumping was carried out with a peristaltic pump type, stainless steel and aluminum constructed, and water was recirculated through norprene tubing. The considered parameters in order to promote energetic efficiency were: the residence time of the water contaminated with bacteria, flow rate of the liquid, shape and material used to build electrodes and dielectric, pressure, and gas injection flow rate. The pulsed power supply parameters are featured by 25-30 kV high voltage, 500 Hz frequency and 30 μs width. The outcome elimination of E. coli bacteria at 103, 104 and 106 CFU/mL concentrations reached an efficiency over 0.5 log-order in absence of oxygen; while >2 log-orders when oxygen gas was injected during the process.

  11. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Garcia, Julio; Gaillard, Emmanuel; Maftoon, Nima; Di Labbio, Giuseppe; Cloutier, Guy; Kadem, Lyes

    2014-03-01

    Blood flow in the aorta has been of particular interest from both fluid dynamics and physiology perspectives. Coarctation of the aorta (COA) is a congenital heart disease corresponding to a severe narrowing in the aortic arch. Up to 85 % of patients with COA have a pathological aortic valve, leading to a narrowing at the valve level. The aim of the present work was to advance the state of understanding of flow through a COA to investigate how narrowing in the aorta (COA) affects the characteristics of the velocity field and, in particular, turbulence development. For this purpose, particle image velocimetry measurements were conducted at physiological flow and pressure conditions, with three different aorta configurations: (1) normal case: normal aorta + normal aortic valve; (2) isolated COA: COA (with 75 % reduction in aortic cross-sectional area) + normal aortic valve and (3) complex COA: COA (with 75 % reduction in aortic cross-sectional area) + pathological aortic valve. Viscous shear stress (VSS), representing the physical shear stress, Reynolds shear stress (RSS), representing the turbulent shear stress, and turbulent kinetic energy (TKE), representing the intensity of fluctuations in the fluid flow environment, were calculated for all cases. Results show that, compared with a healthy aorta, the instantaneous velocity streamlines and vortices were deeply changed in the presence of the COA. The normal aorta did not display any regions of elevated VSS, RSS and TKE at any moment of the cardiac cycle. The magnitudes of these parameters were elevated for both isolated COA and complex COA, with their maximum values mainly being located inside the eccentric jet downstream of the COA. However, the presence of a pathologic aortic valve, in complex COA, amplifies VSS (e.g., average absolute peak value in the entire aorta for a total flow of 5 L/min: complex COA: = 36 N/m2; isolated COA = 19 N/m2), RSS (e.g., average peak value in the entire aorta for a total flow of 5

  12. Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiwen; Yao, Zhaohui; Zhang, Yan; Xu, Shangdong

    2007-10-01

    Pulsatile flow fields in rigid abdominal aortic aneurysm (AAA) models were investigated numerically, and the simulation results are found in good agreement with particle image velocimetry (PIV) measurements. There are one or more vortexes in the AAA bulge, and a fairly high wall shear stress exists at the distal end, and thus the AAA is in danger of rupture. Medical treatment consists of inserting a vascular stent-graft in the AAA, which would decrease the blood impact to the inner walls and reduce wall shear stress so that the rupture could be prevented. A new computational model, based on porous medium model, was developed and results are documented. Therapeutic effect of the stent-graft was verified numerically with the new model.

  13. Abnormal distribution of pulmonary blood flow in aortic valve disease. Relation between pulmonary function and chest radiograph.

    PubMed

    Goodenday, L S; Simon, G; Craig, H; Dalby, L

    1970-05-01

    Wasted ventilatory volume (V(D)) and its ratio to tidal volume (V(D)/V(T)) were measured at rest and during exertion in 17 patients with aortic valve disease. We considered V(D)/V(T) to indicate abnormal ventilation: perfusion relations if it did not decrease on exertion, or if the exercising value was greater than 40 per cent. Plain chest radiographs were independently examined for evidence of diversion of pulmonary blood to the upper lobes. There was significant agreement (p<0.05) between radiographic and pulmonary function estimations of abnormality. This suggests that the raised pulmonary venous pressure associated with left ventricular failure creates an abnormal pattern of blood flow through the lung, which is responsible for causing inadequate perfusion with respect to ventilation.

  14. Continuous-Flow Detector for Rapid Pathogen Identification

    SciTech Connect

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.; Cummings, Eric B.; Fiechtner, Gregory J.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  15. Study of transient flow and particle transport in continuous steel caster molds: Part I. Fluid flow

    NASA Astrophysics Data System (ADS)

    Yuan, Quan; Thomas, Brian G.; Vanka, S. P.

    2004-08-01

    Unsteady three-dimensional flow in the mold region of the liquid pool during continuous casting of steel slabs has been computed using realistic geometries starting from the submerged inlet nozzle. Three large-eddy simulations (LES) have been validated with measurements and used to compare results between full-pool and symmetric half-pool domains and between a full-scale water model and actual behavior in a thin-slab steel caster. First, time-dependent turbulent flow in the submerged nozzle is computed. The time-dependent velocities exiting the nozzle ports are then used as inlet conditions for the flow in the liquid pool. Complex time-varying flow structures are observed in the simulation results, in spite of the nominally steady casting conditions. Flow in the mold region is seen to switch between a “double-roll” recirculation zone and a complex flow pattern with multiple vortices. The computed time-averaged flow pattern agrees well with measurements obtained by hot-wire anemometry and dye injection in full-scale water models. Full-pool simulations show asymmetries between the left and right sides of the flow, especially in the lower recirculation zone. These asymmetries, caused by interactions between two halves of the liquid pool, are not present in the half-pool simulation. This work also quantifies differences between flow in the water model and the corresponding steel caster. The top-surface liquid profile and fluctuations are predicted in both systems and agree favorably with measurements. The flow field in the water model is predicted to differ from that in the steel caster in having higher upward velocities in the lower-mold region and a more uniform top-surface liquid profile. A spectral analysis of the computed velocities shows characteristics similar to previous measurements. The flow results presented here are later used (in Part II of this article) to investigate the transport of inclusion particles.

  16. Noninvasive 4D pressure difference mapping derived from 4D flow MRI in patients with repaired aortic coarctation: comparison with young healthy volunteers.

    PubMed

    Rengier, Fabian; Delles, Michael; Eichhorn, Joachim; Azad, Yoo-Jin; von Tengg-Kobligk, Hendrik; Ley-Zaporozhan, Julia; Dillmann, Rüdiger; Kauczor, Hans-Ulrich; Unterhinninghofen, Roland; Ley, Sebastian

    2015-04-01

    To assess spatial and temporal pressure characteristics in patients with repaired aortic coarctation compared to young healthy volunteers using time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and derived 4D pressure difference maps. After in vitro validation against invasive catheterization as gold standard, 4D flow MRI of the thoracic aorta was performed at 1.5T in 13 consecutive patients after aortic coarctation repair without recoarctation and 13 healthy volunteers. Using in-house developed processing software, 4D pressure difference maps were computed based on the Navier-Stokes equation. Pressure difference amplitudes, maximum slope of pressure amplitudes and spatial pressure range at mid systole were retrospectively measured by three readers, and twice by one reader to assess inter- and intraobserver agreement. In vitro, pressure differences derived from 4D flow MRI showed excellent agreement to invasive catheter measurements. In vivo, pressure difference amplitudes, maximum slope of pressure difference amplitudes and spatial pressure range at mid systole were significantly increased in patients compared to volunteers in the aortic arch, the proximal descending and the distal descending thoracic aorta (p < 0.05). Greatest differences occurred in the proximal descending aorta with values of the three parameters for patients versus volunteers being 19.7 ± 7.5 versus 10.0 ± 2.0 (p < 0.001), 10.9 ± 10.4 versus 1.9 ± 0.4 (p = 0.002), and 8.7 ± 6.3 versus 1.6 ± 0.9 (p < 0.001). Inter- and intraobserver agreements were excellent (p < 0.001). Noninvasive 4D pressure difference mapping derived from 4D flow MRI enables detection of altered intraluminal aortic pressures and showed significant spatial and temporal changes in patients with repaired aortic coarctation.

  17. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  18. Continuous Flow in Labour-Intensive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Pacheco Eng., Jhonny; Carbajal MSc., Eduardo; Stoll-Ing., Cesar, Dr.

    2017-06-01

    A continuous-flow manufacturing represents the peak of standard production, and usually it means high production in a strict line production. Furthermore, low-tech industry demands high labour-intensive, in this context the efficient of the line production is tied at the job shop organization. Labour-intensive manufacturing processes are a common characteristic for developing countries. This research aims to propose a methodology for production planning in order to fulfilment a variable monthly production quota. The main idea is to use a clock as orchestra director in order to synchronize the rate time (takt time) of customer demand with the manufacturing time. In this way, the study is able to propose a stark reduction of stock in process, over-processing, and unnecessary variability.

  19. Clinical applications of the continuous flow blood separator machine.

    PubMed Central

    Oon, C J; Hobbs, J R

    1975-01-01

    The NCl/IBM or Aminco Continuous Flow Blood Separator Machine is a safe apparatus for the selective removal or exchange of either packed red blood cells, leucocyte-rich or platelet-rich layers or plasma. Abnormal fractions from any of these layers may be collected and discarded. Normal constituents may be collected for therapeutic uses. The wide scope of its applications includes important uses in clinical immunology: temporary provision of good leucocytes or platelets; harvesting of immune leucocytes (preparation of transfer factor at up to 10 units per harvest); removal of cryo- or macro-globulins, immune complexes or blocking factors; replacement therapy for antibody or complement deficiencies. Examples are given of such uses together with some of the medical problems so far encountered. Images FIG. 6 PMID:1106917

  20. Drops transformed from a continuous flow on a superhydrophobic incline

    NASA Astrophysics Data System (ADS)

    Katariya, Mayur; Ng, Tuck Wah

    2013-08-01

    Biochemical analysis with discrete drops on superhydrophobic surfaces will benefit from low loss, low contamination and open access features, but is challenged by the ability to generate them. A simple approach for delivering the drops from a continuous flow through an inclined superhydrophobic surface here showed the rear pinning contact line to be strongly influential in retention, providing potential for volume control, yet without any lossy daughter droplet formation. At a high flowrate regime prior to jetting, the liquid body was found to develop a grown out section that was able to flip up and down to be airborne, depending on the gravitational effect. While the section was airborne, the drop was able to increase its volume without the action of the three-phase mechanics dictating detachment.

  1. Continuous flow ink etching for direct micropattern of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-07-01

    A continuous flow ink etching (CFIE) method is presented to directly create micropatterns on a 60 nm thick silicon dioxide (SiO2) layer. This technique employs a micropipette filled with potassium bifluoride (KHF2) aqueous solution to localize SiO2 dissolution in the vicinity of the micropipette tip. Both dot and line features with well-defined edges were fabricated and used as hardmasks for silicon etching. The linear density of etchant ink deposited on the SiO2 can be used to regulate the depth, width and 2D morphology of the line pattern. The characterization of CFIE including the resolution (about 4 μm), reproducibility and capability to form complex structures are reported. This technique provides a simple and flexible alternative to generate the SiO2 hardmask for silicon microstructure fabrication.

  2. On-chip diamagnetic repulsion in continuous flow.

    PubMed

    Tarn, Mark D; Hirota, Noriyuki; Iles, Alexander; Pamme, Nicole

    2009-02-01

    We explore the potential of a microfluidic continuous flow particle separation system based on the repulsion of diamagnetic materials from a high magnetic field. Diamagnetic polystyrene particles in paramagnetic manganese (II) chloride solution were pumped into a microfluidic chamber and their deflection behaviour in a high magnetic field applied by a superconducting magnet was investigated. Two particle sizes (5 and 10 μm) were examined in two concentrations of MnCl2 (6 and 10%). The larger particles were repelled to a greater extent than the smaller ones, and the effect was greatly enhanced when the particles were suspended in a higher concentration of MnCl2. These findings indicate that the system could be viable for the separation of materials of differing size and/or diamagnetic susceptibility, and as such could be suitable for the separation and sorting of small biological species for subsequent studies.

  3. Thermohydraulic modelling of a transfer line for continuous flow cryostats

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Weisemann, A.; Haberstroh, Ch; Hesse, U.; Krzyzowski, M.

    2017-02-01

    Continuous flow cryostats have to be steadily supplied with the cryogenic cooling agent, e.g. liquid helium (LHe) via a transfer line. The overall setup has to be characterised by a low consumption of the cryogen, determined not only by the cryostat design, but also by the transfer line design. In order to improve the transfer line’s performance, i.e. reducing the evaporation losses a thermohydraulic model has been developed to evaluate different transfer line designs. The presented model is validated by experimental data achieved with a transfer line equipped with built-in pressure sensors. This transfer line has been designed in order to examine the related frictional pressure drop. The developed model allows to examine the impact of the hydraulic and the insulation design on the resulting evaporation losses.

  4. New Continuous-Flow Total Artificial Heart and Vascular Permeability

    PubMed Central

    Feng, Jun; Cohn, William E.; Parnis, Steven M.; Sodha, Neel R.; Clements, Richard T.; Sellke, Nicholas; Frazier, O. Howard; Sellke, Frank W.

    2015-01-01

    Background We tested the short-term effects of completely non-pulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. Methods Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10–25 mmHg) at a rate of 40 pulses per minute (PP). The remaining 5 calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (POD) 1, 7 and 14. Skeletal muscle tissue water content was measured and morphological alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin and CD31 were analyzed by immuno-histochemistry. Results There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, POD 1, 7 and 14, respectively. There were no significant alterations in the expression/distribution of VE-cadherin, phospho-VE cadherin and CD31 in skeletal muscle vasculature at baseline, POD 1, 7 and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histological damage scores at POD 7 and 14, it failed to reach statistical significance. Conclusions There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability. PMID:26188957

  5. New continuous-flow total artificial heart and vascular permeability.

    PubMed

    Feng, Jun; Cohn, William E; Parnis, Steven M; Sodha, Neel R; Clements, Richard T; Sellke, Nicholas; Frazier, O Howard; Sellke, Frank W

    2015-12-01

    We tested the short-term effects of completely nonpulsatile versus pulsatile circulation after ventricular excision and replacement with total implantable pumps in an animal model on peripheral vascular permeability. Ten calves underwent cardiac replacement with two HeartMate III continuous-flow rotary pumps. In five calves, the pump speed was rapidly modulated to impart a low-frequency pulse pressure in the physiologic range (10-25 mm Hg) at a rate of 40 pulses per minute (PP). The remaining five calves were supported with a pulseless systemic circulation and no modulation of pump speed (NP). Skeletal muscle biopsies were obtained before cardiac replacement (baseline) and on postoperative days (PODs) 1, 7, and 14. Skeletal muscle-tissue water content was measured, and morphologic alterations of skeletal muscle were assessed. VE-cadherin, phospho-VE-cadherin, and CD31 were analyzed by immunohistochemistry. There were no significant changes in tissue water content and skeletal muscle morphology within group or between groups at baseline, PODs 1, 7, and 14, respectively. There were no significant alterations in the expression and/or distribution of VE-cadherin, phospho-VE-cadherin, and CD31 in skeletal muscle vasculature at baseline, PODs 1, 7, and 14 within each group or between the two groups, respectively. Although continuous-flow total artificial heart (CFTAH) with or without a pulse pressure caused slight increase in tissue water content and histologic damage scores at PODs 7 and 14, it failed to reach statistical significance. There was no significant adherens-junction protein degradation and phosphorylation in calf skeletal muscle microvasculature after CFTAH implantation, suggesting that short term of CFTAH with or without pulse pressure did not cause peripheral endothelial injury and did not increase the peripheral microvascular permeability. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermal and flow measurements of continuous cryogenic spray cooling.

    PubMed

    Hsieh, Shou-Shing; Tsai, Huang-Hsiu

    2006-07-01

    The performance of single sprays for high heat flux cooling using R-134a was studied. The heat flux and heat transfer coefficient at the surface of a sprayed jet based on measurements of steady-state temperature gradients on a thin copper plate during continuous spraying. Meanwhile, the spray droplets flow characteristics was also quantified through laser doppler velocimetry (LDV) measurements to obtain the local velocity distributions. The effects of mass flow rate and average droplet velocity, and spray exit-to-target distance on the surface heat flux including the corresponding critical heat flux (CHF) were explored through three different nozzle diameters of 0.2, 0.3, and 0.4 mm. Finally, the effective use of the fluid being delivered based on the cooling efficiency and cooling effectiveness was also examined. The relationship between CHF and nozzle performance in terms of cooling efficiency and cooling effectiveness was found. The heat transfer removal rate can reach up to 140 W/cm(2) for the present nozzle size of d (j)=0.2 and 0.3 mm, which may enhance the current cryogen spray cooling (CSC) technique that assists laser therapy of dermatoses.

  7. Continuous flow analysis of labile iron in ice-cores.

    PubMed

    Hiscock, William T; Fischer, Hubertus; Bigler, Matthias; Gfeller, Gideon; Leuenberger, Daiana; Mini, Olivia

    2013-05-07

    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N'-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ~1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

  8. Prototype continuous flow ventricular assist device supported on magnetic bearings.

    PubMed

    Allaire, P E; Kim, H C; Maslen, E H; Olsen, D B; Bearnson, G B

    1996-06-01

    This article describes a prototype continuous flow pump (CFVAD2) fully supported in magnetic bearings. The pump performance was measured in a simulated adult human circulation system. The pump delivered 6 L/min of flow at 100 mm Hg of differential pressure head operating at 2,400 rpm in water. The pump is totally supported in 4 magnetic bearings: 2 radial and 2 thrust. Magnetic bearings offer the advantages of no required lubrication and large operating clearances. The geometry and other properties of the bearings are described. Bearing parameters such as load capacity and current gains are discussed. Bearing coil currents were measured during operation in air and water. The rotor was operated in various orientations to determine the actuator current gains. These values were then used to estimate the radial and thrust forces acting on the rotor in both air and water. Much lower levels of force were found than were expected, allowing for a very significant reduction in the size of the next prototype. Hemolysis levels were measured in the prototype pump and found not to indicate damage to the blood cells.

  9. Alterations of blood flow pattern after triple stent endovascular treatment of saccular abdominal aortic aneurysm: a porcine model.

    PubMed

    Oliveira, Jahir Richard DE; Aquino, Maurício DE Amorim; Barros, Svetlana; Pitta, Guilherme Benjamin Brandão; Pereira, Adamastor Humberto

    2016-01-01

    to determine the blood flow pattern changes after endovascular treatment of saccular abdominal aortic aneurysm with triple stent. we conducted a hemodynamic study of seven Landrace and Large White pigs with saccular aneurysms of the infrarenal abdominal aorta artificially produced according to the technique described. The animals were subjected to triple stenting for endovascular aneurysm. We evaluated the pattern of blood flow by duplex scan before and after stent implantation. We used the non-paired Mann-Whitney test for statistical analysis. there was a significant decrease in the average systolic velocity, from 127.4cm/s in the pre-stent period to 69.81cm/s in the post-stent phase. There was also change in the flow pattern from turbulent in the aneurysmal sac to laminate intra-stent. there were changes in the blood flow pattern of saccular abdominal aortic aneurysm after endovascular treatment with triple stent. determinar as alterações do padrão do fluxo sanguíneo após tratamento endovascular do aneurisma sacular de aorta abdominal com triplo stent. estudo hemodinâmico de sete suínos das raças Landrace e Large White portadores de aneurismas saculares de aorta abdominal infrarrenal artificialmente produzidos segundo técnica descrita. Os animais foram submetidos a implante de triplo stent para correção endovascular do aneurisma e reavaliados por duplex scan quanto ao padrão do fluxo sanguíneo antes e após o implante dos stents. A análise estatística foi realizada com o teste Mann-Whitney não pareado. verificou-se uma queda significativa da velocidade sistólica média de 127,4cm/s na fase pré-stent para 69,81cm/s na fase pós-stent. Houve ainda mudança no padrão do fluxo de turbilhonar no saco aneurismático para laminar intrastent. o estudo demonstrou alterações do padrão do fluxo sanguíneo do aneurisma sacular de aorta abdominal após tratamento endovascular com triplo stent.

  10. Cr(VI) reduction in continuous-flow coculture bioreactor

    SciTech Connect

    Wang, Y.T.; Chirwa, E.M.; Shen, H.

    2000-04-01

    A continuous-flow coculture bioreactor with a phenol-degrading organism, Pseudomonas putida DMP-1, and a Cr(VI)-reducing species, Escherichia coli ATCC 33456, was developed for simultaneous removal of phenol and Cr(VI). Phenol was the sole energy and carbon source added to the coculture along with a basal medium and hexavalent chromium. The coculture bioreactor was operated under three liquid detention times (0.20, 0.31, and 0.52 days) with phenol and Cr(VI) loadings ranging from 2,500 to 8,200 mg/L/day and 4.5-33.2 mg/L/day, respectively. After 279 days of continuous operation, eight quasi-steady-state operation conditions were obtained with near complete removal of phenol and Cr(VI). Elevated levels of Cr(VI) and phenol were observed in the effluent under a high influent Cr(VI) concentration (16 mg/L) or a short liquid detention time (0.20 days). The system recovered from Cr(VI) toxicity after influent Cr(VI) level was reduced. Chromium mass balance analysis revealed that nearly all of the influent Cr(VI) was reduced to Cr(III) in the coculture bioreactor through biological activity. Spectra of UV-Vis and mass spectrometers suggested that phenol metabolites produced by P. putida were utilized by E. coli.

  11. Three-dimensional rotational angiography of the carotid arteries with high-flow injection from the aortic arch. Preliminary experience.

    PubMed

    Pozzi Mucelli, F; Calgaro, A; Bruni, S; Bottaro, L; Pozzi Mucelli, R

    2005-01-01

    Three-Dimensional Rotational Angiography (3DRA) is a new technique based on a rotational angiographic acquisition able to display arterial vessels in a 3D rendering mode. The system was mainly developed for neuroradiological evaluations but preliminary extracranial experiences have also been reported. The aim of our work was to compare the results of three-dimensional angiography of the carotid arteries done with high-flow injection of contrast medium from the aortic arch with the results of selective angiography. Twenty patients underwent digital angiography of the supra-aortic vessels in order to quantify a stenosis of the carotid bifurcations previously detected at Doppler Ultrasound. Examinations were performed with the Philips Integris Allura system provided with the rotational angiography (RA) tool connected to a workstation for three-dimensional reconstruction able to display vessels in a 3D fashion (Volume Rendering, Gradient Rendering, Shaded Surface Display), automatically remove bone structures (cervical spine, calcified plaque, etc.) and perform an automatic analysis of the vessel diameter and surface area at the point of major stenosis and in the disease-free vessel segments above and below. The carotid evaluation was done either with selective catheterization and the two standard AP and LL projections and with RA after contrast medium injection from the aortic arch followed by 3D reconstruction. The comparison of the selective angiography and three-dimensional images was possible in 37 out of 40 carotid bifurcations (3 internal carotid arteries were occluded) and a good diagnostic quality was obtained in 35 out of 37 cases with an high correlation in the degree of stenosis. In 2/37 cases with calcified plaques the degree of stenosis was effectively demonstrated only after electronic subtraction of the calcified component of the plaque. The technique we propose proved to be feasible in all cases with a good correlation in the quantification of the

  12. Turbulent Kinetic Energy Assessed by Multipoint 4-Dimensional Flow Magnetic Resonance Imaging Provides Additional Information Relative to Echocardiography for the Determination of Aortic Stenosis Severity.

    PubMed

    Binter, Christian; Gotschy, Alexander; Sündermann, Simon H; Frank, Michelle; Tanner, Felix C; Lüscher, Thomas F; Manka, Robert; Kozerke, Sebastian

    2017-06-01

    Turbulent kinetic energy (TKE), assessed by 4-dimensional (4D) flow magnetic resonance imaging, is a measure of energy loss in disturbed flow as it occurs, for instance, in aortic stenosis (AS). This work investigates the additional information provided by quantifying TKE for the assessment of AS severity in comparison to clinical echocardiographic measures. Fifty-one patients with AS (67±15 years, 20 female) and 10 healthy age-matched controls (69±5 years, 5 female) were prospectively enrolled to undergo multipoint 4D flow magnetic resonance imaging. Patients were split into 2 groups (severe and mild/moderate AS) according to their echocardiographic mean pressure gradient. TKE values were integrated over the aortic arch to obtain peak TKE. Integrating over systole yielded total TKEsys and by normalizing for stroke volume, normalized TKEsys was obtained. Mean pressure gradient and TKE correlated only weakly (R(2)=0.26 for peak TKE and R(2)=0.32 for normalized TKEsys) in the entire study population including control subjects, while no significant correlation was observed in the AS patient group. In the patient population with dilated ascending aorta, both peak TKE and total TKEsys were significantly elevated (P<0.01), whereas mean pressure gradient was significantly lower (P<0.05). Patients with bicuspid aortic valves also showed significantly increased TKE metrics (P<0.01), although no significant difference was found for mean pressure gradient. Elevated TKE levels imply higher energy losses associated with bicuspid aortic valves and dilated ascending aortic geometries that are not assessable by current echocardiographic measures. These findings indicate that TKE may provide complementary information to echocardiography, helping to distinguish within the heterogeneous population of patients with moderate to severe AS. © 2017 American Heart Association, Inc.

  13. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  14. Lava flows during the continuing eruption of Mt. Etna, Italy

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows advancing lava flows on the southern flank of Mt. Etna above the town of Nicolosi, which is potentially threatened if the eruption increases in magnitude. Also visible are glowing summit craters above the main lava flows, and a small fissure eruption. The bright puffy clouds were formed from water vapor released during the eruption. The image covers an area of 24 x 30 km.

    The image is centered at 37.7 degrees north latitude, 15 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils

  15. Continuous-Flow System Produces Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R.

    2009-01-01

    A continuous-flow system utilizes microwave heating to sterilize water and to thermally inactivate endotoxins produced in the sterilization process. The system is designed for use in converting potable water to medical-grade water. Systems like this one could be used for efficient, small-scale production of medical- grade water in laboratories, clinics, and hospitals. This system could be adapted to use in selective sterilization of connections in ultra-pure-water-producing equipment and other equipment into which intrusion by microorganisms cannot be tolerated. Lightweight, port - able systems based on the design of this system could be rapidly deployed to remote locations (e.g., military field hospitals) or in response to emergencies in which the normal infrastructure for providing medical-grade water is disrupted. Larger systems based on the design of this system could be useful for industrial production of medical-grade water. The basic microwave-heating principle of this system is the same as that of a microwave oven: An item to be heated, made of a lossy dielectric material (in this case, flowing water) is irradiated with microwaves in a multimode microwave cavity. The heating is rapid and efficient because it results from absorption of microwave power throughout the volume of the lossy dielectric material. In this system, a copper tube having a length of 49.5 cm and a diameter of 2.25 cm serves as both the microwave cavity and the sterilization chamber. Microwave power is fed via a coaxial cable to an antenna mounted inside the tube at mid-length (see figure). Efficient power transfer occurs due to the shift in wavelength associated with the high permittivity of water combined with the strong coupling of 2.45-GHz microwaves with rotational-vibrational transitions of the dipolar water molecule.

  16. Environmental optimization of continuous flow ozonation for urban wastewater reclamation.

    PubMed

    Rodríguez, Antonio; Muñoz, Iván; Perdigón-Melón, José A; Carbajo, José B; Martínez, María J; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2012-10-15

    Wastewater samples from the secondary clarifier of two treatment plants were spiked in the microgram-to-tens-of-microgram per liter range with diuron (herbicide), ibuprofen and diclofenac (anti-inflammatory drugs), sulfamethoxazole and erythromycin (antibiotics), bezafibrate and gemfibrozil (lipid regulators), atenolol (β-blocker), carbamazepine (anti-epileptic), hydrochlorothiazide (diuretic), caffeine (stimulant) and N-acetyl-4-amino-antipiryne, a metabolite of the antipyretic drug dypirone. They were subsequently ozonated in continuous flow using 1.2L lab-scale bubble columns. The concentration of all spiking compounds was monitored in the outlet stream. The effects of varying ozone input, expressed as energy per unit volume, and water flow rate, and of using single or double column were studied in relation to the efficiency of ozone usage and the ratio of pollutant depletion. The ozone dosage required to treat both wastewaters with pollutant depletion of >90% was in the 5.5-8.5 mg/L range with ozone efficiencies greater than 80% depending on the type of wastewater and the operating conditions. This represented 100-200 mol of ozone transferred per mole of pollutant removed. Direct and indirect environmental impacts of ozonation were assessed according to Life Cycle Assessment, a technique that helped identify the most effective treatments in terms of potential toxicity reduction, as well as of toxicity reduction per unit mass of greenhouse-gas emissions, which were used as an indicator of environmental efficiency. A trade-off between environmental effectiveness (toxicity reduction) and greenhouse-gas emissions was observed since maximizing toxicity removal led to higher greenhouse-gas emissions, due to the latter's relatively high ozone requirements. Also, there is an environmental trade-off between effectiveness and efficiency. Our results indicate that an efficient use of ozone was not compatible with a full pollutant removal.

  17. Characterization of renal parenchymal perfusion during experimental infrarenal aortic clamping and declamping with enhanced thermodiffusion electrodes.

    PubMed

    Kraus, T; Mehrabi, A; Angelescu, M; Golling, M; Allenberg, J R; Klar, E

    2001-07-01

    Despite multiple previous experimental and clinical investigations, it has not been fully clarified until now whether infrarenal aortic cross-clamping (IRAC) induces a significant disturbance of renal parenchymal perfusion. Most renal cortical flow data collected thus far have been heterogenous because of inherent limitations of available measurement technology. The enhanced thermal diffusion (TD) electrode is a newly developed and previously validated prototype device that allows continuous quantification of parenchymal kidney perfusion after local probe implantation. We monitored renal perfusion during experimental IRAC with TD for the first time, thereby also evaluating the potential applicability of the method in clinical aortic surgery. IRAC (20 min) followed by sudden declamping was performed in pigs under general anesthesia (n = 14). Renal cortical blood flow (RCBF) was continuously quantified by TD, total aortic flow (TABF) and renal artery flow (RABF) were measured by ultrasonic flow probes, and parameters of systemic circulation were determined by Swan-Ganz catheter. Our results showed that kidney perfusion can be continuously quantified using TD electrodes during experimental aortic surgery in a porcine model. IRAC does not lead to a significant impairment of RCBF in young pigs as measured by TD. Renal perfusion appears to be predominantly pressure driven. Consequently, abrubt aortic declamping can bring about prolonged renal ischemia. Transfer of the TD method to RCBF monitoring during clinical aortic surgery appears to be feasible and should be investigated in selected cases.

  18. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP).

    PubMed

    Rane, Tushar D; Chen, Liben; Zec, Helena C; Wang, Tza-Huei

    2015-02-07

    Digital nucleic acid detection is rapidly becoming a popular technique for ultra-sensitive and quantitative detection of nucleic acid molecules in a wide range of biomedical studies. Digital polymerase chain reaction (PCR) remains the most popular way of conducting digital nucleic acid detection. However, due to the need for thermocycling, digital PCR is difficult to implement in a streamlined manner on a single microfluidic device, leading to complex fragmented workflows and multiple separate devices and instruments. Loop-mediated isothermal amplification (LAMP) is an excellent isothermal alternative to PCR with potentially better specificity than PCR because of the use of multiple primer sets for a nucleic acid target. Here we report a microfluidic droplet device implementing all the steps required for digital nucleic acid detection including droplet generation, incubation and in-line detection for digital LAMP. As compared to microchamber or droplet array-based digital assays, the continuous flow operation of this device eliminates the constraints on the number of total reactions imposed by the footprint of the device and the analysis throughput caused by the time for lengthy incubation and transfer of materials between instruments.

  19. Hydrothermal upgrading of algae paste in a continuous flow reactor.

    PubMed

    Patel, Bhavish; Hellgardt, Klaus

    2015-09-01

    This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry.

  20. Continuous flowing membraneless microbial fuel cells with separated electrode chambers.

    PubMed

    Du, Fangzhou; Xie, Beizhen; Dong, Wenbo; Jia, Boyang; Dong, Kun; Liu, Hong

    2011-10-01

    Microbial fuel cell (MFC) is an emerging technology in the energy and environment field. Its application is limited due to its high cost caused by the utilization of membranes and noble metal catalysts. In this paper, a membraneless MFC, with separated electrode chambers, was designed. The two separated chambers are connected via a channel and the continuous electrolyte flow from anode to cathode drives proton transfer. The proton mass transfer coefficiency in this MFC is 0.9086 cm/s, which is higher than reported MFCs with membranes, such as J-cloth and glass fiber. The maximum output voltage is 160.7 mV, with 1000 Ω resistor. Its peak power density is 24.33 mW/m³. SCOD removal efficiency can reach 90.45% via this MFC. If the connection between the two electrode chambers is blocked, the performance of MFC will decrease severely. All the above results prove the feasibility and advantages of this special MFC model.

  1. The Impact of Direct Cardiac Output Determination On Using A Widely Available Direct Continuous Oxygen Consumption Measuring Device On The Hemodynamic Assessment of Aortic Valve

    PubMed Central

    Fanari, Zaher; Grove, Matthew; Rajamanickam, Anitha; Hammami, Sumaya; Walls, Cassie; Kolm, Paul; Saltzberg, Mitchell; Weintraub, William S.; Doorey, Andrew J.

    2016-01-01

    Background Accurate assessment of cardiac output (CO) is essential for the hemodynamic assessment of aortic valve area (AVA). Estimation of oxygen consumption (VO2) and Thermodilution (TD) is employed in many cardiac catheterization laboratories (CCL) given the historically cumbersome nature of direct continuous VO2 measurement, the “gold standard” for this technique. A portable facemask device simplifies the direct continuous measurement of VO2, allowing for relatively rapid and continuous assessment of CO and AVA. Methods and Materials Seventeen consecutive patients undergoing right heart catheterization had simultaneous determination of CO by both direct continuous and assumed VO2 and TD. Assessments were only made when a plateau of VO2 had occurred. All measurements of direct continuous and assumed VO2, as well as, TD CO were obtained in triplicate. Results Direct continuous VO2 CO and assumed VO2 CO correlated poorly (R= 0.57; ICC =0.59). Direct continuous VO2 CO and TD CO also correlated poorly (R= 0.51; ICC=0.60). Similarly AVA derived from direct continuous VO2 correlated poorly with those of assumed VO2 (R= 0.68; ICC=0.55) and TD (R=0.66, ICC=0.60). Repeated direct continuous VO2 CO and AVA measurements were extremely correlated and reproducible [(R=0.93; ICC=0.96) and (R=0.99; ICC>0.99) respectively], suggesting that this was the most reliable measurement of CO. Conclusions CO calculated from direct continuous VO2 measurement varies substantially from both assumed VO2 and TD based CO, which are widely used in most CCL. These differences may significantly impact the CO and AVA measurements. Furthermore, continuous, rather than average, measurement of VO2 appears to give highly reproducible results. PMID:27904163

  2. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model

    NASA Astrophysics Data System (ADS)

    Stamatopoulos, Ch.; Mathioulakis, D. S.; Papaharilaou, Y.; Katsamouris, A.

    2011-06-01

    The velocity field in a patient-specific abdominal aneurysm model including the aorto-iliac bifurcation was measured by 2D PIV. Phase-averaged velocities obtained in 14 planes reveal details of the flow evolution during a cycle. The aneurysm expanding asymmetrically toward the anterior side of the aorta causes the generation of a vortex at its entrance, covering the entire aneurysm bulge progressively before flow peak. The fluid entering the aneurysm impinges on the left side of its distal end, following the axis of the upstream aorta segment, causing an increased flow rate in the left (compared to the right) common iliac artery. High shear stresses appear at the aneurysm inlet and outlet as well as along the posterior wall, varying proportionally to the flow rate. At the same regions, elevated flow disturbances are observed, being intensified at flow peak and during the deceleration phase. Low shear stresses are present in the recirculation region, being two orders of magnitude smaller than the previous ones. At flow peak and during the deceleration phase, a clockwise swirling motion (viewed from the inlet) is present in the aneurysm due to the out of plane curvature of the aorta.

  3. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study.

    PubMed

    Gülan, Utku; Binter, Christian; Kozerke, Sebastian; Holzner, Markus

    2017-03-12

    Today, the functional and risk assessment of stenosed arteries is mostly based on ultrasound Doppler blood flow velocity measurements or catheter pressure measurements, which rely on several assumptions. Alternatively, blood velocity including turbulent kinetic energy (TKE) may be measured using MRI. The aim of the present study is to validate a TKE-based approach that relies on the fact that turbulence production is dominated by the flow's shear to determine the total irreversible energy loss from MRI scans. Three-dimensional particle tracking velocimetry (3D-PTV) and phase-contrast magnetic resonance imaging (PC-MRI) simulations were performed in an anatomically accurate, compliant, silicon aortic phantom. We found that measuring only the laminar viscous losses does not reflect the true losses of stenotic flows since the contribution of the turbulent losses to the total loss become more dominant for more severe stenosis types (for example, the laminar loss is 0.0094±0.0015W and the turbulent loss is 0.0361±0.0015W for the Remax=13,800 case, where Remax is the Reynolds number based on the velocity in the vena-contracta). We show that the commonly used simplified and modified Bernoulli's approaches overestimate the total loss, while the new TKE-based method proposed here, referred to as "shear scaling" approach, results in a good agreement between 3D-PTV and simulated PC-MRI (mean error is around 10%). In addition, we validated the shear scaling approach on a geometry with post-stenotic dilatation using numerical data by Casas et al. (2016). The shear scaling-based method may hence be an interesting alternative for irreversible energy loss estimation to replace traditional approaches for clinical use. We expect that our results will evoke further research, in particular patient studies for clinical implementation of the new method.

  4. Aortic Arch Interruption and Persistent Fifth Aortic Arch in Phace Syndrome: Prenatal Diagnosis and Postnatal Course.

    PubMed

    Chiappa, Enrico; Greco, Antonella; Fainardi, Valentina; Passantino, Silvia; Serranti, Daniele; Favilli, Silvia

    2015-09-01

    PHACE is a rare congenital neurocutaneous syndrome where posterior fossa malformations, hemangiomas, cerebrovascular anomalies, aortic arch anomalies, cardiac defects, and eye abnormalities are variably associated. We describe the prenatal detection and the postnatal course of a child with PHACE syndrome with a unique type of aortic arch anomaly consisting of proximal interruption of the aortic arch and persistence of the fifth aortic arch. The fifth aortic arch represented in this case a vital systemic-to-systemic connection between the ascending aorta and the transverse portion of the aortic arch allowing adequate forward flow through the aortic arch without surgical treatment.

  5. Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    NASA Astrophysics Data System (ADS)

    Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.

    2016-04-01

    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.

  6. Continuous-flow solar UVB disinfection reactor for drinking water.

    PubMed

    Mbonimpa, Eric Gentil; Vadheim, Bryan; Blatchley, Ernest R

    2012-05-01

    Access to safe, reliable sources of drinking water is a long-standing problem among people in developing countries. Sustainable solutions to these problems often involve point-of-use or community-scale water treatment systems that rely on locally-available resources and expertise. This philosophy was used in the development of a continuous-flow, solar UVB disinfection system. Numerical modeling of solar UVB spectral irradiance was used to define temporal variations in spectral irradiance at several geographically-distinct locations. The results of these simulations indicated that a solar UVB system would benefit from incorporation of a device to amplify ambient UVB fluence rate. A compound parabolic collector (CPC) was selected for this purpose. Design of the CPC was based on numerical simulations that accounted for the shape of the collector and reflectance. Based on these simulations, a prototype CPC was constructed using materials that would be available and inexpensive in many developing countries. A UVB-transparent pipe was positioned in the focal area of the CPC; water was pumped through the pipe to allow exposure of waterborne microbes to germicidal solar UVB radiation. The system was demonstrated to be effective for inactivation of Escherichia coli, and DNA-weighted UV dose was shown to govern reactor performance. The design of the reactor is expected to scale linearly, and improvements in process performance (relative to results from the prototype) can be expected by use of larger CPC geometry, inclusion of better reflective materials, and application in areas with greater ambient solar UV spectral irradiance than the location of the prototype tests. The system is expected to have application for water treatment among communities in (developing) countries in near-equatorial and tropical locations. It may also have application for disaster relief or military field operations, as well as in water treatment in areas of developed countries that receive

  7. Continuous regional blood flow measurement during environmental heating in rats

    SciTech Connect

    Kregel, K.C.; Wall, P.T.; Gisolfi, C.V.

    1986-03-05

    With prolonged exposure to high ambient temperatures, shifting regional blood flows reflect the dominance of cardiovascular over thermoregulatory requirements. Hypotension and decreased cardiac output contribute to the circulatory failure noted in heat stroke. The purpose of this study was to investigate changes in regional blood flows during prolonged exposure (50-70 min) to 45/sup 0/C heat. Sprague-Dawley rats (250-450 g) were implanted with pulsed Doppler flow probes on the superior mesenteric, caudal, and left iliac arteries. Measurements included blood flows in kHz Doppler shift, colonic (T/sub c/) and tail-skin temperatures, and mean arterial blood pressure (MABP). As T/sub c/ rose from 37/sup 0/ to 42/sup 0/C, iliac flow remained relatively constant, caudal flow rose to peak values of 257-600%, and mesenteric flow declined 60-88% relative to baseline. The rise in caudal blood flow occurred within the first 5 min of exposure whereas the decline in mesenteric flow was progressive; MABP rose to peak levels of 180 mm Hg. Heart rate rose to 500-630 bpm. At T/sub c/ above 42/sup 0/C, mesenteric flow increased in several animals (36-75%) and MABP began to fall. The authors hypothesize that the hypotension observed with prolonged heat exposure in the rat is in part attributed to the inability of the animal to sustain splanchnic vasoconstriction.

  8. Sample stream distortion modeled in continuous-flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.

    1979-01-01

    Buoyancy-induced disturbances in an electrophoresis-type chamber were investigated. Five tracer streams (latex) were used to visualize the flows while a nine-thermistor array sensed the temperature field. The internal heating to the chamber was provided by a 400 Hz electrical field. Cooling to the chamber was provided on the front and back faces and, in addition, on both chamber side walls. Disturbances to the symmetric base flow in the chamber occurred in the broad plane of the chamber and resulted from the formation of lateral and axial temperature gradients. The effect of these gradients was to retard or increase local flow velocities at different positions in the chamber cross section, which resulted in lateral secondary flows being induced in the broad plane of the chamber. As the adverse temperature gradients increased in magnitude, the critical Rayleigh number was approached and reverse (separated) flow became apparent, which, subsequently, led to the onset of time variant secondary flows.

  9. A mock circulatory system to assess the performance of continuous-flow left ventricular assist devices (LVADs): does axial flow unload better than centrifugal LVAD?

    PubMed

    Sénage, Thomas; Février, Dorothée; Michel, Magali; Pichot, Emmanuel; Duveau, Daniel; Tsui, Steven; Trochu, Jean Noel; Roussel, Jean Christian

    2014-01-01

    Hemodynamic performances comparisons between different types of left ventricular assist devices (LVADs) remain difficult in a clinical context. The aim of this study was to create an experimental model to assess and compare two types of LVAD under hemodynamic conditions that simulated physical effort and pulmonary hypertension. An experimental mock circulatory system was created to simulate the systemic and pulmonary circulations and consisted of pulsatile left and right cardiac simulators (cardiowest pump), air/water tanks to model compliances, and tubes to model the venous and arterial resistances. Two types of continuous-flow ventricular assist devices were connected to this pulsated model: an axial flow pump, Heartmate II (HTM II), and a centrifugal pump, VentrAssist (VTA). The hemodynamic conditions at rest and during exercise were replicated. Mean aortic pressures were not significantly different at rest and during effort but mean flow under maximum pump speed was higher with HTM II (13 L vs. 10 L, p = 0.02). Left atrial pressure was lower at rest and during effort for the HTM II (11 mm Hg vs. 3 mm Hg, p = 0.02 and 9 mm Hg vs. 2 mm Hg, p = 0.008) than with the VTA, but with greater risk of left-ventricle suck-down for the axial flow. Power consumption for a similar flow was lower with the VTA during rest (4.7 W vs. 6.9 W, p = 0.002) and during effort (4.3 W vs. 6.6 W, p = 0.008). In case of high pulmonary vascular resistance with preserved right ventricular function, lower right ventricular pressure was obtained with HTM II (21 mm Hg vs. 28 mm Hg, p = 0.03). Observed results are in favor of a better discharge of the left and right cavities with the HTM II compared to the VTA yet with a higher risk of left cavity collapse occurrence.

  10. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  11. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  12. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  13. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  14. 21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...

  15. Role of the left aortic arch and blood flows in embryonic American alligator (Alligator mississippiensis).

    PubMed

    Eme, John; Crossley, Dane A; Hicks, James W

    2011-04-01

    All embryonic and fetal amniotes possess a ductus(i) arteriosus(i) that allows blood to bypass the pulmonary circulation and the non-functional lungs. The central hemodynamic of embryonic reptiles are unique, given the additional systemic aorta that allows pulmonary circulatory bypass, the left aorta (LAo). The LAo exits in the right ventricle or 'pulmonary side' of reptilian hearts in both embryos and adults, but its functional significance in ovo is unknown. This study investigated the role of the LAo in embryonic American alligators by surgically occluding the LAo and measuring oxygen consumption and, in addition, measured hemodynamic responses to hypoxia in embryonic alligators. We measured systemic cardiac output and primary chorioallantoic membrane (CAM) artery blood flow for normoxic and hypoxic-incubated (10% O(2)) American alligator embryos (Alligator mississippiensis). Chronic blood flow (1-124 h) in the primary CAM artery for hypoxic-incubated embryos (92 ± 26 ml min(-1) kg(-1)) was elevated when compared with normoxic-incubated embryos (29 ± 14 ml min(-1) kg(-1), N = 6; P = 0.039). For hypoxic-incubated embryos, acute LAo blood flow (49.6 ± 24.4 ml min(-1) kg(-1)) was equivalent to the combined flow of the three systemic great vessels that arise from the left ventricle, the right aorta, common carotid and subclavian arteries (43.6 ± 21.5 ml min(-1) kg(-1), N = 5). Similarly, for normoxic-incubated embryos, LAo blood flow (27.3 ± 6.6 ml min(-1) kg(-1)) did not statistically differ from the other three vessels (18.4 ± 4.9 ml min(-1) kg(-1), N = 5). This study contains the first direct test of LAo function and the first measurements of blood flow in an embryonic reptile. These data support the hypotheses that embryonic alligators utilize the LAo to divert a significant amount of right ventricular blood into the systemic circulation, and that CAM blood flow increases following chronic hypoxic conditions. However, surgical occlusion of the LAo did not

  16. Continuous flow measurements using ultrasonic velocity meters - an update

    USGS Publications Warehouse

    Oltmann, Rick

    1995-01-01

    An article in the summer 1993 Newsletter described USGS work to continously monitor tidal flows in the delta using ultrasonic velocity meters.  This article updates progress since 1993, including new installations, results of data analysis, damage during this year's high flows, and the status of each site.

  17. Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions.

    PubMed

    Alimohammadi, Mona; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa

    2014-03-01

    Aortic dissection has high morbidity and mortality rates and guidelines regarding surgical intervention are not clearly defined. The treatment of aortic dissection varies with each patient and detailed knowledge of haemodynamic and mechanical forces would be advantageous in the process of choosing a course of treatment. In this study, a patient-specific dissected aorta geometry is constructed from computed tomography scans. Dynamic boundary conditions are implemented by coupling a three element Windkessel model to the 3D domain at each outlet, in order to capture the essential behaviour of the downstream vasculature. The Windkessel model parameters are defined based on clinical data. The predicted minimum and maximum pressures are close to those measured invasively. Malperfusion is indicated and complex flow patterns are observed. Pressure, flow and wall shear stress distributions are analysed. The methodology presented here provides insight into the haemodynamics in a patient-specific dissected aorta and represents a development towards the use of CFD simulations as a diagnostic tool for aortic dissection. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF.

    PubMed

    Clavel, Marie-Annick; Ennezat, Pierre Vladimir; Maréchaux, Sylvestre; Dumesnil, Jean G; Capoulade, Romain; Hachicha, Zeineb; Mathieu, Patrick; Bellouin, Annaïk; Bergeron, Sébastien; Meimoun, Patrick; Arsenault, Marie; Le Tourneau, Thierry; Pasquet, Agnès; Couture, Christian; Pibarot, Philippe

    2013-02-01

    The objective of this study was to examine the value of stress-echocardiography in patients with paradoxical low-flow, low-gradient (PLFLG) aortic stenosis (AS). The projected aortic valve area (AVAProj) at a normal flow rate was calculated in 55 patients with PLFLG AS. In the subset of patients (n = 13) who underwent an aortic valve replacement within 3 months after stress echocardiography, AVA(Proj) correlated better with the valve weight compared to traditional resting and stress echocardiographic parameters of AS severity (AVA(Proj): r = -0.78 vs. other parameters: r = 0.46 to 0.56). In the whole group (N = 55), 18 (33%) patients had an AVA(Proj) >1.0 cm(2), being consistent with the presence of pseudo severe AS. The AVA(Proj) was also superior to traditional parameters of stenosis severity for predicting outcomes (hazard ratio: 1.32/0.1 cm(2) decrease in AVA(Proj)). In patients with PLFLG AS, the measurement of AVA(proj) derived from stress echocardiography is helpful to determine the actual severity of the stenosis and predict risk of adverse events. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. [Anesthesic management of thoracic aortic stent graft deployment using rapid ventricular pacing].

    PubMed

    Yamagishi, Akio; Kunisawa, Takayuki; Katsumi, Norifumi; Nagashima, Michio; Takahata, Osamu; Iwasaki, Hiroshi

    2008-08-01

    Controlled hypotension is useful for accurate deployment of an aortic endograft. We describe the use of rapid ventricular pacing during thoracic aortic stent graft deployment. Anesthesia was induced and maintained with intravenous propofol and remifentanil. A pulmonary artery catheter with pacing function was introduced, and rapid ventricular pacing was started before stent graft deployment. Pacing mode was VVI and pacing rate was 120-160 beats min(-1). Aortic pressure and flow decreased immediately and were maintained at low levels during surgical manipulation. After stopping rapid ventricular pacing, heart rate and aortic pressure recovered immediately. Rapid ventricular pacing was performed 4 times, and there were no complications such as entailed arrhythmia. With rapid ventricular pacing maneuver, which is thought to cause a rapid change in cardiac output, continuous cardiac output measurement can be a useful monitor. This procedure has advantages over pharmacologic or other methods of aortic pressure reduction. Rapid ventricular pacing is safe and effective during stent graft positioning and deployment.

  20. [Stent Grafting for Aortic Dissection].

    PubMed

    Uchida, Naomichi

    2016-07-01

    The purpose of stent graft for aortic dissection is to terminate antegrade blood flow into the false lumen through primary entry. Early intervention for primary entry makes excellent aortic remodeling and emergent stent grafting for complicated acute type B aortic dissection is supported as a class I. On the other hand stent grafting for chronic aortic dissection is controversial. Early stent grafting is considered with in 6 months after on-set if the diameter of the descending aorta is more than 40 mm. Additional interventions for residual false lumen on the downstream aorta are still required. Stent graft for re-entry, candy-plug technique, and double stenting, other effective re-interventions were reported. Best treatment on the basis of each anatomical and physical characteristics should be selected in each institution. Frozen elephant trunk is alternative procedure for aortic dissection without the need to take account of proximal anatomical limitation and effective for acute type A aortic dissection.

  1. Flow characteristics of continuous-flow left ventricular assist devices in a novel open-loop system.

    PubMed

    Stanfield, J Ryan; Selzman, Craig H; Pardyjak, Eric R; Bamberg, Stacy

    2012-01-01

    Fluid-pumping technology is a mature engineering subject area with a well-documented knowledge base. However, the pump design optimization techniques accepted in industry are geared toward steady-state constant-flow conditions. In contrast, the implantation of a continuous-flow pump to aid the output of the human left ventricle subjects the device to perpetual variation. This study measures pressure-flow performance characteristics for both axial- and centrifugal continuous-flow rotary blood pumps across a wide range of pressure differential values under uniform conditions by means of a novel open-loop flow system. The axial-flow devices show lower hydraulic efficiency. All pumps yield best efficiency point at a head to flow coefficient ratio of approximately 1.7. The open-loop flow system accounts for the dynamic changes associated with human heart physiology and allows for more precise characterization of existing heart pumps and those in development.

  2. Continuous flow in open microfluidics using controlled evaporation.

    PubMed

    Zimmermann, Martin; Bentley, Steven; Schmid, Heinz; Hunziker, Patrick; Delamarche, Emmanuel

    2005-12-01

    This paper presents a method for programming the flow rate of liquids inside open microfluidic networks (MFNs). A MFN comprises a number of independent flow paths, each of which starts with an open filling port, has a sealed microchannel in which assays can be performed, and an open capillary pump (CP). The MFN is placed over Peltier elements and its flow paths initially fill owing to capillary forces when liquids are added to the filling ports. A cooling Peltier element underneath the filling ports dynamically prevents evaporation in all filling ports using the ambient temperature and relative humidity as inputs. Another Peltier element underneath the CPs heats the pumps thereby inducing evaporation in the CPs and setting the flow rate in the microchannels. This method achieves flow rates in the microchannels ranging from approximately 1.2 nL s(-1) to approximately 30 pL s(-1), and is able to keep 90% of a 0.6 microL solution placed in an open filling port for 60 min. This simple and efficient method should be applicable to numerous assays or chemical reactions that require small and precise flow of liquids and reagents inside microfluidics.

  3. Comparing contact and immersion freezing from continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Nagare, Baban; Marcolli, Claudia; Welti, André; Stetzer, Olaf; Lohmann, Ulrike

    2016-07-01

    due to the position of the INP on the droplet, and we discriminate it from collisional contact freezing, which assumes an enhancement due to the collision of the particle with the droplet. For best comparison with contact freezing results, immersion freezing experiments of the same INPs were performed with the continuous flow diffusion chamber Immersion Mode Cooling chAmber-Zurich Ice Nucleation Chamber (IMCA-ZINC) for a 3 s residence time. In IMCA-ZINC, each INP is activated into a droplet in IMCA and provides its surface for ice nucleation in the ZINC chamber. The comparison of contact and immersion freezing results did not confirm a general enhancement of freezing efficiency for contact compared with immersion freezing experiments. For AgI particles the onset of heterogeneous freezing in CLINCH was even shifted to lower temperatures compared with IMCA-ZINC. For ATD, freezing efficiencies for contact and immersion freezing experiments were similar. For kaolinite particles, contact freezing became detectable at higher temperatures than immersion freezing. Using contact angle information between water and the INP, it is discussed how the position of the INP in or on the droplets may influence its ice nucleation activity.

  4. Randomized Trial of the Effect of Magnesium Sulfate Continuous Infusion on IL-6 and CRP Serum Levels Following Abdominal Aortic Aneurysm Surgery

    PubMed Central

    Mojtahedzadeh, Mojtaba; chelkeba, Legese; Ranjvar- Shahrivar, Mona; Najafi, Atabak; Moini, Majid; Najmeddin, Farhad; Sadeghi, Kourosh; Barkhordari, Khosro; Gheymati, Azin; Ahmadi, Arezoo

    2016-01-01

    Abdominal aortic aneurysm (AAA) is widely considered as the disease of elderly white men. Inflammation is one of the most well-known mechanisms involved in the pathogenesis of AAA. Magnesium is one of the most important minerals in the body with established anti-inflammatory effects. In this study, we aimed to investigate the impact of Mg loading following AAA surgery on two inflammation markers, IL-6 and CRP, as well as patientʼs outcome. This study was conducted as a randomized clinical trial on 18 patients (divided into two groups) after surgical correction of Acute Aortic Aneurysm (AAA). All the patients admitted in ICU ward of Sina Hospital. In intervention group, 10 g of MgSO4 has been infused through 12 h. The control group has not received the intervention. IL-6 and CRP were measured and compared at times 0, 12, 24 and 36 h. The patients were monitored for 36 h. After intervention, the differences of heart rate and APACHE II score were not statistically significant between intervention and control groups (P = 0.097 and P = 0.472, respectively). IL-6 levels decreased consistently in both groups after inclusion in the study. However, IL-6 level was significantly less in intervention group early after the end of MgSO4 infusion comparing with control group (P = 0.01). Likewise, the CRP level decreased significantly after inclusion in the study (P = 0.005). However, these changes were not significant between intervention and control groups (P = 0.297). According to the results of this study, continuous infusion of MgSO4 after AAA surgery may provide IL-6 suppression. PMID:28243294

  5. Pregnancy in women with corrected aortic coarctation: Uteroplacental Doppler flow and pregnancy outcome.

    PubMed

    Siegmund, Anne S; Kampman, Marlies A M; Bilardo, Caterina M; Balci, Ali; van Dijk, Arie P J; Oudijk, Martijn A; Mulder, Barbara J M; Roos-Hesselink, Jolien W; Sieswerda, Gertjan Tj; Koenen, Steven V; Sollie-Szarynska, Krystyna M; Ebels, Tjark; van Veldhuisen, Dirk J; Pieper, Petronella G

    2017-09-22

    Women with repaired coarctation of the aorta (rCoA) are at risk of hypertensive disorders and other complications during pregnancy. Hypertensive disorders in pregnant women are associated with inadequate uteroplacental flow, which is related to adverse offspring outcome. The aim of this study was to investigate the relationship of maternal cardiac function, placental function and pregnancy complications in women with rCoA. We included 49 pregnant women with rCoA and 69 controls from the prospective ZAHARA-studies (Zwangerschap bij Aangeboren HARtAfwijkingen, pregnancy in congenital heart disease). Clinical evaluation, echocardiography and uteroplacental Doppler flow (UDF) measurements were performed at 20 and 32weeks gestation. Univariable regression analysis was performed. Comparison of rCoA and healthy women. In women with rCoA, tricuspid annular plane systolic excursion (TAPSE) decreased during pregnancy (25.7mm to 22.8mm, P=0.006). UDF indices and pregnancy complication rates were similar in both groups. Offspring of rCoA women had lower birth weight (3233g versus 3578g, P=0.001), which was associated with β-blocker use during pregnancy (β=-418.0, P=0.01). Association of cardiac function and UDF. Right ventricular (RV) function before pregnancy (TAPSE) and at 20weeks gestation (TAPSE and RV fractional area change) were associated with impaired UDF indices (umbilical artery pulsatility index at 20weeks β=-0.02, P=0.01, resistance index at 20 and 32weeks β=-0.01, P=0.02 and β=-0.02, P=0.01 and uterine artery pulsatility and resistance index at 20weeks gestation β=-0.02, P=0.05 and β=-0.01, P=0.02). Women with rCoA tolerate pregnancy well. However, RV function is altered and is associated with impaired placentation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Design of a continuous flow centrifugal pediatric ventricular assist device.

    PubMed

    Throckmorton, A L; Wood, H G; Day, S W; Song, X; Click, P C; Allaire, P E; Olsen, D B

    2003-11-01

    Thousands of pediatric patients suffering from cardiomyopathy or single ventricular physiologies secondary to debilitating heart defects may benefit from long-term mechanical circulatory support due to the limited number of donor hearts available. This article presents the initial design of a fully implantable centrifugal pediatric ventricular assist device (PVAD) for 2 to 12 year olds. Conventional pump design equations, including a nondimensional scaling approach, enabled performance estimations of smaller scale versions (25 mm and 35 mm impeller diameters) of our adult support VAD. Based on this estimated performance, a computational model of the PVAD with a 35 mm impeller diameter was generated. Employing computational fluid dynamics (CFD) software, the flow paths through the PVAD and overall performance were analyzed for steady state flow conditions. The numerical simulations involved flow rates of 2 to 5 LPM for rotational speeds of 2750 to 3250 RPM and incorporated a k-epsilon fluid turbulence model with a logarithmic wall function to characterize near-wall flow conditions. The CFD results indicated best efficiency points ranging from 25% to 28%, which correlate well with typical values of blood pumps. The results further demonstrated that the pump could deliver 2 to 5 LPM at 70 to 95 mmHg for desired physiologic conditions in resting 2 to 12 year olds. Scalar stress levels remained below 300 Pa, thereby signifying potentially low levels of hemolysis. Several flow regions in the pump exhibited signs of vortices, retrograde flow, and stagnation points, which require optimization and further study. This CFD model represents a reasonable starting point for future model enhancements, leading to prototype manufacturing and experimental validation.

  7. Cerebral Blood Flow Autoregulation Is Preserved After Continuous Flow Left Ventricular Assist Device Implantation

    PubMed Central

    Ono, Masahiro; Joshi, Brijen; Brady, Kenneth; Easley, R. Blaine; Kibler, Kathy; Conte, John; Shah, Ashish; Russell, Stuart D.; Hogue, Charles W.

    2012-01-01

    Objective To compare cerebral blood flow (CBF) autoregulation in patients undergoing continuous flow left ventricular assist device (LVAD) implantation with that in patients undergoing coronary artery bypass graft (CABG) surgery. Design Prospective, observational, controlled study. Setting Academic medical center. Participants Fifteen patients undergoing LVAD insertion and 10 patients undergoing CABG surgery. Measurements and Main Results Cerebral autoregulation was monitored with transcranial Doppler and near-infrared spectroscopy (NIRS). A continuous, Pearson's correlation coefficient was calculated between mean arterial pressure (MAP) and CBF velocity, and between MAP and NIRS data rendering the variables mean velocity index (Mx) and cerebral oximetry index (COx), respectively. Mx and COx approach zero when autoregulation is intact (no correlation between CBF and MAP), but approach 1 when autoregulation is impaired. Mx was lower during and immediately after cardiopulmonary bypass (CPB) in the LVAD group than it was in the CABG surgery patients, indicating better preserved autoregulation. Based on COx monitoring, autoregulation tended to be better preserved in the LVAD group than in the CABG group immediately after surgery (p=0.0906). On postoperative day 1, COx was lower in LVAD patients than in CABG surgery patients, again indicating preserved CBF autoregulation (p=0.0410). Based on COx monitoring, 3 (30%) of the CABG patients had abnormal autoregulation (COx ≥ 0.3) on the first postoperative day but none of the LVAD patients had this abnormality (p=0.037). Conclusion These data suggest that CBF autoregulation is preserved during and immediately after surgery in patients undergoing LVAD insertion. PMID:23122299

  8. Aortic compressor for aortic occlusion in hemorrhagic shock.

    PubMed

    Mahoney, B D; Gerdes, D; Roller, B; Ruiz, E

    1984-01-01

    The aortic compressor is a device that allows rapid, simple, immediately reversible occlusion of the thoracic aorta, without the aortic dissection required to use an aortic cross-clamp. We evaluated the aortic compressor in a controlled study using a canine hemorrhagic shock model. Twelve mongrel dogs were exsanguinated to a mean arterial pressure (MAP) of 47 mm Hg and maintained at that level for 20 minutes. At that point, all animals had a left lateral thoracotomy. Six study animals had the thoracic aorta occluded at the diaphragm using the compressor. Five minutes after thoracotomy, with or without occlusion, the shed blood was reinfused. Application of the aortic compressor was the only variable. Use of the aortic compressor led to an immediate and statistically significant doubling of the study animals' MAP. The increased afterload of aortic occlusion did not impair cardiac output. The cardiac index of the study animals rose slightly, while that of the control animals fell. At the same time the compressor prevented blood flow to the abdominal aorta. If the canine model can be extrapolated to human application, then the aortic compressor would be expected to enhance perfusion of the heart and brain during hemorrhagic shock, prevent further arterial blood loss from intra-abdominal injury or ruptured abdominal aortic aneurysm, and preserve already diminished cardiac output. Because the aorta does not need to be dissected out to use the compressor, there is no risk of injury to nearby vascular structures.

  9. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support.

    PubMed

    Petrucci, Ralph J; Rogers, Joseph G; Blue, Laura; Gallagher, Colleen; Russell, Stuart D; Dordunoo, Dzifa; Jaski, Brian E; Chillcott, Suzanne; Sun, Benjamin; Yanssens, Tammy L; Tatooles, Antone; Koundakjian, Lalig; Farrar, David J; Slaughter, Mark S

    2012-01-01

    The HeartMate II (Thoratec Corp, Pleasanton, CA) continuous-flow left ventricular assist device (LVAD) improved survival in destination therapy (DT) patients during a randomized trial compared with pulsatile-flow LVADs. This study documented changes in cognitive performance in DT patients from that trial to determine if there were differences between continuous-flow and pulsatile-flow support. Data were collected in a sub-study from 96 HeartMate II continuous-flow and 30 HeartMate XVE pulsatile-flow LVAD patients from 12 of the 35 trial sites that followed the same serial neurocognitive (NC) testing protocol at 1, 3, 6, 12, and 24 months after LVAD implantation. Spatial perception, memory, language, executive functions, and processing speed were the domains assessed with 10 standard cognitive measures. Differences over time and between LVAD type were evaluated with linear mixed-effects modeling. From 1 to 24 months after LVAD implantation, changes in NC functions were stable or showed improvement in all domains, and there were no differences between the continuous-flow and pulsatile-flow groups. Data at 24 months were only available from patients with the continuous-flow LVAD due to the limited durability of the HeartMate XVE device. There was no decline in any NC domain over the time of LVAD support. Missing data not collected from patients who died could have resulted in a bias toward inflated study results. The NC performance of advanced heart failure patients supported with continuous-flow and pulsatile-flow LVADs shows stabilization or improvement during support for up to 24 months. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  10. Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis.

    PubMed

    Vahidkhah, Koohyar; Cordasco, Dan; Abbasi, Mostafa; Ge, Liang; Tseng, Elaine; Bagchi, Prosenjit; Azadani, Ali N

    2016-09-01

    Valvular hemolysis and thrombosis are common complications associated with stenotic heart valves. This study aims to determine the extent to which hemodynamics induce such traumatic events. The viscous shear stress downstream of a severely calcified bioprosthetic valve was evaluated via in vitro 2D particle image velocimetry measurements. The blood cell membrane response to the measured stresses was then quantified using 3D immersed-boundary computational simulations. The shear stress level at the boundary layer of the jet flow formed downstream of the valve orifice was observed to reach a maximum of 1000-1700 dyn/cm(2), which was beyond the threshold values reported for platelet activation (100-1000 dyn/cm(2)) and within the range of thresholds reported for red blood cell (RBC) damage (1000-2000 dyn/cm(2)). Computational simulations demonstrated that the resultant tensions at the RBC membrane surface were unlikely to cause instant rupture, but likely to lead to membrane plastic failure. The resultant tensions at the platelet surface were also calculated and the potential damage was discussed. It was concluded that although shear-induced thrombotic trauma is very likely in stenotic heart valves, instant hemolysis is unlikely and the shear-induced damage to RBCs is mostly subhemolytic.

  11. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... AGENCY Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY...: EPA is announcing a 30-day public comment period for the draft document titled, ``Best Practices for... Development. The report describes best practices for the deployment of continuous temperature and flow...

  12. Continuous flow thermolysis of azidoacrylates for the synthesis of heterocycles and pharmaceutical intermediates.

    PubMed

    O'Brien, Alexander G; Lévesque, François; Seeberger, Peter H

    2011-03-07

    An efficient, safe and scalable procedure for the continuous flow thermolysis of azidoacrylates to yield indoles has been developed and was applied to the synthesis of related heterocycles. The scalability of the process was demonstrated in the continuous flow synthesis of a precursor to the DAAO inhibitor 4H-furo[3,2-b]pyrrole-5-carboxylic acid.

  13. Application of Clinical Intelligence to Streamline Care in Aortic Emergencies.

    PubMed

    Moats, Susan K; Richard, B Jeffery

    2017-10-01

    This article discusses the lessons learned by an interdisciplinary team in a large metropolitan specialty hospital during the implementation of the Code Aorta protocol for aortic emergencies and the subsequent application of technological enhancements to improve data transfer. Aortic dissections require rapid diagnosis and surgical treatment; thus, in order to optimize patient outcomes, clinicians must be accessible, data must be readily available, and proper prompts and notifications must be made to alert and ready teams. An interdisciplinary team reviewed our hospital's processes and architecture of systems to define how we provide care during aortic emergencies. Based on this insight into patient flow, we ultimately developed a Code Aorta protocol to streamline provision of care during aortic emergencies. This process focused on protocol development, human-technology interfaces, and outcome-oriented metrics. The team also aimed to heighten awareness of the emergent process and to understand relevant outcomes data. After introduction of the Code Aorta protocol, a 78% reduction was achieved in time-to-treatment from the previous year's average time. In addition, the average length of stay was reduced by 2.4 days (18%). The team's efforts focused on clinical communication, aiming to link technology to maximize clinical efficiency. The initial results of our Code Aorta protocol show promise that continual refinement of patient care processes during aortic emergencies will improve outcomes for patients suffering aortic dissection.

  14. Effect of the load size on the efficiency of microwave heating under stop flow and continuous flow conditions.

    PubMed

    Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C

    2012-01-01

    A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.

  15. Numerical study of thermal driven buoyancy flow effect on solidification process of continuous slab caster

    NASA Astrophysics Data System (ADS)

    JAMBHULKAR, ROHIT Y.; SINGH, V.; MISHRA, P.; KRISHNAMURTHY, R.

    2016-09-01

    The main aim of the present research is to study the role of thermal driven buoyancy flow in solidification process of continues slab caster. A 3-D fluid flow, heat transfer and solidification model was developed. The result from the model combined with nondimensional number to study the effect of thermal driven buoyancy flow on fluid flow and temperature distribution. For mushy region Kozeny-Carman is applicable. Observations show the relative strength between thermal driven buoyancy flow and forced flow and steel flow through mushy region. It is observed that buoyancy force in mould and sub mould region depend on the characteristic flow velocity, temperature difference and porosity of mushy zone. The most effect zone of thermal driven buoyancy flow is mushy zone and centre of mould where inertial flow is inferior. The convection flow creates by thermal buoyancy cause appearance of local turbulence.

  16. Illegal gene flow from transgenic creeping bentgrass: the saga continues.

    PubMed

    Snow, Allison A

    2012-10-01

    Ecologists have paid close attention to environmental effects that fitness-enhancing transgenes might have following crop-to-wild gene flow (e.g. Snow et al. 2003). For some crops, gene flow also can lead to legal problems,especially when government agencies have not approved transgenic events for unrestricted environmental release.Creeping bentgrass (Agrostis stolonifera), a common turf grass used in golf courses, is the focus of both areas of concern. In 2002, prior to expected deregulation (still pending), The Scotts Company planted creeping bentgrass with transgenic resistance to the herbicide glyphosate,also known as RoundUp, on 162 ha in a designated control area in central Oregon (Fig. 1).Despite efforts to restrict gene flow, wind-dispersed pollen carried transgenes to florets of local A. stolonifera and A. gigantea as far as 14 km away, and to sentinel plants placed as far as 21 km away (Watrud et al. 2004).Then, in August 2003, a strong wind event moved transgenic seeds from wind rows of cut bentgrass into nearby areas. The company’s efforts to kill all transgenic survivors in the area failed: feral glyphosate-resistant populations of A. stolonifera were found by Reichman et al.(2006), and 62% of 585 bentgrass plants had the telltale CP4 EPSPS transgene in 2006 (Zapiola et al. 2008; Fig. 2).Now, in this issue, the story gets even more interesting as Zapiola & Mallory-Smith (2012) describe a transgenic,intergeneric hybrid produced on a feral, transgenic creeping bentgrass plant that received pollen from Polypogon monspeliensis (rabbitfoot grass). Their finding raises a host of new questions about the prevalence and fitness of intergeneric hybrids, as well as how to evaluate the full extent of gene flow from transgenic crops.

  17. A seedless approach to continuous flow synthesis of gold nanorods.

    PubMed

    Bullen, Craig; Latter, Melissa J; D'Alonzo, Nicholas J; Willis, Glen J; Raston, Colin L

    2011-04-14

    A direct seedless method for the continuous synthesis of gold nanorods has been developed using a sequential rotating tube-narrow channel processing microfluidic configuration, with the stock feed solutions (HAuCl(4)/CTAB/acetylacetone and AgNO(3)/CTAB/carbonate buffer) being stable for weeks.

  18. PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR

    EPA Science Inventory

    The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...

  19. Initial experience of EVAHEART explantation after continuous-flow LVAD off test with percutaneous occlusion balloon.

    PubMed

    Kashiyama, Noriyuki; Toda, Koichi; Miyagawa, Shigeru; Nishi, Hiroyuki; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Saito, Tetsuya; Sawa, Yoshiki

    2014-12-01

    In contrast to a pulsatile-flow left ventricular assist device (LVAD), an LVAD off test for evaluation of cardiac recovery with a continuous-flow device is difficult because of intra-circuit backflow from the outflow graft when a device is stopped. We report a case of reliable evaluation of cardiac recovery using balloon occlusion of the outflow graft, followed by successful removal of a continuous-flow EVAHEART LVAD using a minimally invasive approach.

  20. Microsphere reference flow samples during systemic flow adjustment

    SciTech Connect

    Geffin, G.A.; O'Keefe, D.; Denenberg, A.G.; Daggett, W.M.

    1987-04-01

    Regional myocardial blood flow measurements in the right heart bypass preparation can be particularly valuable, since this preparation provides control of the main hemodynamic determinants of coronary blood flow. The authors examined the validity of aortic reference flow samples in relation to coronary samples during continuous systemic flow adjustment for aortic pressure control in six dogs on right heart bypass, anesthetized with chloralose and urethan. Radioactively-labelled microsphere concentrations were compared in paired reference flow samples drawn from the aortic arch and from a coronary artery for 119 left atrial microsphere injections. During left subclavian artery infusion and during femoral artery infusion at rates above 2000 ml/min, there were high percentage errors in microsphere concentration between paired samples, consistent with aortic sample dilution by systemically infused blood. In 52 injections during withdrawal or femoral infusion below 2000 ml/min, at cardiac outputs of 390-4800 ml/min. Linear regression related these coronary to aortic microsphere concentrations by the equation Y = 1.005X - 1.64, r = 0.997, S/sub y-x/ = 13.2 (5.9%). These data indicate that valid aortic reference flow samples can be obtained within specific hemodynamic conditions during systemic flow adjustment in the right heart bypass preparation.

  1. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  2. A Novel Idea to Improve Cardiac Output of Mechanical Circulatory Support Devices by Optimizing Kinetic Energy Transfer Available in Forward Moving Aortic Blood Flow.

    PubMed

    Qureshi, Muhammad B; Glower, Jacob; Ewert, Daniel L; Koenig, Steven C

    2017-06-01

    Mechanical circulatory support devices (MCSDs) have gained widespread clinical acceptance as an effective heart failure (HF) therapy. The concept of harnessing the kinetic energy (KE) available in the forward aortic flow (AOF) is proposed as a novel control strategy to further increase the cardiac output (CO) provided by MCSDs. A complete mathematical development of the proposed theory and its application to an example MCSDs (two-segment extra-aortic cuff) are presented. To achieve improved device performance and physiologic benefit, the example MCSD timing is regulated to maximize the forward AOF KE and minimize retrograde flow. The proof-of-concept was tested to provide support with and without KE control in a computational HF model over a wide range of HF test conditions. The simulation predicted increased stroke volume (SV) by 20% (9 mL), CO by 23% (0.50 L/min), left ventricle ejection fraction (LVEF) by 23%, and diastolic coronary artery flow (CAF) by 55% (3 mL) in severe HF at a heart rate (HR) of 60 beats per minute (BPM) during counterpulsation (CP) support with KE control. The proposed KE control concept may improve performance of other MCSDs to further enhance their potential clinical benefits, which warrants further investigation. The next step is to investigate various assist technologies and determine where this concept is best applied. Then bench-test the combination of kinetic energy optimization and its associated technology choice and finally test the combination in animals.

  3. Computational fluid dynamics-based study of possibility of generating pulsatile blood flow via a continuous-flow VAD.

    PubMed

    Nammakie, Erfan; Niroomand-Oscuii, Hanieh; Koochaki, Mojtaba; Ghalichi, Farzan

    2017-01-01

    Until recent years, it was almost beyond remedy to save the life of end-stage heart failure patients without considering a heart transplant. This is while the need for healthy organs has always far exceeded donations. However, the evolution of VAD technology has certainly changed the management of these patients. Today, blood pumps are designed either pulsatile flow or continuous flow, each of which has its own concerns and limitations. For instance, pulsatile pumps are mostly voluminous and hardly can be used for children. On the other hand, the flow generated by continuous-flow pumps is in contrast with pulsatile flow of the natural heart. In this project, having used computational fluid dynamics, we studied the possibility of generating pulsatile blood flow via a continuous-flow blood pump by adjusting the rotational speed of the pump with two distinct patterns (sinusoidal and trapezoidal), both of which have been proposed and set based on physiological needs and blood flow waveform of the natural heart. An important feature of this study is setting the outlet pressure of the pump similar to the physiological conditions of a patient with heart failure, and since these axial pumps are sensitive to outlet pressures, more secure and reliable results of their performance are achieved. Our results show a slight superiority of a sinusoidal pattern compared to a trapezoidal one with the potential to achieve an adequate pulsatile flow by precisely controlling the rotational speed.

  4. Compartmental models for continuous flow reactors derived from CFD simulations.

    PubMed

    Gresch, Markus; Brügger, Raphael; Meyer, Alain; Gujer, Willi

    2009-04-01

    Reactor modeling is of major interest in environmental technology. In this context, new contaminants with higher degradation requirements increase the importance of reactor hydraulics. CFD (Computational Fluid Dynamics) may meet this challenge but is expensive for everyday use. In this paper, we provide research and practice with a methodology designed to automatically reduce the complexity of such a high-dimensional flow model to a compartmental model. The derivation is based on the concentration field of a reacting species which is included in the steady state CFD simulation. While still capturing the most important flow features, the compartmental model is fast, easy to use, and open for process modeling with yet unknown compounds. The inherent overestimation of diffusion by compartmental models has been corrected by locally adjusting turbulent fluxes. We successfully applied the methodology to the ozonation process and experimentally verified it with tracer experiments. The loss of information was quantified as a deviation from CFD performance prediction for different reactions. With increasing discretisation of the compartmental model, these deviations diminish. General advice on the necessary discretisation is given.

  5. Macrosegregation Improvement by Swirling Flow Nozzle for Bloom Continuous Castings

    NASA Astrophysics Data System (ADS)

    Sun, Haibo; Zhang, Jiaquan

    2014-06-01

    Based on mathematical model coupling electromagnetism, fluid flow, heat transfer, and solute transport, the metallurgical performances of conventional straight nozzle, swirling flow nozzle (SFN), and M-EMS have been evaluated and compared. The soundness improvement of bloom castings has been investigated by casting tests of adopting the newly designed SFN. As compared to the normal nozzle, center porosity has been eliminated along with the popular center radial crack, and a better chemical homogeneity was obtained by employing the SFN accordingly, where the maximum segregation degree of C and S at the strand cross section is decreased from 1.28 to 1.02 and from 1.32 to 1.06, respectively. Combined with the results of numerical simulation, the positive effect obtained can be attributed to the remarkable superheat dissipation under the implementation of SFN, where, compared with the normal nozzle, the melt superheat degree at the mold exit is reduced by 15.5 K, 9.8 K, and 17.3 K (15.5 °C, 9.8 °C, and 17.3 °C) under the other three casting measures of SFN, normal nozzle with M-EMS, and SFN with M-EMS, respectively.

  6. Continuous flow two-dimensional acoustic orientation of nonspherical cells.

    PubMed

    Jakobsson, Ola; Antfolk, Maria; Laurell, Thomas

    2014-06-17

    Flow cytometry is a frequently used method when it comes to cell sorting and analysis. Nonspherical cells, such as red blood cells or sperm cells, however, pose a challenge as they reduce the precision of light scatter measurements which interfere with the analysis of these and other cell populations in the same sample. Here, we present a microfluidic chip for acoustophoresis utilizing ultrasonic standing waves to focus and orient red blood cells in two dimensions in the channel center. The cells can be oriented to show either their flat or up-ended side toward the optical axis and the observer. In an acoustic standing wave field the cells will be rotated until the direction of the smallest dimension is parallel with the direction where the acoustic energy is strongest. While keeping the cells focused in the channel center utilizing acoustic resonances in two dimensions, the orientation can be controlled by increasing the acoustic energy in either the horizontal or vertical resonance mode. It was shown that 87.8 ± 3.8% of the red blood cells could be horizontally oriented while 98.7 ± 0.3% could be vertically oriented. The ability to control the orientation of nonspherical cells with high accuracy is a beneficial feature and potential contribution to the rapidly growing field of flow and image cytometry.

  7. Continuous and Discontinuous Dynamic Unbinding Transitions in Drawn Film Flow

    NASA Astrophysics Data System (ADS)

    Galvagno, M.; Tseluiko, D.; Lopez, H.; Thiele, U.

    2014-04-01

    When a plate is withdrawn from a liquid bath a coating layer is deposited whose thickness and homogeneity depend on the velocity and the wetting properties of the plate. Using a long-wave mesoscopic hydrodynamic description that incorporates wettability via a Derjaguin (disjoining) pressure we identify four qualitatively different dynamic transitions between microscopic and macroscopic coatings that are out-of-equilibrium equivalents of known equilibrium unbinding transitions. Namely, these are continuous and discontinuous dynamic wetting and emptying transitions. Several of their features have no equivalent at equilibrium.

  8. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    PubMed

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well.

  9. Aquaporin-1 shifts the critical transmural pressure to compress the aortic intima and change transmural flow: theory and implications.

    PubMed

    Joshi, Shripad; Jan, Kung-Ming; Rumschitzki, David S

    2015-12-01

    Transmural-pressure (ΔP)-driven plasma advection carries macromolecules into the vessel wall, the earliest prelesion atherosclerotic event. The wall's hydraulic conductivity, LP, the water flux-to-ΔP ratio, is high at low pressures, rapidly decreases, and remains flat to high pressures (Baldwin AL, Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993; Nguyen T, Toussaint, Xue JD, Raval Y, Cancel CB, Russell LM, Shou S, Sedes Y, Sun O, Yakobov Y, Tarbell JM, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 308: H1051-H1064, 2015; Tedgui A, Lever MJ. Am J Physiol Heart Circ Physiol. 247: H784-H791, 1984. Shou Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 291: H2758-H2771, 2006) due to pressure-induced subendothelial intima (SI) compression that causes endothelial cells to partially block internal elastic laminar fenestrae. Nguyen et al. showed that rat and bovine aortic endothelial cells express the membrane protein aquaporin-1 (AQP1) and transmural water transport is both transcellular and paracellular. They found that LP lowering by AQP1 blocking was perplexingly ΔP dependent. We hypothesize that AQP1 blocking lowers average SI pressure; therefore, a lower ΔP achieves the critical force/area on the endothelium to partially block fenestrae. To test this hypothesis, we improve the approximate model of Huang et al. (Huang Y, Rumschitzki D, Chien S, Weinbaum SS. Am J Physiol Heart Circ Physiol 272: H2023-H2039, 1997) and extend it by including transcellular AQP1 water flow. Results confirm the observation by Nguyen et al.: wall LP and water transport decrease with AQP1 disabling. The model predicts 1) low-pressure LP experiments correctly; 2) AQP1s contribute 30-40% to both the phenomenological endothelial + SI and intrinsic endothelial LP; 3) the force on the endothelium for partial SI decompression with functioning AQP1s at 60 mmHg equals that on the endothelium at ∼43 mmHg with inactive AQP1s; and 4) increasing endothelial AQP1

  10. Four-dimensional visualization of thoracic blood flow by magnetic resonance imaging in a patient following correction of transposition of the great arteries (d-TGA) and uncorrected aortic coarctation.

    PubMed

    Ley-Zaporozhan, J; Unterhinninghofen, R; Rengier, F; Markl, M; Eichhorn, J; von Tengg-Kobligk, H; Ley, S

    2009-10-01

    Recent advances in flow-sensitive magnetic resonance imaging (MRI) and data analysis allow for comprehensive noninvasive three-dimensional (3D) visualization of complex blood flow. Electrocardiogram (ECG)-gated three-directional (3dir) flow measurements were employed to assess and visualize time-resolved 3D blood flow in the pulmonary arteries (PA) and thoracic aorta. We present findings in a juvenile patient with surgically corrected transposition of the great arteries (d-TGA) and aortic coarctation. For the first time, the complex flow patterns in the PA following d-TGA were visualized. Morphologically, a slight asymmetry of the PA was found, with considerable impact on vascular hemodynamics, resulting in diastolic retrograde flow in the larger vessel and diastolic filling of the smaller PA. Additionally, increased flow to the supraaortic vessels was found due to aortic coarctation.

  11. Continuous flow, explosives vapor generator and sensor chamber

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Giordano, Braden C.; Sivaprakasam, Vasanthi; Ananth, Ramagopal; Hammond, Mark; Merritt, Charles D.; Tucker, John E.; Malito, Michael; Eversole, Jay D.; Rose-Pehrsson, Susan

    2014-05-01

    A novel liquid injection vapor generator (LIVG) is demonstrated that is amenable to low vapor pressure explosives, 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine. The LIVG operates in a continuous manner, providing a constant and stable vapor output over a period of days and whose concentration can be extended over as much as three orders of magnitude. In addition, a large test atmosphere chamber attached to the LIVG is described, which enables the generation of a stable test atmosphere with controllable humidity and temperature. The size of the chamber allows for the complete insertion of testing instruments or arrays of materials into a uniform test atmosphere, and various electrical feedthroughs, insertion ports, and sealed doors permit simple and effective access to the sample chamber and its vapor.

  12. Lead making for improved continuous-flow manufacturing systems

    NASA Astrophysics Data System (ADS)

    Heintzman, P.

    The importance of the latest in connector technology, chip carriers, surface mounted devices, and high density interconnects not withstanding, the foreseeable future of most durable goods includes designs in which discrete wires play a significant role. As long as user operated electro-mechanical controls exist for widely spaced functional components such as motors, relays, and safety switches, discrete wiring harnesses will continue to be a major concern of original equipment manufacturers. Economy and productivity must be maintained in spite of competitive pressures which demand expanded product lines and carefully controlled component inventories, manufacturing schedules, and deliveries. This paper explores some of the options available to answer these needs as they relate to discrete wiring and harnessing. Not only is available manufacturing hardware analyzed in terms of production capabilities but also in-house and vendor supply source alternatives are considered.

  13. Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction

    PubMed Central

    Herath, Ananda

    2017-01-01

    A versatile continuous-flow synthesis of highly functionalized 1,2,4-oxadiazoles starting from carboxylic acids is reported. This process was applied to the multistep synthesis of imidazo[1,2-a]pyridin-2-yl-1,2,4-oxadiazoles, using a three reactor, multistep continuous-flow system without isolation of intermediates. This continuous-flow method was successfully combined with a single-step liquid–liquid microextraction unit to remove high boiling point polar solvents and impurities and provides the target compounds in high purity with excellent overall yields. PMID:28326132

  14. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    PubMed

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  15. Continuous flow Sonogashira C-C coupling using a heterogeneous palladium-copper dual reactor.

    PubMed

    Tan, Li-Min; Sem, Zhi-Yu; Chong, Wei-Yuan; Liu, Xiaoqian; Hendra; Kwan, Wei Lek; Lee, Chi-Lik Ken

    2013-01-04

    We report the development of a heterogeneous catalyst system on continuous flow chemistry. A palladium (Pd) coated tubular reactor was placed in line with copper (Cu) tubing using a continuous flow platform, and a Sonogashira C-C coupling reaction was used to evaluate the performance. The reactions were favorably carried out in the Cu reactor, catalyzed by the traces of leached Pd from the Pd reactor. The leached Pd and Cu were trapped with a metal scavaging resin at the back-end of the continuous flow system, affording a genuine approach toward green chemistry.

  16. Influence of catheter and arterial diameter on flow distal to an intra-aortic balloon insertion site: a theoretic examination and in vitro assessment.

    PubMed

    Ohley, W J; Antonelli, L; Leschinsky, B

    1998-01-01

    Percutaneous placement of an intra-aortic balloon (IAB) through a femoral artery of a patient is associated with a risk of reduction of blood flow distal to the balloon insertion site. If this reduction is severe, it ultimately causes limb ischemia and necessitates IAB removal. Although clinicians intuitively know that larger catheters cause higher flow restrictions, very few studies have examined this situation quantitatively. The authors theoretically analyzed the insertion site geometry in relationship to the catheter diameter and other factors effecting distal flow. To verify the findings, in vitro flow tests were conducted with various IAB catheters currently available on the market, as well as their respective sheaths and hemostasis plugs. This was done using a blood analog solution in an array of polyvinyl chloride tubing sizes. Diameters of the vessel and catheter have a profound and nonlinear effect on the distal flow. For example, a 12.2 Fr catheter in a 0.187 in. vessel only allows 19.9% of normal flow, whereas a 6.1 Fr catheter in the same size vessel allows a 92.0% flow. As the catheter diameter increases, the physical resistance suddenly grows, which causes a significant drop in distal flow. These results are accurately predicted by a mathematical model that gives flow percentage results to within 15% of those measured experimentally. In general, vessels larger than 5 mm in diameter do not exhibit substantial flow reduction for most IABs with and without sheaths. In smaller vessels, however, this reduction may be significant. Sheathless insertion is extremely effective in improving distal blood flow in such a situation. Hemostasis plugs restrict the distal flow similar to respective sheaths, thus diminishing the benefits of sheathless insertion.

  17. Developing a miniaturized continuous flow electrochemical cell for biosensor applications

    NASA Astrophysics Data System (ADS)

    Ilie, M.; Ovreiu, E.; Dejana, R.; Foglietti, V.; Nardi, L.; Masci, A.; Lanza, B.; Della Seta, L.; Montereali, M.-R.; Vastarella, W.; Pilloton, R.

    2009-01-01

    The development of a miniaturized electrochemical cell for biosensor application regards both the structuring of an array of electrodes in a fluidic chamber and their connections to the control & processing unit The sensitivity of the chrono-amperometric measurement performed with the cell is increased by: (a) integrating the reference electrode on the same chip with the counter- and working- electrodes, (b) designing a specific pattern of the gold electrodes and (c) serially distributing them along the pipeline reservoir. Borosilicate glass is used as substrate for the electrodes, allowing, due to its transparency, an accurate and easy pad to pad alignment of the up-side-down chip versus a PCB soldered on a standard DIL 40 socket. This alignment is necessary to accomplish the elastomer-based-solderless electric contact, between chip and PCB. The solderless contact significantly improves both reliability and signal processing accuracy. The reservoir and its cover are micromachined out of silicone rubber respectively photosensitive glass in order to easy disassemble the fluidic chamber without any damage. Both thickness and elasticity of the photosensitive glass rend the device less brittle. A plug-in -plug-flow device with improved characteristics has been obtained with a modular structure that allows further extension of the number of electrodes.

  18. [End-tidal CO2 as a predictive index of regional perfusion and its relation to aortic flow. A clinical study during peripheral vascular surgery].

    PubMed

    Petrucci, N; Muchada, R

    1993-06-01

    Using a new haemodynamic monitoring system, we prospectively measured the end-tidal carbon dioxide (ETCO2) and the aortic blood flow (ABF) in 7 patients undergoing major vascular surgery to evaluate the usefulness of ETCO2 as a predictive indicator of regional blood flow. Previous studies demonstrated a high correlation between ETCO2 and Cardiac Output during CPR (r = 0.79), this allows us to conclude that ETCO2, under conditions of constant ventilation, reflects the circulatory status. We investigated the relationship between ETCO2 and ABF, and our observations confirmed that the two parameters undergo highly significant variations (p < 0.001), but low correlation was found (r = 0.15), so the increase in ETCO2 after aortic declamping depended on re-perfusion of ischaemic regions. The ETCO2 concentration increased immediately in 6 patients after declamping (p < 0.05). In 1 patient, the increase wasn't significant, but he underwent a new operation because of malfunction of the prosthesis. Our findings suggest that ETCO2 monitoring may provide clinically useful information about regional perfusion that can be used to guide therapy.

  19. Remote semi-continuous flow rate logging seepage meter

    NASA Astrophysics Data System (ADS)

    Reay, William G.; Walthall, Harry G.

    1991-12-01

    The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.

  20. Remote semi-continuous flow rate logging seepage meter

    NASA Technical Reports Server (NTRS)

    Reay, William G.; Walthall, Harry G.

    1991-01-01

    The movement of groundwater and its associated solutes from upland regions was implicated in the degradation of receiving surface water bodies. Current efforts to directly measure this influx of water incorporate manually operated seepage meters which are hindered by severe limitations. A prototype seepage meter was developed by NASA Langley Research Center and Virginia Polytechnic Institute and State University that will allow for the semi-continuous collection and data logging of seepage flux across the sediment water interface. The meter is designed to operate at depths to 40 meters, and alleviate or minimize all disadvantages associated with traditional methods while remaining cost effective. The unit was designed to operate independently for time periods on the order of weeks with adjustable sample sequences depending upon hydrologic conditions. When used in conjunction with commercially available pressure transducers, this seepage meter allows for correlations to be made between groundwater discharge and tidal/sea state conditions in coastal areas. Field data from the Chesapeake Bay and Florida Bay systems are presented.

  1. Normalisation of haemodynamics in patients with end-stage heart failure with continuous-flow left ventricular assist device therapy.

    PubMed

    Gupta, Sunil; Woldendorp, Kei; Muthiah, Kavitha; Robson, Desiree; Prichard, Roslyn; Macdonald, Peter S; Keogh, Anne M; Kotlyar, Eugene; Jabbour, Andrew; Dhital, Kumud; Granger, Emily; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S

    2014-10-01

    New generation continuous-flow left ventricular assist devices (LVADs) utilise centrifugal pumps. Data concerning their effect on patient haemodynamics, ventricular function and tissue perfusion is limited. We aimed to document these parameters following HeartWare centrifugal continuous-flow LVAD (HVAD) implantation and to assess the impact of post-operative right heart failure (RHF). We reviewed 53 consecutive patients (mean age 49.5 ± 14.1 yrs) with HVAD implanted in the left ventricle, at St. Vincent's Hospital, Sydney, between January 2007 and August 2012. Available paired right heart catheterisation (n=35) and echocardiography (n=39) data was reviewed to assess response of invasive haemodynamics and ventricular function to LVAD support. A total of 28 patients (53%) were implanted from interim mechanical circulatory support. Seventeen patients (32%) required short-term post-implant veno-pulmonary artery extracorporeal membrane oxygenation. At 100 ± 61 days post-implant, mean pulmonary artery pressure and mean pulmonary capillary wedge pressure decreased from 38.8 ± 7.7 to 22.9 ± 7.7 mmHg and 28.3 ± 6.4 to 13.4 ± 5.4 mmHg respectively (p<0.001). LV end diastolic diameter decreased from 71.3 ± 12.7 to 61.1 ± 13.7 mm and LV end-systolic diameter from 62.7 ± 12.3 to 53.9 ± 14.4mm (p<0.001). Aortic regurgitation remained trivial. Serum sodium increased from 133.3 ± 5.7 to 139.3 ± 2.8 mmol/L and creatinine decreased from 109.1 ± 42.5 to 74.3 ± 26.2 μmol/L (p<0.001). Across the entire cohort, the six-month survival/transplant rate was significantly lower for RHF patients (72.2%, n=18) compared to those without (96.9%, n=35, p=0.01). HVAD support improves haemodynamics, LV dimensions and renal function. Following implantation with a centrifugal continuous-flow LVAD, RHF remains a significant risk with a tendency to worse outcomes in the short to medium term. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  2. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    PubMed

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  3. [Congenital aortic stenosis].

    PubMed

    Yamaguchi, M

    2001-08-01

    Recent advances in and controversies concerning the management of children with congenital valvular aortic stenosis are discussed. In neonates with critical aortic stenosis, improved survival has recently been reported after surgical open valvotomy and balloon valvuloplasty, although it is difficult at this point to compare the results of the two procedures and determine their differential indications. Good results have also been achieved after extended aortic valvuloplasty for recurrent aortic stenosis and/or insufficiency, but the length of follow-up in these patients is still short. The technique first reported in 1991 for bilateral enlargement fo a small annulus permits the insertion of an aortic valve 3-4 sizes larger than the native annulus. It entails no risk of distorting the mitral valve, damaging the conduction system or important branches of the coronary arteries, or resulting in left ventricular dysfunction. The Ross procedure is now widely applied in the West, with reports of early mortality rates of less than 5% and event-free survival rates of 80-90% during follow-up of 4-8 years. Longer follow-up and continued careful evaluation are required to resolve the issue of possible dilatation and subsequent neoaortic valve dysfunction and pulmonary stenosis due to allograft degeneration after pulmonary autograft root replacement in children.

  4. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    EPA Science Inventory

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  5. Continuous flow nucleophilic aromatic substitution with dimethylamine generated in situ by decomposition of DMF.

    PubMed

    Petersen, Trine P; Larsen, Anders Foller; Ritzén, Andreas; Ulven, Trond

    2013-04-19

    A safe, practical, and scalable continuous flow protocol for the in situ generation of dimethylamine from DMF followed by nucleophilic aromatic substitution of a broad range of aromatic and heteroaromatic halides is reported.

  6. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (External Review Draft)

    EPA Science Inventory

    This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...

  7. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (External Review Draft)

    EPA Science Inventory

    This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...

  8. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-( ), 174080-( ), 174085-( ), 174095... oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective action for certain oxygen mask...

  9. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    PubMed Central

    Breen, Jessica R; Yufit, Dmitrii S; Howard, Judith A K; Fray, Jonathan; Patel, Bhairavi

    2011-01-01

    Summary 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials. PMID:21915207

  10. 76 FR 9984 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and...

  11. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    EPA Science Inventory

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  12. Continuous-flow ATP amplification system for increasing the sensitivity of quantitative bioluminescence assay.

    PubMed

    Satoh, Tetsuya; Shinoda, Yasuharu; Alexandrov, Maxym; Kuroda, Akio; Murakami, Yuji

    2008-08-01

    We constructed a novel ATP amplification reactor using a continuous-flow system, and this allowed us to increase the sensitivity of a quantitative bioluminescence assay by controlling the number of ATP amplification cycles. We previously developed a bioluminescence assay coupled with ATP amplification using a batch system. However, it was difficult to control the number of amplification cycles. In this study, ATP amplification was performed using a continuous-flow system, and significant linear correlations between amplified luminescence and initial ATP concentration were observed. When performing four cycles of continuous-flow ATP amplification, the gradient of amplification was 1.87(N). Whereas the lower quantifiable level was 500 pM without amplification, values as low as 50 pM ATP could be measured after amplification. The sensitivity thus increased 10-fold, with further improvements expected with additional amplification cycles. The continuous-flow system thus effectively increased the sensitivity of the quantitative bioluminescence assay.

  13. Advanced heart failure treated with continuous-flow left ventricular assist device.

    PubMed

    Slaughter, Mark S; Rogers, Joseph G; Milano, Carmelo A; Russell, Stuart D; Conte, John V; Feldman, David; Sun, Benjamin; Tatooles, Antone J; Delgado, Reynolds M; Long, James W; Wozniak, Thomas C; Ghumman, Waqas; Farrar, David J; Frazier, O Howard

    2009-12-03

    Patients with advanced heart failure have improved survival rates and quality of life when treated with implanted pulsatile-flow left ventricular assist devices as compared with medical therapy. New continuous-flow devices are smaller and may be more durable than the pulsatile-flow devices. In this randomized trial, we enrolled patients with advanced heart failure who were ineligible for transplantation, in a 2:1 ratio, to undergo implantation of a continuous-flow device (134 patients) or the currently approved pulsatile-flow device (66 patients). The primary composite end point was, at 2 years, survival free from disabling stroke and reoperation to repair or replace the device. Secondary end points included survival, frequency of adverse events, the quality of life, and functional capacity. Preoperative characteristics were similar in the two treatment groups, with a median age of 64 years (range, 26 to 81), a mean left ventricular ejection fraction of 17%, and nearly 80% of patients receiving intravenous inotropic agents. The primary composite end point was achieved in more patients with continuous-flow devices than with pulsatile-flow devices (62 of 134 [46%] vs. 7 of 66 [11%]; P<0.001; hazard ratio, 0.38; 95% confidence interval, 0.27 to 0.54; P<0.001), and patients with continuous-flow devices had superior actuarial survival rates at 2 years (58% vs. 24%, P=0.008). Adverse events and device replacements were less frequent in patients with the continuous-flow device. The quality of life and functional capacity improved significantly in both groups. Treatment with a continuous-flow left ventricular assist device in patients with advanced heart failure significantly improved the probability of survival free from stroke and device failure at 2 years as compared with a pulsatile device. Both devices significantly improved the quality of life and functional capacity. (ClinicalTrials.gov number, NCT00121485.) 2009 Massachusetts Medical Society

  14. Thrombolysis for suspected intrapump thrombosis in patients with continuous flow centrifugal left ventricular assist device.

    PubMed

    Muthiah, Kavitha; Robson, Desiree; Macdonald, Peter S; Keogh, Anne M; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S

    2013-03-01

    The current recommended anticoagulation regimen during continuous flow centrifugal left ventricular device support is a combination of antiplatelet therapy as well as oral anticoagulation. Despite this, pump thrombosis occurs in rare situations. We report the risk factors and nonsurgical management and outcomes of five patients implanted with continuous flow centrifugal left ventricular assist devices who displayed clinical, hemodynamic, and laboratory features of intrapump thrombosis. This information may support the use of intravenous thrombolytics for suspected pump thrombus in these newer generation devices.

  15. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  16. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... flow class; minimum requirements. (a) Respirators tested under this section shall be approved only when...

  17. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones.

    PubMed

    Bou-Hamdan, Farhan R; Lévesque, François; O'Brien, Alexander G; Seeberger, Peter H

    2011-01-01

    Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP) tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions.

  18. Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones

    PubMed Central

    2011-01-01

    Summary Photolysis of aryl azides to give nitrenes, and their subsequent rearrangement in the presence of water to give 3H-azepinones, is performed in continuous flow in a photoreactor constructed of fluorinated ethylene polymer (FEP) tubing. Fine tuning of the reaction conditions using the flow reactor allowed minimization of secondary photochemical reactions. PMID:21915216

  19. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    PubMed

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  20. Prognostic significance of mild aortic regurgitation in predicting mortality after transcatheter aortic valve replacement.

    PubMed

    Jones, Brandon M; Tuzcu, E Murat; Krishnaswamy, Amar; Popovic, Zoran; Mick, Stephanie; Roselli, Eric E; Gul, Sajjad; Devgun, Jasneet; Mistry, Sohi; Jaber, Wael A; Svensson, Lars G; Kapadia, Samir R

    2016-09-01

    Moderate to severe aortic regurgitation after transcatheter aortic valve replacement is associated with worse outcomes. The impact of mild aortic regurgitation has been less clear, possibly because of the broad categories that have been used in clinical trials, but holds increasing importance in the study of next-generation devices in low- and intermediate-risk cohorts. A more granular scheme, which is common in clinical practice and proposed for future trials, may add prognostic value. We evaluated all patients undergoing transfemoral transcatheter aortic valve replacement at the Cleveland Clinic from 2006 to 2012. The degree of aortic regurgitation after transcatheter aortic valve replacement was reported from the echocardiography database based on a clinical, transthoracic echocardiogram performed within 30 days of the procedure. Aortic regurgitation was finely discriminated on the basis of a multiwindow, multiparametric, integrative approach using our usual clinical scale: none, trivial to 1+, 1+, 1 to 2+, 2+, 2 to 3+, 3+, 3 to 4+, or 4+. There were 237 patients included in the analysis. By controlling for age, gender, Society of Thoracic Surgeons score, baseline ejection fraction, and aortic regurgitation before transcatheter aortic valve replacement, there was a significant increase in mortality for each half grade of aortic regurgitation compared with the complete absence of aortic regurgitation after transcatheter aortic valve replacement. The unit hazard ratio for each 1+ increase in aortic regurgitation after transcatheter aortic valve replacement was 2.26 (95% confidence interval, 1.48-3.43; P < .001) considering aortic regurgitation as a continuous variable. Other clinical variables did not significantly affect mortality. Even mild aortic regurgitation after transcatheter aortic valve replacement is associated with worse long-term mortality. There may be prognostic value in reporting milder categories of aortic regurgitation with more granular

  1. Flow structure in submarine meandering channels, a continuous discussion on secondary flow

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Parker, G.; Sequeiros, O.; Spinewine, B.; Garcia, M. H.; Pirmez, C.

    2011-12-01

    The understanding of the flow structure in deep-sea turbidity currents is important for the formation of submarine meandering channels. Similarly to the case of subaerial channels, several types of secondary flows include turbulence-, curvature- and bed morphodynamic-driven flow structures that modulate sediment transport and channel bed morphodynamics. This study focuses on [1] a review of long-time research effort (Abad et al., 2011) that tackles the description of the secondary flow associated with a subaqueous bottom current (saline) in a high-curvature meandering channel and [2] ongoing numerical simulations of similar settings as the experiments to describe the entire flow structure. In the case of subaerial channels, the classical Rozovskiian paradigm is often invoked which indicates that the near-bottom secondary flow in a bend is directed inward. It has recently been suggested based on experimental and theoretical considerations, however, that this pattern is reversed (near-bottom secondary flow is directed outward) in the case of submarine meandering channels. Experimental results presented here, on the other hand, indicate near-bottom secondary flows that have the same direction as observed in a river (normal secondary flow). The implication is an apparent contradiction between experimental results. This study combines theory, experiments, reconstructions of field flows and ongoing simulations to resolve this apparent contradiction based on the flow densimetric Froude number. Three ranges of densimetric Froude number are found, such that a) in an upper regime, secondary flow is reversed, b) in a middle regime, it is normal and c) in a lower regime, it is reversed. These results are applied to field scale channel-forming turbidity currents in the Amazon submarine canyon-fan system (Amazon Channel) and the Monterey canyon and a saline underflow in the Black Sea flowing from the Bosphorus. Our analysis indicates that secondary flow should be normal

  2. Prognostic value of coronary flow reserve in asymptomatic moderate or severe aortic stenosis with preserved ejection fraction and nonobstructed coronary arteries.

    PubMed

    Banovic, Marko; Bosiljka, Vujisic-Tesic; Voin, Brkovic; Milan, Petrovic; Ivana, Nedeljkovic; Dejana, Popovic; Danijela, Trifunovic; Serjan, Nikolic

    2014-04-01

    Patients with moderate and severe aortic stenosis (AS) and without obstructive epicardial coronary disease have been shown to have an impairment of coronary flow reserve (CFR). We investigated the prognostic significance of CFR in predicting death during mid-to-long-term follow-up in asymptomatic patients with moderate/severe AS, preserved ejection fraction (EF), and with nonobstructed coronary arteries. A total of 127 patients with moderate or severe AS (effective orifice area of 1.5 cm(2) or less), mean age 66 ± 11 were enrolled in this prospective study. The median follow-up was 32 ± 7 months. All patients had standard Doppler echo study, coronary angiography, and adenosine-stress transthoracic Doppler echo for CFR measurement. Univariate analysis showed that diabetes mellitus, CFR, aortic valve area (AVA), maximal velocity (Vmax ), mean pressure gradient (Pmean ), energy loss index (ELI), aortic valve resistance (AVR), NT-proBNP, E/E', valvulo-arterial impedance (Zva ), and stroke work loss (SWL) were associated (P < 0.05) with death. Multivariable logistic regression analysis revealed that only Zva and CFR were independent predictors of death, with the CFR being the single strongest predictor (Table 2). Using receiver operating characteristics (ROC) analysis, the CFR value of 1.85 had the highest accuracy in predicting the death during mid-to-long-term follow-up (area under the curve; AUC 0.890, P = 0.009, sensitivity 96.3%, specificity 75%; 95% CI 0.287-0.946; Fig. 1). The Zva value of 5.52 Hg/mL per m had a sensitivity 70.0% and specificity 72.0% (AUC 0.766, 95% CI 0.587-0.946; P = 0.005). This study demonstrates that CFR has a prognostic value in patients with asymptomatic moderate or severe AS with preserved EF and nonobstructed coronary arteries. © 2013, Wiley Periodicals, Inc.

  3. Is Continuous Flow Superior to Pulsatile Flow in Single Ventricle Mechanical Support? Results from a Large Animal Pilot Study.

    PubMed

    Fujii, Yasuhiro; Ferro, Giuseppe; Kagawa, Hiroshi; Centola, Luca; Zhu, Liqun; Ferrier, William T; Talken, Linda; Riemer, R Kirk; Maeda, Katsuhide; Nasirov, Teimour; Hodges, Bill; Amirriazi, Saleh; Lee, Eric; Sheff, Donald; May, Judith; May, Robert; Reinhartz, Olaf

    2015-01-01

    Durable mechanical support in situations of physiologic single ventricle has been met with little success so far, particularly in small children. We created an animal model to investigate whether pulsatile or continuous flow would be superior. Three 1 month old sheep (10-16 kg) were instrumented. Via sternotomy and with cardiopulmonary bypass, a large ventricular septal defect and atrial septal defect were created. The left ventricle was cannulated using a Berlin Heart inflow cannula. This was connected sequentially to a continuous flow device (Thoratec HeartMate X, Pleasanton, CA) and to a pulsatile device (Berlin Heart Excor, The Woodlands, TX). Outflow was via a Y-graft to both aorta and pulmonary artery, striving for equal flow to both. Atrial filling pressures were controlled with volume infusions over a wide range. Under comparable loading conditions, significantly higher maximum flow was obtained by HeartMate X than by Excor (4.95 ± 1.27 L/min [range, 3.84-6.34 L/min] for HeartMate X vs. 1.80 ± 0.85 L/min [range, 1.01-2.7 L/min] for Excor; p < 0.05). Judging from this limited animal study, in single ventricle scenarios, continuous flow devices may achieve higher pump flows than pulsatile devices when provided with similar filling pressures. Their clinical use should be investigated. More extensive experimental studies are needed.

  4. Prosthesis-preserving aortic root repair after aortic valve replacement.

    PubMed

    Hamamoto, Masaki; Kobayashi, Taira; Kodama, Hiroshi

    2015-07-01

    We describe a new technique of prosthesis-preserving aortic root replacement for patients who have previously undergone aortic valve replacement. With preservation of the mechanical prosthesis, we implant a Gelweave Valsalva graft using double suture lines. The first suture line is made between the sewing cuff of the mechanical valve and the graft, with mattress sutures of 2/0 braided polyester with pledgets. After the first sutures are tied, the second suture line is created between the graft collar and the aortic root remnant with continuous 4/0 polypropylene sutures.

  5. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds.

    PubMed

    Deadman, Benjamin J; Collins, Stuart G; Maguire, Anita R

    2015-02-02

    The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed.

  6. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    PubMed Central

    Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher

    2013-01-01

    Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407

  7. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  8. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  9. Hypertensive Emergency in Aortic Dissection and Thoracic Aortic Aneurysm—A Review of Management

    PubMed Central

    Gupta, Prateek K.; Gupta, Himani; Khoynezhad, Ali

    2009-01-01

    Over the last few decades, treatment for aortic dissection and thoracic aortic aneurysms has evolved significantly with improvement in outcomes. Treatment paradigms include medical, endovascular and surgical options. As aortic dissection presents as a hypertensive emergency, diligent control of BP is of utmost importance in order to reduce the progression of dissection with possible aortic branch malperfusion. Treatment should begin on arrival to the emergency department and continues in the intensive care unit, endovascular suite or the operating room. Novel antihypertensive medications with improved pharmacological profile and improved surgical techniques, have improved the prognosis of patients with aortic aneurysm and/or aortic dissection. Nevertheless, morbidity and mortality remain high and hypertensive emergency poses a significant challenge in aortic dissection and thoracic aortic aneurysms. PMID:27713224

  10. ``Smart'' baroreception along the aortic arch, with reference to essential hypertension

    NASA Astrophysics Data System (ADS)

    Kember, G. C.; Zamir, M.; Armour, J. A.

    2004-11-01

    Beat-to-beat regulation of heart rate is dependent upon sensing of local stretching or local “disortion” by aortic baroreceptors. Distortions of the aortic wall are due mainly to left ventricular output and to reflected waves arising from the arterial tree. Distortions are generally believed to be useful in cardiac control since stretch receptors or aortic baroreceptors embedded in the adventitia of the aortic wall, transduce the distortions to cardiovascular neural reflex pathways responsible for beat-to-beat regulation of heart rate. Aortic neuroanatomy studies have also found a continuous strip of mechanosensory neurites spread along the aortic inner arch. Although their purpose is now unknown, such a combined sensing capacity would allow measurement of the space and time dependence of inner arch wall distortions due, among other things, to traveling waves associated with pulsatile flow in an elastic tube. We call this sensing capability-“smart baroreception.” In this paper we use an arterial tree model to show that the cumulative effects of wave reflections, from many sites far downstream, have a surprisingly pronounced effect on the pressure distribution in the root segment of the tree. By this mechanism global hemodynamics can be focused by wave reflections back to the aortic arch, where they can rapidly impact cardiac control via smart baroreception. Such sensing is likely important to maintain efficient heart function. However, alterations in the arterial tree due to aging and other natural processes can lead in such a system to altered cardiac control and essential hypertension.

  11. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.

    PubMed

    Gui, Lin; Ren, Carolyn L

    2006-09-01

    Precise design and operational control of the polymerase chain reaction process is key to the performance of on-chip DNA analysis. This research is dedicated to understanding the fluid flow and heat transfer mechanisms occurring in continuous flow PCR chips from the engineering point of view. In this work, a 3-dimensional model was developed to simulate the electrical potential field, the flow field, and the temperature field in an electroosmosis-based continuous flow PCR chip. On the basis of the simultaneous solution to this model, the effects of the channel/chip size, the chip material, and the applied voltage difference on the temperature distribution and control are discussed in detail. The importance of each heat transfer mechanism for different situations is also discussed. It was found that if a larger chip thickness or a material with a lower heat conductivity was used, the temperature in the microfluidic PCR chip would decrease dramatically. The effects of the applied electrical field strength and flow velocity on the temperature distribution, however, are negligible for microchannels with a small cross-sectional area. With bigger channels, the flow direction will affect the temperature distribution in the channel because heat convection will dominate heat transfer.

  12. Continuous-flow total artificial heart supports long-term survival of a calf.

    PubMed

    Frazier, O H; Cohn, William E; Tuzun, Egemen; Winkler, Jo Anna; Gregoric, Igor D

    2009-01-01

    The development and clinical use of continuous-flow left ventricular assist devices (LVADs) stimulated our interest in developing a total heart replacement with continuous-flow rotary blood pumps. We constructed a continuous-flow total artificial heart (CFTAH) from 2 HeartMate II axial-flow LVADs and used this CFTAH to replace the native heart of a calf. The purpose of this experiment was to study the effects of total continuous flow on physiologic parameters at rest and during exercise after the animal recovered from surgery. We monitored pulmonary and systemic pump performance, and we assessed arterial blood gases, hemodynamic and biochemical variables, and neurohormone levels during the 7 weeks of CFTAH support. At day 36 after CFTAH implantation, the calf was exercised on a treadmill at increasing speeds for 40 minutes; total oxygen consumption, pump flow, blood pressure, and respiratory rate were monitored. Baseline hematologic levels were altered postoperatively but returned to normal by 2 weeks. We saw no signs of hemolysis or thrombosis during CFTAH support. The calf had a normal physiologic response to treadmill exercise. The animal gained weight and appeared to function normally during the study. The CFTAH operated within design specifications throughout the study. Homeostasis, end-organ and vasomotor function, and the ability to exercise are not adversely affected by 7 weeks of totally pulseless circulation in a calf.

  13. Continuous-Flow Total Artificial Heart Supports Long-Term Survival of a Calf

    PubMed Central

    Frazier, O. H.; Cohn, William E.; Tuzun, Egemen; Winkler, Jo Anna; Gregoric, Igor D.

    2009-01-01

    The development and clinical use of continuous-flow left ventricular assist devices (LVADs) stimulated our interest in developing a total heart replacement with continuous-flow rotary blood pumps. We constructed a continuous-flow total artificial heart (CFTAH) from 2 HeartMate II axial-flow LVADs and used this CFTAH to replace the native heart of a calf. The purpose of this experiment was to study the effects of total continuous flow on physiologic parameters at rest and during exercise after the animal recovered from surgery. We monitored pulmonary and systemic pump performance, and we assessed arterial blood gases, hemodynamic and biochemical variables, and neurohormone levels during the 7 weeks of CFTAH support. At day 36 after CFTAH implantation, the calf was exercised on a treadmill at increasing speeds for 40 minutes; total oxygen consumption, pump flow, blood pressure, and respiratory rate were monitored. Baseline hematologic levels were altered postoperatively but returned to normal by 2 weeks. We saw no signs of hemolysis or thrombosis during CFTAH support. The calf had a normal physiologic response to treadmill exercise. The animal gained weight and appeared to function normally during the study. The CFTAH operated within design specifications throughout the study. Homeostasis, end-organ and vasomotor function, and the ability to exercise are not adversely affected by 7 weeks of totally pulseless circulation in a calf. PMID:20069083

  14. Measurement of dielectric properties of pumpable food materials under static and continuous flow conditions.

    PubMed

    Kumar, P; Coronel, P; Simunovic, J; Truong, V D; Sandeep, K P

    2007-05-01

    Continuous flow microwave sterilization is an emerging technology that has the potential to replace the conventional heating processes for viscous and pumpable food products. Dielectric properties of pumpable food products were measured by a new approach (under continuous flow conditions) at a temperature range of 20 to 130 degrees C and compared with those measured by the conventional approach (under static conditions). The food products chosen for this study were skim milk, green pea puree, carrot puree, and salsa con queso. Second-order polynomial correlations for the dependence of dielectric properties at 915 MHz of the food products on temperature were developed. Dielectric properties measured under static and continuous flow conditions were similar for homogeneous food products such as skim milk and vegetable puree, but they were significantly different for salsa con queso, which is a multiphase food product. The results from this study suggest that, for a multiphase product, dielectric properties measured under continuous flow conditions should be used for designing a continuous flow microwave heating system.

  15. High-throughput continuous flow synthesis of nickel nanoparticles for the catalytic hydrodeoxygenation of guaiacol

    SciTech Connect

    Roberts, Emily J.; Habas, Susan E.; Wang, Lu; Ruddy, Daniel A.; White, Erick A.; Baddour, Frederick G.; Griffin, Michael B.; Schaidle, Joshua A.; Malmstadt, Noah; Brutchey, Richard L.

    2016-11-07

    The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol under ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.

  16. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  17. Continuous subsonic-sonic flows in convergent nozzles with straight solid walls

    NASA Astrophysics Data System (ADS)

    Nie, Yuanyuan; Wang, Chunpeng

    2016-01-01

    This paper concerns continuous subsonic-sonic potential flows in a two-dimensional convergent nozzle with straight solid walls. It is shown that for the given inlet, which is a perturbation of an arc centered at the vertex of the nozzle, and the given incoming flow angle which is a perturbation of the angle of the inner normal of the inlet, and the given incoming mass flux belonging to an open interval depending only on the adiabatic exponent and the length of the arc, there is a unique continuous subsonic-sonic flow from the given inlet with the given incoming flow angle and the given incoming mass flux. Furthermore, the sonic curve of this flow is a free boundary, where the flow is singular in the sense that the speed is only Hölder continuous and the acceleration blows up at the sonic state. The perturbation problem is solved in the potential plane, where the flow is governed by a degenerate elliptic problem with two free boundaries, on one of which the equation is degenerate and on the other of which the boundary condition is nonlocal.

  18. [Aortic dissection].

    PubMed

    Ogino, Hitoshi

    2011-07-01

    Acute aortic dissection suddenly occurrs and results in a variety of catastrophic sequelae including cardiac tamponade, rupture, and organ malperfusion. In acute stage (< 2 weeks), according to the classifications on the region of aortic dissection, the condition of the false channel and the onset, appropriate medical, surgical, or endovascular treatments including endovascular aneurysm repair followed by the rapid and accurate diagnosis of aortic dissection using computed tomography and ultrasound should be performed without delay. In the chronic stage (> 2 weeks), the behavior of the chronic dissection or residual distal dissection after the initial treatment should be followed-up carefully with best medical treatment at the regular intervals. If necessary, appropriate surgical and endovascular treatment should be carried out in the proper timing before rupture.

  19. Newborn aortic arch reconstruction with descending aortic cannulation improves postoperative renal function.

    PubMed

    Hammel, James M; Deptula, Joseph J; Karamlou, Tara; Wedemeyer, Elesa; Abdullah, Ibrahim; Duncan, Kim F

    2013-11-01

    A clinically driven transition in perfusion technique occurred at Children's Hospital and Medical Center, Omaha, Nebraska, from primarily selective cerebral perfusion bracketed by brief periods of deep hypothermic circulatory arrest to a technique of dual arterial perfusion including innominate artery and descending aortic cannulation (DAC), with continuous mildly hypothermic (>30 °C) full-flow cardiopulmonary bypass to the entire body. This study retrospectively compared outcomes in a recent cohort of neonates undergoing aortic arch reconstruction with the two techniques. The clinical records of 142 consecutive neonates undergoing operations involving aortic arch reconstruction at a single institution between April 2004 and September 2012 were reviewed. Renal function changes were graded according to the pediatric RIFLE score (based on risk, injury, failure, loss, and end-stage kidney disease). Sixteen patients, 8 supported with selective cerebral perfusion bracketed by brief periods of deep hypothermic circulatory arrest and 8 with DAC, required immediate postoperative extracorporeal membrane oxygenation and were excluded from renal function analysis. Multivariable regression models evaluated predictors of pediatric RIFLE score. Patients with DAC had shorter median bypass support (113 versus 172 minutes; p < 0.001) and myocardial ischemic time (43 versus 81 minutes; p < 0.001). Patients with DAC had less median fluid gain at 24 hours (37 versus 69 mL/kg; p < 0.001), and lower incidence of acute kidney injury (5% versus 31%; p < 0.001). Fewer patients with DAC (31% versus 58%; p = 0.001) required open chest. Use of selective cerebral perfusion bracketed by brief periods of deep hypothermic circulatory arrest, single-ventricular physiology, and aortic cross-clamp time were found to be multivariable predictors of serious kidney dysfunction. Multisite arterial perfusion, including DAC, and maintenance of continuous mildly hypothermic full-flow cardiopulmonary bypass

  20. [Aortic aneurysm].

    PubMed

    Villar, Fernando; Pedro-Botet, Juan; Vila, Ramón; Lahoz, Carlos

    2013-01-01

    Aortic aneurysm is one important cause of death in our country. The prevalence of abdominal aortic aneurism (AAA) is around 5% for men older than 50 years of age. Some factors are associated with increased risk for AAA: age, hypertension, hypercholesterolemia, cardiovascular disease and, in particular, smoking. The medical management of patients with an AAA includes cardiovascular risk treatment, particularly smoking cessation. Most of major societies guidelines recommend ultrasonography screening for AAA in men aged 65 to 75 years who have ever smoked because it leads to decreased AAA-specific mortality. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  1. Shear stress alterations in the celiac trunk of patients with a continuous-flow left ventricular assist device as shown by in-silico and in-vitro flow analyses.

    PubMed

    Scardulla, Francesco; Pasta, Salvatore; D'Acquisto, Leonardo; Sciacca, Sergio; Agnese, Valentina; Vergara, Christian; Quarteroni, Alfio; Clemenza, Francesco; Bellavia, Diego; Pilato, Michele

    2017-08-01

    The use of left ventricular assist devices (LVADs) to treat advanced cardiac heart failure is constantly increasing, although this device leads to high risk for gastrointestinal bleeding. Using in-silico flow analysis, we quantified hemodynamic alterations due to continuous-flow LVAD (HeartWare, Inc., Framingham, MA) in the celiac trunk and major branches of the abdominal aorta, and then explored the relationship between wall shear stress (WSS) and celiac trunk orientation. To assess outflow from the aortic branch, a 3-dimensional-printed patient-specific model of the celiac trunk reconstructed from an LVAD-supported patient was used to estimate echocardiographic outflow velocities under continuous-flow conditions, and then to calibrate computational simulations. Moreover, flow pattern and resulting WSS values were computed for 5 patients with LVAD implantation. Peak WSS values were estimated on the 3 branches of the celiac trunk and the LVAD cannula. The mean WSSs demonstrated that the left gastric artery underwent the highest WSS of 9.08 ± 5.45 Pa, with an average flow velocity of 0.57 ± 0.25 m/s compared with that of other vessel districts. The common hepatic artery had a less critical WSS of 4.58 ± 1.77 Pa. A positive correlation was found between the celiac trunk angulation and the WSS stress just distal to the ostium of the celiac trunk (R = 0.9), which may increase vulnerability of this vessel to bleeding. Although further studies are needed to confirm these findings in a larger patient cohort, computational flow simulations may enhance the information of clinical image data and may have an application in clinical investigations of hemodynamic changes in LVAD-supported patients. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Micromachined pre-focused M×N flow switches for continuous multi-sample injection

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Bin; Hwei, Bao-Herng; Huang, Guan-Ruey

    2001-11-01

    In this paper we present a novel microfluidic chip capable of continuous multi-sample switching and injection for bio-analytical applications. The innovative device integrates two important microfluidic phenomena, including hydrodynamic focusing and valveless flow switching inside multi-ported microchannels. The multiple samples can be pre-focused to narrow streams and can then be continuously injected into desired outlet ports. In this study, a theoretical model based on the `flow-rate-ratio' method is first proposed to predict the performance of the microfluidic device. Then, a simple but reliable one-mask micromachining process is developed to fabricate the pre-focused M×N flow switch on a quartz substrate. The multi-sample switching and injection is then verified experimentally with the use of microscopic visualization of water sheath flows and dye-containing sample flows. The experimental data indicate that the multi-sample flows can be hydrodynamically pre-focused and then guided into the desired outlet ports precisely based on relative sheath and sample flow rates. The data predicted by the proposed theoretical model are highly consistent with the experimental results. It is also noted that the `pre-focusing' function added prior to multi-sample flow switching is crucial for precise sample injection. The novel microfluidic chip has great potential for high-throughput chemical analysis, cell fusion, fraction collection, fast sample mixing and many other applications in the field of micro-total-analysis systems.

  3. Polystyrene latex separations by continuous flow electrophoresis on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.

    1986-01-01

    The seventh mission of the Space Shuttle carried two NASA experiments in the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system. The objectives were to test the operation of continuous flow electrophoresis in a reduced gravity environment using stable particles with established electrokinetic properties and specifically to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoretic device. Polystrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread compared to the second experiment under matched conductivity conditions. It is proposed that the sample of higher electrical conductivity distorted the electric field near the sample stream so that the polystyrene latex particles migrated toward the chamber walls where electroosmosis retarded and spread the sample.

  4. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    PubMed

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  5. Polystyrene latex separations by continuous flow electrophoresis on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.; Rhodes, P. H.; Miller, T. Y.; Micale, F. J.; Mann, R. V.

    1986-01-01

    The seventh mission of the Space Shuttle carried two NASA experiments in the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system. The objectives were to test the operation of continuous flow electrophoresis in a reduced gravity environment using stable particles with established electrokinetic properties and specifically to evaluate the influence of the electrical properties of the sample constituents on the resolution of the continuous flow electrophoretic device. Polystrene latex microspheres dispersed in a solution with three times the electrical conductivity of the curtain buffer separated with a significantly larger band spread compared to the second experiment under matched conductivity conditions. It is proposed that the sample of higher electrical conductivity distorted the electric field near the sample stream so that the polystyrene latex particles migrated toward the chamber walls where electroosmosis retarded and spread the sample.

  6. The synthesis of active pharmaceutical ingredients (APIs) using continuous flow chemistry

    PubMed Central

    2015-01-01

    Summary The implementation of continuous flow processing as a key enabling technology has transformed the way we conduct chemistry and has expanded our synthetic capabilities. As a result many new preparative routes have been designed towards commercially relevant drug compounds achieving more efficient and reproducible manufacture. This review article aims to illustrate the holistic systems approach and diverse applications of flow chemistry to the preparation of pharmaceutically active molecules, demonstrating the value of this strategy towards every aspect ranging from synthesis, in-line analysis and purification to final formulation and tableting. Although this review will primarily concentrate on large scale continuous processing, additional selected syntheses using micro or meso-scaled flow reactors will be exemplified for key transformations and process control. It is hoped that the reader will gain an appreciation of the innovative technology and transformational nature that flow chemistry can leverage to an overall process. PMID:26425178

  7. Continuous-flow electrophoresis: Membrane-associated deviations of buffer pH and conductivity

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Mcguire, J. K.

    1978-01-01

    The deviations in buffer pH and conductivity which occur near the electrode membranes in continuous-flow electrophoresis were studied in the Beckman charged particle electrophoresis system and the Hanning FF-5 preparative electrophoresis instrument. The nature of the membranes separating the electrode compartments from the electrophoresis chamber, the electric field strength, and the flow rate of electrophoresis buffer were all found to influence the formation of the pH and conductivity gradients. Variations in electrode buffer flow rate and the time of electrophoresis were less important. The results obtained supported the hypothesis that a combination of Donnan membrane effects and the differing ionic mobilities in the electrophoresis buffer was responsible for the formation of the gradients. The significance of the results for the design and stable operation of continuous-flow electrophoresis apparatus was discussed.

  8. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  9. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  10. B-type natriuretic peptide in low-flow, low-gradient aortic stenosis: relationship to hemodynamics and clinical outcome: results from the Multicenter Truly or Pseudo-Severe Aortic Stenosis (TOPAS) study.

    PubMed

    Bergler-Klein, Jutta; Mundigler, Gerald; Pibarot, Philippe; Burwash, Ian G; Dumesnil, Jean G; Blais, Claudia; Fuchs, Christina; Mohty, Dania; Beanlands, Rob S; Hachicha, Zeineb; Walter-Publig, Nicole; Rader, Florian; Baumgartner, Helmut

    2007-06-05

    The prognostic value of B-type natriuretic peptide (BNP) is unknown in low-flow, low-gradient aortic stenosis (AS). We sought to evaluate the relationship between AS and rest, stress hemodynamics, and clinical outcome. BNP was measured in 69 patients with low-flow AS (indexed effective orifice area < 0.6 cm2/m2, mean gradient < or = 40 mm Hg, left ventricular ejection fraction < or = 40%). All patients underwent dobutamine stress echocardiography and were classified as truly severe or pseudosevere AS by their projected effective orifice area at normal flow rate of 250 mL/s (effective orifice area < or = 1.0 cm2 or > 1.0 cm2). BNP was inversely related to ejection fraction at rest (Spearman correlation coefficient r(s)=-0.59, P<0.0001) and at peak stress (r(s)=-0.51, P<0.0001), effective orifice area at rest (r(s)=-0.50, P<0.0001) and at peak stress (r(s)=-0.46, P=0.0002), and mean transvalvular flow (r(s)=-0.31, P=0.01). BNP was directly related to valvular resistance (r(s)=0.42, P=0.0006) and wall motion score index (r(s)=0.36, P=0.004). BNP was higher in 29 patients with truly severe AS versus 40 with pseudosevere AS (median, 743 pg/mL [Q1, 471; Q3, 1356] versus 394 pg/mL [Q1, 191 to Q3, 906], P=0.012). BNP was a strong predictor of outcome. In the total cohort, cumulative 1-year survival of patients with BNP > or = 550 pg/mL was only 47+/-9% versus 97+/-3% with BNP < 550 (P<0.0001). In 29 patients who underwent valve replacement, postoperative 1-year survival was also markedly lower in patients with BNP > or = 550 pg/mL (53+/-13% versus 92+/-7%). BNP is significantly higher in truly severe than pseudosevere low-gradient AS and predicts survival of the whole cohort and in patients undergoing valve replacement.

  11. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    PubMed Central

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline’s favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional 1H, 13C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds. PMID:28194934

  12. Continuous Flow (1)H and (13)C NMR Spectroscopy in Microfluidic Stripline NMR Chips.

    PubMed

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M; Janssen, Johannes W G; van Bentum, P Jan M; Gardeniers, Han J G E; Kentgens, Arno P M

    2017-02-21

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional (1)H, (13)C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity. The detection volumes are approximately 150 and 250 nL, while flow rates ranging from 0.5 μL/min to 15 μL/min have been employed. We show that in continuous flow the pulse delay is determined by the replenishment time of the detector volume, if the sample trajectory in the magnet toward NMR detector is long enough to polarize the spin systems. This can considerably speed up quantitative measurement of samples needing signal averaging. So it can be beneficial to perform continuous flow measurements in this setup for analysis of, e.g., reactive, unstable, or mass-limited compounds.

  13. Toward efficient asymmetric carbon-carbon bond formation: continuous flow with chiral heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Yamashita, Yasuhiro; Kobayashi, Shū

    2012-10-22

    A chiral Ca catalyst based on CaCl(2) with a chiral ligand was developed and applied to the asymmetric 1,4-addition of 1,3-dicarbonyl compounds to nitroalkenes as a model system. To address product inhibition issues, the Ca catalyst was applied to continuous flow with a chiral heterogeneous catalyst. The continuous flow system using a newly synthesized, polymer-supported Pybox was successfully employed, and the TON was improved 25-fold compared with those of the previous Ca(OR)(2) catalysts.

  14. Diels–Alder reactions of myrcene using intensified continuous-flow reactors

    PubMed Central

    Álvarez-Diéguez, Miguel Á; Kohl, Thomas M; Tsanaktsidis, John

    2017-01-01

    This work describes the Diels–Alder reaction of the naturally occurring substituted butadiene, myrcene, with a range of different naturally occurring and synthetic dienophiles. The synthesis of the Diels–Alder adduct from myrcene and acrylic acid, containing surfactant properties, was scaled-up in a plate-type continuous-flow reactor with a volume of 105 mL to a throughput of 2.79 kg of the final product per day. This continuous-flow approach provides a facile alternative scale-up route to conventional batch processing, and it helps to intensify the synthesis protocol by applying higher reaction temperatures and shorter reaction times. PMID:28228853

  15. Continuous-flow organic synthesis: a tool for the modern medicinal chemist.

    PubMed

    Wiles, Charlotte; Watts, Paul

    2009-12-01

    Medicinal chemists are under increasing pressure, not only to identify lead compounds and optimize them into clinical candidates, but also to produce materials in sufficient quantities for subsequent investigation. With this in mind, continuous-flow methodology presents an opportunity to reduce the time taken to, first, identify the compound and, second, scale the process for evaluation and, where necessary, production. It is therefore the aim of this review to provide the reader with an insight into the advantages associated with the use of continuous-flow chemistry through the use of strategically selected literature examples.

  16. Study of an ammonia-based wet scrubbing process in a continuous flow system

    SciTech Connect

    Resnik, Kevin P.; Pennline, Henry W.

    2013-03-01

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  17. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-01

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  18. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts.

    PubMed

    Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū

    2015-04-16

    Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

  19. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    SciTech Connect

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. As a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.

  20. The synthesis of cadmium sulfide nanoplatelets using a novel continuous flow sonochemical reactor

    DOE PAGES

    Palanisamy, Barath; Paul, Brian; Chang, Chih -hung

    2015-01-21

    A continuous flow sonochemical reactor was developed capable of producing metastable cadmium sulfide (CdS) nanoplatelets with thicknesses at or below 10 nm. The continuous flow sonochemical reactor included the passive in-line micromixing of reagents prior to sonochemical reaction. Synthesis results were compared with those from reactors involving batch conventional heating and batch ultrasound-induced heating. The continuous sonochemical synthesis was found to result in high aspect ratio hexagonal platelets of CdS possessing cubic crystal structures with thicknesses well below 10 nm. The unique shape and crystal structure of the nanoplatelets are suggestive of high localized temperatures within the sonochemical process. Asmore » a result, the particle size uniformity and product throughput are much higher for the continuous sonochemical process in comparison to the batch sonochemical process and conventional synthesis processes.« less

  1. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    PubMed

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  2. Ruptured abdominal aortic aneurysm.

    PubMed

    Sachs, T; Schermerhorn, M

    2010-06-01

    Ruptured abdominal aortic aneurysm (AAA) continues to be one of the most lethal vascular pathologies we encounter. Its management demands prompt and efficient evaluation and repair. Open repair has traditionally been the mainstay of treatment. However, the introduction of endovascular techniques has altered the treatment algorithm for ruptured AAA in most major medical centers. We present recent literature and techniques for ruptured AAA and its surgical management.

  3. Parallel-plate Flow Chamber and Continuous Flow Circuit to Evaluate Endothelial Progenitor Cells under Laminar Flow Shear Stress

    PubMed Central

    Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325

  4. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress.

    PubMed

    Lane, Whitney O; Jantzen, Alexandra E; Carlon, Tim A; Jamiolkowski, Ryan M; Grenet, Justin E; Ley, Melissa M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Allen, Jason D; Truskey, George A; Achneck, Hardean E

    2012-01-17

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).

  5. An online fiber-optic UV-visible detector for continuous free-flow electrophoresis.

    PubMed

    Sanganza, Wilson K M; Ridgway, Thomas H; Stalcup, Apryll M; Seliskar, Carl J

    2005-11-01

    A PC-controlled, scanning online UV detector for continuous free-flow electrophoresis (CFFE) was designed to allow for single UV wavelength monitoring across a 1-D array of 48 longitudinal flow cells interfaced to a CFFE apparatus. In the detection scheme, the UV light is sequentially passed through each of the flow cells. The design integrates online acquisition of absorbance spectra of components separated by CFFE. Benzoic acid standard solutions were used to examine the performance of the detector. Chloroquine diphosphate and 4-nitrophenol were used as test solutes to determine the detector's ability to distinguish analytes separated in the CFFE.

  6. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions.

    PubMed

    Cole, Kevin P; Groh, Jennifer McClary; Johnson, Martin D; Burcham, Christopher L; Campbell, Bradley M; Diseroad, William D; Heller, Michael R; Howell, John R; Kallman, Neil J; Koenig, Thomas M; May, Scott A; Miller, Richard D; Mitchell, David; Myers, David P; Myers, Steven S; Phillips, Joseph L; Polster, Christopher S; White, Timothy D; Cashman, Jim; Hurley, Declan; Moylan, Robert; Sheehan, Paul; Spencer, Richard D; Desmond, Kenneth; Desmond, Paul; Gowran, Olivia

    2017-06-16

    Advances in drug potency and tailored therapeutics are promoting pharmaceutical manufacturing to transition from a traditional batch paradigm to more flexible continuous processing. Here we report the development of a multistep continuous-flow CGMP (current good manufacturing practices) process that produced 24 kilograms of prexasertib monolactate monohydrate suitable for use in human clinical trials. Eight continuous unit operations were conducted to produce the target at roughly 3 kilograms per day using small continuous reactors, extractors, evaporators, crystallizers, and filters in laboratory fume hoods. Success was enabled by advances in chemistry, engineering, analytical science, process modeling, and equipment design. Substantial technical and business drivers were identified, which merited the continuous process. The continuous process afforded improved performance and safety relative to batch processes and also improved containment of a highly potent compound. Copyright © 2017, American Association for the Advancement of Science.

  7. Synthesis of ultrafine layered double hydroxide (LDHs) nanoplates using a continuous-flow hydrothermal reactor.

    PubMed

    Wang, Qiang; Tang, Selina Vi Yu; Lester, Edward; O'Hare, Dermot

    2013-01-07

    We report a novel continuous-flow hydrothermal method for the synthesis of layered double hydroxide (LDH) nanoplates. The precursor solutions may be fed to the reactor so that the production of LDHs occurs in a continuous mode. By control of the synthesis temperature, pressure and contact time, the synthesis of LDH nanoplates can be tuned with constant and consistent product quality. This very general and simple approach shows high potential for commercial scale-up.

  8. Generation and Synthetic Application of Trifluoromethyl Diazomethane Utilizing Continuous Flow Technologies.

    PubMed

    Pieber, Bartholomäus; Kappe, C Oliver

    2016-03-04

    A continuous process for the synthesis and inline separation of anhydrous trifluoromethyl diazomethane in a single continuous flow process is presented. The diazo building block is generated from the corresponding amine and NaNO2 under acidic, aqueous conditions and subsequently diffuses through a gas-permeable membrane into an organic stream. To avoid storage and transportation of the hazardous compound, a representative downstream process in a packed-bed reactor yielding highly functionalized building blocks was developed.

  9. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Micromachined pre-focused 1×N flow switches for continuous sample injection

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Bin; Hung, Chen-I.; Ke, Bin-Jo; Huang, Guan-Ruey; Hwei, Bao-Herng

    2001-09-01

    In this paper, we present an investigation of a microfluidic chip capable of continuous sample switching and injection for bio-analytical applications. The novel device integrates two important microfluidic phenomena, including hydrodynamic focusing and valveless flow switching inside multi-ported microchannels. In this study, a simple theoretical model based on the `flow-rate-ratio' method is first proposed to predict the performance of the device. Based on these data, a pre-focused 1×N flow switch is designed and fabricated using micromachining techniques. A novel micromachining technique is demonstrated which combines quartz template fabrication and replication of microstructures on polymethylmethacrylate (PMMA) substrates for mass production of microfluidic devices. Three-dimensional templates with an inverse image of microfluidic channels are fabricated on quartz substrates and then used to imprint microstructures onto PMMA substrates using hot embossing methods. Finally, the flow switching is verified experimentally with the use of microscopic visualization of water sheath flows and a dye-containing sample flow. The experimental data indicate that the sample flow could be hydrodynamically pre-focused to a narrow stream and then guided into a desired outlet port based on relative sheath and sample flow rates. It also shows that the added `pre-focusing' function prior to the flow switching is crucial for precise sample injection. The microfluidic chip could be applied in the fields of bio/chemical analysis.

  11. One stage surgical treatment of aortic valve disease and aortic coarctation with aortic bypass grafting through the diaphragm and aortic valve replacement.

    PubMed

    Yu, Zipu; Wu, Shengjun; Li, Chengchen; Zou, Yu; Ma, Liang

    2015-11-10

    To validate ascending aorta-lower abdominal aorta bypass grafting treatment for patients with descending aortic coarctation and an aortic valve disease. The three patients in whom a descending atypical aortic coarctation was associated with an aortic valve disease were treated with one stage surgical treatment with aortic bypass grafting through the diaphragm and aortic valve replacement in our heart center. Operative technique consisted of performing ascending aorta-lower abdominal aorta bypass grafting through diaphragm muscle and implementing aortic valve replacement. The mean time for extracorporeal circulation and occluding clamp of aorta was recorded. Blood pressure data for pre- and post-operation was measured in the limbs. Computer-enhanced transvenous angiograms of pre- and post-operation were applied for detection of aortic stenosis. The other adverse events were noticed in outpatient service during a follow-up period. The mean extracorporeal circulation time was 54 ± 11 min. The mean time for occluding clamp of aorta was 34 ± 6 min. An arterial pressure gradient was totally corrected after surgical treatment. Post-operation computer-enhanced transvenous angiograms showed the grafts to be open with a fluent flow. The patients had no gastrointestinal tract complications. No adverse event was noticed during a follow-up period in outpatient service. Treatment of ascending aorta-lower abdominal aorta bypass is advisable for patients with descending aortic coarctation and an aortic valve disease.

  12. Evaluation of Intravascular Hemolysis With Erythrocyte Creatine in Patients With Aortic Stenosis.

    PubMed

    Sugiura, Tetsuro; Okumiya, Toshika; Kubo, Toru; Takeuchi, Hiroaki; Matsumura, Yoshihisa

    2016-07-27

    Chronic intravascular hemolysis has been identified in patients with cardiac valve prostheses, but only a few case reports have evaluated intravascular hemolysis in patients with native valvular heart disease. To detect intravascular hemolysis in patients with aortic stenosis, erythrocyte creatine was evaluated with hemodynamic indices obtained by echocardiography.Erythrocyte creatine, a marker of erythrocyte age, was assayed in 30 patients with aortic stenosis and 10 aged matched healthy volunteers. Peak flow velocity of the aortic valve was determined by continuous-wave Doppler echocardiography. Twenty of 30 patients with aortic stenosis had high erythrocyte creatine levels (> 1.8 µmol/g Hb) and erythrocyte creatine was significantly higher as compared with control subjects (1.98 ± 0.49 versus 1.52 ± 0.19 µmol/g Hb, P = 0.007). Peak transvalvular pressure gradient ranged from 46 to 142 mmHg and peak flow velocity ranged from 3.40 to 5.95 m/second. Patients with aortic stenosis had a significantly lower erythrocyte count (387 ± 40 versus 436 ± 42 × 10(4) µL, P = 0.002) and hemoglobin (119 ± 11 versus 135 ± 11 g/L, P < 0.001) as compared with control subjects. Erythrocyte creatine had a fair correlation with peak flow velocity (r = 0.55, P = 0.002).In conclusion, intravascular hemolysis due to destruction of erythrocytes was detected in patients with moderate to severe aortic stenosis and the severity of intravascular hemolysis was related to valvular flow velocity of the aortic valve.

  13. Flow Effects on the Controlled Growth of Nanostructured Networks at Microcapillary Walls for Applications in Continuous Flow Reactions.

    PubMed

    Wang, Gang; Yuan, Cansheng; Fu, Boyi; He, Luye; Reichmanis, Elsa; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2015-09-30

    Low-cost microfluidic devices are desirable for many chemical processes; however, access to robust, inert, and appropriately structured materials for the inner channel wall is severely limited. Here, the shear force within confined microchannels was tuned through control of reactant solution fluid-flow and shown to dramatically impact nano- through microstructure growth. Combined use of experimental results and simulations allowed controlled growth of 3D networked Zn(OH)F nanostructures with uniform pore distributions and large fluid contact areas on inner microchannel walls. These attributes facilitated subsequent preparation of uniformly distributed Pd and PdPt networks with high structural and chemical stability using a facile, in situ conversion method. The advantageous properties of the microchannel based catalytic system were demonstrated using microwave-assisted continuous-flow coupling as a representative reaction. High conversion rates and good recyclability were obtained. Controlling materials nanostructure via fluid-flow-enhanced growth affords a general strategy to optimize the structure of an inner microchannel wall for desired attributes. The approach provides a promising pathway toward versatile, high-performance, and low-cost microfluidic devices for continuous-flow chemical processes.

  14. Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor

    USDA-ARS?s Scientific Manuscript database

    The study was conducted to evaluate fermentation by Clostridium thermocellum and C. saccharoperbutylacetonicum in a continuous-flow, high-solids reactor. Liquid medium was continuously flowed through switchgrass (2 mm particle size) at one of three flow rates: 83.33 mL h-1 (2 L d-1), 41.66 mL h-1(1 ...

  15. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice.

    PubMed

    Moazami, Nader; Fukamachi, Kiyotaka; Kobayashi, Mariko; Smedira, Nicholas G; Hoercher, Katherine J; Massiello, Alex; Lee, Sangjin; Horvath, David J; Starling, Randall C

    2013-01-01

    The recent success of continuous-flow circulatory support devices has led to the growing acceptance of these devices as a viable therapeutic option for end-stage heart failure patients who are not responsive to current pharmacologic and electrophysiologic therapies. This article defines and clarifies the major classification of these pumps as axial or centrifugal continuous-flow devices by discussing the difference in their inherent mechanics and describing how these features translate clinically to pump selection and patient management issues. Axial vs centrifugal pump and bearing design, theory of operation, hydrodynamic performance, and current vs flow relationships are discussed. A review of axial vs centrifugal physiology, pre-load and after-load sensitivity, flow pulsatility, and issues related to automatic physiologic control and suction prevention algorithms is offered. Reliability and biocompatibility of the two types of pumps are reviewed from the perspectives of mechanical wear, implant life, hemolysis, and pump deposition. Finally, a glimpse into the future of continuous-flow technologies is presented. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  16. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  17. Rapid quantification of proanthocyanidins (condensed tannins) with a continuous flow analyzer

    Treesearch

    James K. Nitao; Bruce A. Birr; Muraleedharan G. Nair; Daniel A. Herms; William J. Mattson

    2001-01-01

    Proanthocyanidins (condensed tannins) frequently need to be quantified in large numbers of samples in food, plant, and environmental studies. An automated colorimetric method to quantify proanthocyanidins with sulfuric acid (H2SO4) was therefore developed for use in a continuous flow analyzer. Assay conditions were...

  18. Model design and instrumentation experiences with continuous-flow cryogenic tunnels

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1980-01-01

    The development of wind tunnels that can be operated at cryogenic temperatures has placed several new demands on the ability to build and instrument wind tunnel models. The experiences at the NASA Langley Research Center relative to the design and instrumentation of models for continuous flow cryogenic wind tunnels are reviewed.

  19. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    EPA Science Inventory

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  20. Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite-Pd nanocomposites

    EPA Science Inventory

    Maghemite-supported ultra-fine Pd (1-2 nm) nanoparticles, prepared by a simple co-precipitation method, find application in the catalytic continuous flow hydrogenation of nitroarenes, azides, and alkenes wherein they play an important role in reduction of various functional group...

  1. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  2. Studying Fast Reactions: Construction and Use of a Low-Cost Continuous-Flow Instrument

    ERIC Educational Resources Information Center

    Bisson, Patrick J.; Whitten, James E.

    2006-01-01

    The construction and use of a low-cost continuous-flow instrument for measuring the kinetics of fast reaction which include the use of an light emitting diode light source, a photodiode-on-a-chip detector, and a position sensor is demonstrated. The instrument is suitable for the physical chemistry laboratory and could be used to study the kinetics…

  3. Continuous flow microwave-assisted processing and aseptic packaging of purple-fleshed sweetpotato purees

    USDA-ARS?s Scientific Manuscript database

    Pumpable purees from purple-flesh sweetpotatoes (PFSP) were subjected to microwave heating using a 915 MHz continuous flow system, followed by aseptic packaging in flexible containers to obtain a shelf-stable product. Initial test runs were conducted using a 5 kW microwave unit to measure dielectr...

  4. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions

    ERIC Educational Resources Information Center

    Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio

    2010-01-01

    This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…

  6. Studying Fast Reactions: Construction and Use of a Low-Cost Continuous-Flow Instrument

    ERIC Educational Resources Information Center

    Bisson, Patrick J.; Whitten, James E.

    2006-01-01

    The construction and use of a low-cost continuous-flow instrument for measuring the kinetics of fast reaction which include the use of an light emitting diode light source, a photodiode-on-a-chip detector, and a position sensor is demonstrated. The instrument is suitable for the physical chemistry laboratory and could be used to study the kinetics…

  7. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  8. Effects of Carvacrol on Survival, Mesenteric Blood Flow, Aortic Function and Multiple Organ Injury in a Murine Model of Polymicrobial Sepsis.

    PubMed

    Ozer, Erdem Kamil; Goktas, Mustafa Tugrul; Toker, Aysun; Bariskaner, Hulagu; Ugurluoglu, Ceyhan; Iskit, Alper Bektas

    2017-06-23

    Carvacrol (CRV) has strong cytoprotective, antioxidant, and anti-inflammatory properties. We aimed to demonstrate the possible protective effects of CRV on survival, mesenteric artery blood flow (MBF), vascular reactivity, and oxidative and inflammatory injuries in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wistar rats were allocated into the following four groups: Sham, CLP, Sham + CRV, and CLP + CRV. The animals were orally administered with CRV (80 mg/kg/day) or vehicle (corn oil; 1 mL/kg/day) for 7 days. At the eighth day, Sham or CLP procedure was applied. Twenty hours after the operations, MBF and contractile responses of isolated aortic preparations to phenylephrine were measured. Tissue samples were obtained for biochemical and histopathological assessments. Additionally, survival rates were recorded throughout 96 h. CRV administration improved the mesenteric perfusion, contractile function of aorta, and survival after CLP. CRV substantially prevented the elevations in the levels of LDH, BUN, Cr, and inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6) but could not prevent the elevations of AST and ALT after CLP. The decreased liver, kidney, and spleen glutathione levels and increased liver, kidney, lung, and spleen malondialdehyde levels induced by CLP were substantially restored by CRV. Also, histopathological protective effects of CRV on multiple organ damage due to CLP were observed. CRV possesses strong ameliorative effects on sepsis due to its protective effects on mesenteric perfusion and aortic function and its antioxidative and anti-inflammatory effects.

  9. Trans-catheter aortic valve implantation with the direct flow medical prosthesis: Single center short-term clinical and echocardiographic outcomes.

    PubMed

    Kische, Stephan; D'Ancona, Giuseppe; Agma, Hüseyin U; El-Achkar, Gihan; Dißmann, Martin; Ortak, Jasmin; Ince, Hüseyin

    2017-02-15

    To analyze our single center experience with the Direct Flow Medical (DFM). The DFM has been recently introduced to the market and large real world experiences are lacking. A total of 126 patients with severe aortic valve stenosis (AVS) were treated by the same team from March 2013 to May 2015. Device success and procedural safety were classified, according to valve academic research consortium (VARC) criteria, for the entire cohort, including patients treated in the early phases of our learning curve. Clinical and trans-thoracic echocardiography follow-up was performed (median duration 279 days; 36-761 days). Mean age was 80.9 ± 5.5 years and median logistic Euro-SCORE was 15.9 (5.5-84.2). Cardiovascular 30-day mortality was 4.8% (6/126), device success 89.6% (113/126), and early safety 85.7% (108/126). At discharge, no aortic regurgitation (AR) was present in 85.7% and mild AR in 14.3% of the patients. Estimated 1-year follow-up survival was 91%. At follow-up, no AR was present in 87.3%, mild AR in 10.9%, and moderate AR in 1.8%. Mean gradient of 15.1 ± 6.3 mm Hg and prosthesis effective orifice area of 1.6 ± 0.6 cm(2) were reported. In this single center experience, the DFM valve showed satisfactory clinical and hemodynamic results. Short-term follow-up confirmed the consistent clinical results, with low rates of AR and acceptable trans-prosthetic gradients and prosthetic effective orifice area. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Preservation of hypogastric artery blood flow during endovascular aneurysm repair of an abdominal aortic aneurysm with bilateral common and internal iliac artery involvement: utilization of off-the-shelf stent-graft components.

    PubMed

    Riesenman, Paul J; Ricotta, Joseph J; Veeraswamy, Ravi K

    2012-01-01

    A 72-year-old male presented with a 7.4-cm abdominal aortic aneurysm with bilateral common and internal iliac involvement. To maintain pelvic perfusion, preservation of the patient's left hypogastric artery (HA) was pursued. Two weeks after right HA embolization, endovascular repair of the patient's aneurysms was performed using a branched endograft approach. A 22-mm main body bifurcated endograft was unsheathed and the proximal covered stent was removed. The contralateral gate was preloaded with a wire and catheter. The device was resheathed and placed in the left common iliac artery. The preloaded wire in the contralateral gate was snared from the right side, establishing through-and-through femoral access. A contralateral femoral sheath was advanced up and over the aortic bifurcation from the right side into the contralateral gate of the bifurcated endograft. The repair was bridged to the left HA using a balloon-expandable stent-graft, followed by standard endovascular abdominal aortic aneurysm repair. Completion angiography demonstrated exclusion of patient's aneurysms, without evidence of endoleak, and maintenance of pelvic blood flow through the left HA. The patient recovered without complication and was discharged home on postoperative day 4. This technique illustrates the technical feasibility of using a preloaded commercially available endograft to preserve HA blood flow and maintain pelvic perfusion during endovascular aortic aneurysm repair. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.

  11. Association of Aortic Stiffness and Wave Reflections with Coronary Flow Reserve in Women without Obstructive Coronary Artery Disease: An Ancillary Study from the NHLBI-Sponsored Women's Ischemia Syndrome Evaluation (WISE)

    PubMed Central

    Nichols, Wilmer W.; Denardo, Scott J.; Davidson, Jonathan B.; Huo, Tianyao; Merz, C. Noel Bairey; Pepine, Carl J.

    2015-01-01

    Background Increased aortic stiffness and reduced coronary flow reserve (CFR) independently predict adverse outcomes. But information about relationships between arterial properties and CFR in subjects without obstructive coronary artery disease (CAD) is limited. Methods CFR was measured (Doppler flow wire and intracoronary adenosine) in 50 women (age 53±11 years) with symptoms and signs of myocardial ischemia without obstructive CAD. Aortic pulse wave velocity (aPWV), a measure of aortic stiffness, was obtained via catheter pullback; radial artery pressure waves were measured by applanation tonometry and central aortic pressure synthesized. Results Overall, CFR (mean 2.61 ± 0.47) was significantly correlated with aPWV (r = −0.51), pulse wave amplification (r = 0.45), augmented pressure (AP, r = −0.48), augmentation index (AIx, r = −0.44), aortic systolic pressure (r = −0.49), left ventricular wasted energy (LVEw, r = −0.47) (all P < 0.001), systolic pressure time index (r = −0.37, P < 0.008), and rate pressure product (r = −0.29, P < 0.04). In the multiple regression model including aPWV, CFR was still significantly correlated with aPWV (P < 0.008) and aortic systolic pressure (P < 0.01). No other measures contributed significant additional information. Women with CFR ≤2.5 vs. those with CFR >2.5 had greater aPWV (894 ± 117 vs. 747 ± 93 cm/sec, P < 0.001), AP (14 ± 4.9 vs. 11 ± 4.1 mmHg, P < 0.008), AIx (32 ± 6.6 vs. 27 ± 6.6%, P < 0.003), LVEw (30 ± 12 vs. 21 ± 10 dyne-sec/cm2 × 102, P < 0.02) and reduced pulse pressure amplification (1.20 ± .07 vs. 1.26 ± .10, P < 0.008) and pressure wave travel time (133 ± 7.3 vs. 138 ± 6.9 msec, P < 0.04). Conclusions Among symptomatic women without obstructive CAD, CFR was inversely related to aortic systolic pressure and indices of aortic stiffness. These changes in arterial properties increase LV afterload requiring the ventricle to generate additional, but wasted, energy that increases

  12. Hyperemic flow heterogeneity within the calf, foot, and forearm measured with continuous arterial spin labeling MRI

    PubMed Central

    Wu, Wen-Chau; Wang, Jiongjiong; Detre, John A.; Wehrli, Felix W.; Mohler, Emile; Ratcliffe, Sarah J.; Floyd, Thomas F.

    2010-01-01

    Arterial spin labeling (ASL) is a noninvasive magnetic resonance imaging (MRI) technique for microvascular blood flow measurement. We used a continuous ASL scheme (CASL) to investigate the hyperemic flow difference between major muscle groups in human extremities. Twenty-four healthy subjects with no evidence of vascular disease were recruited. MRI was conducted on a 3.0 Tesla Siemens Trio whole body system with a transmit/receive knee coil. A nonmagnetic orthopedic tourniquet system was used to create a 5-min period of ischemia followed by a period of hyperemic flow (occlusion pressure = 250 mmHg). CASL imaging, lasting from 2 min before cuff inflation to 3 min after cuff deflation, was performed on the midcalf, midfoot, and midforearm in separate sessions from which blood flow was quantified with an effective temporal resolution of 16 s. When muscles in the same anatomic location were compared, hyperemic flow was found to be significantly higher in the compartments containing muscles known to have relatively higher slow-twitch type I fiber compositions, such as the soleus muscle in the calf and the extensors in the forearm. In the foot, the plantar flexors exhibited a slightly delayed hyperemic response relative to that of the dorsal compartment, but no between-group flow difference was observed. These results demonstrate that CASL is sensitive to flow heterogeneity between diverse muscle groups and that nonuniform hyperemic flow patterns following an ischemic paradigm correlate with relative fiber-type predominance. PMID:18310508

  13. Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.

    1988-01-01

    The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.

  14. Continuous production of Cu2ZnSnS4 nanocrystals in a flow reactor.

    PubMed

    Shavel, Alexey; Cadavid, Doris; Ibáñez, Maria; Carrete, Alex; Cabot, Andreu

    2012-01-25

    A procedure for the continuous production of Cu(2)ZnSnS(4) (CZTS) nanoparticles with controlled composition is presented. CZTS nanoparticles were prepared through the reaction of the metals' amino complexes with elemental sulfur in a continuous-flow reactor at moderate temperatures (300-330 °C). High-resolution transmission electron microscopy and X-ray diffraction analysis showed the nanocrystals to have a crystallographic structure compatible with that of the kesterite. Chemical characterization of the materials showed the presence of the four elements in each individual nanocrystal. Composition control was achieved by adjusting the solution flow rate through the reactor and the proper choice of the nominal precursor concentration within the flowing solution. Single-particle analysis revealed a composition distribution within each sample, which was optimized at the highest synthesis temperatures used.

  15. Continuous scaling 3d micro flow printing for improved spot morphology in protein microarrays - biomed 2013.

    PubMed

    Romanov, Valentin; Gale, Bruce; Eckman, Josh; Miles, Adam; Brooks, Benjamin

    2013-01-01

    The protein microarray platform while innovative still poses a number of challenges which can only be met through creative and sophisticated system design. Pin printing while allowing for flexibility as to the type of medium printed does not offer the kind of spot reproducibility that a very sensitive application may require. The Continuous Flow Microspotter (CFM) was designed to not only allow for flexibility and reproducibility but to also achieve solution stability through flow scaling. This study uses the emerging CFM for printing protein and antibodies three dimensionally for general protein microarray applications. Consistent spot morphology, a continual and persistent problem in traditional pin printed microarrays, was compared under variable printed flow rates. The final assessment was performed using a rudimentary shear model. Force effects discussion and statistical data was used to demonstrate the versatility of the system.

  16. The use of a continuous flow-reactor employing a mixed hydrogen-liquid flow stream for the efficient reduction of imines to amines.

    PubMed

    Saaby, Steen; Knudsen, Kristian Rahbek; Ladlow, Mark; Ley, Steven V

    2005-06-21

    Imines have been reduced to amines in high yield, and with excellent chemoselectivity, by catalytic hydrogenation in a continuous flow-reactor, utilising an electrochemically-generated hydrogen source to produce a mixed hydrogen-liquid flow stream.

  17. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    PubMed

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-06

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for