Falabella, S.; Sanders, D.M.
1994-01-18
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.
Falabella, Steven; Sanders, David M.
1994-01-01
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
Production and Physical Metallurgy of Pure Metals - Part V
1960-07-25
crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics.
Boedo, J A; Rudakov, D L
2017-03-01
We present a method to calculate the ion saturation current, I sat , for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat . It is noted that the I sat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e . We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuously biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and its use in reducing arcs.
Feedback between neutral winds and auroral arc electrodynamics
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Walterscheid, R. L.
1986-01-01
The feedback between neutral atmospheric winds and the electrodynamics of a stable, discrete auroral arc is analyzed. The ionospheric current continuity equation and the equation for neutral gas acceleration by ion drag are solved simultaneously, as a function of time. The results show that, in general, the electric field in the ionosphere adjusts to neutral wind acceleration so as to keep auroral field-aligned currents and electron acceleration approximately independent of time. It is thus concluded that the neutral winds that develop as a result of the electrodynamical forcing associated with an arc do not significantly affect the intensity of the arc.
Pseudo ribbon metal ion beam source.
Stepanov, Igor B; Ryabchikov, Alexander I; Sivin, Denis O; Verigin, Dan A
2014-02-01
The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Yahong; Hu Chundong; Liu Sheng
2012-01-15
Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Jiang, Caichao; Li, Jun; Liang, Lizhen
2012-01-01
Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.
NASA Astrophysics Data System (ADS)
Maggiolo, R.; Echim, M.; Wedlund, C. Simon; Zhang, Y.; Fontaine, D.; Lointier, G.; Trotignon, J.-G.
2012-02-01
On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of electrons that generate a polar cap arc as they precipitate in the ionosphere. The detailed observations of the acceleration region by Cluster and the large scale image of the polar cap arc provided by TIMED are two different features of the same phenomenon. Combined together, they bring new light on the configuration of the high-latitude magnetosphere during prolonged periods of Northward IMF. Possible implications of the modelling results for optical observations of polar cap arcs are also discussed.
Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
As the main H- ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970’s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of H- ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. In order to reduce the amount of tuning and monitoring of these ion sources, a new electronic system consisting of a current-regulated arc dischargemore » modulator allow the ion source to run at a constant arc current for improved beam output and operation. A solenoid-type gas valve feeds H2 gas into the source precisely and independently of ambient temperature. This summary will cover several studies and design changes that have been tested and will eventually be implemented on the operational magnetron sources at Fermilab. Innovative results for this type of ion source include cathode geometries, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed. In this summary, I will highlight the advances made in ion sources at Fermilab and will outline the directions of the continuing R&D effort.« less
High current DC negative ion source for cyclotron.
Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y
2016-02-01
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.
NASA Astrophysics Data System (ADS)
de Keyser, J. M.; Maggiolo, R.; Echim, M.; Simon, C.; Zhang, Y.; Trotignon, J.
2010-12-01
On April 1st, 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. Simultaneously, the Cluster spacecraft detects an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 600 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 300eV. The footprint of the magnetic field line on which the Cluster spacecraft are situated, is located just outside the GUVI field of view in the prolongation of the polar cap arc. This suggests that the upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at ionospheric altitudes corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The energy spectrum of the precipitating electrons provided by the model is introduced as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes like photoionisation and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are then compared to the optical observations by TIMED. Data and modeling results are consistent with quasi-static acceleration of precipitating magnetospheric electrons. We also discuss possible implications of our modeling results for optical observations of polar cap arcs.
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Starr, C.
1957-11-19
This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.
DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS
Lawrence, E.O.
1959-04-14
An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.
ION PRODUCING MECHANISM (ARC EXTERNAL TO BLOCK)
Brobeck, W.H.
1958-09-01
This patent pentains to an ion producing mechanism employed in a calutron which has the decided advantage of an increased amount of ionization effectuated by the arc, and a substantially uniform arc in poiat of time, i arc location and along the arc length. The unique features of the disclosed ion source lie in the specific structural arrangement of the source block, gas ionizing passage, filament shield and filament whereby the arc is established both within the ionizing passage and immediately outside the exit of the ionizing passage at the block face.
Backus, J.G.
1957-12-24
This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.
Oppenheimer, F.F.
1959-04-14
This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc, The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas fiow toward the anodc end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.
Oppenheimer, F. F.
1959-04-14
This patent pertains to calutrons and more particularly to means for introducing gas at selected points in the arc chamber of a calutron source to remedy unsteadiness in the arc. The disclosed ion source has a baffle at the gas entrance in the arc chamber for directing part of the gas flow toward the anode end of the chamber. The resulting arc is much steadier, resulting in an ion beam of increased current.
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun
2015-02-01
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.
High current DC negative ion source for cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2016-02-15
A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. Themore » relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli
2015-02-15
The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less
Plasma-surface interaction in negative hydrogen ion sources
NASA Astrophysics Data System (ADS)
Wada, Motoi
2018-05-01
A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.
Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites
NASA Astrophysics Data System (ADS)
Chiu, Dereck
A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.
Electron cyclotron resonance ion sources with arc-shaped coils.
Suominen, P; Wenander, F
2008-02-01
The minimum-B magnetic field structure of electron cyclotron resonance ion sources (ECRIS) has conventionally been formed with a combination of solenoids and a hexapole magnet. However, minimum-B structure can also be formed with arc-shaped coils. Recently it was shown that multiply charged heavy-ions can be produced with an ECRIS based on such a structure. In the future, the ARC-ECRIS magnetic field structure can be an interesting option for radioactive ion-beam sources and charge-breeders as well as for high performance ECRIS allowing for 100 GHz plasma heating. This paper presents some design aspects of the ARC-ECRIS.
Multi-cathode metal vapor arc ion source
Brown, Ian G.; MacGill, Robert A.
1988-01-01
An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.
Luce, J. S.; Smith, L. P.
1960-11-22
An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)
Luce, J.S.; Smith, L.P.
1960-11-22
A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.
Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources
Kim, Jinchoon
1979-01-01
A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.
Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J
2016-02-01
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, J. D.; Beasley, W. D.
1961-01-01
A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.
Oppenheimer, F.F.
1959-06-01
A calutron ion source is described which masks the ends of the arc to provide a more stable beam from the middle portion. The masking is effected by milling the arc slit in a single sheet of material which is secured to the open face of the arc block. (T.R.H.)
Bertram, L.A.; Fisher, R.W.; Mattox, D.M.; Zanner, F.J.
1986-09-09
A method and apparatus for ion plating are described. The apparatus uses more negative than a first electrode voltage in a vacuum arc remelt system to attract low energy ions from the anode electrode to the article to be plated. 2 figs.
Development of arcjet and ion propulsion for spacecraft stationkeeping
NASA Technical Reports Server (NTRS)
Sovey, James S.; Curran, Francis M.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Rawlin, Vincent K.; Sankovic, John M.
1992-01-01
Near term flight applications of arc jet and ion thruster satellite station-keeping systems as well as development activities in Europe, Japan, and the United States are reviewed. At least two arc jet and three ion propulsion flights are scheduled during the 1992-1995 period. Ground demonstration technology programs are focusing on the development of kW-class hydrazine and ammonia arc jets and xenon ion thrusters. Recent work at NASA LeRC on electric thruster and system integration technologies relating to satellite station keeping and repositioning will also be summarized.
A review of vacuum ARC ion source research at ANSTO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P.J.; Noorman, J.T.; Watt, G.C.
1996-08-01
The authors talk briefly describes the history and current status of vacuum arc ion source research at the Australian Nuclear Science and Technology Organization (ANSTO). In addition, the author makes some mention of the important role of previous Vacuum Arc Ion Source Workshops in fostering the development of this research field internationally. During the period 1986 - 89, a type of plasma centrifuge known as a vacuum arc centrifuge was developed at ANSTO as part of a research project on stable isotope separation. In this device, a high current vacuum arc discharge was used to produce a metal plasma whichmore » was subsequently rotated in an axial magnetic field. The high rotational speeds (10{sup 5} - 10{sup 6} rad sec{sup {minus}1}) achievable with this method produce centrifugal separation of ions with different mass:charge ratios such as isotopic species. The first portent of things to come occurred in 1985 when Dr. Ian Brown visited ANSTO`s Lucas Heights Research Laboratories and presented a talk on the metal vapour vacuum arc (MEVVA) ion source which had only recently been invented by Brown and co-workers, J. Galvin and R. MacGill, at Lawrence Berkeley Laboratory. For those of us involved in vacuum arc centrifuge research, this was an exciting development primarily because the metal vapour vacuum arc plasma source was common to both devices. Thus, a type of arc, which had since the 1930`s been extensively investigated as a means of switching high current loads, had found wider application as a useful plasma source.« less
NASA Astrophysics Data System (ADS)
Lin, Naiming; Huang, Xiaobo; Zhang, Xiangyu; Fan, Ailan; Qin, Lin; Tang, Bin
2012-07-01
TiN coating was synthesized on Ti6Al4V titanium alloy surface by multi-arc ion plating (MIP) technique. Surface morphology, cross sectional microstructure, elemental distributions and phase compositions of the obtained coating were analyzed by means of scanning electron microscope (SEM), optical microscope (OM), glow discharge optical emission spectroscope (GDOES) and X-ray diffraction (XRD). Bacterial adhesion and corrosion performance of Ti6Al4V and the TiN coating were assessed via in vitro bacterial adhesion tests and corrosion experiments, respectively. The results indicated that continuous and compact coating which was built up by pure TiN with a typical columnar crystal structure has reached a thickness of 1.5 μm. This TiN coating could significantly reduce the bacterial adhesion and enhance the corrosion resistance of Ti6Al4V substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A.
2016-02-15
Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge powermore » in the experiments.« less
Magnetic-cusp, cathodic-arc source
Falabella, S.
1995-11-21
A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.
Thin Film Deposition Using Energetic Ions
Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan
2010-01-01
One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323
APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS
Wright, B.T.
1958-01-28
a uniform and copious supply of ions. The source comprises a hollow arc- block and means for establishing a magnetic field through the arc-block. Vaporization of the material to be ionized is produced by an electric heated filament. The arc producing structure within the arc-block consists of a cathode disposed between a pair of collimating electrodes along with an anode adjacent each collimating electrode on the side opposite the cathode. A positive potential applied to the anodes and collimating electrodes, with respect to the cathode, and the magnetic field act to accelerate the electrons from the cathode through a slit in each collimating clectrode towards the respective anode. In this manner a pair of collinear arc discharges are produced in the gas region which can be tapped for an abundant supply of ions of the material being analyzed.
DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE
Luce, J.S.
1960-01-01
A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.
Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A
2012-02-01
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.
Brown, I.G.; Galvin, J.
1987-12-22
An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.
Ion source with improved primary arc collimation
Dagenhart, William K.
1985-01-01
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
Electric arc discharge damage to ion thruster grids
NASA Technical Reports Server (NTRS)
Beebe, D. D.; Nakanishi, S.; Finke, R. C.
1974-01-01
Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.
NASA Astrophysics Data System (ADS)
Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang
2010-04-01
In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.
Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.
1959-04-14
An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.
High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.
Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu
2008-02-01
A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.
Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen
NASA Astrophysics Data System (ADS)
Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.
2017-02-01
Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
NASA Astrophysics Data System (ADS)
Garbe, Gregory Paul
1990-01-01
Data obtained from the January 1988 flight of the Topaz 2 sounding rocket will be presented. It has been found that four types of ion populations were observed during this flight. During the early portions of the upleg and late portions of the downleg numerical fits of the plasma will be compared with in-situ data to show the Maxwellian behavior and derived plasma parameters. Throughout the middle portion of the flight superthermal tails (ion conics) were observed and are modeled using a bi-Maxwellian distribution function from which T_{rm perp } and T_{rm par} can be derived. Two other ion populations were observed in the most intense auroral arcs. Transverse accelerated ions (TAI) were observed continuously in these arcs. The individual TAI events were found to have spatial/temporal scales on the order of the analyzer resolution ( ~1 sec). The characteristic perpendicular energy of the TAI reached as high as 7 eV compared to 1 eV during non-TAI times. High-energy tails have also been observed during TAI events and have perpendicular temperatures in the hundreds of eV. The second ion population found in the arcs of high energy electron precipitation is a cold downflowing population. The typical streaming velocity for this population is 2 km/s. A correlation between the high energy auroral electron precipitation, observed electrostatic oxygen cyclotron waves, cold down flowing ions and the TAI will be presented. Preparation and calibration of the instruments for NASA flight 35.020 will also be presented. As part of NASA flight 35.020, an upgrade of the calibration facility was performed. The calibration facility project included the designing and implementation of a photoelectric electron gun and an electron impact ion gun. The characteristics of these two particle sources will be discussed. A procedure for the coating of electrostatic charged particle analyzers with metal blacks were devised and will be presented. Finally, the results of the calibration tests of the instruments flown on flight 35.020 will be shown.
NASA Astrophysics Data System (ADS)
Tang, Jian; Deng, Chunfeng; Wu, Chunlei; Lu, Biao; Hu, Yonghong
2017-12-01
The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330-340 nm and 498-503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.
Arcing in space structures in low Earth orbit
NASA Technical Reports Server (NTRS)
Upschulte, B. L.; Marinelli, W. J.; Weyl, G.; Carleton, K. L.
1992-01-01
This report describes results of an experimental and theoretical program to investigate arcing of structures containing dielectric and conducting materials when they are biased negatively with respect to a plasma. An argon ion source generated Ar(+) ions of directed energy 20 to 40 eV and density approximately 10(exp 7) cm(exp -3) that impinged upon samples containing a dielectric material on top of a negatively biased Kovar plate. Arcing events were studied for bias voltages between -300 and -1000V with respect to the ion beam. The samples were Dow Corning 93-500 adhesive on Kovar, fused silica cover slips bonded on Kovar, and silicon solar cells mounted on Kovar. Measurements of discharge current, Kovar plate voltage, and radiation from the arc versus time were carried out. Microsecond duration exposure images and optical spectra in the 0.24 to 0.40 micron band were also acquired during arcing events. Arcing events were found to be associated with exposed adhesive and means were found to eliminate arcing altogether. The charging of a silica cover plate and the fields around the plate were calculated using a particle-in-cell code. Models were developed to explain the ignition of the arc and the physical processes occurring during the discharge.
Ion source with improved primary arc collimation
Dagenhart, W.K.
1983-12-16
An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru
Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less
NASA Astrophysics Data System (ADS)
Alusta, Pierre; Buzatu, Dan; Tarasenko, Olga; Wilkes, Jon; Darsey, Jerry
2011-06-01
A novel atmospheric pressure ionization process, Direct Impact Corona Ionization (DICI), is described here. In this process, a corona impinges onto the flat surface of a stainless steel pin carrying a thin film of dried bacterial suspension, the analyte. Two electrodes—a corona electrode and the sample pin—are immersed in hot inert He gas flux, flowing past them towards a 0.4 mm orifice leading to a mass spectrometer analyzer. An electric potential of 1.5-3.0 kV is placed between the two. At distances less than 1 cm, an intermittent arc is formed. At approximately 4 mm, the arc becomes a continuous corona discharge (plasma). The plasma is hot enough to: A) locally melt the impact zone on the steel pin, and B) ablate the dry thin bacterial film deposited on the metal pin. Biomolecular ions as heavy as 790 m/z are generated. Mass spectral fingerprints of bacteria are obtained with a high degree of reproducibility by selecting the highest intensity of an "indicator ion", 560.5 m/z or another relatively heavy ion whose appearance signals efficient vaporization of low volatility components.
Study on a negative hydrogen ion source with hot cathode arc discharge.
Lin, S H; Fang, X; Zhang, H J; Qian, C; Ma, B H; Wang, H; Li, X X; Zhang, X Z; Sun, L T; Zhang, Z M; Yuan, P; Zhao, H W
2014-02-01
A negative hydrogen (H(-)) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H(-) beam with ɛ N, RMS = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I(e(-))/I(H(-)) were experimentally studied. The discussion on the result, and opinions to improve the source were given.
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
Lofgren, E.J.
1959-04-14
This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1990-01-01
An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.
Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A
2010-02-01
An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.
Polar cap particle precipitation and aurora: Review and commentary
NASA Astrophysics Data System (ADS)
Newell, Patrick T.; Liou, Kan; Wilson, Gordon R.
2009-02-01
Polar rain has a beautiful set of symmetry properties, individually established, but not previously discussed collectively, which can be organized by a single unifying principle. The key polar rain properties are favored hemisphere (controlled by the interplanetary magnetic field Bx), dawn/dusk gradient (IMF By), merging rate (IMF Bz or more generally d[Phi]MP/dt), nightside/dayside gradient, and seasonal effect. We argue that all five properties involve variants on a single theme: the further downstream a field line exits the magnetosphere (or less directly points toward the solar wind electron heat flux), the weaker the polar rain. This effect is the result of the requirements of charge quasi-neutrality, and because the ion thermal velocity declines and the tailward ion bulk flow velocity rises moving down tail from the frontside magnetopause. Polar cap arcs (or more properly, high-latitude sun-aligned arcs) are largely complementary to the polar rain, occurring most frequently when the dayside merging rate is low, and thus when polar rain is weak. Sun-aligned arcs are often considered as originating either in the polar rain or the expansion of the plasma sheet into the polar cap. In fact three quite distinct types of sun-aligned high-latitude arcs exist, two common, and one rare. One type of arc occurs as intensifications of the polar rain, and is common, but weak, typically <0.1 ergs/cm2 s, and lacks associated ion precipitation. A second category of Sun-aligned arcs with energy flux >0.1 ergs/cm2 s usually occurs adjacent to the auroral oval, and includes ion precipitation. The plasma regime of these common, and at times intense, arcs is often distinct from the oval which they abut. Convection alone does not specify the open/closed nature of these arcs, because multiple narrow convection reversals are common around such arcs, and the arcs themselves can be embedded within flows that are either sunward or anti-sunward. These observational facts do not neatly fit into either a plasma sheet origin or a polar rain origin (e.g., the necessity to abut the auroral oval, and the presence of ions does not fit the properties of polar rain, which can in any event be nearly absent for northward interplanetary magnetic field). One theory is that such arcs are associated with merging tailward of the cusp. Both of these common types of sun-aligned arcs fade within about 30 min of a southward IMF turning. The third, and rarest, category of sun-aligned arcs are intense, well detached from the auroral oval, contain plasma sheet origin ion precipitation as well as electrons, and persist for hours after a southward turning. These intense detached sun-aligned arcs can rapidly cross the polar cap, sometimes multiple times. Most events discussed in the literature as "theta-aurora" do not fit into this category (for example, although they may appear detached in images, they abut the oval in particle data, and do not have the persistence of detached events under southward IMF turnings). It is possible that no single theory can account for all three types of sun-aligned arcs. Solar energetic particle (SEP) events are at times used to demarcate polar cap open/closed boundaries. Although this works at times, examples exist where this method fails (e.g., very quiet conditions for which SEP reaches below L=4), and the method should be used with caution. Finally, it is shown that, although it is rare, the polar cap can at times completely close.
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J. A.; Rudakov, D. L.
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Estimation of plasma ion saturation current and reduced tip arcing using Langmuir probe harmonics
Boedo, J. A.; Rudakov, D. L.
2017-03-20
Here we present a method to calculate the ion saturation current, I sat, for Langmuir probes at high frequency (>100 kHz) using the harmonics technique and we compare that to a direct measurement of I sat. It is noted that the Isat estimation can be made directly by the ratio of harmonic amplitudes, without explicitly calculating T e. We also demonstrate that since the probe tips using the harmonic method are oscillating near the floating potential, drawing little power, this method reduces tip heating and arcing and allows plasma density measurements at a plasma power flux that would cause continuouslymore » biased tips to arc. A multi-probe array is used, with two spatially separated tips employing the harmonics technique and measuring the amplitude of at least two harmonics per tip. A third tip, located between the other two, measures the ion saturation current directly. We compare the measured and calculated ion saturation currents for a variety of plasma conditions and demonstrate the validity of the technique and it’s use in reducing arcs.« less
Shunting arc plasma source for pure carbon ion beam.
Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y
2012-02-01
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.
Shunting arc plasma source for pure carbon ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koguchi, H.; Sakakita, H.; Kiyama, S.
2012-02-15
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.
Numerical investigation of the double-arcing phenomenon in a cutting arc torch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancinelli, B. R., E-mail: bmancinelli@frvt.utn.edu.ar; Minotti, F. O.; Kelly, H.
2014-07-14
A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of themore » nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.« less
Study on a negative hydrogen ion source with hot cathode arc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S. H., E-mail: linshh@impcas.ac.cn; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039
2014-02-15
A negative hydrogen (H{sup −}) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H{sup −} beam with ε {sub N,} {sub RMS} = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I{sub e{sup −}}/I{sub H{sup −}} were experimentally studied. The discussion on the result, and opinions to improve the source were given.
NASA Astrophysics Data System (ADS)
Kalinichenko, A. A.; Perepelkin, S. S.; Strel'nitskij, V. E.
2015-04-01
The formula derivation for calculation of intrinsic stress in diamond-like coatings deposited from the ion flux in modes of continuous and pulsed potentials in view of process of defects formation is given. The criterion of applicability of obtained formula allowing to determine critical parameters of the pulsed potential mode is suggested. Results of calculation of stresses in diamond-like coatings at deposition of low-energy ions C+ from filtered vacuum arc plasma are adduced. The influence of the bias potential, repetition frequency and pulse duration, on the value of intrinsic stress is discussed. Qualitative agreement of calculated stress and experimental data is stated. The important role of deposition temperature in control of intrinsic stress in deposited coating is noted.
Ion source based on the cathodic arc
Sanders, David M.; Falabella, Steven
1994-01-01
A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.
Oppenheimer, F.
1958-08-19
The construction of an ion source is descrtbed wherein a uniform and elongated arc is established for employment in a calutron. The novel features of the . source include the positioning of a cathode at one end of an elongated extt slit of an arc chamber. and anode electrodes defintng the longitudinal margins of the exit opening. When the exit slit is orientated in a parallel relation to a magnetic field, the arc extends in the direction of the magnetic field along and between the anode electrodes, which are held at a positsve potential with respect to the cathode.
Blue, C.W.; Luce, J.S.
1960-07-19
An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.
Plasma Heating and Flow in an Auroral Arc
NASA Technical Reports Server (NTRS)
Moore, T. E.; Chandler, M. O.; Pollock, C. J.; Reasoner, D. L.; Arnoldy, R. L.; Austin, B.; Kintner, P. M.; Bonnell, J.
1996-01-01
We report direct observations of the three-dimensional velocity distribution of selected topside ionospheric ion species in an auroral context between 500 and 550 km altitude. We find heating transverse to the local magnetic field in the core plasma, with significant heating of 0(+), He(+), and H(+), as well as tail heating events that occur independently of the core heating. The 0(+) velocity distribution departs from bi-Maxwellian, at one point exhibiting an apparent ring-like shape. However, these observations are shown to be aliased within the auroral arc by temporal variations that arc not well-resolved by the core plasma instrument. The dc electric field measurements reveal superthermal plasma drifts that are consistent with passage of the payload through a series of vortex structures or a larger scale circularly polarized hydromagnetic wave structure within the auroral arc. The dc electric field also shows that impulsive solitary structures, with a frequency spectrum in the ion cyclotron frequency range, occur in close correlation with the tail heating events. The drift and core heating observations lend support to the idea that core ion heating is driven at low altitudes by rapid convective motions imposed by the magnetosphere. Plasma wave emissions at ion frequencies and parallel heating of the low-energy electron plasma are observed in conjunction with this auroral form; however, the conditions are much more complex than those typically invoked in previous theoretical treatments of superthermal frictional heating. The observed ion heating within the arc clearly exceeds that expected from frictional heating for the light ion species H(+) and He(+), and the core distributions also contain hot transverse tails, indicating an anomalous transverse heat source.
Investigations Of A Pulsed Cathodic Vacuum Arc
NASA Astrophysics Data System (ADS)
Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.
2003-06-01
Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Matthias; Kondratenko, Serguei
2011-01-07
Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less
Means for obtaining a metal ion beam from a heavy-ion cyclotron source
Hudson, E.D.; Mallory, M.L.
1975-08-01
A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)
Arc plasma generator of atomic driver for steady-state negative ion source.
Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A
2014-02-01
The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.
Dandl, R.A.
1961-10-24
An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
NASA Astrophysics Data System (ADS)
Zöhrer, Siegfried; Anders, André; Franz, Robert
2018-05-01
Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
Ion source based on the cathodic arc
Sanders, D.M.; Falabella, S.
1994-02-01
A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated, is described. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles. 3 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert; Polcik, Peter; Anders, André
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Franz, Robert; Polcik, Peter; Anders, André
2015-06-01
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Differentialless geometry of plane curves
NASA Astrophysics Data System (ADS)
Latecki, Longin J.; Rosenfeld, Azriel
1997-10-01
We introduce a class of planar arcs and curves, called tame arcs, which is general enough to describe the boundaries of planar real objects. A tame arc can have smooth parts as well as sharp corners; thus a polygonal arc is tame. On the other hand, this class of arcs is restrictive enough to rule out pathological arcs which have infinitely many inflections or which turn infinitely often: a tame arc can have only finitely many inflections, and its total absolute turn must be finite. In order to relate boundary properties of discrete objects obtained by segmenting digital images to the corresponding properties of their continuous originals, the theory of tame arcs is based on concepts that can be directly transferred from the continuous to the discrete domain. A tame arc is composed of a finite number of supported arcs. We define supported digital arcs and motivate their definition by the fact that hey can be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it contains a finite number of points, and therefore it can be decomposed into a finite number of supported digital arcs.
NASA Astrophysics Data System (ADS)
Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah
2017-01-01
This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial
Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.
Penescu, L; Catherall, R; Lettry, J; Stora, T
2010-02-01
We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.
The R&D progress of 4 MW EAST-NBI high current ion source.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin
2014-02-01
A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.
Operation and Applications of the Boron Cathodic Arc Ion Source
NASA Astrophysics Data System (ADS)
Williams, J. M.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.; Freeman, J. H.
2008-11-01
The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge
Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen
2016-01-01
Abstract The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure. PMID:27877854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.
The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detectedmore » by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H{sup -} ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.« less
A 60 mA DC H- multi cusp ion source developed at TRIUMF
NASA Astrophysics Data System (ADS)
Jayamanna, K.; Ames, F.; Bylinskii, I.; Lovera, M.; Minato, B.
2018-07-01
This paper describes the latest high-current multi cusp type ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H-) of 60 mA of direct current at 140V and 90A arc. The results achieved to date including emittance measurements and filament lifetime issues are presented. The low current version of this ion source is suitable for medical cyclotrons as well as accelerators and the high current version is intended for producing large neutral hydrogen beams for fusion research. The description of the source magnetic configuration, the electron filter profile and the differential pumping techniques given in the paper will allow the building of an arc discharge H- ion source with similar properties.
A vacuum spark ion source: High charge state metal ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.
2016-02-15
High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less
NASA Astrophysics Data System (ADS)
Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.
2016-08-01
The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.
Intense Pulsed Heavy Ion Beam Technology
NASA Astrophysics Data System (ADS)
Masugata, Katsumi; Ito, Hiroaki
Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.
Surface treatment of magnetic recording heads
Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, C. Singh
1998-01-01
Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.
Surface treatment of magnetic recording heads
Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, Singh C.
1995-01-01
Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.
Surface treatment of magnetic recording heads
Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.
1998-11-17
Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 22 figs.
Surface treatment of magnetic recording heads
Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, S.C.
1995-12-19
Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 15 figs.
NASA Astrophysics Data System (ADS)
Tanaka, Koichi; Han, Liang; Zhou, Xue; Anders, André
2015-08-01
Charge-state-resolved ion energy-time distributions of pulsed Cu arc plasma were obtained by using direct (time-dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu+ ions in the later part of the pulse, measured by the increase of Cu+ signal intensity and an associated slight reduction of the mean charge state, points to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) are observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative of a potential hump. Measurements by a floating probe suggest that potential structures travel, and ions moving in the traveling field can gain high energies up to a few hundred electron-volts. Later in the pulse, the approximate proportionality is lost, which is related to increased smearing out of different energies due to collisions with neutrals, and/or to a change of the acceleration character from electrostatic to ‘gas-dynamic’, i.e. dominated by pressure gradient.
ION BEAM FOCUSING MEANS FOR CALUTRON
Backus, J.G.
1959-06-01
An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)
Ion-plasma protective coatings for gas-turbine engine blades
NASA Astrophysics Data System (ADS)
Kablov, E. N.; Muboyadzhyan, S. A.; Budinovskii, S. A.; Lutsenko, A. N.
2007-10-01
Evaporated, diffusion, and evaporation—diffusion protective and hardening multicomponent ionplasma coatings for turbine and compressor blades and other gas-turbine engine parts are considered. The processes of ion surface treatment (ion etching and ion saturation of a surface in the metallic plasma of a vacuum arc) and commercial equipment for the deposition of coatings and ion surface treatment are analyzed. The specific features of the ion-plasma coatings deposited from the metallic plasma of a vacuum arc are described, and the effect of the ion energy on the phase composition of the coatings and the processes occurring in the surface layer of an article to be treated are discussed. Some properties of ion-plasma coatings designed for various purposes are presented. The ion surface saturation of articles made from structural materials is shown to change the structural and phase states of their surfaces and, correspondingly, the related properties of these materials (i.e., their heat resistance, corrosion resistance, fatigue strength, and so on).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Yang, Z.; Dong, P.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of aboutmore » 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.« less
Apparatus for producing diamond-like carbon flakes
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor)
1986-01-01
A vacuum arc from a spot at the face of a graphite cathode to a graphite anode produces a beam of carbon ions and atoms. A carbon coating from this beam is deposited on an ion beam sputtered target to produce diamond-like carbon flakes. A graphite tube encloses the cathode, and electrical isolation is provided by an insulating sleeve. The tube forces the vacuum arc spot to be confined to the surface on the outermost end of the cathode. Without the tube the arc spot will wander to the side of the cathode. This spot movement results in low rates of carbon deposition, and the properties of the deposited flakes are more graphite-like than diamond-like.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
NASA Astrophysics Data System (ADS)
Fremlin, Carl; Beckers, Jasper; Crowley, Brendan; Rauch, Joseph; Scoville, Jim
2017-10-01
The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown of the insulation. A significant investment of manpower and time is required for repairs. To study the cause of failure a small analogue of the DIII-D neutral beam arc chamber has been constructed. This poster presents the design and analysis of the arc chamber including the PLC based operational control system for the experiment, analysis of the magnetic confinement and details of the diagnostic suite. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.
Axolemmal and septal conduction in the impedance of the earthworm medial giant nerve fiber.
Krause, T L; Fishman, H M; Bittner, G D
1994-01-01
Ionic conduction in the axolemmal and septal membranes of the medial giant fiber (MGF) of the earthworm (EW) Lumbricus terrestris was assessed by impedance spectroscopy in the frequency range 2.5-1000 Hz. Impedance loci in the complex plane were described by two semi-circular arcs, one at a lower characteristic frequency (100 Hz) and the other at a higher frequency (500 Hz). The lower frequency arc had a chord resistance of 53 k omega and was not affected by membrane potential changes or ion channel blockers [tetrodotoxin (TTX), 3,4-diaminopyridine (3,4-DAP), 4-aminopyridine (4-AP), and tetraethylammonium (TEA)]. The higher frequency arc had a chord resistance of 274 k omega at resting potential, was voltage-dependent, and was affected by the addition of TTX, 3,4-DAP, 4-AP, and TEA to the physiological EW salines. When all four blockers were added to the bathing solution, the impedance locus was described by two voltage-independent arcs. Considering the effects of these and other (i.e., Cd and Ni) ion channel blockers, we conclude that: 1) the higher frequency locus reflects conduction by voltage-sensitive ion channels in the axolemmal membrane, which contains at least four ion channels selective for sodium, calcium, and potassium (delayed rectifier and calcium-dependent), and 2) the lower frequency locus reflects voltage-insensitive channels in the septal membrane, which separates adjacent MGFs. PMID:7524713
Imaging and EISCAT radar measurements of an auroral prebreakup event
NASA Astrophysics Data System (ADS)
Safargaleev, V.; Turunen, T.; Lyatsky, W.; Manninen, J.; Kozlovsky, A.
1996-11-01
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a short-lived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150-200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (sim150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS. Acknowledgements. The work done by P. Henelius and E. Vilenius in programme development is gratefully acknowledged. Topical Editor D. Alcayde thanks I. Pryse and A. Vallance-Jones for their help in evaluating this paper.-> Correspondence to: T. Nygrén->
Transport of Sputtered Carbon During Ground-Based Life Testing of Ion Thrusters
NASA Technical Reports Server (NTRS)
Marker, Colin L.; Clemons, Lucas A.; Banks, Bruce A.; Miller, Sharon; Snyder, Aaron; Hung, Ching-Cheh; Karniotis, Christina A.; Waters, Deborah L.
2005-01-01
High voltage, high power electron bombardment ion thrusters needed for deep space missions will be required to be operated for long durations in space as well as during ground laboratory life testing. Carbon based ion optics are being considered for such thrusters. The sputter deposition of carbon and arc vaporized carbon flakes from long duration operation of ion thrusters can result in deposition on insulating surfaces, causing them to become conducting. Because the sticking coefficient is less than one, secondary deposition needs to be considered to assure that shorting of critical components does not occur. The sticking coefficient for sputtered carbon and arc vaporized carbon is measured as well as directional ejection distribution data for carbon that does not stick upon first impact.
ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken
Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less
Heavy ion beam-ionosphere interactions - Electron acceleration
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.
1985-01-01
Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.
Brobeck, W.M.
1959-02-24
An ion source is described wherein a portion of the filament serving as a cathode for the arc is protected from the effects of non-ionized particles escaping from the ionizing mechanism. In the described ion source, the source block has a gas chamber and a gas passage extending from said gas chamber to two adjacent faces of the source block. A plate overlies the passage and abuts one of the aforementioned block faces, while extending beyond the other face. In addition, the plate is apertured in line with the block passage. The filament overlies the aperture to effectively shield the portion of the filament not directiy aligned with the passage where the arc is produced.
Kilpatrick, W.D.
1959-04-21
A source is presented for producing high intensity pulses of ions with precise time control of pulse initiation. The approach taken is to have one of the electrodes in the source occluded with the gas to be ionized. A trigger electrode is disposed adjacent to the gas filled electrode and is pulsed with a voltage to release the gas. The other structure of the source includes an apertured anode disposed between two cathodes, the gas filled electrode and another electrode. At the same time the gas is released a low voltage pulse is applied between the anode and cathodes to establish an ionizing arc discharge. An electrode adjacent to the arc withdraws the ions.
Arc-based smoothing of ion beam intensity on targets
Friedman, Alex
2012-06-20
Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less
NASA Astrophysics Data System (ADS)
Chadwick, J.; Turner, A.; Collins, E.
2015-12-01
The Woodlark Spreading Center (WSC) to the east of Papua New Guinea separates the Indo-Australian plate and Solomon Sea microplate. At its eastern terminus, the WSC is being subducted at the New Britain trench, forming a triple junction near the New Georgia Group arc in the Solomon Islands. Previous studies have shown that lavas recovered from greater than 100 km from the trench on the WSC are N-MORB, but closer to the trench they have arc-like Sr-Nd-Pb isotopic ratios, enrichments in LILE, and depletions in HFSE. In the complex triple junction area of the WSC on the Simbo and Ghizo Ridges, island arc tholeiites to medium-K calc-alkaline andesites and dacites have been recovered, many with trace element and isotopic characteristics that are similar to the true arc lavas in the New Georgia Group on the other side of the trench. We suggest that subduction-modified arc mantle migrates through slab windows created by the subduction of the WSC as the plates continue to diverge after subduction. This transfer of mantle across the plate boundary leads to variable mixing between arc and N-MORB end-members, forming the hybrid to arc-like lavas recovered on the WSC. To test this hypothesis and to characterize the end-member compositions, we have analyzed melt inclusions in olivine, pyroxene, and plagioclase phenocrysts in Simbo and Ghizo Ridge lava samples. Major elements were analyzed using the electron microprobe facility at Fayetteville State University and volatiles were analyzed on the ion probe facility at Woods Hole Oceanographic Institution. The melt inclusions show a wide diversity of magmas from basalts to dacites, and mixing modeling shows that most Woodlark Spreading Center lava compositions are explained by mixing between the most extreme mafic (MORB) and felsic (arc) inclusion compositions.
Arc Inception Mechanism on a Solar Array Immersed in a Low-Density Plasma
NASA Technical Reports Server (NTRS)
Vayner, B.; Galofaro, J.; Ferguson, D.
2001-01-01
In this report, results are presented of an experimental and theoretical study of arc phenomena and snapover for two samples of solar arrays immersed in argon plasma. The effects of arcing and snapover are investigated. I-V curves are measured, and arc and snapover inception voltages and arc rates are determined within the wide range of plasma parameters. A considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. It is shown that increasing gas pressure causes increasing ion current collection and, consequently, arc rate even though the effect of conditioning also takes place. Arc sites have been determined by employing a video-camera. It is confirmed that keeping sample under high vacuum for a long time results in shifting arc threshold voltage well below -300 V. The results obtained seem to be important for the understanding of arc inception mechanism.
Large-ion lithophile elements delivered by saline fluids to the sub-arc mantle
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuhiko; Mibe, Kenji; Bureau, Hélène; Reguer, Solenn; Mocuta, Cristian; Kubsky, Stefan; Thiaudière, Dominique; Ono, Shigeaki; Kogiso, Tetsu
2014-12-01
Geochemical signatures of arc basalts can be explained by addition of aqueous fluids, melts, and/or supercritical fluids from the subducting slab to the sub-arc mantle. Partitioning of large-ion lithophile elements between aqueous fluids and melts is crucial as these two liquid phases are present in the sub-arc pressure-temperature conditions. Using a micro-focused synchrotron X-ray beam, in situ X-ray fluorescence (XRF) spectra were obtained from aqueous fluids and haplogranite or jadeite melts at 0.3 to 1.3 GPa and 730°C to 830°C under varied concentrations of (Na, K)Cl (0 to 25 wt.%). Partition coefficients between the aqueous fluids and melts were calculated for Pb, Rb, and Sr ([InlineEquation not available: see fulltext.]). There was a positive correlation between [InlineEquation not available: see fulltext.] values and pressure, as well as [InlineEquation not available: see fulltext.] values and salinity. As compared to the saline fluids with 25 wt.% (Na, K)Cl, the Cl-free aqueous fluids can only dissolve one tenth (Pb, Rb) to one fifth (Sr) of the amount of large-ion lithophile elements when they coexist with the melts. In the systems with 13 to 25 wt.% (Na, K)Cl, [InlineEquation not available: see fulltext.] values were greater than unity, which is indicative of the capacity of such highly saline fluids to effectively transfer Pb and Rb. Enrichment of large-ion lithophile elements such as Pb and Rb in arc basalts relative to mid-oceanic ridge basalts (MORB) has been attributed to mantle source fertilization by aqueous fluids from dehydrating oceanic plates. Such aqueous fluids are likely to contain Cl, although the amount remains to be quantified.
NASA Astrophysics Data System (ADS)
McWilliams, K. A.; Sofko, G. J.; Hussey, G. C.; Reimer, A. S.
2016-12-01
During the growth phase the convex curvature of the lobe field lines permits eastward curvature current to dominate on those lobe lines, which blocks the westward cross-tail current (XTJ). The blocked XTJ (BXTJ) is diverted earthward through the tailward portion of the transition plasmasheet (TPS) region of predominantly dipole lines tailward of the plasmapause. The flow shear of the BXTJ in the TPS produces a downward meridional FAC that results in the pre-onset proton arc in the subauroral region. This ionospheric signature of the growth phase lasts for about an hour, ending about 15 minutes before onset, when the pre-onset electron arc appears. Ions in the outer radiation belt precipitate equatorward of the meridional FAC system, because they are on stretched field lines tailward of the ion trapping boundary. The ion precipitation causes the ionospheric conductivity to increases substantially, providing a new high-conductivity route in the ionosphere for the BXTJ. This diversion of the BXTJ forms the Substorm Current Wedge. During the pre-onset proton arc interval, the intensification of the ring current and the flow of the BXTJ cause the Dst index to fall. When the BXTJ is diverted into the ionosphere and forms the substorm current wedge, it produces a northward magnetic field that causes Dst to have a brief positive deflection of 15-20 nT, despite all indications that the ring current continues to grow. The positive Dst deflection is the result both of the loss of the BXTJ from the tailward portion of the TPS and of its new northward field generated by its new route along the SCW. Note that there are two disruptions of the XTJ, first the early growth phase lobe line blocking that diverts the BXTJ earthward into the TPS region, and second (over an hour later, near onset) by the transformation of the BXTJ into the SCW.
Complex structure of the carbon arc discharge for synthesis of nanotubes
Vekselman, V.; Feurer, M.; Huang, T.; ...
2017-06-06
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Complex structure of the carbon arc discharge for synthesis of nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vekselman, V.; Feurer, M.; Huang, T.
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C 2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc coremore » populated with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. Furthermore, this result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellefson, S; Department of Human Oncology, University of Wisconsin, Madison, WI; Culberson, W
Purpose: Discrepancies in absolute dose values have been detected between the ViewRay treatment planning system and ArcCHECK readings when performing delivery quality assurance on the ViewRay system with the ArcCHECK-MR diode array (SunNuclear Corporation). In this work, we investigate whether these discrepancies are due to errors in the ViewRay planning and/or delivery system or due to errors in the ArcCHECK’s readings. Methods: Gamma analysis was performed on 19 ViewRay patient plans using the ArcCHECK. Frequency analysis on the dose differences was performed. To investigate whether discrepancies were due to measurement or delivery error, 10 diodes in low-gradient dose regions weremore » chosen to compare with ion chamber measurements in a PMMA phantom with the same size and shape as the ArcCHECK, provided by SunNuclear. The diodes chosen all had significant discrepancies in absolute dose values compared to the ViewRay TPS. Absolute doses to PMMA were compared between the ViewRay TPS calculations, ArcCHECK measurements, and measurements in the PMMA phantom. Results: Three of the 19 patient plans had 3%/3mm gamma passing rates less than 95%, and ten of the 19 plans had 2%/2mm passing rates less than 95%. Frequency analysis implied a non-random error process. Out of the 10 diode locations measured, ion chamber measurements were all within 2.2% error relative to the TPS and had a mean error of 1.2%. ArcCHECK measurements ranged from 4.5% to over 15% error relative to the TPS and had a mean error of 8.0%. Conclusion: The ArcCHECK performs well for quality assurance on the ViewRay under most circumstances. However, under certain conditions the absolute dose readings are significantly higher compared to the planned doses. As the ion chamber measurements consistently agree with the TPS, it can be concluded that the discrepancies are due to ArcCHECK measurement error and not TPS or delivery system error. This work was funded by the Bhudatt Paliwal Professorship and the University of Wisconsin Medical Radiation Research Center.« less
Ion distribution effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1982-01-01
An inverted-V auroral arc structure plasma-kinetic model is extended to phenomenologically include the effects of electrostatic turbulence, with k-parallel/k-perpendicular being much less than unity. It is shown that, unless plasma sheet ions are very much more energetic than the electrons, anomalous resistivity is not a large contributor to parallel electrostatic potential drops, since the support of the observed potential drop requires a greater dissipation of energy than can be provided by the plasma sheet. Wave turbulence can, however, be present, with the ion cyclotron turbulence levels suggested by the ion resonance broadening saturation mechanism of Dum and Dupree (1970) being comparable to those observed on auroral field lines. The diffusion coefficient and net growth rate are much smaller than estimates based solely on local plasma properties.
MacDonald, Elizabeth A; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A; Gillies, D Megan; Gallardo-Lacourt, Bea; Archer, William E; Spanswick, Emma L; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J; Ratzlaff, Chris; Schofield, Ian
2018-03-01
A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field-aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE).
MacDonald, Elizabeth A.; Donovan, Eric; Nishimura, Yukitoshi; Case, Nathan A.; Gillies, D. Megan; Gallardo-Lacourt, Bea; Archer, William E.; Spanswick, Emma L.; Bourassa, Notanee; Connors, Martin; Heavner, Matthew; Jackel, Brian; Kosar, Burcu; Knudsen, David J.; Ratzlaff, Chris; Schofield, Ian
2018-01-01
A glowing ribbon of purple light running east-west in the night sky has recently been observed by citizen scientists. This narrow, subauroral, visible structure, distinct from the traditional auroral oval, was largely undocumented in the scientific literature and little was known about its formation. Amateur photo sequences showed colors distinctly different from common types of aurora and occasionally indicated magnetic field–aligned substructures. Observations from the Swarm satellite as it crossed the arc have revealed an unusual level of electron temperature enhancement and density depletion, along with a strong westward ion flow, indicating that a pronounced subauroral ion drift (SAID) is associated with this structure. These early results suggest the arc is an optical manifestation of SAID, presenting new opportunities for investigation of the dynamic SAID signatures from the ground. On the basis of the measured ion properties and original citizen science name, we propose to identify this arc as a Strong Thermal Emission Velocity Enhancement (STEVE). PMID:29546244
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
Advanced control of neutral beam injected power in DIII-D
Pawley, Carl J.; Crowley, Brendan J.; Pace, David C.; ...
2017-03-23
In the DIII-D tokamak, one of the most powerful techniques to control the density, temperature and plasma rotation is by eight independently modulated neutral beam sources with a total power of 20 MW. The rapid modulation requires a high degree of reproducibility and precise control of the ion source plasma and beam acceleration voltage. Recent changes have been made to the controls to provide a new capability to smoothly vary the beam current and beam voltage during a discharge, while maintaining the modulation capability. The ion source plasma inside the arc chamber is controlled through feedback from the Langmuir probesmore » measuring plasma density near the extraction end. To provide the new capability, the plasma control system (PCS) has been enabled to change the Langmuir probe set point and the beam voltage set point in real time. When the PCS varies the Langmuir set point, the plasma density is directly controlled in the arc chamber, thus changing the beam current (perveance) and power going into the tokamak. Alternately, the PCS can sweep the beam voltage set point by 20 kV or more and adjust the Langmuir probe setting to match, keeping the perveance constant and beam divergence at a minimum. This changes the beam power and average neutral particle energy, which changes deposition in the tokamak plasma. The ion separating magnetic field must accurately match the beam voltage to protect the beam line. To do this, the magnet current control accurately tracks the beam voltage set point. In conclusion, these new capabilities allow continuous in-shot variation of neutral beam ion energy to complement« less
Conductivity tensor for anisotropic plasma in gyrokinetic theory
Porazik, Peter; Johnson, Jay R.
2017-05-18
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C-2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc core populatedmore » with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. This result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
Conductivity tensor for anisotropic plasma in gyrokinetic theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porazik, Peter; Johnson, Jay R.
Comprehensive non-invasive spectroscopic techniques and electrical measurements of the carbon arc revealed two distinguishable plasma synthesis regions in the radial direction normal to the arc axis. These regions, which are defined as the arc core and the arc periphery, are shown to have very different compositions of carbon species with different densities and temperatures. The colder arc periphery is dominated by carbon diatomic molecules (C-2), which are in the minority in the composition of the hot arc core. These differences are due to a highly non-uniform distribution of the arc current, which is mainly conducted through the arc core populatedmore » with carbon atoms and ions. Therefore, the ablation of the graphite anode is governed by the arc core, while the formation of carbon molecules occurs in the colder arc periphery. This result is consistent with previous predictions that the plasma environment in the arc periphery is suitable for synthesis of carbon nanotubes.« less
NASA Astrophysics Data System (ADS)
Kawamoto, T.; Mibe, K.
2014-12-01
Chemical fractionation of slab-derived supercritical fluids can play an important role in elemental transfer from subducting slab to the mantle wedge and arc magmatism [1]. Recent findings of saline fluids from sub-arc mantle peridotite indicate that aqueous fluids in mantle wedge can contain 3.7 wt% NaCl in Ichinomageta, Northeast Japan arc [2] to 5.1 wt% NaCl in Pinatubo, Luzon arc [3]. It is, therefore, important to determine the effect of Cl on the trace element partitioning between aqueous fluids and melts. Synchrotron radiation X-ray fluorescence (XRF) analysis is conducted to know Rb, Sr, and Pb partitioning between aqueous fluids and melts [4]. There is a positive correlation between partition coefficients and pressure, as well as salinity. Two slab-derived components, melt and fluid components, are suggested to explain trace element characteristics of arc-basalts in the Mariana arc [5]. The fluid component is characterized by enrichment of alkali and alkali earth elements. Such features can be explained if the fluid component is a saline fluid, because alkali earth elements and Pb are much less mobile with Cl-free fluids than Cl-rich fluids [4]. We suggest that slab-derived components have compositional features consistent with a saline fluid and a melt, which can be formed through a separation of a slab-derived supercritical fluid [1]. Slab derived supercritical fluids contain Cl, and aqueous fluids inherit much of the Cl and some of the large-ion lithophile elements. [1] Kawamoto et al. 2012, Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. PNAS, pnas.org/content/109/46/18695 [2] Kumagai et al. Evolution of carbon dioxide bearing saline fluids in the mantle wedge beneath the Northeast Japan arc, CMP [3] Kawamoto et al. 2013, Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. PNAS, pnas.org/content/110/24/9663 [4] Kawamoto et al. 2014, Large ion lithophile elements delivered by saline fluids to the sub-arc mantle, EPS, earth-planets-space.com/content/66/1/61 [5] Pearce et al. 2005, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. G-cubed, onlinelibrary.wiley.com/doi/10.1029/2004GC000895/full
NASA Astrophysics Data System (ADS)
Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.
2007-04-01
The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.
Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc
NASA Astrophysics Data System (ADS)
Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji
2013-04-01
Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.
Plasma Shield for In-Air and Under-Water Beam Processes
NASA Astrophysics Data System (ADS)
Hershcovitch, Ady
2007-11-01
As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial processes like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam processing, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical interactions with atmospheric gases adversely affect numerous processes. Various processes involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum process purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-air electron beam welding. Principle of operation and experimental results are to be discussed.
Substorm onset: Current sheet avalanche and stop layer
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
2015-03-01
A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be located just earthward of the stop layer in the near-dipolar magnetosphere and be powered by the internal energy of the flow bursts. The stop layer mechanism is in some way the inverse of reconnection, as it converts flow into electromagnetic energy, and may have wide applicability in astrophysical plasmas.
Atmospheric pressure arc discharge with ablating graphite anode
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2015-06-01
The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.
Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films
NASA Astrophysics Data System (ADS)
Tucker, Mark D.; Czigány, Zsolt; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna
2014-04-01
Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A "fullerene-like" (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.
Baldwin, L.W.
1959-08-25
Several interlock and control circuits for a calutron are described. In one of the arrangements, the ton source cooling water flow is interlocked with the current supply to the heaters assoctated with the charge chamber, arc chamber, and electrode structure. When the ion source coolant flow rate exceeds a predetermined level, the heater associated with the charge chamber is energized. After the charge chamber has reached a predetermined temperature, the arc chamber heater is energized. Thereafter, the electrode structure heater is energized and the ion source is ready to have the operating voltages applied.
NASA Astrophysics Data System (ADS)
Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.
2006-06-01
The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.
Production of N[sup +] ions from a multicusp ion beam apparatus
Kango Leung; Kunkel, W.B.; Walther, S.R.
1993-03-30
A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.
Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc
NASA Astrophysics Data System (ADS)
Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Sandolache, G.; Rowe, S.; Jusselin, B.; Boeuf, J. P.
2008-01-01
A numerical model of sheath expansion and plasma decay in a bounded plasma subjected to a linearly increasing voltage has been developed. Numerical results obtained with a hybrid-MB model (Maxwell-Boltzmann electrons, particle ions and Poisson's equations) are compared with analytical theory and results from particle-in-cell (PIC) simulations. The hybrid-MB model is similar to models used for plasma immersion ion implantation except that plasma decay due to particle losses to the electrodes is taken into account. The comparisons with more accurate and much more time consuming PIC models show that the hybrid-MB model provides a very satisfactory description of the sheath expansion and plasma decay even for conditions where the grid spacing is much larger than the Debye length. The model is used for high plasma density conditions, corresponding to the post-arc phase of a vacuum arc circuit breaker where a vacuum gap is subject to a transient recovery voltage (TRV) after it has ceased to sustain a vacuum arc. The results show that the plasma sheath expansion is subsonic under these conditions, and that the plasma starts to decay exponentially after two rarefaction waves from the cathode and anode merge in the centre of the gap. A parametric study also shows the strong influence of the TRV rise rate and initial plasma density on the plasma decay time and on the ion current collected by each electrode. The effect of collisions between charged particles and metal atoms resulting for the electrode evaporation is also discussed.
Investigation of the short argon arc with hot anode. II. Analytical model
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. Good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.
Investigation of the short argon arc with hot anode. II. Analytical model
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Investigation of the short argon arc with hot anode. II. Analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Cheung, Joey P.; McGuinness, Christopher; Solberg, Timothy D.
2017-07-01
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
CyberArc: a non-coplanar-arc optimization algorithm for CyberKnife.
Kearney, Vasant; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2017-06-26
The goal of this study is to demonstrate the feasibility of a novel non-coplanar-arc optimization algorithm (CyberArc). This method aims to reduce the delivery time of conventional CyberKnife treatments by allowing for continuous beam delivery. CyberArc uses a 4 step optimization strategy, in which nodes, beams, and collimator sizes are determined, source trajectories are calculated, intermediate radiation models are generated, and final monitor units are calculated, for the continuous radiation source model. The dosimetric results as well as the time reduction factors for CyberArc are presented for 7 prostate and 2 brain cases. The dosimetric quality of the CyberArc plans are evaluated using conformity index, heterogeneity index, local confined normalized-mutual-information, and various clinically relevant dosimetric parameters. The results indicate that the CyberArc algorithm dramatically reduces the treatment time of CyberKnife plans while simultaneously preserving the dosimetric quality of the original plans.
49 CFR 195.226 - Welding: Arc burns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...
49 CFR 195.226 - Welding: Arc burns.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...
49 CFR 195.226 - Welding: Arc burns.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...
49 CFR 195.226 - Welding: Arc burns.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...
49 CFR 195.226 - Welding: Arc burns.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...
METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION
Bell, P.R.; Simon, A.; Mackin, R.J. Jr.
1961-01-24
A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.
A continuous arc delivery optimization algorithm for CyberKnife m6.
Kearney, Vasant; Descovich, Martina; Sudhyadhom, Atchar; Cheung, Joey P; McGuinness, Christopher; Solberg, Timothy D
2018-06-01
This study aims to reduce the delivery time of CyberKnife m6 treatments by allowing for noncoplanar continuous arc delivery. To achieve this, a novel noncoplanar continuous arc delivery optimization algorithm was developed for the CyberKnife m6 treatment system (CyberArc-m6). CyberArc-m6 uses a five-step overarching strategy, in which an initial set of beam geometries is determined, the robotic delivery path is calculated, direct aperture optimization is conducted, intermediate MLC configurations are extracted, and the final beam weights are computed for the continuous arc radiation source model. This algorithm was implemented on five prostate and three brain patients, previously planned using a conventional step-and-shoot CyberKnife m6 delivery technique. The dosimetric quality of the CyberArc-m6 plans was assessed using locally confined mutual information (LCMI), conformity index (CI), heterogeneity index (HI), and a variety of common clinical dosimetric objectives. Using conservative optimization tuning parameters, CyberArc-m6 plans were able to achieve an average CI difference of 0.036 ± 0.025, an average HI difference of 0.046 ± 0.038, and an average LCMI of 0.920 ± 0.030 compared with the original CyberKnife m6 plans. Including a 5 s per minute image alignment time and a 5-min setup time, conservative CyberArc-m6 plans achieved an average treatment delivery speed up of 1.545x ± 0.305x compared with step-and-shoot plans. The CyberArc-m6 algorithm was able to achieve dosimetrically similar plans compared to their step-and-shoot CyberKnife m6 counterparts, while simultaneously reducing treatment delivery times. © 2018 American Association of Physicists in Medicine.
Yu, Xiuhong; Xue, Fanghong; Huang, Hao; Liu, Chunjing; Yu, Jieyi; Sun, Yuejun; Dong, Xinglong; Cao, Guozhong; Jung, Youngguan
2014-06-21
Two-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.5 nm. The characteristic Raman peak of Si NSs is found to have an appreciable (20 nm) shift to low frequency, presumably due to the size effect. The synergistic effects of Ar(+) and H(+) lead to 2D growth of Si NSs under high temperature and energy. Electrochemical analyses reveal that Si NSs anode possesses stable cycling performance and fast diffusion of Li-ions with insertion/extraction processes. Such Si NSs might be a promising candidate for anode of Li-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, Johanna; Anders, Andre; Mraz, Stanislav
2006-03-23
The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as wellmore » as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.« less
Plasma wave observations during ion gun experiments
NASA Astrophysics Data System (ADS)
Olsen, R. C.; Weddle, L. E.; Roeder, J. L.
1990-06-01
Experiments in charge control on the AF/NASA P78-2 (SCATHA) satellite were conducted with a plasma/ion source in the inner magnetosphere. These experiments were monitored with plasma wave instruments capable of high temporal and frequency resolution in the 0-6 kHz frequency range. Ion gun experiments revealed two distinct classes of behavior. Nonneutralized ion beam operation at 1 mA, 1kV resulted in arcing signatures (spiky in time, broad frequency range), coincident with induced satellite potentials of -600 to -900 V. This signature disappeared when the accelerating voltage was switched off or the beam was neutralized. The signal is attributed to arcing between differentially charged surfaces. An additional feature was noted in the 100-kHz channel of the wave receiver. During emission of dense, low-energy plasma, a signal is generated which may be at the upper hybrid, or plasma frequency for the local plasma.
SIMS depth profiling of working environment nanoparticles
NASA Astrophysics Data System (ADS)
Konarski, P.; Iwanejko, I.; Mierzejewska, A.
2003-01-01
Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.
High-bandwidth continuous-flow arc furnace
Hardt, David E.; Lee, Steven G.
1996-01-01
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.
High-bandwidth continuous-flow arc furnace
Hardt, D.E.; Lee, S.G.
1996-08-06
A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.
ULF waves associated with enhanced subauroral proton precipitation
NASA Astrophysics Data System (ADS)
Immel, Thomas J.; Mende, S. B.; Frey, H. U.; Patel, J.; Bonnell, J. W.; Engebretson, M. J.; Fuselier, S. A.
Several types of sub-auroral proton precipitation events have been identified using the Spectrographic Imager (SI) onboard the NASA-IMAGE satellite, including dayside subauroral proton flashes and detached proton arcs in the dusk sector. These have been observed at various levels of geomagnetic activity and solar wind conditions and the mechanism driving the precipitation has often been assumed to be scattering of protons into the loss cone by enhancement of ion-cyclotron waves in the interaction of the thermal plasmaspheric populations and more energetic ring current particles. Indeed, recent investigation of the detached arcs using the MPA instruments aboard the LANL geosynchronous satellites has shown there are nearly always heightened densities of cold plasma on high-altitude field lines which map down directly to the sub-auroral precipitation. If the ion-cyclotron instability is a causative mechanism, the enhancement of wave activity at ion-cyclotron frequencies should be measurable. It is here reported that magnetic pulsations in the Pc1 range occur in the vicinity of each of 4 detached arcs observed in 2000-2002, though with widely varying signatures. Additionally, longer period pulsations in the Pc5 ranges are also observed in the vicinity of the arcs, leading to the conclusion that a bounce-resonance of ring-current protons with the azimuthal Pc5 wave structure may also contribute to the detached precipitation.
NASA Astrophysics Data System (ADS)
Deng, Bin; Tao, Ye; Guo, Deliang
2012-09-01
TiN coatings were deposited on the substrates of cemented carbide (WC-TiC-Co) by Magnetic Filter Arc Ion Plating (MFAIP) and then implanted with vanadium through Metal Vacuum Vapor Arc (MEVVA) ion source with the doses of 1 × 1017 and 5 × 1017 ions/cm2 at 40 kV. The microstructures and chemical compositions of the V-implanted TiN coatings were investigated using Glancing Incidence X-ray Diffraction (GIXRD) and X-ray Photoelectron Spectroscopy (XPS), together with the mechanical and tribological properties of coatings were characterized using nano-indentation and ball-on-disk tribometer. It was found that the diffraction peaks of the V-implanted TiN coatings at the doses of 5 × 1017 ions/cm2 shifted to higher angles and became broader. The hardness and elastic modulus of TiN coatings increased after V ion implantation. The wear mechanism for both un-implanted and V-implanted TiN coatings against GCr15 steel ball was adhesive wear, and the V-implanted TiN coatings had a lower friction coefficient as well as a better wear resistance
A bounding-based solution approach for the continuous arc covering problem
NASA Astrophysics Data System (ADS)
Wei, Ran; Murray, Alan T.; Batta, Rajan
2014-04-01
Road segments, telecommunication wiring, water and sewer pipelines, canals and the like are important features of the urban environment. They are often conceived of and represented as network-based arcs. As a result of the usefulness and significance of arc-based features, there is a need to site facilities along arcs to serve demand. Examples of such facilities include surveillance equipment, cellular towers, refueling centers and emergency response stations, with the intent of being economically efficient as well as providing good service along the arcs. While this amounts to a continuous location problem by nature, various discretizations are generally relied upon to solve such problems. The result is potential for representation errors that negatively impact analysis and decision making. This paper develops a solution approach for the continuous arc covering problem that theoretically eliminates representation errors. The developed approach is applied to optimally place acoustic sensors and cellular base stations along a road network. The results demonstrate the effectiveness of this approach for ameliorating any error and uncertainty in the modeling process.
Development of a plasma generator for a long pulse ion source for neutral beam injectors.
Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S
2011-06-01
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics
Production of N.sup.+ ions from a multicusp ion beam apparatus
Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.
1993-01-01
A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Mark D., E-mail: martu@ifm.liu.se; Broitman, Esteban; Näslund, Lars-Åke
Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradualmore » transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.« less
Controlling Arc Length in Plasma Welding
NASA Technical Reports Server (NTRS)
Iceland, W. F.
1986-01-01
Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.
Electrochemical Corrosion Characteristics of Arc-Ion-Plated AlTiN Coating for Marine Application.
Lee, Jung-Hyung; Kim, MyoungJun; Kim, Seong-Jong
2016-02-01
In this study, aluminum titanium nitride (AlTiN) coating was deposited by arc ion plating onto mirror finish STS 304 plate. The surface and cross-section of the coating was characterized by SEM and EDX analysis. Several electrochemical corrosion experiments were performed including rest potential measurement, potentiodynamic polarization experiment and Tafel analysis. The result of the experiments indicated that the AlTiN coating presented lower corrosion current density than the substrate material (STS 304) under uniform corrosion environment. It was also observed that AlTiN coating may have a risk of being attacked by localized corrosion attack such as pitting when pores or micro/nano particles in the coating are exposed to chloride ion containing corrosion environment, especially marine environment.
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
Inferences Concerning the Magnetospheric Source Region for Auroral Breakup
NASA Technical Reports Server (NTRS)
Lyons, L. R.
1992-01-01
It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.
A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)
Anders, André
2014-09-02
In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less
IMPROVED ION-PRODUCING MECHANISM FOR CALUTRONS
Bell, W.A. Jr.; Prater, W.K.
1963-12-24
An ion source for electromagnetically operated equipment for the separation of isotopes, such as the Calutron, wherein a unitized construction is employed to house both the arc chamber and the oven chamber to facilitate assembly and maintenance and to improve operation. ( LAMBDA EC)
Optical arc sensor using energy harvesting power source
NASA Astrophysics Data System (ADS)
Choi, Kyoo Nam; Rho, Hee Hyuk
2016-06-01
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.
NASA Astrophysics Data System (ADS)
Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun
2017-10-01
The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.
Welding arc and plasma studies using real time, multipass holographic interferometry
NASA Technical Reports Server (NTRS)
Deason, Vance
1987-01-01
Flow visualization of the plasma process in a welding arc is being studied with a multipass Argon ion interferometer. High speed movies at 10,000 frames per/sec are taken. The multipass interferometer and several interferograms of the plasma near the electrode of the welding are given. Digitization of the fringes is currently done by hand.
NASA Astrophysics Data System (ADS)
Meffre, Sebastian; Falloon, Trevor J.; Crawford, Tony J.; Hoernle, Kaj; Hauff, Folkmar; Duncan, Robert A.; Bloomer, Sherman H.; Wright, Dawn J.
2012-12-01
A wide variety of different rock types were dredged from the Tonga fore arc and trench between 8000 and 3000 m water depths by the 1996 Boomerang voyage. 40Ar-39Ar whole rock and U-Pb zircon dating suggest that these fore arc rocks were erupted episodically from the Cretaceous to the Pliocene (102 to 2 Ma). The geochemistry suggests that MOR-type basalts and dolerites were erupted in the Cretaceous, that island arc tholeiites were erupted in the Eocene and that back arc basin and island arc tholeiite and boninite were erupted episodically after this time. The ages generally become younger northward suggesting that fore arc crust was created in the south at around 48-52 Ma and was extended northward between 35 and 28 Ma, between 9 and 15 Ma and continuing to the present-day. The episodic formation of the fore arc crust suggested by this data is very different to existing models for fore arc formation based on the Bonin-Marianas arc. The Bonin-Marianas based models postulate that the basaltic fore arc rocks were created between 52 and 49 Ma at the beginning of subduction above a rapidly foundering west-dipping slab. Instead a model where the 52 Ma basalts that are presently in a fore arc position were created in the arc-back arc transition behind the 57-35 Ma Loyalty-Three Kings arc and placed into a fore arc setting after arc reversal following the start of collision with New Caledonia is proposed for the oldest rocks in Tonga. This is followed by growth of the fore arc northward with continued eruption of back arc and boninitic magmas after that time.
NASA Technical Reports Server (NTRS)
Galofaro, J.; Vayner, B.; Ferguson, D.; Degroot, W.
2002-01-01
Previous experimental studies have hypothesized that the onset of Solar Array Arc (SAA) initiation in low-density space plasmas is caused by a desorbed gas molecular ionization mechanism. Indeed past investigations performed at the NASA Glenn Plasma Interaction Facility tend to not only support the desorbed gas molecular ionization mechanism, but have gone as far as identifying the crucial molecular species that must be present for molecular ion dominated process to occur. When electrical breakdown occurs at a triple junction site on a solar array panel, a quasi-neutral plasma cloud is ejected. Assuming the main component of the expelled plasma cloud by weight is due to water vapor, the fastest process available is due to HO molecules and OH(+) ions, or more succinctly, dissociative molecular-ion dominated recombination processes: H2O(+) + e(-) yields H* + OH*. Recently published spectroscopic observations of solar array arc spectra in ground tests have revealed the well-known molecular OH band (302 to 309nm), as well as the molecular SiH band (387nm peak), and the molecular CH band (432nm peak). Note that the OH band is observed in emission arcs where water vapor is present. Strong atomic lines were also observed for H(sub beta) at 486nm and H(sub alpha) at 656.3nm in prior ground testing. Independent supporting evidence of desorbed gas molecular ionization mechanisms also come from measurements of arc current pulse widths at different capacitances. We will revisit an earlier first order approximation demonstrating the dependence of arc current pulse widths on the square root of the capacitance. The simple arc current pulse width model will be then be used to estimate the temperature of the arc plasma (currently believed to be somewhere in the range of 3 to 5 eV). The current paper then seeks to extend the outlined work by including numerous vacuum chamber measurements obtained with a quadrupole mass spectrometer. A small solar array was mounted inside the vacuum chamber. A plasma source, also mounted inside the vacuum chamber, is used to simulate a low-density plasma environment. The solar array is then biased to a high negative potential and allowed to arc while a mass spectrometer is used to record the partial pressure of H2O and to track other significant changes in mass (1 to 150) AMU.
Development of multi-ampered D{sup {minus}} source for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Belchenko, Y.; Bucalossi, J.
1996-07-01
Large current and high current density deuterium negative ion sources are investigated on the MANTIS test bed with the objective of producing several amperes of D{sup {minus}} beams, at an accelerated current density in the range 10{endash}20 mA/cm{sup 2}, for possible application in future neutral beam injectors, e.g. ITER. As a first step, the DRAGON source, which was built by Culham Laboratory was tested on the MANTIS test bed in order to test this large source using only {open_quote}{open_quote}pure volume{close_quote}{close_quote} production of negative ions. The accelerated negative ion current is found to be a strong function of the source operatingmore » pressure and the arc power, and a significant isotopic effect is observed. The maximum accelerated currents are 1.3 A of H{sup {minus}} (3.3 mA/cm{sup 2}) and 0.5 A (1.3 mA/cm{sup 2}) at 110 kW of arc power. Cesium injection from a non conventional dispenser together with an improved extraction system, have significantly improved the D-current. A maximum of 14 mA/cm{sup 2} of D{sup {minus}1} are accelerated at 30 kV, which corresponds potentially, to more than 5 A for a full aperture extraction with an arc power of 140 kW (2250 A of arc current). {copyright} {ital 1996 American Institute of Physics.}« less
Kang, Ki-Noh; Jeong, Hyejeong; Lee, Jaehyeong; Park, Yong Seob
2018-09-01
A good medical guidewires are used to introduce stents, catheters, and other medical devices inside the human body. In this study, diamond-like carbon (DLC) film was proposed to solve the poor adhesion problem of guidewire and to improve the tribological performance of guidewire. DLC films were fabricated on Si substrate by using FVA (Filtered Vacuum Arc) method. In this work, the tribological, structural, and electrical properties of the fabricated DLC films with various arc currents were experimentally investigated. All DLC films showed smooth and uniform surface with increasing applied arc current. The rms surface roughness was increased and the value of contact angle on the film surface was decreased with increasing arc current. The hardness and elastic modulus of DLC films were improved, and the resistivity value of DLC films were decreased with increasing arc current. These results are associated with ion bombardment effects by the applied arc current and bias voltage.
Effect of Fe 3+ concentration on MWCNTs formation in liquid arcing method
NASA Astrophysics Data System (ADS)
Shervin, Sh.; Gheytani, S.; Simchi, A.
2010-10-01
The formation of multi-walled carbon nanotubes (MWCNTs) during arc discharge in aqueous solutions of Fe 2(SO 4) 3 and FeCl 3 was studied. The concentration of iron ions changed from zero (deionized water) to 0.25 M and the cathodic products were examined by transmission electron microscopy, Raman spectrometry, and thermal gravimetric analysis. The experimental results showed that the crystallinity of MWCNTs is improved by increasing the concentration of iron ions. Nevertheless, the process yield and overall quality of the produced CNTs were significantly affected by iron concentration in the aqueous solution. This observation suggested that there should be an optimum iron concentration at which the formation of MWCNTs is favored. As compared with the sulfate solution, a higher process yield is obtained in the presence of chloride ions in agreement with previous reports.
Ion mass separation modeling inside a plasma separator
NASA Astrophysics Data System (ADS)
Gavrikov, A. V.; Sidorov, V. S.; Smirnov, V. P.; Tarakanov, V. P.
2018-01-01
The results have been obtained in a continuation of the work for ion trajectories calculation in crossed electric and magnetic fields and also in a close alignment with the plasma separation study development. The main task was to calculate trajectories of ions of the substance imitating spent nuclear fuel in order to find a feasible plasma separator configuration. The three-dimensional modeling has been made with KARAT code in a single-particle approximation. The calculations have been performed under the following conditions. Magnetic field is produced by 2 coils of wire, the characteristic field strength in a uniform area is 1.4 kG. Electric field is produced by several electrodes (axial ones, anode shell and capacitor sheets) with electric potential up to 500 V. The characteristic linear size of the cylindrical separator area is ∼ 100 cm. The characteristic size of injection region is ∼ 1 cm. Spatial position of the injection region is inside the separator. The injection direction is along magnetic lines. Injected particles are single-charged ions with energies from 0 to 20 eV with atomic masses A = 150 and 240. Wide spreading angle range was investigated. As a result of simulation a feasible separator configuration was found. This configuration allows to achieve more than 10 cm spatial division distance for the separated ions and is fully compliant with and supplementary to the vacuum arc-based ion source research.
Conversion of continuous-direct-current TIG welder to pulse-arc operation
NASA Technical Reports Server (NTRS)
Lien, D. R.
1969-01-01
Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.
Vapor phase diamond growth technology
NASA Technical Reports Server (NTRS)
Angus, J. C.
1981-01-01
Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.
Investigation of Neutral Beam Arc Chamber Failure During Helium Operations at DIII-D
NASA Astrophysics Data System (ADS)
Beckers, Jasper; Crowley, Brendan; Scoville, J. T.; Jaspers, Roger; Sobota, Ana
2017-10-01
The Neutral Beam system on the DIII-D tokamak consists of eight ion sources using the Common Long Pulse Source (CLPS) design. During helium operation, desired for research regarding the ITER pre-nuclear phase, it has been observed that the ion source arc chamber performance steadily deteriorates, eventually failing due to electrical breakdown across the insulation. This poster presents the details and preliminary results of an experimental effort to replicate the problem in a bench top ion source with similar plasma parameters. The initial aim of the experiment is to test the hypothesis that during helium operation there is increased tungsten evaporation and sputtering due to ion bombardment of the hot cathodes, leading to the deposition of filament material on the insulation and subsequent short circuits. Ultimately the aim of the experiment is to find methods to ameliorate the problems associated with helium operation at DIII-D. Work supported by U.S. DOE under DE-FC02-04ER54698.
7 CFR 1942.308 - Regional Commission grants.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) PROGRAM REGULATIONS (CONTINUED) ASSOCIATIONS Rural Business Enterprise Grants and Television Demonstration... Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS... Project Management Agreement between the Agency and ARC is not needed for each ARC grant. (d) Other...
Optical arc sensor using energy harvesting power source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr
Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arcmore » energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.« less
METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES
Bell, P.R.; Luce, J.S.
1960-01-01
A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.
Clark, A.F.
1959-06-16
A means of eliminating oscillating electrons from the arc slit region of calutron ion sources is offered. Free electrons and ions generated by the beam bombarding atoms of ambient atmosphere are discharged by a fin arrangement which sets up an electric field. The discharged ions travel toward a recess in which a fin and blister'' effect limits oscillations to one region from which they are removed by reversed electric fields. (T.R.H.)
STS-31 MS Sullivan and Pilot Bolden monitor SE 82-16 Ion Arc on OV-103 middeck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Mission Specialist (MS) Kathryn D. Sullivan monitors and advises ground controllers of the activity inside the Student Experiment (SE) 82-16, Ion arc - studies of the effects of microgravity and a magnetic field on an electric arc, mounted in front of the middeck lockers aboard Discovery, Orbiter Vehicle (OV) 103. Pilot Charles F. Bolden uses a video camera and an ARRIFLEX motion picture camera to record the activity inside the special chamber. A sign in front of the experiment reads 'SSIP 82-16 Greg's Experiment Happy Graduation from STS-31.' SSIP stands for Shuttle Student Involvement Program. Gregory S. Peterson who developed the experiment (Greg's Experiment) is a student at Utah State University and monitored the experiment's operation from JSC's Mission Control Center (MCC) during the flight. Decals displayed in the background on the orbiter galley represent the Hubble Space Telescope (HST), the United States (U.S.) Naval Reserve, Navy Oceanographers, U.S. Navy, and Univer
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1985-01-01
A carbon coating was vacuum arc deposited on a smooth surface of a target which was simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond like carbon flakes improve thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.
Modelling of crater formation on anode surface by high-current vacuum arcs
NASA Astrophysics Data System (ADS)
Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura
2016-11-01
Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.
NASA Astrophysics Data System (ADS)
Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.
2012-12-01
The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer. Further analysis of the particle data will yield the ion temperature, whose validity we will quantify by comparison to sheath models.
Plasma monitoring of the RLVIP-process with a Langmuir probe
NASA Astrophysics Data System (ADS)
Huber, D.; Hallbauer, A.; Pulker, H. K.
2005-09-01
The aim of this investigation was to study the characteristics of a reactive-low-voltage-high-current-ion-plating plasma and to correlate the observed plasma data with the properties of films deposited under such conditions. A Langmuir probe system (Smart Probe - Scientific Systems) was inserted into a Balzers BAP 800 ion plating plant above the e-gun evaporation source close to the insulated substrate holder. In this position during RLVIP deposition, plasma potential, floating potential, self-bias voltage, electron temperature, ion current density, and particle number density were measured and calculated, respectively. All measurements were performed in dependence of arc current (20-80A) and oxygen partial pressure (1 - 36 x 10-4mbar). With rising arc current the number of charged particles, the self-bias voltage between plasma and substrates as well as the energy of the condensing and bombarding species were increased. These data explain the increase of density, refractive index and mechanical stress of RLVIP-metal-oxide-layers, like Ta2O5 and Nb2O5, deposited with higher arc currents. An increase of gas pressure decreased the energy of the particles and therefore reduced slightly film density and refractive index. However, it improved chemistry and eliminated unwanted residual optical absorption and also decreased compressive mechanical film stress.
Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.
Adonin, A A; Hollinger, R
2014-02-01
In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.
Evolution of Ionospheric Convection during a Double Transpolar Arc Phenomenon on February 11, 1999
NASA Technical Reports Server (NTRS)
Narita, Y.; Maezawa, K.; Spann, J. F.; Parks, G. K.; Marklund, G. T.; Kullen, A.; Ivchenko, N.; Greenwald, R. A.; Sato, N.; Yamagishi, H.;
2002-01-01
An evolution of ionospheric convection was studied for a double transpolar arc phenomenon on February 11, 1999. While one transpolar arc split from the auroral oval in the morning sector and drifted duskward, another arc appeared in the evening sector. The convection was investigated with three velocity data sets: E B drift velocities from the ASTRID-2 satellite; Ion Driftmeter data from the DMSP satellites; and Doppler-shift data from the Super-DARN radars. We inferred convection cells from these data sets and found that the number of convection cells changed from three to four as the dominance of IMF changed from a negative By to a positive Bz. Our result suggests that the ionospheric convection that has been so far discussed for various conditions of IMF may be applied even to the cases accompanied by transpolar arcs.
Lofgren, E.J.
1960-01-19
An ion source suitable for use with isotope separators of the calutron class is described in which ion bombardment of source structural members is minimized to lessen deterioration. A hollow conducting block defines an arc chamber which has an ion exit opening in the form of a slot in one wall of the block. A charged electrode spaced from the opening applies an electrical field for withdrawing ions from within the block. To establish a field configuration whereby the impingement of ions on the walls of the block is reduced, the wall edges which define the slot opening are bevelled to converge in the direction of efflux of the ions.
Effect of ion beam irradiation on the structure of ZnO films deposited by a dc arc plasmatron.
Penkov, Oleksiy V; Lee, Heon-Ju; Plaksin, Vadim Yu; Ko, Min Gook; Joa, Sang Beom; Yim, Chan Joo
2008-02-01
The deposition of polycrystalline ZnO film on a cold substrate was performed by using a plasmatron in rough vacuum condition. Low energy oxygen ion beam generated by a cold cathode ion source was introduced during the deposition process. The change of film property on the ion beam energy was checked. It is shown that irradiation by 200 eV ions improves crystalline structure of the film. Increasing of ion beam energy up to 400 eV leads to the degradation of a crystalline structure and decreases the deposition rate.
Ion plating with an induction heating source
NASA Technical Reports Server (NTRS)
Spalvins, T.; Brainard, W. A.
1976-01-01
Induction heating is introduced as an evaporation heat source in ion plating. A bare induction coil without shielding can be directly used in the glow discharge region with no arcing. The only requirement is to utilize an rf inductive generator with low operating frequency of 75 kHz. Mechanical simplicity of the ion plating apparatus and ease of operation is a great asset for industrial applications; practically any metal such as nickel, iron, and the high temperature refractories can be evaporated and ion plated.
Helical tomotherapy quality assurance with ArcCHECK.
Chapman, David; Barnett, Rob; Yartsev, Slav
2014-01-01
To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquid and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ~2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient. Copyright © 2014 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Helical tomotherapy quality assurance with ArcCHECK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, David; Barnett, Rob; Yartsev, Slav, E-mail: slav.yartsev@lhsc.on.ca
2014-07-01
To design a quality assurance (QA) procedure for helical tomotherapy that measures multiple beam parameters with 1 delivery and uses a rotating gantry to simulate treatment conditions. The customized QA procedure was preprogrammed on the tomotherapy operator station. The dosimetry measurements were performed using an ArcCHECK diode array and an A1SL ion chamber inserted in the central holder. The ArcCHECK was positioned 10 cm above the isocenter so that the 21-cm diameter detector array could measure the 40-cm wide tomotherapy beam. During the implementation of the new QA procedure, separate comparative measurements were made using ion chambers in both liquidmore » and solid water, the tomotherapy onboard detector array, and a MapCHECK diode array for a period of 10 weeks. There was good agreement (within 1.3%) for the beam output and cone ratio obtained with the new procedure and the routine QA measurements. The measured beam energy was comparable (0.3%) to solid water measurement during the 10-week evaluation period, excluding 2 of the 10 measurements with unusually high background. The symmetry reading was similarly compromised for those 2 weeks, and on the other weeks, it deviated from the solid water reading by ∼2.5%. The ArcCHECK phantom presents a suitable alternative for performing helical tomotherapy QA, provided the background is collected properly. The proposed weekly procedure using ArcCHECK and water phantom makes the QA process more efficient.« less
Quality assurance methodology for Varian RapidArc treatment plans
Cirino, Eileen T.; Xiong, Li; Mower, Herbert W.
2010-01-01
With the commercial introduction of the Varian RapidArc, a new modality for treatment planning and delivery, the need has arisen for consistent and efficient techniques for performing patient‐specific quality assurance (QA) tests. In this paper we present our methodology for a RapidArc treatment plan QA procedure. For our measurements we used a 2D diode array (MapCHECK) embedded at 5 cm water equivalent depth in MapPHAN 5 phantom and an Exradin A16 ion chamber placed in six different positions in a cylindrical homogeneous phantom (QUASAR). We also checked the MUs for the RapidArc plans by using independent software (RadCalc). The agreement between Eclipse calculations and MapCHECK/MapPHAN 5 measurements was evaluated using both absolute distance‐to‐agreement (DTA) and gamma index with 10% dose threshold (TH), 3% dose difference (DD), and 3 mm DTA. The average agreement was 94.4% for the DTA approach and 96.3% for the gamma index approach. In high‐dose areas, the discrepancy between calculations and ion chamber measurements using the QUASAR phantom was within 4.5% for prostate cases. For the RadCalc calculations, we used the average SSD along the arc; however, for some patients the agreement for the MUs obtained with RadCalc versus Eclipse was inadequate (discrepancy>5%). In these cases, the plan was divided into partial arc plans so that RadCalc could perform a better estimation of the MUs. The discrepancy was further reduced to within ~4% using this approach. Regardless of the variation in prescribed dose and location of the treated areas, we obtained very good results for all patients studied in this paper. PACS number: 87.55.Qr
Effects of turbulence on a kinetic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Chiu, Y. T.
1981-01-01
A plasma kinetic model of an inverted-V auroral arc structure which includes the effects of electrostatic turbulence is proposed. In the absence of turbulence, a parallel potential drop is supported by magnetic mirror forces and charge quasi neutrality, with energetic auroral ions penetrating to low altitudes; relative to the electrons, the ions' pitch angle distribution is skewed toward smaller pitch angles. The electrons energized by the potential drop form a current which excites electrostatic turbulence. In equilibrium the plasma is marginally stable. The conventional anomalous resistivity contribution to the potential drop is very small. Anomalous resistivity processes are far too dissipative to be powered by auroral particles. It is concluded that under certain circumstances equilibrium may be impossible and relaxation oscillations set in.
Overvoltage protector using varistor initiated arc
Brainard, John P.
1982-01-01
Coaxial conductors are protected against electrical overvoltage by at least one element of non-electroded varistor material that adjoins each other varistor element and conductor with which it contacts. With this construction, overvoltage current initiated through the varistor material arcs at the point contacts between varistor elements and, as the current increases, the arcs increase until they become a continuous arc between conductors, bypassing the varistor material.
METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD
Luce, J.S.
1962-04-17
A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)
NASA Astrophysics Data System (ADS)
Zhou, Su; Luan, Xiaoli; Søraas, Finn; Østgaard, Nikolai; Raita, Tero
2018-04-01
This paper presents simultaneous detached proton auroras that appeared in both hemispheres at 11:06 UT, 08 March 2012, just 2 min after a sudden solar wind pressure enhancement ( 11:04 UT) hit the Earth. They were observed under northward interplanetary magnetic field Bz condition and during the recovery phase of a moderate geomagnetic storm. In the Northern Hemisphere, Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observed that the detached arc occurred within 60°-65° magnetic latitude and covered a few magnetic local time (MLT) hours ranging from 0530 to 0830 MLT with a possible extension toward noon. At the same time (11:06 UT), Polar Orbiting Environment Satellites 19 detected a detached proton aurora around 1300 MLT in the Southern Hemisphere, centering 62° magnetic latitude, which was at the same latitudes as the northern detached arc. This southern aurora was most probably a part of a dayside detached arc that was conjugate to the northern one. In situ particle observations indicated that the detached auroras were dominated by protons/ions with energies ranging from around 20 keV to several hundreds of keV, without obvious electron precipitations. These detached arcs persisted for less than 6 min, consistent with the impact from pressure enhancement and the observed electromagnetic ion cyclotron (EMIC) waves. It is suggested that the increasing solar wind pressure pushed the hot ions in the ring current closer to Earth where the steep gradient of cold plasma favored EMIC wave growth. By losing energy to EMIC waves the energetic protons (>20 keV) were scattered into the loss cone and produced the observed detached proton auroras.
29 CFR 1915.56 - Arc welding and cutting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship repairing...
NASA Astrophysics Data System (ADS)
Ali, Sarmad A.; Ismail, Sabah A.; Nutman, Allen P.; Bennett, Vickie C.; Jones, Brian G.; Buckman, Solomon
2016-09-01
The Kata-Rash arc fragment is an allochthonous thrust-bound body situated near Penjween, 100 km northeast of Sulymannia city, Kurdistan Region, within the Iraqi portion of the Zagros suture zone. It forms part of the suprasubduction zone 'Upper Allochthon' terranes (designated as the Gimo-Qandil Group), which is dominated by calc-alkaline andesite and basaltic-andesite, rhyodacite to rhyolite, crosscut by granitic, granodioritic, and dioritic dykes. Previously, rocks of the Kata-Rash arc fragment were interpreted as a part of the Eocene Walash volcanic group. However, SHRIMP zircon U-Pb dates on them of 108.1 ± 2.9 Ma (Harbar volcanic rocks) and 107.7 ± 1.9 Ma (Aulan intrusion) indicate an Albian-Cenomanian age, which is interpreted as the time of igneous crystallisation. The Aulan intrusion zircons have initial εHf values of + 8.6 ± 0.2. On a Nb/Yb-Th/Yb diagram, all Kata-Rash samples fall within the compositional field of arc-related rocks, i.e. above the mid-ocean-ridge basalt (MORB)-ocean island basalt (OIB) mantle array. Primitive-mantle-normalised trace-element patterns for the Kata-Rash samples show enrichment in the large ion lithophile elements and depletion in the high-field-strength elements supporting their subduction-related character. Low Ba/La coupled with low La/Yb and Hf/Hf* < 1 for the Aulan sample with initial εHf of + 8.6 ± 0.2 is interpreted as the magma dominated by contributions from fluid fluxing of the mantle wedge and lesser contributions of low temperature melt from subducted slab sediment, in an oceanic setting. This mechanism can explain the sub-DM initial εHf value, without the need to invoke melting of significantly older (continental) crust in an Andean setting. We interpret the Kata-Rash igneous rocks as a fragment of the Late Cretaceous suprasubduction zone system (named here the Kata-Rash arc) that most likely developed within the Neotethys Ocean rather than at a continental margin. Subsequently during the latest Cretaceous to Paleocene, the arc was accreted to the northern margin of the Arabian plate. The results indicate a > 3000 km continuity of Cretaceous arc activity (Oman to Cyprus), that consumed Neotethyian oceanic crust between Eurasia and the Gondwanan fragment Arabia.
The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)
2002-01-01
New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.
NASA Astrophysics Data System (ADS)
Srikanth, A.; Manikandan, M.
2018-02-01
The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, A.; Oguri, H.; Ikegami, K.
2010-02-15
The following interesting experimental results observed in Japan Proton Accelerator Research Complex (J-PARC) H{sup -} ion-source developments are reviewed. It was proven that almost all of H{sup -} ions were produced with surface reactions in cesium (Cs)-free J-PARC H{sup -} ion-sources. The world's most intense class H{sup -} ion current of 38 mA in Cs-free ion sources for a high-energy linac was attained by an optimal shape and high temperature of the plasma electrode (PE), usage of a lanthanum hexaboride (LaB{sub 6}) filament, and a newly devised high-power constant-current pulsed-arc power supply indispensable for it. It was also proven thatmore » the H{sup -} ion current could be increased to more than 40 mA by optimizing LaB{sub 6}-filament shape. The surface elemental analysis of the PE after operation with a LaB{sub 6}-filament showed that it was coated by boron (B) 95.5%, lanthanum (La) 2.5%, and oxygen (O) 1.9%. The H{sup -} ion current decreased by about 20% when a tungsten (W) filament was used instead of a LaB{sub 6}-filament. The H{sup -} ion current could not be increased by seeding cesium (Cs) if the LaB{sub 6}-filament was used. On the other hand, it was increased to more than 70 mA with much lower arc current of 150 A if Cs was seeded when a W-filament was used.« less
Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin
2008-02-01
The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.
NASA Astrophysics Data System (ADS)
Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang
2017-10-01
The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.
NASA Astrophysics Data System (ADS)
Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong
2016-10-01
A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.
IMRT and RapidArc commissioning of a TrueBeam linear accelerator using TG-119 protocol cases.
Wen, Ning; Zhao, Bo; Kim, Jinkoo; Chin-Snyder, Karen; Bellon, Maria; Glide-Hurst, Carri; Barton, Kenneth; Chen, Daiquan; Chetty, Indrin J
2014-09-08
The purpose of this study is to evaluate the overall accuracy of intensity-modulated radiation therapy (IMRT) and RapidArc delivery using both flattening filter (FF) and flattening filter-free (FFF) modalities based on test cases developed by AAPM Task Group 119. Institutional confidence limits (CLs) were established as the baseline for patient specific treatment plan quality assurance (QA). The effects of gantry range, gantry speed, leaf speed, dose rate, as well as the capability to capture intentional errors, were evaluated by measuring a series of Picket Fence (PF) tests using the electronic portal imaging device (EPID) and EBT3 films. Both IMRT and RapidArc plans were created in a Solid Water phantom (30 × 30 × 15 cm3) for the TG-119 test cases representative of normal clinical treatment sites for all five photon energies (6X, 10X, 15X, 6X-FFF, 10X-FFF) and the Exact IGRT couch was included in the dose calculation. One high-dose point in the PTV and one low-dose point in the avoidance structure were measured with an ion chamber in each case for each energy. Similarly, two GAFCHROMIC EBT3 films were placed in the coronal planes to measure planar dose distributions in both high- and low-dose regions. The confidence limit was set to have 95% of the measured data fall within the tolerance. The mean of the absolute dose deviation for variable dose rate and gantry speed during RapidArc delivery was within 0.5% for all energies. The corresponding results for leaf speed tests were all within 0.4%. The combinations of dynamic leaf gap (DLG) and MLC transmission factor were optimized based on the ion chamber measurement results of RapidArc delivery for each energy. The average 95% CLs for the high-dose point in the PTV were 0.030 ± 0.007 (range, 0.022-0.038) for the IMRT plans and 0.029 ± 0.011 (range, 0.016-0.043) for the RapidArc plans. For low-point dose in the avoidance structures, the CLs were 0.029 ± 0.006 (range, 0.024-0.039) for the IMRT plans and 0.027 ± 0.013 (range, 0.017-0.047) for the RapidArc plans. The average 95% CLs using 3%/3 mm gamma criteria in the high-dose region were 5.9 ± 2.7 (range, 1.4-8.6) and 3.9 ± 2.9 (range, 1.5-8.8) for IMRT and RapidArc plans, respectively. The average 95% CLs in the low-dose region were 5.3 ± 2.6 (range, 1.2-7.4) and 3.7 ± 2.8 (range, 1.8-8.3) for IMRT and RapidArc plans, respectively. Based on ion chamber, as well as film measurements, we have established CLs values to ensure the high precision of IMRT and RapidArc delivery for both FF and FFF modalities.
ERIC Educational Resources Information Center
Glisson, Charles; Hemmelgarn, Anthony; Green, Philip; Williams, Nathaniel J.
2013-01-01
Objectives: The primary objective of the study was to assess whether the Availability, Responsiveness and Continuity (ARC) organizational intervention improved youth outcomes in community based mental health programs. The second objective was to assess whether programs with more improved organizational social contexts following the 18-month ARC…
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.
Comparative Analysis of Routing Algorithms for Computer Networks
1977-06-01
the ab ~l i tv of ~ to lower t h u(j+ l) - (j- ~- l ) objective funct ion upo n being included in the basis , but also - Rd Cost (‘P(j+ l ) ) is an...for exposi t ion of a s im i l a r proof . Steps 1 and 2 a n - b o o t s t r - ap p i n g successive diagonal and f i r s t o f f -d i agona l...An N x N ‘ next arc ’ m a t r : x , K = [x. ], ~ e s t ab l i shed , w h e r e x . - is the f i r s t arc on the c~~rr~~nt1] est imate of the
A case study of the cusp electrodynamics by the Aureol-3 satellite - Evidence for FTE signatures?
NASA Technical Reports Server (NTRS)
Bosqued, Jean M.; Berthelier, Annick; Berthelier, Jean J.; Escoubet, Christophe P.
1991-01-01
Particle and field data from a pass of the Aureol-3 satellite through the polar cusp, several minutes after the southward turning of the IMF, are analyzed in detail. Superposed on the classical cusp, characterized by the typical ion and electron precipitations, several very narrow arcs are detected where large fluxes of electrons and ions, accelerated to 2-4 keV, precipitate simultaneously. These localized arcs correspond to the upward current sheets of a succession in latitude of narrow, alternatively upward and downward field-aligned current sheets. The data suggest that the satellite has crossed the ionospheric footprints of 2 adjacent flux transfer events separated by 100-150 km in latitude. Electric spikes and electromagnetic turbulence are typically associated with the region of downward currents.
Fernandes, P. A.; Lynch, K. A.; Zettergren, M.; ...
2016-01-25
Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, P. A.; Lynch, K. A.; Zettergren, M.
Here, we present an analysis of in situ measurements from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) nightside auroral sounding rocket with comparisons to a multifluid ionospheric model. MICA made observations at altitudes below 325 km of the thermal ion kinetic particle distributions that are the origins of ion outflow. Late flight, in the vicinity of an auroral arc, we observe frictional processes controlling the ion temperature. Upflow of these cold ions is attributed to either the ambipolar field resulting from the heated electrons or possibly to ion-neutral collisions. We measure E →xB → convection away from the arcmore » (poleward) and downflows of hundreds of m s -1 poleward of this arc, indicating small-scale low-altitude plasma circulation. In the early flight we observe DC electromagnetic Poynting flux and associated ELF wave activity influencing the thermal ion temperature in regions of Alfvénic aurora. We observe enhanced, anisotropic ion temperatures which we conjecture are caused by transverse heating by wave-particle interactions (WPI) even at these low altitudes. Throughout this region we observe several hundred m s -1 upflow of the bulk thermal ions colocated with WPI; however, the mirror force is negligible at these low energies; thus, the upflow is attributed to ambipolar fields (or possibly neutral upwelling drivers). Moreover, the low-altitude MICA observations serve to inform future ionospheric modeling and simulations of (a) the need to consider the effects of heating by WPI at altitudes lower than previously considered viable and (b) the occurrence of structured and localized upflows/downflows below where higher-altitude heating rocesses are expected.« less
NASA Astrophysics Data System (ADS)
Cheng, Xian; Duan, Xiongying; Liao, Minfu; Huang, Zhihui; Luo, Yan; Zou, Jiyan
2013-08-01
Hybrid circuit breaker (HCB) technology based on a vacuum interrupter and a SF6 interrupter in series has become a new research direction because of the low-carbon requirements for high voltage switches. The vacuum interrupter has an excellent ability to deal with the steep rising part of the transient recovery voltage (TRV), while the SF6 interrupter can withstand the peak part of the voltage easily. An HCB can take advantage of the interrupters in the current interruption process. In this study, an HCB model based on the vacuum ion diffusion equations, ion density equation, and modified Cassie-Mayr arc equation is explored. A simulation platform is constructed by using a set of software called the alternative transient program (ATP). An HCB prototype is also designed, and the short circuit current is interrupted by the HCB under different action sequences of contacts. The voltage distribution of the HCB is analyzed through simulations and tests. The results demonstrate that if the vacuum interrupter withstands the initial TRV and interrupts the post-arc current first, then the recovery speed of the dielectric strength of the SF6 interrupter will be fast. The voltage distribution between two interrupters is determined by their post-arc resistance, which happens after current-zero, and subsequently, it is determined by the capacitive impedance after the post-arc current decays to zero.
NASA GRC and MSFC Space-Plasma Arc Testing Procedures
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd
2005-01-01
Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.
NASA GRC and MSFC Space-Plasma Arc Testing Procedures
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.a; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd
2005-01-01
Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space flight Center (MSFC) for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing testing standardization. To be discussed are: 1. Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debye lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Preventing sustained discharges during testing. 5. Real array or structure samples versus idealized samples. 6. Validity of LEO tests for GEO samples. 7. Extracting arc threshold information from arc rate versus voltage tests. 8 . Snapover and current collection at positive sample bias. Glows at positive bias. Kapton pyrolization. 9. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 10. Testing for Paschen discharge thresholds. Testing for dielectric breakdown thresholds. Testing for tether arcing. 11. Testing in very dense plasmas (ie thruster plumes). 12. Arc mitigation strategies. Charging mitigation strategies. Models. 13. Analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.
Arc mRNA induction in striatal efferent neurons associated with response learning.
Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A
2007-07-01
The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.
Lofgren, E.J.
1959-02-17
An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.
Low temperature ion source for calutrons
Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.
1981-01-01
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Low temperature ion source for calutrons
Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.
1979-10-10
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mestrovic, Ante; Chitsazzadeh, Shadi; Wells, Derek
2016-08-15
Purpose: To develop a highly sensitive patient specific QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: A platform was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside the ArcCheck. The Quasar phantom controller uses a patient-specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. With this system the ion chamber is used to QA the correct phase of the gated delivery and the ArcCheck diodes are used to QA the overall dose distribution. This novelmore » approach requires a single plan delivery for a complete QA of a gated plan. The sensitivity of the gating QA procedure was investigated with respect to the following parameters: PTV size, exhale duration, baseline drift, gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns is currently undergoing to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Study of plasma environments for the integrated Space Station electromagnetic analysis system
NASA Technical Reports Server (NTRS)
Singh, Nagendra
1992-01-01
The final report includes an analysis of various plasma effects on the electromagnetic environment of the Space Station Freedom. Effects of arcing are presented. Concerns of control of arcing by a plasma contactor are highlighted. Generation of waves by contaminant ions are studied and amplitude levels of the waves are estimated. Generation of electromagnetic waves by currents in the structure of the space station, driven by motional EMF, is analyzed and the radiation level is estimated.
STS-31 preflight press conference with SSIP participant Gregory S. Peterson
NASA Technical Reports Server (NTRS)
1990-01-01
During STS-31 thirty days before launch (T-30) press conference, Shuttle Student Involvement Project (SSIP) participant Gregory S. Peter (right), a senior at Utah State University in Logan, fields questions about his student experiment (SE) to be flown on STS-31. Others pictured are Ed Mason (left) of Morton-Thiokol and Jeff Blakely of Utah State Space Dynamics Laboratory. A model of the experiment titled 'Ion Arc Behavior in Microgravity' SE 82-16 was used during the briefing (pictured). SE 82-16 will be located on Discovery, Orbiter Vehicle (OV) 103, middeck to observe the effects of microgravity on an electric arc. The absence of convection currents in a weightless environment will keep the arc from rising. SE 82-16 will also study the effect of a magnetic field on an arc without correction. An Arriflex 16mm camera will be used to photograph the experiment.
Dissolution of topological Fermi arcs in a dirty Weyl semimetal
NASA Astrophysics Data System (ADS)
Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan
2017-11-01
Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.
New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing
NASA Technical Reports Server (NTRS)
Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.
2003-01-01
It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.
The negative hydrogen Penning ion gauge ion source for KIRAMS-13 cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, D. H.; Jung, I. S.; Kang, J.
2008-02-15
The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of KIRAMS-13 cyclotron has been used for generation of negative hydrogen ions. The dc H-beam current of 650 {mu}A from the PIG ion source with the Dee voltage of 40 kV and arc current of 1.0 A is extrapolated from the measured dc extraction beam currents at the low extraction dc voltages. The output optimization of PIG ion source in the cyclotron has been carried out by using various chimneys with different sizes of the expansion gap between the plasma boundary and the chimney wall. This papermore » presents the results of the dc H-extraction measurement and the expansion gap experiment.« less
,
1984-01-01
Geologic mapping and potassium-argon dating by R. L. Detterman, F. H. Wilson, J. E. Case, and Nora Shew in the Ugashik and western part of the Karluk quadrangles have shown that the Eocene and Oligocene volcanic arc continues into these quadrangles from the south in the Chignik and Sutwik Island quadrangles. Surface exposures of the arc extend northward to approximately 57°30'N., or midway through the Ugashik quadrangle, but none are observed north of that point. Subsurface drill-hole data (Brockway and others, 1975) indicate continuation of the arc, possibly offset to the northwest of the northernmost known surface exposures.In the extreme northern part of the Ugashik and Karluk quadrangles, volcanic rocks again become important. These volcanic rocks are as yet undated; however, they may be related to the Katmai late Tertiary volcanic centers.Like the early Tertiary volcanic arc, the present-day Aleutian arc is also offset to the northwest in the northern part of the Ugashik and Karluk quadrangles. No major offset of the Mesozoic rocks is indicated through the offset zone; this fact suggests a change in the Tertiary tectonic regime in the area of the offset.
1989-08-21
Range : 4.8 million km. ( 3 million miles ) P-34648 This Voyager 2, sixty-one second exposure, shot through clear filters, of Neptunes rings. The Voyager cameras were programmed to make a systematic search of the entire ring system for new material. The previously ring arc is visible as a long bright streak at the bottom of the image. Extening beyond the bright arc is a much fainter component which follows the arc in its orbit. this faint material was also visible leading the ring arc and, in total, covers at least half of the orbit before it becomes too faint to identify. Also visible in this image, is a continuous ring of faint material previously identified as a possible ring arc by Voyager. this continuous ring is located just outside the orbit of the moon 1989N3, which was also discovered by Voyager. This moon is visible as a streak in the lower left. the smear of 1989N3 is due to its own orbital motion during the exposure. Extreme computer processing of this image was made to enhance the extremely faint features of Neptunes moon system. the dark area surrounding the moon as well as the bright corners are due to this special processing.
Glisson, Charles; Hemmelgarn, Anthony; Green, Philip; Williams, Nathaniel J
2013-05-01
The primary objective of the study was to assess whether the Availability, Responsiveness and Continuity (ARC) organizational intervention improved youth outcomes in community based mental health programs. The second objective was to assess whether programs with more improved organizational social contexts following the 18-month ARC intervention had better youth outcomes than programs with less improved social contexts. Eighteen community mental health programs that serve youth between the ages of 5 and 18 were randomly assigned to ARC or control conditions. Clinicians (n = 154) in the participating programs completed the Organizational Social Context (OSC) measure at baseline and following the 18-month ARC organizational intervention. Caregivers of 393 youth who were served by the 18 programs (9 in ARC and 9 in control) completed the Shortform Assessment for Children (SAC) once a month for six months beginning at intake. Hierarchical linear models (HLM) analyses indicated that youth outcomes were significantly better in the programs that completed the 18 month ARC intervention. HLM analyses also showed that youth outcomes were best in the programs with the most improved organizational social contexts following the 18 month ARC intervention. Youth outcomes in community mental health programs can be improved with the ARC organizational intervention and outcomes are best in programs that make the most improvements in organizational social context. The relationships linking ARC, organizational social context, and youth outcomes suggest that service improvement efforts will be more successful if those efforts include strategies to improve the organizational social contexts in which the services are embedded. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1984-01-01
A carbon coating is vacuum arc deposited on a smooth surface of a target which is simultaneously ion beam sputtered. The bombarding ions have sufficient energy to create diamond bonds. Spalling occurs as the carbon deposit thickens. The resulting diamond-like carbon flakes are mixed with a binder or matrix material to form a composite material having improved thermal, electrical, mechanical, and tribological properties when used in aerospace structures and components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna; Oks, Efim
2015-06-07
DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.« less
Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate
NASA Astrophysics Data System (ADS)
Jiang, H.; Lee, C. T.
2017-12-01
The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of continental arcs increases weatherability through mountain building processes, and therefore may affect the strength of the global negative feedback between silicate weathering and climate. Future studies are needed to quantify the variability in weathering feedback strength associated with global continental arc development.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE
NASA Astrophysics Data System (ADS)
Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus
2017-08-01
At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.
Characterization of the C-2W Plasma Guns
NASA Astrophysics Data System (ADS)
Dubois, Ami; Sokolov, Vladimir; Korepanov, Sergey; Osin, Dima; Player, Gabriel; TAE Team
2017-10-01
Previous use of coaxial arc discharge plasma guns on the C-2U device exhibited great success in plasma stabilization and improved confinement. On the C-2W experiment, arc discharge plasma guns will again be used to facilitate the electrical connection between the plasma core and the divertor electrodes in order to maintain the electrode edge biasing and induce E x B shear to control plasma rotation. Each plasma gun contains an internal solenoid used to shape the plasma stream. Characterization of electron density (ne) , electron temperature (Te) , floating potential (Vf) , and total plasma flux in an arc discharge lasting 6 ms without the internal solenoid are presented. A Langmuir probe located 27 cm axially outside of the plasma gun anode measures a bell-like radial ne profile with peak ne 1018 m-3 and Te 2 - 10 eV. Observed spectral lines of impurity ions provide an estimate of Te, and Balmer series line ratios of the main ion component are used to evaluate ne at both the probe location and near the plasma gun anode. A calorimeter measures the plasma flux to be constant and equivalent to 1 kA.
Convection in Neptune's magnetosphere
NASA Technical Reports Server (NTRS)
Hill, T. W.; Dessler, A. J.
1990-01-01
It is assumed that nonthermal escape from Triton's atmosphere produces a co-orbiting torus of unionized gas (presumably nitrogen and hydrogen) that subsequently becomes ionized by electron impact to populate a partial Triton plasma torus analogous to the Io plasma torus in Jupiter's magnetosphere. Centrifugal and magnetic-mirror forces confine the ions to a plasma sheet located between the magnetic and centrifugal equators. The ionization rate, and hence the torus ion concentration, is strongly peaked at the two points (approximately 180 deg apart in longitude) at which Triton's orbit intersects the plasma equator. During the course of Neptune's rotation these intersection points trace out two arcs roughly 75 deg in longitudinal extent, which we take to be the configuration of the resulting (partial) plasma torus. The implied partial ring currents produce a quadrupolar (four-cell) convection system that provides rapid outward transport of plasma from the arcs. Ring-current shielding, however, prevents this convection system from penetrating very far inside the plasma-arc distance. It is suggested that this convection/shielding process accounts for the radial confinement of trapped particles (150 keV or greater) within L = 14.3 as observed by the Voyager LECP instrument.
Negative Ion Chemistry in the Coma of Comet 1P/Halley
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.
2012-01-01
Negative ions (anions) were identified in the coma of comet 1P/Halley from in-situ measurements performed by the Giotto spacecraft in 1986. These anions were detected with masses in the range 7-110 amu, but with insufficient mass resolution to permit unambiguous identification. We present details of a new chemical-hydrodynamic model for the coma of comet Halley that includes - for the first time - atomic and molecular anions, in addition to a comprehensive hydrocarbon chemistry. Anion number densities arc calculated as a function of radius in the coma, and compared with the Giotto results. Important anion production mechanisms arc found to include radiative electron attachment, polar photodissociation, dissociative electron attachment, and proton transfer. The polyyne anions C4H(-) and C6H(-) arc found to be likely candidates to explain the Giotto anion mass spectrum in the range 49-73 amu. Thc CN(-) anion probably makes a significant contribution to the mass spectrum at 26 amu. Larger carbon-chain anions such as C8H(1) can explain the peak near 100 amu provided there is a source of large carbon-chain-bearing molecules from the cometary nucleus.
RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps
NASA Astrophysics Data System (ADS)
Minayeva, Olga; Doughty, Douglas
2007-10-01
Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, A.W.; Whalen, B.A.; Creutzberg, F.
1981-08-01
We present ionospheric ion convection measurements in a series of four rocket payloads in and near dayside and nightside auroral arcs: one at Cape Parry (75.4/sup 0/N invariant latitude) near 1300 MLT and three at Churchill (70.0/sup 0/N invariant latitude) between 1900 and 2200 MLT. Direct measurements were made of the ionospheric ion velocity distribution function, and the observed ion convection velocities and equivalent convective electric fields were correlated with the energetic particle precipitation, the optical morphology of the aurora, and the topology of the geomagnetic field. Both in the postnoon and premidnight sectors it was observed that (1) equatorwardmore » of the region(s) of precipitation the ion flow was predominantly westward, with velocity of about 1 km/s; (2) poleward of the region(s) the flow was predominantly westward, with velocity of about 1 km/s; (2) poleward of the region(s) the flow was predominantly eastward: (3) the change in the flow direction, where observed, occurred near though not exactly at the edges of the precipitation region; (4) the flow inside the precipitation region was lower; (5) the reversal of the ion flow, where observed, occurred on closed magnetic field lines; and (6) the convective electric field typically dropped from 40 to 80 mV/m outside the precipitation region to 10 to 30 mV/m within. In the dayside Cape Perry flight, where quantitative photometric measurements were available, detailed anticorrelation between the ion convection speed and the green line emission intensity was also observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, W., E-mail: schweizer@physik.uni-frankfurt.de; Ratzinger, U.; Klump, B.
At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up tomore » 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.« less
Improvements on the stability and operation of a magnetron H - ion source
Sosa, A.; Bollinger, D. S.; Karns, P. R.; ...
2017-05-31
The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less
Improvements on the stability and operation of a magnetron H- ion source
NASA Astrophysics Data System (ADS)
Sosa, A.; Bollinger, D. S.; Karns, P. R.; Tan, C. Y.
2017-05-01
The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated off-line test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine-tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the past three years with the aim of improving its stability, reliability and overall performance.
Improvements on the stability and operation of a magnetron H - ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa, A.; Bollinger, D. S.; Karns, P. R.
The magnetron H - ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. Amore » current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N 2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This study summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.« less
A flexible curvilinear electromagnetic filter for direct current cathodic arc source.
Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K
2007-09-01
Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.
Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment
NASA Astrophysics Data System (ADS)
Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan
2016-09-01
Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitsazzadeh, S; Wells, D; Mestrovic, A
2016-06-15
Purpose: To develop a QA procedure for gated VMAT stereotactic ablative radiotherapy (SABR) treatments. Methods: An interface was constructed to attach the translational stage of a Quasar respiratory motion phantom to a pinpoint ion chamber insert and move the ion chamber inside an ArcCheck diode array. The Quasar phantom controller used a patient specific breathing pattern to translate the ion chamber in a superior-inferior direction inside the ArcCheck. An amplitude-based RPM tracking system was specified to turn the beam on during the exhale phase of the breathing pattern. SABR plans were developed using Eclipse for liver PTVs ranging in sizemore » from 3-12 cm in diameter using a 2-arc VMAT technique. Dose was measured in the middle of the penumbra region, where the high dose gradient allowed for sensitive detection of any inaccuracies in gated dose delivery. The overall fidelity of the dose distribution was confirmed using ArcCheck. The sensitivity of the gating QA procedure was investigated with respect to the following four parameters: PTV size, duration of exhale, baseline drift, and gating window size. Results: The difference between the measured dose to a point in the penumbra and the Eclipse calculated dose was under 2% for small residual motions. The QA procedure was independent of PTV size and duration of exhale. Baseline drift and gating window size, however, significantly affected the penumbral dose measurement, with differences of up to 30% compared to Eclipse. Conclusion: This study described a highly sensitive QA procedure for gated VMAT SABR treatments. The QA outcome was dependent on the gating window size and baseline drift. Analysis of additional patient breathing patterns will be required to determine a clinically relevant gating window size and an appropriate tolerance level for this procedure.« less
Inert-Gas Diffuser For Plasma Or Arc Welding
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.
1994-01-01
Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.
Foster, J.S. Jr.
1957-09-10
An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.
NASA Astrophysics Data System (ADS)
Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing
2018-06-01
The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.
AFE ion mass spectrometer design study
NASA Technical Reports Server (NTRS)
Wright, Willie
1989-01-01
This final technical report covers the activities engaged in by the University of Texas at Dallas, Center for Space Sciences in conjunction with the NASA Langley Research Center, Systems Engineering Division in design studies directed towards defining a suitable ion mass spectrometer to determine the plasma parameter around the Aeroassisted Flight Experiment vehicle during passage through the earth's upper atmosphere. Additional studies relate to the use of a Langmuir probe to measure windward ion/electron concentrations and temperatures. Selected instrument inlet subsystems were tested in the NASA Ames Arc-Jet Facility.
NASA Astrophysics Data System (ADS)
Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai
2017-01-01
TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (<5 at%). The adhesive strengths of all the micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.
NASA Astrophysics Data System (ADS)
Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi
The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.
Structure and properties of TiSiCN coatings with different bias voltages by arc ion plating
NASA Astrophysics Data System (ADS)
Xie, Xinming; Li, Jinlong; Dong, Minpeng; Zhang, Henghua; Wang, Liping
2018-03-01
TiSiCN coatings were deposited on 316 L steel using the multi-arc ion plating system. All the coatings had the same total thickness of approximately 1.6 µm. The TiSiCN coatings were deposited under the mixture constant flow of N2 and C2H2 but varying bias. Information about structures, composition and properties were characterized by scanning electron microscope, x-ray diffraction, x-ray photoelectron spectroscopy, nanoindentation and ball-on-plate wear tests. The results show that all of the coatings consist of a TiCN nano-crystal phase and an Si3N4 amorphous phase. With an increase in the bias, the film becomes denser and exhibits better tribological behavior and mechanical properties. Moreover, the bonding strength between the coatings and the substrate increased and the resistance to thermal shock intensified when the coatings were made at a higher bias voltage.
Filtered cathodic arc deposition with ion-species-selective bias.
Anders, André; Pasaja, Nitisak; Sansongsiri, Sakon
2007-06-01
A dual-cathode arc plasma source was combined with a computer-controlled bias amplifier to synchronize substrate bias with the pulsed production of plasma. In this way, bias can be applied in a material-selective way. The principle has been applied to the synthesis of metal-doped diamondlike carbon films, where the bias was applied and adjusted when the carbon plasma was condensing and the substrate was at ground when the metal was incorporated. In doing so, excessive sputtering by energetic metal ions can be avoided while the sp(3)sp(2) ratio can be adjusted. It is shown that the resistivity of the film can be tuned by this species-selective bias; Raman spectroscopy was used to confirm expected changes of the amorphous ta-C:Mo films. The species-selective bias principle could be extended to multiple material plasma sources and complex materials.
ION SOURCE WITH SPACE CHARGE NEUTRALIZATION
Flowers, J.W.; Luce, J.S.; Stirling, W.L.
1963-01-22
This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)
Radiated and conducted EMI from a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.; Peer, W.
1981-01-01
In order to properly assess the interaction of a spacecraft with the EMI environment produced by an ion thruster, the EMI environment was characterized. Therefore, radiated and conducted emissions were measured from a 30-cm mercury ion thruster. The ion thruster beam current varied from zero to 2.0 amperes and the emissions were measured from 5 KHz to 200 MHz. Several different types of antennas were used to obtain the measurements. The various measurements that were made included: magnetic field due to neutralizer/beam current loop; radiated electric fields of thruster and plume; and conducted emissions on arc discharge, neutralizer keeper and magnetic baffle lines.
Lawrence, E.O.; Brobeck, W.M.
1959-04-14
ABS>An ion source is described for a calutron especially designed to improve the uniformity of charge vapor flow when the vapor encounters the arc. The inventive feature of the source consists of a specific source block construction wherein heater means prevents condensation from taking place within the block, and a separate vapor generator is supported on the wall of the block by a hollow thimble. The thimble communicates with a bore cavity in the block and the vapor flows therethrough into the cavity and uniformly out a slot along the length of the cavity where the arc discharge is located.
1961-01-01
As presented by Gerhard Heller of Marshall Space Flight Center's Research Projects Division in 1961, this chart illustrates three basic types of electric propulsion systems then under consideration by NASA. The ion engine (top) utilized cesium atoms ionized by hot tungsten and accelerated by an electrostatic field to produce thrust. The arc engine (middle) achieved propulsion by heating a propellant with an electric arc and then producing an expansion of the hot gas or plasma in a convergent-divergent duct. The electromagnetic, or MFD engine (bottom) manipulated strong magnetic fields to interact with a plasma and produce acceleration.
Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges
NASA Technical Reports Server (NTRS)
Minoo, M. H.
1984-01-01
A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.
High-intensity low energy titanium ion implantation into zirconium alloy
NASA Astrophysics Data System (ADS)
Ryabchikov, A. I.; Kashkarov, E. B.; Pushilina, N. S.; Syrtanov, M. S.; Shevelev, A. E.; Korneva, O. S.; Sutygina, A. N.; Lider, A. M.
2018-05-01
This research describes the possibility of ultra-high dose deep titanium ion implantation for surface modification of zirconium alloy Zr-1Nb. The developed method based on repetitively pulsed high intensity low energy titanium ion implantation was used to modify the surface layer. The DC vacuum arc source was used to produce metal plasma. Plasma immersion titanium ions extraction and their ballistic focusing in equipotential space of biased electrode were used to produce high intensity titanium ion beam with the amplitude of 0.5 A at the ion current density 120 and 170 mA/cm2. The solar eclipse effect was used to prevent vacuum arc titanium macroparticles from appearing in the implantation area of Zr sample. Titanium low energy (mean ion energy E = 3 keV) ions were implanted into zirconium alloy with the dose in the range of (5.4-9.56) × 1020 ion/cm2. The effect of ion current density, implantation dose on the phase composition, microstructure and distribution of elements was studied by X-ray diffraction, scanning electron microscopy and glow-discharge optical emission spectroscopy, respectively. The results show the appearance of Zr-Ti intermetallic phases of different stoichiometry after Ti implantation. The intermetallic phases are transformed from both Zr0.7Ti0.3 and Zr0.5Ti0.5 to single Zr0.6Ti0.4 phase with the increase in the implantation dose. The changes in phase composition are attributed to Ti dissolution in zirconium lattice accompanied by the lattice distortions and appearance of macrostrains in intermetallic phases. The depth of Ti penetration into the bulk of Zr increases from 6 to 13 μm with the implantation dose. The hardness and wear resistance of the Ti-implanted zirconium alloy were increased by 1.5 and 1.4 times, respectively. The higher current density (170 mA/cm2) leads to the increase in the grain size and surface roughness negatively affecting the tribological properties of the alloy.
Progress on MEVVA source VARIS at GSI
NASA Astrophysics Data System (ADS)
Adonin, A.; Hollinger, R.
2018-05-01
For the last few years, the development of the VARIS (vacuum arc ion source) was concentrated on several aspects. One of them was the production of high current ion beams of heavy metals such as Au, Pb, and Bi. The requested ion charge state for these ion species is 4+. This is quite challenging to produce in vacuum arc driven sources for reasonable beam pulse length (>120 µs) due to the physical properties of these elements. However, the situation can be dramatically improved by using the composite materials or alloys with enhanced physical properties of the cathodes. Another aspect is an increase of the beam brilliance for intense U4+ beams by the optimization of the geometry of the extraction system. A new 7-hole triode extraction system allows an increase of the extraction voltage from 30 kV to 40 kV and also reduces the outer aperture of the extracted ion beam. Thus, a record beam brilliance for the U4+ beam in front of the RFQ (Radio-Frequency Quadrupole) has been achieved, exceeding the RFQ space charge limit for an ion current of 15 mA. Several new projectiles in the middle-heavy region have been successfully developed from VARIS to fulfill the requirements of the future FAIR (Facility for Antiproton and Ion Research) programs. An influence of an auxiliary gas on the production performance of certain ion charge states as well as on operation stability has been investigated. The optimization of the ion source parameters for a maximum production efficiency and highest particle current in front of the RFQ has been performed. The next important aspect of the development will be the increase of the operation repetition rate of VARIS for all elements especially for uranium to 2.7 Hz in order to provide the maximum availability of high current ion beams for future FAIR experiments.
NASA Astrophysics Data System (ADS)
Geng, Wei; Zhang, Xun-Hua; Huang, Long
2018-04-01
The oblique arc-continent collision between the Luzon arc and the southeastern margin of the Eurasian continent caused the uplift of Taiwan. The Coastal Range in eastern Taiwan is the northern section of the Luzon arc in the collision zone and thus records important information about the arc-continent collision. In this paper, we determine and analyze the U-Pb ages of magmatic zircons from the volcanic arc and clastic zircons from the fore-arc basin in the Coastal Range. For the volcanic arc in the Coastal Range, the eruption ages range from 16.8-5 Ma. Given that the initial subduction of the South China Sea oceanic crust (17 Ma) occurred before the Luzon arc formed, we conclude that the volcanic activity of the Coastal Range began at 16.8 ± 1.3 Ma; it was most active from 14 to 8 Ma and continued until approximately 5 Ma. The U-Pb chronology also indicates that the initial stage of arc-continent collision of the Coastal Range started at approximately 5 Ma, when the northern section of the Luzon arc moved away from the magmatic chamber because of the kinematics of the Philippine Sea Plate.
Generation of high energetic ions from hollow cathode discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta, M.; El Nadai, L.; Lie, Y.T.
1995-12-31
High energetic beams of ions can be produced by using the dense and highly ionized plasma that is generated by the vacuum arc. Ian G. Brown (1993) described the general features and performance characteristics of the ion sources and their use for accelerator injection and ion implantation applications. Atta, at al. (1993) found that the ratio of ion density to electron density has been decreased beside the hollow cathode at different hole diameter due to increasing the ionization degree. Here we have evaluated the ion velocity distribution F(v) = S{Upsilon}(t)/V{sup 2}, where {Upsilon}(t) is the ion flux intensity, S ismore » the distance between the hollow cathode spot and the quadrupole maps spectrometer, and V is the ion velocity. The ion energy (E=mV{sup 2}/2, in is the mass of the ion), and the ion fraction due to the total number of ions for different ion species emitted from graphite and titanium hollow cathode have been determined.« less
Etching Enhancement Followed by Nitridation on Low-k SiOCH Film in Ar/C5F10O Plasma
NASA Astrophysics Data System (ADS)
Miyawaki, Yudai; Shibata, Emi; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Okamoto, Hidekazu; Sekine, Makoto; Hori, Masaru
2013-02-01
The etching rates of low-dielectric-constant (low-k), porous SiOCH (p-SiOCH) films were increased by nitrogen-added Ar/C5F10O plasma etching in dual-frequency (60 MHz/2 MHz)-excited parallel plate capacitively coupled plasma. Previously, perfluoropropyl vinyl ether [C5F10O] provided a very high density of CF3+ ions [Nagai et al.: Jpn. J. Appl. Phys. 45 (2006) 7100]. Surface nitridation on the p-SiOCH surface exposed to Ar/N2 plasma led to the etching of larger amounts of p-SiOCH in Ar/C5F10O plasma, which depended on the formation of bonds such as =C(sp2)=N(sp2)- and -C(sp)≡N(sp).
NASA Astrophysics Data System (ADS)
Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy
2017-10-01
The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.
Decay of equatorial ring current ions and associated aeronomical consequences
NASA Technical Reports Server (NTRS)
Fok, M.-C.; Kozyra, J. U.; Nagy, A. F.; Rasmussen, C. E.; Khazanov, G. V.
1993-01-01
The decay of the major ion species which constitute the ring current is studied by solving the time evolution of their distribution functions during the recovery phase of a moderate geomagnetic storm. In this work, only equatorially mirroring particles are considered. Particles are assumed to move subject to E x B and gradient drifts. They also experience loses along their drift paths. Two loss mechanisms are considered: charge exchange with neutral hydrogen atoms and Coulomb collisions with thermal plasma in the plasmasphere. Thermal plasma densities are calculated with a plasmaspheric model employing a time-dependent convection electric field model. The drift-loss model successfully reproduces a number of important and observable features in the distribution function. Charge exchange is found to be the major loss mechanism for the ring current ions; however the important effects of Coulomb collisions on both the ring current and thermal populations are also presented. The model predicts the formation of a low-energy (less than 500 eV) ion population as a result of energy degradation caused by Coulomb collision of the ring current ions with the plasmaspheric electrons; this population may be one source of the low-energy ions observed during active and quiet periods in the inner magnetosphere. The energy transferred to plasmaspheric electrons through Coulomb collisions with ring current ions is believed to be the energy source for the electron temperature enhancement and the associated 6300 A (stable auroral red (SAR) arc) emission in the subauroral region. The calculated energy deposition rate is sufficient to produce a subauroral electron temperature enhancement and SAR arc emissions that are consistent with observations of these quantities during moderate magnetic activity levels.
Rhenium ion beam for implantation into semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.
2012-02-15
At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics andmore » nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.« less
Experimental breakdown of selected anodized aluminum samples in dilute plasmas
NASA Technical Reports Server (NTRS)
Grier, Norman T.; Domitz, Stanley
1992-01-01
Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.
Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator
Treger, Jeremy S; Priest, Michael F; Bezanilla, Francisco
2015-01-01
Voltage-sensing domains (VSDs) underlie the movement of voltage-gated ion channels, as well as the voltage-sensitive fluorescent responses observed from a common class of genetically encoded voltage indicators (GEVIs). Despite the widespread use and potential utility of these GEVIs, the biophysical underpinnings of the relationship between VSD movement and fluorophore response remain unclear. We investigated the recently developed GEVI ArcLight, and its close variant Arclight', at both the single-molecule and macroscopic levels to better understand their characteristics and mechanisms of activity. These studies revealed a number of previously unobserved features of ArcLight's behavior, including millisecond-scale fluorescence fluctuations in single molecules as well as a previously unreported delay prior to macroscopic fluorescence onset. Finally, these mechanistic insights allowed us to improve the optical response of ArcLight to fast or repetitive pulses with the development of ArcLightning, a novel GEVI with improved kinetics. DOI: http://dx.doi.org/10.7554/eLife.10482.001 PMID:26599732
Rejuvenating Allen's Arc with the Geometric Mean.
ERIC Educational Resources Information Center
Phillips, William A.
1994-01-01
Contends that, despite ongoing criticism, Allen's arc elasticity formula remains entrenched in the microeconomics principles curriculum. Reviews the evolution and continuing scrutiny of the formula. Argues that the use of the geometric mean offers pedagogical advantages over the traditional arithmetic mean approach. (CFR)
STIM and Orai proteins and the non-capacitative ARC channels
Shuttleworth, Trevor J.
2012-01-01
The ARC channel is a small conductance, highly Ca2+-selective ion channel whose activation is specifically dependent on low concentrations of arachidonic acid acting at an intracellular site. They are widely distributed in diverse cell types where they provide an alternative, store-independent pathway for agonist-activated Ca2+ entry. Although biophysically similar to the store-operated CRAC channels, these two conductances function under distinct conditions of agonist stimulation, with the ARC channels providing the predominant route of Ca2+ entry during the oscillatory signals generated at low agonist concentrations. Despite these differences in function, like the CRAC channel, activation of the ARC channels is dependent on STIM1, but it is the pool of STIM1 that constitutively resides in the plasma membrane that is responsible. Similarly, both channels are formed by Orai proteins but, whilst the CRAC channel pore is a tetrameric assembly of Orai1 subunits, the ARC channel pore is formed by a heteropentameric assembly of three Orai1 subunits and two Orai3 subunits. There is increasing evidence that the activity of these channels plays a critical role a variety of different cellular activities. PMID:22201777
Recycle Requirements for NASA's 30 cm Xenon Ion Thruster
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Rawlin, Vincent K.
1994-01-01
Electrical breakdowns have been observed during ion thruster operation. These breakdowns, or arcs, can be caused by several conditions. In flight systems, the power processing unit must be designed to handle these faults autonomously. This has a strong impact on power processor requirements and must be understood fully for the power processing unit being designed for the NASA Solar Electric Propulsion Technology Application Readiness program. In this study, fault conditions were investigated using a NASA 30 cm ion thruster and a power console. Power processing unit output specifications were defined based on the breakdown phenomena identified and characterized.
Schmidt, F.H.
1958-08-12
An improved ion source is described for accurately presetting the size amd location of the gas and ion efflux opening. for determining the contour of the electrical field in the vicinity of the arc, and for generally improving the operation of the calutron source. The above features are accomplished by the use of a pair of electrically conductive coplanar plates mounted on opposite sides of the ion exit passage of the source ionization chamber and electrically connected to the source block. The plates are mounted on thc block for individual movement tramsversely of the exit slit and can be secured in place by clannping means.
High Power Hydrogen Injector with Beam Focusing for Plasma Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.
2005-01-15
High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increasemore » its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.« less
NASA Astrophysics Data System (ADS)
Noll, P. D.; Newsom, H. E.; Leeman, W. P.; Ryan, J. G.
1996-02-01
In order to evaluate the processes responsible for the enrichments of certain siderophile/ chalcophile trace elements during the production of subduction-related magmas, representative lavas from seven subduction zones have been analyzed for Pb, As, Sb, Sn, W, Mo, Tl, Cu, and Zn by inductively coupled plasma-mass spectrometry (ICP-MS), radiochemical epithermal neutron activation analysis (RENA), and atomic absorption (AA). The siderophile/chalcophile elements are compared to the highly fluid-mobile element B, the light rare earth elements (LREEs), U, and Th in order to place constraints on their behavior in subduction zones. Boron, As, Sb, and Pb are all enriched in arc lavas and continental crustal rocks more so than expected assuming normal magmatic processes (melting and crystallization). Tin, W, and Mo show little evidence of enrichment. Correlations of Pb/Ce, As/Ce, and Sb/Ce with B/La are statistically significant and have high correlation coefficients (and, more importantly, slopes approaching one) suggesting that Pb, As, and Sb behave similarly to B (i.e., that they are fluid-mobile). In addition, across-arc traverses show that B/La, As/Ce, Pb/Ce, and Sb/Ce ratios decrease dramatically with distance towards the back-arc basin. W/Th, Tl/La, Sn/Sm, and Mo/Ce ratios and Cu and Zn concentrations have much less systematic across-arc variations and correlations with B/La are not as strong (and in some cases, not statistically significant) and the regression lines have much lower slopes. Mixing models between upper mantle, slab-derived fluid, and sediment are consistent with a fluid-derived component in the arcs displaying extra enrichments of B, Pb, As, and Sb. These observations imply efficient mobilization of B, Pb, As, Sb, and possibly Tl into arc magma source regions by hydrothermal fluids derived from metamorphic dehydration reactions within the slab. Tin, W, and Mo show little, if any, evidence of hydrothermal mobilization. Copper appears to be slightly enriched in arc lavas relative to mid-ocean ridge basalts (MORBs) whereas Zn contents of arc lavas, MORB, ocean island basalts (OIBs), and continental crustal samples are similar suggesting that the bulk partition coefficient for Zn is approximately equal to one. However, Zn contents of the upper mantle are lower than these reservoirs implying an enrichment of the source region in Zn prior to melting. These nonigneous enrichments have implications not only for arc magma genesis but also for continental crust formation and crust-mantle evolution. The mobility of Pb, As, Sb, and B in hot, reducing, acidic hydrothermal fluids may be greatly enhanced relative to the large-ion lithophile elements (LILEs; including U) as a result of HS -, H 2S, OH -, or other types of complexing. In the case of Pb, continued transport of Pb from subducted slabs into arc magma source regions throughout Earth history coupled with a U fluxing of the mantle a the end of the Archean may account for the depletion of Pb in the upper mantle, the low U/Pb of most arc volcanics and continental crustal rocks, and provide an explanation for the Pb- Paradox (Hofmann et al., 1986;McCulloch, 1993;Miller et al., 1994). Recycled slabs will then retain high U/Pb ratios upon entering the deep mantle and may eventually become incorporated into the source regions of many OIBs; some with HIMU (high 238U/ 204Pb) signatures.
Letter to the Editor on 'Single-Arc IMRT?'.
Otto, Karl
2009-04-21
In the note 'Single Arc IMRT?' (Bortfeld and Webb 2009 Phys. Med. Biol. 54 N9-20), Bortfeld and Webb present a theoretical investigation of static gantry IMRT (S-IMRT), single-arc IMRT and tomotherapy. Based on their assumptions they conclude that single-arc IMRT is inherently limited in treating complex cases without compromising delivery efficiency. Here we present an expansion of their work based on the capabilities of the Varian RapidArc single-arc IMRT system. Using the same theoretical framework we derive clinically deliverable single-arc IMRT plans based on these specific capabilities. In particular, we consider the range of leaf motion, the ability to rapidly and continuously vary the dose rate and the choice of collimator angle used for delivery. In contrast to the results of Bortfeld and Webb, our results show that single-arc IMRT plans can be generated that closely match the theoretical optimum. The disparity in the results of each investigation emphasizes that the capabilities of the delivery system, along with the ability of the optimization algorithm to exploit those capabilities, are of particular importance in single-arc IMRT. We conclude that, given the capabilities available with the RapidArc system, single-arc IMRT can produce complex treatment plans that are delivered efficiently (in approximately 2 min).
Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States
Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.
2014-01-01
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.
An Overlooked Source of Auroral Arc Field-Aligned Current
NASA Astrophysics Data System (ADS)
Knudsen, D. J.
2017-12-01
The search for the elusive generator of quiet auroral arcs often focuses on magnetospheric pressure gradients, based on the static terms in the so-called Vaslyiunas equation [Vasyliunas, in "Magneospheric Currents", Geophysical Monograph 28, 1984]. However, magnetospheric pressure gradient scale sizes are much larger than the width of individual auroral arcs. This discrepancy was noted by Atkinson [JGR, 27, p4746, 1970], who proposed that the auroral arcs are fed instead by steady-state polarization currents, in which large-scale convection across quasi-static electric field structures leads to an apparent time dependence in the frame co-moving with the plasma, and therefore to the generation of ion polarization currents. This mechanism has been adopted by a series of authors over several decades, relating to studies of the ionospheric feedback instability, or IFI. However, the steady-state polarization current mechanism does not require the IFI, nor even the ionsophere. Specifically, any quasi-static electric field structure that is stationary relative to large-scale plasma convection is subject to the generation this current. This talk demonstrates that assumed convection speeds of the order of a 100 m/s across typical arc fields structures can lead to the generation FAC magintudes of several μA/m2, typical of values observed at the ionospheric footpoint of auoral arcs. This current can be viewed as originating within the M-I coupling medium, along the entire field line connecting an auroral arc to its root in the magnetosphere.
Versatile plasma ion source with an internal evaporator
NASA Astrophysics Data System (ADS)
Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.
2011-04-01
A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.
Electric propulsion technology
NASA Technical Reports Server (NTRS)
Finke, R. C.
1980-01-01
The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.
Luce, J.S.
1960-10-11
A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.
Use of vacuum arc plasma guns for a metal puff Z-pinch system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.
The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of themore » Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.« less
Method for gas-metal arc deposition
Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.
1990-11-13
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.
Method for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1990-01-01
Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Apparatus for gas-metal arc deposition
Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.
1991-01-01
Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.
Towards a theory for Neptune's arc rings
NASA Technical Reports Server (NTRS)
Goldreich, P.; Tremaine, S.; Borderies, N.
1986-01-01
It is proposed that the incomplete rings of Neptune consist of a number of short arcs centered on the corotation resonances of a single satellite. The satellite must have a radius of the order of 100 km or more and move on an inclined orbit. Corotation resonances are located at potential maxima. Thus, mechanical energy dissipated by interparticle collisions must be continually replenished to prevent the arcs from spreading. It is shown that each corotation resonance is associated with a nearby Lindblad resonance, which excites the ring particles' orbital eccentricity, thus supplying the energy required to maintain the arc. The ultimate energy reservoir is the satellite's orbital energy. Therefore, interaction with the arcs damps the satellite's orbital inclination. The self-gravity of the arcs limits their contraction and enforces a relation between arc length and mass. The estimated arc masses are so small, of the order of 10 to the 16th g, that the satellite's orbital inclination suffers negligible decay over the age of the solar system. The inferred surface mass densities are comparable to those found in the major rings of Saturn and Uranus.
NASA Astrophysics Data System (ADS)
Onufriyev, Valery. V.
2001-02-01
It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .
The Origin of Acicular Ferrite in Gas Metal Arc and Submerged ARC Welds
1994-03-01
Ratio vs Acicular Ferrite 45 Figure 2.10 Crack Propagati6n Schematic . . ........... 46 Figure 2.11 CCT Diagram ... .......... ............ 47 Figure 3.1...10 TIME (S) Figure 2. 11 Continuous cooling transformation ( CCT ) diagram showing the effects of alloying elements, inclusion formers and cooling rate
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
A droplet in the inter-electrode gap during gas metal arc welding
NASA Astrophysics Data System (ADS)
Nemchinsky, Valerian
2011-11-01
Electrical current flowing through a metallic droplet after its detachment from the wire anode during gas metal arc welding (GMAW) is considered. Although the droplet has much higher electrical conductivity compared with the conductivity of the surrounding plasma, current cannot enter the droplet freely since doing so demands igniting of the cathode spot responsible for electron emission. A new mechanism of current flow through a metallic droplet is suggested: one part of the droplet has a potential, which is slightly below the floating potential; this part of the droplet collects ions from the plasma. The remaining portion of the droplet has a potential difference, which is slightly above the floating one. The latter section collects electrons which recombine with the ions collected by the rest of the droplet's surface. The maximum electric current that can flow through the droplet is estimated. It is shown that this current is on the order of a few tens of amperes.
NASA Astrophysics Data System (ADS)
Lee, Kwan Chul
2017-11-01
Three examples of electric field formation in the plasma are analyzed based on a new mechanism driven by ion-neutral collisions. The Gyro-Center Shift analysis uses the iteration of three equations including perpendicular current induced by the momentum exchange between ions and neutrals when there is asymmetry over the gyro-motion. This method includes non-zero divergence of current that leads the solution of time dependent state. The first example is radial electric field formation at the boundary of the nuclear fusion device, which is a key factor in the high-confinement mode operation of future fusion reactors. The second example is the reversed rotation of the arc discharge cathode spot, which has been a mysterious subject for more than one hundred years. The third example is electric field formations in the earth's ionosphere, which are important components of the equatorial electrojet and black aurora. The use of one method that explains various examples from different plasmas is reported, along with a discussion of the applications.
Overview of recent studies and design changes for the FNAL magnetron ion source
NASA Astrophysics Data System (ADS)
Bollinger, D. S.; Sosa, A.
2017-08-01
This paper presents several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.
On the function of chitin synthase extracellular domains in biomineralization.
Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke
2013-08-01
Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Narita, Yasuhito; Maezawa, Kiyoshi; Toshinori, Mukai; Kullen, A.; Ivchenko, N.; Marklund, G.; Frederick, R.; Carlson, C. W.; Spann, J. F.; Parks, G. K.;
2002-01-01
Aurorae which appear in the polar cap are called transpolar arcs, polar cap arcs, sun-aligned arcs, or occasionally Theta-aurora because of its spatial distribution resembling Greek character 'Theta.' Morphology, IMF (Interplanetary Magnetic Field) relationship, and ionospheric convection patterns were studied in quest of mechanisms of transpolar arcs. Four events were analyzed: 1999/Jan/22/19:00 - 23/01:30 (1 event: a) 1999/Jan/24/06:00 - 10:00 (1 event: b) 1999/Feb/1 1/20:00 - 12/02:00 (2 events: c, d), with data set of ExB drift velocity data obtained by electric field measurements of ASTRID-2 and FAST, DMSP ion driftmeter data, and line-of-sight velocity data of SuperDARN. POLAR-UVI image data were used for spatial and temporal variations of transpolar arcs and ACE data set were used for investigation of IMF relationship. IMF-Bz was strongly positive (Bz from +8nT to +20 nT) during periods of all four transpolar arcs. In events (a),(b),(c), transpolar arcs appeared immediately after the direction of IMF turned northward, though IMF was fluctuating in event (b). A sudden increase of IMF-By, from +3nT to +18nT, was observed in event (d). Two different types of transpolar arc development were observed in POLAR-UVI: one which begins as a split from dawn or dusk sector of auroral oval and shifts poleward in event (a),(c),(d), and another which is initially a patch of auroral oval disturbed by substorm but develops as a transpolar arc, forming a growing finger-like shape from midnight sector (event b). Sunward flow, associated with positive IMF-Bz, were observed within newly-created polar caps in event (a),(c),(d). Not clear ionospheric convection pattern was seen across the polar cap arc in event (b) die to limitation of data set. In event (c), O+ with energy more than 1 keV were observed by FAST within a transpolar arc, suggesting that their origin be from plasma sheet. Transpolar arcs are thought to be projection of plasma sheet bifurcation into lobe regime. There can be several ways of development of transpolar arcs and two different patterns were observed through this work.
A unified theory of stable auroral red arc formation at the plasmapause
NASA Technical Reports Server (NTRS)
Cornwall, J. M.; Coroniti, F. V.; Thorne, R. M.
1970-01-01
A theory is proposed that SAR-arcs are generated at the plasmapause as a consequence of the turbulent dissipation of ring current energy. During the recovery phase of a geomagnetic storm, the plasmapause expands outward into the symmetric ring current. When the cold plasma densities reach about 100/cu cm, ring current protons become unstable and generate intense ion cyclotron wave turbulence in a narrow region 1/2 earth radius wide (just inside the plasmapause). Approximately one-half of the ring current energy is dissipated into wave turbulence which in turn is absorbed through a Landau resonant interaction with plasma spheric electrons. The combined thermal heat flux to the ionosphere due to Landau absorption of the wave energy and proton-electron Coulomb dissipation is sufficient to drive SAR-arcs at the observed intensities. It is predicted that the arcs should be localized to a narrow latitudinal range just within the stormtime plasmapause. They should occur at all local times and persist for the 10 to 20 hour duration of the plasma-pause expansion.
NASA Astrophysics Data System (ADS)
Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei
2018-02-01
The ionization rate of the released deuterium from a metal deuteride cathode in vacuum arc discharges is investigated by both experiments and modeling analysis. Experimental results show that the deuterium ionization rate increases from 2% to 30% with the increasing arc current in the range of 2-100 A. Thus the full ionization assumption, as is widely used in arc plasma simulations, is not satisfied for the released deuterium at low discharge current. According to the modeling results, the neutral-to-ion conversion efficiency for the deuterium traveling across the cathodic spot region can be significantly less than one, due to the fast plasma expansion and rarefaction in the vacuum. In addition, the model also reveals that, unlike the metal atoms which are mainly ionized in the sheath region and flow back to the cathode, the deuterium ionization primarily occurs in the quasi-neutral region and moves towards the anode. Consequently, the cathodic sheath layer acts like a filter that increases the deuterium fraction beyond the sheath region.
DESTRUCTION OF NEUTRAL PARTICLES IN A DEVICE FOR PRODUCING A HIGH DENSITY PLASMA
Simon, A.
1962-05-01
A method and apparatus are described for burning out neutral particles in an evacuated region and within a strong magnetic field. The method comprises injecting energetic molecular ions into the region perpendicular to the magnetic field and into the path of a dissociating, energetic arc discharge, the atomic ions formed in the dissociating process being trapped by the magnetic field, and then increasing the value of the trapped atomic ion current to such a value that the neutral particles are destroyed faster than they are formed, thereby causing a dense, energetic plasma to be built up and sustained by the magnetic field. (AEC)
Spectroscopic determination of the composition of a 50 kV hydrogen diagnostic neutral beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X.; Nornberg, M. D., E-mail: mdnornberg@wisc.edu; Den Hartog, D. J.
2016-11-15
A grating spectrometer with an electron multiplying charge-coupled device camera is used to diagnose a 50 kV, 5 A, 20 ms hydrogen diagnostic neutral beam. The ion source density is determined from Stark broadened H{sub β} emission and the spectrum of Doppler-shifted H{sub α} emission is used to quantify the fraction of ions at full, half, and one-third beam energy under a variety of operating conditions including fueling gas pressure and arc discharge current. Beam current is optimized at low-density conditions in the ion source while the energy fractions are found to be steady over most operating conditions.
NASA Astrophysics Data System (ADS)
Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.
2009-09-01
We have investigated the fundamental structural properties of conducting thin films formed by implanting gold ions into polymethylmethacrylate (PMMA) polymer at 49 eV using a repetitively pulsed cathodic arc plasma gun. Transmission electron microscopy images of these composites show that the implanted ions form gold clusters of diameter ˜2-12 nm distributed throughout a shallow, buried layer of average thickness 7 nm, and small angle x-ray scattering (SAXS) reveals the structural properties of the PMMA-gold buried layer. The SAXS data have been interpreted using a theoretical model that accounts for peculiarities of disordered systems.
Focusing of intense and divergent ion beams in a magnetic mass analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianlin, Ke; Changgeng, Zhou; Rui, Qiu
2014-07-15
A magnetic mass analyzer is used to determine the beam composition of a vacuum arc ion source. In the analyzer, we used the concentric multi-ring electrodes to focus the intense and divergent ion beams. We describe the principle, design, and the test results of the focusing device. The diameter of the beam profile is less than 20 mm when the accelerating voltage is 30 kV and the focusing voltage is about 2.0 kV. The focusing device has been successfully used in the magnetic mass analyzer to separate Ti{sup +}, Ti{sup 2+}, and Ti{sup 3+}.
NASA Astrophysics Data System (ADS)
Monakhov, I.; Graham, M.; Blackman, T.; Dowson, S.; Durodie, F.; Jacquet, P.; Lehmann, J.; Mayoral, M.-L.; Nightingale, M. P. S.; Noble, C.; Sheikh, H.; Vrancken, M.; Walden, A.; Whitehurst, A.; Wooldridge, E.; Contributors, JET-EFDA
2013-08-01
A load-tolerant external conjugate-T (ECT) impedance matching system for two A2 ion cyclotron resonance heating (ICRH) antennas was successfully put into operation at JET. The system allows continuous injection of the radio-frequency (RF) power into plasma in the presence of strong antenna loading perturbations caused by edge-localized modes (ELMs). Reliable ECT performance was demonstrated under a variety of antenna loading conditions including H-mode plasmas with radial outer gaps (ROGs) in the range 4-14 cm. The high resilience to ELMs predicted during the circuit simulations was fully confirmed experimentally. Dedicated arc-detection techniques and real-time matching algorithms were developed as a part of the ECT project. The new advanced wave amplitude comparison system has proven highly efficient in detection of arcs both between and during ELMs. The ECT system has allowed the delivery of up to 4 MW of RF power without trips into plasmas with type-I ELMs. Together with the 3 dB system and the ITER-like antenna, the ECT has brought the total RF power coupled to ELMy plasma to over 8 MW, considerably enhancing JET research capabilities. This paper provides an overview of the key design features of the ECT system and summarizes the main experimental results achieved so far.
High voltage AC plasma torches with long electric arcs for plasma-chemical applications
NASA Astrophysics Data System (ADS)
Surov, A. V.; Popov, S. D.; Serba, E. O.; Pavlov, A. V.; Nakonechny, Gh V.; Spodobin, V. A.; Nikonov, A. V.; Subbotin, D. I.; Borovskoy, A. M.
2017-04-01
Powerful AC plasma torches are in demand for a number of advanced plasma chemical applications, they can provide high enthalpy of the working gas. IEE RAS specialists have developed a number of models of stationary thermal plasma torches for continuous operation on air with the power from 5 to 500 kW, and on mixture of H2O, CO2 and CH4 up to 150 kW. AC plasma torches were tested on the pilot plasmachemical installations. Powerful AC plasma torch with hollow electrodes and the gas vortex stabilization of arc in cylindrical channels and its operation characteristics are presented. Lifetime of its continuous operation on air is 2000 hours and thermal efficiency is about 92%, the electric arc length between two electrodes of the plasma torch exceeds 2 m.
The Impact of Teaching Oxy-Fuel Welding on Gas Metal Arc Welding Skills
ERIC Educational Resources Information Center
Sgro, Sergio D.; Field, Dennis W.; Freeman, Steven A.
2008-01-01
Industrial technology programs around the country must be sensitive to the demands of manufacturing and industry as they continue to replace "vocational" curriculum with high-tech alternatives. This article examines whether or not teaching oxyacetylene welding in the industrial technology classroom is required to learn arc welding…
Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project
NASA Technical Reports Server (NTRS)
Caraccio, Anne
2015-01-01
As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.
Preliminary Development and Testing of a Self-Injecting Gallium MPD Thruster
NASA Technical Reports Server (NTRS)
Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.
2008-01-01
Discharge current and terminal voltage measurements were performed on a gallium electromagnetic thruster at discharge currents in the range of 20-54 kA. It was found that the arc impedance has a value of 6-7 m(Omega) at peak current. The absence of high-frequency oscillations in the terminal voltage trace indicates lack of the "onset" condition often seen in MPD arcs, suggesting that a sufficient number of charge carriers are present for current conduction. The mass ablated per pulse was not measured experimentally; however the mass flow rate was calculated using an ion current assumption and an anode power balance. Measurement of arc impedance predicts a temperature of 3.5 eV which from Saha equilibrium corresponds to Z = 2.0 - 3.5, and assuming Z = 2 yields an Isp of 3000 s and thrust efficiency of 50%.
The fractal nature of vacuum arc cathode spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
2005-05-27
Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Severalmore » points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.« less
NASA Astrophysics Data System (ADS)
Wygant, J. R.; Tian, S.; Thaller, S. A.; Breneman, A. W.; Cattell, C. A.; Engel, A.; Mozer, F.; Bonnell, J. W.; Chaston, C. C.; Donovan, E.; Spanswick, E.; Reeves, G.; Kistler, L. M.; Mouikis, C.; Hudson, M.; Smith, C. W.; Fennell, J. F.; Blake, J. B.; Turner, D. L.; Baker, D. N.; Kletzing, C.
2017-12-01
In recent years, there has been a focus on measurements in the near Earth plasmasheet of intervals of intense parallel Poynting flux, magnetic dipolarizations, and energetic particle injection/ and acceleration, as well as, ion ouflow from low altitudes (Ergun et al., 2015; Wygant et al., 2015 and Tian et. al. this meeting). We describe observations from an event on 5/1/2013 and related events on 6/01/2013 and 4/14/2013. Measurements from Van Allen Probes demonstrate that intrinsic to the structure of these dipolarization events are intense pulses (>100 mW/m2) of Poynting flux lasting 1 minute at the leading edge of the dipolarization front. The electric field associated with the Poynting flux burst is primarily in the poloidal direction (70 mV/m) but does also have a significant azimuthal (dawn-dusk) component of 20 mV/m capable of injecting electrons earthward and energizing them via conservation of the first adiabatic invariant. The THEMIS auroral array is used to show that these intervals of Poynting flux are nearly exactly coincident with thin (30 km wide) intense auroral arcs, which also have durations comparable to the Poynting flux. The correspondence between the arc and the Poynting flux allows us to infer the spatial dimensions of the electric fields, which might accelerate particles. Based on the dimensions of the arc, we estimate that at the spacecraft, the region of strong electric field is 1- 1.5 Re in azimuthal extent and 600- 900 km in poloidal direction. The associated EMF along the longitudinal direction is 150-200 kilovolts while the EMF in the poloidal direction is 30-60 kilovolts.Van Allen Probe measurements show that there are abrupt peaks in energetic electrons between 30 keV to 2 MeV coincident with these fields.The enhancements are dispersion-less locally but show energy-time dispersion as seen by LANL spacecraft displaced in MLT. Subsequent to the initial pulse of Poynting flux, there is a longer term (5-30 minutes) second phase of the electric field structure with smaller earthward ExB convection on the order of 10 km/s likely over larger spatial scales. This phase can play an important role in controlling an ExB drift of lower energy particles (0.1-40 keV) especially up-flowing ions. There is evidence is ExB velocity filter for upflowing ions since the convection velocity tracks the energy of the ions.
The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude
NASA Astrophysics Data System (ADS)
Niemeyer, Hans; Götze, Jens; Sanhueza, Marcos; Portilla, Carolina
2018-01-01
A continental magmatic arc (the Famatinian magmatic arc) was developed on the western margin of Gondwana during the Early to Middle Ordovician. This has a northwestern orientation in the northern Chile-Argentina Andes between 21° and 26° south latitude with a northeastern directed subduction zone and developed on a continental crust represented by a metamorphic basement. A paleogeographical scheme for the Ordovician magmatic arc is proposed and two tectonic environments can be recognized from our own data and data from the literature: forearc and arc. The Cordón de Lila Complex can be assigned to a forearc position. Here the turbiditic flows become paralell to the northwestern elongation of the magmatic arc. The sedimentation in the frontal-arc high platform of the forearc is represented by stromatolitic limestones and a zone of phosphate production. The internal structure of the arc can be inferred from the petrographic composition of the turbidites: basaltic and andesitic lavas, dacitic and/or rhyolitic lavas and ash fall tuffs. Also the Quebrada Grande Formation was developed on the forearc. Plutonic Ordovician rocks testify the continuity of the magmatic arc. The data about the basement exposed in the present paper do not support the existence of the Arequipa-Antofalla Terrane.
Study on an azimuthal line cusp ion source for the KSTAR neutral beam injector.
Jeong, Seung Ho; Chang, Doo-Hee; In, Sang Ryul; Lee, Kwang Won; Oh, Byung-Hoon; Yoon, Byung-Joo; Song, Woo Sob; Kim, Jinchoon; Kim, Tae Seong
2008-02-01
In this study it is found that the cusp magnetic field configuration of an anode bucket influences the primary electron behavior. An electron orbit code (ELEORBIT code) showed that an azimuthal line cusp (cusp lines run azimuthally with respect to the beam extraction direction) provides a longer primary electron confinement time than an axial line cusp configuration. Experimentally higher plasma densities were obtained under the same arc power when the azimuthal cusp chamber was used. The newly designed azimuthal cusp bucket has been investigated in an effort to increase the plasma density in its plasma generator per arc power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Song; Huang, Hao, E-mail: huanghao@dlut.edu.cn; Wu, Aimin
2016-10-15
A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in themore » electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.« less
IODP Expedition 351 Izu-Bonin-Mariana Arc Origins: Preliminary Results
NASA Astrophysics Data System (ADS)
Ishizuka, O.; Arculus, R. J.; Bogus, K.
2014-12-01
Understanding how subduction zones initiate and continental crust forms in intraoceanic arcs requires knowledge of the inception and evolution of a representative intraoceanic arc, such as the Izu-Bonin-Mariana (IBM) Arc system. This can be obtained by exploring regions adjacent to an arc, where unequivocal pre-arc crust overlain by undisturbed arc-derived materials exists. IODP Exp. 351 (June-July 2014) specifically targeted evidence for the earliest evolution of the IBM system following inception. Site U1438 (4711 m water depth) is located in the Amami Sankaku Basin (ASB), west of the Kyushu-Palau Ridge (KPR), a paleo-IBM arc. Primary objectives of Exp. 351 were: 1) determine the nature of the crust and mantle pre-existing the IBM arc; 2) identify and model the process of subduction initiation and initial arc crust formation; 3) determine the compositional evolution of the IBM arc during the Paleogene; 4) establish geophysical properties of the ASB. Seismic reflection profiles indicate a ~1.3 km thick sediment layer overlying ~5.5 km thick igneous crust, presumed to be oceanic. This igneous crust seemed likely to be the basement of the IBM arc. Four holes were cored at Site U1438 spanning the entire sediment section and into basement. The cored interval comprises 5 units: uppermost Unit I is hemipelagic sediment with intercalated ash layers, presumably recording explosive volcanism mainly from the Ryukyu and Kyushu arcs; Units II and III host a series of volcaniclastic gravity-flow deposits, likely recording the magmatic history of the IBM Arc from arc initiation until 25 Ma; Siliceous pelagic sediment (Unit IV) underlies these deposits with minimal coarse-grained sediment input and may pre-date arc initiation. Sediment-basement contact occurs at 1461 mbsf. A basaltic lava flow section dominantly composed of plagioclase and clinopyroxene with rare chilled margins continues to the bottom of the Site (1611 mbsf). The expedition successfully recovered pre-IBM Arc basement, a volcanic and geologic record spanning pre-Arc, Arc initiation to remnant Arc stages, which permits testing for subduction initiation and subsequent Arc evolution.
Exfoliation of the tungsten fibreform nanostructure by unipolar arcing in the LHD divertor plasma
NASA Astrophysics Data System (ADS)
Tokitani, M.; Kajita, S.; Masuzaki, S.; Hirahata, Y.; Ohno, N.; Tanabe, T.; LHD Experiment Group
2011-10-01
The tungsten nanostructure (W-fuzz) created in the linear divertor simulator (NAGDIS) was exposed to the Large Helical Device (LHD) divertor plasma for only 2 s (1 shot) to study exfoliation/erosion and microscopic modifications due to the high heat/particle loading under high magnetic field conditions. Very fine and randomly moved unipolar arc trails were clearly observed on about half of the W-fuzz area (6 × 10 mm2). The fuzzy surface was exfoliated by continuously moving arc spots even for the very short exposure time. This is the first observation of unipolar arcing and exfoliation of some areas of the W-fuzz structure itself in a large plasma confinement device with a high magnetic field. The typical width and depth of each arc trail were about 8 µm and 1 µm, respectively, and the arc spots moved randomly on the micrometre scale. The fractality of the arc trails was analysed using a box-counting method, and the fractal dimension (D) of the arc trails was estimated to be D ≈ 1.922. This value indicated that the arc spots moved in Brownian motion, and were scarcely influenced by the magnetic field. One should note that such a large scale exfoliation due to unipolar arcing may enhance the surface erosion of the tungsten armour and act as a serious impurity source for fusion plasmas.
Tungsten erosion by unipolar arcing in DIII-D
NASA Astrophysics Data System (ADS)
Bykov, I.; Chrobak, C. P.; Abrams, T.; Rudakov, D. L.; Unterberg, E. A.; Wampler, W. R.; Hollmann, E. M.; Moyer, R. A.; Boedo, J. A.; Stahl, B.; Hinson, E. T.; Yu, J. H.; Lasnier, C. J.; Makowski, M.; McLean, A. G.
2017-12-01
Unipolar arcing was an important mechanism of metal surface erosion during the recently conducted Metal Rings Campaign in DIII-D when two toroidally continuous tile rings with 5 cm wide W-coated TZM inserts were installed in graphite tiles in the lower divertor, one on the floor and one on the shelf. Most of the arc damage occurred on the shelf ring. The total amount of W removed by arcing from the affected ˜4% of the shelf ring area was estimated ˜0.8 × 1021 at., about half of the total amount of W eroded and redeposited outside the inserts (1.8 ± 0.9)×1021 at. The rings were exposed for a total of ˜480 discharges, an equivalent of plasma time on W surfaces (with {{I}}{{p}}> 0.5 MA) ˜103 s. Arcing was monitored in situ with WI (400.9 nm) filtered camera and photomultipliers and showed that: (i) arcing only occurred during ELMs and disruptions, (ii) arcing rate was much lower on the floor than on the shelf ring, and (iii) arcing had a low cut off power flux density about 2 MW m-2. About half of arc tracks had large {10}\\circ pitch angle and probably were produced during disruptions. Such tracks were only found on the shelf. Moderate toroidal variation of the arc track density and W erosion with nearly n = 1 pattern has been measured.
Numerical simulation of a helical shape electric arc in the external axial magnetic field
NASA Astrophysics Data System (ADS)
Urusov, R. M.; Urusova, I. R.
2016-10-01
Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-02-02
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-01-01
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions. PMID:22330847
Proof-of-Concept Experiments on a Gallium-Based Ignitron for Pulsed Power Applications
NASA Technical Reports Server (NTRS)
Ali, H. K.; Hanson, V. S.; Polzin, K. A.; Pearson, J. B.
2015-01-01
Ignitrons are electrical switching devices that operate at switching times that are on the order of microseconds, can conduct high currents of thousands of amps, and are capable of holding off tens of thousands of volts between pulses. They consist of a liquid metal pool within an evacuated tube that serves both the cathode and the source of atoms and electrons for an arc discharge. Facing the liquid metal pool is an anode suspended above the cathode, with a smaller ignitor electrode tip located just above the surface of the cathode. The ignitron can be charged to significant voltages, with a potential difference of thousands of volts between anode and cathode. When an ignition pulse is delivered from the ignitor electrode to the cathode, a small amount of the liquid metal is vaporized and subsequently ionized, with the high voltage between the anode and cathode causing the gas to bridge the gap between the two electrodes. The electrons and ions move rapidly towards the anode and cathode, respectively, with the ions liberating still more atoms from the liquid metal cathode surface as a high-current plasma arc discharge is rapidly established. This arc continues in a self-sustaining fashion until the potential difference between the anode and cathode drops below some critical value. Ignitrons have been used in a variety of pulsed power applications, including the railroad industry, industrial chemical processing, and high-power arc welding. In addition, they might prove useful in terrestrial power grid applications, serving as high-current fault switches, quickly shunting dangerous high-current or high-voltage spikes safely to ground. The motivation for this work stemmed from the fact that high-power, high-reliability, pulsed power devices like the ignitron have been used for ground testing in-space pulsed electric thruster technologies, and the continued use of ignitrons could prove advantageous to the future development and testing of such thrusters. Previous ignitron designs have used mercury as the liquid metal cathode, owing to its presence as a liquid at room temperatures and a vapor pressure of 10 Pa (75 mtorr) at room temperature. While these are favorable properties, there are obvious environmental and personal safety concerns with the storage, handling, and use of mercury and its compounds. The purpose of the present work was to fabricate and test an ignitron that used as its cathode an alternate liquid metal that was safe to handle and store. To that end, an ignitron test article that used liquid gallium as the cathode material was developed and tested. Gallium is a metal that has a melting temperature of 29.76 C, which is slightly above room temperature, and a boiling point of over 2,300 C at atmospheric pressure. This property makes gallium the element with the largest relative difference between melting and boiling points. Gallium has a limited role in biology, and when ingested, it will be subsequently processed by the body and expelled rather than accumulating to toxic levels. The next section of this Technical Memorandum (TM) provides background information on the development of mercury-based ignitrons, which serves as the starting point for the development of the gallium-based variant. Afterwards, the experimental hardware and setup used in proof-of-concept testing of a basic gallium ignitron are presented. Experimental data, consisting of discharge voltage and current waveforms as well as high-speed imaging of the gallium arc discharge in the gallium ignitron test article, are presented to demonstrate the efficacy of the concept. Discussion of the data and suggestions on improvements for future iterations of the design are presented in the final two sections of this TM.
Neogene subduction beneath Java, Indonesia: Slab tearing and changes in magmatism
NASA Astrophysics Data System (ADS)
Cottam, Michael; Hall, Robert; Cross, Lanu; Clements, Benjamin; Spakman, Wim
2010-05-01
Java is a Neogene calc-alkaline volcanic island arc formed by the northwards subduction of the Indo-Australian Plate beneath Sundaland, the continental core of SE Asia. The island has a complex history of volcanism and displays unusual subduction characteristics. These characteristics are consistent with the subduction of a hole in the down going slab that was formed by the arrival of a buoyant oceanic plateau at the trench. Subduction beneath Java began in the Eocene. However, the position and character of the calc-alkaline arc has changed over time. An older Paleogene arc ceased activity in the Early Miocene. Volcanic activity resumed in the Late Miocene producing a younger arc to the north of the older arc, and continues to the present day. An episode of Late Miocene thrusting at about 7 Ma is observed throughout Java and appears to be linked to northward movement of the arc. Arc rocks display typical calc-alkaline characteristics and reflect melting of the mantle wedge and subducted sediments associated with high fluid fluxes. Between West Java and Bali the present arc-trench gap is unusually wide at about 300 km. Seismicity identifies subducted Indian Ocean lithosphere that dips north at about 20° between the trench and the arc and then dips more steeply at about 60-70° from 100 to 600 km depth. In East Java there is gap in seismicity between about 250 and 500 km. Seismic tomography shows that this gap is not an aseismic section of the subduction zone but a hole in the slab. East Java is also unusual in the presence of K-rich volcanoes, now inactive, to the north of the calc-alkaline volcanoes of the active arc. In contrast to the calc-alkaline volcanism of the main arc, these K-rich melts imply lower fluid fluxes and a different mantle source. We suggest that all these observations can be explained by the tearing of the subducting slab when a buoyant oceanic plateau arrived at the trench south of East Java at about 8 Ma. With the slab unable to subduct, continued convergence caused contractional deformation and thrusting in Java. The slab then broke in front of the plateau. The trench stepped back to the south by about 150 km and subduction resumed behind the plateau, causing a hole to develop in the subducting slab. As the hole passed beneath the arc, and fluid flux declined, normal calc-alkaline volcanism ceased. With the mantle wedge melt component ‘switched off' K-rich melts, produced from a deeper mantle component that remained undiluted, dominated arc volcanism. As the hole got deeper K-rich volcanism ceased. Normal, calc-alkaline, arc activity resumed when the untorn slab following the hole was subducted.
ERIC Educational Resources Information Center
Glisson, Charles; Dukes, Denzel; Green, Philip
2006-01-01
Objective: This study examines the effects of the Availability, Responsiveness, and Continuity (ARC) organizational intervention strategy on caseworker turnover, climate, and culture in a child welfare and juvenile justice system. Method: Using a pre-post, randomized blocks, true experimental design, 10 urban and 16 rural case management teams…
Determination of GTA Welding Efficiencies
1993-03-01
continue on reverse if ncessary andidentify by block number) A method is developed for estimating welding efficiencies for moving arc GTAW processes...Dutta, Co-Advi r Department of Mechanical Engineering ii ABSTRACT A method is developed for estimating welding efficiencies for moving arc GTAW ...17 Figure 10. Miller Welding Equipment ............. ... 18 Figure 11. GTAW Torch Setup for Automatic Welding. . 19 Figure 12
The manufacture of steel by electric arc furnaces (EAF) is continuing to increase in usage in the United States with current production estimated to be over 63 million tons per year. The reduction of emissions from steel producers has been slow for two main reasons: the nee...
Plasma effects of active ion beam injections in the ionosphere at rocket altitudes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.
1992-01-01
Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.
NASA Astrophysics Data System (ADS)
Fabre, M.; Patriat, M.; Collot, J.; Danyushevsky, L. V.; Meffre, S.; Falloon, T.; Rouillard, P.; Pelletier, B.; Roach, M. J.; Fournier, M.
2015-12-01
Geophysical data acquired during three expeditions of the R/V Southern Surveyor allows us to characterize the deformation of the upper plate at the southern termination of the New Hebrides subduction zone where it bends 90° eastward along the Hunter Ridge. As shown by GPS measurements and earthquake slip vectors systematically orthogonal to the trench, this 90° bend does not mark a transition from subduction to strike slip as usually observed at subduction termination. Here the convergence direction remains continuously orthogonal to the trench notwithstanding its bend. Multibeam bathymetric data acquired in the North Fiji Basin reveals active deformation and fragmentation of the upper plate. It shows the southward propagation of a N-S back-arc spreading ridge into the pre-existing volcanic arc, and the connection of the southern end of the spreading axis with an oblique active rift in the active arc. Ultimately the active arc lithosphere is sheared as spreading progressively supersedes rifting. Consequently to such incursion of back-arc basin extension into the arc, peeled off and drifted pieces of arc crust are progressively isolated into the back-arc basin. Another consequence is that the New Hebrides arc is split in two distinct microplates, which move independently relative to the lower plate, and thereby define two different subduction systems. We suggest arc fragmentation could be a consequence of the incipient collision of the Loyalty Ridge with the New Hebrides Arc. We further speculate that this kinematic change could have resulted, less than two million year ago, in the initiation of a new subduction orthogonal to the New Hebrides Subduction possibly along the paleo STEP fault. In this geodynamic setting, with an oceanic lithosphere subducting beneath a sheared volcanic arc, a particularly wide range of primitive subduction-related magmas have been produced including adakites, island arc tholeiites, back-arc basin basalts, and medium-K subduction-related lavas.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A
2014-02-01
The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
Bell, W.A. Jr.; Love, L.O.; Prater, W.K.
1958-01-28
An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J; Cheung, J; Held, M
2016-06-15
Purpose: To develop a clinical workflow for delivering a modulated-arc total body irradiation (TBI) with RayStation scripting. This technique uses arc fields with the patient lying at floor level on a padded table and is validated through measurements taken on a custom-made TBI phantom. Methods: Treatment planning was performed for a retrospective cohort of eight patients with a diverse range of heights and body types. Each was replanned using an open-field dual arc method, with the patient in supine and prone positions on the floor of the vault. All plans were optimized using Raystation Planning 4.7.2.5 (RaySearch Laboratories, Stockholm, Sweden),more » with 200 cGy prescribed to the 95% of the body contour − 5mm. This results in an open-field beam that sweeps craniocaudally across the length of the patient. The technique is validated with measurements at 10 cm intervals in a custom-milled, 5 cm thick acrylic phantom. A centrally located CC13 ion chamber and a Mobile MOSFET (Best Medical Canada, Ottawa, ON) detector array were used to measure dose. Supine and prone arcs for each patient were consecutively delivered, and the aggregate dose at each point was compared to the planned dose calculated in the phantom. Results: The ion chamber measurements differed from the planned dose by an average of .5%, with a standard deviation of 2.1%. All measured data for the MOSFETS were within 10% of the corresponding planned dose except for two outlying points. The standard deviation of dose differences across the entire cohort was 4.0%. Most significant discrepancies occurred either in inhomogeneous regions with large gradients, or at inferior points where beam angle was steepest. Conclusion: We have confirmed that the planned dose is well matched to our measurements within 10% for this method of planning and delivery. We are currently incorporating this technique into our clinical workflow. This work is supported by RaySearch.« less
MacKenzie, K.R.
1958-09-01
An ion source is described for use in a calutron and more particularly deals with an improved filament arrangement for a calutron. According to the invention, the ion source block has a gas ionizing passage open along two adjoining sides of the block. A filament is disposed in overlying relation to one of the passage openings and has a greater width than the passage width, so that both the filament and opening lengths are parallel and extend in a transverse relation to the magnetic field. The other passage opening is parallel to the length of the magnetic field. This arrangement is effective in assisting in the production of a stable, long-lived arc for the general improvement of calutron operation.
Electro-optical detection of THz radiation in Fe implanted LiNbO3
NASA Astrophysics Data System (ADS)
Wang, Yuhua; Ni, Hongwei; Zhan, Weiting; Yuan, Jie; Wang, Ruwu
2013-01-01
In this letter, the authors present first observation of terahertz generation from Fe implantation of LiNbO3 crystal substrate. LiNbO3 single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Fe ion implantation were implanted into LiNbO3 single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulsed centered at 800 nm were focused onto the samples. Terahertz was generated via optical rectification. The findings suggest that under the investigated implantation parameter, a spectral component in excess of 0.44 THz emission were found from Fe ion implantation of LiNbO3.
Short communication on " In-situ TEM ion irradiation investigations on U 3Si 2 at LWR temperatures"
Miao, Yinbin; Harp, Jason; Mo, Kun; ...
2016-11-21
Here, the radiation-induced amorphization of U 3Si 2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 10 15 ions/cm 2 to examine their amorphization behavior under light water reactor (LWR) conditions. U 3Si 2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.
Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"
NASA Astrophysics Data System (ADS)
Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.
2017-02-01
The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, J; Held, M; Morin, O
2015-06-15
Purpose: To investigate the sensitivity of traditional gamma-index-based fluence measurements for patient-specific measurements in VMAT delivered spine SBRT. Methods: The ten most recent cases for spine SBRT were selected. All cases were planned with Eclipse RapidArc for a TrueBeam STx. The delivery was verified using a point dose measurement with a Pinpoint 3D micro-ion chamber in a Standard Imaging Stereotactic Dose Verification Phantom. Two points were selected for each case, one within the target in a low dose-gradient region and one in the spinal cord. Measurements were localized using on-board CBCT. Cumulative and separate arc measurements were acquired with themore » ArcCheck and assessed using the SNC patient software with a 3%/3mm and 2%/2mm gamma analysis with global normalization and a 10% dose threshold. Correlations between data were determined using the Pearson Product-Moment Correlation. Results: For our cohort of patients, the measured doses were higher than calculated ranging from 2.2%–9.7% for the target and 1.0%–8.2% for the spinal cord. There was strong correlation between 3%/3mm and 2%/2mm passing rates (r=0.91). Moderate correlation was found between target and cord dose with a weak fit (r=0.67, R-Square=0.45). The cumulative ArcCheck measurements showed poor correlation with the measured point doses for both the target and cord (r=0.20, r=0.35). If the arcs are assessed separately with an acceptance criteria applied to the minimum passing rate between all arcs, a moderate negative correlation was found for the target and cord (r=−0.48, r= −0.71). The case with the highest dose difference (9.7%) received a passing rate of 97.2% for the cumulative arcs and 87.8% for the minimum with separate arcs. Conclusion: Our data suggest that traditional passing criteria using ArcCheck with cumulative measurements do not correlate well with dose errors. Separate arc analysis shows better correlation but may still miss large dose errors. Point dose verifications are recommended.« less
Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.
Wang, Jun; Hoang, Tien; Floyd, Evan L; Regens, James L
2017-04-01
Plasma cutting is a metal fabrication process that employs an electrically conductive plasma arc to cut metals. The metal fume emitted from stainless steel plasma cutting may consist of hexavalent chromium (Cr6+), which is a carcinogen, and other toxicants. Overexposure to plasma cutting fume may cause pulmonary toxicity and other health effects. This study was to evaluate the effects of operation parameters (arc current and arc time) on the fume formation rates, Cr6+ and other oxides concentrations, particle size distributions (PSD), and particle morphology. A fume chamber and high-volume pump were used to collect fume produced from cutting ER308L stainless steel plates with arc currents varying between 20 and 50 A. The amount of fume collected on glass fiber filters was gravimetrically determined and normalized to arc time. Cr6+ and other oxides in the fume were analyzed using ion chromatography. PSD of the fume was examined using a scanning mobility particle sizer and an aerodynamic particle sizer for fine and coarse fractions, respectively. The particle morphology was imaged through a transmission electron microscope (TEM). Total fume generation rate increased with arc current and ranged from 16.5 mg min-1 at 20 A to 119.0 mg min-1 at 50 A. Cr6+ emissions (219.8-480.0 µg min-1) from the plasma cutting were higher than welding fume in a previous study. Nitrogen oxides level can be an indicator of oxidation level and Cr6+ formation (R = 0.93). Both PSD measurement and TEM images confirmed a multimodal size distribution. A high concentration of a fine fraction of particles with geometric mean sizes from 96 to 235 nm was observed. Higher arc current yielded more particles, while lower arc current was not able to penetrate the metal plates. Hence, the worker should optimize the arc current to balance cut performance and fume emission. The findings indicated that arc current was the dominant factor in fume emission from plasma cutting. Appropriate ventilation and respiratory protection should be used to reduce workers' exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Alt, Jeffrey C.; Shanks, Wayne C., III; Jackson, Michael C.
1993-10-01
The sulfur contents and sulfur isotopic compositions of 24 glassy submarine volcanics from the Mariana Island Arc and back-arc Mariana Trough were determined in order to investigate the hypothesis that subducted seawater sulfur (delta S-34 = 21 parts per thousand) is recycled through arc volcanism. Our results for sulfur are similar to those for subaerial arc volcanics: Mariana Arc glasses are enriched in S-34(delta S-34 = up to 10.3 parts per thousand, mean = 3.8 parts per thousand) and depleted in S(20-290 ppm, mean = 100 ppm) relative to mid ocean ridge basalt (MORB)(850 ppm S, delta S-34 = 0.1 +/- 0.5 parts per thousand). The bac-arc trough basalts contain 200-930 ppm S and have delta S-34 values of 1.1 +/- 0.5 parts per thousand, which overlap those for the arc and MORB. The low sulfur contents of the arc and some of the trough glasses are attributed to (1) early loss of small amounts of sulfur through separation of immiscible sulfide and (2) later vapor-melt equilibrium control of sulfur contents and loss of sulfur in a vapor phase from sulfide-undersaturated melts near the minimum in sulfur solubility at fO2 is approximately equal to NNO (nickel-nickel oxide). Although these processes removed sulfur from the melts their effects on the sulfur isotopic compositions of the melts were minimal. Positive trends of delta S-34 with Sr-87/Sr-86 large ion lithophile element (LILE) and Light rare earth elements (LREE) contents of the arc volcanics are consistent with a metasomatic seawater sulfur component in the depleted sub-arc mantle source. The lack of a S-34-rich slab signature in the trough lavas may be attributed to equilibration of metasomatic fluid with mantle material along the longer pathway from the slab to the source of the trough volcanics. Sulfur is likely to have been transported into the mantle wedge by metasomatic fluid derived from subducted sediments and pore fluids. Gases extracted from vesicles in arc and back-arc samples are predominantly H2O, with minor CO2 and traces of H2S and SO2.CO2 in the arc and back-arc rocks has delta C-13 values of -2.1 to 13.1 parts per thousand, similar to MORB. These data suggest that degassing of CO2 could explain the slightly lower delta C-13 values for some Mariana Trough volcanic glasses, and that incorporation of subduction-derived organic carbon into the Mariana trough mantle source may not be necessary. More analyses are required to resolve this question, however.
The volcanoes of an oceanic arc from origin to destruction: A case from the northern Luzon Arc
NASA Astrophysics Data System (ADS)
Lai, Yu-Ming; Song, Sheng-Rong
2013-09-01
Volcanoes were created, grew, uplifted, became dormant or extinct, and were accreted as part of continents during continuous arc-continent collision. Volcanic rocks in Eastern Taiwan's Coastal Range (CR) are part of the northern Luzon Arc, an oceanic island arc produced by the subduction of the South China Sea Plate beneath the Philippine Sea Plate. Igneous rocks are characterized by intrusive bodies, lava and pyroclastic flows, and volcaniclastic rocks with minor tephra deposits. Based on volcanic facies associations, Sr-Nd isotopic geochemistry, and the geography of the region, four volcanoes were identified in the CR: Yuemei, Chimei, Chengkuangao, and Tuluanshan. Near-vent facies associations show different degrees of erosion in the volcanic edifices for Chimei, Chengkuangao, and Tuluanshan. Yuemei lacks near-vent rocks, implying that Yuemei's main volcanic body may have been subducted at the Ryukyu Trench with the northward motion of the Philippine Sea Plate. These data suggest a hypothesis for the evolution of volcanism and geomorphology during arc growth and ensuing arc-continent collision in the northern Luzon Arc, which suggests that these volcanoes were formed from the seafloor, emerging as islands during arc volcanism. They then became dormant or extinct during collision, and finally, were uplifted and accreted by additional collision. The oldest volcano, Yuemei, may have already been subducted into the Ryukyu Trench.
A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.
Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon
2018-06-01
Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.
Plasma Torch for Plasma Ignition and Combustion of Coal
NASA Astrophysics Data System (ADS)
Ustimenko, Alexandr; Messerle, Vladimir
2015-09-01
Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.
Water contents of clinopyroxenes from sub-arc mantle peridotites
Turner, Michael; Turner, Simon; Blatter, Dawnika; Maury, Rene; Perfit, Michael; Yogodzinski, Gene
2017-01-01
One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.
Plasma Entry from Tail into the Dipolar Magnetosphere During Substorms
NASA Astrophysics Data System (ADS)
Haerendel, Gerhard
Plasma entering the dipolar magnetosphere from the tail has to overcome the obstacle presented by the conductivity enhancements caused by the poleward arc(s). While the arcs move poleward, the plasma proceeds equatorward as testified by the existence of a westward electric field. The arcs break into smaller-scale structures and loops with a tendency of eastward growth and expansion, although the basic driving force is directed earthward/equatorward. The likely reason is that the arc-related conductivity enhancements act as flow barriers and convert normal into shear stresses. The energy derived from the release of the shear stresses and dissipated in the arcs lowers the entropy content of the flux tubes and enables their earthward progression. In addition, poleward jumps of the breakup arcs are quite common. They result from refreshments of the generator plasma by the sequential arrival of flow bursts from the near-Earth neutral line. Once inside the oval, the plasma continues to move equatorward as manifested through north-south aligned auroral forms. Owing to the existence of an inner border of the oval, marked by the Region 2 currents, all flows are eventually diverted sunward.
Linac-based total body irradiation (TBI) with volumetric modulated arc therapy (VMAT)
NASA Astrophysics Data System (ADS)
Tas, B.; Durmus, I. F.; Okumus, A.; Uzel, O. E.
2017-02-01
To evaluate dose distribution of Volumetric modulated arc therapy (VMAT) planning tecnique using Versa HD® lineer accelerator to deliver Total Body Irradiation (TBI) on the coach. Eight TBI patient's Treatment Planning System (TPS) were performed with dual arc VMAT for each patient. The VMAT-TBI consisted of three isocentres and three dual overlapping arcs. The prescribed dose was 12 Gy. Mean dose to lung and kidney were restricted less than 10 Gy and max. dose to lens were restricted less than 6 Gy. The plans were verified using 2D array and ion chamber. The comparison between calculation and measurement were made by γ-index analysis and absolute dose. An average total delivery time was determined 923±34 seconds and an average MU was determined 2614±228 MUs for dual arc VMAT. Mean dose to lungs was 9.7±0.2 Gy, mean dose to kidneys was 8.8±0.3 Gy, max. dose to lens was 5.5±0.3 Gy and max. dose was 14.6±0.3 Gy, HI of PTV was 1.13±0.2, mean dose to PTV was 12.6±1.5 Gy and mean γ-index pass rate was %97.1±1.9. The results show that the tecnique for TBI using VMAT on the treatment coach is feasible.
NASA Astrophysics Data System (ADS)
Yan, Shaojian; Tian, Canxin; Huang, Zhihong; Yang, Bing; Fu, Dejun
2014-10-01
CrTiAlN/TiAlN composite coatings were deposited on cemented carbide by using a home-made industrial scale multi-arc ion plating system. The samples were studied by X-ray diffraction, scanning electron microscopy (SEM), microhardness and ball-on-disk testing. The properties of the CrTiAlN/TiAlN coatings were significantly influenced by the microstructure and the deposition time ratio of TiAlN over CrTiAlN layers. With the increase of deposition time ratio, the microhardness of CrTiAlN/TiAlN increased from 28.6 GPa to 37.5 GPa, much higher than that of CrTiAlN coatings. The friction coefficients of the CrTiAlN/TiAlN coatings were higher than those of CrTiAlN coatings against a cemented carbide ball. The microhardness of the CrTiAlN/TiAlN coatings was changed after annealing at 800°C, and the friction coefficients of the annealed coatings were increased against the cemented carbide ball.
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
Henderson, O.A.
1962-07-17
An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)
NASA Astrophysics Data System (ADS)
Potekaev, A. I.; Kislitsyn, S. B.; Uglov, V. V.; Klopotov, A. A.; Gorlachev, I. D.; Klopotov, V. D.; Grinkevich, L. S.
2016-05-01
The data on the influence of irradiation of (Ti, Cr)N1-x coatings by helium and argon ions on their surface structure are presented. The (Ti, Cr)N1-x coatings 50-300 nm in thickness were formed on carbon steel substrates by vacuum-arc deposition. Irradiation of the coated specimens was performed in a DC-60 heavy-ion accelerator by low-energy 4He+1, 4He+2 and 40Ar5+ ions and high-energy 40Ar5+ ions up to the fluence 1.0·1017 ion/cm2 at the irradiation temperature not higher than 150°C. It is shown that irradiation of the (Ti, Cr)N1-x coating surface by 4He+1, 4He+2 and 40Ar5+ ions with the energy 20 keV/charge does not give rise to any noticeable structural changes nor any surface blistering, while its irradiation by 40Ar5+ ions with the energy 1.50 MeV/amu causes blistering.
High Power Ion Cyclotron Heating in the VASIMR
NASA Astrophysics Data System (ADS)
Longmier, B. W.; Brukardt, M. S.; Bering, E. A.; Chang Diaz, F.; Squire, J.
2009-12-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) is an electric propulsion system under development at Ad Astra Rocket Company that utilizes several processes of ion acceleration and heating that occur in the Birkeland currents of an auroral arc system. Among these processes are parallel electric field acceleration, lower hybrid resonance heating, and ion cyclotron resonance heating. The VASIMR® is capable of laboratory simulation of electromagnetic ion cyclotron wave heating during a single pass of ions through the resonance region. The plasma is generated by a helicon discharge of 35 kW then passes through a 176 kW RF booster stage that couples left hand polarized slow mode waves from the high field side of the resonance. VX-200 auroral simulation results from the past year are discussed. Ambipolar acceleration has been shown to produce 35eV argon ions in the helicon exhaust. The effects on the ion exhaust with an addition of 150-200 kW of ion cyclotron heating are presented. The changes to the VASIMR® experiment at Ad Astra Rocket Company's new facility in Webster, Texas will also be discussed, including the possibility of collaborative experiments.
Recent operation of the FNAL magnetron H- ion source
NASA Astrophysics Data System (ADS)
Karns, P. R.; Bollinger, D. S.; Sosa, A.
2017-08-01
This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.
More About Arc-Welding Process for Making Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Benavides, Jeanette M.; Leidecker, Henning
2005-01-01
High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.
Glisson, Charles; Schoenwald, Sonja K
2005-12-01
This paper reviews the implications of organizational and community intervention research for the implementation of effective mental health treatments in usual community practice settings. The paper describes an organizational and community intervention model named ARC for Availability, Responsiveness and Continuity, that was designed to support the improvement of social and mental health services for children. The ARC model incorporates intervention components from organizational development, interorganizational domain development, the diffusion of innovation, and technology transfer that target social, strategic, and technological factors in effective children's services. This paper also describes a current NIMH-funded study that is using the ARC intervention model to support the implementation of an evidence-based treatment, Multisystemic Therapy (MST), for delinquent youth in extremely rural, impoverished communities in the Appalachian Mountains of East Tennessee.
Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.
Zou, G Q; Lei, G J; Cao, J Y; Duan, X R
2012-07-01
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
Power processor for a 20CM ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Schoenfeld, A. D.; Cohen, E.
1973-01-01
A power processor breadboard for the JPL 20CM Ion Engine was designed, fabricated, and tested to determine compliance with the electrical specification. The power processor breadboard used the silicon-controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to the ion engine. The breadboard power processor was integrated with the JPL 20CM ion engine and complete testing was performed. The integration tests were performed without any silicon-controlled rectifier failure. This demonstrated the ruggedness of the series resonant inverter in protecting the switching elements during arcing in the ion engine. A method of fault clearing the ion engine and returning back to normal operation without elaborate sequencing and timing control logic was evolved. In this method, the main vaporizer was turned off and the discharge current limit was reduced when an overload existed on the screen/accelerator supply. After the high voltage returned to normal, both the main vaporizer and the discharge were returned to normal.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
Effects of CPII implantation on the characteristics of diamond-like carbon films
NASA Astrophysics Data System (ADS)
Chen, Ya-Chi; Weng, Ko-Wei; Chao, Ching-Hsun; Lien, Shui-Yang; Han, Sheng; Chen, Tien-Lai; Lee, Ying-Chieh; Shih, Han-Chang; Wang, Da-Yung
2009-05-01
A diamond-like carbon film (DLC) was successfully synthesized using a hybrid PVD process, involving a filter arc deposition source (FAD) and a carbon plasma ion implanter (CPII). A quarter-torus plasma duct filter markedly reduced the density of the macro-particles. Graphite targets were used in FAD. Large electron and ion energies generated from the plasma duct facilitate the activation of carbon plasma and the deposition of high-quality DLC films. M2 tool steel was pre-implanted with 45 kV carbon ions before the DLC was deposited to enhance the adhesive and surface properties of the film. The ion mixing effect, the induction of residual stress and the phase transformation at the interface were significantly improved. The hardness of the DLC increased to 47.7 GPa and 56.5 GPa, and the wear life was prolonged to over 70 km with implantation fluences of 1 × 10 17 ions/cm 2 and 2 × 10 17 ions/cm 2, respectively.
NASA Astrophysics Data System (ADS)
Bakken, M. R.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Rhodes, A. T.; Winz, G. R.
2016-10-01
A new diagnostic measuring local E-> (r , t) fluctuations is being developed for plasma turbulence studies in tokamaks. This is accomplished by measuring fluctuations in the separation of the π components in the Hα motional Stark spectrum. Fluctuations in this separation are expected to be Ẽ / ẼEMSE 10-3EMSE 10-3 . In addition to a high throughput, high speed spectrometer, the project requires a low divergence (Ω 0 .5°) , 80 keV, 2.5 A H0 beam and a target plasma test stand. The beam employs a washer-stack arc ion source to achieve a high species fraction at full energy. Laboratory tests of the ion source demonstrate repeatable plasmas with Te 10 eV and ne 1.6 ×1017 m-3, sufficient for the beam ion optics requirements. Te and ne scalings of the ion source plasma are presented with respect to operational parameters. A novel three-phase resonant converter power supply will provide 6 mA/cm2 of 80 keV H0 at the focal plane for pulse lengths up to 15 ms, with low ripple δV / 80 keV 0.05 % at 280 kHz. Diagnostic development and validation tests will be performed on a magnetized plasma test stand with 0.5 T field. The test chamber will utilize a washer-stack arc source to produce a target plasma comparable to edge tokamak plasmas. A bias-plate with programmable power supply will be used to impose Ẽ within the target plasma. Work supported by US DOE Grant DE-FG02-89ER53296.
Shin, H-J; Song, J H; Jung, J-Y; Kwak, Y-K; Kay, C S; Kang, Y-N; Choi, B O; Jang, H S
2013-01-01
Objective: To evaluate the accuracy of pencil beam calculation (PBC) and Monte Carlo calculation (MCC) for dynamic arc therapy (DAT) in a cylindrically shaped homogenous phantom, by comparing the two plans with an ion chamber, a film and a three-dimensional (3D) volumetric dosemeter. Methods: For this study, an in-house phantom was constructed, and the PBC and MCC plans for DAT were performed using iPlan® RT (BrainLAB®, Heimstetten, Germany). The A16 micro ion chamber (Standard Imaging, Middleton, WI), Gafchromic® EBT2 film (International Specialty Products, Wayne, NJ) and ArcCHECK™ (Sun Nuclear, Melbourne, FL) were used for measurements. For comparison with each plan, two-dimensional (2D) and 3D gamma analyses were performed using 3%/3 mm and 2%/2 mm criteria. Results: The difference between the PBC and MCC plans using 2D and 3D gamma analyses was found to be 7.85% and 28.8%, respectively. The ion chamber and 2D dose distribution measurements did not exhibit this difference revealed by the comparison between the PBC and MCC plans. However, the 3D assessment showed a significant difference between the PBC and MCC (62.7% for PBC vs 93.4% for MCC, p = 0.034). Conclusion: Evaluation using a 3D volumetric dosemeter can be clinically useful for delivery quality assurance (QA), and the MCC should be used to achieve the most reliable dose calculation for DAT. Advances in knowledge: (1) The DAT plan calculated using the PBC has a limitation in the calculation methods, and a 3D volumetric dosemeter was found to be an adequate tool for delivery QA of DAT. (2) The MCC was superior to PBC in terms of the accuracy in dose calculation for DAT even in the homogenous condition. PMID:24234583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex
Baseline design of the JLEIC booster synchrotron is presented. Its aim is to inject and accumulate heavy ions and protons at 285 MeV, to accelerate them to about 7 GeV, and finally to extract the beam into the ion collider ring. The Figure-8 ring features two 2600 achromatic arcs configured with negative momentum compaction optics, designed to avoid transition crossing for all ion species during the course of acceleration. The lattice also features a specialized high dispersion injection insert optimized to facilitate the transverse phase-space painting in both planes for multi-turn ion injection. Furthermore, the lattice has been optimized tomore » ease chromaticity correction with two families of sextupoles in each plane. The booster ring is configured with super-ferric, 3 Tesla bends. We are presently launching optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime.« less
In-liquid arc plasma jet and its application to phenol degradation
NASA Astrophysics Data System (ADS)
Liu, Jing-Lin; Park, Hyun-Woo; Hamdan, Ahmad; Cha, Min Suk
2018-03-01
We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.
Barth, A.P.; Wooden, J.L.
2006-01-01
Initiation of the Cordilleran magmatic arc in the southwestern United States is marked by intrusion of granitic plutons, predominantly composed of alkali-calcic Fe- and Sr-enriched quartz monzodiorite and monzonite, that intruded Paleoproterozoic basement and its Paleozoic cratonal-miogeoclinal cover. Three intrusive suites, recognized on the basis of differences in high field strength element and large ion lithophile element abundances, contain texturally complex but chronologically distinctive zircons. These zircons record heterogeneous but geochemically discrete mafic crustal magma sources, discrete Permo-Triassic intrusion ages, and a prolonged postemplacement thermal history within the long-lived Cordilleran arc, leading to episodic loss of radiogenic Pb. Distinctive lower crustal magma sources reflect lateral heterogeneity within the composite lithosphere of the Proterozoic craton. Limited interaction between derived magmas and middle and upper crustal rocks probably reflects the relatively cool thermal structure of the nascent Cordilleran continental margin magmatic arc. ?? 2006 by The University of Chicago. All rights reserved.
Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity
da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto
2011-01-01
During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099
NASA Astrophysics Data System (ADS)
Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.
2017-10-01
A model of cathode spots in high-current vacuum arcs is developed with account of all the potentially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre-existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the interaction of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periphery of the spot, with the main driving force being the pressure due to incident ions. Electron emission cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700-4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.
A new continuous light source for high-speed imaging
NASA Astrophysics Data System (ADS)
Paton, R. T.; Hall, R. E.; Skews, B. W.
2017-02-01
Xenon arc lamps have been identified as a suitable continuous light source for high-speed imaging, specifically high-speed Schlieren and shadowgraphy. One issue when setting us such systems is the time that it takes to reduce a finite source to the approximation of a point source for z-type schlieren. A preliminary design of a compact compound lens for use with a commercial Xenon arc lamp was tested for suitability. While it was found that there is some dimming of the illumination at the spot periphery, the overall spectral and luminance distribution of the compact source is quite acceptable, especially considering the time benefit that it represents.
Aligning organizational priorities with ARC to improve youth mental health service outcomes.
Glisson, Charles; Williams, Nathaniel J; Hemmelgarn, Anthony; Proctor, Enola; Green, Philip
2016-08-01
The Availability, Responsiveness, and Continuity (ARC) organizational intervention is designed to improve community-based youth mental health services by aligning organizational priorities with 5 principles of effective service organizations (i.e., mission driven, results oriented, improvement directed, relationship centered, participation based). This study assessed the effect of the ARC intervention on youth outcomes and the mediating role of organizational priorities as a mechanism linking the ARC intervention to outcomes. Fourteen community-based mental health agencies in a midwestern metropolis along with 475 clinicians and 605 youth (ages 5-18) served by those agencies were randomly assigned to the 3-year ARC intervention or control condition. The agencies' priorities were measured with the ARC Principles Questionnaire (APQ) completed by clinicians at the end of the intervention. Youth outcomes were measured as total problems in psychosocial functioning described by their caregivers using the Shortform Assessment for Children (SAC) at 6 monthly intervals. The rate of improvement in youths' psychosocial functioning in agencies assigned to the ARC condition was 1.6 times the rate of improvement in agencies assigned to the control condition, creating a standardized difference in functioning of d = .23 between the 2 groups at the 6-month follow-up. The effect on youth outcomes was fully mediated by the alignment of organizational priorities described in the 5 ARC principles (d = .21). The ARC organizational intervention improves youth outcomes by aligning organizational priorities with the 5 ARC principles. The findings suggest that organizational priorities explain why some community mental health agencies are more effective than others. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wang, Lijun; Zhang, Xiao; Huang, Xiaolong; Jia, Shenli
2017-11-01
In the process of vacuum arc breaking, the energy injected into the anode will cause anode melting, evaporation, and deformation, resulting in the formation of the anode melting pool. The anode activities have great influence on the arc behavior. When the arc current is large enough, even the influence of axial magnetic field is considered, the arc column still is in contraction state, which means the arc burns only on a part of the electrode. In this paper, the model of anode melting pool deformation and rotation is used, and the model includes anode melting and solidification module, magneto-hydro-dynamic module of the anode melting pool, the volume of fraction method, and the current continuity equation. In this paper, the diffuse arc area is selected as 100%, 75%, and 50%, respectively. The anode temperature and deformation, the anode melting layer thickness, and the rotational velocity of the anode melting pool are obtained. The results show that when the current is at 17.5 kA (rms) and the diffuse arc area is 100%, the anode's maximum temperature is 1477 K and the crater depth is 0.83 mm. But when the diffuse arc areas are 75% and 50%, the anode's maximum temperatures reach 1500 K and 1761 K, and the crater depths reach 1.2 mm and 3 mm, respectively. Arc contraction will lead to more serious anode deformation. A similar result is obtained when the simulation current is 12.5 kA. Under the similar situation, the simulation results in the crater depth, the residual melt layer thickness, the rotational speed of the melting pool, and the maximum temperature of the anode at current zero are in good agreement with the experimental results.
[Study on the arc spectral information for welding quality diagnosis].
Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun
2009-03-01
Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.
Long pulse operation of the Kamaboko negative ion source on the MANTIS test bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tramham, R.; Jacquot, C.; Riz, D.
1998-08-20
Advanced Tokamak concepts and steady state plasma scenarios require external plasma heating and current drive for extended time periods. This poses several problems for the neutral beam injection systems that are currently in use. The power loading of the ion source and accelerator are especially problematic. The Kamaboko negative ion source, a small scale model of the ITER arc source, is being prepared for extended operation of deuterium beams for up to 1000 seconds. The operating conditions of the plasma grid prove to be important for reducing electron power loading of the accelerator. Operation of deuterium beams for extended periodsmore » also poses radiation safety risks which must be addressed.« less
Pre-treating water with non-thermal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander
The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water havingmore » a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.« less
A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons
2018-01-01
Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.
An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy
NASA Astrophysics Data System (ADS)
Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine
2017-09-01
This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.
Turbidite geochemistry and evolution of the Izu-Bonin arc and continents
NASA Astrophysics Data System (ADS)
Gill, J. B.; Hiscott, R. N.; Vidal, Ph.
1994-10-01
The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.
Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc
NASA Astrophysics Data System (ADS)
Koulali, A.; Susilo, S.; McClusky, S.; Meilano, I.; Cummins, P.; Tregoning, P.; Lister, G.; Efendi, J.; Syafi'i, M. A.
2016-03-01
We use Global Positioning System (GPS) measurements of surface deformation to show that the convergence between the Australian Plate and Sunda Block in eastern Indonesia is partitioned between the megathrust and a continuous zone of back-arc thrusting extending 2000 km from east Java to north of Timor. Although deformation in this back-arc region has been reported previously, its extent and the mechanism of convergence partitioning have hitherto been conjectural. GPS observations establish that partitioning occurs via a combination of anticlockwise rotation of an arc segment called the Sumba Block, and left-lateral movement along a major NE-SW strike-slip fault west of Timor. We also identify a westward extension of the back-arc thrust for 300 km onshore into East Java, accommodating slip of ˜6 mm/yr. These results highlight a major new seismic threat for East Java and draw attention to the pronounced seismic and tsunami threat to Bali, Lombok, Nusa Tenggara, and other coasts along the Flores Sea.
A 1D ion species model for an RF driven negative ion source
NASA Astrophysics Data System (ADS)
Turner, I.; Holmes, A. J. T.
2017-08-01
A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.
Environmental Influence of Gravity and Pressure on Arc Tracking of Insulated Wires Investigated
NASA Technical Reports Server (NTRS)
2005-01-01
Momentary short-circuit arcs between a defective polyimide-insulated wire and another conductor may thermally char (pyrolize) the insulating material. The charred polyimide, being conductive, can sustain the short-circuit arc, which may propagate along the wire through continuous pyrolization of the polyimide insulation (arc tracking). If the arcing wire is part of a multiple-wire bundle, the polyimide insulation of other wires within the bundle may become thermally charred and start arc tracking also (flash over). Such arc tracking can lead to complete failure of an entire wire bundle, causing other critical spacecraft or aircraft failures. Unfortunately, all tested candidate wire insulations for aerospace vehicles were susceptible to arc tracking. Therefore, a test procedure was designed at the NASA Lewis Research Center to select the insulation type least susceptible to arc tracking. This test procedure addresses the following three areas of concern: (1) probability of initiation, (2) probability of reinitiation (restrike), and (3) extent of arc tracking damage (propagation rate). Item 2 (restrike probability) is an issue if power can be terminated from and reapplied to the arcing wire (by a switch, fuse, or resettable circuit breaker). The degree of damage from an arcing event (item 3) refers to how easily the arc chars nearby insulation and propagates along the wire pair. Ease of nearby insulation charring can be determined by measuring the rate of arc propagation. Insulation that chars easily will propagate the arc faster than insulation that does not char very easily. A popular polyimide insulated wire for aerospace vehicles, MIL-W-81381, was tested to determine a degree of damage from an arcing event (item 3) in the following three environments: (1) microgravity with air at 1-atm pressure, (2) 1g with air at 1 atm, and (3) 1g within a 10^-6 Torr vacuum. The microgravity 1-atm air was the harshest environment, with respect to the rate of damage of arc tracking, for the 20 AWG (American Wiring Gauge) MIL-W-81381 wire insulation type . The vacuum environment resulted in the least damage. Further testing is planned to determine if the environmental results are consistent between insulation types and to evaluate the other two parameters associated with arc tracking susceptibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, I., E-mail: igozh@ifm.liu.se; Petruhins, A.; Dahlqvist, M.
2014-03-28
DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film depositions involving compound cathodes.« less
IBS suppression lattice in RHIC: theory and experimental verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedotov,A.V.; Bai, M.; Bruno, D.
Intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for Relativistic Heavy Ion Collider (RHIC) operation with heavy ions. Over the last few years the process of IBS was carefully studied in RHIC with dedicated IBS measurements and their comparison with the theoretical models. A new lattice was recently designed and implemented in RHIC to suppress transverse IBS growth, which lowered the average arc dispersion by about 20% [1]. This lattice became operational during RHIC Run-8. We review the IBS suppression mechanism, IBS measurements before and after the lattice change, and comparisons with predictions.
Some fundamental questions about the evolution of the Sea of Japan back-arc
NASA Astrophysics Data System (ADS)
Van Horne, A.; Sato, H.; Ishiyama, T.
2016-12-01
The Japanese island arc separated from Asia through the rifting of an active continental margin, and the opening of the Sea of Japan back-arc, in the middle Miocene. Due to its complex tectonic setting, the Sea of Japan back-arc was affected by multiple external events contemporary with its opening, including a plate reorganization, the opening of at least two other nearby back-arcs (Shikoku Basin and Okhotsk Sea/Kuril Basin), and two separate arc-arc collisions, involving encroachment upon Japan of the Izu-Bonin and Kuril arcs. Recent tectonic inversion has exposed entire sequences of back-arc structure on land, which remain virtually intact because of the short duration of inversion. Japan experiences a high level of seismic activity due to its position on the overriding plate of an active subduction margin. Continuous geophysical monitoring via a dense nationwide seismic/geodetic network, and a program of controlled-source refraction/wide-angle reflection profiling, directed towards earthquake hazard mitigation, have made it the repository of a rich geophysical data set through which to understand the processes that have shaped back-arc development. Timing, structural evolution, and patterns of magmatic activity during back-arc opening in the Sea of Japan were established by earlier investigations, but fundamental questions regarding back-arc development remain outstanding. These include (1) timing of the arrival of the Philippine Sea plate in southwest Japan, (2) the nature of the plate boundary prior to its arrival, (3) the pre-rift location of the Japanese island arc when it was attached to Asia, (4) the mechanism of back-arc opening (pull-apart or trench retreat), (5) the speed of opening, (6) simultaneous or sequential development of the multi-rift system, (7) the origin of the anomalously thick Yamato Basin ocean crust, and (8) the pattern of concentrated deformation in the failed-rift system of the eastern Sea of Japan since tectonic inversion. Resolving uncertainties like those posed here will be necessary for a more complete understanding of the nature of and processes involved in back-arc development in the Sea of Japan.
Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review
NASA Astrophysics Data System (ADS)
Pal, Kamal; Pal, Surjya K.
2011-08-01
The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.
Fatigue Microcrack Behavior under the Influence of Surface Residual Stresses.
1982-11-01
Stress Surface Crack Opening Displacement Technique * Brine Environment Stress Intensity Weld Microstructure W. *O ABSTRACT (Continue on reverse aide If...discussed. The results of preliminary optical metallography of the microstructural development in three types of welding processes for one inch thick...of Gas-Metal Arc Weld (GMA) 35 14 Macrograph of Extended Electrode Weld (EE) 35 15 Macrograpb of Deep Gas-Tungsten Arc Weld (DTIG) 36 16
Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finegan, Donal; Robinson, James B.; Heenan, Thomas M. M.
Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed inmore » Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.« less
Trajectory Optimization of an Interstellar Mission Using Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Kluever, Craig A.
1996-01-01
This paper presents several mission designs for heliospheric boundary exploration using spacecraft with low-thrust ion engines as the primary mode of propulsion The mission design goal is to transfer a 200-kg spacecraft to the heliospheric boundary in minimum time. The mission design is a combined trajectory and propulsion system optimization problem. Trajectory design variables include launch date, launch energy, burn and coast arc switch times, thrust steering direction, and planetary flyby conditions. Propulsion system design parameters include input power and specific impulse. Both SEP and NEP spacecraft arc considered and a wide range of launch vehicle options are investigated. Numerical results are presented and comparisons with the all chemical heliospheric missions from Ref 9 are made.
NASA Astrophysics Data System (ADS)
Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo
2012-06-01
Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, G.; Meriwether, J.W.; Tepley, C.A.
Thermospheric winds and temperatures were observed from Fritz Peak, Colorado and Calgary, Alberta during the 23 October 1981 Stable Auroral Red Arc (SAR-arc) and aurora event. Ground-based photometer observations during the SAR-arc event allowed the position, 630.0 nm emission rate, and width of the SAR-arc over Fritz Peak to be monitored throughout the night. Data from the DE-2 satellite overflight near 0400UT allowed the structure of the SAR-arc near Fritz Peak and the aurora in Canada to be determined. The measurements made from Fritz Peak Observatory during the early evening hours showed a thermospheric response to heating within the SAR-arcmore » with meridional winds flowing away from the region of maximum heating at velocities less than 50 m s/sup -1/. Later during the night the meridional winds measured over Fritz Peak shifted equatorward. The neutral gas temperature decreased from about 1700/sup 0/K in the early evening to about 1200/sup 0/K before sunrise. The wind measurements made from Calgary indicated a more complex flow pattern. During the early evening hours the winds were directed poleward, increasing in velocity with latitude from about 50 to 300 m s/sup -1/. Near local midnight the winds reversed to equatorward and also became irregular in the vicinity of the station. The winds in the vicinity of Calgary are under the influence of intense particle precipitation and enhanced ion drag associated with magnetospheric convection that give rise to considerable variability.« less
Modeling of breakdown during the post-arc phase of a vacuum circuit breaker
NASA Astrophysics Data System (ADS)
Sarrailh, P.; Garrigues, L.; Boeuf, J. P.; Hagelaar, G. J. M.
2010-12-01
After a high-current interruption in a vacuum circuit breaker (VCB), the electrode gap is filled with a high density copper vapor plasma in a large copper vapor density (~1022 m-3). The copper vapor density is sustained by electrode evaporation. During the post-arc phase, a rapidly increasing voltage is applied to the gap, and a sheath forms and expands, expelling the plasma from the gap when circuit breaking is successful. There is, however, a risk of breakdown during that phase, leading to the failure of the VCB. Preventing breakdown during the post-arc phase is an important issue for the improvement of VCB reliability. In this paper, we analyze the risk of Townsend breakdown in the high copper vapor density during the post-arc phase using a numerical model that takes into account secondary electron emission, volume ionization, and plasma and neutral transport, for given electrode temperatures. The simulations show that fast neutrals created in the cathode sheath by charge exchange collisions with ions generate a very large secondary electron emission current that can lead to Townsend breakdown. The results also show that the risk of failure of the VCB due to Townsend breakdown strongly depends on the electrode temperatures (which govern the copper vapor density) and becomes important for temperatures greater than 2100 K, which can be reached in vacuum arcs. The simulations also predict that a hotter anode tends to increase the risk of Townsend breakdown.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2011 CFR
2011-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2013 CFR
2013-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2012 CFR
2012-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Code of Federal Regulations, 2014 CFR
2014-07-01
... electric submerged arc furnace to become subject to a different mass standard applicable under this subpart... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Ferroalloy Production Facilities § 60.261...
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Ufer, Friederike; Vargas, Pablo; Engler, Jan Broder; Tintelnot, Joseph; Schattling, Benjamin; Winkler, Hana; Bauer, Simone; Kursawe, Nina; Willing, Anne; Keminer, Oliver; Ohana, Ora; Salinas-Riester, Gabriela; Pless, Ole; Kuhl, Dietmar; Friese, Manuel A
2016-09-23
Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses. Copyright © 2016, American Association for the Advancement of Science.
A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.
Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao
2011-08-01
The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.
Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less
Yatom, Shurik; Selinsky, Rachel S.; Koel, Bruce E.; ...
2017-09-09
Arc discharge synthesis of single-walled carbon nanotubes (SWCNTs) remains largely uncontrollable, due to incomplete understanding of the synthetic process itself. Here, we show that synthesis of SWCNTs by a carbon arc may not constitute a single continuous process, but may instead consist of two distinct modes. One of these, a “synthesis-on” mode, produces the majority of the nanomaterials. During the synthesis-on mode, proportionally more carbon nanotubes are collected than in another mode, a “synthesis-off” mode. Both synthesis-on and synthesis-off modes for a typical arc configuration, employing a hollow anode filled with a mixture of powdered metal catalyst and graphite, weremore » characterized by using in situ electrical, imaging, and spectroscopic diagnostics, along with ex situ imaging and spectroscopy. The synthesis-on mode duration is rare compared to the total arc run-time, helping to explain the poor selectivity found in the final collected products, a known inadequacy of arc synthesis. Finally, the rarity of the synthesis on mode occurence may be due to the synthesis off mode being more favorable energetically.« less
Organic antireflective coatings for 193-nm lithography
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd
1999-06-01
Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.
Draut, Amy E.; Clift, Peter D.
2006-01-01
Sediment deposited around oceanic volcanic ares potentially provides the most complete record of the tectonic and geochemical evolution of active margins. The use of such tectonic and geochemical records requires an accurate understanding of sedimentary dynamics in an arc setting: processes of deposition and reworking that affect the degree to which sediments represent the contemporaneous volcanism at the time of their deposition. We review evidence from the modern Mariana and Tonga arcs and the ancient arc crustal section in the Lower Jurassic Talkeetna Formation of south-central Alaska, and introduce new data from the Mariana Arc, to produce a conceptual model of volcaniclastic sedimentation processes in oceanic arc settings. All three arcs are interpreted to have formed in tectonically erosive margin settings, resulting in long-term extension and subsidence. Debris aprons composed of turbidites and debris flow deposits occur in the immediate vicinity of arc volcanoes, forming relatively continuous mass-wasted volcaniclastic records in abundant accommodation space. There is little erosion or reworking of old volcanic materials near the arc volcanic front. Tectonically generated topography in the forearc effectively blocks sediment flow from the volcanic front to the trench; although some canyons deliver sediment to the trench slope, most volcaniclastic sedimentation is limited to the area immediately around volcanic centers. Arc sedimentary sections in erosive plate margins can provide comprehensive records of volcanism and tectonism spanning < 10 My. The chemical evolution of a limited section of an oceanic arc may be best reconstructed from sediments of the debris aprons for intervals up to ~ 20 My but no longer, because subduction erosion causes migration of the forearc basin crust and its sedimentary cover toward the trench, where there is little volcaniclastic sedimentation and where older sediments are dissected and reworked along the trench slope.
Ellington, Matthew J; Yearwood, Lianne; Ganner, Mark; East, Claire; Kearns, Angela M
2008-01-01
The ST8-SCCmecIVa (USA300) methicillin-resistant Staphylococcus aureus (MRSA) clone can harbour the arginine catabolic mobile element (ACME). The arc gene cluster within the ACME may function as a virulence or strain survival factor. We determined the distribution of the ACME-associated arcA gene among genetically diverse MRSA from around England and Wales. MRSA isolates (n = 203) of diverse genetic types, referred to the England and Wales Staphylococcus reference laboratory, were tested for the presence of the ACME-arcA gene. ACME-arcA-positive isolates were characterized by toxin gene profiling, PFGE and spa sequence typing. MICs of a range of antimicrobials were also determined. The ACME-arcA gene was detected in 17 isolates. Twelve were related to known ST8-MRSA-SCCmecIVa isolates of the USA300 lineage by pulsotype and were resistant to oxacillin, with variable ciprofloxacin and erythromycin resistance. Outside the USA300 lineage, four of the remaining five ACME-arcA isolates were closely related ST97-MRSA-SCCmecV, Panton-Valentine leucocidin (PVL)-negative, resistant to oxacillin and variously resistant to erythromycin, ciprofloxacin, clindamycin, gentamicin, tetracycline and fusidic acid. The remaining isolate was ST1, PVL-positive and resistant to fusidic acid as well as oxacillin. Thirteen out of the 17 isolates were associated with skin and soft tissue infections. The detection of ACME-arcA in diverse MRSA types highlights the mobility of the elements encoding ACME-arcA genes. The diversity of strain types and resistance profiles among ACME-arcA-encoding MRSA is a cause for public-health concern and demands continued surveillance and close monitoring.
ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy
2016-05-01
In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, wemore » propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.« less
NASA Astrophysics Data System (ADS)
Ueno, Akira; Ikegami, Kiyoshi; Kondo, Yasuhiro
2004-05-01
A Cs-free negative hydrogen (H-) ion source driven by pulsed arc plasma with a LaB6 filament is being operated for the beam tests of the Japan Proton Accelerator Research Complex (J-PARC) linac. A peak H- current of 38 mA, which exceeds the requirement of the J-PARC first stage, is stably extracted from the ion source with a beam duty factor of 0.9% (360 μs×25 Hz) by principally optimizing the surface condition and shape of the plasma electrode. The sufficiently small emittance of the beam was confirmed by high transmission efficiency (around 90%) through the following 324 MHz 3 MeV J-PARC radio frequency quadrupole linac (M. Ikegami et al., Proc. 2003 Part. Accel. Conf. 2003, p. 1509). The process of the optimization, which confirms the validity of hypothesis that H- ions are produced by surface reaction on a Mo plasma electrode dominantly in the ion source, is presented.
Mantle Flow and Melting Processes Beneath Back-Arc Basins
NASA Astrophysics Data System (ADS)
Hall, P. S.
2007-12-01
The chemical systematics of back-arc basin basalts suggest that multiple mechanisms of melt generation and transport operate simultaneously beneath the back-arc, resulting in a continuum of melts ranging from a relatively dry, MORB-like end-member to a wet, slab-influenced end-member [e.g., Kelley et al., 2006; Langmuir et al., 2006]. Potential melting processes at work include adiabatic decompression melting akin to that at mid-ocean ridges, diapiric upwelling of hydrous and/or partially molten mantle from above the subducting lithospheric slab [e.g., Marsh, 1979; Hall and Kincaid, 2001; Gerya and Yuen, 2003], and melting of back-arc mantle due to a continuous flux of slab-derived hydrous fluid [Kelley et al., 2006]. In this study, we examine the potential for each of these melting mechanisms to contribute to the observed distribution of melts in back-arc basins within the context of upper mantle flow (driven by plate motions) beneath back-arcs, which ultimately controls temperatures within the melting region. Mantle velocities and temperatures are derived from numerical geodynamic models of subduction with back-arc spreading that explicitly include adiabatic decompression melting through a Lagrangian particle scheme and a parameterization of hydrous melting. Dynamical feedback from the melting process occurs through latent heating and viscosity increases related to dehydration. A range of parameters, including subduction rate and trench-back-arc separation distances, is explored. The thermal evolution of individual diapirs is modeled numerically as they traverse the mantle, from nucleation above the subducting slab to melting beneath the back-arc spreading center, and a range of diapir sizes and densities and considered.
NASA Astrophysics Data System (ADS)
Jean-Frederic, L.; Lallemand, S.; Marcaillou, B.; Klingelhoefer, F.; Agranier, A.; Arcay, D.; Audemard, F. A.; Bassetti, M. A.; Beslier, M. O.; Boucard, M.; Cornée, J. J.; Fabre, M.; Gay, A.; Graindorge, D.; Heuret, A.; Laigle, M.; Léticée, J. L.; Malengros, D.; Mercier de Lepinay, B.; Morena, P.; Münch, P.; Oliot, E.; Oregioni, D.; Padron, C.; Philippon, M. M.; Quillevere, F.; Ratzov, G.; Schenini, L.; Yates, B.; Zami, F.
2017-12-01
The Grenada Basin, a crescent-shape basin forming a back-arc relative to the Lesser Antilles arc, separate Aves Ridge, a remnant early paleogene arc, from Eocene-Oligocene and Late Miocene - actual Lesser Antilles arcs. In its northern part the shallowness and rough topography of the basin basement call into questioned the relevance of opening of a back arc basin for the northern Grenada Basin. During the GARANTI survey (May-June 2017 french R/V L'Atalante), we acquired two transversal (EW) and one basin parallel (NS), ca. 300km long, combined wide-angle seismic (WAS) and multichannel seismic reflection (MCS) lines, plus ca. 3500km of MCS together with multibeam bathymetric data and dredged 14 sites across Grenada basin. Part of these profiles are located in the northern Grenada Basin, north and south of Saba Bank carbonate plateform. South of Saba Bank, the existence of buried crustal faults extending across Aves Ridge and the basin suggest continuity of inherited structures between the two domains. Preliminary modeling of the WAS data along the northern line shows an about 35km thick crust across the Lesser Antilles arc and in the Grenada basin at that latitude, suggesting no or only little extension in the back arc. Along the western side of Saba Bank the north trending Aves Ridge is cut at low angle by steeply dipping reverse faults that vanish southward. North of Saba Bank our data merged with seismic profiles from the AntiTheSis project reveal transpressive deformation south of the Anegada passage, trending N40° to N110° extending toward the Lesser Antilles Eo-Oligocene outer-arc. Only few N90° trending faults extend toward the active arc. These faults trend at high angle with N140-160° intra-arc fault system observed further south. Dredge samples from transpressive ridges west of the outer arc provided mix arc volcanic rocks in foraminifers rich carbonate limestones of possibly mid-Cenozoic age. Our new data call into question the mechanisms that led to arc migration in the Lesser Antilles during mid Cenozoic.
Impacts of continental arcs on global carbon cycling and climate
NASA Astrophysics Data System (ADS)
Lee, C. T.; Jiang, H.; Carter, L.; Dasgupta, R.; Cao, W.; Lackey, J. S.; Lenardic, A.; Barnes, J.; McKenzie, R.
2017-12-01
On myr timescales, climatic variability is tied to variations in atmospheric CO2, which in turn is driven by geologic sources of CO2 and modulated by the efficiency of chemical weathering and carbonate precipitation (sinks). Long-term variability in CO2 has largely been attributed to changes in mid-ocean ridge inputs or the efficiency of global weathering. For example, the Cretaceous greenhouse is thought to be related to enhanced oceanic crust production, while the late Cenozoic icehouse is attributed to enhanced chemical weathering associated with the Himalayan orogeny. Here, we show that continental arcs may play a more important role in controlling climate, both in terms of sources and sinks. Continental arcs differ from island arcs and mid-ocean ridges in that the continental plate through which arc magmas pass may contain large amounts of sedimentary carbonate, accumulated over the history of the continent. Interaction of arc magmas with crustal carbonates via assimilation, reaction or heating can significantly add to the mantle-sourced CO2 flux. Detrital zircons and global mapping of basement rocks shows that the length of continental arcs in the Cretaceous was more than twice that in the mid-Cenozoic; maps also show many of these arcs intersected crustal carbonates. The increased length of continental arc magmatism coincided with increased oceanic spreading rates, placing convergent margins into compression, which favors continental arcs. Around 50 Ma, however, nearly all the continental arcs in Eurasia and North America terminated as India collided with Eurasia and the western Pacific rolled back, initiating the Marianas-Tonga-Kermadec intra-oceanic subduction complex and possibly leading to a decrease in global CO2 production. Meanwhile, extinct continental arcs continued to erode, resulting in regionally enhanced chemical weathering unsupported by magmatic fluxes of CO2. Continental arcs, during their magmatic lifetimes, are thus a source of CO2, driving greenhouse climates, but after they die magmatically, they remain geomorphically active and become a net CO2 sink, helping to drive climate towards cooler conditions. Tectonic oscillations that drive fluctuations in the activity of continental arcs thus may be responsible for greenhouse-icehouse oscillations in the Phanerozoic.
Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.
2010-01-01
Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters
Cloud Arcs in the Western Pacific
NASA Technical Reports Server (NTRS)
2002-01-01
Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380 kilometers x 345 kilometers. It utilizes data from blocks 80 to 82 within World Reference System-2 path 90.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms
Wiater, Michael F.; Oostrom, Marjolein T.; Smith, Bethany R.; Wang, Qing; Dinh, Thu T.; Roberts, Brandon L.; Jansen, Heiko T.; Ritter, Sue
2012-01-01
Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the “dynamic phase” of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a “static phase” of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment. PMID:22492818
Boninites: Characteristics and tectonic constraints, northeastern Appalachians
Kim, J.; Jacobi, R.D.
2002-01-01
Boninites are high Mg andesites that are thought to form in suprasubduction zone tectonic environments as primary melts from refractory mantle. Boninites provide a potential constraint on tectonic models for ancient terranes that contain boninites because the only unequivocal tectonic setting in which "modern" boninites have been recognized is a fore-arc setting. Tectonic models for "modern" boninite genesis include subduction initiation ("infant arc"), fore-arc spreading, and the forearc side of intra-arc rifting (spreading). These models can be differentiated by the relative age of the boninites and to a lesser degree, geochemistry. The distinctive geochemistry of boninites promotes their recognition in ancient terranes. As detailed in this report, several mafic terranes in the northeastern Appalachians contain boninites; these terranes were situated on both sides of Iapetus. The characteristics of these boninites can be used to constrain tectonic models of the evolution of the northeastern Appalachians. On the Laurentian side of Iapetus, "infant arc" boninites were not produced ubiquitously during the Cambrian subduction initiation, unless sampling problems or minimum age dates obscure a more widespread boninite "infant arc". The Cambrian subduction initiation on the Laurentian side was probably characterized by both "infant arc" boninitic arc construction (perhaps the >496 Ma Hawley Formation and the >488 Ma Betts Cove Ophiolite) and "normal" arc construction (Mt. Orford). This duality is consistent with the suggestion that the pre-collisional geometry of the Laurentian margin was complex. The Bay of Islands Complex and Thetford Mines ophiolite boninites are likely associated with forearc/intra-arc spreading during the protracted evolution of the Cambrian arc system. The relatively young boninites in the Bronson Hill Arc suggest that the Taconic continuous eastward subduction tectonic model is less tenable than other models. On the Gondwana side of Iapetus, the Tea Arm boninites of the Exploits Group stratigraphically rest on arc and MORB volcanics. This stratigraphy, and the relatively young age of the boninites (486 Ma), compared to assumed subduction initiation age (>513 Ma), suggest that the boninites may be more consistent with fore-arc spreading/intra-arc spreading. However, an "infant arc" model cannot be dismissed, and is commonly proposed for the nearby boninites in the Wild Bight Group. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Duan, Zhengchao; He, Feng; Si, Xinlu; Bradley, James W.; Ouyang, Jiting
2018-02-01
Conductive solid material sampling by micro-plasma under ambient atmosphere was studied experimentally. A high-voltage pulse generator was utilized to drive discharge between a tungsten needle and metal samples. The effects of pulse width on discharge, micro-plasma and sampling were investigated. The electrical results show that two discharge current pulses can be formed in one voltage pulse. The duration of the first current pulse is of the order of 100 ns. The duration of the second current pulse depends on the width of the voltage pulse. The electrical results also show that arc micro-plasma was generated during both current pulses. The results of the emission spectra of different sampled materials indicate that the relative emission intensity of elemental metal ions will increase with pulse width. The excitation temperature and electron density of the arc micro-plasmas increase with the voltage pulse width, which contributes to the increase of relative emission intensity of metal ions. The optical images and energy dispersive spectroscopy results of the sampling spots on metal surfaces indicate that discharge with a short voltage pulse can generate a small sputtering crater.
Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium.
Zhang, Lan; Zhu, Shaoyu; Han, Yong; Xiao, Chengzhang; Tang, Wu
2014-10-01
A microporous and CaO partially stabilized zirconia (Ca-PSZ) coating covered with hydroxyapatite (HA) nanorods is fabricated on Zr substrate by a hybrid approach of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The effect of P ions in HT solution on the density and morphology of HA was investigated; the hydrophilicity and apatite-forming ability of the Ca-PSZ coating with HA nanorods were also examined. High-density HA nanorods (with a mean diameter of 50 nm and length of 450 nm) grow on the Ca-PSZ coating after HT in a solution containing 0.002 M β-glycerophosphate disodium (β-GP). However, only a few of coarse-grained HA crystallites grow in the MAOed pores after HT in distilled water or in an ammonia aqueous solution with an initial pH value equal to the solution containing 0.002 M β-GP. P ions in the HT solution are thought to significantly promote the formation of HA nanorods. The Ca-PSZ coating covered with HA nanorods displays good hydrophilicity and excellent apatite-inducing ability, and the induced apatite prefers to nucleate on the basal-faceted surfaces of HA nanorods. Copyright © 2014 Elsevier B.V. All rights reserved.
Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States
NASA Astrophysics Data System (ADS)
Hasan, M. Zahid; Xu, Su-Yang; Belopolski, Ilya; Huang, Shin-Ming
2017-03-01
Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk electronic wave functions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler-Bell-Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.
NASA Technical Reports Server (NTRS)
Smyth, K. C.; Brauman, J. I.
1972-01-01
The relative cross section for the gas-phase photodetachment of electrons has been determined for NH2(-) in the wavelength region of 1195 to 1695 nm and for AsH2(-) in the region from 620 to 1010 nm. An ion cyclotron resonance spectrometer was used to generate, trap, and detect negative ions. A 1000-W xenon arc lamp with a grating monochromator was used as the light source, except for one series of experiments in which a tunable laser was employed. Single sharp thresholds were observed in both cross sections, and the following electron affinity values were determined: 0.744 (plus or minus 0.022) eV for NH2. and 1.27 (plus or minus 0.03) eV for AsH2.
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2015-11-11
The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less
NASA Astrophysics Data System (ADS)
Cowley, Shane; Mann, Paul; Coffin, M. F.; Shipley, Thomas H.
2004-10-01
Systematic analysis of a grid of 3450 km of multichannel seismic reflection lines from the Solomon Islands constrains the late Tertiary sedimentary and tectonic history of the Solomon Island arc and its convergent interaction with the Cretaceous Ontong Java oceanic plateau (OJP). The OJP, the largest oceanic plateau on Earth, subducted beneath the northern edge of the Solomon arc in the late Neogene, but the timing and consequences of this obliquely convergent event and its role in the subduction polarity reversal process remain poorly constrained. The Central Solomon intra-arc basin (CSB), which developed in Oligocene to Recent time above the Solomon arc, provides a valuable record of the tectonic environment prior to and accompanying the OJP convergent event and the subsequent arc polarity reversal. Recognition of regionally extensive stratigraphic sequences—whose ages can be inferred from marine sedimentary sections exposed onland in the Solomon Islands—indicate four distinct tectonic phases affecting the Solomon Island arc. Phase 1: Late Oligocene-Late Miocene rifting of the northeast-facing Solomon Island arc produced basal, normal-fault-controlled, asymmetrical sequences of the CSB; the proto-North Solomon trench was probably much closer to the CSB and is inferred to coincide with the trace of the present-day Kia-Kaipito-Korigole (KKK) fault zone; this protracted period of intra-arc extension shows no evidence for interruption by an early Miocene period of convergent "soft docking" of the Ontong Java Plateau as proposed by previous workers. Phase 2: Late Miocene-Pliocene oblique convergence of the Ontong Java Plateau at the proto-North Solomon trench (KKK fault zone) and folding of the CSB and formation of the Malaita accretionary prism (MAP); the highly oblique and diachronous convergence between the Ontong Java plateau and the Solomon arc terminates intra-arc extension first in the southeast (Russell subbasin of the CSB) during the Late Miocene and later during the Pliocene in the northwest (Shortland subbasin of the CSB); folds in the CSB form by inversion of normal faults formed during Phase 1; Phinney et al. [Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)] show a coeval pattern of southeast to northwest younging in folding and faulting of the MAP. Phase 3: Late Pliocene-early Pleistocene arc polarity reversal and subduction initiation at the San Cristobal trench. Effects of this event in the CSB include the formation of a chain of volcanoes above the subducting Australia plate at the San Cristobal trench, the formation of the broad synclinal structure of the CSB with evidence for truncation at the uplifted flanks, and widespread occurrence of slides and "seismites" (deposits formed by seismic shaking). Phase 4: Pleistocene to Recent continued shortening and synclinal subsidence of the CSB. Continued Australia-Pacific oblique plate convergence has led to deepening of the submarine, elongate basin axis of the synclinal CSB and uplift of the dual chain of the islands on its flanks.
SU-E-T-367: Optimization of DLG Using TG-119 Test Cases and a Weighted Mean Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintay, B; Vanderstraeten, C; Terrell, J
2014-06-01
Purpose: Optimization of the dosimetric leaf gap (DLG) is an important step in commissioning the Eclipse treatment planning system for sliding window intensity-modulated radiation therapy (SW-IMRT) and RapidArc. Often the values needed for optimal dose delivery differ markedly from those measured at commissioning. We present a method to optimize this value using the AAPM TG-119 test cases. Methods: For SW-IMRT and RapidArc, TG-119 based test plans were created using a water-equivalent phantom. Dose distributions measured on film and ion chamber (IC) readings taken in low-gradient regions within the targets were analyzed separately. Since DLG is a single value per energy,more » SW-IMRT and RapidArc must be considered simultaneously. Plans were recalculated using a linear sweep from 0.02cm (the minimum DLG) to 0.3 cm. The calculated point doses were compared to the measured doses for each plan, and based on these comparisons an optimal DLG value was computed for each plan. TG-119 cases are designed to push the system in various ways, thus, a weighted mean of the DLG was computed where the relative importance of each type of plan was given a score from 0.0 to 1.0. Finally, SW-IMRT and RapidArc are assigned an overall weight based on clinical utilization. Our routine patient-QA (PQA) process was performed as independent validation. Results: For a Varian TrueBeam, the optimized DLG varied with σ = 0.044cm for SW-IMRT and σ = 0.035cm for RapidArc. The difference between the weighted mean SW-IMRT and RapidArc value was 0.038cm. We predicted utilization of 25% SW-IMRT and 75% RapidArc. The resulting DLG was ~1mm different than that found by commissioning and produced an average error of <1% for SW-IMRT and RapidArc PQA test cases separately. Conclusion: The weighted mean method presented is a useful tool for determining an optimal DLG value for commissioning Eclipse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvain, D.C.
1996-10-01
In response to a request from the Health and Safety Supervisor at the Yankee Nuclear Power Station (SIC-4911), Rowe, Massachusetts, an investigation was begun into ozone (10028156) exposure during plasma arc cutting and welding. Welders had reported chest tightness, dry cough, and throat and bronchial irritation. The nuclear power station was in the process of being decommissioned, and workers were dismantling components using welding and cutting methods. Of the operations observed during the site visit, the highest ozone concentrations were generated during plasma arc cutting, followed by metal inert gas (MIG) welding and arc welding. During plasma arc cutting themore » average and peak concentrations exceeded the NIOSH ceiling recommended exposure limit of 0.1 part per million. The author concludes that ozone exposure during plasma arc cutting and MIG welding presented a health hazard to welders. The author recommends that improvements be made in the local exhaust ventilation, that nitrogen-dioxide levels be monitored during hot work, and that many exposed workers wear protective clothing, use ultraviolet blocking lotion, and continue the use appropriate shade of eye protection.« less
Yu, Xiang-xiang; Wang, Yu-hua
2014-01-13
Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.
NASA Astrophysics Data System (ADS)
Webb, Bryan T.
The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of a parametric study of arc attachment factors - including spot size, fall voltage, arc spot rotation rate, ambient bore heat rate, and air mass flow rate - are presented. The parametric study resulted in improving estimates of both the arc spot size and electrode fall voltage, two critical factors affecting electrode heating. Little sensitivity of electrode erosion rate to ambient bore heat rate and rotation rate was found. The erosion rate is found to be sensitive to the mass flow rate of air injected in the arc heater and validation of the model by comparison with more run condition data should be carried out as the data become available.
John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter
2015-01-01
Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase ± hornblende, biotite, and pyroxene phenocrysts. Seven epithermal gold-silver deposits with >1 Moz gold production, several large elemental sulfur deposits, and many large areas (10s to >100 km2) of hydrothermally altered rocks are present in the southern ancestral arc, especially south of latitude 40°N. These deposits are principally hosted by intermediate to silicic lava dome complexes; only a few deposits are associated with mafic- to intermediate-composition stratovolcanoes. Large deposits are most abundant and well developed in volcanic fields whose evolution spanned millions of years. Most deposits are hundreds of thousands to several million years younger than their host rocks, although some quartz-alunite deposits are essentially coeval with their host rocks. Variable composition and thickness of crustal basement is the primary control on mineralization along the length of the southern ancestral arc; most deposits and large alteration zones are localized in basement rock terranes with a strong continental affinity, either along the edge of the North American craton (Goldfield, Tonopah) or in an accreted terrane with continental affinities (Walker Lake terrane; Aurora, Bodie, Comstock Lode, Paradise Peak). Epithermal deposits and quartz-alunite alteration zones are scarce to absent in the northern part of the ancestral arc above an accreted island arc (Black Rock terrane) or unknown basement rocks (Modoc Plateau). Walker Lane structures and areas that underwent large magnitude extension during the Late Cenozoic (areas with Oligocene-early Miocene volcanic rocks dipping >40°) do not provide regional control on mineralization. Instead, these features may have served as local-scale conduits for mineralizing fluids.
NASA Astrophysics Data System (ADS)
Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.
2012-12-01
The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.
NASA Astrophysics Data System (ADS)
Polat, Ali; Kerrich, Robert
1999-10-01
The late Archean (circa 2750-2670 Ma) Schreiber-Hemlo greenstone belt, Superior Province, Canada, is composed of tectonically juxtaposed fragments of oceanic plateaus (circa 2750-2700 Ma), oceanic island arcs (circa 2720-2695 Ma), and siliciclastic trench turbidites (circa 2705-2697 Ma). Following juxtaposition, these lithotectonic assemblages were collectively intruded by synkinematic tonalite-trondhjemite-granodiorite (TTG) plutons (circa 2720-2690 Ma) and ultramafic to felsic dikes and sills (circa 2690-2680 Ma), with subduction zone geochemical signatures. Overprinting relations between different sequences of structures suggest that the belt underwent at least three phases of deformation. During D1 (circa 2695-2685 Ma), oceanic plateau basalts and associated komatiites, arc-derived trench turbidites, and oceanic island arc sequences were all tectonically juxtaposed as they were incorporated into an accretionary complex. Fragmentation of these sequences resulted in broken formations and a tectonic mélange in the Schreiber assemblage of the belt. D2 (circa 2685-2680 Ma) is consistent with an intra-arc, right-lateral transpressional deformation. Fragmentation and mixing of D2 synkinematic dikes and sills suggest that mélange formation continued during D2. The D1 to D2 transition is interpreted in terms of a trenchward migration of the magmatic arc axis due to continued accretion and underplating. The D2 intra-arc strike-slip faults may have provided conduits for uprising melts from the descending slab, and they may have induced decompressional partial melting in the subarc mantle wedge, to yield synkinematic ultramafic to felsic intrusions. A similar close relationship between orogen-parallel strike-slip faulting and magmatism has recently been recognized in several Phanerozoic transpressional orogenic belts, suggesting that as in Phanerozoic counterparts, orogen-parallel strike-slip faulting in the Schreiber-Hemlo greenstone belt played an important role in magma emplacement.
Hicke-Roberts, Anna; Åberg, Nils; Wennergren, Göran; Hesselmar, Bill
2017-01-01
This study investigated whether allergies among schoolchildren increased in Sweden between 1979 and 2007 and whether the geographical differences observed in previous studies remained. We collected questionnaire data on asthma, allergic rhinoconjunctivitis (ARC) and eczema in children aged seven to eight years from Mölndal, Gothenburg, in south-western Sweden and Kiruna in northern Sweden in 1979 (n = 4682), 1991 (n = 2481) and 2007 (n = 1029). The same regions and questions were used in all three studies, and extra questions on food allergy or intolerance were added in 2007. In 1979, 1991 and 2007, the total prevalence of asthma was 2.5%, 5.7% and 7.1%, ARC was 5.5%, 8.1% and 11.1% and eczema was 7.1%, 18.3% and 19.7%, respectively. Asthma prevalence remained higher in Kiruna, but no significant regional differences were seen for ARC and eczema. Almost 20% reported a history of food allergy or intolerance, with a higher prevalence in Kiruna. The allergy risk was reduced if both parents were born outside Sweden. The prevalence of ARC continued to increase between 1991 and 2007, but increases in asthma and eczema started to level off in 1991. Some geographical differences remained, but total allergy rates were similar in Kiruna and Mölndal in 2007. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochstein, M.P.; Sudarman, Sayogi
There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arcmore » region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.« less
NASA Astrophysics Data System (ADS)
Arisa, Deasy; Heki, Kosuke
2016-07-01
The Izu-Bonin arc lies along the convergent boundary where the Pacific Plate subducts beneath the Philippine Sea Plate. Horizontal velocities of continuous Global Navigation Satellite System stations on the Izu Islands move eastward by up to 1 cm/year relative to the stable part of the Philippine Sea Plate suggesting active back-arc rifting behind the northern part of the arc. Here, we report that such eastward movements transiently accelerated in the middle of 2004 resulting in 3 cm extra movements in 3 years. We compare three different mechanisms possibly responsible for this transient movement, i.e. (1) postseismic movement of the 2004 September earthquake sequence off the Kii Peninsula far to the west, (2) a temporary activation of the back-arc rifting to the west dynamically triggered by seismic waves from a nearby earthquake, and (3) a large slow slip event in the Izu-Bonin Trench to the east. By comparing crustal movements in different regions, the first possibility can be shown unlikely. It is difficult to rule out the second possibility, but current evidence support the third possibility, i.e. a large slow slip event with moment magnitude of 7.5 may have occurred there.
NASA Astrophysics Data System (ADS)
Nelson, D. A.; Cottle, J. M.
2017-12-01
Combined zircon geochemistry and geochronology of Mesozoic volcaniclastic sediments of the central Transantarctic Mountains, Antarctica, yield a comprehensive record of both the timing and geochemical evolution of the magmatic arc along the Antarctic sector of the paleo-Pacific margin of Gondwana. Zircon age populations at 266-183 Ma, 367-328 Ma, and 550-490 Ma correspond to episodic arc activity from the Ediacaran to the Jurassic. Zircon trace element geochemistry indicates a temporal shift from granitoid-dominated source(s) during Ediacaran to Early Ordovician times to mafic sources in the Devonian through Early Jurassic. Zircon initial
Tectonics of formation, translation, and dispersal of the Coast Range ophiolite of California
McLaughlin, R.J.; Blake, M.C.; Griscom, A.; Blome, C.D.; Murchey, B.
1988-01-01
Data from the Coast Range ophiolite and its tectonic outliers in the northern California Coast Ranges suggest that the lower part of the ophiolite formed 169 to 163 Ma in a forearc or back arc setting at equatorial latitudes. Beginning about 156 Ma and continuing until 145 Ma, arc magmatism was superimposed on the ophiolite, and concurrently, a transform developed along the arc axis or in the back arc area. Rapid northward translation of this rifted active magmatic arc to middle latitudes culminated in its accretion to the California margin of North America at about 145 Ma. This Late Jurassic episode of translation, arc magmatism, and accretion coincided with the Nevadan orogeny and a proposed major plate reorganization in the eastern Pacific basin. Displacement occurred between about 60 and 52 Ma. Ophiolitic rocks in the Decatur terrane of western Washington that have recently been correlated with the Coast Range ophiolite and the Great Valley sequence of California were apparently displaced at least 950 to 1200 km from the west side of the Great Valley between early Tertiary and Early Cretaceous time. Derived rates of northward translation for the ophiolite outliers in California are in the range of 1 to 4 cm/yr. -from Authors
Geostationary multipurpose platforms
NASA Technical Reports Server (NTRS)
Bekey, I.; Bowman, R. M.
1981-01-01
In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.
An investigation into underwater wet welding using the flux cored arc welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brydon, A.M.; Nixon, J.H.
1995-12-31
For the last two years, Cranfield has been carrying out a program of process investigations into wet underwater welding (Graham and Nixon 1993, Nixon and Webb 1994), and has demonstrated that it is possible to markedly improve the stability and consistency of the process by using control techniques developed for hyperbaric welding. In the project reported below, an initial evaluation of wet flux cored arc welding was undertaken. Although there continues to be considerable resistance to the use of wet welding on structures in the North Sea, continued pressure to reduce repair and maintenance costs is causing the industry tomore » re-examine techniques previously discounted, such as wet welding (Anon 1993).« less
Williams, Nathaniel J; Glisson, Charles; Hemmelgarn, Anthony; Green, Philip
2017-03-01
The development of efficient and scalable implementation strategies in mental health is restricted by poor understanding of the change mechanisms that increase clinicians' evidence-based practice (EBP) adoption. This study tests the cross-level change mechanisms that link an empirically-supported organizational strategy for supporting implementation (labeled ARC for Availability, Responsiveness, and Continuity) to mental health clinicians' EBP adoption and use. Four hundred seventy-five mental health clinicians in 14 children's mental health agencies were randomly assigned to the ARC intervention or a control condition. Measures of organizational culture, clinicians' intentions to adopt EBPs, and job-related EBP barriers were collected before, during, and upon completion of the three-year ARC intervention. EBP adoption and use were assessed at 12-month follow-up. Multilevel mediation analyses tested changes in organizational culture, clinicians' intentions to adopt EBPs, and job-related EBP barriers as linking mechanisms explaining the effects of ARC on clinicians' EBP adoption and use. ARC increased clinicians' EBP adoption (OR = 3.19, p = .003) and use (81 vs. 56 %, d = .79, p = .003) at 12-month follow-up. These effects were mediated by improvement in organizational proficiency culture leading to increased clinician intentions to adopt EBPs and by reduced job-related EBP barriers. A combined mediation analysis indicated the organizational culture-EBP intentions mechanism was the primary carrier of ARC's effects on clinicians' EBP adoption and use. ARC increases clinicians' EBP adoption and use by creating proficient organizational cultures that increase clinicians' intentions to adopt EBPs.
Basins in ARC-continental collisions
Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio
2012-01-01
Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.
Matzke, Antonius J M; Matzke, Marjori
2015-10-12
It is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of C iona i ntestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana. Transgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H(+) ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of ArcLight fluorescence triggered by eATP most likely reflects changes in pH and not membrane voltage. The pH sensitivity of ArcLight precludes its use as a direct sensor of membrane voltage in plants. Nevertheless, ArcLight and derivatives situated in the plasma membrane and nuclear membranes may offer robust, fluorescence intensity-based pH indicators for monitoring concurrent changes in pH at these discrete membrane systems. Such tools will assist analyses of pH as a signal and/or messenger at the cell surface and the nuclear periphery in living plants.
Incidence of the WAIS-R Fuld profile in HIV-1 infection.
van Gorp, W G; Tulin, S J; Evans, G; Satz, P
1990-10-01
The incidence of a WAIS-R subtest "marker" sensitive to cholinergic dysfunction was assessed in a sample 116 homosexual males infected with HIV (Acquired Immunodeficiency Syndrome [AIDS] N = 40; AIDS Related Complex [ARC], N = 76). The incidence of positive profiles was low in the overall sample (11/116, 9%), and significantly lower than incidence rates reported for known cholinergic deficient groups (Alzheimer's disease; scopolamine). However, significantly more AIDS patients (8/40, 20%) than ARC patients (3/76, 4%) demonstrated positive profiles. These results suggest that, as a group, persons with ARC or AIDS do not show an increased incidence of the Fuld profile associated with cholinergic disruption, and offer continued support for diagnostic specificity of the Fuld formula for Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Kok, Yin Nan
Low friction, nanoscale multilayer carbon/chromium (C/Cr) coatings were successfully deposited by the combined steered cathodic arc/unbalanced magnetron sputtering technique (also known as Arc Bond Sputtering or ABS) using a Hauzer HTC 1000-4 PVD coater. The work described in this thesis has been directed towards understanding the effect of ion irradiation on the composition, microstructure, and functional properties of C/Cr coatings. This has been achieved by varying the bias voltage, U[B], over a wide range between -65 V and -550 V. C/Cr coatings were deposited in three major steps: (i) Cr+ ion etching using a steered cathodic arc discharge at a substrate bias voltage of -1200 V, (ii) deposition of a 0.25 mum thick CrN base layer by reactive unbalanced magnetron sputtering to enhance the adhesion, and (iii) deposition of C/Cr coatings by unbalanced magnetron sputtering from three graphite targets and one chromium target at 260°C. The coatings were deposited at different bias voltages (U[B]) from -65 V to -550 V in a non-reactive Ar atmosphere.C/Cr coatings exhibit excellent adhesion (critical load, L[C] > 70 N), with hardness ranging from 6.8 to 25.1 GPa depending on the bias voltage. The friction coefficient of C/Cr coatings was found to reduce from 0.22 to 0.16 when the bias voltage was increased from U[B] = -65 to -95 V. The relevance of C/Cr coatings for actual practical applications was demonstrated using dry high-speed milling trials on automotive aluminium alloy (Al-Si8Cu3Fe). The results showed that C/Cr coated cemented carbide ball-nose end mills prepared at U[B] = -95 V (70 at.% C, 30 at.% Cr) enhance the tool performance and the tool life compared to the uncoated tools by a factor of two, suggesting the potential for use in dry high-speed machining of "sticky" alloys such as aluminum. Different film morphologies were observed in the investigated bias voltage range between U[B] = -65 and -550 V using XTEM. With increasing bias voltage from U[B] = -65 to -95 V, the structure changed from columnar, with carbon accumulated at the column boundaries, to a dense structure which comprised randomly distributed onionlike carbon clusters. A novel nanostructure was observed within this bias voltage range, in which the basic nano-lamellae obtained as a result of substrate rotation in front of the C and Cr targets were modified by an ion-irradiation induced nanocolumnar structure. Further increases in the bias voltage to U[B] = -350 V and U[B] = -450 V led to segregation and self-organisation of the carbon atoms induced by the high energy ion bombardment and, finally, to the formation of a new type of self-organised multilayer structure. A coating growth model accounting for the influence of ion bombardment on the growing C/Cr film was introduced to explain the phase separation and formation of the selforganised layered nanostructure.A novel experimental set-up for the investigation of tribocorrosion was built based on a modification of the conventional Scanning Reference Electrode Technique (SRET). The device comprises a ball on rotating cylinder contact configuration combined with a SRET electrochemical device. This combination may contribute significantly to the understanding of wear-corrosion synergism.
Neutral Beam Injection System for the SHIP Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdrashitov, G.F.; Abdrashitov, A.G.; Anikeev, A.V.
2005-01-15
The injector ion source is based on an arcdischarge plasma box. The plasma emitter is produced by a 1 kA arc discharge in deuterium. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found by means of numerical simulation tomore » provide precise beam formation. The measured angular divergence of the beam is 0.025 rad, which corresponds to a 4.7 cm Gaussian radius of the beam profile measured at focal point.« less
Numerically simulated two-dimensional auroral double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.; Joyce, G.
1983-01-01
A magnetized 2 1/2-dimensional particle-in-cell system which is periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other is used to numerically simulate electrostatic plasma double layers. For the cases of both oblique and two-dimensional double layers, the present results indicate periodic instability, Debye length rather than gyroradii scaling, and low frequency electrostatic turbulence together with electron beam-excited electrostatatic electron-cyclotron waves. Estimates are given for the thickness of auroral doule layers, as well as the separations within multiple auroral arcs. Attention is given to the temporal modulation of accelerated beams, and the possibilities for ion precipitation and ion conic production by the double layer are hypothesized. Simulations which include the atmospheric backscattering of electrons imply the action of an ionospheric sheath which accelerates ionospheric ions upward.
Power console development for NASA's electric propulsion outreach program
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Patterson, Michael J.; Satterwhite, Vincent E.
1993-01-01
NASA LeRC is developing a 30 cm diameter xenon ion thruster for auxiliary and primary propulsion applications. To maximize expectations for user-acceptance of ion propulsion technology, NASA LeRC, through their Electric Propulsion Outreach Program, is providing sectors of industry with portable power consoles for operation of 5 KW-class xenon ion thrusters. This power console provides all necessary functions to permit thruster operations over a 0.5-5 KW envelope under both manual and automated control. These functions include the following: discharge, cathode heater, neutralizer keeper, and neutralizer heater currents, screen and accelerator voltages, and a gas feed system to regulate and control propellant flow to the thruster. An electronic circuit monitors screen and accelerator currents and controls arcing events. The power console was successfully integrated with the NASA 30 cm thruster.
Preferential heating of light ions during an ionospheric Ar(+) injection experiment
NASA Technical Reports Server (NTRS)
Pollock, C. J.; Chandler, M. O.; Moore, T. E.; Arnoldy, R. L.; Kintner, P. M.; Chesney, S.; Cahill, L. J., Jr.
1995-01-01
The Argon Release for Controlled Studies (ARCS) 4 sounding rocket was launched northward into high altitude from Poker Flat Research Range on February 23, 1990. The vehicle crossed geomagnetic field lines containing discrete auroral activity. An instrumented subpayload released 100-eV and 200-eV Ar(+) ion beams sequentially, in a direction largely perpendicular to both the local geomagnetic field and the subpayload spin axis. The instrumented main payload was separated along field lines from the beam emitting subpayload by a distance which increased at a steady rate of approximately 2.4 m/s. Three dimensional mass spectrometric ion observations of ambient H(+) and O(+) ions, obtained on board the main payload, are presented. Main payload electric field observations in the frequency range 0-16 kHz, are also presented. These observations are presented to demonstrate the operation of transverse ion acceleration, which was differential with respect to ion mass, primarily during 100-eV beam operations. The preferential transverse acceleration of ambient H(+) ions, as compared with ambient O(+) ions, during the second, third, fourth, and fifth 100-eV beam operations, is attributed to a resonance among the injected Ar(+) ions, beam-generated lower hybrid waves, and H(+) ions in the tail of the ambient thermal distribution. This work provides experimental support of processes predicted by previously published theory and simulations.
NASA Astrophysics Data System (ADS)
Rutberg, Ph G.; Popov, S. D.; Surov, A. V.; Serba, E. O.; Nakonechny, Gh V.; Spodobin, V. A.; Pavlov, A. V.; Surov, A. V.
2012-12-01
The comparison of conductivity obtained in experiments with calculated values is made in this paper. Powerful stationary plasma torches with prolonged period of continuous work are popular for modern plasmachemical applications. The maximum electrode lifetime with the minimum erosion can be reached while working on rather low currents. Meanwhile it is required to provide voltage arc drop for the high power achievement. Electric field strength in the arc column of the high-voltage plasma torch, using air as a plasma-forming gas, does not exceed 15 V/cm. It is possible to obtain the high voltage drop in the long arc stabilized in the channel by the intensive gas flow under given conditions. Models of high voltage plasma torches with rod electrodes with power up to 50 kW have been developed and investigated. The plasma torch arcs are burning in cylindrical channels. Present investigations are directed at studying the possibility of developing long arc plasma torches with higher power. The advantage of AC power supplies usage is the possibility of the loss minimization due to the reactive power compensation. The theoretical maximum of voltage arc drop for power supplies with inductive current limitations is about 50 % of the no-load voltage for a single-phase circuit and about 30 % for the three-phase circuit. Burning of intensively blown arcs in the long cylindrical channel using the AC power supply with 10 kV no-load voltage is experimentally investigated in the work. Voltage drops close to the maximum possible had been reached in the examined arcs in single-phase and three-phase modes. Operating parameters for single-phase mode were: current -30 A, voltage drop -5 kV, air flow rate 35 g/s; for three-phase mode: current (40-85) A, voltage drop (2.5-3.2) kV, air flow rate (60-100) g/s. Arc length in the installations exceeded 2 m.
The arc arises: The links between volcanic output, arc evolution and melt composition
NASA Astrophysics Data System (ADS)
Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He
2017-03-01
Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of wedge replenishment by corner flow does not overwhelm the rate of magma extraction.
NASA Astrophysics Data System (ADS)
Harmon, N.; Salas, M.; Rychert, C. A.; Fischer, K. M.; Abers, G. A.
2012-12-01
The Costa Rica-Nicaragua subduction zone shows systematic along strike variation in arc chemistry, geology and seismic velocity and attenuation, presenting global extremes within a few hundred kilometres. In this study we use teleseismic and ambient noise derived surface wave tomography to produce a 3-D shear velocity model of the region. We use the 48 stations of the TUCAN array, and up to 96 events for the teleseismic Rayleigh wave inversion, and 20 months of continuous data for cross correlation to estimate Green's functions from ambient noise. In the shallow crust (0-15 km) we observe low shear velocities directly beneath the arc volcanos (< 3 km/s) with higher velocities in the back arc of Nicaragua. The anomalies are likely caused by heated crust, possibly intruded by magma. We observe > 40 km thick crust beneath the Costa Rican arc and the Nicaraguan Highlands, with thinned crust (~20 km) beneath the Nicaraguan Depression, with increasing crustal thickness in the back arc region. At mantle depths (55-120 km depth) we observe lower shear velocities (~2%) beneath the Nicaraguan arc and back arc relative to Costa Rica. This is well-correlated with a Vp/Vs anomaly beneath Nicaragua. The lower shear velocity beneath Nicaragua may indicate higher melt content in the mantle perhaps due to higher volatile flux from the slab. Finally, we observe a linear high velocity region at depths > 120 km parallel to the trench, which is consistent with the subducting slab.
Ion beam and plasma methods of producing diamondlike carbon films
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.
1988-01-01
A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.
Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity
NASA Technical Reports Server (NTRS)
Alford, J. M.; Mason, G. R.; Feikema, D. A.
2006-01-01
Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature environment around the arc in the 2.1 to 5 second microgravity time interval, and even with a very high-powered arc, the arc region was cooler than in continuously operated arcs. Despite these difficulties, the miniature arc produced SWNTs in microgravity. However, given the large thermal transient to overcome, no dramatic difference in sample yield or composition was noted between normal gravity and q2-,andL%econd long microgravity runs.
New Estimates of Crustal Velocity in the Solomon Islands
NASA Astrophysics Data System (ADS)
Phillips, D. A.; Bevis, M.; Taylor, F. W.; Papabatu, A. K.; Basi, S.; Kendrick, E.
2002-12-01
We present crustal velocity estimates derived from a dense GPS network in the western Solomon Islands. Initial crustal motion estimates reported by Tregoning et al. (1998) showed convergence between the Australian Plate and the Solomon Arc at the San Cristobal Trench. Active deformation between the Pacific Plate and the Solomon Arc block was also detected. In 1997, we established a continuous GPS (CGPS) site on Guadalcanal and five rover GPS sites in the New Georgia Group. The Guadalcanal site was short-lived due to vandalism so we established a new CGPS site in the New Georgia Group in 1999. The original rover sites were re-occupied in 1999 and 2001. We have analyzed this four-year time series using GAMIT/GLOBK software. Our measurements show convergence with the Australian Plate as well as motion between the Solomon Arc and the Pacific Plate. Possible intra-arc deformation is also observed. Regional tectonic interpretations based upon our GPS measurements and other data will be discussed.
Tidal inlet development and migration in Isles Dernieres Barrier Island Arc, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffe, B.E.; Sallenger, A.H.; List, J.H.
The Isles Dernieres barrier arc formed about 420 years ago in response to the abandonment of the Bayou Petit Caillou delta of the Mississippi River. Over the past 100 years, the arc has undergone rapid erosion, with much of the Gulf shorelines retreating more than 1 km (10 m/year). Today, the island area is less than 25% of what it was 100 years ago. Most of this areal loss is from a narrowing of the islands as both the bay and Gulf shorelines retreated. A significant portion, however, is due to development of two large tidal inlets that segmented themore » 32 km long arc into three groups of islands from what was a nearly continuous island in 1890. The presence of these inlets and two recently formed smaller ones alters longshore transport and island erosion patterns. To predict the future of the Isles Dernieres, the authors must understand the history and processes of tidal inlet development.« less
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1992-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing; Advanced Methods for Scientific Computing; Learning Systems; High Performance Networks and Technology; Graphics, Visualization, and Virtual Environments.
NASA Astrophysics Data System (ADS)
Ali, Mubarak; Hamzah, Esah; Ali, Nouman
Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.
NASA Astrophysics Data System (ADS)
Obrezkov, O. I.; Vinogradov, V. P.; Krauz, V. I.; Mozgrin, D. V.; Guseva, I. A.; Andreev, E. S.; Zverev, A. A.; Starostin, A. L.
2016-09-01
Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time.
NASA Astrophysics Data System (ADS)
Litvak, Vanesa D.; Spagnuolo, Mauro G.; Folguera, Andrés; Poma, Stella; Jones, Rosemary E.; Ramos, Víctor A.
2015-12-01
A series of mesosilicic volcanic centers have been studied on the San Rafael Block (SRB), 300 km to the east of the present-day volcanic arc. K-Ar ages indicate that this magmatic activity was developed in at least two stages: the older volcanic centers (˜15-10 Ma) are located in the central and westernmost part of the SRB (around 36°S and 69°W) and the younger centers (8-3.5 Ma) are located in an eastern position (around 36°S and 69°30‧W) with respect to the older group. These volcanic rocks have andesitic to dacitic compositions and correspond to a high-K calc-alkaline sequence as shown by their SiO2, K2O and FeO/MgO contents. Elevated Ba/La, Ba/Ta and La/Ta ratios show an arc-like signature, and primitive mantle normalized trace element diagrams show typical depletions of high field strength elements (HFSE) relative to large ion lithophile elements (LILE). Rare earth element (REE) patterns suggest pyroxene and amphibole crystallization. Geochemical data obtained for SRB volcanic rocks support the proposal for a shallow subduction zone for the latest Miocene between 34°30″-37°S. Regionally, SRB volcanism is associated with a mid-Miocene to early Pliocene eastward arc migration caused by the shallowing of the subducting slab in the South-Central Andes at these latitudes, which represents the evolution of the Payenia shallow subduction segment. Overall, middle Miocene to early Pliocene volcanism located in the Payenia back-arc shows evidence for the influence of slab-related components. The younger (8-3.5 Ma) San Rafael volcanic rocks indicate the maximum slab shallowing and the easternmost extent of slab influence in the back-arc.
NASA Technical Reports Server (NTRS)
Gooder, S. T.
1977-01-01
System tests were performed in which Integrally Regulated Solar Arrays (IRSA's) were used to directly power the beam and accelerator loads of a 30-cm-diameter, electron bombardment, mercury ion thruster. The remaining thruster loads were supplied from conventional power-processing circuits. This combination of IRSA's and conventional circuits formed a hybrid power processor. Thruster performance was evaluated at 3/4- and 1-A beam currents with both the IRSA-hybrid and conventional power processors and was found to be identical for both systems. Power processing is significantly more efficient with the hybrid system. System dynamics and IRSA response to thruster arcs are also examined.
Development of ion source with a washer gun for pulsed neutral beam injection.
Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N
2008-06-01
A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.
REGULATOR FOR CALUTRON ION SOURCE
Miller, B.F.
1958-09-01
Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.
Sub aquatic 3D visualization and temporal analysis utilizing ArcGIS online and 3D applications
We used 3D Visualization tools to illustrate some complex water quality data we’ve been collecting in the Great Lakes. These data include continuous tow data collected from our research vessel the Lake Explorer II, and continuous water quality data collected from an autono...
Kong, X; Clausen, C; Wang, S
2012-06-01
Clinical experience for configuration, commission and implementation of SmartArc with MOSAIQ R&V system. SmartArc is Pinnacle's solution for VMAT. On July 2011 we updated to Pinnacle 9.0 and purchased SmartArc. A standalone Eclipse workstation has been used 3 years for VMAT planning. Our clinical setting: Mosaiq 2.2; Varian Trilogy driven by 4DiTC and Varian 21ex driven by sequencer. Some key physics parameters have been studied: machine dose rate; MLC leaf speed; Leaf motion per gantry rotation. Tabletop was created by user to improve the dose accuracy for planning. In-house sandwich phantom was used with MapCheck for planner dose verification. A PTW 0.6cc ion chamber was included for absolute dose comparison. A copy of current machine data with default highest dose rate is recommended. It is due to after 10th iteration of optimization, the default dose rate will kick in. 2.5cm/s is the constraint for Varian Millennium 120 MLC; a buffer zone of 10% is suggested to reduce the MLC error on treatment. 2.25cm/s is used in our configuration. This results in MLC interlock if not configured correct. Maximum leaf motion per gantry rotation of 0.46cm/degree has to be checked for planning with Mosaiq R&V. Otherwise, undeliverable plan will show up sometimes on 4DiTC.Tabletop was exported as a DICOM structure from Eclipse to Pinnacle; we created a ROI template based on the matched tabletop.QA using in-house phantom for different sites were tested. Results for both planner dose and absolute chamber measurement are satisfactory. Special attentions need to be paid for dose rate, MLC leaf speed, leaf motion per gantry rotation when configuring SmartArc. Varian 21ex is supported but is slow for clinical delivery. Users need to create your own tabletop to improve planning accuracy. Conventional commission procedures for RapidArc also apply for SmartArc. © 2012 American Association of Physicists in Medicine.
Investigating Discharge Ignition Fundamentals of Micro-Cathode Arc Thrusters
NASA Astrophysics Data System (ADS)
Teel, George Lewis
This dissertation is a compilation of studies of the volatile process that vacuum arcs undergo, known as breakdown. Breakdown is a transfer of electrons from one electrode to another. These electrons typically bombard the electrode surfaces causing secondary electron emission and ionization. This expulsion of ions and electrons then proceed to cause arc discharge, is what most people associate as ``the spark.'' This field-emission to breakdown process induces localized heating, which then causes this explosive ionization to occur. Once plasma is formed, high temperatures and pressures are forced on the surrounding surfaces. This initiation process, the effects of this process, and the manipulation of these effects have all been studied and described in this work. A series of initial observations of the before and after effects of discharge have been made through various equipment such as a Scanning Electron Microscope, Energy Dispersive X-Ray, and Confocal Microscope. Methods to develop a resistance measurement scheme provided a means to characterize the thruster's operation over its lifetime. Further characterization of the plasma plume was done through the use of Langmuir probes. Temperature and density distributions were also measured. An entirely new and miniaturized design of the thrusters were developed and initially tested. Last, a new application for these vacuum arc thrusters was studied for use in an underwater environment. The purpose of this work was to further develop a vacuum arc thruster, known as the Micro-Cathode Arc Thruster (muCAT), which has been developed at the George Washington University's Micro Propulsion and Nanotechnology Lab. The muCAT has been developed over the past decade, and in the last 5 years has gone from simple lab circuitry to space flown hardware. Therefore it is imperative to fully understand every aspect of this technology to achieve precisely what missions require. The results of this dissertation have allowed a new thruster concept to be developed, which is more robust and smaller than previous designed muCAT with erosion control built into the design. A new application for these vacuum arc thrusters has also been tested as underwater propulsion. This research has allowed us to come closer to a more perfected piece of propulsion technology.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
NASA Technical Reports Server (NTRS)
Oliger, Joseph
1993-01-01
The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on 6 June 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Parallel Computing, Advanced Methods for Scientific Computing, High Performance Networks and Technology, and Learning Systems. Parallel compiler techniques, adaptive numerical methods for flows in complicated geometries, and optimization were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade.
Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.
1989-01-01
Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors
Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.
2007-01-01
Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.
Generation of alkaline magmas in subduction zones by melting of mélange diapirs
NASA Astrophysics Data System (ADS)
Cruz-Uribe, A. M.; Marschall, H.; Gaetani, G. A.; Le Roux, V.
2016-12-01
Alkaline lavas occur globally in subduction-related volcanic arcs. Existing explanations for the occurrence of alkaline lavas in volcanic arcs invoke at least one - and in some cases multiple - `metasomatic' events in addition to the traditional three-component mixing of altered oceanic crust (AOC), sediment melt, and depleted mantle, in order to explain the range of rock types found in a given region. These multi-stage models posit the existence of metasomatized mantle wedge peridotite containing phlogopite or amphibole-enriched veins, which partially melt when fluxed by the addition of materials from the subducted slab. The mélange diapir model is informed by observations and modeling of the subduction side of the arc system, and predicts the generation of alkaline arc magmas by advection of buoyant material from the slab-wedge interface into the mantle wedge below arcs. Here we report results from experiments in which natural mélange materials partially melted at upper mantle conditions were found to produce alkaline magmas compositionally similar to those found in arcs worldwide. The starting material for our experiments is a chlorite-omphacite fels (SY400) from the island of Syros, Greece, that is representative of a hybrid rock containing AOC, sediment, and mantle components. Melting experiments were performed using a piston cylinder apparatus at conditions relevant to the heating-decompression path of mélange diapirs (1000-1300 °C, 1.5-2.5 GPa). The compositions of experimentally produced melts range from 51-61 wt% SiO2, and fall within the trachyte and tephrite-phonolite series (7.5-12.9 wt% Na2O+K2O). Restitic phases in equilibrium with melt include clinopyroxene, garnet (at high P), phlogopite (at high P), amphibole, olivine, rutile, and ilmenite. Partial melts produced in our experiments have trace-element abundance patterns that are typical of alkaline arc lavas, such as enrichment in large ion lithophile elements (Cs, Rb, Ba, Pb, Sr) and alkalis (K and Na), and depletion in Nb and Ta. The presence of a light rare earth element (LREE)-bearing accessory phase results in trace element fractionation by a factor of 4.2 for Nd/Hf and 2.6 for Sr/Nd. Melting of mélange diapirs provides a simple, single-stage model for the origin of alkaline magmatism in the arc and backarc regions of subduction zones.
Modeling of negative ion transport in a plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riz, David; Departement de Recherches sur la Fusion Controelee CE Cadarache, 13108 St Paul lez Durance; Pamela, Jerome
1998-08-20
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, severalmore » phenomena observed in negative ion sources, such as the isotopic H{sup -}/D{sup -} effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm{sup -3}), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of 'volume production' (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.« less
Modeling of negative ion transport in a plasma source
NASA Astrophysics Data System (ADS)
Riz, David; Paméla, Jérôme
1998-08-01
A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional fractionation. A tool to analyze dose rate distributions in VMAT plans with sub-second accuracy was successfully developed and validated. Dose rates encountered in clinical VMAT test cases show a continuous spectrum with a mean less than or near 100 cGy min-1 for conventional fractionation.
NASA Astrophysics Data System (ADS)
Henry, C. D.; Cousens, B.; John, D. A.; Colgan, J. P.
2009-12-01
The character and even existence of an ancestral Tertiary Cascades arc in western Nevada and eastern California south of the modern arc are controversial. Based on extensive published and new data on the regional distribution, timing, style, and composition of magmatism, we conclude that an ancestral arc was established by WSW migration of magmatism into western NV and the northeastern Sierra Nevada in the Oligocene and Miocene as a result of progressive rollback of the shallow subducted slab. Magma migration started with the well-known southward sweep through NE NV and NW UT between ~46 and 36 Ma. By ~30 Ma, migration of the leading edge and central belt of activity was much more WSW, especially after removing younger ~E-W extension. Locally sourced, initially dispersed and small volume, intermediate to mafic lavas erupted in western NV and northeastern CA by ~30 Ma and the eastern Sierra Nevada by ~28 Ma, contemporaneous with the much more voluminous ignimbrite flare-up in central NV. As migration continued, the ignimbrite flare-up tapered off. A voluminous, NNW-trending, dominantly effusive volcanic belt developed by ~22-18 Ma in western NV and was continuous from the Bodie Hills (CA/NV) to the Warner Range (northeast CA) by ~16-15 Ma. The volcanic belt was dominated by intermediate to mafic magmas compositionally similar to those of the modern south Cascades arc but reflecting melting of an old, subduction-modified lithosphere (Cousens et al. 2008; Geosphere). Extensive middle Miocene bimodal rocks related to the Yellowstone hotspot cover these rocks in NW NV, NE CA, and SE OR, but 30-23 Ma, intermediate to mafic and lesser silicic rocks are voluminous wherever older rocks are exposed below the middle Miocene rocks. Between ~25 Ma and the present, magmatism migrated WSW at an average rate of ~8 km/Ma but was at least partly stepwise, as exemplified by an ~50 km westward step at 2 Ma in the Lassen area (Guffanti et al. 1990, JGR). The magmatic belt was as much as 250 km wide (present-day NE-SW, perpendicular to WSW migration) during much of its activity and only narrowed as it focused in western NV. In contrast, the ancestral Western Cascades arc in OR developed by ~35-40 Ma and persisted to the present as a narrow (≤50 km) belt nearly coincident with the modern Cascade arc. The Western Cascades and ancestral arc activity in NV and CA were misaligned by 100s of km and only became aligned during the ~2 Ma westward step. Misalignment suggests a major tear in the subducted slab near the OR-NV/CA border. Steep subduction was reestablished in OR by 35 Ma but only developed in NV/CA by progressive foundering of the shallow slab. Examining the magmatic record from past to present (WSW migration) complicates the question of what constituted an ancestral Cascades arc, e.g., what is the setting of the ignimbrite flare-up? In contrast, by examining the record from present to past and W to E, it is difficult to determine when and where the modern arc stopped being a continental volcanic arc. More important to address the existence of a southern ancestral Cascades arc is to comprehensively determine the distribution, timing, and origin of magmatism.
Ion-plasma gun for ion-milling machine
Kaminsky, Manfred S.; Campana, Jr., Thomas J.
1976-01-01
An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.
NASA Astrophysics Data System (ADS)
Sonntag, Iris; Kerrich, Robert; Hagemann, Steffen G.
2011-12-01
Mindanao is the second largest island of the Philippines and is located in the southern part of the archipelago. It comprises the suture zone between the Eurasian and the Philippine plate, which is displayed in the Philippine Mobile Belt. Eastern Mindanao is part of the Philippine Mobile Belt and outcropping rocks are mainly Eocene to Pliocene in age related to episodes of arc volcanism alternating with sedimentation. New high-precision elemental analysis of the Oligocene magma series, hosting the Co-O epithermal Au deposit, which represents an arc segment in the central part of Eastern Mindanao, revealed dominantly calc-alkaline rocks ranging in composition between basalt and dacites. Major element trends (MgO vs. TiO2 and Fe2O3) are comparable to other magmas in Central and Eastern Mindanao as well as other SW Pacific Islands such as Borneo. Rare earth and trace element distribution patterns display typical island arc signatures highlighted by the conjunction of LILE-enrichment with troughs at Nb, Ta, and Ti. Ratios of Zr/Nb in basalts vary between 17 and 39, signifying a depleted subarc mantle wedge comparable to the range of MORB, and other Indonesian island arc basalts. In basalts, Nb/Ta and Zr/Sm ratios are 12-37 and 14-27 respectively indicative of deep melts of rutile-eclogite subducted slab, as well as fluids, infiltrating the mantle wedge source of basalts. Moderate large ion lithophile element contents and low Th/La and Th/Ce ratios suggest no significant slab-derived components such as sediment or crustal fragments. The comparatively low Ce and Yb values in basalts, but also andesites and dacites, are consistent with a thin arc crust related to an intraoceanic convergent margin setting. This is further supported by Nb contents in basalts that range between 1 and 3 ppm and are within the range of modern oceanic convergent margin basalts. The range of HREE fractionation signifies that basaltic melts separated at deeper levels of the subarc wedge, possibly between the forearc and arc axis, followed by a calc-alkaline convergent margin magma suite involving shallower crustal AFC near the central arc sector. The analysed Oligocene arc segment is related to a potentially steep to intermediate dipping subduction zone in an extensional to neutral geotectonic regime. The large subduction accretion complex of the Philippine Mobile Belt provides an ideal setting for significant metal deposits during its entire evolution. This is evidenced in the Eastern Mindanao Ridge, which hosts substantial porphyry Cu and epithermal Au deposits.
1979-08-02
Jules Bergman, ABC Science Newscaster stands by a NASA Ames press room for the continuing information being returned by the Pioneer spacecraft during it's encounter with the planet Saturn and it's rings.
NASA Astrophysics Data System (ADS)
Klein, B. Z.; Jagoutz, O. E.; VanTongeren, J. A.
2016-12-01
Multiple hypotheses exist to explain the presence of metasedimentary rocks within arc lower crust. Relamination and subduction underplating require that sediments are derived from the subducted slab, while processes such as wall-rock return flow and retro-arc underthrusting imply that the sediments originated in the crust of the upper plate. Evaluating these proposed mechanisms has wide-reaching implications, including better constraining the mass-balance of active arcs, characterizing a theorized trigger mechanism for magmatic flare-up events, and more broadly for describing the tectonic construction of continental arcs. The southernmost Sierra Nevada, California, exposes a continuous continental arc cross-section that spans pressures from 3 to <10 kbar. Metasedimentary rocks are exposed at all crustal levels within this section and are intruded by 100 Ma igneous rocks. These metasediments offer a unique opportunity to evaluate the source, and emplacement of lower crustal metasediments into an active arc. The proposed mechanisms for the transport of sediments to the lower crust predict distinct sedimentary protoliths with unique detrital zircon (DZ) age spectra. Specifically, slab-derived sediments are likely to resemble the underplated Polona-Oroccopia-Rand schists to the south, with dominantly Mesozoic DZ peaks and few to no older grains. Upper plate derived sediments are predicted to have significant Paleozoic and Proterozoic DZ populations, in addition to arc-derived, Mesozoic meta-volcanic material. We have conducted a detailed DZ study of metasedimentary rocks in the Sierran lower and middle crust to assess these hypotheses. Initial results show that at least some of this material has an unambiguous slab-derived signature implying that relamination and/or subduction underplating were active processes during the construction of the Sierran arc system. We explore the implications of these processes for the magmatic and tectonic history of the Sierra Nevada, as well as for the generation of new continental crust.
NASA Astrophysics Data System (ADS)
Funnell, M.; Peirce, C.; Robinson, A. H.; Watts, A. B.; Grevemeyer, I.
2016-12-01
Variations in tectonic forces and inputs to subduction systems generate, alter, and deform overriding crustal material. Although these processes are recorded in the crustal structure of volcanic arcs and their backarcs, the continuous nature of plate convergence superimposes subsequent episodes of crustal evolution on older features. Seismic imaging at modern subduction zones enhances our understanding of forearc development and variations in present-day deformation caused by inherited structures. In 2011 a set of multichannel and wide-angle seismic profiles imaged the forearc-arc crust and upper mantle structure along the 2700 km-long NNE-SSW trending Tonga-Kermadec subduction zone. The Tonga forearc region exhibits an 100 km-wide, 2 km high bathymetric elevation, with a 3 km-thick upper and mid-crust (Vp <6 km s-1), and a lower-crustal ridge 30 km wide comprising velocities up to 7.4 km s-1 that characterize an extinct Eocene ( 50 Ma) arc. By contrast, the active arc is <10 km wide and exhibits lower-crustal velocities below 7.0 km s-1, most likely representing intermediate compositions. This structural change suggests significant evolution, alteration, and modification of the overriding crust since the onset of subduction at this margin. Gravity anomaly modelling suggests that the extinct arc within the Tonga forearc region comprises relatively dense mafic-ultrabasic material that extends south beneath the Kermadec forearc and terminates at 32°S. The apparent southern termination of the extinct arc coincides with the partitioning of morphological features at 32°S, including a 10-km westward-step of the active arc and a 1.5 km deeper backarc to the south. We propose that tectonic partitioning about the 32°S boundary is the result of variations in the inherited crustal structure, which is divided by the presence and absence, to the north and south respectively, of the extinct volcanic arc.
NASA Astrophysics Data System (ADS)
Montes, C.; Bayona, G.; Cardona, A.; Pardo, A.; Nova, G.; Montano, P.
2013-05-01
A recent update of the geochronologic and mapping database of the Isthmus of Panama suggests that the Isthmus represents an arc that was left-laterally fragmented between 38 and 28 Ma, and then oroclinally bent. This was hypothesis was tested using paleomagnetic data (24 sites and 192 cores) that indicated large counterclockwise vertical-axis rotations (70.9°, ± 6.7°), and moderate clockwise rotations (between 40° ± 4.1° and 56.2° ± 11.1) on either side of an east-west trending fault at the apex of the Isthmus (Rio Gatun Fault), consistent with Isthmus curvature. Sampling for paleomagnetism was performed on Cretaceous basaltic rocks of the Panama arc, some of them probably correlative to the Caribbean large igneous province. Also, sampling took place in younger Cenozoic cover rocks, as well as in the younger arc rocks. This database is here complemented with 15 new pilot paleomagnetic sites taken in eastern, central, and western Panama, and 3 new sites from Miocene cover rocks of what is now considered to be the southeastern-most tip of the Central American arc. The latter record clockwise vertical-axis rotations between 12 and 40°, in agreement with oroclinal bending hypothesis for the formation of the Isthmus of Panama. These new results begin to fill a gap in the paleomagnetic vertical-axis rotation database for the Panama arc. These results also support the continuity of the Central America arc to the east, into what is now docked to western South America.
A review of the arcuate structures in the Iberian Variscides; constraints and genetic models
NASA Astrophysics Data System (ADS)
Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N.
2016-06-01
The main Ibero-Armorican Arc (IAA) is essentially defined by a predominant NW-SE trend in the Iberian branch and an E-W trend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previous major one (IAA). Whatever the models, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian - Carboniferous polyphasic indentation of a Gondwana promontory. In this model the CA is essentially a thin-skinned arc, while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.
Williams, Nathaniel J.; Glisson, Charles; Hemmelgarn, Anthony; Green, Philip
2016-01-01
Background The development of efficient and scalable implementation strategies in mental health is restricted by poor understanding of the change mechanisms that increase clinicians’ evidence-based practice (EBP) adoption. This study tests the cross-level change mechanisms that link an empirically-supported organizational strategy for supporting implementation (labeled ARC for Availability, Responsiveness, and Continuity) to mental health clinicians’ EBP adoption and use. Method Four hundred seventy five mental health clinicians in 14 children’s mental health agencies were randomly assigned to the ARC intervention or a control condition. Measures of organizational culture, clinicians’ intentions to adopt EBPs, and job-related EBP barriers were collected before, during, and upon completion of the three-year ARC intervention. EBP adoption and use were assessed at 12-month follow-up. Multilevel mediation analyses tested changes in organizational culture, clinicians’ intentions to adopt EBPs, and job-related EBP barriers as linking mechanisms explaining the effects of ARC on clinicians’ EBP adoption and use. Results ARC increased clinicians’ EBP adoption (OR = 3.19, p = .003) and use (81% vs. 56%, d = .79, p = .003) at 12-month follow-up. These effects were mediated by improvement in organizational proficiency culture leading to increased clinician intentions to adopt EBPs and by reduced job-related EBP barriers. A combined mediation analysis indicated the organizational culture-EBP intentions mechanism was the primary carrier of ARC’s effects on clinicians’ EBP adoption and use. Conclusions ARC increases clinicians’ EBP adoption and use by creating proficient organizational cultures that increase clinicians’ intentions to adopt EBPs. PMID:27236457
Erosion resistance of arc-sprayed coatings to iron ore at 25 and 315 °C
NASA Astrophysics Data System (ADS)
Dallaire, S.; Levert, H.; Legoux, J.-G.
2001-06-01
Iron ore pellets are sintered and reduced in large continuous industrial oil-fired furnaces. From the furnace, powerful fans extract large volumes of hot gas. Being exposed to gas-borne iron ore particles and temperatures ranging between 125 and 328 °C, fan components are rapidly eroded. Extensive part repair or replacement is required for maintaining a profitable operation. The arc spraying technique has been suggested for repair provided it could produce erosion-resistant coatings. Conventional and cored wires (1.6 mm diameter) were arc sprayed using various spray parameters to produce 250 to 300 µm thick coatings. Arc-sprayed coatings and reference specimens were erosion tested at 25 and 315 °C and impact angles of 25 and 90° in a laboratory gas-blast erosion rig. This device was designed to impact materials with coarse (32 to 300 µm) iron ore particles at a speed of 100 m/s. The coating volume loss due to erosion was measured with a laser profilometer built by National Research Council Canada several years ago. Few arc-sprayed coatings exhibited erosion resistance comparable with structural steel at low impact angles. Erosion of arc-sprayed coatings and reference specimens dramatically increases at 315 °C for both 25° and 90° impact angles. Erosion-enhanced oxidation was found to be responsible for the increase in volume loss above room temperature. Though arc spraying can be appropriate for on-site repair, the development of more erosion-resistant coatings is required for intermediate temperatures.
NASA Astrophysics Data System (ADS)
Echim, M.; Maggiolo, R.; de Keyser, J. M.; Roth, M. A.
2009-12-01
We discuss the quasi-stationary coupling between magnetospheric sharp plasma interfaces and discrete auroral arcs. The magnetospheric generator is described by a Vlasov equilibrium similar to the kinetic models of tangential discontinuities. It provides the self-consistent profile of the magnetospheric convergent electric field, Φm. A kinetic current-voltage relationship gives the field-aligned current density flowing into and out of the ionosphere as a function of the potential difference between the magnetospheric generator and the ionospheric load. The electric potential in the ionosphere, Φi, is computed from the current continuity equation taking into account the variation of the Pedersen conductance, ΣP, with the energy flux of the precipitating magnetospheric electrons (ɛem). We discuss results obtained for the interface between the Plasma Sheet Boundary Layer (PSBL) and the lobes and respectively for the inner edge of the Low Latitude Boundary Layer (LLBL). This type of interfaces provides a field-aligned potential drop, ΔΦ=Φi-Φm, of the order of several kilovolts and field-aligned current densities, j||, of the order of tens of μA/m2 . The precipitating particles are confined in thin regions whose thickness is of the order of several kilometers at 200 km altitude. We show that visible auroral arcs form when the velocity shear across the generator magnetospheric plasma interface is above a threshold depending also on the kinetic properties of the generator. Brighter arcs forms for larger velocity shear in the magnetospheric generator. The field-aligned potential drop tends to decrease when the density gradient across the interface increases. Conjugated observations on April 28, 2001 by Cluster and DMSP-F14 give us the opportunity to validate the model with data gathered simultaneously below and above the acceleration region. The magnetospheric module of the coupling model provides a good estimation of the plasma parameters measured by Cluster across the magnetospheric interface: the electric potential, the plasma density and the parallel flux of downgoing electrons and upgoing Oxygen ions. The results of the ionospheric module of the model are in good agreement with the DMSP-F14 measurements of the field-aligned current density, the flux of precipitating energy and the accelerating field-aligned potential drop. A synthetic electron energy spectrum derived from the computed field-aligned potential drop retrieves the spatial scale and spectral width of the inverted-V event observed by DMSP-F14.
Differential acceleration in the final beam lines of a Heavy Ion Fusion driver
Friedman, Alex
2013-10-19
A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, which each have unique arrival times and may have unique kinetic energies. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: thatmore » the path lengths of the beams in a group must be equal, and that any delay of \\main-pulse" beams relative to \\foot-pulse" beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying \\di erential acceleration" to individual beams or sets of beam at strategic stages of the transport lines. That is, by accelerating some beams \\sooner" and others \\later," it is possible to simplify the beam line con guration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use di erential acceleration to e ect the simultaneous arrival on target of a set of beams ( e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model con gurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.« less
Diameter control of single-walled carbon nanotube forests from 1.3–3.0 nm by arc plasma deposition
Chen, Guohai; Seki, Yasuaki; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Hata, Kenji; Futaba, Don N.
2014-01-01
We present a method to both precisely and continuously control the average diameter of single-walled carbon nanotubes in a forest ranging from 1.3 to 3.0 nm with ~1 Å resolution. The diameter control of the forest was achieved through tuning of the catalyst state (size, density, and composition) using arc plasma deposition of nanoparticles. This 1.7 nm control range and 1 Å precision exceed the highest reports to date. PMID:24448201
Extensive decarbonation of continuously hydrated subducting slabs
NASA Astrophysics Data System (ADS)
Arzilli, Fabio; Burton, Mike; La Spina, Giuseppe; Macpherson, Colin G.
2017-04-01
CO2 release from subducting slabs is a key element of Earth's carbon cycle, consigning slab carbon either to mantle burial or recycling to the surface through arc volcanism, however, what controls subducted carbon's fate is poorly understood. Fluids mobilized by devolatilization of subducting slabs play a fundamental role in the melting of mantle wedges and in global geochemical cycles [1]. The effect of such fluids on decarbonation in subducting lithologies has been investigated recently [2-5], but several thermodynamic models [2-3], and experimental studies [6] suggest that carbon-bearing phases are stable at sub-arc depths (80-140 km; 2.6-4.5 GPa), implying that this carbon can be carried to mantle depths of >140 km. This is inconsistent with observations of voluminous CO2 release from arc volcanoes [7-10], located above slabs that are at 2.6-4.5 GPa pressure. The aim of this study is to re-evaluate the role of metamorphic decarbonation, showing if decarbonation reactions could be feasible at sub-arc depths combined with a continuous hydration scenario. We used the PerpleX software combined with a custom-designed algorithm to simulate a pervasive fluid infiltration characterized by "continuous hydration" combined with a distillation model, in which is possible to remove CO2 when decarbonation occurs, to obtain an open-system scenario. This is performed by repeatedly flushing the sediment with pure H2O at 0.5, 1.0 or 5 wt.% until no further decarbonation occurs. Here we show that continuous hydrated of sediment veneers on subducting slabs by H2O released from oceanic crust and serpentinised mantle lithosphere [11-13], produces extensive slab decarbonation over a narrow, sub-arc pressure range, even for low temperature subduction pathways. This explains the location of CO2-rich volcanism, quantitatively links the sedimentary composition of slab material to the degree of decarbonation and greatly increases estimates for the magnitude of carbon flux through the arc in subduction zones. [1] Hilton, D.R. et al. (2002) Rev. Mineral. Geochem. 47, 319-370. [2] Gorman, P.J. et al. (2006) Geochem. Geophys. Geosyst. 7. [3] Kerrick, D.M. and Connolly, J.A.D. (2001) Nature 411, 293-296. [4] Cook-Kollars, J. et al. (2014) Chem. Geol. 386, 31-48. [5] Collins, N.C. et al. (2015) Chem. Geol. 412, 132-150. [6] Poli, S. et al. (2009) Earth Planet. Sci. Lett. 278, 350-360. [7] Sano, Y. and Williams, S.N. (1996) Geophys. Res. Lett. 23, 2749-2752. [8] Marty, B. and Tolstikhin, I.N. (1998) Chem. Geol. 145, 233-248. [9] Wallace, P.J. (2005) J. Volcanol. Geoth. Res. 140, 217-240. [10] Burton, M.R. et al. (2013) Rev. Mineral. Geochem. 75, 323-354. [11] Ulmer, P. and Trommsdorff, V. (1995) Science 268, 858-861. [12] Schmidt, M.W. and Poli, S. (1998) Earth Planet. Sci. Lett. 163, 361-379. [13] van Keken, P. E. et al. (2011) J. Geophys. Res. 116.
Liu, Yang; Bian, Dong; Wu, Yuanhao; Li, Nan; Qiu, Kejin; Zheng, Yufeng; Han, Yong
2015-09-01
Mg-1Ca samples were implanted with biocompatible alloy ions Ag, Fe and Y respectively with a dose of 2×10(17)ionscm(-2) by metal vapor vacuum arc technique (MEVVA). The surface morphologies and surface chemistry were investigated by SEM, AES and XPS. Surface changes were observed after all three kinds of elemental ion implantation. The results revealed that the modified layer was composed of two sublayers, including an outer oxidized layer with mixture of oxides and an inner implanted layer, after Ag and Fe ion implantation. Y ion implantation induced an Mg/Ca-deficient outer oxidized layer and the distribution of Y along with depth was more homogeneous. Both electrochemical test and immersion test revealed accelerated corrosion rate of Ag-implanted Mg-1Ca and Fe-implanted Mg-1Ca, whereas Y ion implantation showed a short period of protection since enhanced corrosion resistance was obtained by electrochemical test, but accelerated corrosion rate was found by long period immersion test. Indirect cytotoxicity assay indicated good cytocompatibility of Y-implanted Mg-1Ca. Moreover, the corresponding corrosion mechanisms involving implanting ions into magnesium alloys were proposed, which might provide guidance for further application of plasma ion implantation to biodegradable Mg alloys. Copyright © 2015 Elsevier B.V. All rights reserved.
A Model of E-Learning Uptake and Continued Use in Higher Education Institutions
ERIC Educational Resources Information Center
Pinpathomrat, Nakarin; Gilbert, Lester; Wills, Gary B.
2013-01-01
This research investigates the factors that affect a students' take-up and continued use of E-learning. A mathematical model was constructed by applying three grounded theories; Unified Theory of Acceptance and Use of Technology, Keller's ARCS model, and Expectancy Disconfirm Theory. The learning preference factor was included in the model.…
Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.
The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirov, K.K.; Mailloux, J.; Ekedahl, A.
2005-09-26
In this study, the most likely causes of the enhanced radiation in front of the LHCD launcher are investigated: fast ions from the warm plasma, fast electrons parasitically accelerated in front of the grill and arcs. Evidence for the presence of each of these mechanisms is discussed. The experimental conditions favouring the appearance of these phenomena and their impact on the launcher have also been highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainz, K; Prah, D; Ahunbay, E
2014-06-01
Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91more » OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.« less
Results from CAT/SCAN, the Calabria-Apennine-Tyrrhenian/Subduction-Accretion-Collision Network
NASA Astrophysics Data System (ADS)
Steckler, M. S.; Amato, A.; Guerra, I.; Armbruster, J.; Baccheschi, P.; Diluccio, F.; Gervasi, A.; Harabaglia, P.; Kim, W.; Lerner-Lam, A.; Margheriti, L.; Seeber, L.; Tolstoy, M.; Wilson, C. K.
2005-12-01
The Calabrian Arc region is the final remnant of a Western Mediterranean microplate driven by rollback. Calabria itself is an exotic block that rifted off Sardinia and opened the Tyrrhenian Sea back-arc basin in its wake. The Calabrian Arc rapidly advanced to the southeast, with subduction ahead and extension behind, following subduction rollback of the Mesozoic seafloor. The subduction zone meanwhile collided progressively with the Apulia to form the Apennines in peninsular Italy and with the Africa to form the Maghrebides in Sicily. The Calabrian Arc is where the transition from subduction to continental collision is occurring. The collisions on either side of Calabria have restricted oceanic subduction to a narrow 200-km salient with well-defined edges and seismicity that extends to over 500 km depth. The collisions have also slowed, or possibly even halted, the rapid advance of the arc. Whether rollback of the oceanic lower plate of the Ionian Sea continues and whether the upper plate of Calabria continues to move as an independent plate are both uncertain. The Calabrian-Apennine-Tyrrhenian/Subduction-Collision-Accretion Network (CAT/SCAN) is a passive experiment to study of the Calabrian Arc and the transition to the southern Apennines. The land deployment consisted of three phases. The initial phase included an array of 39 broadband seismometers onshore, deployed in the winter of 2003/4. In September 2004, the array was reduced to 28 broadband and 8 short-period instruments. In April 2005, the array was reduced once again to 20 broadband and 2 short-period instruments. The field deployment was completed in October 2005. Offshore, 12 broadband Ocean Bottom Seismometers (OBSs) were deployed in the beginning of October 2004. Data from 4 OBSs have been recovered so far with deployment durations from a few weeks to almost one year. Fishing activity has been strongly implicated in the early recoveries, (with one instrument returned by fishermen), and is suspected for the instruments that were not recovered. The experiment is determining the structure of the Calabrian subduction and southern Apennine collision systems and the structure of the transition from oceanic subduction in Calabria to continental collision in the southern Apennines. We have delineated a strong anisotropy with a fast direction following the curved arc, but weaker anisotropy beneath the Tyrrhenian Sea. Receiver function images show variations in crustal thickness throughout the region, consistent with previous conceptual models. We also image a negative polarity interface dipping to the southwest that we interpret as the main thrust ramp in the north transitioning to the subduction interface in the south. The transition from one to the other is marked by a loss of amplitude in the Moho conversion. Local seismicity is consistent with surface structure in showing extension normal and parallel to the Calabrian forearc as well as continuing southeastward motion of Calabria relative to the southern Apennines and Maghrebides.
The plasmatron: Advanced mode thermionic energy conversion
NASA Technical Reports Server (NTRS)
Hansen, L. K.; Hatch, G. L.; Rasor, N. S.
1976-01-01
A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices.
DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Burch, J. L.
1987-01-01
Detailed analyses of the DE 1 high-altitude plasma instrument electron and ion data have been performed for four passes during which theta auroras were observed. The data indicate that the theta auroras occur on what appear to be closed field lines with particle signatures and plasma parameters that are quite similar to those of the magnetospheric boundary plasma sheet. The field-aligned currents computed from particle fluxes in the energy range 18-13 keV above the theta auroras are observed to be generally downward on the dawnside of the arcs with a narrower region of larger (higher density) upward currents on the duskside of the arcs. These currents are carried predominantly by field-aligned beams of accelerated cold electrons. Of particualr interest in regions of upward field-aligned current are downward electron beams at energies less than the inferred potential drop above the spacecraft.
Common arc method for diffraction pattern orientation.
Bortel, Gábor; Tegze, Miklós
2011-11-01
Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography
NASA Astrophysics Data System (ADS)
Tu, Yoko; Heki, Kosuke
2017-09-01
We studied 38 slow slip events (SSEs) in 1997-2016 beneath the Iriomote Island, southwestern Ryukyu Arc, Japan, using continuous Global Navigation Satellite Systems data. These SSEs occur biannually on the same fault patch at a depth of 30 km on the subducting Philippine Sea Plate slab with average moment magnitudes (
Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite
NASA Astrophysics Data System (ADS)
Walowski, K. J.; Wallace, P. J.; Hauri, E. H.; Wada, I.; Clynne, M. A.
2015-05-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water--subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate--is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab--hydrated mantle peridotite in the slab interior--compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
Collot, J.-Y.; Fisher, M.A.
1989-01-01
Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors
Slab melting beneath the Cascades Arc driven by dehydration of altered oceanic peridotite
Walowski, Kristina J; Wallace, Paul J.; Hauri, E.H.; Wada, I.; Clynne, Michael A.
2015-01-01
Water is returned to Earth’s interior at subduction zones. However, the processes and pathways by which water leaves the subducting plate and causes melting beneath volcanic arcs are complex; the source of the water—subducting sediment, altered oceanic crust, or hydrated mantle in the downgoing plate—is debated; and the role of slab temperature is unclear. Here we analyse the hydrogen-isotope and trace-element signature of melt inclusions in ash samples from the Cascade Arc, where young, hot lithosphere subducts. Comparing these data with published analyses, we find that fluids in the Cascade magmas are sourced from deeper parts of the subducting slab—hydrated mantle peridotite in the slab interior—compared with fluids in magmas from the Marianas Arc, where older, colder lithosphere subducts. We use geodynamic modelling to show that, in the hotter subduction zone, the upper crust of the subducting slab rapidly dehydrates at shallow depths. With continued subduction, fluids released from the deeper plate interior migrate into the dehydrated parts, causing those to melt. These melts in turn migrate into the overlying mantle wedge, where they trigger further melting. Our results provide a physical model to explain melting of the subducted plate and mass transfer from the slab to the mantle beneath arcs where relatively young oceanic lithosphere is subducted.
NASA Astrophysics Data System (ADS)
Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick
2018-06-01
Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.
NASA Astrophysics Data System (ADS)
Sano, Takashi; Shirao, Motomaro; Tani, Kenichiro; Tsutsumi, Yukiyasu; Kiyokawa, Shoichi; Fujii, Toshitsugu
2016-06-01
The chemical composition of intraplate seamounts is distinct from normal seafloor material, meaning that the subduction of seamounts at a convergent margin can cause a change in the chemistry of the mantle wedge and associated arc magmas. Nishinoshima, a volcanic island in the Izu-Bonin Arc of Japan, has been erupting continuously over the past 2 years, providing an ideal opportunity to examine the effect of seamount subduction on the chemistry of arc magmas. Our research is based on the whole-rock geochemistry and the chemistry of minerals within lavas and air-fall scoria from Nishinoshima that were erupted before 1702, in 1973-1974, and in 2014. The mineral phases within the analyzed samples crystallized under hydrous conditions (H2O = 3-4 wt.%) at temperatures of 970 °C-990 °C in a shallow (3-6 km depth) magma chamber. Trace element data indicate that the recently erupted Nishinoshima volcanics are much less depleted in the high field strength elements (Nb, Ta, Zr, Hf) than other volcanics within the Izu-Bonin Arc. In addition, the level of enrichment in the Nishinoshima magmas has increased in recent years, probably due to the addition of material from HIMU-enriched (i.e., high Nb/Zr and Ta/Hf) seamounts on the Pacific Plate, which is being subducted westwards beneath the Philippine Sea Plate. This suggests that the chemistry of scoria from Nishinoshima volcano records the progressive addition of components derived from subducted seamounts.
Erosion and deterioration of the Isles Dernieres Barrier Island Arc, Louisiana, U.S.A.: 1853 to 1988
McBride, Randolph A.; Penland, Shea; Jaffe, Bruce E.; Williams, S. Jeffress; Sallenger, Asbury H.; Westphal, Karen A.
1989-01-01
Using cartographic and aerial photography data from the years 1853, 1890, 1934, 1956, 1978, 1984, and 1988, shoreline change maps of the Isles Dernieres barrier island arc were constructed. These data were accurately superimposed, using a computer mapping system, which removed projection, datum, scale, and other cartographic inconsistencies. Linear, areal, and perimeter measurements indicate that the Isles Dernieres are suffering rapid rates of coastal erosion, land loss, and breakup. Bayside and gulfside erosion, in combination with sediment shortage and subsidence, have caused the Isles Dernieres to narrow through time. In addition, the core of the barrier island arc does not migrate landward and instead, breaks up in place as a result of inlet breaching and development. This is in contrast to other models of landward barrier island migration during transgression. If these trends continue, the Isles Dernieres will likely evolve into a subaqueous inner-shelf shoal by the early 21st century. Loss of the Isles Dernieres barrier island arc will severely impact the Terrebonne parish estuary, resulting in decreased environmental quality and increased public risk from storms and hurricanes.