Helle, Michael; Koken, Peter; Van Cauteren, Marc; van Osch, Matthias J. P.
2017-01-01
Purpose Both dynamic magnetic resonance angiography (4D‐MRA) and perfusion imaging can be acquired by using arterial spin labeling (ASL). While 4D‐MRA highlights large vessel pathology, such as stenosis or collateral blood flow patterns, perfusion imaging provides information on the microvascular status. Therefore, a complete picture of the cerebral hemodynamic condition could be obtained by combining the two techniques. Here, we propose a novel technique for simultaneous acquisition of 4D‐MRA and perfusion imaging using time‐encoded pseudo‐continuous arterial spin labeling. Methods The time‐encoded pseudo‐continuous arterial spin labeling module consisted of a first subbolus that was optimized for perfusion imaging by using a labeling duration of 1800 ms, whereas the other six subboli of 130 ms were used for encoding the passage of the labeled spins through the arterial system for 4D‐MRA acquisition. After the entire labeling module, a multishot 3D turbo‐field echo‐planar‐imaging readout was executed for the 4D‐MRA acquisition, immediately followed by a single‐shot, multislice echo‐planar‐imaging readout for perfusion imaging. The optimal excitation flip angle for the 3D turbo‐field echo‐planar‐imaging readout was investigated by evaluating the image quality of the 4D‐MRA and perfusion images as well as the accuracy of the estimated cerebral blood flow values. Results When using 36 excitation radiofrequency pulses with flip angles of 5 or 7.5°, the saturation effects of the 3D turbo‐field echo‐planar‐imaging readout on the perfusion images were relatively moderate and after correction, there were no statistically significant differences between the obtained cerebral blood flow values and those from traditional time‐encoded pseudo‐continuous arterial spin labeling. Conclusions This study demonstrated that simultaneous acquisition of 4D‐MRA and perfusion images can be achieved by using time‐encoded pseudo‐continuous arterial spin labeling. Magn Reson Med 79:2676–2684, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:28913838
Comparison of non-invasive MRI measurements of cerebral blood flow in a large multisite cohort.
Dolui, Sudipto; Wang, Ze; Wang, Danny Jj; Mattay, Raghav; Finkel, Mack; Elliott, Mark; Desiderio, Lisa; Inglis, Ben; Mueller, Bryon; Stafford, Randall B; Launer, Lenore J; Jacobs, David R; Bryan, R Nick; Detre, John A
2016-07-01
Arterial spin labeling and phase contrast magnetic resonance imaging provide independent non-invasive methods for measuring cerebral blood flow. We compared global cerebral blood flow measurements obtained using pseudo-continuous arterial spin labeling and phase contrast in 436 middle-aged subjects acquired at two sites in the NHLBI CARDIA multisite study. Cerebral blood flow measured by phase contrast (CBFPC: 55.76 ± 12.05 ml/100 g/min) was systematically higher (p < 0.001) and more variable than cerebral blood flow measured by pseudo-continuous arterial spin labeling (CBFPCASL: 47.70 ± 9.75). The correlation between global cerebral blood flow values obtained from the two modalities was 0.59 (p < 0.001), explaining less than half of the observed variance in cerebral blood flow estimates. Well-established correlations of global cerebral blood flow with age and sex were similarly observed in both CBFPCASL and CBFPC CBFPC also demonstrated statistically significant site differences, whereas no such differences were observed in CBFPCASL No consistent velocity-dependent effects on pseudo-continuous arterial spin labeling were observed, suggesting that pseudo-continuous labeling efficiency does not vary substantially across typical adult carotid and vertebral velocities, as has previously been suggested. Although CBFPCASL and CBFPC values show substantial similarity across the entire cohort, these data do not support calibration of CBFPCASL using CBFPC in individual subjects. The wide-ranging cerebral blood flow values obtained by both methods suggest that cerebral blood flow values are highly variable in the general population. © The Author(s) 2016.
Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2016-10-01
To compare calf skeletal muscle perfusion measured with pulsed arterial spin labeling (PASL) and pseudo-continuous arterial spin labeling (pCASL) methods, and to assess the variability of pCASL labeling efficiency in the popliteal artery throughout an ischemia-reperfusion paradigm. At 3T, relative pCASL labeling efficiency was experimentally assessed in five subjects by measuring the signal intensity of blood in the popliteal artery just distal to the labeling plane immediately following pCASL labeling or control preparation pulses, or without any preparation pulses throughout separate ischemia-reperfusion paradigms. The relative label and control efficiencies were determined during baseline, hyperemia, and recovery. In a separate cohort of 10 subjects, pCASL and PASL sequences were used to measure reactive hyperemia perfusion dynamics. Calculated pCASL labeling and control efficiencies did not differ significantly between baseline and hyperemia or between hyperemia and recovery periods. Relative to the average baseline, pCASL label efficiency was 2 ± 9% lower during hyperemia. Perfusion dynamics measured with pCASL and PASL did not differ significantly (P > 0.05). Average leg muscle peak perfusion was 47 ± 20 mL/min/100g or 50 ± 12 mL/min/100g, and time to peak perfusion was 25 ± 3 seconds and 25 ± 7 seconds from pCASL and PASL data, respectively. Differences of further metrics parameterizing the perfusion time course were not significant between pCASL and PASL measurements (P > 0.05). No change in pCASL labeling efficiency was detected despite the almost 10-fold increase in average blood flow velocity in the popliteal artery. pCASL and PASL provide precise and consistent measurement of skeletal muscle reactive hyperemia perfusion dynamics. J. MAGN. RESON. IMAGING 2016;44:929-939. © 2016 International Society for Magnetic Resonance in Medicine.
Robertson, A D; Matta, G; Basile, V S; Black, S E; Macgowan, C K; Detre, J A; MacIntosh, B J
2017-08-01
The relationship between extracranial large-artery characteristics and arterial spin-labeling MR imaging may influence the quality of arterial spin-labeling-CBF images for older adults with and without vascular pathology. We hypothesized that extracranial arterial blood velocity can explain between-person differences in arterial spin-labeling data systematically across clinical populations. We performed consecutive pseudocontinuous arterial spin-labeling and phase-contrast MR imaging on 82 individuals (20-88 years of age, 50% women), including healthy young adults, healthy older adults, and older adults with cerebral small vessel disease or chronic stroke infarcts. We examined associations between extracranial phase-contrast hemodynamics and intracranial arterial spin-labeling characteristics, which were defined by labeling efficiency, temporal signal-to-noise ratio, and spatial coefficient of variation. Large-artery blood velocity was inversely associated with labeling efficiency ( P = .007), temporal SNR ( P < .001), and spatial coefficient of variation ( P = .05) of arterial spin-labeling, after accounting for age, sex, and group. Correction for labeling efficiency on an individual basis led to additional group differences in GM-CBF compared to correction using a constant labeling efficiency. Between-subject arterial spin-labeling variance was partially explained by extracranial velocity but not cross-sectional area. Choosing arterial spin-labeling timing parameters with on-line knowledge of blood velocity may improve CBF quantification. © 2017 by American Journal of Neuroradiology.
Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson's disease.
Melzer, Tracy R; Watts, Richard; MacAskill, Michael R; Pearson, John F; Rüeger, Sina; Pitcher, Toni L; Livingston, Leslie; Graham, Charlotte; Keenan, Ross; Shankaranarayanan, Ajit; Alsop, David C; Dalrymple-Alford, John C; Anderson, Tim J
2011-03-01
There is a need for objective imaging markers of Parkinson's disease status and progression. Positron emission tomography and single photon emission computed tomography studies have suggested patterns of abnormal cerebral perfusion in Parkinson's disease as potential functional biomarkers. This study aimed to identify an arterial spin labelling magnetic resonance-derived perfusion network as an accessible, non-invasive alternative. We used pseudo-continuous arterial spin labelling to measure cerebral grey matter perfusion in 61 subjects with Parkinson's disease with a range of motor and cognitive impairment, including patients with dementia and 29 age- and sex-matched controls. Principal component analysis was used to derive a Parkinson's disease-related perfusion network via logistic regression. Region of interest analysis of absolute perfusion values revealed that the Parkinson's disease pattern was characterized by decreased perfusion in posterior parieto-occipital cortex, precuneus and cuneus, and middle frontal gyri compared with healthy controls. Perfusion was preserved in globus pallidus, putamen, anterior cingulate and post- and pre-central gyri. Both motor and cognitive statuses were significant factors related to network score. A network approach, supported by arterial spin labelling-derived absolute perfusion values may provide a readily accessible neuroimaging method to characterize and track progression of both motor and cognitive status in Parkinson's disease.
Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning
ERIC Educational Resources Information Center
Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.
2006-01-01
In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…
Kato, Ayumi; Shinohara, Yuki; Kuya, Keita; Sakamoto, Makoto; Kowa, Hisanori; Ogawa, Toshihide
2017-07-01
The congestion of spin-labeled blood at large-vessel occlusion can present as hyperintense signals on perfusion magnetic resonance imaging with 3-dimensional pseudo-continuous arterial spin labeling (proximal bright vessel sign). The purpose of this study was to clarify the difference between proximal bright vessel sign and susceptibility vessel sign in acute cardioembolic cerebral infarction. Forty-two patients with cardioembolic cerebral infarction in the anterior circulation territory underwent magnetic resonance imaging including diffusion-weighted imaging, 3-dimensional pseudo-continuous arterial spin labeling perfusion magnetic resonance imaging, T2*-weighted imaging, and 3-dimensional time-of-flight magnetic resonance angiography using a 3-T magnetic resonance scanner. Visual assessments of proximal bright vessel sign and the susceptibility vessel sign were performed by consensus of 2 experienced neuroradiologists. The relationship between these signs and the occlusion site of magnetic resonance angiography was also investigated. Among 42 patients with cardioembolic cerebral infarction, 24 patients showed proximal bright vessel sign (57.1%) and 25 showed susceptibility vessel sign (59.5%). There were 19 cases of proximal bright vessel sign and susceptibility vessel sign-clear, 12 cases of proximal bright vessel sign and susceptibility vessel sign-unclear, and 11 mismatched cases. Four out of 6 patients with proximal bright vessel sign-unclear and susceptibility vessel sign-clear showed distal middle cerebral artery occlusion, and 2 out of 5 patients with proximal bright vessel sign-clear and susceptibility vessel sign-unclear showed no occlusion on magnetic resonance angiography. Proximal bright vessel sign is almost compatible with susceptibility vessel sign in patients with cardioembolic cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T
2014-05-01
Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.
Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M
2014-02-01
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.
Yun, Tae Jin; Paeng, Jin Chul; Sohn, Chul-Ho; Kim, Jeong Eun; Kang, Hyun-Seung; Yoon, Byung-Woo; Choi, Seung Hong; Kim, Ji-hoon; Lee, Ho-Young; Han, Moon Hee; Zaharchuk, Greg
2016-01-01
To assess arterial spin labeling in the identification of impaired cerebrovascular reactivity in patients with moyamoya disease. The institutional review board approved this prospective study, and written informed consent was obtained from all patients. A prospective study was conducted in 78 subjects with moyamoya disease (of whom 31 underwent unilateral direct arterial anastomosis). The concordance between the cerebrovascular reactivity index values from arterial spin labeling and single photon emission computed tomography (SPECT) was assessed by using Bland-Altman analysis, and the area under the receiver operating characteristic curve was used to evaluate the diagnostic accuracy of arterial spin labeling to depict impaired cerebrovascular reactivity (in which the cerebrovascular reactivity index value is less than 0% on SPECT images). The cerebrovascular reactivity index from arterial spin labeling had a lower value than that from SPECT (mean difference, -4.2%). The area under the receiver operating characteristic curve for arterial spin labeling in the detection of impaired cerebrovascular reactivity was at least 0.85. On the anastomotic side, a significant increase was found between the cerebrovascular reactivity index values on arterial spin labeling images obtained preoperatively and those obtained 6 months after surgery, as well as on SPECT images (mean ± standard deviation values of cerebrovascular reactivity index increased by 5.9% ± 10.9 and 3.0% ± 6.3 for arterial spin labeling and SPECT, respectively). Arterial spin labeling has excellent performance in the identification of impaired cerebrovascular reactivity in patients with moyamoya disease, and it has the potential to serve as a noninvasive imaging tool to monitor cerebrovascular reactivity in patients with moyamoya disease. © RSNA, 2015
Boudes, Elodie; Gilbert, Guillaume; Leppert, Ilana Ruth; Tan, Xianming; Pike, G. Bruce; Saint-Martin, Christine; Wintermark, Pia
2014-01-01
Background Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. Objective To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. Design/methods We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. Results A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). Conclusion This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures. PMID:25379424
Qiao, X J; Salamon, N; Wang, D J J; He, R; Linetsky, M; Ellingson, B M; Pope, W B
2013-01-01
A substantial portion of clinically diagnosed TIA cases is imaging-negative. The purpose of the current study is to determine if arterial spin-labeling is helpful in detecting perfusion abnormalities in patients presenting clinically with TIA. Pseudocontinuous arterial spin-labeling with 3D background-suppressed gradient and spin-echo was acquired on 49 patients suspected of TIA within 24 hours of symptom onset. All patients were free of stroke history and had no lesion-specific findings on general MR, DWI, and MRA sequences. The calculated arterial spin-labeling CBF maps were scored from 1-3 on the basis of presence and severity of perfusion disturbance by 3 independent observers blinded to patient history. An age-matched cohort of 36 patients diagnosed with no cerebrovascular events was evaluated as a control. Interobserver agreement was assessed by use of the Kendall concordance test. Scoring of perfusion abnormalities on arterial spin-labeling scans of the TIA cohort was highly concordant among the 3 observers (W = 0.812). The sensitivity and specificity of arterial spin-labeling in the diagnosis of perfusion abnormalities in TIA was 55.8% and 90.7%, respectively. In 93.3% (70/75) of the arterial spin-labeling CBF map readings with positive scores (≥2), the brain regions where perfusion abnormalities were identified by 3 observers matched with the neurologic deficits at TIA onset. In this preliminary study, arterial spin-labeling showed promise in the detection of perfusion abnormalities that correlated with clinically diagnosed TIA in patients with otherwise normal neuroimaging results.
Shimizu, Kazuhiro; Kosaka, Nobuyuki; Fujiwara, Yasuhiro; Matsuda, Tsuyoshi; Yamamoto, Tatsuya; Tsuchida, Tatsuro; Tsuchiyama, Katsuki; Oyama, Nobuyuki; Kimura, Hirohiko
2017-01-10
The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99m Tc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL-MRI as debated in brain imaging.
Assessing Intracranial Vascular Compliance Using Dynamic Arterial Spin Labeling
Yan, Lirong; Liu, Collin Y.; Smith, Robert X.; Jog, Mayank; Langham, Michael; Krasileva, Kate; Chen, Yufen; Ringman, John M.; Wang, Danny J.J.
2015-01-01
Vascular compliance (VC) is an important marker for a number of cardiovascular diseases and dementia, which is typically assessed in central and peripheral arteries indirectly by quantifying pulse wave velocity (PWV), and/or pulse pressure waveform. To date, very few methods are available for the quantification of intracranial VC. In the present study, a novel MRI technique for in-vivo assessment of intracranial VC was introduced, where dynamic arterial spin labeling (ASL) scans were synchronized with the systolic and diastolic phases of the cardiac cycle. VC is defined as the ratio of change in arterial cerebral blood volume (ΔCBV) and change in arterial pressure (ΔBP). Intracranial VC was assessed in different vascular components using the proposed dynamic ASL method. Our results show that VC mainly occurs in large arteries, gradually decreases in small arteries and arterioles. The comparison of intracranial VC between young and elderly subjects shows that aging is accompanied by a reduction of intracranial VC, in good agreement with the literature. Furthermore, a positive association between intracranial VC and cerebral perfusion measured using pseudo-continuous ASL with 3D GRASE MRI was observed independent of aging effects, suggesting loss of VC is associated with a decline in perfusion. Finally, a significant positive correlation between intracranial and central (aortic arch) VC was observed using an ungated phase-contrast 1D projection PWV technique. The proposed dynamic ASL method offers a promising approach for assessing intracranial VC in a range of cardiovascular diseases and dementia. PMID:26364865
Tan, Huan; Hoge, W Scott; Hamilton, Craig A; Günther, Matthias; Kraft, Robert A
2011-07-01
Arterial spin labeling is a noninvasive technique that can quantitatively measure cerebral blood flow. While traditionally arterial spin labeling employs 2D echo planar imaging or spiral acquisition trajectories, single-shot 3D gradient echo and spin echo (GRASE) is gaining popularity in arterial spin labeling due to inherent signal-to-noise ratio advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T(2) decay. A novel technique combining 3D GRASE and a periodically rotated overlapping parallel lines with enhanced reconstruction trajectory (PROPELLER) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3 × 3 × 5 mm(3) nominal voxel size with pulsed arterial spin labeling preparation sequence. Data from five healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in cerebral blood flow quantification with 3D gradient echo and spin echo, 3D GRASE PROPELLER demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. Copyright © 2011 Wiley-Liss, Inc.
Alsop, David C.; Detre, John A.; Golay, Xavier; Günther, Matthias; Hendrikse, Jeroen; Hernandez-Garcia, Luis; Lu, Hanzhang; MacIntosh, Bradley J.; Parkes, Laura M.; Smits, Marion; van Osch, Matthias J. P.; Wang, Danny JJ; Wong, Eric C.; Zaharchuk, Greg
2014-01-01
This article provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ‘ASL in Dementia’ consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this article we describe the major considerations and tradeoffs in implementing an ASL protocol, and provide specific recommendations for a standard approach. Our conclusions are that, as an optimal default implementation we recommend: pseudo-continuous labeling, background suppression, a segmented 3D readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model. PMID:24715426
Inter-Vendor Reproducibility of Pseudo-Continuous Arterial Spin Labeling at 3 Tesla
Mutsaerts, Henri J. M. M.; Steketee, Rebecca M. E.; Heijtel, Dennis F. R.; Kuijer, Joost P. A.; van Osch, Matthias J. P.; Majoie, Charles B. L. M.; Smits, Marion; Nederveen, Aart J.
2014-01-01
Purpose Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. Material and Methods 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Results Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. Conclusion These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors. PMID:25090654
Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla.
Mutsaerts, Henri J M M; Steketee, Rebecca M E; Heijtel, Dennis F R; Kuijer, Joost P A; van Osch, Matthias J P; Majoie, Charles B L M; Smits, Marion; Nederveen, Aart J
2014-01-01
Prior to the implementation of arterial spin labeling (ASL) in clinical multi-center studies, it is important to establish its status quo inter-vendor reproducibility. This study evaluates and compares the intra- and inter-vendor reproducibility of pseudo-continuous ASL (pCASL) as clinically implemented by GE and Philips. 22 healthy volunteers were scanned twice on both a 3T GE and a 3T Philips scanner. The main difference in implementation between the vendors was the readout module: spiral 3D fast spin echo vs. 2D gradient-echo echo-planar imaging respectively. Mean and variation of cerebral blood flow (CBF) were compared for the total gray matter (GM) and white matter (WM), and on a voxel-level. Whereas the mean GM CBF of both vendors was almost equal (p = 1.0), the mean WM CBF was significantly different (p<0.01). The inter-vendor GM variation did not differ from the intra-vendor GM variation (p = 0.3 and p = 0.5 for GE and Philips respectively). Spatial inter-vendor CBF and variation differences were observed in several GM regions and in the WM. These results show that total GM CBF-values can be exchanged between vendors. For the inter-vendor comparison of GM regions or WM, these results encourage further standardization of ASL implementation among vendors.
Kaneta, T; Katsuse, O; Hirano, T; Ogawa, M; Yoshida, K; Odawara, T; Hirayasu, Y; Inoue, T
2017-08-01
Arterial spin-labeling MR imaging has been recently developed as a noninvasive technique with magnetically labeled arterial blood water as an endogenous contrast medium for the evaluation of CBF. Our aim was to compare arterial spin-labeling MR imaging and SPECT in the visual assessment of CBF in patients with Alzheimer disease. In 33 patients with Alzheimer disease or mild cognitive impairment due to Alzheimer disease, CBF images were obtained by using both arterial spin-labeling-MR imaging with a postlabeling delay of 1.5 seconds and 2.5 seconds (PLD 1.5 and PLD 2.5 , respectively) and brain perfusion SPECT. Twenty-two brain regions were visually assessed, and the diagnostic confidence of Alzheimer disease was recorded. Among all arterial spin-labeling images, 84.9% of PLD 1.5 and 9% of PLD 2.5 images showed the typical pattern of advanced Alzheimer disease (ie, decreased CBF in the bilateral parietal, temporal, and frontal lobes). PLD 1.5 , PLD 2.5 , and SPECT imaging resulted in obviously different visual assessments. PLD 1.5 showed a broad decrease in CBF, which could have been due to an early perfusion. In contrast, PLD 2.5 did not appear to be influenced by an early perfusion but showed fewer pathologic findings than SPECT. The distinctions observed by us should be carefully considered in the visual assessments of Alzheimer disease. Further studies are required to define the patterns of change in arterial spin-labeling-MR imaging associated with Alzheimer disease. © 2017 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Y; Johnston, M; Whitlow, C
Purpose: To demonstrate the feasibility of a novel method for size specific arterial cerebral blood volume (aCBV) mapping using pseudo-continuous arterial spin labeling (PCASL), with multiple TI. Methods: Multiple PCASL images were obtained from a subject with TI of [300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000] ms. Each TI pair was averaged six times. Two scans were performed: one without a flow crusher gradient and the other with a crusher gradient (10cm/s in three directions) to remove signals from large arteries. Scan times were 5min. without a crusher gradient and 5.5 min withmore » a crusher gradient. Non-linear fitting algorithm finds the minimum mean squared solution of per-voxel based aCBV, cerebral blood flow, and arterial transit time, and fits the data into a hemodynamic model that represents superposition of blood volume and flow components within a single voxel. Results: aCBV maps with a crusher gradient represent signals from medium and small sized arteries, while those without a crusher gradient represent signals from all sized arteries, indicating that flow crusher gradients can be effectively employed to achieve size-specific aCBV mapping. Regardless of flow crusher, the CBF and ATT maps are very similar in appearance. Conclusion: Quantitative size selective blood volume mapping controlled by a flow crusher is feasible without additional information because the ASL quantification process doesn’t require an arterial input function measured from a large artery. The size specific blood volume mapping is not interfered by sSignals from large arteries do not interfere with size specific aCBV mapping in the applications of interest in for applications in which only medium or small arteries are of interest.« less
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Meakin, James A; Jezzard, Peter
2013-03-01
Velocity-selective (VS) arterial spin labeling is a promising method for measuring perfusion in areas of slow or collateral flow by eliminating the bolus arrival delay associated with other spin labeling techniques. However, B(0) and B(1) inhomogeneities and eddy currents during the VS preparation hinder accurate quantification of perfusion with VS arterial spin labeling. In this study, it is demonstrated through simulations and experiments in healthy volunteers that eddy currents cause erroneous tagging of static tissue. Consequently, mean gray matter perfusion is overestimated by up to a factor of 2, depending on the VS preparation used. A novel eight-segment B(1) insensitive rotation VS preparation is proposed to reduce eddy current effects while maintaining the B(0) and B(1) insensitivity of previous preparations. Compared to two previous VS preparations, the eight-segment B(1) insensitive rotation is the most robust to eddy currents and should improve the quality and reliability of VS arterial spin labeling measurements in future studies. Copyright © 2012 Wiley Periodicals, Inc.
Shielded dual-loop resonator for arterial spin labeling at the neck.
Hetzer, Stefan; Mildner, Toralf; Driesel, Wolfgang; Weder, Manfred; Möller, Harald E
2009-06-01
To construct a dual-loop coil for continuous arterial spin labeling (CASL) at the human neck and characterize it using computer simulations and magnetic resonance experiments. The labeling coil was designed as a perpendicular pair of shielded-loop resonators made from coaxial cable to obtain balanced circular loops with minimal electrical interaction with the lossy tissue. Three different excitation modes depending on the phase shift, Deltapsi, of the currents driving the two circular loops were investigated including a "Maxwell mode" (Deltapsi = 0 degrees ; ie, opposite current directions in both loops), a "quadrature mode" (Deltapsi = 90 degrees ), and a "Helmholtz mode" (Deltapsi = 180 degrees ; ie, identical current directions in both loops). Simulations of the radiofrequency field distribution indicated a high inversion efficiency at the locations of the carotid and vertebral arteries. With a 7-mm-thick polypropylene insulation, a sufficient distance from tissue was achieved to guarantee robust performance at a local specific absorption rate (SAR) well below legal safety limits. Application in healthy volunteers at 3 T yielded quantitative maps of gray matter perfusion with low intersubject variability. The coil permits robust labeling with low SAR and minimal sensitivity to different loading conditions.
Chappell, Michael A; Woolrich, Mark W; Petersen, Esben T; Golay, Xavier; Payne, Stephen J
2013-05-01
Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and "model-free" analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model-free or model-based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two-component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model-based analysis. The model-based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model-free and model-based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model-free and model-based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Copyright © 2012 Wiley Periodicals, Inc.
Sato, Y; Ogasawara, K; Narumi, S; Sasaki, M; Saito, A; Tsushima, E; Namba, T; Kobayashi, M; Yoshida, K; Terayama, Y; Ogawa, A
2016-06-01
Preoperative identification of plaque vulnerability may allow improved risk stratification for patients considered for carotid endarterectomy. The present study aimed to determine which plaque imaging technique, cardiac-gated black-blood fast spin-echo, magnetization-prepared rapid acquisition of gradient echo, source image of 3D time-of-flight MR angiography, or noncardiac-gated spin-echo, most accurately predicts development of microembolic signals during exposure of carotid arteries in carotid endarterectomy. Eighty patients with ICA stenosis (≥70%) underwent the 4 sequences of preoperative MR plaque imaging of the affected carotid bifurcation and then carotid endarterectomy under transcranial Doppler monitoring of microembolic signals in the ipsilateral middle cerebral artery. The contrast ratio of the carotid plaque was calculated by dividing plaque signal intensity by sternocleidomastoid muscle signal intensity. Microembolic signals during exposure of carotid arteries were detected in 23 patients (29%), 3 of whom developed new neurologic deficits postoperatively. Those deficits remained at 24 hours after surgery in only 1 patient. The area under the receiver operating characteristic curve to discriminate between the presence and absence of microembolic signals during exposure of the carotid arteries was significantly greater with nongated spin-echo than with black-blood fast spin-echo (difference between areas, 0.258; P < .0001), MPRAGE (difference between areas, 0.106; P = .0023), or source image of 3D time-of-flight MR angiography (difference between areas, 0.128; P = .0010). Negative binomial regression showed that in the 23 patients with microembolic signals, the contrast ratio was associated with the number of microembolic signals only in nongated spin-echo (risk ratio, 1.36; 95% confidence interval, 1.01-1.97; P < .001). Nongated spin-echo may predict the development of microembolic signals during exposure of the carotid arteries in carotid endarterectomy more accurately than other MR plaque imaging techniques. © 2016 by American Journal of Neuroradiology.
Planning-free cerebral blood flow territory mapping in patients with intracranial arterial stenosis
Arteaga, Daniel F; Strother, Megan K; Davis, L Taylor; Fusco, Matthew R; Faraco, Carlos C; Roach, Brent A; Scott, Allison O
2016-01-01
A noninvasive method for quantifying cerebral blood flow and simultaneously visualizing cerebral blood flow territories is vessel-encoded pseudocontinuous arterial spin labeling MRI. However, obstacles to acquiring such information include limited access to the methodology in clinical centers and limited work on how clinically acquired vessel-encoded pseudocontinuous arterial spin labeling data correlate with gold-standard methods. The purpose of this work is to develop and validate a semiautomated pipeline for the online quantification of cerebral blood flow maps and cerebral blood flow territories from planning-free vessel-encoded pseudocontinuous arterial spin labeling MRI with gold-standard digital subtraction angiography. Healthy controls (n = 10) and intracranial atherosclerotic disease patients (n = 34) underwent 3.0 T MRI imaging including vascular (MR angiography) and hemodynamic (cerebral blood flow-weighted arterial spin labeling) MRI. Patients additionally underwent catheter and/or CT angiography. Variations in cross-territorial filling were grouped according to diameters of circle of Willis vessels in controls. In patients, Cohen’s k-statistics were computed to quantify agreement in perfusion patterns between vessel-encoded pseudocontinuous arterial spin labeling and angiography. Cross-territorial filling patterns were consistent with circle of Willis anatomy. The intraobserver Cohen's k-statistics for cerebral blood flow territory and digital subtraction angiography perfusion agreement were 0.730 (95% CI = 0.593–0.867; reader one) and 0.708 (95% CI = 0.561–0.855; reader two). These results support the feasibility of a semiautomated pipeline for evaluating major neurovascular cerebral blood flow territories in patients with intracranial atherosclerotic disease. PMID:27389177
Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow.
van Osch, Matthias Jp; Teeuwisse, Wouter M; Chen, Zhensen; Suzuki, Yuriko; Helle, Michael; Schmid, Sophie
2017-01-01
With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.
Heijtel, D F R; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; Petersen, E T; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; Vanbavel, E; Boellaard, R; Lammertsma, A A; Nederveen, A J
2014-05-15
Measurements of the cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide useful information about cerebrovascular condition and regional metabolism. Pseudo-continuous arterial spin labeling (pCASL) is a promising non-invasive MRI technique to quantitatively measure the CBF, whereas additional hypercapnic pCASL measurements are currently showing great promise to quantitatively assess the CVR. However, the introduction of pCASL at a larger scale awaits further evaluation of the exact accuracy and precision compared to the gold standard. (15)O H₂O positron emission tomography (PET) is currently regarded as the most accurate and precise method to quantitatively measure both CBF and CVR, though it is one of the more invasive methods as well. In this study we therefore assessed the accuracy and precision of quantitative pCASL-based CBF and CVR measurements by performing a head-to-head comparison with (15)O H₂O PET, based on quantitative CBF measurements during baseline and hypercapnia. We demonstrate that pCASL CBF imaging is accurate during both baseline and hypercapnia with respect to (15)O H₂O PET with a comparable precision. These results pave the way for quantitative usage of pCASL MRI in both clinical and research settings. Copyright © 2014 Elsevier Inc. All rights reserved.
A Short Introduction to Arterial Spin Labeling and its Application to Flow Territory Mapping.
Lindner, T; Helle, M; Jansen, O
2015-10-01
Arterial spin labeling (ASL) is an emerging method for the assessment of perfusion in various diseases of the brain. In ASL, the magnetization of arterial blood water spins is manipulated in a complete non-invasive way before flowing into the tissue of interest. This allows absolute quantification of cerebral blood flow, thereby, presenting an alternative to contrast-enhanced methods based on computed tomography or magnetic resonance imaging. Furthermore, its potential application for flow territory mapping can provide additional information of the individual configuration of intracerebral blood flow. This article gives a brief overview of the basic ASL methodology and its approaches to image individual perfusion territories. Additionally, the utilization of ASL in a variety of cerebrovascular diseases is presented to provide examples of potential applications of (territorial) ASL in clinical routine.
Estimation of single-kidney glomerular filtration rate without exogenous contrast agent.
He, Xiang; Aghayev, Ayaz; Gumus, Serter; Ty Bae, K
2014-01-01
Measurement of single-kidney filtration fraction and glomerular filtration rate (GFR) without exogenous contrast is clinically important to assess renal function and pathophysiology, especially for patients with comprised renal function. The objective of this study is to develop a novel MR-based tool for noninvasive quantification of renal function using conventional MR arterial spin labeling water as endogenous tracer. The regional differentiation of the arterial spin labeling water between the glomerular capsular space and the renal parenchyma was characterized and measured according to their MR relaxation properties (T1ρ or T2 ), and applied to the estimation of filtration fraction and single-kidney GFR. The proposed approach was tested to quantify GFR in healthy volunteers at baseline and after a protein-loading challenge. Biexponential decay of the cortical arterial spin labeling water MR signal was observed. The major component decays the same as parenchyma water; the minor component decays much slower as expected from glomerular ultra-filtrates. The mean single-kidney GFR was estimated to be 49 ± 9 mL/min at baseline and increased by 28% after a protein-loading challenge. We developed an arterial spin labeling-based MR imaging method that allows us to estimate renal filtration fraction and singe-kidney GFR without use of exogenous contrast. Copyright © 2013 Wiley Periodicals, Inc.
Liu, Meng-Qi; Chen, Zhi-Ye; Ma, Lin
2018-03-30
Objective To evaluate the reliability of three dimensional spiral fast spin echo pseudo-continuous arterial spin labeling (3D pc-ASL) in measuring cerebral blood flow (CBF) with different post-labeling delay time (PLD) in the resting state and the right finger taping state. Methods 3D pc-ASL and three dimensional T1-weighted fast spoiled gradient recalled echo (3D T1-FSPGR) sequence were applied to eight healthy subjects twice at the same time each day for one week interval. ASL data acquisition was performed with post-labeling delay time (PLD) 1.5 seconds and 2.0 seconds in the resting state and the right finger taping state respectively. CBF mapping was calculated and CBF value of both the gray matter (GM) and white matter (WM) was automatically extracted. The reliability was evaluated using the intraclass correlation coefficient (ICC) and Bland and Altman plot. Results ICC of the GM (0.84) and WM (0.92) was lower at PLD 1.5 seconds than that (GM, 0.88; WM, 0.94) at PLD 2.0 seconds in the resting state, and ICC of GM (0.88) was higher in the right finger taping state than that in the resting state at PLD 1.5 seconds. ICC of the GM and WM was 0.71 and 0.78 for PLD 1.5 seconds and PLD 2.0 seconds in the resting state at the first scan, and ICC of the GM and WM was 0.83 and 0.79 at the second scan, respectively. Conclusion This work demonstrated that 3D pc-ASL might be a reliable imaging technique to measure CBF over the whole brain at different PLD in the resting state or controlled state.
Knutsson, Linda; Bloch, Karin Markenroth; Holtås, Stig; Wirestam, Ronnie; Ståhlberg, Freddy
2008-05-01
To identify regional arterial input functions (AIFs) using factor analysis of dynamic studies (FADS) when quantification of perfusion is performed using model-free arterial spin labelling. Five healthy volunteers and one patient were examined on a 3-T Philips unit using quantitative STAR labelling of arterial regions (QUASAR). Two sets of images were retrieved, one where the arterial signal had been crushed and another where it was retained. FADS was applied to the arterial signal curves to acquire the AIFs. Perfusion maps were obtained using block-circulant SVD deconvolution and regional AIFs obtained by FADS. In the volunteers, the ASL experiment was repeated within 24 h. The patient was also examined using dynamic susceptibility contrast MRI. In the healthy volunteers, CBF was 64+/-10 ml/[min 100 g] (mean+/-S.D.) in GM and 24+/-4 ml/[min 100 g] in WM, while the mean aBV was 0.94% in GM and 0.25% in WM. Good CBF image quality and reasonable quantitative CBF values were obtained using the combined QUASAR/FADS technique. We conclude that FADS may be a useful supplement in the evaluation of ASL data using QUASAR.
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Iryo, Yasuhiko; Hirai, Toshinori; Nakamura, Masanobu; Inoue, Yasuteru; Watanabe, Masaki; Ando, Yukio; Azuma, Minako; Nishimura, Shinichiro; Shigematsu, Yoshinori; Kitajima, Mika; Yamashita, Yasuyuki
2015-09-01
To evaluate whether 3-T four-dimensional (4D) arterial spin-labelling (ASL) -based magnetic resonance angiography (MRA) is useful for assessing the collateral circulation via the circle of Willis in patients with carotid artery steno-occlusive disease. Institutional review board approval and prior written informed consent from all patients were obtained. The inclusion criteria were fulfilled by 13 patients with carotid artery steno-occlusive disease. All underwent 4D-ASL MRA at 3 T and digital subtraction angiography (DSA). The flow-sensitive alternating inversion recovery (FAIR) preparation scheme with look-locker sampling was used for spin labeling. At 300-ms intervals seven dynamic scans were obtained with a spatial resolution of 0.5×0.5×0.6 mm(3). The collateral flow via the circle of Willis was read on 4D-ASL MRA and DSA images by two sets of two independent readers each. κ statistics were used to assess interobserver and intermodality agreement. On DSA, collateral flow via the anterior communicating artery (AcomA) was observed in six patients, via the posterior communicating artery (PcomA) in four patients, and via both the AcomA and PcomA in three patients. With respect to the qualitative evaluation of 4D-ASL MRA images, interobserver agreement was excellent for all items (κ=1). 4D-ASL MRA and DSA consensus readings agreed on the type of collateral flow pattern in 10 of the 13 patients (77%). Intermodality agreement was good (κ=0.606; 95% confidence interval (CI): 0.215-0.997). 3 T 4D-ASL MRA may be a useful tool for the evaluation of the collateral circulation in patients with carotid artery steno-occlusive disease. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Vertigo-related cerebral blood flow changes on magnetic resonance imaging.
Chang, Feiyan; Li, Zhongshi; Xie, Sheng; Liu, Hui; Wang, Wu
2014-11-01
A prospective study using magnetic resonance imaging on a consecutive cohort of patients with cervical vertigo. To quantitatively investigate the cerebral blood flow (CBF) changes associated with cervical vertigo by using 3-dimensional pseudocontinuous arterial spin labeling. Previous studies reported blood flow velocity reduction in posterior circulation during vertigo. However, the detailed information of CBF related to cervical vertigo has not been provided. A total of 33 patients with cervical vertigo and 14 healthy volunteers were recruited in this study. Three-dimensional pseudocontinuous arterial spin labeling was performed on each subject to evaluate the CBF before and after the cervical hyperextension-hyperflexion movement tests, which was used to induce cervical vertigo. Repeated-measures analysis of variance was conducted to assess the effect of subjects and tests. There were time effects of CBF in the territory of bilateral superior cerebellar artery, bilateral posterior cerebral artery, bilateral middle cerebral artery, and right anterior cerebral artery, but no group effect was observed. The analysis of CBF revealed a significant main effect of tests (P=0.024) and participants (P=0.038) in the dorsal pons. Cervical vertigo onset may be related to CBF reduction in the dorsal pons, which sequentially evokes the vestibular nuclei. 2.
Robson, Philip M; Madhuranthakam, Ananth J; Smith, Martin P; Sun, Maryellen R M; Dai, Weiying; Rofsky, Neil M; Pedrosa, Ivan; Alsop, David C
2016-02-01
Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Magnetic Resonance Arterial Spin Tagging for Non-Invasive Pharmacokinetic Analysis of Breast Cancer
2000-10-01
sequence software that we had developed for this project. In addition, we revised the pulse sequences to utilize the high performance gradients (40 mT/ m ...peak, 150 mT/ m /ms rise) of the system. We believe these revised sequences will provide better arterial spin tagged data for perfusion measurement. All...U.... ...... ... -- v p I _1 i-:F~ ----- ! - .Ag Jig. H aI .. M e fI6lo 3 ~ ~ 2 0’,~- A.11. I 1 1 9 - HP ~ ~ IM I 15 L 1 1 8 = NIAt I C J1 5
Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong
2016-01-01
Arterial cerebral blood volume (aCBV) is associated with many physiologic and pathologic conditions. Recently, multiphase balanced steady state free precession (bSSFP) readout was introduced to measure labeled blood signals in the arterial compartment, based on the fact that signal difference between labeled and unlabeled blood decreases with the number of RF pulses that is affected by blood velocity. In this study, we evaluated the feasibility of a new 2D inter-slice bSSFP-based arterial spin labeling (ASL) technique termed, alternate ascending/descending directional navigation (ALADDIN), to quantify aCBV using multiphase acquisition in six healthy subjects. A new kinetic model considering bSSFP RF perturbations was proposed to describe the multiphase data and thus to quantify aCBV. Since the inter-slice time delay (TD) and gap affected the distribution of labeled blood spins in the arterial and tissue compartments, we performed the experiments with two TDs (0 and 500 ms) and two gaps (300% and 450% of slice thickness) to evaluate their roles in quantifying aCBV. Comparison studies using our technique and an existing method termed arterial volume using arterial spin tagging (AVAST) were also separately performed in five subjects. At 300% gap or 500-ms TD, significant tissue perfusion signals were demonstrated, while tissue perfusion signals were minimized and arterial signals were maximized at 450% gap and 0-ms TD. ALADDIN has an advantage of visualizing bi-directional flow effects (ascending/descending) in a single experiment. Labeling efficiency (α) of inter-slice blood flow effects could be measured in the superior sagittal sinus (SSS) (20.8±3.7%.) and was used for aCBV quantification. As a result of fitting to the proposed model, aCBV values in gray matter (1.4-2.3 mL/100 mL) were in good agreement with those from literature. Our technique showed high correlation with AVAST, especially when arterial signals were accentuated (i.e., when TD = 0 ms) (r = 0.53). The bi-directional perfusion imaging with multiphase ALADDIN approach can be an alternative to existing techniques for quantification of aCBV.
Araz, Coskun; Zeyneloglu, Pinar; Pirat, Arash; Veziroglu, Nukhet; Camkiran Firat, Aynur; Arslan, Gulnaz
2015-04-01
Hemodynamic monitoring is vital during liver transplant surgeries because distinct hemodynamic changes are expected. The continuous noninvasive arterial pressure (CNAP) monitor is a noninvasive device for continuous arterial pressure measurement by a tonometric method. This study compared continuous noninvasive arterial pressure monitoring with invasive direct arterial pressure monitoring in living-liver donors during transplant. There were 40 patients analyzed while undergoing hepatic lobectomy for liver transplant. Invasive pressure monitoring was established at the radial artery and continuous noninvasive arterial pressure monitoring using a finger sensor was recorded simultaneously from the contralateral arm. Systolic, diastolic, and mean arterial pressures from the 2 methods were compared. Correlation between the 2 methods was calculated. A total of 5433 simultaneous measurements were obtained. For systolic arterial blood pressure, 55% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.479, continuous noninvasive arterial pressure bias was -0.3 mm Hg, and limits of agreement were 32.0 mm Hg. For diastolic arterial blood pressure, 50% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.630, continuous noninvasive arterial pressure bias was -0.4 mm Hg, and limits of agreement were 21.1 mm Hg. For mean arterial blood pressure, 60% continuous noninvasive arterial pressure measurements were within 10% direct arterial measurement; the correlation was 0.692, continuous noninvasive arterial pressure bias was +0.4 mm Hg, and limits of agreement were 20.8 mm Hg. The 2 monitoring techniques did not show acceptable agreement. Our results suggest that continuous noninvasive arterial pressure monitoring is not equivalent to invasive arterial pressure monitoring in donors during living-donor liver transplant.
Pilkinton, David T; Hiraki, Teruyuki; Detre, John A; Greenberg, Joel H; Reddy, Ravinder
2012-06-01
Quantitative arterial spin labeling (ASL) estimates of cerebral blood flow (CBF) during oxygen inhalation are important in several contexts, including functional experiments calibrated with hyperoxia and studies investigating the effect of hyperoxia on regional CBF. However, ASL measurements of CBF during hyperoxia are confounded by the reduction in the longitudinal relaxation time of arterial blood (T(1a) ) from paramagnetic molecular oxygen dissolved in blood plasma. The aim of this study is to accurately quantify the effect of arbitrary levels of hyperoxia on T(1a) and correct ASL measurements of CBF during hyperoxia on a per-subject basis. To mitigate artifacts, including the inflow of fresh spins, partial voluming, pulsatility, and motion, a pulsed ASL approach was implemented for in vivo measurements of T(1a) in the rat brain at 3 Tesla. After accounting for the effect of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely match phantom measurements. The results of this study suggest that the measured ASL signal changes are dominated by reductions in T(1a) for brief hyperoxic inhalation epochs, while the physiologic effects of oxygen on the vasculature account for most of the measured reduction in CBF for longer hyperoxic exposures. Copyright © 2011 Wiley-Liss, Inc.
Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2017-01-01
The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.
Borogovac, Ajna; Asllani, Iris
2012-01-01
Cerebral blood flow (CBF) is a well-established correlate of brain function and therefore an essential parameter for studying the brain at both normal and diseased states. Arterial spin labeling (ASL) is a noninvasive fMRI technique that uses arterial water as an endogenous tracer to measure CBF. ASL provides reliable absolute quantification of CBF with higher spatial and temporal resolution than other techniques. And yet, the routine application of ASL has been somewhat limited. In this review, we start by highlighting theoretical complexities and technical challenges of ASL fMRI for basic and clinical research. While underscoring the main advantages of ASL versus other techniques such as BOLD, we also expound on inherent challenges and confounds in ASL perfusion imaging. In closing, we expound on several exciting developments in the field that we believe will make ASL reach its full potential in neuroscience research.
Zhang, Nan; Gordon, Marc L; Goldberg, Terry E
2017-01-01
Arterial spin labeling (ASL) magnetic resonance imaging uses arterial blood water as an endogenous tracer to measure cerebral blood flow (CBF). In this review, based on ASL studies in the resting state, we discuss state-of-the-art technical and data processing improvements in ASL, and ASL CBF changes in normal aging, mild cognitive impairment (MCI), Alzheimer's disease (AD), and other types of dementia. We propose that vascular and AD risk factors should be considered when evaluating CBF changes in aging, and that other validated biomarkers should be used as inclusion criteria or covariates when evaluating CBF changes in MCI and AD. With improvements in hardware and experimental design, ASL is proving to be an increasingly promising tool for exploring pathogenetic mechanisms, early detection, monitoring disease progression and pharmacological response, and differential diagnosis of AD. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thomas, David L; Lythgoe, Mark F; Gadian, David G; Ordidge, Roger J
2006-04-01
A novel method for measuring the longitudinal relaxation time of arterial blood (T1a) is presented. Knowledge of T1a is essential for accurately quantifying cerebral perfusion using arterial spin labeling (ASL) techniques. The method is based on the flow-sensitive alternating inversion recovery (FAIR) pulsed ASL (PASL) approach. We modified the standard FAIR acquisition scheme by incorporating a global saturation pulse at the beginning of the recovery period. With this approach the FAIR tissue signal difference has a simple monoexponential dependence on the recovery time, with T1a as the time constant. Therefore, FAIR measurements performed over a range of recovery times can be fitted to a monoexponential recovery curve and T1a can be calculated directly. This eliminates many of the difficulties associated with the measurement of T1a. Experiments performed in vivo in the mouse at 2.35T produced a mean value of 1.51 s for T1a, consistent with previously published values. (c) 2006 Wiley-Liss, Inc.
Magnetic Resonance Venous Volume Measurements in Peripheral Artery Disease (from ELIMIT).
Kamran, Hassan; Nambi, Vijay; Negi, Smita; Yang, Eric Y; Chen, Changyi; Virani, Salim S; Kougias, Panos; Lumsden, Alan B; Morrisett, Joel D; Ballantyne, Christie M; Brunner, Gerd
2016-11-01
The relation between the arterial and venous systems in patients with impaired lower extremity blood flow remains poorly described. The objective of this secondary analysis of the Effectiveness of Intensive Lipid Modification Medication in Preventing the Progression on Peripheral Artery Disease Trial was to determine the association between femoral vein (FV) volumes and measurements of peripheral artery disease. FV wall, lumen, and total volumes were quantified with fast spin-echo proton density-weighted magnetic resonance imaging scans in 79 patients with peripheral artery disease over 2 years. Reproducibility was excellent for FV total vessel (intraclass correlation coefficient 0.924, confidence interval 0.910 to 0.935) and lumen volumes (intraclass correlation coefficient 0.893, confidence interval 0.873 to 0.910). Baseline superficial femoral artery volumes were directly associated with FV wall (r = 0.46, p <0.0001), lumen (r = 0.42, p = 0.0001), and total volumes (r = 0.46, p <0.0001). The 2-year change in maximum walking time was inversely associated with the 24-month change in FV total volume (r = -0.45, p = 0.03). In conclusion, FV volumes can be measured reliably with fast spin-echo proton density-weighted magnetic resonance imaging, and baseline superficial femoral artery plaque burden is positively associated with FV volumes, whereas the 2-year change in FV volumes and leg function show an inverse relation. Copyright © 2016 Elsevier Inc. All rights reserved.
Lu, Yiping; Luan, Shihai; Liu, Li; Xiong, Ji; Wen, Jianbo; Qu, Jianxun; Geng, Daoying; Yin, Bo
2017-10-01
To prospectively evaluate the application of territorial arterial spin labelling (t-ASL) in comparison with unenhanced three-dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) in the identification of the feeding vasculature of meningiomas. Thirty consecutive patients with suspected meningiomas underwent conventional MR imaging, unenhanced 3D-TOF-MRA and t-ASL scanning. Four experienced neuro-radiologists assessed the feeding vessels with different techniques separately. For the identification of the origin of the feeding arteries on t-ASL, the inter-observer agreement was excellent (к = 0.913), while the inter-observer agreement of 3D-TOF-MRA was good (к = 0.653). The inter-modality agreement between t-ASL and 3D-TOF-MRA for the feeding arteries was moderate (к = 0.514). All 8 patients with motor or sensory disorders proved to have meningiomas supplied completely or partially by the internal carotid arteries, while all 14 patients with meningiomas supplied by the external carotid arteries or basilar arteries didn't show any symptoms concerning motor or sensory disorders (p = 0.003). T-ASL could complement unenhanced 3D-TOF-MRA and increase accuracy in the identification of the supplying arteries of meningiomas in a safe, intuitive, non-radioactive manner. The information about feeding arteries was potentially related to patients' symptoms and pathology, making it more crucial for neurosurgeons in planning surgery as well as evaluating prognosis. • A comprehensive understanding of feeding vasculature is helpful for optimized treatment decisions. • T-ASL could identify main supplying arteries of meningiomas with excellent inter-observer agreement. • The inter-modality agreement for identification of the main feeding arteries was moderate. • Blood supply from ICAs was related to motor or sensory disorders. • High-level meningiomas were found to have double main supplying arteries.
Arterial Spin Labeling: a one-stop-shop for measurement of brain perfusion in the clinical settings.
Golay, Xavier; Petersen, Esben T; Zimine, Ivan; Lim, Tchoyoson C C
2007-01-01
Arterial Spin Labeling (ASL) has opened a unique window into the human brain function and perfusion physiology. Altogether fast and of intrinsic high spatial resolution, ASL is a technique very appealing not only for the diagnosis of vascular diseases, but also in basic neuroscience for the follow-up of small perfusion changes occurring during brain activation. However, due to limited signal-to-noise ratio and complex flow kinetics, ASL is one of the more challenging disciplines within magnetic resonance imaging. In this paper, the theoretical background and main implementations of ASL are revisited. In particular, the different uses of ASL, the pitfalls and possibilities are described and illustrated using clinical cases.
Chen, Hou-Jen; Wright, Graham A
2017-01-01
To characterize and interpret arterial spin labeling (ASL) reactive hyperemia of calf muscles for a better understanding of the microcirculation in peripheral arterial disease (PAD), we present a physiological model incorporating oxygen transport, tissue metabolism, and vascular regulation mechanisms. The model demonstrated distinct effects between arterial stenoses and microvascular dysfunction on reactive hyperemia, and indicated a higher sensitivity of 2-minute thigh cuffing to microvascular dysfunction than 5-minute cuffing. The recorded perfusion responses in PAD patients (n = 9) were better differentiated from the normal subjects (n = 7) using the model-based analysis rather than characterization using the apparent peak and time-to-peak of the responses. The analysis results suggested different amounts of microvascular disease within the patient group. Overall, this work demonstrates a novel analysis method and facilitates understanding of the physiology involved in ASL reactive hyperemia. ASL reactive hyperemia with model-based analysis may be used as a noninvasive microvascular assessment in the presence of arterial stenoses, allowing us to look beyond the macrovascular disease in PAD. A subgroup who will have a poor prognosis after revascularization in the patients with critical limb ischemia may be associated with more severe microvascular diseases, which may potentially be identified using ASL reactive hyperemia.
Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.
Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J
2012-02-07
Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.
Niibo, Takeya; Ohta, Hajime; Miyata, Shirou; Ikushima, Ichiro; Yonenaga, Kazuchika; Takeshima, Hideo
2017-01-01
Arterial spin-labeling magnetic resonance imaging is sensitive for detecting hyperemic lesions (HLs) in patients with acute ischemic stroke. We evaluated whether HLs could predict blood-brain barrier (BBB) disruption and hemorrhagic transformation (HT) in acute ischemic stroke patients. In a retrospective study, arterial spin-labeling was performed within 6 hours of symptom onset before revascularization treatment in 25 patients with anterior circulation large vessel occlusion on baseline magnetic resonance angiography. All patients underwent angiographic procedures intended for endovascular therapy and a noncontrast computed tomography scan immediately after treatment. BBB disruption was defined as a hyperdense lesion present on the posttreatment computed tomography scan. A subacute magnetic resonance imaging or computed tomography scan was performed during the subacute phase to assess HTs. The relationship between HLs and BBB disruption and HT was examined using the Alberta Stroke Program Early Computed Tomography Score locations in the symptomatic hemispheres. A HL was defined as a region where CBF relative ≥1.4 (CBF relative =CBF HL /CBF contralateral ). HLs, BBB disruption, and HT were found in 9, 15, and 15 patients, respectively. Compared with the patients without HLs, the patients with HLs had a higher incidence of both BBB disruption (100% versus 37.5%; P=0.003) and HT (100% versus 37.5%; P=0.003). Based on the Alberta Stroke Program Early Computed Tomography Score locations, 21 regions of interests displayed HLs. Compared with the regions of interests without HLs, the regions of interests with HLs had a higher incidence of both BBB disruption (42.8% versus 3.9%; P<0.001) and HT (85.7% versus 7.8%; P<0.001). HLs detected on pretreatment arterial spin-labeling maps may enable the prediction and localization of subsequent BBB disruption and HT. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, M; Jung, Y
2014-06-01
Purpose: Arterial spin labeling (ASL) is an MRI perfusion imaging method from which quantitative cerebral blood flow (CBF) maps can be calculated. Acquisition with variable post-labeling delays (PLD) and variable TRs allows for arterial transit time (ATT) mapping and leads to more accurate CBF quantification with a scan time saving of 48%. In addition, T1 and M0 maps can be obtained without a separate scan. In order to accurately estimate ATT and T1 of brain tissue from the ASL data, variable labeling durations were invented, entitled variable-bolus ASL. Methods: All images were collected on a healthy subject with a 3Tmore » Siemens Skyra scanner. Variable-bolus Psuedo-continuous ASL (PCASL) images were collected with 7 TI times ranging 100-4300ms in increments of 700ms with TR ranging 1000-5200ms. All boluses were 1600ms when the TI allowed, otherwise the bolus duration was 100ms shorter than the TI. All TI times were interleaved to reduce sensitivity to motion. Voxel-wise T1 and M0 maps were estimated using a linear least squares fitting routine from the average singal from each TI time. Then pairwise subtraction of each label/control pair and averaging for each TI time was performed. CBF and ATT maps were created using the standard model by Buxton et al. with a nonlinear fitting routine using the T1 tissue map. Results: CBF maps insensitive to ATT were produced along with ATT maps. Both maps show patterns and averages consistent with literature. The T1 map also shows typical T1 contrast. Conclusion: It has been demonstrated that variablebolus ASL produces CBF maps free from the errors due to ATT and tissue T1 variations and provides M0, T1, and ATT maps which have potential utility. This is accomplished with a single scan in a feasible scan time (under 6 minutes) with low sensivity to motion.« less
Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.
Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P
2017-05-01
Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Liu, Ho-Ling; Chang, Ting-Ting; Yan, Feng-Xian; Li, Cheng-He; Lin, Yu-Shi; Wong, Alex M
2015-06-01
The forward volumetric transfer constant (K(trans)), a physiological parameter extracted from dynamic contrast-enhanced (DCE) MRI, is weighted by vessel permeability and tissue blood flow. The permeability × surface area product per unit mass of tissue (PS) in brain tumors was estimated in this study by combining the blood flow obtained through pseudo-continuous arterial spin labeling (PCASL) and K(trans) obtained through DCE MRI. An analytical analysis and a numerical simulation were conducted to understand how errors in the flow and K(trans) estimates would propagate to the resulting PS. Fourteen pediatric patients with brain tumors were scanned on a clinical 3-T MRI scanner. PCASL perfusion imaging was performed using a three-dimensional (3D) fast-spin-echo readout module to determine blood flow. DCE imaging was performed using a 3D spoiled gradient-echo sequence, and the K(trans) map was obtained with the extended Tofts model. The numerical analysis demonstrated that the uncertainty of PS was predominantly dependent on that of K(trans) and was relatively insensitive to the flow. The average PS values of the whole tumors ranged from 0.006 to 0.217 min(-1), with a mean of 0.050 min(-1) among the patients. The mean K(trans) value was 18% lower than the PS value, with a maximum discrepancy of 25%. When the parametric maps were compared on a voxel-by-voxel basis, the discrepancies between PS and K(trans) appeared to be heterogeneous within the tumors. The PS values could be more than two-fold higher than the K(trans) values for voxels with high K(trans) levels. This study proposes a method that is easy to implement in clinical practice and has the potential to improve the quantification of the microvascular properties of brain tumors. Copyright © 2015 John Wiley & Sons, Ltd.
Furtner, J; Schöpf, V; Schewzow, K; Kasprian, G; Weber, M; Woitek, R; Asenbaum, U; Preusser, M; Marosi, C; Hainfellner, J A; Widhalm, G; Wolfsberger, S; Prayer, D
2014-03-01
Pulsed arterial spin-labeling is a noninvasive MR imaging perfusion method performed with the use of water in the arterial blood as an endogenous contrast agent. The purpose of this study was to determine the inversion time with the largest difference in normalized intratumoral signal intensity between high-grade and low-grade astrocytomas. Thirty-three patients with gliomas, histologically classified as low-grade (n = 7) or high-grade astrocytomas (n = 26) according to the World Health Organization brain tumor classification, were included. A 3T MR scanner was used to perform pulsed arterial spin-labeling measurements at 8 different inversion times (370 ms, 614 ms, 864 ms, 1114 ms, 1364 ms, 1614 ms, 1864 ms, and 2114 ms). Normalized intratumoral signal intensity was calculated, which was defined by the signal intensity ratio of the tumor and the contralateral normal brain tissue for all fixed inversion times. A 3-way mixed ANOVA was used to reveal potential differences in the normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas. The difference in normalized vascular intratumoral signal intensity between high-grade and low-grade astrocytomas obtained the most statistically significant results at 370 ms (P = .003, other P values ranged from .012-.955). The inversion time by which to differentiate high-grade and low-grade astrocytomas by use of normalized vascular intratumoral signal intensity was 370 ms in our study. The normalized vascular intratumoral signal intensity values at this inversion time mainly reflect the labeled intra-arterial blood bolus and therefore could be referred to as normalized vascular intratumoral signal intensity. Our data indicate that the use of normalized vascular intratumoral signal intensity values allows differentiation between low-grade and high-grade astrocytomas and thus may serve as a new, noninvasive marker for astrocytoma grading.
Spiekermann, Stephan; Landmesser, Ulf; Dikalov, Sergey; Bredt, Martin; Gamez, Graciela; Tatge, Helma; Reepschläger, Nina; Hornig, Burkhard; Drexler, Helmut; Harrison, David G
2003-03-18
Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation (FDD) in patients with CAD. Xanthine- and NAD(P)H-mediated O*.- formation was determined in coronary arteries from 10 patients with CAD and 10 controls by using electron spin resonance spectroscopy. Furthermore, activity of endothelium-bound xanthine oxidase in vivo and FDD of the radial artery were determined in 21 patients with CAD and 10 controls. FDD was measured before and after infusion of the antioxidant vitamin C (25 mg/min i.a.) to determine the portion of FDD inhibited by radicals. In coronary arteries from patients with CAD, xanthine- and NAD(P)H-mediated O2*- formation was increased compared with controls (xanthine: 12+/-2 versus 7+/-1 nmol O2*-/ microg protein; NADH: 11+/-1 versus 7+/-1 nmol O2*-/ microg protein; and NADPH: 12+/-2 versus 9+/-1 nmol O2*-/ microg protein; each P<0.05). Endothelium-bound xanthine oxidase activity was increased by >200% in patients with CAD (25+/-4 versus 9+/-1 nmol O2*-/ microL plasma per min; P<0.05) and correlated inversely with FDD (r=-0.55; P<0.05) and positively with the effect of vitamin C on FDD (r=0.54; P<0.05). The present study represents the first electron spin resonance measurements of xanthine and NAD(P)H oxidase activity in human coronary arteries and supports the concept that increased activities of both enzymes contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the present study suggests that increased xanthine oxidase activity contributes to endothelial dysfunction in patients with CAD and may thereby promote the atherosclerotic process.
Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin
Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.
2012-01-01
Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440
Therapy-related longitudinal brain perfusion changes in patients with chronic pelvic pain syndrome.
Weisstanner, Christian; Mordasini, Livio; Thalmann, George N; Verma, Rajeev K; Rummel, Christian; Federspiel, Andrea; Kessler, Thomas M; Wiest, Roland
2017-08-03
The imaging method most frequently employed to identify brain areas involved in neuronal processing of nociception and brain pain perception is blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI). Arterial spin labelling (ASL), in contrast, offers advantages when slow varying changes in brain function are investigated. Chronic pelvic pain syndrome (CPPS) is a disorder of, mostly, young males that leads to altered pain perceptions in structures related to the pelvis. We aimed to investigate the potential of ASL to monitor longitudinal cranial blood flow (CBF) changes in patients with CPPS. In a randomised, placebo-controlled, double-blind single centre trial, we investigated treatment effects in CPPS after 12 weeks in patients that underwent sono-electro-magnetic therapy vs placebo. We investigated changes of CBF related to treatment outcome using pseudo-continuous arterial spin labelling (pCASL)-MRI. We observed CBF downregulation in the prefrontal cortex and anterior cingulate cortex and upregulation in the dorsolateral prefrontal cortex in responders. Nonresponders presented with CBF upregulation in the hippocampus. In patients with a history of CPPS of less than 12 months, there were significant correlations between longitudinal CBF changes and the Chronic Prostatitis Symptom Index pain subscore within the joint clusters anterior cingulate cortex and left anterior prefrontal cortex in responders, and the right hippocampus in nonresponders. We demonstrated therapy-related and stimulus-free longitudinal CBF changes in core areas of the pain matrix using ASL. ASL may act as a complementary noninvasive method to functional MRI and single-photon emission computed tomography / positron emission tomography, especially in the longitudinal assessment of pain response in clinical trials.
Li, Zhiqiang; Schär, Michael; Wang, Dinghui; Zwart, Nicholas R; Madhuranthakam, Ananth J; Karis, John P; Pipe, James G
2016-01-01
The three-dimensional (3D) spiral turbo spin echo (TSE) sequence is one of the preferred readout methods for arterial spin labeled (ASL) perfusion imaging. Conventional spiral TSE collects the data using a spiral-out readout on a stack of spirals trajectory. However, it may result in suboptimal image quality and is not flexible in protocol design. The goal of this study is to provide a more robust readout technique without such limitation. The proposed technique incorporates a spiral-in/out readout into 3D TSE, and collects the data on a distributed spirals trajectory. The data set is split into the spiral-in and -out subsets that are reconstructed separately and combined after image deblurring. The volunteer results acquired with the proposed technique show no geometric distortion or signal pileup, as is present with GRASE, and no signal loss, as is seen with conventional spiral TSE. Examples also demonstrate the flexibility in changing the imaging parameters to satisfy various criteria. The 3D TSE with a distributed spiral-in/out trajectory provides a robust readout technique and allows for easy protocol design, thus is a promising alternative to GRASE or conventional spiral TSE for ASL perfusion imaging. © 2015 Wiley Periodicals, Inc.
Blood modulates the kinetics of reactive oxygen release in pancreatic ischemia-reperfusion injury.
Neeff, Hannes P; Sommer, Olaf; Meyer, Sebastian; Tinelli, Anja; Scholtes, Moritz; Hopt, Ulrich T; Drognitz, Oliver; von Dobschuetz, Ernst
2012-10-01
Reason for the unsuccessful use of antioxidants in transplantation might be the unknown kinetics of reactive oxygen species (ROS) release. In this study, we compared the kinetics of ROS release from rat pancreata in the presence and absence of blood. In vivo, ischemia-reperfusion injury (IRI) was induced in pancreata of male Wistar rats by occlusion of the arterial blood supply for 1 or 2 hours. In vitro, isolated pancreata were single-pass perfused with Krebs-Henseleit bicarbonate solution. Reactive oxygen species were quantified by electron spin resonance spectroscopy using CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) as spin label. Thiols (glutathione), nicotinamide adenine dinucleotide phosphate-oxidase activity, myeloperoxidase activity, and adenosine triphosphate content were measured. During reperfusion, an increase in IRI-induced ROS in arterial blood was noted after 2 hours of warm ischemia. In sharp contrast, ROS release was immediate and short lived in blood-free perfused organs. The degree of tissue damage correlated with nicotinamide adenine dinucleotide phosphate-oxidase activity and adenosine triphosphate content. Antioxidative capacity of tissues was reduced. Electron spin resonance spectroscopy in conjunction with spin labels allows for the detection of ROS kinetics in pancreatic IRI. Reactive oxygen species kinetics are dependent on the length of the ischemic period and the presence or absence of blood.
Arterial pressure suffices to increase liver stiffness.
Piecha, Felix; Peccerella, Teresa; Bruckner, Tom; Seitz, Helmut-Karl; Rausch, Vanessa; Mueller, Sebastian
2016-11-01
Noninvasive measurement of liver stiffness (LS) has been established to screen for liver fibrosis. Since LS is also elevated in response to pressure-related conditions such as liver congestion, this study was undertaken to learn more about the role of arterial pressure on LS. LS was measured by transient elastography (μFibroscan platform, Echosens, Paris, France) during single intravenous injections of catecholamines in anesthetized rats with and without thioacetamide (TAA)-induced fibrosis. The effect of vasodilating glycerol trinitrate (GTN) on LS was also studied. Pressures in the abdominal aorta and caval and portal veins were measured in real time with the PowerLab device (AD Instruments, Dunedin, New Zealand). Baseline LS values in all rats (3.8 ± 0.5 kPa, n = 25) did not significantly differ from those in humans. Epinephrine and norepinephrine drastically increased mean arterial pressure (MAP) from 82 to 173 and 156 mmHg. Concomitantly, LS almost doubled from 4 to 8 kPa, while central venous pressure remained unchanged. Likewise, portal pressure only showed a slight and delayed increase. In the TAA-induced fibrosis model, LS increased from 9.5 ± 1.0 to 25.6 ± 14.7 kPa upon epinephrine injection and could efficiently be decreased by GTN. We finally show a direct association in humans in a physiological setting of elevated cardiac output and MAP. During continuous spinning at 200 W, MAP increased from 84 ± 8 to 99 ± 11 mmHg while LS significantly increased from 4.4 ± 1.8 to 6.7 ± 2.1 kPa. In conclusion, our data show that arterial pressure suffices to increase LS. Moreover, lowering MAP efficiently decreases LS in fibrotic livers that are predominantly supplied by arterial blood. Copyright © 2016 the American Physiological Society.
Perfusion in Rat Brain at 7 T with Arterial Spin Labeling Using FAIR-TrueFISP and QUIPSS
Esparza-Coss, Emilio; Wosik, Jarek; Narayana, Ponnada A.
2010-01-01
Measurement of perfusion in longitudinal studies allows for the assessment of tissue integrity and the detection of subtle pathologies. In this work, the feasibility of measuring brain perfusion in rats with high spatial resolution using arterial spin labeling (ASL) is reported. A flow sensitive alternating recovery (FAIR) sequence, coupled with a balanced gradient fast imaging with steady state precession (TrueFISP) readout section was used to minimize ghosting and geometric distortions, while achieving high SNR. The quantitative imaging of perfusion using a single subtraction (QUIPSS) method was implemented to address the effects of variable transit delays between the labeling of spins and their arrival at the imaging slice. Studies in six rats at 7 T showed good perfusion contrast with minimal geometric distortion. The measured blood flow values of 152.5 ± 6.3 ml/100g/min in gray matter and 72.3 ± 14.0 ml/100g/min in white matter are in good agreement with previously reported values based on autoradiography, considered to be the gold standard. PMID:20299174
Dykes, John C; Torres, Marilyn; Alexander, Plato J
2016-03-01
This report describes the case of a neonate with d-transposition of the great arteries and severe pulmonary arterial hypertension stabilised in the post-operative period with continuous iloprost nebulisation. To our knowledge, this is the first documented method of treating post-operative severe pulmonary arterial hypertension with continuous inhaled iloprost in a patient with complex CHD. We found this method of delivering the drug very effective in stabilising haemodynamic swings in the setting of severe pulmonary arterial hypertension.
Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter
2018-01-15
To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Günther, M; Bock, M; Schad, L R
2001-11-01
Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels. Copyright 2001 Wiley-Liss, Inc.
Guo, Jia; Buxton, Richard B.; Wong, Eric C.
2015-01-01
Purpose In pulsed arterial spin labeling (PASL) methods, arterial blood is labeled via inverting a slab with uniform thickness, resulting in different temporal widths of boluses in vessels with different flow velocities. This limits the temporal resolution and signal-to-noise ratio (SNR) efficiency gains in PASL-based methods intended for high temporal resolution and SNR efficiency, such as Turbo-ASL and Turbo-QUASAR. Theory and Methods A novel wedge-shaped (WS) adiabatic inversion pulse is developed by adding in-plane gradient pulses to a slice-selective (SS) adiabatic inversion pulse to linearly modulate the inversion thicknesses at different locations while maintaining the adiabatic properties of the original pulse. A hyperbolic secant (HS) based WS inversion pulse was implemented. Its performance was tested in simulations, phantom and human experiments, and compared to an SS HS inversion pulse. Results Compared to the SS inversion pulse, the WS inversion pulse is capable of inducing different inversion thicknesses at different locations. It can be adjusted to generate a uniform temporal width of boluses in arteries at locations with different flow velocities. Conclusion The WS inversion pulse can be used to control the temporal widths of labeled boluses in PASL experiments. This should benefit PASL experiments by maximizing labeling duty cycle, and improving temporal resolution and SNR efficiency. PMID:26451521
Continuous control of spin polarization using a magnetic field
NASA Astrophysics Data System (ADS)
Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.
2016-05-01
The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.
Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki
2018-06-01
Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.
Staud, Roland; Boissoneault, Jeff; Craggs, Jason G; Lai, Song; Robinson, Michael E
2018-01-01
One hallmark of chronic fatigue syndrome (ME/CFS) is task related worsening of fatigue. Global brain hypoperfusion, abnormal regional activation, and altered functional connectivity of brain areas associated with cognition and memory have been reported but remain controversial. We enrolled 17 female participants fulfilling the CDC Criteria for ME/CFS and 16 matched healthy controls (HC). Using a 3T-Phillips Achieva MRI-scanner, pseudo-continuous arterial spin-labeling (pCASL), was used to study the dynamics of regional cerebral blood flow (rCBF) and their relationship to mental fatigue in ME/CFS patients and HC during a demanding cognitive task, i.e. modified Paced-Auditory-Serial-Addition-Testing (PASAT). ME/CFS subjects reported more fatigue than HC at baseline (p < .01). Global brain perfusion of ME/CFS and HC subjects was similar at rest. The PASAT resulted in significantly increased fatigue in ME/CFS participants and HC. Although not different between groups, overall CBF significantly increased over the first 3 min of the PASAT and then decreased thereafter. Regional CBF (rCBF) changes were significantly different between groups during the post-task recovery period. Whereas improvement of fatigue of ME/CFS subjects was associated with decreased rCBF in both superior temporal gyri (STG), precuneus, and fusiform gyrus, it was associated with increased rCBF in the same areas in HC. Our results suggest that ME/CFS is associated with normal global CBF at rest and during a strenuous task (PASAT); however rCBF of several brain regions associated with memory, goal-oriented attention, and visual function was differentially associated with recovery from fatigue in ME/CFS patients and HC.
Staud, Roland; Boissoneault, Jeff; Craggs, Jason G.; Lai, Song; Robinson, Michael E.
2018-01-01
Purpose One hallmark of chronic fatigue syndrome (ME/CFS) is task related worsening of fatigue. Global brain hypoperfusion, abnormal regional activation, and altered functional connectivity of brain areas associated with cognition and memory have been reported but remain controversial. Methods We enrolled 17 female participants fulfilling the CDC Criteria for ME/CFS and 16 matched healthy controls (HC). Using a 3T-Phillips Achieva MRI-scanner, pseudo-continuous arterial spin-labeling (pCASL), was used to study the dynamics of regional cerebral blood flow (rCBF) and their relationship to mental fatigue in ME/CFS patients and HC during a demanding cognitive task, i.e. modified Paced-Auditory-Serial-Addition-Testing (PASAT). Results ME/CFS subjects reported more fatigue than HC at baseline (p < .01). Global brain perfusion of ME/CFS and HC subjects was similar at rest. The PASAT resulted in significantly increased fatigue in ME/CFS participants and HC. Although not different between groups, overall CBF significantly increased over the first 3 min of the PASAT and then decreased thereafter. Regional CBF (rCBF) changes were significantly different between groups during the post-task recovery period. Whereas improvement of fatigue of ME/CFS subjects was associated with decreased rCBF in both superior temporal gyri (STG), precuneus, and fusiform gyrus, it was associated with increased rCBF in the same areas in HC. Conclusions Our results suggest that ME/CFS is associated with normal global CBF at rest and during a strenuous task (PASAT); however rCBF of several brain regions associated with memory, goal-oriented attention, and visual function was differentially associated with recovery from fatigue in ME/CFS patients and HC. PMID:29707427
Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko
2016-09-01
Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. Copyright © 2016 Elsevier Inc. All rights reserved.
Masse, Marie-Hélène; Richard, Marie Anne; D'Aragon, Frédérick; St-Arnaud, Charles; Mayette, Michael; Adhikari, Neill K J; Fraser, William; Carpentier, André; Palanchuck, Steven; Gauthier, David; Lanthier, Luc; Touchette, Matthieu; Lamontagne, Albert; Chénard, Jean; Mehta, Sangeeta; Sansoucy, Yanick; Croteau, Etienne; Lepage, Martin; Lamontagne, François
2018-04-06
Mechanisms underlying sepsis-associated encephalopathy remain unclear, but reduced cerebral blood flow, alone or in conjunction with altered autoregulation, is reported as a potential contributor. We compared cerebral blood flow of control subjects and vasopressor-dependent septic patients. Randomized crossover study. MRI with arterial spin labeling. Ten sedated septic patients on mechanical ventilation (four with controlled chronic hypertension) and 12 control subjects (six with controlled chronic hypertension) were enrolled. Mean ± SD ages were 61.4 ± 10.2 and 44.2 ± 12.8 years, respectively (p = 0.003). Mean Acute Physiology and Chronic Health Evaluation II score of septic patients at ICU admission was 27.7 ± 6.6. To assess the potential confounding effects of sedation and mean arterial pressure, we measured cerebral blood flow with and without sedation with propofol in control subjects and at a target mean arterial pressure of 65 mm Hg and greater than or equal to 75 mm Hg in septic patients. The sequence of sedation versus no sedation and mean arterial pressure targets were randomized. In septic patients, cerebral blood flow measured at a mean arterial pressure target of 65 mm Hg (40.4 ± 10.9 mL/100 g/min) was not different from cerebral blood flow measured at a mean arterial pressure target of greater than or equal to 75 mm Hg (41.3 ± 9.8 mL/100 g/min; p = 0.65). In control subjects, we observed no difference in cerebral blood flow measured without and with sedation (24.8 ± 4.2 vs 24.9 ± 5.9 mL/100 g/min; p = 0.93). We found no interaction between chronic hypertension and the effect of sedation or mean arterial pressure targets. Cerebral blood flow measured in sedated septic patients (mean arterial pressure target 65 mm Hg) was 62% higher than in sedated control subjects (p = 0.001). In septic patients, cerebral blood flow was higher than in sedated control subjects and did not vary with mean arterial pressure targets. Further research is required to understand the clinical significance of cerebral hyperperfusion in septic patients on vasopressors and to reassess the neurologic effects of current mean arterial pressure targets in sepsis.
Continuous spin fields of mixed-symmetry type
NASA Astrophysics Data System (ADS)
Alkalaev, Konstantin; Grigoriev, Maxim
2018-03-01
We propose a description of continuous spin massless fields of mixed-symmetry type in Minkowski space at the level of equations of motion. It is based on the appropriately modified version of the constrained system originally used to describe massless bosonic fields of mixed-symmetry type. The description is shown to produce generalized versions of triplet, metric-like, and light-cone formulations. In particular, for scalar continuous spin fields we reproduce the Bekaert-Mourad formulation and the Schuster-Toro formulation. Because a continuous spin system inevitably involves infinite number of fields, specification of the allowed class of field configurations becomes a part of its definition. We show that the naive choice leads to an empty system and propose a suitable class resulting in the correct degrees of freedom. We also demonstrate that the gauge symmetries present in the formulation are all Stueckelberg-like so that the continuous spin system is not a genuine gauge theory.
Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.
Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo
2012-08-15
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.
Carhart-Harris, Robin L.; Murphy, Kevin; Leech, Robert; Erritzoe, David; Wall, Matthew B.; Ferguson, Bart; Williams, Luke T.J.; Roseman, Leor; Brugger, Stefan; De Meer, Ineke; Tanner, Mark; Tyacke, Robin; Wolff, Kim; Sethi, Ajun; Bloomfield, Michael A.P.; Williams, Tim M.; Bolstridge, Mark; Stewart, Lorna; Morgan, Celia; Newbould, Rexford D.; Feilding, Amanda; Curran, H. Val; Nutt, David J.
2015-01-01
Background The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. Methods In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level–dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Results Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. Conclusions The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity. PMID:24495461
Sierra-Marcos, A; Carreño, M; Setoain, X; López-Rueda, A; Aparicio, J; Donaire, A; Bargalló, N
2016-01-01
Locating the epileptogenic zone (EZ) in patients with neocortical epilepsy presents major challenges. Our aim was to assess the accuracy of arterial spin labeling (ASL), an emerging non-invasive magnetic resonance imaging (MRI) perfusion technique, to locate the EZ in patients with drug-resistant neocortical epilepsy. Twenty-five consecutive patients with neocortical epilepsy referred to our epilepsy unit for pre-surgical evaluation underwent a standardized assessment including video-electroencephalography (EEG) monitoring, structural MRI, subtraction ictal single-photon emission computed tomography co-registered to MRI (SISCOM) and fluorodeoxyglucose positron emission tomography (FDG-PET) studies. An ASL sequence was included in the MRI studies. Areas of hypoperfusion or hyperperfusion on ASL were classified into 15 anatomic-functional cortical regions; these regional cerebral blood flow maps were compared with the EZ determined by the other tests and the strength of concordance was assessed with the kappa coefficient. Of the 25 patients [16 (64%) women; mean age 32.4 (±13.8) years], 18 (72%) had lesions on structural MRI. ASL abnormalities were seen in 15 (60%) patients (nine hypoperfusion, six hyperperfusion). ASL had a very good concordance with FDG-PET (k = 0.84), a good concordance with structural MRI (k = 0.76), a moderate concordance with video-EEG monitoring (k = 0.53) and a fair concordance with SISCOM (k = 0.28). Arterial spin labeling might help to confirm the location and extent of the EZ in the pre-surgical workup of patients with drug-resistant neocortical epilepsy. © 2015 EAN.
Whitehead, Matthew T; Lee, Bonmyong; Gropman, Andrea
2016-08-01
Leigh disease is a metabolic disorder of the mitochondrial respiratory chain culminating in symmetrical necrotizing lesions in the deep gray nuclei or brainstem. Apart from classic gliotic/necrotic lesions, small-vessel proliferation is also characteristic on histopathology. We have observed lesional hyperperfusion on arterial spin-labeling (ASL) sequence in children with Leigh disease. In this cross-sectional analysis, we evaluated lesional ASL perfusion characteristics in children with Leigh syndrome. We searched the imaging database from an academic children's hospital for "arterial spin labeling, perfusion, necrosis, lactate, and Leigh" to build a cohort of children for retrospective analysis. We reviewed each child's medical record to confirm a diagnosis of Leigh disease, excluding exams with artifact, technical limitations, and without ASL images. We evaluated the degree and extent of cerebral blood flow and relationship to brain lesions. Images were compared to normal exams from an aged-matche cohort. The database search yielded 45 exams; 30 were excluded. We evaluated 15 exams from 8 children with Leigh disease and 15 age-matched normal exams. In general, Leigh brain perfusion ranged from hyperintense (n=10) to hypointense (n=5). Necrotic lesions appeared hypointense/hypoperfused. Active lesions with associated restricted diffusion demonstrated hyperperfusion. ASL perfusion patterns differed significantly from those on age-matched normal studies (P=<.0001). Disease activity positively correlated with cerebral deep gray nuclei hyperperfusion (P=0.0037) and lesion grade (P=0.0256). Children with Leigh disease have abnormal perfusion of brain lesions. Hyperperfusion can be found in active brain lesions, possibly associated with small-vessel proliferation characteristic of the disease.
Hodkinson, Duncan J; Krause, Kristina; Khawaja, Nadine; Renton, Tara F; Huggins, John P; Vennart, William; Thacker, Michael A; Mehta, Mitul A; Zelaya, Fernando O; Williams, Steven C R; Howard, Matthew A
2013-01-01
Arterial spin labelling (ASL) is increasingly being applied to study the cerebral response to pain in both experimental human models and patients with persistent pain. Despite its advantages, scanning time and reliability remain important issues in the clinical applicability of ASL. Here we present the test-retest analysis of concurrent pseudo-continuous ASL (pCASL) and visual analogue scale (VAS), in a clinical model of on-going pain following third molar extraction (TME). Using ICC performance measures, we were able to quantify the reliability of the post-surgical pain state and ΔCBF (change in CBF), both at the group and individual case level. Within-subject, the inter- and intra-session reliability of the post-surgical pain state was ranked good-to-excellent (ICC > 0.6) across both pCASL and VAS modalities. The parameter ΔCBF (change in CBF between pre- and post-surgical states) performed reliably (ICC > 0.4), provided that a single baseline condition (or the mean of more than one baseline) was used for subtraction. Between-subjects, the pCASL measurements in the post-surgical pain state and ΔCBF were both characterised as reliable (ICC > 0.4). However, the subjective VAS pain ratings demonstrated a significant contribution of pain state variability, which suggests diminished utility for interindividual comparisons. These analyses indicate that the pCASL imaging technique has considerable potential for the comparison of within- and between-subjects differences associated with pain-induced state changes and baseline differences in regional CBF. They also suggest that differences in baseline perfusion and functional lateralisation characteristics may play an important role in the overall reliability of the estimated changes in CBF. Repeated measures designs have the important advantage that they provide good reliability for comparing condition effects because all sources of variability between subjects are excluded from the experimental error. The ability to elicit reliable neural correlates of on-going pain using quantitative perfusion imaging may help support the conclusions derived from subjective self-report.
Kawadler, Jamie M; Hales, Patrick W; Barker, Simon; Cox, Timothy C S; Kirkham, Fenella J; Clark, Chris A
2018-03-30
Sickle cell anaemia (SCA) is associated with chronic anaemia and oxygen desaturation, which elevate cerebral blood flow (CBF) and increase the risk of neurocognitive complications. Arterial spin labelling (ASL) provides a methodology for measuring CBF non-invasively; however, ASL techniques using only a single inflow time are not sufficient to fully characterize abnormal haemodynamic behaviour in SCA. This study investigated haemodynamic parameters from a multi-inflow-time ASL acquisition in younger (8-12 years) and older (13-18 years) children with SCA with and without silent cerebral infarction (SCI+/-) (n = 20 and 19 respectively, 6 and 4 SCI+ respectively) and healthy controls (n = 9 and 7 respectively). Compared with controls, CBF was elevated globally in both groups of patients. In the younger SCA patients, blood oxygen content was negatively correlated with CBF in the middle and posterior cerebral artery territories and significantly positively correlated with bolus arrival time (BAT) in the anterior and middle cerebral artery territories. In older children, SCA patients had significantly shorter BAT than healthy controls and there was a significant negative correlation between CBF and oxygen content only in the territory of the posterior cerebral artery, with a trend for a correlation in the anterior cerebral artery but no relationship for the middle cerebral artery territory. In the younger group, SCI+ patients had significantly higher CBF in the posterior cerebral artery territory (SCI+ mean = 92.78 ml/100 g/min; SCI- mean = 72.71 ml/100 g/min; F = 4.28, p = 0.04), but this no longer reached significance when two children with abnormal transcranial Doppler and one with haemoglobin SC disease were excluded, and there were no significant differences between patients with and without SCI in the older children. With age, there appears to be increasing disparity between patients and controls in terms of the relationship between CBF and oxygen content in the anterior circulation, potentially predicting the risk of acute and chronic compromise of brain tissue. Copyright © 2018 John Wiley & Sons, Ltd.
Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.
Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata
2018-05-08
Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.
Voll, Juliana; Campos, Rui
2016-08-01
Thirty turtle brains (Trachemys scripta elegans) were injected with latex to systematize and describe the internal carotid arteries and their main ramifications at the brain base. The internal carotid arteries had one intercarotid anastomosis. At the level of the tuber cinereum, the internal carotid artery bifurcated into its terminal branches, the rostral and the caudal branches. The rostral branch emitted the rostral choroid artery, the orbital artery, and a series of middle cerebral arteries. After giving off the last middle cerebral artery, the rostral branch continued as the rostral cerebral artery in the cerebral longitudinal fissure, and had one anastomosis with its contralateral homologous artery, the rostral communicating artery, making the first rostral closure of the cerebral arterial circle. Next, the rostral cerebral arteries anastomosed forming a rostral interhemispheric artery, making the second rostral closure of the cerebral arterial circle. The internal carotid artery, after emitting its rostral branch, continued caudally as the caudal branch. The caudal branch ran caudally along the ventral surface of the mesencephalic tegmentum, emitted the caudal cerebral artery and the mesencephalic artery, and continued caudomedially while progressively narrowing, and anastomosed with its contralateral homologous artery, forming the basilar artery. The narrower portion also emitted the trigeminal artery. The anastomosis of the caudal branches closed the cerebral arterial circle caudally. The internal carotid arteries exclusively supplied the cerebral arterial circle of the turtle. Anat Rec, 299:1090-1098, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Castellaro, Marco; Peruzzo, Denis; Mehndiratta, Amit; Pillonetto, Gianluigi; Petersen, Esben Thade; Golay, Xavier; Chappell, Michael A; Bertoldo, Alessandra
2015-12-01
QUASAR arterial spin labeling (ASL) permits the application of deconvolution approaches for the absolute quantification of cerebral perfusion. Currently, oscillation index regularized singular value decomposition (oSVD) combined with edge-detection (ED) is the most commonly used method. Its major drawbacks are nonphysiological oscillations in the impulse response function and underestimation of perfusion. The aim of this work is to introduce a novel method to overcome these limitations. A system identification method, stable spline (SS), was extended to address ASL peculiarities such as the delay in arrival of the arterial blood in the tissue. The proposed framework was compared with oSVD + ED in both simulated and real data. SS was used to investigate the validity of using a voxel-wise tissue T1 value instead of using a single global value (of blood T1 ). SS outperformed oSVD + ED in 79.9% of simulations. When applied to real data, SS exhibited a physiologically realistic range for perfusion and a higher mean value with respect to oSVD + ED (55.5 ± 9.5 SS, 34.9 ± 5.2 oSVD + ED mL/100 g/min). SS can represent an alternative to oSVD + ED for the quantification of QUASAR ASL data. Analysis of the retrieved impulse response function revealed that using a voxel wise tissue T1 might be suboptimal. © 2014 Wiley Periodicals, Inc.
Continuous spin detonation of poorly detonable fuel-air mixtures in annular combustors
NASA Astrophysics Data System (ADS)
Bykovskii, F. A.; Zhdan, S. A.
2017-09-01
This paper reports on the results of experimental investigations of continuous spin detonation of three fuel-air mixtures (syngas-air, CH4/H2-air, and kerosene/H2-air in a flow-type annular cylindrical combustor 503 mm in diameter. The limits of existence of continuous detonation in terms of the specific flow rates of the mixtures (minimum values) are determined. It is found that all gas mixtures, including the least detonable methane-air mixture, with addition of hydrogen can be burned in the continuous spin detonation regime.
Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.
Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M
2018-02-01
Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, M; Whitlow, C; Jung, Y
Purpose: To demonstrate the feasibility of a novel Arterial Spin Labeling (ASL) method for simultaneously measuring cerebral blood flow (CBF), arterial transit time (ATT), and arterial cerebral blood volume (aCBV) without the use of a contrast agent. Methods: A series of multi-TI ASL images were acquired from one healthy subject on a 3T Siemens Skyra, with the following parameters: PCASL labeling with variable TI [300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000] ms, labeling bolus 1400 ms when TI allows, otherwise 100 ms less than TI, TR was minimized for each TI, two sincmore » shaped pre-saturation pulses were applied in the imaging plane immediately before 2D EPI acquisition. 64×64×24 voxels, 5 mm slice thickness, 1 mm gap, full brain coverage, 6 averages per TI, no crusher gradients, 11 ms TE, scan time of 4:56. The perfusion weighted time-series was created for each voxel and fit to a novel model. The model has two components: 1) the traditional model developed by Buxton et al., accounting for CBF and ATT, and 2) a box car function characterizing the width of the labeling bolus, with variable timing and height in proportion to the aCBV. All three parameters were fit using a nonlinear fitting routine that constrained all parameters to be positive. The main purpose of the high-temporal resolution TI sampling for the first second of data acquisition was to precisely estimate the blood volume component for better detection of arrival time and magnitude of signal. Results: Whole brain maps of CBF, ATT, and aCBV were produced, and all three parameters maps are consistent with similar maps described in the literature. Conclusion: Simultaneous mapping of CBF, ATT, and aCBV is feasible with a clinically tractable scan time (under 5 minutes).« less
Improving Arterial Spin Labeling by Using Deep Learning.
Kim, Ki Hwan; Choi, Seung Hong; Park, Sung-Hong
2018-05-01
Purpose To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean ± standard deviation, 19.7 mL per 100 g/min ± 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 ± 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. © RSNA, 2017.
Using arterial spin labeling to examine mood states in youth.
Mikita, Nina; Mehta, Mitul A; Zelaya, Fernando O; Stringaris, Argyris
2015-06-01
Little is known about the neural correlates of mood states and the specific physiological changes associated with their valence and duration, especially in young people. Arterial spin labeling (ASL) imaging is particularly well-suited to study sustained cerebral states in young people, due to its robustness to low-frequency drift, excellent interscan reliability, and noninvasiveness. Yet, it has so far been underutilized for understanding the neural mechanisms underlying mood states in youth. In this exploratory study, 21 healthy adolescents aged 16 to 18 took part in a mood induction experiment. Neutral, sad, and happy mood states were induced using film clips and explicit instructions. An ASL scan was obtained following presentation of each film clip. Mood induction led to robust changes in self-reported mood ratings. Compared to neutral, sad mood was associated with increased regional cerebral blood flow (rCBF) in the left middle frontal gyrus and anterior prefrontal cortex, and decreased rCBF in the right middle frontal gyrus and the inferior parietal lobule. A decrease in self-reported mood from neutral to sad condition was associated with increased rCBF in the precuneus. Happy mood was associated with increased rCBF in medial frontal and cingulate gyri, the subgenual anterior cingulate cortex, and ventral striatum, and decreased rCBF in the inferior parietal lobule. The level of current self-reported depressive symptoms was negatively associated with rCBF change in the cerebellum and lingual gyrus following both sad and happy mood inductions. Arterial spin labeling is sensitive to experimentally induced mood changes in healthy young people. The effects of happy mood on rCBF patterns were generally stronger than the effects of sad mood.
Noncontrast peripheral MRA with spiral echo train imaging.
Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H
2015-03-01
To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Guo, Jia; Meakin, James A; Jezzard, Peter; Wong, Eric C
2015-03-01
Velocity-selective arterial spin labeling (VSASL) tags arterial blood on a velocity-selective (VS) basis and eliminates the tagging/imaging gap and associated transit delay sensitivity observed in other ASL tagging methods. However, the flow-weighting gradient pulses in VS tag preparation can generate eddy currents (ECs), which may erroneously tag the static tissue and create artificial perfusion signal, compromising the accuracy of perfusion quantification. A novel VS preparation design is presented using an eight-segment B1 insensitive rotation with symmetric radio frequency and gradient layouts (sym-BIR-8), combined with delays after gradient pulses to optimally reduce ECs of a wide range of time constants while maintaining B0 and B1 insensitivity. Bloch simulation, phantom, and in vivo experiments were carried out to determine robustness of the new and existing pulse designs to ECs, B0 , and B1 inhomogeneity. VSASL with reduced EC sensitivity across a wide range of EC time constants was achieved with the proposed sym-BIR-8 design, and the accuracy of cerebral blood flow measurement was improved. The sym-BIR-8 design performed the most robustly among the existing VS tagging designs, and should benefit studies using VS preparation with improved accuracy and reliability. © 2014 Wiley Periodicals, Inc.
Kamagata, Koji; Motoi, Yumiko; Hori, Masaaki; Suzuki, Michimasa; Nakanishi, Atsushi; Shimoji, Keigo; Kyougoku, Shinsuke; Kuwatsuru, Ryohei; Sasai, Keisuke; Abe, Osamu; Mizuno, Yoshikuni; Aoki, Shigeki; Hattori, Nobutaka
2011-04-01
To determine whether quantitative arterial spin labeling (ASL) can be used to evaluate regional cerebral blood flow in Parkinson's disease with dementia (PDD) and without dementia (PD). Thirty-five PD patients, 11 PDD patients, and 35 normal controls were scanned by using a quantitative ASL method with a 3 Tesla MRI unit. Regional cerebral blood flow was compared in the posterior cortex using region-of-interest analysis. PD and PDD patients showed lower regional cerebral blood flow in the posterior cortex than normal controls (P = 0.002 and P = 0.001, respectively, analysis of variance with a Bonferroni post hoc test). This is the first study to detect hypoperfusion in the posterior cortex in PD and PDD patients using ASL perfusion MRI. Because ASL perfusion MRI is completely noninvasive and can, therefore, safely be used for repeated assessments, this method can be used to monitor treatment effects or disease progression in PD. Copyright © 2011 Wiley-Liss, Inc.
Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.
Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W
2014-01-01
To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.
BRST-BV approach to continuous-spin field
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-06-01
Using BRST-BV approach, massless and massive continuous-spin fields propagating in the flat space are studied. For such fields, BRST-BV gauge invariant Lagrangian is obtained. The Lagrangian and gauge transformations are constructed out of traceless gauge fields and traceless gauge transformation parameters. Interrelation between the BRST-BV Lagrangian and the Lagrangian for the continuous-spin fields in metric-like approach is demonstrated. Considering the BRST-BV Lagrangian in the Siegel gauge, we get gauge-fixed Lagrangian which is invariant under global BRST and antiBRST transformations.
Estimation of perfusion properties with MR Fingerprinting Arterial Spin Labeling.
Wright, Katherine L; Jiang, Yun; Ma, Dan; Noll, Douglas C; Griswold, Mark A; Gulani, Vikas; Hernandez-Garcia, Luis
2018-03-12
In this study, the acquisition of ASL data and quantification of multiple hemodynamic parameters was explored using a Magnetic Resonance Fingerprinting (MRF) approach. A pseudo-continuous ASL labeling scheme was used with pseudo-randomized timings to acquire the MRF ASL data in a 2.5 min acquisition. A large dictionary of MRF ASL signals was generated by combining a wide range of physical and hemodynamic properties with the pseudo-random MRF ASL sequence and a two-compartment model. The acquired signals were matched to the dictionary to provide simultaneous quantification of cerebral blood flow, tissue time-to-peak, cerebral blood volume, arterial time-to-peak, B 1 , and T 1. A study in seven healthy volunteers resulted in the following values across the population in grey matter (mean ± standard deviation): cerebral blood flow of 69.1 ± 6.1 ml/min/100 g, arterial time-to-peak of 1.5 ± 0.1 s, tissue time-to-peak of 1.5 ± 0.1 s, T 1 of 1634 ms, cerebral blood volume of 0.0048 ± 0.0005. The CBF measurements were compared to standard pCASL CBF estimates using a one-compartment model, and a Bland-Altman analysis showed good agreement with a minor bias. Repeatability was tested in five volunteers in the same exam session, and no statistical difference was seen. In addition to this validation, the MRF ASL acquisition's sensitivity to the physical and physiological parameters of interest was studied numerically. Copyright © 2018 Elsevier Inc. All rights reserved.
Continuous intra-arterial blood-gas monitoring
NASA Astrophysics Data System (ADS)
Divers, George A.; Riccitelli, Samuel D.; Blais, Maurice; Hui, Henry K.
1993-05-01
Fiber optic technology and optical fluorescence have made the continuous monitoring of arterial blood gases a reality. Practical products that continuously monitor blood gases by use of an invasive sensor are now available. Anesthesiologists and intensive care physicians are beginning to explore the practical implications of this technology. With the advent of intra- arterial blood gas monitors it is possible to assess arterial blood gas values without the labor intensive steps of drawing blood and transporting a blood sample to the lab followed by the actual analysis. These intra-arterial blood gas monitors use new optical sensor technologies that can be reduced in size to the point that the sensor can be inserted into the arterial blood flow through a 20-gauge arterial cannula. In the best of these technologies the sensors accuracy and precision are similar to those in vitro analyzers. This presentation focuses on background technology and in vivo performance of a device developed, manufactured, and marketed by Puritan-Bennett Corporation.
Evaluation of Blalock-Taussig shunts in newborns: value of oblique MRI planes.
Kastler, B; Livolsi, A; Germain, P; Zöllner, G; Dietemann, J L
1991-01-01
Eight infants with systemic-pulmonary Blalock-Taussig shunts were evaluated by spin-echo ECG-gated MRI. Contrary to Echocardiography, MRI using coronal oblique projections successfully visualized all palliative shunts entirely in one single plane (including one carried out on a right aberrant subclavian artery). MRI allowed assessment of size, course and patency of the shunt, including pulmonary and subclavian insertion. The proximal portion of the pulmonary and subclavian arteries were also visualized. We conclude that MRI with axial scans completed by coronal oblique planes is a promising, non invasive method for imaging the anatomical features of Blalock-Taussig shunts.
NASA Astrophysics Data System (ADS)
Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.
2018-04-01
Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.
Mutsaerts, Henri J M M; van Osch, Matthias J P; Zelaya, Fernando O; Wang, Danny J J; Nordhøy, Wibeke; Wang, Yi; Wastling, Stephen; Fernandez-Seara, Maria A; Petersen, E T; Pizzini, Francesca B; Fallatah, Sameeha; Hendrikse, Jeroen; Geier, Oliver; Günther, Matthias; Golay, Xavier; Nederveen, Aart J; Bjørnerud, Atle; Groote, Inge R
2015-06-01
A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL (PCASL) sequence implemented on 3T scanners from three vendors (General Electric Healthcare, Philips Healthcare and Siemens Healthcare) within the same center and with the same subjects. Fourteen healthy volunteers (50% male, age 26.4±4.7years) were scanned twice on each scanner in an interleaved manner within 3h. Because of differences in gradient and coil specifications, two separate studies were performed with slightly different sequence parameters, with one scanner used across both studies for comparison. Reproducibility was evaluated by means of quantitative cerebral blood flow (CBF) agreement and inter-session variation, both on a region-of-interest (ROI) and voxel level. In addition, a qualitative similarity comparison of the CBF maps was performed by three experienced neuro-radiologists. There were no CBF differences between vendors in study 1 (p>0.1), but there were CBF differences of 2-19% between vendors in study 2 (p<0.001 in most gray matter ROIs) and 10-22% difference in CBF values obtained with the same vendor between studies (p<0.001 in most gray matter ROIs). The inter-vendor inter-session variation was not significantly larger than the intra-vendor variation in all (p>0.1) but one of the ROIs (p<0.001). This study demonstrates the possibility to acquire comparable cerebral CBF maps on scanners of different vendors. Small differences in sequence parameters can have a larger effect on the reproducibility of ASL than hardware or software differences between vendors. These results suggest that researchers should strive to employ identical labeling and readout strategies in multi-center ASL studies. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganaha, Fumikiyo; Yamada, Tetsuhisa; Yorozu, Naoya
1999-09-15
We used a vascular access system (VAS) for continuous arterial infusion (CAI) of a protease inhibitor in two patients with acute necrotizing pancreatitis. The infusion catheter was placed into the dorsal pancreatic artery in the first patient and into the gastroduodenal artery in the second, via a femoral artery approach. An implantable port was then connected to the catheter and was secured in a subcutaneous pocket prepared in the right lower abdomen. No complications related to the VAS were encountered. This system provided safe and uncontaminated vascular access for successful CAI for acute pancreatitis.
Stretchable Persistent Spin Helices in GaAs Quantum Wells
NASA Astrophysics Data System (ADS)
Dettwiler, Florian; Fu, Jiyong; Mack, Shawn; Weigele, Pirmin J.; Egues, J. Carlos; Awschalom, David D.; Zumbühl, Dominik M.
2017-07-01
The Rashba and Dresselhaus spin-orbit (SO) interactions in 2D electron gases act as effective magnetic fields with momentum-dependent directions, which cause spin decay as the spins undergo arbitrary precessions about these randomly oriented SO fields due to momentum scattering. Theoretically and experimentally, it has been established that by fine-tuning the Rashba α and renormalized Dresselhaus β couplings to equal fixed strengths α =β , the total SO field becomes unidirectional, thus rendering the electron spins immune to decay due to momentum scattering. A robust persistent spin helix (PSH), i.e., a helical spin-density wave excitation with constant pitch P =2 π /Q , Q =4 m α /ℏ2, has already been experimentally realized at this singular point α =β , enhancing the spin lifetime by up to 2 orders of magnitude. Here, we employ the suppression of weak antilocalization as a sensitive detector for matched SO fields together with independent electrical control over the SO couplings via top gate voltage VT and back gate voltage VB to extract all SO couplings when combined with detailed numerical simulations. We demonstrate for the first time the gate control of the renormalized β and the continuous locking of the SO fields at α =β ; i.e., we are able to vary both α and β controllably and continuously with VT and VB, while keeping them locked at equal strengths. This makes possible a new concept: "stretchable PSHs," i.e., helical spin patterns with continuously variable pitches P over a wide parameter range. Stretching the PSH, i.e., gate controlling P while staying locked in the PSH regime, provides protection from spin decay at the symmetry point α =β , thus offering an important advantage over other methods. This protection is limited mainly by the cubic Dresselhaus term, which breaks the unidirectionality of the total SO field and causes spin decay at higher electron densities. We quantify the cubic term, and find it to be sufficiently weak so that the extracted spin-diffusion lengths and decay times show a significant enhancement near α =β . Since within the continuous-locking regime quantum transport is diffusive (2D) for charge while ballistic (1D) for spin and thus amenable to coherent spin control, stretchable PSHs could provide the platform for the much heralded long-distance communication ˜8 - 25 μ m between solid-state spin qubits, where the spin diffusion length for α ≠β is an order of magnitude smaller.
Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.
2014-01-01
Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211
Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling
Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.
2014-01-01
To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416
Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien
2016-01-01
Abstract Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning. PMID:26844450
Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien
2016-02-01
Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.
Arterial spin labelling reveals prolonged arterial arrival time in idiopathic Parkinson's disease.
Al-Bachari, Sarah; Parkes, Laura M; Vidyasagar, Rishma; Hanby, Martha F; Tharaken, Vivek; Leroi, Iracema; Emsley, Hedley C A
2014-01-01
Idiopathic Parkinson's disease (IPD) is the second most common neurodegenerative disease, yet effective disease modifying treatments are still lacking. Neurodegeneration involves multiple interacting pathological pathways. The extent to which neurovascular mechanisms are involved is not well defined in IPD. We aimed to determine whether novel magnetic resonance imaging (MRI) techniques, including arterial spin labelling (ASL) quantification of cerebral perfusion, can reveal altered neurovascular status (NVS) in IPD. Fourteen participants with IPD (mean ± SD age 65.1 ± 5.9 years) and 14 age and cardiovascular risk factor matched control participants (mean ± SD age 64.6 ± 4.2 years) underwent a 3T MRI scan protocol. ASL images were collected before, during and after a 6 minute hypercapnic challenge. FLAIR images were used to determine white matter lesion score. Quantitative images of cerebral blood flow (CBF) and arterial arrival time (AAT) were calculated from the ASL data both at rest and during hypercapnia. Cerebrovascular reactivity (CVR) images were calculated, depicting the change in CBF and AAT relative to the change in end-tidal CO2. A significant (p = 0.005) increase in whole brain averaged baseline AAT was observed in IPD participants (mean ± SD age 1532 ± 138 ms) compared to controls (mean ± SD age 1335 ± 165 ms). Voxel-wise analysis revealed this to be widespread across the brain. However, there were no statistically significant differences in white matter lesion score, CBF, or CVR between patients and controls. Regional CBF, but not AAT, in the IPD group was found to correlate positively with Montreal cognitive assessment (MoCA) scores. These findings provide further evidence of alterations in NVS in IPD.
Kassamali, Rahil Hussein; Hoey, Edward T D; Ganeshan, Arul; Littlehales, Tracey
2013-01-01
This feasibility study aimed to obtain initial data to assess the performance of a novel noncontrast spoiled magnetic resonance (MR) angiography technique (fresh-blood imaging [FBI]) compared to gadolinium-enhanced MR (Gd-MR) angiography for evaluation of the aorto-iliac and lower extremity arteries. Thirteen patients with suspected lower extremity arterial disease that had undergone Gd-MR angiography and FBI at the same session were randomly included in the study. FBI was performed using an ECG-gated ow-spoiled T2-weighted half-Fourier fast spin-echo sequence. For analysis, the aortoiliac and lower limb arteries were divided into 18 anatomical segments. Two blinded readers individually graded image quality of FBI and also assessed the presence and severity of any stenotic lesions. A similar analysis was performed for the Gd-MR angiography images. A total of 385 arterial segments were analyzed; 34 segments were excluded due to degraded image quality (1.3% of Gd- MR vs. 8% of FBI-MR angiography images). FBI-MR angiography had comparable accuracy to Gd-MR angiography for assessment of the above knee vessels with high kappa statistics (large arteries, 0.91; small arteries, 0.86) and high sensitivity (large arteries, 98.1%; small arteries, 88.6%) and specificity (large arteries, 97.2%; small arteries, 97.6%) using Gd-MR angiography as the gold standard. Initial results show good agreement between FBI-MR angiography and Gd-MR angiography in the diagnosis of peripheral arterial disease, making FBI a potential alternative in patients with renal impairment. FBI showed highest accuracy in the above knee vessels. Technological refinements are required to improve accuracy for assessing the calf and pedal vessels.
NASA Astrophysics Data System (ADS)
Kamp, E. J.; Carvajal, B.; Samarth, N.
2018-01-01
The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.
Hemorheological abnormalities in human arterial hypertension
NASA Astrophysics Data System (ADS)
Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio
2014-05-01
Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.
Magnetic Resonance Arterial Spin Tagging for Noninvasive Pharmacokinetic Analysis of Breast Cancer
1998-10-01
TIbr () - TIbr (j) and 1 In (Sreg - Sno (i)) - In (Sreg - Snon(J)) (1.9) Ti. Tlb, Wi - Tlbr W) where Sreg = the average steady-state signal intensity at...a pixel under the Regular Condition, Tlbr (i) = the ith effective inversion time (TI) (used for the ith image), Ssel(i) = the steady-state signal
A Novel Attitude Determination Algorithm for Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2007-01-01
This paper presents a single frame algorithm for the spin-axis orientation-determination of spinning spacecraft that encounters no ambiguity problems, as well as a simple Kalman filter for continuously estimating the full attitude of a spinning spacecraft. The later algorithm is comprised of two low order decoupled Kalman filters; one estimates the spin axis orientation, and the other estimates the spin rate and the spin (phase) angle. The filters are ambiguity free and do not rely on the spacecraft dynamics. They were successfully tested using data obtained from one of the ST5 satellites.
Preoperative localization of Adamkiewicz arteries and their origins by using MDCT angiography.
Sukeeyamanon, Wiwithawan; Siriapisith, Thanongchai; Wasinrat, Jitladda
2010-12-01
To evaluate the ability of thoraco-abdominal MDCT angiography to visualize Adamkiewicz arteries for preoperative planning in patients diagnosed with aortic disease. The present study retrospectively reviewed clinical data from 73 patients who underwent a thoraco-abdominal 64-slice MDCT angiography. The Adamkiewicz artery was evaluated on multiplanar reformation images in each case. The visualization of the Adamkiewicz artery, level of origin, side of origin and continuation from an intercostal artery was investigated. The Adamkiewicz arteries were visualized in 52 of the 73 patients (71.2%), and the total number of the delineated Adamkiewicz arteries was 64. Two Adamkiewicz arteries were found in nine patients (17.3%). Four Adamkiewicz arteries were found in one patient (1.9%). Most of the delineated arteries arose from the T9-L2 levels (89.1%). A left side of origin was found in 41 of 64 arteries (64.1%), and a right side of origin was found in 23 of 64 arteries (35.9%). Only 12 of 64 delineated arteries (18.8%) showed continuity from their origins to the anterior radiculomedullary artery. The preoperative detection rate of the Adamkiewicz artery with the routine technique of 64-slice MDCT angiography was 71.2%. The preoperative location of the Adamkiewicz artery may help to reduce the risk of perioperative ischemic changes in the spinal cord.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.
Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance
NASA Astrophysics Data System (ADS)
Wassall, Cynthia D.
The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76% increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial function. Stretch or distension activates the AT1 receptor which mediates ROS production; this collectively leads to endothelial dysfunction in coronary arteries.
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
Bele, Sylvia; Proescholdt, Martin A; Hochreiter, Andreas; Schuierer, Gerhard; Scheitzach, Judith; Wendl, Christina; Kieninger, Martin; Schneiker, Andre; Bründl, Elisabeth; Schödel, Petra; Schebesch, Karl-Michael; Brawanski, Alexander
2015-12-01
Severe cerebral vasospasm is a major cause of death and disability in patients with aneurysmal subarachnoid hemorrhage. No causative treatment is yet available and hypertensive hypervolemic therapy (HHT) is often insufficient to avoid delayed cerebral ischemia and neurological deficits. We compared patients receiving continuous intra-arterial infusion of the calcium-antagonist nimodipine with a historical group treated with HHT and oral nimodipine alone. Between 0.5 and 1.2 mg/h of nimodipine were continuously administered by intra-arterial infusion via microcatheters either into the internal carotid or vertebral artery or both, depending on the areas of vasospasm. The effect was controlled via multimodal neuromonitoring and transcranial Doppler sonography. Outcome was determined by means of the Glasgow Outcome Scale at discharge and 6 months after the hemorrhage and compared to a historical control group. Twenty-one patients received 28 intra-arterial nimodipine infusions. Six months after discharge, the occurrence of cerebral infarctions was significantly lower (42.6 %) in the nimodipine group than in the control group (75.0 %). This result was reflected by a significantly higher proportion (76.0 %) of patients with good outcome in the nimodipine-treated group, when compared to 10.0 % good outcome in the control group. Median GOS was 4 in the nimodipine group and 2 in the control group (p = 0.001). Continuous intra-arterial nimodipine infusion is an effective treatment for patients with severe cerebral vasospasm who fail to respond to HHT and oral nimodipine alone. Key to the effective administration of continuous intra-arterial nimodipine is multimodal neuromonitoring and the individual adaptation of dosage and time of infusion for each patient.
Dynamics of Topological Excitations in a Model Quantum Spin Ice
NASA Astrophysics Data System (ADS)
Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang
2018-04-01
We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.
Advanced Pediatric Brain Imaging Research and Training Program
2013-10-01
diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH
Andre, Jalal B
2015-10-01
Traumatic brain injury (TBI), including concussion, is a public health concern, as it affects over 1.7 million persons in the United States per year. Yet, the diagnosis of TBI, particularly mild TBI (mTBI), can be controversial, as neuroimaging findings can be sparse on conventional magnetic resonance and computed tomography examinations, and when present, often poorly correlate with clinical signs and symptoms. Furthermore, the discussion of TBI, concussion, and head impact exposure is immediately complicated by the many differing opinions of what constitutes each, their respective severities, and how the underlying biomechanics of the inciting head impact might alter the distribution, severity, and prognosis of the underlying brain injury. Advanced imaging methodologies hold promise in improving the sensitivity and detectability of associated imaging biomarkers that might better correlate with patient outcome and prognostication, allowing for improved triage and therapeutic guidance in the setting of TBI, particularly in mTBI. This work will examine the defining symptom complex associated with mTBI and explore changes in cerebral blood flow measured by arterial spin labeling, as a potential imaging biomarker for TBI, and briefly correlate these observations with findings identified by single photon emission computed tomography and positron emission tomography imaging.
NASA Astrophysics Data System (ADS)
Yamashita, Yasuo; Arimura, Hidetaka; Yoshiura, Takashi; Tokunaga, Chiaki; Magome, Taiki; Monji, Akira; Noguchi, Tomoyuki; Toyofuku, Fukai; Oki, Masafumi; Nakamura, Yasuhiko; Honda, Hiroshi
2010-03-01
Arterial spin labeling (ASL) is one of promising non-invasive magnetic resonance (MR) imaging techniques for diagnosis of Alzheimer's disease (AD) by measuring cerebral blood flow (CBF). The aim of this study was to develop a computer-aided classification system for AD patients based on CBFs measured by the ASL technique. The average CBFs in cortical regions were determined as functional image features based on the CBF map image, which was non-linearly transformed to a Talairach brain atlas by using a free-form deformation. An artificial neural network (ANN) was trained with the CBF functional features in 10 cortical regions, and was employed for distinguishing patients with AD from control subjects. For evaluation of the method, we applied the proposed method to 20 cases including ten AD patients and ten control subjects, who were scanned a 3.0-Tesla MR unit. As a result, the area under the receiver operating characteristic curve obtained by the proposed method was 0.893 based on a leave-one-out-by-case test in identification of AD cases among 20 cases. The proposed method would be feasible for classification of patients with AD.
Addicott, Merideth A; Froeliger, Brett; Kozink, Rachel V; Van Wert, Dana M; Westman, Eric C; Rose, Jed E; McClernon, Francis J
2014-11-01
Smoking cessation results in withdrawal symptoms such as craving and negative mood that may contribute to lapse and relapse. Little is known regarding whether these symptoms are associated with the nicotine or non-nicotine components of cigarette smoke. Using arterial spin labeling, we measured resting-state cerebral blood flow (CBF) in 29 adult smokers across four conditions: (1) nicotine patch+denicotinized cigarette smoking, (2) nicotine patch+abstinence from smoking, (3) placebo patch+denicotinized cigarette smoking, and (4) placebo patch+abstinence from smoking. We found that changes in self-reported craving positively correlated with changes in CBF from the denicotinized cigarette smoking conditions to the abstinent conditions. These correlations were found in several regions throughout the brain. Self-reported craving also increased from the nicotine to the placebo conditions, but had a minimal relationship with changes in CBF. The results of this study suggest that the non-nicotine components of cigarette smoke significantly impact withdrawal symptoms and associated brain areas, independently of the effects of nicotine. As such, the effects of non-nicotine factors are important to consider in the design and development of smoking cessation interventions and tobacco regulation.
Addicott, Merideth A; Froeliger, Brett; Kozink, Rachel V; Van Wert, Dana M; Westman, Eric C; Rose, Jed E; McClernon, Francis J
2014-01-01
Smoking cessation results in withdrawal symptoms such as craving and negative mood that may contribute to lapse and relapse. Little is known regarding whether these symptoms are associated with the nicotine or non-nicotine components of cigarette smoke. Using arterial spin labeling, we measured resting-state cerebral blood flow (CBF) in 29 adult smokers across four conditions: (1) nicotine patch+denicotinized cigarette smoking, (2) nicotine patch+abstinence from smoking, (3) placebo patch+denicotinized cigarette smoking, and (4) placebo patch+abstinence from smoking. We found that changes in self-reported craving positively correlated with changes in CBF from the denicotinized cigarette smoking conditions to the abstinent conditions. These correlations were found in several regions throughout the brain. Self-reported craving also increased from the nicotine to the placebo conditions, but had a minimal relationship with changes in CBF. The results of this study suggest that the non-nicotine components of cigarette smoke significantly impact withdrawal symptoms and associated brain areas, independently of the effects of nicotine. As such, the effects of non-nicotine factors are important to consider in the design and development of smoking cessation interventions and tobacco regulation. PMID:24820539
Suazo, L.; Foerster, B.; Fermin, R.; Speckter, H.; Vilchez, C.; Oviedo, J.; Stoeter, P.
2012-01-01
Summary The assessment of shunt reduction after an embolization of an arteriovenous malformation (AVM) or fistula (AVF) from conventional angiography is often difficult and may be subjective. Here we present a completely non-invasive method using magnetic resonance imaging (MRI) to measure shunt reduction. Using pulsed arterial spin labeling (PASL), we determined the relative amount of signal attributed to the shunt over 1.75 s and 6 different slices covering the lesion. This amount of signal from the shunt was related to the total signal from all slices and measured before and after embolization. The method showed a fair agreement between the PASL results and the judgement from conventional angiography. In the case of a total or subtotal shunt occlusion, PASL showed a shunt reduction between 69% and 92%, whereas in minimal shunt reduction as judged by conventional angiography, the ASL result was –6% (indicating slightly increased flow) to 35% in a partially occluded vein of Galen aneurysm. The PASL method proved to be fairly reproducible (up to 2% deviation between three measurements without interventions). On conclusion, PASL is able to reliably measure the amount of shunt reduction achieved by embolization of AVMs and AVFs PMID:22440600
Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin
2014-08-01
To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Ryu, Kyeong H; Baek, Hye J; Cho, Soo B; Moon, Jin I; Choi, Bo H; Park, Sung E; An, Hyo J
2017-11-01
Detection of skull metastases is as important as detection of brain metastases because early diagnosis of skull metastases is a crucial determinant of treatment. However, the skull can be a blind spot for assessing metastases on routine brain magnetic resonance imaging (MRI). To the best of our knowledge, the finding of skull metastases on arterial spin labeling (ASL) has not been reported. ASL is a specific MRI sequence for evaluating cerebral blood flow using magnetized endogenous inflow blood. This study uses ASL as a routine sequence of brain MRI protocol and describes 3 clinical cases of skull metastases identified by ASL. The study also highlights the clinical usefulness of ASL in detecting skull metastases. Three patients with known malignancy underwent brain MRI to evaluate for brain metastases. All of the skull metastases were conspicuously depicted on routine ASL images, and the lesions correlated well with other MRI sequences. Three patients received palliative chemotherapy. Three patients are being followed up regularly at the outpatient department. The routine use of ASL may help to detect lesions in blind spots, such as skull metastases, and to facilitate the evaluation of intracranial pathologies without the use of contrast materials in exceptional situations.
Missed Total Occlusion Due to the Occipital Artery Arising from the Internal Carotid Artery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustunsoz, Bahri, E-mail: bustunsoz2000@yahoo.com; Gumus, Burcak; Koksal, Ali
2007-02-15
A 56-year-old man was referred for digital subtraction angiography (DSA) with an ultrasound diagnosis of right proximal internal carotid artery (ICA) stenosis for possible carotid artery stenting. DSA revealed total occlusion of the ICA and an occipital artery arising from the stump and simulating continuation of the ICA. An ascending pharyngeal artery also arose from the same occipital artery. This case is of interest because this is a rare variation besides being a cause of misdiagnosis at carotid ultrasound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
Flat space (higher spin) gravity with chemical potentials
NASA Astrophysics Data System (ADS)
Gary, Michael; Grumiller, Daniel; Riegler, Max; Rosseel, Jan
2015-01-01
We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.
Mülsch, A.; Bara, A.; Mordvintcev, P.; Vanin, A.; Busse, R.
1995-01-01
1. In the present study we assessed the formation of nitric oxide (NO) from classical and thiol-containing organic nitrates in vascular tissues and organs of anaesthetized rabbits, and established a relationship between the relaxant response elicited by nitroglycerin (NTG) and NO formation in the rabbit isolated aorta. Furthermore, the effect of isolated cytochrome P450 on NO formation from organic nitrates was investigated. 2. Rabbits received diethyldithiocarbamate (DETC; 200 mg kg-1 initial bolus i.p. and 200 mg kg-1 during 20 min, i.v.) and either saline, or one of the following organic nitrates: nitroglycerin (NTG, 0.5 mg kg-1), isosorbide dinitrate (ISDN), N-(3-nitratopivaloyl)-L-cysteine ethylester (SPM 3672), S-carboxyethyl-N-(3-nitratopivaloyl)-L-cysteine ethylester (SPM 5185), at 10 mg kg-1 each. After 20 min the animals were killed, blood vessels and organs were removed, and subsequently analyzed for spin-trapped NO by cryogenic electron spin resonance (e.s.r.) spectroscopy. 3. In the saline-treated control group, NO remained below the detection limit in all vessels and organs. In contrast, all of the nitrates tested elicited measurable NO formation, which was higher in organs (liver, kidney, heart, lung, spleen) (up to 4.8 nmol g-1 20 min-1) than in blood vessels (vena cava, mesenteric bed, femoral artery, aorta) (up to 0.7 nmol g-1 20 min-1). Classical organic nitrates (NTG, ISDN) formed NO preferentially in the mesenteric bed and the vena cava, while the SPM compounds elicited comparable NO formation in veins and arteries. 4. Using a similar spin trapping technique, NO formation was assessed in vitro in phenylephrine-precontracted rabbit aortic rings. The maximal relaxation elicited by a first exposure (10 min) to NTG (0.3 to 10 microM) was positively correlated (r = 0.8) with the net increase (NTG minus basal) of NO spin-trapped during a second exposure to the same concentration of NTG in the presence of DETC. 5. Cytochrome P450 purified from rabbit liver enhanced NO formation in a NADPH-dependent fashion from NTG, but not from the other nitrates, as assessed by activation of purified soluble guanylyl cyclase. 6. We conclude that the vessel selective action of different organic nitrates in vivo reflects differences in vascular NO formation. Thus, efficient preload reduction by classical organic nitrates can be accounted for by higher NO formation in venous capacitance as compared to arterial conductance and resistance vessels. In contrast, NO is released from cysteine-containing nitrates (SPMs) to a similar extent in arteries and veins, presumably independently of an organic nitrate-specific biotransformation. Limited tissue bioavailability of NTG and ISDN might account for low NO formation in the aorta, while true differences in biotransformation seem to account for differences in NO formation in the other vascular tissues. PMID:8590999
Amano, Tsukuru; Tokoro, Shinsuke; Tsuji, Shunichiro; Inoue, Takashi; Kimura, Fuminori; Murakami, Takashi
2017-09-25
Uterine artery pseudoaneurysm (UAP) normally presents genital bleeding in the puerperal period, and severe hydronephrosis rarely presents during pregnancy. We report a rare case of severe ureteral obstruction accompanied by uterine artery pseudoaneurysm in the early second trimester of pregnancy, which was successfully treated by surgical intervention. A 42-year-old nulligravid woman who had undergone myomectomy 3 years earlier was referred to our hospital for acute left abdominal pain at the 17th week of gestation. Ultrasonography showed severe left hydronephrosis and a 6-cm mass in the parauterine space. Color Doppler ultrasonography revealed a spinning turbulent flow pattern inside the mass lesion. Contrast-enhanced computed tomography revealed the left uterine artery feeding blood flow to the mass and left ureteral obstruction by the mass. These results indicated left hydronephrosis secondary to left uterine artery pseudoaneurysm. To resolve the problem, laparotomy was performed. As uterine artery isolation was impossible, ligation of the left internal iliac artery and releasing of the ureteral obstruction were carried out. The hydronephrosis and abdominal pain promptly resolved after the surgery. Thereafter, fetal development proceeded normally in the remaining months of the pregnancy. A healthy baby was delivered through cesarean section at 36 weeks gestational age. At the cesarean section, the left lower uterine segment where the UAP had been present was not visible because of the firm adhesion in around it. Uterine artery pseudoaneurysm can cause hydronephrosis in the early second trimester of pregnancy. Ligation of the unilateral internal iliac artery is a safe and effective intervention to block the blood flow to the uterine artery pseudoaneurysm during pregnancy, when uterine artery ligation seems not possible. In the pregnancy after previous surgical procedures to the uterus, uterine artery pseudoaneurysm should be considered in the differential diagnosis of symptomatic hydronephrosis.
Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S
2012-01-01
It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression.
Pulmonary artery aneurysm and thrombosis in active tuberculous consolidation.
Jemshad, A; Ahammed, Shameem; Abdulla, Mansoor C; Musambil, Mohthash
2015-07-01
Tuberculosis continues to remain challenging with a variety of complications. We report the case of a 58-year-old female who developed pulmonary artery aneurysm with intra-arterial thrombus as a complication of active tuberculosis. Even though there are reports of pulmonary artery aneurysm in tuberculous cavity, pulmonary artery aneurysm and intra-arterial thrombus in active tuberculosis are very rare. Copyright © 2015 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.
Paling, David; Thade Petersen, Esben; Tozer, Daniel J; Altmann, Daniel R; Wheeler-Kingshott, Claudia AM; Kapoor, Raju; Miller, David H; Golay, Xavier
2014-01-01
Alterations in the overall cerebral hemodynamics have been reported in multiple sclerosis (MS); however, their cause and significance is unknown. While potential venous causes have been examined, arterial causes have not. In this study, a multiple delay time arterial spin labeling magnetic resonance imaging sequence at 3T was used to quantify the arterial hemodynamic parameter bolus arrival time (BAT) and cerebral blood flow (CBF) in normal-appearing white matter (NAWM) and deep gray matter in 33 controls and 35 patients with relapsing–remitting MS. Bolus arrival time was prolonged in MS in NAWM (1.0±0.2 versus 0.9±0.2 seconds, P=0.031) and deep gray matter (0.90±0.18 versus 0.80±0.14 seconds, P=0.001) and CBF was increased in NAWM (14±4 versus 10±2 mL/100 g/min, P=0.001). Prolonged BAT in NAWM (P=0.042) and deep gray matter (P=0.01) were associated with higher expanded disability status score. This study demonstrates alteration in cerebral arterial hemodynamics in MS. One possible cause may be widespread inflammation. Bolus arrival time was longer in patients with greater disability independent of atrophy and T2 lesion load, suggesting alterations in cerebral arterial hemodynamics may be a marker of clinically relevant pathology. PMID:24045400
Haga, Sei; Morioka, Takato; Shimogawa, Takafumi; Akiyama, Tomoaki; Murao, Kei; Kanazawa, Yuka; Sayama, Tetsuro; Arakawa, Shuji
2016-01-01
Perfusion magnetic resonance image with arterial spin labeling (ASL) provides a completely noninvasive measurement of cerebral blood flow (CBF). However, arterial transient times can have a marked effect on the ASL signal. For example, a single postlabeling delay (PLD) of 1.5 seconds underestimates the slowly streaming collateral pathways that maintain the cerebrovascular reserve (CVR). To overcome this limitation, we developed a dual PLD method. A dual PLD method of 1.5 and 2.5 seconds was compared with (123)I-iodoamphetamine single-photon emission computed tomography with acetazolamide loading to assess CVR in 10 patients with steno-occlusive cerebrovascular disease. In 5 cases (Group A), dual PLD-ASL demonstrated low CBF with 1.5-second PLD in the target area, whereas CBF was improved with 2.5-second PLD. In the other 5 cases (Group B), dual PLD-ASL depicted low CBF with 1.5-second PLD, and no improvement in CBF with 2.5-second PLD in the target area was observed. On single-photon emission computed tomography, CVR was maintained in Group A but decreased in Group B. Although dual PLD methods may not be a completely alternative test for (123)I-iodoamphetamine single-photon emission computed tomography with acetazolamide loading, it is a feasible, simple, noninvasive, and repeatable technique for assessing CVR, even when employed in a routine clinical setting. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Petersen, Esben Thade; Mouridsen, Kim; Golay, Xavier
2010-01-01
Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test-retest study across sites from around the world, dubbed "The QUASAR reproducibility study". Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87+/-0.95 mm and rotations of 1.56+/-0.66 degrees . Mean gray matter CBF was 47.4+/-7.5 [ml/100 g/min] with a between-subject standard variation SD(b)=5.5 [ml/100 g/min] and a within-subject standard deviation SD(w)=4.7 [ml/100 g/min]. The corresponding repeatability was 13.0 [ml/100 g/min] and was found to be within the range of previous studies.
Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier
2012-01-01
QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p < 0.001) but none in age (p = 0.068). CBF decreased significantly (p < 0.01) in AD compared to controls in the right middle cingulate, left cuneus, left inferior and middle frontal, right superior frontal, left inferior parietal, and right supramarginal gyri. ROI studies confirmed significant hemodynamic impairments in AD compared to HC (p < 0.05): CBF in middle and posterior cingulate, aBV in left superior temporal, right inferior parietal, and posterior cingulate, and aTT in left inferior frontal and middle cingulate gyri. CBF correlated positively while aTT correlated negatively to MMSE, and vice versa for ADAS-cog. Using QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.
Fan, Zhaoyang; Zhang, Zhuoli; Chung, Yiu-Cho; Weale, Peter; Zuehlsdorff, Sven; Carr, James; Li, Debiao
2010-03-01
To evaluate the effectiveness of flow-sensitive dephasing (FSD) magnetization preparation in improving blood signal suppression of three-dimensional (3D) turbo spin-echo (TSE) sequence (SPACE) for isotropic high-spatial-resolution carotid arterial wall imaging at 3T. The FSD-prepared SPACE sequence (FSD-SPACE) was implemented by adding two identical FSD gradient pulses right before and after the first refocusing 180 degrees -pulse of the SPACE sequence in all three orthogonal directions. Nine healthy volunteers were imaged at 3T with SPACE, FSD-SPACE, and multislice T2-weighted 2D TSE coupled with saturation band (SB-TSE). Apparent carotid wall-lumen contrast-to-noise ratio (aCNR(w-l)) and apparent lumen area (aLA) at the locations with residual-blood (rb) signal shown on SPACE images were compared between SPACE and FSD-SPACE. Carotid aCNR(w-l) and lumen (LA) and wall area (WA) measured from FSD-SPACE were compared to those measured from SB-TSE. Plaque-mimicking flow artifacts identified in seven carotids on SPACE images were eliminated on FSD-SPACE images. The FSD preparation resulted in slightly reduced aCNR(w-l) (P = 0.025), but significantly improved aCNR between the wall and rb regions (P < 0.001) and larger aLA (P < 0.001). Compared to SB-TSE, FSD-SPACE offered comparable aCNR(w-l) with much higher spatial resolution, shorter imaging time, and larger artery coverage. The LA and WA measurements from the two techniques were in good agreement based on intraclasss correlation coefficient (0.988 and 0.949, respectively; P < 0.001) and Bland-Altman analyses. FSD-SPACE is a time-efficient 3D imaging technique for carotid arterial wall with superior spatial resolution and blood signal suppression.
Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.
Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi
2018-01-22
The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.
Dynamics and Control of Tethered Satellite Formations for the Purpose of Space-Based Remote Sensing
2006-08-01
remote sensing mission. Energy dissipation is found to have an adverse effect on foundational rigid body (Likins-Pringle) equilibria. It is shown that a continuously earth-facing equilibrium condition for a fixed-length tethered system does not exist since the spin rate required for the proper precession would not be high enough to maintain tether tension. The range of required spin rates for steady-spin motion is numerically defined here, but none of these conditions can meet the continuously earth-facing criteria. Of particular note is the discovery that applying certain
Determination of the rCBF in the Amygdala and Rhinal Cortex Using a FAIR-TrueFISP Sequence
Martirosian, Petros; Klose, Uwe; Nägele, Thomas; Schick, Fritz; Ernemann, Ulrike
2011-01-01
Objective Brain perfusion can be assessed non-invasively by modern arterial spin labeling MRI. The FAIR (flow-sensitive alternating inversion recovery)-TrueFISP (true fast imaging in steady precession) technique was applied for regional assessment of cerebral blood flow in brain areas close to the skull base, since this approach provides low sensitivity to magnetic susceptibility effects. The investigation of the rhinal cortex and the amygdala is a potentially important feature for the diagnosis and research on dementia in its early stages. Materials and Methods Twenty-three subjects with no structural or psychological impairment were investigated. FAIR-True-FISP quantitative perfusion data were evaluated in the amygdala on both sides and in the pons. A preparation of the radiofrequency FOCI (frequency offset corrected inversion) pulse was used for slice selective inversion. After a time delay of 1.2 sec, data acquisition began. Imaging slice thickness was 5 mm and inversion slab thickness for slice selective inversion was 12.5 mm. Image matrix size for perfusion images was 64 × 64 with a field of view of 256 × 256 mm, resulting in a spatial resolution of 4 × 4 × 5 mm. Repetition time was 4.8 ms; echo time was 2.4 ms. Acquisition time for the 50 sets of FAIR images was 6:56 min. Data were compared with perfusion data from the literature. Results Perfusion values in the right amygdala, left amygdala and pons were 65.2 (± 18.2) mL/100 g/minute, 64.6 (± 21.0) mL/100 g/minute, and 74.4 (± 19.3) mL/100 g/minute, respectively. These values were higher than formerly published data using continuous arterial spin labeling but similar to 15O-PET (oxygen-15 positron emission tomography) data. Conclusion The FAIR-TrueFISP approach is feasible for the quantitative assessment of perfusion in the amygdala. Data are comparable with formerly published data from the literature. The applied technique provided excellent image quality, even for brain regions located at the skull base in the vicinity of marked susceptibility steps. PMID:21927556
Silva, João Paulo Santos; Mônaco, Luciana da Mata; Paschoal, André Monteiro; Oliveira, Ícaro Agenor Ferreira de; Leoni, Renata Ferranti
2018-05-16
Arterial spin labeling (ASL) is an established magnetic resonance imaging (MRI) technique that is finding broader applications in functional studies of the healthy and diseased brain. To promote improvement in cerebral blood flow (CBF) signal specificity, many algorithms and imaging procedures, such as subtraction methods, were proposed to eliminate or, at least, minimize noise sources. Therefore, this study addressed the main considerations of how CBF functional connectivity (FC) is changed, regarding resting brain network (RBN) identification and correlations between regions of interest (ROI), by different subtraction methods and removal of residual motion artifacts and global signal fluctuations (RMAGSF). Twenty young healthy participants (13 M/7F, mean age = 25 ± 3 years) underwent an MRI protocol with a pseudo-continuous ASL (pCASL) sequence. Perfusion-based images were obtained using simple, sinc and running subtraction. RMAGSF removal was applied to all CBF time series. Independent Component Analysis (ICA) was used for RBN identification, while Pearson' correlation was performed for ROI-based FC analysis. Temporal signal-to-noise ratio (tSNR) was higher in CBF maps obtained by sinc subtraction, although RMAGSF removal had a significant effect on maps obtained with simple and running subtractions. Neither the subtraction method nor the RMAGSF removal directly affected the identification of RBNs. However, the number of correlated and anti-correlated voxels varied for different subtraction and filtering methods. In an ROI-to-ROI level, changes were prominent in FC values and their statistical significance. Our study showed that both RMAGSF filtering and subtraction method might influence resting-state FC results, especially in an ROI level, consequently affecting FC analysis and its interpretation. Taking our results and the whole discussion together, we understand that for an exploratory assessment of the brain, one could avoid removing RMAGSF to not bias FC measures, but could use sinc subtraction to minimize low-frequency contamination. However, CBF signal specificity and frequency range for filtering purposes still need to be assessed in future studies. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jen, M; Johnson, J; Hou, P
Purpose: Cerebral blood flow quantification in arterial spin labeling (ASL) MRI requires an estimate of the equilibrium magnetization of blood, which is often obtained by a set of proton density (PD) reference image. Normally, a constant blood-brain partition coefficient is assumed across the brain. However, this assumption may not be valid for brain lesions. This study aimed to evaluate the impact of lesion-related PD variations on ASL quantification in patients with brain tumors. Methods: MR images for posttreatment evaluation of 42 patients with brain tumors were retrospectively analyzed. These images were acquired on a 3T MRI scanner, including T2-weighted FLAIR,more » 3D pseudo-continuous ASL and post-contrast T1-weighted images. Anatomical images were coregistered with ASL images using the SPM software. Regions of interest (ROIs) of the enhancing and FLAIR lesions were manually drawn on the coregistered images. ROIs of the contralateral normal appearing tissues were also determined, with the consideration of approximating coil sensitivity patterns in lesion ROIs. Relative lesion blood flow (lesion/contralateral tissue) was calculated from both the CBF map (dependent on the PD) and the ΔM map for comparison. Results: The signal intensities in both enhancing and FLAIR lesions were significantly different than contralateral tissues on the PD reference image (p<0.001). The percent signal difference ranged from −15.9 to 19.2%, with a mean of 5.4% for the enhancing lesion, and from −2.8 to 22.9% with a mean of 10.1% for the FLAIR lesion. The high/low lesion-related PD signal resulted in inversely proportional under-/over-estimation of blood flow in both enhancing and FLAIR lesions. Conclusion: Significant signal differences were found between lesions and contralateral tissues in the PD reference image, which introduced errors in blood flow quantification in ASL. The error can be up to 20% in individual patients with an average of 5- 10% for the group of patients with brain tumors.« less
Toh, U; Isomoto, H; Araki, Y; Matsumoto, A; Yasunaga, M; Ogoh, Y; Inuzuka, K; Ozaki, K; Shirouzu, K
2000-06-01
We report a patient with a recurrent pelvic tumor after abdominoperineal resection of a rectal carcinoma who was treated sufficiently by repeated intra-arterial infusions of 5-fluorouracil. A continuous, 24-hour 5-fluorouracil administration was made through the bilateral internal iliac artery at a dosage of 250 mg/m2/day by the subcutaneous reservoir located at both upper legs using a Baxter infusor. In this patient pain in the hip and pelvis was relieved. A complete regression in the infused field of pelvic tumor was observed not only with computed tomography and magnetic resonance imaging but also confirmed by operative findings at the seventh month after the intra-arterial infusion. The abnormal serum level of carcinoembryonic antigen and carbohydrate antigen 19-9 was decreased to within the normal range at the 19th and 3rd week respectively. When the repeated recurrence was suspected in follow-up, normalization of the re-elevated carcinoembryonic antigen and carbohydrate antigen 19-9 levels was also obtained by repeating the same treatment. The side effects and complications were tolerable, consisting of local skin erosion on the hips and lower extremity neuropathy caused by the 5-fluorouracil. Clinical local regression of a pelvic recurrence was observed in a patient with rectal recurrent tumor who received continuous intra-arterial chemotherapy. Local recurrence of rectal cancer may be controlled effectively and safely by repeating long-term, continuous, intra-arterial 5-fluorouracil infusion.
Hayen, Anja; Herigstad, Mari; Kelly, Michael; Okell, Thomas W.; Murphy, Kevin; Wise, Richard G.; Pattinson, Kyle T.S.
2013-01-01
Investigating how intrathoracic pressure changes affect cerebral blood flow (CBF) is important for a clear interpretation of neuroimaging data in patients with abnormal respiratory physiology, intensive care patients receiving mechanical ventilation and in research paradigms that manipulate intrathoracic pressure. Here, we investigated the effect of experimentally increased and decreased intrathoracic pressures upon CBF and the stimulus-evoked CBF response to visual stimulation. Twenty healthy volunteers received intermittent inspiratory and expiratory loads (plus or minus 9 cmH2O for 270 s) and viewed an intermittent 2 Hz flashing checkerboard, while maintaining stable end-tidal CO2. CBF was recorded with transcranial Doppler sonography (TCD) and whole-brain pseudo-continuous arterial spin labeling magnetic resonance imaging (PCASL MRI). Application of inspiratory loading (negative intrathoracic pressure) showed an increase in TCD-measured CBF of 4% and a PCASL-measured increase in grey matter CBF of 5%, but did not alter mean arterial pressure (MAP). Expiratory loading (positive intrathoracic pressure) did not alter CBF, while MAP increased by 3%. Neither loading condition altered the perfusion response to visual stimulation in the primary visual cortex. In both loading conditions localized CBF increases were observed in the somatosensory and motor cortices, and in the cerebellum. Altered intrathoracic pressures, whether induced experimentally, therapeutically or through a disease process, have possible significant effects on CBF and should be considered as a potential systematic confound in the interpretation of perfusion-based neuroimaging data. PMID:23108273
Togao, Osamu; Hiwatashi, Akio; Obara, Makoto; Yamashita, Koji; Momosaka, Daichi; Nishimura, Ataru; Arimura, Koichi; Hata, Nobuhiro; Yoshimoto, Koji; Iihara, Koji; Van Cauteren, Marc; Honda, Hiroshi
2018-05-08
To evaluate the performance of four-dimensional pseudo-continuous arterial spin labeling (4D-pCASL)-based angiography using CENTRA-keyhole and view sharing (4D-PACK) in the visualization of flow dynamics in distal cerebral arteries and leptomeningeal anastomosis (LMA) collaterals in moyamoya disease in comparison with contrast inherent inflow-enhanced multiphase angiography (CINEMA), with reference to digital subtraction angiography (DSA). Thirty-two cerebral hemispheres from 19 patients with moyamoya disease (mean age, 29.7 ± 19.6 years; five males, 14 females) underwent both 4D-MR angiography and DSA. Qualitative evaluations included the visualization of anterograde middle cerebral artery (MCA) flow and retrograde flow via LMA collaterals with reference to DSA. Quantitative evaluations included assessments of the contrast-to-noise ratio (CNR) on these vessels. The linear mixed-effect model was used to compare the 4D-PACK and CINEMA methods. The vessel visualization scores were significantly higher with 4D-PACK than with CINEMA in the visualization of anterograde flow for both Observer 1 (CINEMA, 3.53 ± 1.39; 4D-PACK, 4.53 ± 0.80; p < 0.0001) and Observer 2 (CINEMA, 3.50±1.39; 4D-PACK, 4.31 ± 0.86; p = 0.0009). The scores were higher with 4D-PACK than with CINEMA in the visualization of retrograde flow for both Observer 1 (CINEMA, 3.44 ± 1.05; 4D-PACK, 4.47 ± 0.88; p < 0.0001) and Observer 2 (CINEMA, 3.19 ± 1.20; 4D-PACK, 4.38 ± 0.91; p < 0.0001). The maximum CNR in the anterograde flow was higher in 4D-PACK (40.1 ± 16.1, p = 0.0001) than in CINEMA (27.0 ± 16.6). The maximum CNR in the retrograde flow was higher in 4D-PACK (36.1 ± 10.0, p < 0.0001) than in CINEMA (15.4 ± 8.0). The 4D-PACK provided better visualization and higher CNRs in distal cerebral arteries and LMA collaterals compared with CINEMA in patients with this disease. • The 4D-PACK enables good visualization of distal cerebral arteries in moyamoya disease. • The 4D-PACK enables direct visualization of leptomeningeal collateral vessels in moyamoya disease. • Vessel visualization by 4D-PACK can be useful in assessing cerebral hemodynamics.
Cornwell, William K; Tarumi, Takashi; Stickford, Abigail; Lawley, Justin; Roberts, Monique; Parker, Rosemary; Fitzsimmons, Catherine; Kibe, Julius; Ayers, Colby; Markham, David; Drazner, Mark H; Fu, Qi; Levine, Benjamin D
2015-12-15
Current-generation left ventricular assist devices provide circulatory support that is minimally or entirely nonpulsatile and are associated with marked increases in muscle sympathetic nerve activity (MSNA), likely through a baroreceptor-mediated pathway. We sought to determine whether the restoration of pulsatile flow through modulations in pump speed would reduce MSNA through the arterial baroreceptor reflex. Ten men and 3 women (54 ± 14 years) with Heartmate II continuous-flow left ventricular assist devices underwent hemodynamic and sympathetic neural assessment. Beat-to-beat blood pressure, carotid ultrasonography at the level of the arterial baroreceptors, and MSNA via microneurography were continuously recorded to determine steady-state responses to step changes (200-400 revolutions per minute) in continuous-flow left ventricular assist device pump speed from a maximum of 10,480 ± 315 revolutions per minute to a minimum of 8500 ± 380 revolutions per minute. Reductions in pump speed led to increases in pulse pressure (high versus low speed: 17 ± 7 versus 26 ± 12 mm Hg; P<0.01), distension of the carotid artery, and carotid arterial wall tension (P<0.05 for all measures). In addition, MSNA was reduced (high versus low speed: 41 ± 15 versus 33 ± 16 bursts per minute; P<0.01) despite a reduction in mean arterial pressure and was inversely related to pulse pressure (P=0.037). Among subjects with continuous-flow left ventricular assist devices, the restoration of pulsatile flow through modulations in pump speed leads to increased distortion of the arterial baroreceptors with a subsequent decline in MSNA. Additional study is needed to determine whether reduction of MSNA in this setting leads to improved outcomes. © 2015 American Heart Association, Inc.
Schindler, Nancy; Calligaro, Keith D; Dougherty, Matthew J; Diehl, James; Modi, Ketang H; Braffman, Michael N
2002-03-01
We present the first case of in situ replacement of an infected subclavian artery using superficial femoral vein and the fourth reported case of an infected arterial pseudoaneurysm caused by pseudomonas pseudomallei. Sepsis and hoarseness developed in a 58-year-old man after recent travel to Borneo, Indonesia. Indirect laryngoscopy revealed a paralyzed right vocal cord. Computed tomography and arteriography revealed a 6.5-cm pseudoaneurysm of the proximal right subclavian artery. Blood cultures grew pseudomonas pseudomallei. An abnormal cardiac stress test prompted a coronary angiography, which revealed severe coronary artery disease.The patient underwent coronary artery bypass and in situ replacement of the infected subclavian artery pseudoaneurysm with a superficial femoral vein, along with placement of a pectoralis major muscle flap to cover the vein graft. Operative cultures of the pseudoaneurysm grew pseudomonas pseudomallei. The patient was treated with a 6-week course of intravenous ceftazidime and oral doxycycline and then continued on oral amoxicillin-clavulanate. One week after discontinuing intravenous antibiotics, the patient presented to the emergency department with a rapidly expanding, pulsatile mass in the right supraclavicular space. He was taken emergently to the operating room. After hypothermic circulatory arrest was accomplished, the disrupted vein graft and aneurysm cavity were resected and the subclavian artery was oversewn proximally and distally. Parenteral ceftazidime was continued for 3 months and oral amoxicillin-clavulanate (augmentin) was continued indefinitely. There was no evidence of infection clinically or by computed tomographic scan 2 years later. Although autogenous vein replacement of infected arteries and grafts may be successful in the majority of cases, this strategy should probably be avoided when particularly virulent bacteria such as the organism in this case are present.
Investigating electron spin resonance spectroscopy of a spin-½ compound in a home-built spectrometer
NASA Astrophysics Data System (ADS)
Sarkar, Jit; Roy, Subhadip; Singh, Jitendra Kumar; Singh, Sourabh; Chakraborty, Tanmoy; Mitra, Chiranjib
2018-05-01
In this work we report electron spin resonance (ESR) measurements performed on NH4CuPO4.H2O, a Heisenberg spin ½ dimer compound. We carried out the experiments both at room temperature and at 78 K, which are well above the antiferromagnetic ordering temperature of the system where the paramagnetic spins have a dominant role in determining its magnetic behavior. We performed the measurements in a home built custom designed continuous wave electron spin resonance (CW-ESR) spectrometer. By analyzing the experimental data, we were able to quantify the Landé g-factor and the ESR line-width of the sample.
Influence of DC-biasing on the performance of graphene spin valve
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid
2018-04-01
Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.
A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain
NASA Astrophysics Data System (ADS)
Jones, Vaughan F. R.
2018-01-01
We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.
Spinning fluids in general relativity
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. L.
1982-01-01
General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Foucher, Jack R; Roquet, Daniel; Marrer, Corinne; Pham, Bich-Thuy; Gounot, Daniel
2011-10-01
To take into account the echo time (TE) influence on arterial spin labeling (ASL) signal when converting it in regional cerebral blood flow (rCBF). Gray matter ASL signal decrease with increasing TE as a consequence of the difference in the apparent transverse relaxation rates between labeled water in capillaries and nonlabeled water in the tissue (δR 2*). We aimed to measure ASL/rCBF changes in different parts of the brain and correct them. Fifteen participants underwent ASL measurements at TEs of 9.7-30 ms. Decreases in ASL values were localized by statistical parametric mapping. The corrections assessed were a subject-per-subject adjustment, an average δR 2* value adjustment, and a two-compartment model adjustment. rCBF decreases associated with increasing TEs were found for gray matter and were corrected using an average δR 2* value of 20 s(-1) . Conversely, for white matter, rCBF values increased with increasing TEs (δR 2* = -23 s(-1)). Our correction was as good as using a two-compartment model. However, it must be done separately for the gray and white matter rCBF values because the capillary R 2* values are, respectively, larger and smaller than those of surrounding tissues. Copyright © 2011 Wiley-Liss, Inc.
Mato Abad, Virginia; García-Polo, Pablo; O'Daly, Owen; Hernández-Tamames, Juan Antonio; Zelaya, Fernando
2016-04-01
The method of Arterial Spin Labeling (ASL) has experienced a significant rise in its application to functional imaging, since it is the only technique capable of measuring blood perfusion in a truly non-invasive manner. Currently, there are no commercial packages for processing ASL data and there is no recognized standard for normalizing ASL data to a common frame of reference. This work describes a new Automated Software for ASL Processing (ASAP) that can automatically process several ASL datasets. ASAP includes functions for all stages of image pre-processing: quantification, skull-stripping, co-registration, partial volume correction and normalization. To assess the applicability and validity of the toolbox, this work shows its application in the study of hypoperfusion in a sample of healthy subjects at risk of progressing to Alzheimer's disease. ASAP requires limited user intervention, minimizing the possibility of random and systematic errors, and produces cerebral blood flow maps that are ready for statistical group analysis. The software is easy to operate and results in excellent quality of spatial normalization. The results found in this evaluation study are consistent with previous studies that find decreased perfusion in Alzheimer's patients in similar regions and demonstrate the applicability of ASAP. Copyright © 2015 Elsevier Inc. All rights reserved.
Vidyasagar, Rishma; Greyling, Arno; Draijer, Richard; Corfield, Douglas R; Parkes, Laura M
2013-01-01
Black tea consumption has been shown to improve peripheral vascular function. Its effect on brain vasculature is unknown, though tea contains small amounts of caffeine, a psychoactive substance known to influence cerebral blood flow (CBF). We investigated the effects on CBF due to the intake of tea components in 20 healthy men in a double-blinded, randomized, placebo-controlled study. On separate days, subjects received a single dose of 184 mg caffeine (equivalent to one strong espresso coffee), 2,820 mg black tea solids containing 184 mg caffeine (equivalent to 6 cups of tea), 2,820 mg decaffeinated black tea solids, or placebo. The CBF and cerebrovascular reactivity (CVR) to hypercapnia were measured with arterial spin labeled magnetic resonance imaging (MRI) before and 2 hours after administration. We found a significant global reduction with caffeine (20%) and tea (21%) in gray matter CBF, with no effect of decaffeinated tea, suggesting that only caffeine influences CBF acutely. Voxelwise analysis revealed the effect of caffeine to be regionally specific. None of the interventions had an effect on CVR. Additional research is required to conclude on the physiologic relevance of these findings and the chronic effects of caffeine and tea intake on CBF. PMID:23486295
Characterizing Resting-State Brain Function Using Arterial Spin Labeling
Jann, Kay; Wang, Danny J.J.
2015-01-01
Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930
Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg
2014-10-01
To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.
Miranda, Maria J; Olofsson, Kern; Sidaros, Karam
2006-09-01
Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neonates. Examinations were performed on unsedated infants at postmenstrual age of 39-40 wk in both groups. Due to motion, reliable data were obtained from 23 preterm and 6 term infants. Perfusion in the basal ganglia (39 and 30 mL/100 g/min for preterm and term neonates, respectively) was significantly higher (p < 0.0001) than in cortical gray matter (19 and 16 mL/100 g/min) and white matter (15 and 10 mL/100 g/min), both in preterm neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates.
Uchihashi, Y; Hosoda, K; Zimine, I; Fujita, A; Fujii, M; Sugimura, K; Kohmura, E
2011-09-01
Arterial spin-labeling is an emerging technique for noninvasive measurement of cerebral perfusion, but concerns remain regarding the reliability of CBF quantification and clinical applications. Recently, an ASL implementation called QUASAR was proposed, and it was shown to have good reproducibility of CBF assessment in healthy volunteers. This study aimed to determine the utility of QUASAR for CBF assessment in patients with cerebrovascular diseases. Twenty patients with carotid stenosis underwent CBF quantification by ASL (QUASAR) within 3 days of performance of (123)I-iodoamphetamine-SPECT. CVR to acetazolamide also was assessed by ASL and SPECT. In surgically treated patients, the respective scans before and after the procedures were compared. Regional CBF and CVR values measured by ASL were significantly correlated and agreed with those measured by SPECT (r(s) = 0.92 and 0.88, respectively). A Bland-Altman plot demonstrated good agreement between 2 methods in terms of CBF quantification. Furthermore, ASL could detect pathologic states such as hypoperfusion, impaired vasoreactivity, and postoperative hyperperfusion, equivalent to SPECT. However, ASL tended to overestimate CBF values especially in high-perfusion regions. ASL perfusion MR imaging is clinically applicable and can be an alternative method for CBF assessment in patients with cerebrovascular diseases.
Francis, S T; Bowtell, R; Gowland, P A
2008-02-01
This work describes a new compartmental model with step-wise temporal analysis for a Look-Locker (LL)-flow-sensitive alternating inversion-recovery (FAIR) sequence, which combines the FAIR arterial spin labeling (ASL) scheme with a LL echo planar imaging (EPI) measurement, using a multireadout EPI sequence for simultaneous perfusion and T*(2) measurements. The new model highlights the importance of accounting for the transit time of blood through the arteriolar compartment, delta, in the quantification of perfusion. The signal expected is calculated in a step-wise manner to avoid discontinuities between different compartments. The optimal LL-FAIR pulse sequence timings for the measurement of perfusion with high signal-to-noise ratio (SNR), and high temporal resolution at 1.5, 3, and 7T are presented. LL-FAIR is shown to provide better SNR per unit time compared to standard FAIR. The sequence has been used experimentally for simultaneous monitoring of perfusion, transit time, and T*(2) changes in response to a visual stimulus in four subjects. It was found that perfusion increased by 83 +/- 4% on brain activation from a resting state value of 94 +/- 13 ml/100 g/min, while T*(2) increased by 3.5 +/- 0.5%. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing
2017-03-01
Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Eun Sun; Jeong, Sook-Hyang, E-mail: jsh@snubh.org; Kim, Jin Wook
We report a case of transarterial chemoembolization (TACE)-related acute ischemic duodenal ulcer that developed in association with dissection of the superior mesenteric artery. We conclude that the acute duodenal ulcer was developed by ischemia related to superior mesenteric artery dissection during TACE. TACE should be conducted carefully with continuous observation of abdominal arteries.
A continued fraction resummation form of bath relaxation effect in the spin-boson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn
2015-02-28
In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.
Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain
NASA Astrophysics Data System (ADS)
Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.
2017-03-01
4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.
2014-01-01
Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540
Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B
2014-01-01
Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.
NASA Technical Reports Server (NTRS)
Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.;
2003-01-01
Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.
Andersen, Julie B; Henning, William S; Lindberg, Ulrich; Ladefoged, Claes N; Højgaard, Liselotte; Greisen, Gorm; Law, Ian
2015-01-01
Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic–ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous 15O-water positron emission tomography (PET) and single TI pulsed arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq 15O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one-tissue-compartment-model using two input functions: an arterial input function (AIF) or an image-derived input function (IDIF). The mean global CBF (95% CI) PET-AIF, PET-IDIF, and ASL at baseline were 27 (23; 32), 34 (31; 37), and 27 (22; 32) mL/100 g per minute, respectively. At acetazolamide stimulus, PET-AIF, PET-IDIF, and ASL were 64 (55; 74), 76 (70; 83) and 79 (67; 92) mL/100 g per minute, respectively. At baseline, differences between PET-AIF, PET-IDIF, and ASL were 22% (P<0.0001) and −0.7% (P=0.9). At acetazolamide, differences between PET-AIF, PET-IDIF, and ASL were 19% (P=0.001) and 24% (P=0.0003). In conclusion, PET-IDIF overestimated CBF. Injected activity of 20 MBq 15O-water had acceptable concordance with 100 MBq, without compromising image quality. Single TI ASL was questionable for regional CBF measurements. Global ASL CBF and PET CBF were congruent during baseline but not during hyperperfusion. PMID:26058699
Petersen, Esben Thade; Mouridsen, Kim; Golay, Xavier
2009-01-01
Arterial Spin Labeling (ASL) is a method to measure perfusion using magnetically labeled blood water as an endogenous tracer. Being fully non-invasive, this technique is attractive for longitudinal studies of cerebral blood flow in healthy and diseased individuals, or as a surrogate marker of metabolism. So far, ASL has been restricted mostly to specialist centers due to a generally low SNR of the method and potential issues with user-dependent analysis needed to obtain quantitative measurement of cerebral blood flow (CBF). Here, we evaluated a particular implementation of ASL (called Quantitative STAR labeling of Arterial Regions or QUASAR), a method providing user independent quantification of CBF in a large test-retest study across sites from around the world, dubbed “The QUASAR reproducibility study”. Altogether, 28 sites located in Asia, Europe and North America participated and a total of 284 healthy volunteers were scanned. Minimal operator dependence was assured by using an automatic planning tool and its accuracy and potential usefulness in multi-center trials was evaluated as well. Accurate repositioning between sessions was achieved with the automatic planning tool showing mean displacements of 1.87±0.95mm and rotations of 1.56±0.66°. Mean gray matter CBF was 47.4±7.5 [ml/100g/min] with a between subject standard variation SDb = 5.5 [ml/100g/min] and a within subject standard deviation SDw = 4.7 [ml/100g/min]. The corresponding repeatability was 13.0 [ml/100g/min] and was found to be within the range of previous studies. PMID:19660557
Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses.
Van Bockstal, Pieter-Jan; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; De Beer, Thomas
2017-01-01
Recently, an innovative continuous freeze-drying concept for unit doses was proposed, based on spinning the vials during freezing. An efficient heat transfer during drying is essential to continuously process these spin frozen vials. Therefore, the applicability of noncontact infrared (IR) radiation was examined. The impact of several process and formulation variables on the mass of sublimed ice after 15 min of primary drying (i.e., sublimation rate) and the total drying time was examined. Two experimental designs were performed in which electrical power to the IR heaters, distance between the IR heaters and the spin frozen vial, chamber pressure, product layer thickness, and 5 model formulations were included as factors. A near-infrared spectroscopy method was developed to determine the end point of primary and secondary drying. The sublimation rate was mainly influenced by the electrical power to the IR heaters and the distance between the IR heaters and the vial. The layer thickness had the largest effect on total drying time. The chamber pressure and the 5 model formulations had no significant impact on sublimation rate and total drying time, respectively. This study shows that IR radiation is suitable to provide the energy during the continuous processing of spin frozen vials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
21 CFR 870.4875 - Intraluminal artery stripper.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraluminal artery stripper. 870.4875 Section 870.4875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an endarterectomy...
21 CFR 870.4875 - Intraluminal artery stripper.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraluminal artery stripper. 870.4875 Section 870.4875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an endarterectomy...
21 CFR 870.4875 - Intraluminal artery stripper.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraluminal artery stripper. 870.4875 Section 870.4875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an endarterectomy...
21 CFR 870.4875 - Intraluminal artery stripper.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraluminal artery stripper. 870.4875 Section 870.4875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an endarterectomy...
21 CFR 870.4875 - Intraluminal artery stripper.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraluminal artery stripper. 870.4875 Section 870.4875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... stripper. (a) Identification. An intraluminal artery stripper is a device used to perform an endarterectomy...
Novel anatomic variation: heptafurcation of the celiac trunk.
Rusu, M C; Manta, B A
2018-04-01
We report here anatomic variants which were found during a retrospective study of a male patient, 54 years old, evaluated in computed tomography: heptafurcation of the celiac trunk (CT) and bilateral double renal arteries. The seven branches of the heptafurcated CT were the (1) left and (2) right inferior phrenic arteries, the (3) splenic and (4) left gastric artery, the (5) common hepatic artery, further sending off the (a) proper, continued as left, hepatic artery and (b) the gastroduodenal artery, (6) a replaced right hepatic artery and (7) the dorsal pancreatic artery. To our knowledge, heptafurcation of the CT was not reported previously. The arterial variants have great importance during various surgical and interventional procedures and should be documented prior to respective procedures.
Materials science with muon spin rotation
NASA Technical Reports Server (NTRS)
1988-01-01
During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.
NASA Astrophysics Data System (ADS)
Terletska, Hanna; Dobrovitski, Viatcheslav
2015-03-01
The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip
NASA Astrophysics Data System (ADS)
Peng, Qingfa; Zhang, Yaopeng; Lu, Li; Shao, Huili; Qin, Kankan; Hu, Xuechao; Xia, Xiaoxia
2016-11-01
Spiders achieve superior silk fibres by controlling the molecular assembly of silk proteins and the hierarchical structure of fibres. However, current wet-spinning process for recombinant spidroins oversimplifies the natural spinning process. Here, water-soluble recombinant spider dragline silk protein (with a low molecular weight of 47 kDa) was adopted to prepare aqueous spinning dope. Artificial spider silks were spun via microfluidic wet-spinning, using a continuous post-spin drawing process (WS-PSD). By mimicking the natural spinning apparatus, shearing and elongational sections were integrated in the microfluidic spinning chip to induce assembly, orientation of spidroins, and fibril structure formation. The additional post-spin drawing process following the wet-spinning section partially mimics the spinning process of natural spider silk and substantially contributes to the compact aggregation of microfibrils. Subsequent post-stretching further improves the hierarchical structure of the fibres, including the crystalline structure, orientation, and fibril melting. The tensile strength and elongation of post-treated fibres reached up to 510 MPa and 15%, respectively.
Type II single umbilical artery (persistent vitelline artery) in an otherwise normal fetus.
Gamzu, Ronni; Zalel, Yaron; Jacobson, Jeffrey M; Screiber, Leticia; Achiron, Reuven
2002-11-01
A single umbilical artery resulting from absence of the umbilical arteries and persistence of the vitelline artery that arises directly from the abdominal aorta has been described only in malformed fetuses with sirenomelia or caudal regression. Such an aberrant artery was suggested to be the etiology of sirenomelia caused by a 'steal' mechanism of blood flow from the caudal end of the embryo. We present a case in which prenatal ultrasound showed a similar aberrant single artery arising from the abdominal aorta in an otherwise normal fetus with a normal course of pregnancy. This vessel, a continuation of the superior mesenteric artery (SMA), corresponds to a persistent vitelline artery assuming the function of the umbilical arteries. The etiology of such a finding and its possible consequences are discussed. Copyright 2002 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Koscielniak, J.; Devasahayam, N.; Moni, M. S.; Kuppusamy, P.; Yamada, K.; Mitchell, J. B.; Krishna, M. C.; Subramanian, S.
2000-11-01
Design and construction of an electron paramagnetic resonance (EPR) spectrometer, operating in the continuous wave mode in the radio frequency (rf) region, and capable of performing spectroscopy and in vivo imaging of paramagnetic spin probes is described. A resonant frequency of 300 MHz was chosen to provide the required sensitivity at nontoxic levels of commonly used spin probes and penetration of the rf in small animals. Three major components, the magnet, the radio frequency signal detection bridge, and the data acquisition module are described in this article. Integration of a rapid scan capability to reduce imaging time is also described. Two- and three-dimensional EPR images of the spin probe distribution in phantom objects as well as from in vivo experiments are reported. From the EPR images, morphology of some internal organs could be recognized. EPR images of the spin probe distribution in mice suggest differences in perfusion of the spin probe between normal and tumor regions. Addition of a spectral dimension to spatial images should enable differentiation of oxygen status in normal and pathological conditions.
Probability Current in Hydrogen with Spin-Orbit Interaction
NASA Astrophysics Data System (ADS)
Hodge, William; Migirditch, Sam; Kerr, William
2013-03-01
The spin-orbit interaction is a coupling between a particle's spin and its motion. The Hamiltonian for a spin- 1 / 2 particle which includes this coupling is H =p2/2 m + V (x) +∇/V (x) × p 2m2c2 . S . To describe the flow of probability in this system, we derive the continuity equation, which takes the usual form. In this case, however, we find the probability current density j (x , t) to be the sum of two terms. The first term is the one obtained by most quantum mechanics textbooks during their derivation of the continuity equation. The second term, js (x , t) =1/2m2c2 ∑ σ , σ ' = ↑ , ↓ [ ψ* (x , σ , t) < σ | S | σ ' > ψ (x , σ ' , t) ] × ∇ V (x) , arises due to the inclusion of the spin-orbit term in the Hamiltonian and is small compared to the first. Using a perturbative treatment, we calculate j (x , t) for hydrogenlike atoms; for states with l = 0 , we find that j (x , t) =js (x , t) .
Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.
2014-01-01
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, I.C., E-mail: docdunc@iafrica.com; Santos, C. Dos
A patient with intractable posterior epistaxis was treated with embolization of the ipsilateral sphenopalatine and facial arteries and contralateral sphenopalatine artery. She continued to bleed despite a seemingly adequate embolization procedure. A second angiogram revealed a significant collateral blood supply to the posterior nasal cavity from the accessory meningeal artery not identified during the first procedure. This was then embolized with no further epistaxis encountered. This case demonstrates yet another collateral arterial pathway that might account for a failed embolization.
2011-10-01
response; pulse wave velocity ACCORDING TO THE MOENS-KORTEWEG equation, pulse wave ve- locity ( PWV ) increases as the arteries stiffen. Indeed, PWV is the...and mortality in hypertensive patients (2, 4, 12, 14). In addition, because arterial stiffness increases with arterial blood pressure (ABP), PWV and...ABP often show positive correlation, suggesting that PWV could provide a means to achieve continuous, noninvasive, and cuffless ABP monitoring (18
Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu
A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less
Sahayaraj, R Anto; Ramanan, Sowmya; Subramanyan, Raghavan; Cherian, Kotturathu Mammen
2017-01-01
We report the use of three-dimensional (3D) modeling to plan surgery for physiologic repair of congenitally corrected transposition of the great arteries with pulmonary atresia, dextrocardia, and complex intra cardiac anatomy. Based on measurements made from the 3D printed model of the actual patient's anatomy, we anticipated using a composite valved conduit (Dacron tube graft, decellularized bovine jugular vein, and aortic homograft) to establish left ventricle-to-pulmonary artery continuity with relief of stenosis involving the pulmonary artery confluence and bilateral branch pulmonary arteries.
Orthostatic hypotension, cerebral hypoperfusion, and visuospatial deficits in Lewy body disorders.
Robertson, Andrew D; Messner, Michelle A; Shirzadi, Zahra; Kleiner-Fisman, Galit; Lee, Joyce; Hopyan, Julia; Lang, Anthony E; Black, Sandra E; MacIntosh, Bradley J; Masellis, Mario
2016-01-01
Orthostatic hypotension and cognitive impairment are two non-motor attributes of Lewy body spectrum disorders that impact independence. This proof-of-concept study examined cerebral blood flow (perfusion) as a mediator of orthostatic hypotension and cognition. In fifteen patients with Lewy body disorders, we estimated regional perfusion using pseudo-continuous arterial spin labeling MRI, and quantified orthostatic hypotension from the change in systolic blood pressure between supine and standing positions. Executive, visuospatial, attention, memory, and language domains were characterized by neuropsychological tests. A matching sample of non-demented adults with cerebral small vessel disease was obtained to contrast perfusion patterns associated with comorbid vascular pathology. Compared to the vascular group, patients with Lewy body disorders exhibited lower perfusion to temporal and occipital lobes than to frontal and parietal lobes (q < 0.05). A greater orthostatic drop in systolic pressure was associated with lower occipito-parietal perfusion in these patients (uncorrected p < 0.005; cluster size ≥ 20 voxels). Although orthostatic hypotension and supine hypertension were strongly correlated (r = -0.79, p < 0.001), the patterns of association for each with perfusion were distinct. Specifically, supine hypertension was associated with high perfusion to anterior and middle cerebral arterial territories, as well as with low perfusion to posterior regions. Perfusion within orthostatic hypotension-defined regions was directly related to performance on visuospatial and attention tasks, independent of dementia severity (p < 0.05). These findings provide new insight that regional cerebral hypoperfusion is related to orthostatic hypotension, and may be involved in domain-specific cognitive deficits in Lewy body disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B
2016-02-01
The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s-1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 mL/min per 100 g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s-1 (8.3%; P = 0.06). Single-kidney estimated glomerular filtration rate increased between baseline and 2 years by 17.7 ± 2.7 mL/min per 1.73 m (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25 to 50 mg/d losartan was 62 ± 24 mL/min per 100 g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. The results suggest an important role for noninvasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially beneficial effect of losartan in recipients.
Photonic sensing of arterial distension
Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas
2016-01-01
Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095
Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Elliott, Morgan B.; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steven H.
2014-01-01
Carotid, brachial, and tibial arteries reacted differently to HDTBR. Previous studies have not analyzed the mechanical properties of the human brachial or anterior tibial arteries. After slight variations during bed-rest, arterial mechanical properties and IMT returned to pre-bed rest values, with the exception of tibial stiffness and PSE, which continued to be reduced post-bed rest while the DC remained elevated. The tibial artery remodeling was probably due to decreased pressure and volume. Resulting implications for longer duration spaceflight are unclear. Arterial health may be affected by microgravity, as shown by increased thoracic aorta stiffness in other ground based simulations (Aubert).
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.
Estimation of arterial baroreflex sensitivity in relation to carotid artery stiffness.
Lipponen, Jukka A; Tarvainen, Mika P; Laitinen, Tomi; Karjalainen, Pasi A; Vanninen, Joonas; Koponen, Timo; Lyyra-Laitinen, Tiina
2012-01-01
Arterial baroreflex has a significant role in regulating blood pressure. It is known that increased stiffness of the carotid sinus affects mecanotransduction of baroreceptors and therefore limits baroreceptors capability to detect changes in blood pressure. By using high resolution ultrasound video signal and continuous measurement of electrocardiogram (ECG) and blood pressure, it is possible to define elastic properties of artery simultaneously with baroreflex sensitivity parameters. In this paper dataset which consist 38 subjects, 11 diabetics and 27 healthy controls was analyzed. Use of diabetic and healthy test subjects gives wide scale of arteries with different elasticity properties, which provide opportunity to validate baroreflex and artery stiffness estimation methods.
Continuous recording of pulmonary artery pressure in unrestricted subjects.
Ikram, H; Richards, A M; Hamilton, E J; Nicholls, M G
1984-01-01
Continuous ambulatory pulmonary artery pressures were recorded using a conventional No 5 French Goodale-Lubin filled catheter linked to the Oxford Medilog system of a portable transducer-perfusion unit and miniaturised recorder. Data retrieval and analysis were performed using a PB2 Medilog playback unit linked to a PDP 11 computer system. The total system has a frequency response linear to 8 Hz allowing accurate pressure recording over the full range of heart rates. Ten recordings in 10 patients yielded artefact free data for 80% or more of the recorded period. This inexpensive reliable method allows pulmonary artery pressures to be recorded in unrestricted subjects. Images PMID:6704262
Wan, Chih-Cheng; Chen, David Yen-Ting; Tseng, Ying-Chi; Yan, Feng-Xian; Lee, Kun-Yu; Chiang, Chen-Hua; Chen, Chi-Jen
2017-08-01
No reliable imaging sign predicting cerebral hyperperfusion after intracranial arterial stenting (IAS) had been described in the literature. This study evaluated the effect of fluid-attenuated inversion recovery vascular hyperintensities (FVHs), also called hyperintense vessel sign on T2-weighted fluid-attenuated inversion recovery (T2-FLAIR) MR images, in predicting significant increase in cerebral blood flow (CBF) defined by arterial spin labeling (ASL) after IAS. We reviewed ASL CBF images and T2-FLAIR MR images before (D0), 1 day after (D1), and 3 days after (D3) IAS of 16 patients. T1-weighted MR images were used as cerebral maps for calculating CBF. The changes in CBF values after IAS were calculated in and compared among stenting and nonstenting vascular territories. An increase more than 50% of CBF was considered as hyperperfusion. The effect of FVHs in predicting hyperperfusion was calculated. The D1 CBF value was significantly higher than the D0 CBF value in stenting vascular, contralateral anterior cerebral artery, contralateral middle cerebral artery, and contralateral posterior cerebral artery (PCA) territories (all P < .05). The D1 and D3 CBF values were significantly higher than the D0 CBF value in overall vascular (P < .001), overall nonstenting vascular (P < .001), and ipsilateral PCA (P < .05) territories. The rate of more than 50% increases in CBF was significantly higher in patients who exhibited asymmetric FVHs than in those who did not exhibit these findings. FVHs could be a critical predictor of a significant increase in CBF after IAS.
Blood Pressure Estimation Using Pulse Transit Time From Bioimpedance and Continuous Wave Radar.
Buxi, Dilpreet; Redout, Jean-Michel; Yuce, Mehmet Rasit
2017-04-01
We have developed and tested a new architecture for pulse transit time (PTT) estimation at the central arteries using electrical bioimpedance, electrocardiogram, and continuous wave radar to estimate cuffless blood pressure. A transmitter and receiver antenna are placed at the sternum to acquire the arterial pulsation at the aortic arch. A four-electrode arrangement across the shoulders acquires arterial pulse across the carotid and subclavian arteries from bioimpedance as well as a bipolar lead I electrocardiogram. The PTT and pulse arrival times (PATs) are measured on six healthy male subjects during exercise on a bicycle ergometer. Using linear regression, the estimated PAT and PTT values are calibrated to the systolic and mean as well as diastolic blood pressure from an oscillometric device. For all subjects, the Pearson correlation coefficients for PAT-SBP and PTT-SBP are -0.66 (p = 0.001) and -0.48 (p = 0.0029), respectively. Correlation coefficients for individual subjects ranged from -0.54 to -0.9 and -0.37 to -0.95, respectively. The proposed system architecture is promising in estimating cuffless arterial blood pressure at the central, proximal arteries, which obey the Moens-Korteweg equation more closely when compared to peripheral arteries. An important advantage of PTT from the carotid and subclavian arteries is that the PTT over the central elastic arteries is measured instead of the peripheral arteries, which potentially reduces the changes in PTT due to vasomotion. Furthermore, the sensors can be completely hidden under a patients clothes, making them more acceptable by the patient for ambulatory monitoring.
Multiple velocity encoding in the phase of an MRI signal
NASA Astrophysics Data System (ADS)
Benitez-Read, E. E.
2017-01-01
The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.
Ferré, Jean-Christophe; Petr, Jan; Bannier, Elise; Barillot, Christian; Gauvrit, Jean-Yves
2012-05-01
To compare 12-channel and 32-channel phased-array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T). Twenty-seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12-channel and 32-channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32-channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast-to-noise and signal-to-noise ratios (CNR, SNR). Compared with 12-channel acquisition, the scores for 32-channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32-channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI. For PASL at 3T, the 32-channel coil at 3T provided better quality than the 12-channel coil. With the 32-channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. Copyright © 2012 Wiley Periodicals, Inc.
Gao, Ying; Goodnough, Candida L.; Erokwu, Bernadette O.; Farr, George W.; Darrah, Rebecca; Lu, Lan; Dell, Katherine M.; Yu, Xin; Flask, Chris A.
2014-01-01
Arterial Spin Labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either Echo-Planar Imaging (EPI) or True Fast Imaging with Steady-State Free Precession (True FISP) readouts that are prone to off-resonance artifacts on high field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 seconds. In this initial implementation, a FAIR (Flow-Sensitive Alternating Inversion Recovery) ASL preparation was combined with a rapid, centrically-encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 T and 9.4 T (249±38 ml/min/100g and 241±17 ml/min/100g, respectively). The utility of this method was further demonstrated in detecting significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high field MRI scanners with minimal image artifacts. PMID:24891124
Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi
2017-01-01
Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.
Zhang, H; Wu, Y; Xue, W; Zuo, P; Oesingmann, N; Gan, Q; Huang, Z; Wu, M; Hu, F; Kuang, M; Song, B
2017-11-01
To evaluate prospectively the performance of combining morphological and arterial spin labelling (ASL) magnetic resonance imaging (MRI) for detecting pseudocapsule defects in renal cell carcinoma (RCC), and to predict renal capsule invasion confirmed histopathologically. Twenty consecutive patients with suspicious renal tumours underwent MRI. Renal ASL imaging was performed and renal blood flow was measured quantitatively. The diagnostic performance of T2-weighted images alone, and a combination of T2-weighted and ASL images for predicting renal capsule invasion were assessed. Twenty renal lesions were evaluated in 20 patients. All lesions were clear cell RCCs (ccRCCs) confirmed at post-surgical histopathology. Fifteen ccRCCs showed pseudocapsule defects on T2-weighted images, of which 12 cases showed existing blood flow in defect areas on perfusion images. To predict renal capsule invasion, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 71.4%, 86.7%, 100%, respectively, for T2-weighted images alone, and 92.3%, 100%, 100%, 87.5%, respectively, for the combination of T2-weighted and ASL images. ASL images can reflect the perfusion of pseudocapsule defects and as such, the combination of T2-weighted and ASL images produces promising diagnostic accuracy for predicting renal capsule invasion. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Resting state cerebral blood flow with arterial spin labeling MRI in developing human brains.
Liu, Feng; Duan, Yunsuo; Peterson, Bradley S; Asllani, Iris; Zelaya, Fernando; Lythgoe, David; Kangarlu, Alayar
2018-07-01
The development of brain circuits is coupled with changes in neurovascular coupling, which refers to the close relationship between neural activity and cerebral blood flow (CBF). Studying the characteristics of CBF during resting state in developing brain can be a complementary way to understand the functional connectivity of the developing brain. Arterial spin labeling (ASL), as a noninvasive MR technique, is particularly attractive for studying cerebral perfusion in children and even newborns. We have collected pulsed ASL data in resting state for 47 healthy subjects from young children to adolescence (aged from 6 to 20 years old). In addition to studying the developmental change of static CBF maps during resting state, we also analyzed the CBF time series to reveal the dynamic characteristics of CBF in differing age groups. We used the seed-based correlation analysis to examine the temporal relationship of CBF time series between the selected ROIs and other brain regions. We have shown the developmental patterns in both static CBF maps and dynamic characteristics of CBF. While higher CBF of default mode network (DMN) in all age groups supports that DMN is the prominent active network during the resting state, the CBF connectivity patterns of some typical resting state networks show distinct patterns of metabolic activity during the resting state in the developing brains. Copyright © 2018 European Paediatric Neurology Society. All rights reserved.
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.
Hoscheidt, Siobhan M; Kellawan, J Mikhail; Berman, Sara E; Rivera-Rivera, Leonardo A; Krause, Rachel A; Oh, Jennifer M; Beeri, Michal S; Rowley, Howard A; Wieben, Oliver; Carlsson, Cynthia M; Asthana, Sanjay; Johnson, Sterling C; Schrage, William G
2016-01-01
Insulin resistance (IR) is associated with poor cerebrovascular health and increased risk for dementia. Little is known about the unique effect of IR on both micro- and macrovascular flow particularly in midlife when interventions against dementia may be most effective. We examined the effect of IR as indexed by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) on cerebral blood flow in macro- and microvessels utilizing magnetic resonance imaging (MRI) among cognitively asymptomatic middle-aged individuals. We hypothesized that higher HOMA-IR would be associated with reduced flow in macrovessels and lower cortical perfusion. One hundred and twenty cognitively asymptomatic middle-aged adults (57 ± 5 yrs) underwent fasting blood draw, phase contrast-vastly undersampled isotropic projection reconstruction (PC VIPR) MRI, and arterial spin labeling (ASL) perfusion. Higher HOMA-IR was associated with lower arterial blood flow, particularly within the internal carotid arteries (ICAs), and lower cerebral perfusion in several brain regions including frontal and temporal lobe regions. Higher blood flow in bilateral ICAs predicted greater cortical perfusion in individuals with lower HOMA-IR, a relationship not observed among those with higher HOMA-IR. Findings provide novel evidence for an uncoupling of macrovascular blood flow and microvascular perfusion among individuals with higher IR in midlife. PMID:27488909
Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki
2014-01-01
Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.
Tatewaki, Yasuko; Higano, Shuichi; Taki, Yasuyuki; Thyreau, Benjamin; Murata, Takaki; Mugikura, Shunji; Ito, Daisuke; Takase, Kei; Takahashi, Shoki
2014-01-01
BACKGROUND AND PURPOSE Quantitative signal targeting with alternating radiofrequency labeling of arterial regions (QUASAR) is a recent spin labeling technique that could improve the reliability of brain perfusion measurements. Although it is considered reliable for measuring gray matter as a whole, it has never been evaluated regionally. Here we assessed this regional reliability. METHODS Using a 3-Tesla Philips Achieva whole-body system, we scanned four times 10 healthy volunteers, in two sessions 2 weeks apart, to obtain QUASAR images. We computed perfusion images and ran a voxel-based analysis within all brain structures. We also calculated mean regional cerebral blood flow (rCBF) within regions of interest configured for each arterial territory distribution. RESULTS The mean CBF over whole gray matter was 37.74 with intraclass correlation coefficient (ICC) of .70. In white matter, it was 13.94 with an ICC of .30. Voxel-wise ICC and coefficient-of-variation maps showed relatively lower reliability in watershed areas and white matter especially in deeper white matter. The absolute mean rCBF values were consistent with the ones reported from PET, as was the relatively low variability in different feeding arteries. CONCLUSIONS Thus, QUASAR reliability for regional perfusion is high within gray matter, but uncertain within white matter. PMID:25370338
Relationship between haemodynamic impairment and collateral blood flow in carotid artery disease.
Hartkamp, Nolan S; Petersen, Esben T; Chappell, Michael A; Okell, Thomas W; Uyttenboogaart, Maarten; Zeebregts, Clark J; Bokkers, Reinoud Ph
2017-01-01
Collateral blood flow plays a pivotal role in steno-occlusive internal carotid artery (ICA) disease to prevent irreversible ischaemic damage. Our aim was to investigate the effect of carotid artery disease upon cerebral perfusion and cerebrovascular reactivity and whether haemodynamic impairment is influenced at brain tissue level by the existence of primary and/or secondary collateral. Eighty-eight patients with steno-occlusive ICA disease and 29 healthy controls underwent MR examination. The presence of collaterals was determined with time-of-flight, two-dimensional phase contrast MRA and territorial arterial spin labeling (ASL) imaging. Cerebral blood flow and cerebrovascular reactivity were assessed with ASL before and after acetazolamide. Cerebral haemodynamics were normal in asymptomatic ICA stenosis patients, as opposed to patients with ICA occlusion, in whom the haemodynamics in both hemispheres were compromised. Haemodynamic impairment in the affected brain region was always present in symptomatic patients. The degree of collateral blood flow was inversely correlated with haemodynamic impairment. Recruitment of secondary collaterals only occurred in symptomatic ICA occlusion patients. In conclusion, both CBF and cerebrovascular reactivity were found to be reduced in symptomatic patients with steno-occlusive ICA disease. The presence of collateral flow is associated with further haemodynamic impairment. Recruitment of secondary collaterals is associated with severe haemodynamic impairment.
Sinha, Santosh Kumar; Khanra, Dibbendhu; Jha, Mukesh Jitendra; Singh, Karandeep; Razi, Mahamdulla; Goel, Amit; Mishra, Vikas; Asif, Mohammad; Sachan, Mohit; Afdaali, Nasar; Kumar, Ashutosh; Thakur, Ramesh; Krishna, Vinay; Pandey, Umeshwar; Varma, Chandra Mohan
2016-10-01
ALCAPA syndrome (anomalous origin of the left coronary artery from the pulmonary artery) is a rare disease but lethal with clinical expression from myocardial infarction, congestive heart failure to death during early infancy and unusual survival to adulthood. We report a 73-year-old woman with ALCAPA who presented with exertional dyspnea (NYHA functional class II) over past 2 years. Physical examination revealed soft S, long mid diastolic rumbling murmur and apical pan-systolic murmur. Electrocardiography displayed biatrial enlargement and poor R progression and normal sinus rhythm. Echocardiography established calcified severe mitral stenosis (MS), presence of continuous flow entering the pulmonary trunk, turbulent continuous flow in inter-ventricular septum with left to right shunt in contrast echocardiography and normal systolic function. Coronary angiogram showed absence of left coronary artery (LCA) originating from aorta, dilated and tortuous right coronary artery (RCA) and abundant Rentrop grade 3 intercoronary collateral communicating with LCA originating from pulmonary trunk which was also confirmed on coronary CT angiogram thus establishing diagnosis of ALCAPA. It is exceedingly rare to be associated with severe MS. However, such a long survival in our patient can be explained by the severe pulmonary arterial hypertension which may be contributing to lesser coronary steal.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
Dual-modality arterial pulse monitoring system for continuous blood pressure measurement.
Wen-Xuan Dai; Yuan-Ting Zhang; Jing Liu; Xiao-Rong Ding; Ni Zhao
2016-08-01
Accurate and ambulatory measurement of blood pressure (BP) is essential for efficient diagnosis, management and prevention of cardiovascular diseases (CVDs). However, traditional cuff-based BP measurement methods provide only intermittent BP readings and can cause discomfort with the occlusive cuff. Although pulse transit time (PTT) method is promising for cuffless and continuous BP measurement, its pervasive use is restricted by its limited accuracy and requirement of placing sensors on multiple body sites. To tackle these issues, we propose a novel dual-modality arterial pulse monitoring system for continuous blood pressure measurement, which simultaneously records the pressure and photoplethysmography (PPG) signals of radial artery. The obtained signals can be used to generate a pressure-volume curve, from which the elasticity index (EI) and viscosity index (VI) can be extracted. Experiments were carried out among 7 healthy subjects with their PPG, ECG, arterial pressure wave and reference BP collected to examine the effectiveness of the proposed indexes. The results of this study demonstrate that a linear regression model combining EI and VI has significantly higher BP tracking correlation coefficient as compared to the PTT method. This suggests that the proposed system and method can potentially be used for convenient and continuous blood pressure estimation with higher accuracy.
Epitaxial strain-mediated spin-state transitions: can we switch off magnetism?
NASA Astrophysics Data System (ADS)
Rondinelli, James; Spaldin, Nicola
2008-03-01
We use first-principles density functional theory calculations to explore spin-state transitions in epitaxially strained LaCoO3. While high-spin to low-spin state transitions in minerals are common in geophysics, where pressures can reach over 200 GPa, we explore whether heteroepitaxial strain can achieve similar transitions with moderate strain in thin films. LaCoO3 is known to undergo a low-spin (S=0, t2g^6eg^0) to intermediate-spin (S=1, t2g^5eg^1) or high-spin (S=2, t2g^4eg^2) state transition with increasing temperature, and thus makes it a promising candidate material for strain-mediated spin transitions. Here we discuss the physics of the low-spin transition and changes in the electronic structure of LaCoO3, most notably, the metal-insulator transition that accompanies the spin-state transitions with epitaxial strain. As thin film growth techniques continue to reach atomic-level precision, we suggest this is another approach for controlling magnetism in complex oxide heterostructures.
NASA Astrophysics Data System (ADS)
Wang, Chun-Hsiung; Chiu, Shih-Yung; Hsu, Yu-Hsiang; Lee, Shu-Sheng; Lee, Chih-Kung
2017-06-01
A non-contact arterial-induced skin vibration inspection system is implemented. This optical metrology system is constructed with shadow Moiré configuration and the fringe analysis algorithm. Developed with the Region of Interested (ROI) capturing technique and the Two-dimensional Wavelet Transform (2D-CWT) method, this algorithm is able to retrieve the height-correlated phase information from the shadow Moiré fringe patterns. Using a commercial video camera or a CMOS image sensor, this system could monitor the skin-vibration induced by the cyclic deformation of inner layered artery. The cross-sectional variation and the rhythm of heart cycle could be continuously measured for health monitoring purposes. The average vibration amplitude of the artery at the wrist ranges between 20 μm and 50 μm, which is quite subtle comparing with the skin surface structure. Having the non-stationary motion of human body, the traditional phase shifting (PS) technique can be very unstable due to the requirement of several frames of images, especially for case that artery is continuously pumping. To bypass this fundamental issue, the shadow Moiré technique is introduced to enhance the surface deformation characteristic. And the phase information is retrieved by the means of spectrum filtering instead of PS technique, which the phase is calculated from intensity maps of multiple images. The instantaneous surface can therefore be reconstructed individually from each frame, enabling the subtle arterial-induced skin vibration measurement. The comparative results of phase reconstruction between different fringe analysis algorithms will be demonstrated numerically and experimentally. And the electrocardiography (ECG) results will used as the reference for the validity of health monitoring potential of the non-contact arterial-induced skin vibration inspection system.
Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E
2004-10-08
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.
Simple universal models capture all classical spin physics.
De las Cuevas, Gemma; Cubitt, Toby S
2016-03-11
Spin models are used in many studies of complex systems because they exhibit rich macroscopic behavior despite their microscopic simplicity. Here, we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain "universal models," with at most polynomial overhead. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal and show that one of the simplest and most widely studied spin models, the two-dimensional Ising model with fields, is universal. Our results may facilitate physical simulations of Hamiltonians with complex interactions. Copyright © 2016, American Association for the Advancement of Science.
Continuous quantum measurement in spin environments
NASA Astrophysics Data System (ADS)
Xie, Dong; Wang, An Min
2015-08-01
We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far.
Cerebral Perforating Artery Disease : Characteristics on High-Resolution Magnetic Resonance Imaging.
Liang, Jianye; Liu, Yiyong; Xu, Xiaoshuang; Shi, Changzheng; Luo, Liangping
2018-03-23
Our aims were to evaluate the feasibility of high-resolution magnetic resonance imaging (HR-MRI) for displaying the cerebral perforating arteries in normal subjects and to discuss the value of HR-MRI for detecting the causes of infarctions in the territory of the lenticulostriate artery (LSA). Included in this study were 31 healthy subjects and 28 patients who had infarctions in the territory supplied by the LSA. The T1-weighted imaging (T1WI), T2WI, diffusion-weighted imaging (DWI), and HR-MRI, including 3‑dimensional time-of-flight magnetic resonance angiography (3D-TOF-MRA) and 3D fast spin-echo T1WI (namely CUBE T1 in GE Healthcare), were applied on a 3-Tesla scanner. The numbers and route of the perforating arteries on both sides were independently confirmed on HR-MRI by two physicians. The Wilcoxon test was used to compare the differences. The numbers of perforating arteries in healthy subjects observed on 3D-TOF-MRA were as follows: numbers of the bilateral recurrent artery of Heubner (RAH) ranged from 0-3 (median 1), numbers of the left LSA ranged from 0-7 (median 3), numbers of the right LSA ranged from 0-5 (median 3), numbers of the bilateral anterior choroidal artery ranged from 1-2 (median 1) and the numbers of the bilateral thalamoperforating artery ranged from 1-2 (median 1). In the patients with lenticulostriate infarctions, the numbers of LSAs on the affected side were lower than on the opposite and ipsilateral sides in the healthy subjects. The results were statistically significant. An abnormality of the RAH may lead to a centrum semiovale infarct pattern, whereas an abnormality of the LSA is associated with a corona radiata infarct pattern. The use of HR 3D-TOF-MRA and CUBE T1 had unique advantages in displaying the tiny perforating arteries in vivo. Moreover, effective recognition of the associated cerebral perforating artery and infarct patterns may enhance our understanding of the mechanism of stroke in patients with lenticulostriate infarctions.
Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan
2017-06-01
The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.
The 'SAFARI' Technique Using Retrograde Access Via Peroneal Artery Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Kun Da, E-mail: zkunda@gmail.com; Tan, Seck Guan; Tay, Kiang Hiong
2012-08-15
The 'SAFARI' technique or subintimal arterial flossing with antegrade-retrograde intervention is a method for recanalisation of chronic total occlusions (CTOs) when subintimal angioplasty fails. Retrograde access is usually obtained via the popliteal, distal anterior tibial artery (ATA)/dorsalis pedis (DP), or distal posterior tibial artery (PTA). Distal access via the peroneal artery has not been described and has a risk of continued bleeding, leading to compartment syndrome due to its deep location. We describe our experience in two patients with retrograde access via the peroneal artery and the use of balloon-assisted hemostasis for these retrograde punctures. This approach may potentially givemore » more options for endovascular interventions in lower limb CTOs.« less
Quantum simulation of the spin-boson model with a microwave circuit
NASA Astrophysics Data System (ADS)
Leppäkangas, Juha; Braumüller, Jochen; Hauck, Melanie; Reiner, Jan-Michael; Schwenk, Iris; Zanker, Sebastian; Fritz, Lukas; Ustinov, Alexey V.; Weides, Martin; Marthaler, Michael
2018-05-01
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the Ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
The physics of spin polarized gases
NASA Astrophysics Data System (ADS)
Cates, Gordon D.
1995-01-01
Most of our research was connected either directly or indirectly to the study of spin polarized atoms and nuclei, and their applications. In most cases we used lasers to optically pump, and hence polarize, alkali-metal vapors. Spin-exchange collisions were used to transfer the angular momentum to other systems. Of particular interest was our continuing study of the polarization of noble gas nuclei, which are characterized by extremely long spin relaxation times of minutes to many days. During this past research period we have demonstrated several applications of polarized noble gas nuclei that may have important implications for such diverse areas as nondestructive testing and medical diagnostics, as well as many areas in fundamental research. Of particular note is the use of spin-exchange polarized He-3 and Xe-129 for magnetic resonance imaging. At present, our imaging work has focused on the lungs of small animals such as mice and guinea pigs. We believe, however, that our technique would also be useful for nondestructive testing. We have also continued our study of Xe that is polarized in the gaseous state, and subsequently frozen. This novel technique for producing a highly polarized solid has received considerable attention in the NMR community.
Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z
2016-08-01
Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.
General theory of feedback control of a nuclear spin ensemble in quantum dots
NASA Astrophysics Data System (ADS)
Yang, Wen; Sham, L. J.
2013-12-01
We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.
Stars Can't Spin Out of Control (Artist's Animation)
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for QuickTime Movie of Stars Can't Spin Out of Control This artist's animation demonstrates how a dusty planet-forming disk can slow down a whirling young star, essentially saving the star from spinning itself to death. Evidence for this phenomenon comes from NASA's Spitzer Space Telescope. The movie begins by showing a developing star (red ball). The star is basically a giant ball of gas that is collapsing onto itself. As it shrinks, it spins faster and faster, like a skater folding in his or her arms. The green lines represent magnetic fields. As gravity continues to pull matter inward, the star spins so fast, it starts to flatten out. The same principle applies to the planet Saturn, whose spin has caused it to be slightly squashed or oblate. A forming star can theoretically whip around fast enough to overcome gravity and flatten itself into a state where it can no longer become a full-fledged star. But stars don't spin out of control, possibly because swirling disks of dust slow them down. Such disks can be found orbiting young stars, and are filled with dust that might ultimately stick together to form planets. The second half of the animation demonstrates how a disk is thought to keep its star's speed in check. A developing star is shown twirling inside its disk. As it turns, its magnetic fields pass through the disk and get bogged down like a spoon in molasses. This locks the star's rotation to the slower-turning disk, so the star, while continuing to shrink, does not spin faster. Spitzer found evidence for star-slowing disks in a survey of nearly 500 forming stars in the Orion nebula. It observed that slowly spinning stars are five times more likely to host disks than rapidly spinning stars.Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report
Townley, Nick; McNellis, Emily; Sampath, Venkatesh
2017-01-01
We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures. PMID:28852582
Term Neonate with Atypical Hypoxic-Ischemic Encephalopathy Presentation: A Case Report.
Townley, Nick; McNellis, Emily; Sampath, Venkatesh
2017-07-01
We describe a case of atypical hypoxic-ischemic encephalopathy (HIE) in a neonate following a normal pregnancy and delivery who was found to have an umbilical vein thrombosis. The infant arrived to our center with continuous bicycling movement of her lower extremities. She had a continuous electroencephalogram that showed burst suppression and magnetic resonance imaging of the brain showed diffusely abnormal cerebral cortical/subcortical diffusion restriction which may be secondary hypoxic-ischemic injury. Interestingly, a pathology report noted a focal umbilical vein thrombosis appearing to have compressed an umbilical artery with associated arterial dissection and hematoma. Our case illustrates how umbilical venous or arterial thrombosis may be associated with HIE and refractory seizures.
Hicks, James W.
2016-01-01
ABSTRACT Mammals and birds maintain high arterial partial pressure of oxygen (PO2) values in order to preserve near-complete hemoglobin (Hb) oxygen (O2) saturation. In diving mammals and birds, arterial O2 follows a primarily monotonic decline and then recovers quickly after dives. In laboratory studies of submerged freshwater turtles, arterial O2 depletion typically follows a similar pattern. However, in these studies, turtles were disturbed, frequently tethered to external equipment and confined either to small tanks or breathing holes. Aquatic turtles can alter cardiac shunting patterns, which will affect arterial PO2 values. Consequently, little is known about arterial O2 regulation and use in undisturbed turtles. We conducted the first study to continuously measure arterial PO2 using implanted microelectrodes and a backpack logger in undisturbed red-eared sliders during routine activities. Arterial PO2 profiles during submergences varied dramatically, with no consistent patterns. Arterial PO2 was also lower than previously reported during all activities, with values rarely above 50 mmHg (85% Hb saturation). There was no difference in mean PO2 between five different activities: submerged resting, swimming, basking, resting at the surface and when a person was present. These results suggest significant cardiac shunting occurs during routine activities as well as submergences. However, the lack of relationship between PO2 and any activity suggests that cardiac shunts are not regulated to maintain high arterial PO2 values. These data support the idea that cardiac shunting is the passive by-product of regulation of vascular resistances by the autonomic nervous system. PMID:27618860
Ohya, T; Fukunaga, J; Kitahama, H; Okuyama, A; Seki, T; Tsurui, K; Saka, M; Sasagawa, M; Hishinuma, S; Kotake, K
1990-08-01
Intra-arterial infusion chemotherapy using an implantable reservoir was used for 22 patients with liver metastasis from September 1986 to March 1990. The material consisted of 8 subjects with gastric cancer and 14 with colorectal cancer. One had metastasis in one lobe (H1), 10 had a few scattered metastases in both lobes (H2) and 11 had numerous metastases in both lobes (H3). In 5 cases, a reservoir was implanted to prevent the recurrence after hepatectomy. Infusion catheter was placed in the proper hepatic artery in 5 cases via the gastroduodenal artery at laparotomy and it was carried out subcutaneously via the femoral artery in 17 cases. In all cases intra-arterial infusion of 5-FU was continuously administered followed by intermittent one shot injection of ADM. The clinical effectiveness of the therapy was well evaluated. One-year cumulative survival rate of all cases by Kaplan-Meier method was 55% and that of H2 cases was 78%. No recurrence was noted in post hepatectomy cases. Eight cases (36.3%) showed remarkable complications, which made it impossible to continue intra-arterial infusion chemotherapy: hepatic artery occlusion (3 cases), infection (2 cases), abdominal pain (1 case), hematoma in the implanted site (1 case) and dislocation of the infusion catheter (1 case). From the present study, it is considered that intra-arterial infusion chemotherapy is a useful procedure for the control of liver metastasis. Regimens for improved chemotherapy and the maintenance of more useful and safer catheters should therefore be investigated for further development of the therapeutical estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graziani, L., E-mail: langrazi@tin.it; Morelli, L. G.
2011-02-15
The effectiveness of below-the-knee PTA to obtain successful revascularization in patients with critical limb ischemia (CLI) has been well established, and many centers have adopted endovascular intervention as the first-line treatment in patients with chronic lower-extremity disease. The well-known complex and multilevel arterial disease in patients with CLI have lead to interventionists to continuously implement different technologies and techniques. The aim of the present study was to standardize and redefine a technique characterized for combined retrograde-antegrade recanalization of a native leg artery through a collateral arterial branch by using a single access. This concept has been well described in coronarymore » arteries and recently in pelvic and tibial arteries.« less
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
De Meyer, L; Van Bockstal, P-J; Corver, J; Vervaet, C; Remon, J P; De Beer, T
2015-12-30
Spin-freezing as alternative freezing approach was evaluated as part of an innovative continuous pharmaceutical freeze-drying concept for unit doses. The aim of this paper was to compare the sublimation rate of spin-frozen vials versus traditionally frozen vials in a batch freeze-dryer, and its impact on total drying time. Five different formulations, each having a different dry cake resistance, were tested. After freezing, the traditionally frozen vials were placed on the shelves while the spin-frozen vials were placed in aluminum vial holders providing radial energy supply during drying. Different primary drying conditions and chamber pressures were evaluated. After 2h of primary drying, the amount of sublimed ice was determined in each vial. Each formulation was monitored in-line using NIR spectroscopy during drying to determine the sublimation endpoint and the influence of drying conditions upon total drying time. For all tested formulations and applied freeze-drying conditions, there was a significant higher sublimation rate in the spin-frozen vials. This can be explained by the larger product surface and the lower importance of product resistance because of the much thinner product layers in the spin frozen vials. The in-line NIR measurements allowed evaluating the influence of applied drying conditions on the drying trajectories. Copyright © 2015 Elsevier B.V. All rights reserved.
Exchange bias for core/shell magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Lemos, C. G. O.; Figueiredo, W.; Santos, M.
2015-09-01
We study the properties of a finite magnetic system to model a magnetic nanoparticle, which is formed by a reduced number of magnetic dipole moments due to the spin of the atoms. The nanoparticle is of the type core/shell where the shell is formed by spins interacting through an antiferromagnetic exchange coupling while for the spins belonging to the core the coupling is ferromagnetic. The interaction between the spins at the interface core/shell can be either ferro or antiferromagnetic. To describe the states of the spins we used the XY model in which the spins are considered as continuous variables, free to point in any direction of the xy plane. We also consider a magnetocrystalline anisotropy, exchange anisotropy and the Zeeman effect. Our model is studied in a lattice with square symmetry, using the Monte Carlo method along with the Metropolis prescription. The results show that in the absence of an external magnetic field and exchange anisotropy, the system continuously goes to a disordered state from an ordered state at a well defined temperature. In the presence of external magnetic fields the system displays the exchange bias phenomenon, that is, the displacement of the hysteresis loops, due to the introduction of the exchange anisotropy term. However, this displacement depends on the core and shell sizes, as well as on the magnitude of the coupling between the shell and the core moments.
Arterial catheter complications and management problems: observations from AACN's Thunder Project.
1993-09-01
Arterial cannulation, while common in critical care, is a procedure with attendant risks of complications. Anecdotal data from the American Association of Critical Care Nurses' Thunder Project provided evidence that catheters, insertion sites, and monitoring systems continue to be sources of complications. The problems have not changed since arterial cannulation began. Line management issues cannot be resolved until low-maintenance systems are developed.
Wang, Liangcheng; Horiuchi, Isao; Mikami, Yukiko; Takagi, Kenjiro; Okochi, Tomohisa; Hamamoto, Kohei; Chiba, Emiko; Matsuura, Katsuhiko
2015-04-01
Uterine artery embolization (UAE) is a standard method for treating postpartum hemorrhage (PPH), although uterine artery vasospasm during UAE may lead to failure of hemostasis. Here, we report our experience with a case of PPH in which the bleeding was successfully controlled by intra-arterial administration of nitroglycerin during the second UAE. A 30-year-old woman experienced PPH following a successful cesarean section, and a UAE was performed. However, 6 hours later, vaginal bleeding restarted; the reason for unsuccessful embolization during the first UAE was vasoconstriction due to hypovolemic shock. We performed a second UAE, but uterine bleeding continued. After intra-arterial administration of nitroglycerin, hemostasis was confirmed, and there was no reperfusion of the uterine artery. After these two UAE procedures, no recurrence of bleeding was observed. Thus, use of intra-arterial nitroglycerin was effective for controlling uterine artery vasospasm during UAE. However, larger studies are required to confirm these findings. Copyright © 2015. Published by Elsevier B.V.
Accuracy of Zero-Heat-Flux Cutaneous Temperature in Intensive Care Adults.
Dahyot-Fizelier, Claire; Lamarche, Solène; Kerforne, Thomas; Bénard, Thierry; Giraud, Benoit; Bellier, Rémy; Carise, Elsa; Frasca, Denis; Mimoz, Olivier
2017-07-01
To compare accuracy of a continuous noninvasive cutaneous temperature using zero-heat-flux method to esophageal temperature and arterial temperature. Prospective study. ICU and NeuroICU, University Hospital. Fifty-two ICU patients over a 4-month period who required continuous temperature monitoring were included in the study, after informed consent. All patients had esophageal temperature probe and a noninvasive cutaneous device to monitor their core temperature continuously. In seven patients who required cardiac output monitoring, continuous iliac arterial temperature was collected. Simultaneous core temperatures were recorded from 1 to 5 days. Comparison to the esophageal temperature, considered as the reference in this study, used the Bland and Altman method with adjustment for multiple measurements per patient. The esophageal temperature ranged from 33°C to 39.7°C, 61,298 pairs of temperature using zero-heat-flux and esophageal temperature were collected and 1,850 triple of temperature using zero-heat-flux, esophageal temperature, and arterial temperature. Bias and limits of agreement for temperature using zero-heat-flux were 0.19°C ± 0.53°C compared with esophageal temperature with an absolute difference of temperature pairs equal to or lower than 0.5°C of 92.6% (95% CI, 91.9-93.4%) of cases and equal to or lower than 1°C for 99.9% (95% CI, 99.7-100.0%) of cases. Compared with arterial temperature, bias and limits of agreement were -0.00°C ± 0.36°C with an absolute difference of temperature pairs equal to or lower than 0.5°C of 99.8% (95% CI, 95.3-100%) of cases. All absolute difference of temperature pairs between temperature using zero-heat-flux and arterial temperature and between arterial temperature and esophageal temperature were equal to or lower than 1°C. No local or systemic serious complication was observed. These results suggest a comparable reliability of the cutaneous sensor using the zero-heat-flux method compared with esophageal or iliac arterial temperatures measurements.
Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N
1993-01-01
Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.
Does vascular stapling improve compliance of vascular anastomoses?
Stansby, G; Knez, P; Berwanger, C S; Nelson, K; Reichert, V; Schmitz-Rixen, T
2001-01-01
Elastic properties of vessel walls are altered by vascular anastomoses. Such alterations may lead to neointimal hyperplasia, which is a common cause of reocclusion following vascular surgery. The severity of paraanastomotic hypercompliant zones and anastomotic compliance drop depend on suturing material and on elastic properties of the anastomotic vessel segments. This study compares paraanastomotic hypercompliance and anastomotic compliance drop when using a new vascular closure system (VCS) and a conventional, continuous suture line in the preparation of end-to-end anastomoses. Compliance of artery-artery, vein-artery, and polytetrafluoroethylene-artery anastomoses was measured in an artificial circulation system at mean pressures of 60, 90, and 120 mm Hg, comparing conventional suturing and the VCS. When using the VCS for vein-artery anastomoses, significantly less postanastomotic hypercompliance was achieved at mean pressures of 60 mm Hg (14.2 +/-3.8% above remote postanastomotic area), compared to suture (55.1 +/-14.8%, p<0.05). At 90 mm Hg, respective values were 11.0 +/-2.3% for VCS and 54.7 +/-10.1% for suture, p<0.01. At 120 mm Hg, in polytetrafluoroethylene-artery anastomoses, the anastomotic compliance drop was significantly less when using the continuous suture line (93.9 +/-1.1% below remote postanastomotic compliance), compared to VCS (97.2 +/-0.2%, p<0.05). Compared to conventional suturing, use of the VCS reduced postanastomotic hypercompliance in vein-artery anastomoses.
The continuous large-scale preparation of several 1-methylimidazole based ionic liquids was carried out using a Spinning Tube-in-Tube (STT) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Proce...
Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi
2012-09-01
Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Ceramic applications in turbine engines
NASA Technical Reports Server (NTRS)
Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.
1981-01-01
Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.
Stegger, Lars; Martirosian, Petros; Schwenzer, Nina; Bisdas, Sotirios; Kolb, Armin; Pfannenberg, Christina; Claussen, Claus D; Pichler, Bernd; Schick, Fritz; Boss, Andreas
2012-11-01
Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 × 128 and 192 × 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 ± 9 and 51 ± 7 mL/100 g/min for the 128 × 128 and 192 × 192 matrices (stand-alone MR, 57 ± 2 and 55 ± 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 × 192 matrix size (P < 0.01), the relative signal change (δS) was significantly lower for the 192 × 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.
Transportation Infrastructure: Central Artery/Tunnel Project Faces Continued Financial Uncertainties
DOT National Transportation Integrated Search
1996-05-01
At a cost of over $1 billion a mile, the Central Artery/Tunnel project - an Interstate Highway System project in Boston, Massachusetts - is one of the largest, most complex, and most expensive highway construction projects ever undertaken. In respons...
Study of CP(N-1) theta-vacua by cluster simulation of SU(N) quantum spin ladders.
Beard, B B; Pepe, M; Riederer, S; Wiese, U-J
2005-01-14
D-theory provides an alternative lattice regularization of the 2D CP(N-1) quantum field theory in which continuous classical fields emerge from the dimensional reduction of discrete SU(N) quantum spins. Spin ladders consisting of n transversely coupled spin chains lead to a CP(N-1) model with a vacuum angle theta=npi. In D-theory no sign problem arises and an efficient cluster algorithm is used to investigate theta-vacuum effects. At theta=pi there is a first order phase transition with spontaneous breaking of charge conjugation symmetry for CP(N-1) models with N>2.
NASA Astrophysics Data System (ADS)
Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.
2018-05-01
We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.
Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V
2016-02-01
The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.
Increased resting cerebral blood flow in adult Fabry disease: MRI arterial spin labeling study.
Phyu, Po; Merwick, Aine; Davagnanam, Indran; Bolsover, Fay; Jichi, Fatima; Wheeler-Kingshott, Claudia; Golay, Xavier; Hughes, Deralynn; Cipolotti, Lisa; Murphy, Elaine; Lachmann, Robin H; Werring, David John
2018-04-17
To assess resting cerebral blood flow (CBF) in the whole-brain and cerebral white matter (WM) and gray matter (GM) of adults with Fabry disease (FD), using arterial spin labeling (ASL) MRI, and to investigate CBF correlations with WM hyperintensity (WMH) volume and the circulating biomarker lyso-Gb3. This cross-sectional, case-control study included 25 patients with genetically confirmed FD and 18 age-matched healthy controls. We quantified resting CBF using Quantitative Signal Targeting With Alternating Radiofrequency Labeling of Arterial Regions (QUASAR) ASL MRI. We measured WMH volume using semiautomated software. We measured CBF in regions of interest in whole-brain, WM, and deep GM, and assessed correlations with WMH volume and plasma lyso-Gb3. The mean age (% male) for FD and healthy controls was 42.2 years (44%) and 37.1 years (50%). Mean whole-brain CBF was 27.56 mL/100 mL/min (95% confidence interval [CI] 23.78-31.34) for FD vs 22.39 mL/100 mL/min (95% CI 20.08-24.70) for healthy controls, p = 0.03. In WM, CBF was higher in FD (22.42 mL/100 mL/min [95% CI 17.72-27.12] vs 16.25 mL/100 mL/min [95% CI 14.03-18.48], p = 0.05). In deep GM, CBF was similar between groups (40.41 mL/100 mL/min [95% CI 36.85-43.97] for FD vs 37.46 mL/100 mL/min [95% CI 32.57-42.35], p = 0.38). In patients with FD with WMH (n = 20), whole-brain CBF correlated with WMH volume ( r = 0.59, p = 0.006), not with plasma lyso-Gb3. In FD, resting CBF is increased in WM but not deep GM. In FD, CBF correlates with WMH, suggesting that cerebral perfusion changes might contribute to, or result from, WM injury. © 2018 American Academy of Neurology.
The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes
Tedjasaputra, Vince; Sá, Rui Carlos; Arai, Tatsuya J.; Holverda, Sebastiaan; Theilmann, Rebecca J.; Chen, William T.; Wagner, Peter D.; Davis, Christopher K.; Kim Prisk, G.
2013-01-01
Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg−1·min−1) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels. PMID:23640585
Pattyn, Nele; Beulque, Randy; Cornelissen, Véronique
2018-05-01
In a previous meta-analysis including nine trials comparing aerobic interval training with aerobic continuous training in patients with coronary artery disease, we found a significant difference in peak oxygen uptake favoring aerobic interval training. The objective of this study was to (1) update the original meta-analysis focussing on peak oxygen uptake and (2) evaluate the effect on secondary outcomes. We conducted a systematic review with a meta-analysis by searching PubMed and SPORTDiscus databases up to March 2017. We included randomized trials comparing aerobic interval training and aerobic continuous training in patients with coronary artery disease or chronic heart failure. The primary outcome was change in peak oxygen uptake. Secondary outcomes included cardiorespiratory parameters, cardiovascular risk factors, cardiac and vascular function, and quality of life. Twenty-four papers were identified (n = 1080; mean age 60.7 ± 10.7 years). Aerobic interval training resulted in a higher increase in peak oxygen uptake compared with aerobic continuous training in all patients (1.40 mL/kg/min; p < 0.001), and in the subgroups of patients with coronary artery disease (1.25 mL/kg/min; p = 0.001) and patients with chronic heart failure with reduced ejection fraction (1.46 mL/kg/min; p = 0.03). Moreover, a larger increase of the first ventilatory threshold and peak heart rate was observed after aerobic interval training in all patients. Other cardiorespiratory parameters, cardiovascular risk factors, and quality of life were equally affected. This meta-analysis adds further evidence to the clinically significant larger increase in peak oxygen uptake following aerobic interval training vs. aerobic continuous training in patients with coronary artery disease and chronic heart failure. More well-designed randomized controlled trials are needed to establish the safety of aerobic interval training and the sustainability of the training response over longer periods.
A spin-liquid with pinch-line singularities on the pyrochlore lattice.
Benton, Owen; Jaubert, L D C; Yan, Han; Shannon, Nic
2016-05-26
The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7.
A spin-liquid with pinch-line singularities on the pyrochlore lattice
Benton, Owen; Jaubert, L.D.C.; Yan, Han; Shannon, Nic
2016-01-01
The mathematics of gauge theories lies behind many of the most profound advances in physics in the past 200 years, from Maxwell's theory of electromagnetism to Einstein's theory of general relativity. More recently it has become clear that gauge theories also emerge in condensed matter, a prime example being the spin-ice materials which host an emergent electromagnetic gauge field. In spin-ice, the underlying gauge structure is revealed by the presence of pinch-point singularities in neutron-scattering measurements. Here we report the discovery of a spin-liquid where the low-temperature physics is naturally described by the fluctuations of a tensor field with a continuous gauge freedom. This gauge structure underpins an unusual form of spin correlations, giving rise to pinch-line singularities: line-like analogues of the pinch points observed in spin-ice. Remarkably, these features may already have been observed in the pyrochlore material Tb2Ti2O7. PMID:27225400
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...
2017-11-15
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
Spin incommensurability and two phase competition in cobaltites.
Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y
2006-12-08
The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.
Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries
NASA Technical Reports Server (NTRS)
Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.
2017-01-01
We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.
Brgles, Marija; Mirosavljević, Krunoslav; Noethig-Laslo, Vesna; Frkanec, Ruza; Tomasić, Jelka
2007-03-10
Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.
Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.
Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina
The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less
Andreev, Pavel A
2015-03-01
The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.
Tanaka, Tatsurou; Oda, Masafumi; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Otsuka, Kozue; Yoshioka, Izumi; Habu, Manabu; Kokuryo, Shinya; Kodama, Masaaki; Nogami, Shinnosuke; Miyamoto, Ikuya; Yamamoto, Noriaki; Ishikawa, Ayataka; Matsuo, Kou; Shiiba, Shunji; Seta, Yuji; Yamashita, Yoshihiro; Takahashi, Tetsu; Tominaga, Kazuhiro; Morimoto, Yasuhiro
2011-10-01
The aim of this study was to evaluate the 3-dimensional images of thinner main peripheral vessels in oral and maxillofacial regions made without contrast medium by using a new technique, fresh blood imaging (FBI). A second objective was to discern arteries from veins by using the combination of FBI with the subtraction technique. Images from FBI were compared with those from 3-dimensional phase-contrast magnetic resonance angiography (MRA) of blood vessels in 20 healthy subjects. All images were scored for visualization and image quality of the main blood vessels. In addition, appropriate flow-spoiled gradient pulses were applied to differentiate arteries from veins in the peripheral vasculature using a combination of FBI sequences and subtraction between systole- and diastole-triggered images. The scores of MRA using FBI for the visualization of thin blood vessels were significantly better than those using phase contrast, whereas scores for the visualization of main blood vessels were equal. Additionally, we succeeded in our initial attempt to differentiate arteries from veins with a reasonable acquisition time. Our initial experience shows that FBI could be a useful method to identify 3-dimensional vasculature and to differentiate arteries from veins among thinner peripheral vessels in the oral and maxillofacial regions without using contrast medium. Copyright © 2011 Mosby, Inc. All rights reserved.
DOT National Transportation Integrated Search
1966-05-01
A system for virtually continuous measurement of both systolic and diatolic blood pressures without recourse to direct arterial puncture has been effected by the modification of already existing standard equipment. This system entails the measurement...
The OregonHeart Total Artificial Heart: Design and Performance on a Mock Circulatory Loop.
Glynn, Jeremy; Song, Howard; Hull, Bryan; Withers, Stanley; Gelow, Jill; Mudd, James; Starr, Albert; Wampler, Richard
2017-10-01
Widespread use of heart transplantation is limited by the scarcity of donor organs. Total artificial heart (TAH) development has been pursued to address this shortage, especially to treat patients who require biventricular support. We have developed a novel TAH that utilizes a continuously spinning rotor that shuttles between two positions to provide pulsatile, alternating blood flow to the systemic and pulmonary circulations without artificial valves. Flow rates and pressures generated by the TAH are controlled by adjusting rotor speed, cycle frequency, and the proportion of each cycle spent pumping to either circulation. To validate the design, a TAH prototype was placed in a mock circulatory loop that simulates vascular resistance, pressure, and compliance in normal and pathophysiologic conditions. At a systemic blood pressure of 120/80 mm Hg, nominal TAH output was 7.4 L/min with instantaneous flows reaching 17 L/min. Pulmonary artery, and left and right atrial pressures were all maintained within normal ranges. To simulate implant into a patient with severe pulmonary hypertension, the pulmonary vascular resistance of the mock loop was increased to 7.5 Wood units. By increasing pump speed to the pulmonary circulation, cardiac output could be maintained at 7.4 L/min as mean pulmonary artery pressure increased to 56 mm Hg while systemic blood pressures remained normal. This in vitro testing of a novel, shuttling TAH demonstrated that cardiac output could be maintained across a range of pathophysiologic conditions including pulmonary hypertension. These experiments serve as a proof-of-concept for the design, which has proceeded to in vivo testing. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Polarisation in spin-echo experiments: Multi-point and lock-in measurements
NASA Astrophysics Data System (ADS)
Tamtögl, Anton; Davey, Benjamin; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William
2018-02-01
Spin-echo instruments are typically used to measure diffusive processes and the dynamics and motion in samples on ps and ns time scales. A key aspect of the spin-echo technique is to determine the polarisation of a particle beam. We present two methods for measuring the spin polarisation in spin-echo experiments. The current method in use is based on taking a number of discrete readings. The implementation of a new method involves continuously rotating the spin and measuring its polarisation after being scattered from the sample. A control system running on a microcontroller is used to perform the spin rotation and to calculate the polarisation of the scattered beam based on a lock-in amplifier. First experimental tests of the method on a helium spin-echo spectrometer show that it is clearly working and that it has advantages over the discrete approach, i.e., it can track changes of the beam properties throughout the experiment. Moreover, we show that real-time numerical simulations can perfectly describe a complex experiment and can be easily used to develop improved experimental methods prior to a first hardware implementation.
The SPectrometer for Ice Nuclei (SPIN): An instrument to investigate ice nucleation
Garimella, Sarvesh; Kristensen, Thomas Bjerring; Ignatius, Karolina; ...
2016-07-06
The SPectrometer for Ice Nuclei (SPIN) is a commercially available ice nucleating particle (INP) counter manufactured by Droplet Measurement Technologies in Boulder, CO. The SPIN is a continuous flow diffusion chamber with parallel plate geometry based on the Zurich Ice Nucleation Chamber and the Portable Ice Nucleation Chamber. This study presents a standard description for using the SPIN instrument and also highlights methods to analyze measurements in more advanced ways. It characterizes and describes the behavior of the SPIN chamber, reports data from laboratory measurements, and quantifies uncertainties associated with the measurements. Experiments with ammonium sulfate are used to investigatemore » homogeneous freezing of deliquesced haze droplets and droplet breakthrough. Experiments with kaolinite, NX illite, and silver iodide are used to investigate heterogeneous ice nucleation. SPIN nucleation results are compared to those from the literature. A machine learning approach for analyzing depolarization data from the SPIN optical particle counter is also presented (as an advanced use). Altogether, we report that the SPIN is able to reproduce previous INP counter measurements.« less
Quantum control and measurement of atomic spins in polarization spectroscopy
NASA Astrophysics Data System (ADS)
Deutsch, Ivan H.; Jessen, Poul S.
2010-03-01
Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.
Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress
NASA Astrophysics Data System (ADS)
Wang, Jiongjiong; Rao, Hengyi; Wetmore, Gabriel S.; Furlan, Patricia M.; Korczykowski, Marc; Dinges, David F.; Detre, John A.
2005-12-01
Despite the prevalence of stress in everyday life and its impact on happiness, health, and cognition, little is known about the neural substrate of the experience of everyday stress in humans. We use a quantitative and noninvasive neuroimaging technique, arterial spin-labeling perfusion MRI, to measure cerebral blood flow (CBF) changes associated with mild to moderate stress induced by a mental arithmetic task with performance monitoring. Elicitation of stress was verified by self-report of stress and emotional state and measures of heart rate and salivary-cortisol level. The change in CBF induced by the stress task was positively correlated with subjective stress rating in the ventral right prefrontal cortex (RPFC) and left insula/putamen area. The ventral RPFC along with right insula/putamen and anterior cingulate showed sustained activation after task completion in subjects reporting a high stress level during arithmetic tasks. Additionally, variations of baseline CBF in the ventral RPFC and right orbitofrontal cortex were found to correlate with changes in salivary-cortisol level and heart rate caused by undergoing stress tasks. We further demonstrated that the observed right prefrontal activation could not be attributed to increased cognitive demand accompanying stress tasks and extended beyond neural pathways associated with negative emotions. Our results provide neuroimaging evidence that psychological stress induces negative emotion and vigilance and that the ventral RPFC plays a key role in the central stress response. anterior cingulate cortex | arterial spin labeling | right prefrontal cortex
Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI
Varma, Gopal; Scheidegger, Rachel; Alsop, David C
2015-01-01
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. PMID:26661226
Quantifying fluctuations of resting state networks using arterial spin labeling perfusion MRI.
Dai, Weiying; Varma, Gopal; Scheidegger, Rachel; Alsop, David C
2016-03-01
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to investigate spontaneous low-frequency signal fluctuations across brain resting state networks. However, BOLD only provides relative measures of signal fluctuations. Arterial Spin Labeling (ASL) MRI holds great potential for quantitative measurements of resting state network fluctuations. This study systematically quantified signal fluctuations of the large-scale resting state networks using ASL data from 20 healthy volunteers by separating them from global signal fluctuations and fluctuations caused by residual noise. Global ASL signal fluctuation was 7.59% ± 1.47% relative to the ASL baseline perfusion. Fluctuations of seven detected resting state networks vary from 2.96% ± 0.93% to 6.71% ± 2.35%. Fluctuations of networks and residual noise were 6.05% ± 1.18% and 6.78% ± 1.16% using 4-mm resolution ASL data applied with Gaussian smoothing kernel of 6mm. However, network fluctuations were reduced by 7.77% ± 1.56% while residual noise fluctuation was markedly reduced by 39.75% ± 2.90% when smoothing kernel of 12 mm was applied to the ASL data. Therefore, global and network fluctuations are the dominant structured noise sources in ASL data. Quantitative measurements of resting state networks may enable improved noise reduction and provide insights into the function of healthy and diseased brain. © The Author(s) 2015.
Cadiot, Domitille; Longuet, Romain; Bruneau, Bertrand; Treguier, Catherine; Carsin-Vu, Aline; Corouge, Isabelle; Gomes, Constantin; Proisy, Maïa
2018-04-01
Objective A child presenting with a first attack of migraine with aura usually undergoes magnetic resonance imaging (MRI) to rule out stroke. The purpose of this study was to report vascular and brain perfusion findings in children suffering from migraine with aura on time-of-flight MR angiography (TOF-MRA) and MR perfusion imaging using arterial spin labelling (ASL). Methods We retrospectively included all children who had undergone an emergency MRI examination with ASL and TOF-MRA sequences for acute neurological deficit and were given a final diagnosis of migraine with aura. The ASL perfusion maps and TOF-MRA images were independently assessed by reviewers blinded to clinical data. A mean cerebral blood flow (CBF) value was obtained for each cerebral lobe after automatic data post-processing. Results Seventeen children were finally included. Hypoperfusion was identified in one or more cerebral lobes on ASL perfusion maps by visual assessment in 16/17 (94%) children. Vasospasm was noted within the intracranial vasculature on the TOF-MRA images in 12/17 (71%) children. All (100%) of the abnormal TOF-MRA images were associated with homolateral hypoperfusion. Mean CBF values were significantly lower ( P < 0.05) in visually hypoperfused lobes than in normally perfused lobes. Conclusion ASL and TOF-MRA are two totally non-invasive, easy-to-use MRI sequences for children in emergency settings. Hypoperfusion associated with homolateral vasospasm may suggest a diagnosis of migraine with aura.
Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith
2016-06-01
Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.
Li, Lu-Ping; Tan, Huan; Thacker, Jon M; Li, Wei; Zhou, Ying; Kohn, Orly; Sprague, Stuart M; Prasad, Pottumarthi V
2017-01-01
Chronic kidney disease (CKD) is known to be associated with reduced renal blood flow. However, data to-date in humans is limited. In this study, non-invasive arterial spin labeling (ASL) MRI data was acquired in 33 patients with diabetes and stage-3 CKD, and 30 healthy controls. A significantly lower renal blood flow both in cortex (108.4±36.4 vs . 207.3±41.8; p<0.001, d=2.52) and medulla (23.2±8.9 vs . 42.6±15.8; p<0.001, d=1.5) was observed. Both cortical (ρ=0.67, p<0.001) and medullary (ρ=0.62, p<0.001) blood flow were correlated with eGFR, and cortical blood flow was found to be confounded by age and BMI. However, in a subset of subjects that were matched for age and BMI (n=6), the differences between CKD and control subjects remained significant both in cortex (107.4±42.8 vs . 187.51±20.44; p=0.002) and medulla (15.43±8.43 vs . 39.18±11.13; p=0.002). A threshold value to separate healthy and CKD was estimated to be Cor_BF=142.9 and Med_BF=24.1. These results support the use of ASL in the evaluation of renal blood flow in patients with moderate level of CKD. Whether these measurements can identify subjects at risk of progressive CKD requires further longitudinal follow-up.
Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI.
Shirzadi, Zahra; Stefanovic, Bojana; Chappell, Michael A; Ramirez, Joel; Schwindt, Graeme; Masellis, Mario; Black, Sandra E; MacIntosh, Bradley J
2018-03-01
To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655. © 2017 International Society for Magnetic Resonance in Medicine.
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effects of resistance exercise training on arterial stiffness in metabolic syndrome.
DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D
2016-05-01
Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.
Polindara, César; Waffenschmidt, Tobias; Menzel, Andreas
2016-08-16
In this contribution we study the balloon angioplasty in a residually stressed artery by means of a non-local gradient-enhanced fibre damage model. The balloon angioplasty is a common surgical intervention used to extend or reopen narrowed blood vessels in order to restore the continuous blood flow in, for instance, atherosclerotic arteries. Inelastic, i.e. predominantly damage-related and elastoplastic processes are induced in the artery during its inflation resulting in an irreversible deformation. As a beneficial consequence, provided that the inelastic deformations do not exceed a specific limit, higher deformations can be obtained within the same pressure level and a continuous blood flow can be guaranteed. In order to study the mechanical response of the artery in this scenario, we make use of the non-local gradient-enhanced model proposed in Waffenschmidt et al. (2014). In this contribution, we extend this model to make use of an incompressible format in connection with a Q1Q1P0 finite element implementation. The residual stresses in the artery are also taken into account following the framework presented in Waffenschmidt (2015). From the results it becomes apparent that, when the artery is subjected to radial stresses beyond the physiological range, damage evolution is triggered in the collagen fibres. The impact of the residual stresses on the structural response and on the circumferential stress distribution along the thickness of the arterial wall is also studied. It is observed that the residual stresses have a beneficial effect on the mechanical response of the arterial wall. Copyright © 2016 Elsevier Ltd. All rights reserved.
Continuous spin representations from group contraction
NASA Astrophysics Data System (ADS)
Khan, Abu M.; Ramond, Pierre
2005-05-01
We consider how the continuous spin representation (CSR) of the Poincaré group in four dimensions can be generated by dimensional reduction. The analysis uses the front-form little group in five dimensions, which must yield the Euclidean group E(2), the little group of the CSR. We consider two cases, one is the single spin massless representation of the Poincaré group in five dimensions, the other is the infinite component Majorana equation, which describes an infinite tower of massive states in five dimensions. In the first case, the double singular limit j, R →∞, with j /R fixed, where R is the Kaluza-Klein radius of the fifth dimension, and j is the spin of the particle in five dimensions, yields the CSR in four dimensions. It amounts to the Inönü-Wigner contraction, with the inverse Kaluza-Klein radius as contraction parameter. In the second case, the CSR appears only by taking a triple singular limit, where an internal coordinate of the Majorana theory goes to infinity, while leaving its ratio to the Kaluza-Klein radius fixed.
Continuous Faraday measurement of spin precession without light shifts
NASA Astrophysics Data System (ADS)
Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.
2017-12-01
We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.
Anatomical variation of arterial supply to the rabbit stomach.
Ikegami, Reona; Tanimoto, Yoshimasa; Kishimoto, Miori; Shibata, Hideshi
2016-05-03
Gastric stasis is common in rabbits, and gastrotomy may be performed to cure this pathological condition. Detailed descriptions of the arterial supply to the stomach are essential for this surgical operation, but published descriptions are limited. Here, we investigated anatomical variations of the arterial supply to the stomach in 43 New Zealand White rabbits by injecting colored latex into arteries. We observed that the left gastric artery that arose as the second branch from the celiac artery provided 1-3 parietal and 1-3 visceral branches to the stomach, with various branching patterns depending on the case. In 34 of 43 cases, the left gastric artery ended upon entering the gastric wall at the lesser curvature, whereas in the remaining cases, the artery continued as the hepatic artery without entering the gastric wall. The right gastric artery that branched off from the gastroduodenal artery also supplied the lesser curvature sinistrally but did not anastomose with the left gastric artery. In 40 cases, the hepatic artery provided 1-4 pyloric branches. In the fundic region, the short gastric arteries arose from the splenic artery and varied in number from 2 to 6. The right and left gastroepiploic arteries anastomosed to give 2-7 branches to the greater curvature. The results showed that many variations occurred in the arteries supplying the rabbit stomach, suggesting that such variations should be considered when performing veterinary surgical treatments in rabbits.
Double-outlet right ventricle revisited.
Ebadi, Ameneh; Spicer, Diane E; Backer, Carl L; Fricker, F Jay; Anderson, Robert H
2017-08-01
Double-outlet right ventricle is a form of ventriculoarterial connection. The definition formulated by the International Society for Nomenclature of Paediatric and Congenital Heart Disease is based on hearts with both arterial trunks supported in their greater part by a morphologically right ventricle. Bilateral infundibula and ventricular septal defects are highly debated criteria. This study examines the anatomic controversies surrounding double-outlet right ventricle. We show that hearts with double-outlet right ventricle can have atrioventricular-to-arterial valvular continuity. We emphasize the difference between the interventricular communication and the zone of deficient ventricular septation. The hearts examined were from the University of Florida in Gainesville; Johns Hopkins All Children's Hospital, St Petersburg, Fla; and Lurie Children's Hospital, Chicago, Ill. Each specimen had at least 75% of both arterial roots supported by the morphologically right ventricle, with a total of 100 hearts examined. The morphologic method was used to assess anatomic features, including arterial-atrioventricular valvular continuity, subarterial infundibular musculature, and the location of the hole between the ventricles. Most hearts had fibrous continuity between one of the arterial valves and an atrioventricular valve, with bilateral infundibula in 23%, and intact ventricular septum in 5%. Bilateral infundibula are not a defining feature of double-outlet right ventricle, representing only 23% of the specimens in our sample. The interventricular communication can have a posteroinferior muscular rim or extend to become perimembranous (58%). Double-outlet right ventricle can exist with an intact ventricular septum. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.
Brain, Matthew; Anderson, Mike; Parkes, Scott; Fowler, Peter
2012-12-01
To describe magnesium flux and serum concentrations in ICU patients receiving continuous venovenous haemodiafiltration (CVVHDF). Samples were collected from 22 CVVHDF circuits using citrate anticoagulation solutions (Prismocitrate 10/2 and Prism0cal) and from 26 circuits using Hemosol B0 and heparin anticoagulation. CVVHDF prescription, magnesium supplementation and anticoagulation choice was by the treating intensivist. We analysed 334 sample sets consisting of arterial, prefilter and postfilter blood and effluent. Magnesium loss was calculated from an equation for conservation of mass, and arterial magnesium concentration was described by an equation for exponential decay. Using flow rates typical of adults receiving CVVHDF, we determined a median half-life for arterial magnesium concentration to decay to a new steady state of 4.73 hours (interquartile range [IQR], 3.73-7.32 hours). Median arterial magnesium concentration was 0.88mmol/L (IQR, 0.83-0.97mmol/L) in the heparin group and 0.79mmol/L (IQR, 0.69-0.91mmol/L) in the citrate group. Arterial magnesium concentrations fell below the reference range regularly in the citrate group and, when low, there was magnesium flux from dialysate to patient. Magnesium loss was greater in patients receiving citrate. Exponential decline in magnesium concentrations was sufficiently rapid that subtherapeutic serum magnesium concentrations may occur well before detection when once-daily sampling was used. Measurements should be interpreted with regard to timing of magnesium infusions. We suggest that continuous renal replacement therapy fluids with higher magnesium concentrations be introduced in the critical care setting.
Patent ductus arteriosus associated with congenital anomaly of coronary artery.
Maleki, Majid; Azizian, Nassrin; Esmaeilzadeh, Maryam; Moradi, Bahieh
2013-11-01
We reported a case of patent ductus arteriosus (PDA) with congenital anomaly of coronary arteries as abnormal origin of right coronary artery (RCA) and left coronary artery (LCA) from a single ostium of the right coronary sinus. A 21-year-old man referred to our institution for evaluation of cardiac murmur. He has suffered from palpitation and atypical chest pain for three months. On physical examination, a continuous murmur was heard in the second left parasternal space. Transthoracic echocardiography showed normal left and right ventricular size and systolic function (LVEF = 55%). Main pulmonary artery (PA) and left pulmonary artery (LPA) branch were considerably dilated. Considering normal coronary flow, lack of clinical evidence of myocardial ischemia and echocardiography findings, patient underwent surgical closure of PDA via left thoracotomy and after five days discharged uneventfully.
Proietti, Stefania; De Baere, Thierry; Bessoud, Bertrand; Doenz, Francesco; Qanadli, Salah Dine; Schnyder, Pierre; Denys, Alban
2007-08-01
Herein we report the efficacy of embolization of small patent gastric or duodenal vessels for treating gastroduodenal complications after hepatic arterial infusion therapy (HAIC). Catheter ports were implanted percutaneously from a femoral approach in three cases or surgically in the gastroduodenal artery in two cases. Acute abdominal pain developed on average after four HAIC courses of 5FU-oxaliplatin, mytomycin, oxaliplatin or fotemustine. Esophagogastroduodenoscopy showed gastroduodenal lesions (gastroduodenitis with or without ulcerations) in all cases. Despite the interruption of the HAIC, symptoms persisted and led to selective hepatic arteriography showing a patent right gastric artery (n = 4) or a recanalized gastroduodenal artery (n = 1) responsible for gastroduodenal misperfusion. Successful embolizations of the arteries responsible for gastroduodenal misperfusion (right gastric artery in four cases and gastroduodenal artery in one case) using 0.018 platinium coils relieved the patients' symptoms and allowed the HAIC to continue. In gastroduodenal complications of HAIC, a selective hepatic arteriography should be performed to search any artery responsible for the misperfusion of the toxic agent in the gastroduodenal area. Embolization of these arteries allowed the HAIC to be restored.
Applications of Doppler ultrasound in clinical vascular disease
NASA Technical Reports Server (NTRS)
Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.
1975-01-01
Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.
A Comparison of Approaches to Detect Deception
2010-12-30
blood pressure has been demonstrated for this instrument (Fortin et al., 2006; Sackl- Pietsch , 2010). A sampling rate of 62.5 Hz is considerably...Psychophysiology, 15, 344-359. Sackl- Pietsch , E. (2010). Continuous non-invasive arterial pressure shows high accuracy in comparison to invasive intra-arterial
Gao, Yong-Zhe; Zhang, Jun-Jian; Liu, Hui; Wu, Guang-Yao; Xiong, Li; Shu, Min
2013-02-01
Hemodynamic disturbance in cerebral blood flow (CBF) is common in both Alzheimer's disease (AD) and vascular dementia (VaD).The aim of this study is to investigate the different patterns of regional cerebral blood flow (rCBF) change and cerebrovascular reactivity (CVR) in these two types of dementia. Mean flow velocity (MFV) of middle cerebral artery and rCBF were measured by Transcranial Doppler ultrasound (TCD) and arterial spin-labeling (ASL) magnetic resonance, separately. CVR was evaluated by MFV or rCBF change in response to 5% CO2 inhalation. The ASL results showed that, rCBF was significantly lower in both the bilateral frontal and temporal lobes in AD group and lower in left frontal and temporal white matter in patients with VaD. CVR calculated by rCBF was impaired more severely in bilateral frontal cortices in AD. Conversely, TCD tests failed to demonstrate significant difference in MFV and CVR between the two groups. It is concluded that the different patterns detected by ASL in resting rCBF change and cerebrovascular reactivity in response to carbogen inhalation may serve as a potential marker to distinguish AD and VaD.
Evidence for Management of Carotid Artery Stenosis
YOSHIDA, Kazumichi; MIYAMOTO, Susumu
2015-01-01
In this review, we presented the evidence concerning carotid artery stenosis treatment in symptomatic stenosis and asymptomatic stenosis separately, and discussed the future challenges. The validity of carotid endarterectomy (CEA) to treat moderate or greater degree of symptomatic carotid artery stenosis appears to be established. Due to the additional option of carotid artery stenting (CAS), it is necessary to comprehensively determine whether CEA or CAS is more appropriate for each individual patient. Moreover, since there are rapid advancements in devices for CAS and improvements in treatment outcomes, continual learning of the latest treatment method is essential. For asymptomatic stenosis, due to improvements in the outcomes with best medical treatment (BMT), it is essential to re-evaluate the use of invasive CEA/CAS. Continual verification of the latest randomized clinical trial that compares CEA, CAS, and BMT, and establishment of a diagnostic method that can accurately extract the group of patients who have the highest future risk of developing ischemia, are desired. PMID:25739437
A general explanation on the correlation of dark matter halo spin with the large-scale environment
NASA Astrophysics Data System (ADS)
Wang, Peng; Kang, Xi
2017-06-01
Both simulations and observations have found that the spin of halo/galaxy is correlated with the large-scale environment, and particularly the spin of halo flips in filament. A consistent picture of halo spin evolution in different environments is still lacked. Using N-body simulation, we find that halo spin with its environment evolves continuously from sheet to cluster, and the flip of halo spin happens both in filament and nodes. The flip in filament can be explained by halo formation time and migrating time when its environment changes from sheet to filament. For low-mass haloes, they form first in sheets and migrate into filaments later, so their mass and spin growth inside filament are lower, and the original spin is still parallel to filament. For high-mass haloes, they migrate into filaments first, and most of their mass and spin growth are obtained in filaments, so the resulted spin is perpendicular to filament. Our results well explain the overall evolution of cosmic web in the cold dark matter model and can be tested using high-redshift data. The scenario can also be tested against alternative models of dark matter, such as warm/hot dark matter, where the structure formation will proceed in a different way.
Higgs mechanism for gravity. II. Higher spin connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less
Implication of the presence of a variant hepatic artery during the Whipple procedure.
Rubio-Manzanares-Dorado, Mercedes; Marín-Gómez, Luis Miguel; Aparicio-Sánchez, Daniel; Suárez-Artacho, Gonzalo; Bellido, Carmen; Álamo, José María; Serrano-Díaz-Canedo, Juan; Padillo-Ruiz, Francisco Javier; Gómez-Bravo, Miguel Ángel
2015-07-01
The anatomical variants of the hepatic artery may have important implications for pancreatic cancer surgery. The aim of our study is to compare the outcome following a pancreatoduodenectomy (PD) in patients with or without a variant hepatic artery arising from superior mesenteric artery. We reviewed 151 patients with periampullary tumoral pathology. All patients underwent oncological PD between January 2005 and February 2012. Our series was divided into two groups: Group A: Patients with a hepatic artery arising from superior mesenteric artery; and Group B: Patients without a hepatic artery arising from superior mesenteric artery. We expressed the results as mean +/- standard deviation for continuous variables and percentages for qualitative variables. Statistical tests were considered significant if p < 0.05. We identified 11 patients with a hepatic artery arising from superior mesenteric artery (7.3%). The most frequent variant was an aberrant right hepatic artery (n = 7), following by the accessory right hepatic artery (n = 2) and the common hepatic artery trunk arising from the superior mesenteric artery (n = 2). In 73% of cases the diagnosis of the variant was intraoperative. R0 resection was performed in all patients with a hepatic artery arising from superior mesenteric artery. There were no significant differences in the tumor resection margins and the incidence of postoperative complications. Oncological PD is feasible by the presence of a hepatic artery arising from superior mesenteric artery. The complexity of having it does not seem to influence in tumor resection margins, complications and survival.
Hellman, Yaron; Malik, Adnan S; Lane, Kathleen A; Shen, Changyu; Wang, I-Wen; Wozniak, Thomas C; Hashmi, Zubair A; Munson, Sarah D; Pickrell, Jeanette; Caccamo, Marco A; Gradus-Pizlo, Irmina; Hadi, Azam
2017-05-01
Currently, blood pressure (BP) measurement is obtained noninvasively in patients with continuous flow left ventricular assist device (LVAD) by placing a Doppler probe over the brachial or radial artery with inflation and deflation of a manual BP cuff. We hypothesized that replacing the Doppler probe with a finger-based pulse oximeter can yield BP measurements similar to the Doppler derived mean arterial pressure (MAP). We conducted a prospective study consisting of patients with contemporary continuous flow LVADs. In a small pilot phase I inpatient study, we compared direct arterial line measurements with an automated blood pressure (ABP) cuff, Doppler and pulse oximeter derived MAP. Our main phase II study included LVAD outpatients with a comparison between Doppler, ABP, and pulse oximeter derived MAP. A total of five phase I and 36 phase II patients were recruited during February-June 2014. In phase I, the average MAP measured by pulse oximeter was closer to arterial line MAP rather than Doppler (P = 0.06) or ABP (P < 0.01). In phase II, pulse oximeter MAP (96.6 mm Hg) was significantly closer to Doppler MAP (96.5 mm Hg) when compared to ABP (82.1 mm Hg) (P = 0.0001). Pulse oximeter derived blood pressure measurement may be as reliable as Doppler in patients with continuous flow LVADs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Continuous neonatal blood gas monitoring using a multiparameter intra-arterial sensor
Morgan, C; Newell, S; Ducker, D; Hodgkinson, J; White, D; Morley, C; Church, J
1999-01-01
AIMS—To compare arterial blood gas (ABG) readings obtained with a multiparameter intra-arterial sensor with those from an ABG analyser. METHODS—An MPIAS with the ability to measure continuously pH, PaCO2, and PaO2 was introduced via an umbilical arterial catheter in 27 neonates requiring intensive care. They underwent 3260 hours of MPIAS monitoring, during which 753 ABG readings were performed. RESULTS—Overall bias (mean difference: MPIAS-ABG) and precision (standard deviation of differences) values were: −0.002 and 0.022,respectively, for pH; +0.26 and 0.52 for PaCO2 (kPa); and −0.19 and 0.99 for PaO2 (kPa). This gave 95% limits of agreement as: −0.047 to +0.042 for pH, −0.76 to +1.28 kPa for PaCO2, and −2.13 to +1.75 kPa for PaO2. For each variable, precision across readings from the same individual was better than overall precision for all data. No complications related to the use of the catheter were observed. CONCLUSIONS—Continuous MPIAS ABG monitoring is an exciting development, with the potential to reduce blood transfusions and improve ABG homeostasis. PMID:10325783
Validation of the pulse decomposition analysis algorithm using central arterial blood pressure
2014-01-01
Background There is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures. Methods Central arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system. Results Qualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)). Conclusions The results indicate that arterial blood pressure can be accurately measured and tracked noninvasively and continuously using the CareTaker system and the PDA algorithm. The results further support the physical model that all of the features of the pressure pulse envelope, whether in the central arteries or in the arterial periphery, can be explained by the interaction of the left ventricular ejection pressure pulse with two centrally located reflection sites. PMID:25005686
Ardeleanu, V; Chicoş, S; Tutunaru, D; Georgescu, C
2014-01-01
In classical anatomic variants, the proper hepatic artery (PHA)continues the common hepatic artery (CHA) after the gastroduodenal artery (GDA) detaches itself and divides into the right hepatic artery (RHA) and left hepatic artery (LHA), the proper hepatic artery being located to the left of the hepatocholedochal duct (HCD). This paper presents an abnormal positioning of the PHA placed before the HCD with an increased diameter of about 5-7 mm, which could be confused with the HCD. We present the case of a 57 year-old woman diagnosed with acute lithiasic cholecystitis, associated with hypersplenism and hypertension. The literature mentions manifold anatomical variants of arterial liver vascularization,including PHA. For this reason, this paper presents an overview of similar cases that can be found in medical literature. The aforementioned case is a rare topographic anatomy for the PHA that can easily pass for HCD especially during celioscopy, therefore it is crucial for this to be acknowledged by all surgeons. Celsius.
EPR oximetry in three spatial dimensions using sparse spin distribution
NASA Astrophysics Data System (ADS)
Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Vikram, Deepti S.; Kuppusamy, Periannan
2008-08-01
A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid measurement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is employed to create a sparse distribution of spins in a volume of interest. Information encoding location and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oximetry method is experimentally demonstrated for a lithium octa- n-butoxy naphthalocyanine (LiNc-BuO) probe using an L-band EPR spectrometer.
Superselective Urokinase Infusion Therapy for Dorsalis Pedis Artery Occlusion in Buerger's Disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Yasushi; Kichikawa, Kimihiko; Uchida, Hideo
1997-09-15
Occlusion of the proximal left dorsalis pedis artery (DPA) in a patient with Buerger's disease was treated by continuous urokinase intraarterial infusion using a microcatheter. Recanalization of the DPA and healing of a toe ulcer were achieved. The patient remains asymptomatic during a 4-year follow-up.
ERIC Educational Resources Information Center
Physician and Sportsmedicine, 1987
1987-01-01
In a roundtable format, five doctors explore the reasons why regular physical activity should continue to play a significant role in the rehabilitation of patients with coronary artery disease. Endurance exercise training improves aerobic capacity, reduces blood pressure, and decreases risk. (Author/MT)
Continuity properties of the semi-group and its integral kernel in non-relativistic QED
NASA Astrophysics Data System (ADS)
Matte, Oliver
2016-07-01
Employing recent results on stochastic differential equations associated with the standard model of non-relativistic quantum electrodynamics by B. Güneysu, J. S. Møller, and the present author, we study the continuity of the corresponding semi-group between weighted vector-valued Lp-spaces, continuity properties of elements in the range of the semi-group, and the pointwise continuity of an operator-valued semi-group kernel. We further discuss the continuous dependence of the semi-group and its integral kernel on model parameters. All these results are obtained for Kato decomposable electrostatic potentials and the actual assumptions on the model are general enough to cover the Nelson model as well. As a corollary, we obtain some new pointwise exponential decay and continuity results on elements of low-energetic spectral subspaces of atoms or molecules that also take spin into account. In a simpler situation where spin is neglected, we explain how to verify the joint continuity of positive ground state eigenvectors with respect to spatial coordinates and model parameters. There are no smallness assumptions imposed on any model parameter.
Bypass grafting to the anterior tibial artery.
Armour, R H
1976-01-01
Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.
Does space-time torsion determine the minimum mass of gravitating particles?
NASA Astrophysics Data System (ADS)
Böhmer, Christian G.; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2018-03-01
We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.
Does space-time torsion determine the minimum mass of gravitating particles?
Böhmer, Christian G; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J
2018-01-01
We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.
Brachiomedian artery (arteria brachiomediana) revisited: a comprehensive review
Kachlik, David; Konarik, Marek; Riedlova, Jitka; Baca, Vaclav
2016-01-01
This article reviews in detail the superficial brachiomedian artery (arteria brachiomediana superficialis), a very rare variant of the main arterial trunks of the upper limb. It branches either from the axillary artery or the brachial artery, descends superficially in the arm (similar to the course of the superficial brachial artery) and continues across the cubital fossa, runs superficially in the forearm, approaches the median nerve and enters the carpal canal to reach the hand. It usually terminates in the superficial palmar arch. The first drawing was published, in 1830, and the first description was published, in 1844. Altogether, to our knowledge, only 31 cases of a true, superficial brachiomedian artery have been reported (Some cases are incorrectly reported as superficial brachioradiomedian artery or superficial brachioulnomedian artery). Based on a meta-analysis of known, available studies, the incidence is 0.23% in Caucasians and 1.48% in Mongolians. Knowing whether or not this arterial variant is present is important in clinical medicine and relevant for: The catheterization via the radial or ulnar artery; harvesting the vascular pedicle for a forearm flap based on the radial, ulnar or superficial brachiomedian arteries; the possible collateral circulation in cases of the arterial closure; and the surgical management of carpal tunnel syndrome. Its presence can elevate the danger of an injury to the superficially located variant artery or of an accidental injection. PMID:27131025
NASA Astrophysics Data System (ADS)
Saiko, A. P.; Fedaruk, R.; Markevich, S. A.
2018-05-01
The decay of Rabi oscillations provides direct information about coherence of electron spins. When observed in EPR experiments, it is often shortened by spatial inhomogeneity of the microwave field amplitude in a bulk sample. In order to suppress this undesired loss of coherence, we propose an additional dressing of spin states by a weak longitudinal continuous radiofrequency field. The Gaussian, cosine and linear distributions of the microwave amplitude is analyzed. Our calculations of the Rabi oscillations between the doubly dressed spin states show that for all these distributions the maximum suppression of the inhomogeneity-induced decoherence is achieved at the so-called Rabi resonance when the radio-field frequency is in resonance with the Rabi frequency of spins in the microwave field. The manifestations of such suppression in the published EPR experiments with the bichromatic driving are discussed. The realization of the Rabi resonance using the radiofrequency field could open new possibilities for separating the contributions of relaxation mechanisms from those due to the inhomogeneous driving in spin decoherence.
Flip-flopping binary black holes.
Lousto, Carlos O; Healy, James
2015-04-10
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy
NASA Astrophysics Data System (ADS)
Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.
2017-12-01
We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.
Ultimate limits for quantum magnetometry via time-continuous measurements
NASA Astrophysics Data System (ADS)
Albarelli, Francesco; Rossi, Matteo A. C.; Paris, Matteo G. A.; Genoni, Marco G.
2017-12-01
We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J subjected to collective transverse noise. By preparing an initial spin coherent state, for any measurement performed after the evolution, the mean-square error of the estimate is known to scale as 1/J, i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously monitoring the atomic environment, and conclusively show that strategies based on time-continuous non-demolition measurements followed by a final strong measurement may achieve Heisenberg-limited scaling 1/{J}2 and also a monitoring-enhanced scaling in terms of the interrogation time. We also find that time-continuous schemes are robust against detection losses, as we prove that the quantum enhancement can be recovered also for finite measurement efficiency. Finally, we analytically prove the optimality of our strategy.
Cramer, Joel; Seifert, Tom; Kronenberg, Alexander; Fuhrmann, Felix; Jakob, Gerhard; Jourdan, Martin; Kampfrath, Tobias; Kläui, Mathias
2018-02-14
We measure the inverse spin Hall effect of Cu 1-x Ir x thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05 ⩽ x ⩽ 0.7). Spin currents are triggered through the spin Seebeck effect, either by a continuous (dc) temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by electrical contacts or measurement of the emitted terahertz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, nonmonotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, whereas a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu 1-x Ir x . The coinciding results obtained for dc and ultrafast stimuli provide further support that the spin Seebeck effect extends to terahertz frequencies, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime. Our findings also show that the studied material allows for efficient spin-to-charge conversion even on ultrafast time scales.
Polarized lepton-nucleon scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, E.
1994-12-01
The author provides a summary of the proposed and published statistical (systematic) uncertainties from the world experiments on nucleon spin structure function integrals. By the time these programs are complete, there will be a vast resource of data on nucleon spin structure functions. Each program has quite different experimental approaches regarding the beams, targets, and spectrometers thus ensuring systematically independent tests of the spin structure function measurements. Since the field of spin structure function measurements began, there has been a result appearing approximately every five years. With advances in polarized target technology and high polarization in virtually all of themore » lepton beams, results are now coming out each year; this is a true signature of the growth in the field. Hopefully, the experiments will provide a consistent picture of nucleon spin structure at their completion. In summary, there are still many open questions regarding the internal spin structure of the nucleon. Tests of QCD via the investigation of the Bjorken sum rule is a prime motivator for the field, and will continue with the next round of precision experiments. The question of the origin of spin is still a fundamental problem. Researchers hope is that high-energy probes using spin will shed light on this intriguing mystery, in addition to characterizing the spin structure of the nucleon.« less
The extraction of the spin structure function, g2 (and g1) at low Bjorken x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ndukum, Luwani Z.
2015-08-01
The Spin Asymmetries of the Nucleon Experiment (SANE) used the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA to investigate the spin structure of the proton. The experiment measured inclusive double polarization electron asymmetries using a polarized electron beam, scattered off a solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were used. The scattered electrons were detected by a novel, non-magnetic arraymore » of detectors observing a four-momentum transfer range of 2.5 to 6.5 GeV*V. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function, g2 (and g1) at low Bjorken x. The spin structure functions were measured as a function of x and W in four Q square bins. A full understanding of the low x region is necessary to get clean results for SANE and extend our understanding of the kinematic region at low x.« less
Advances in graphene spintronics
NASA Astrophysics Data System (ADS)
van Wees, Bart
I will give an overview of the status of graphene spintronics, from both scientific as technological perspectives. In the introduction I will show that (single) layer graphene is the ideal host for electronic spins, allowing spin transport by diffusion over distances exceeding 20 micrometers at room temperature. I will show how by the use of carrier drift, induced by charge currents, effective spin relaxation lengths of 90 micrometer can be obtained in graphene encapsulated between boron-nitride layers. This also allows the controlled flow and guiding of spin currents, opening new avenues for spin logic devices based on lateral architectures. By preparing graphene on top of a ferromagnetic insulator (yttrium iron garnet (YIG)) we have shown that we can induce an exchange interaction in the graphene, thus effectively making the graphene magnetic. This allows for new ways to induce and control spin precession for new applications. Finally I will show how, by using two-layer BN tunnel barriers, spins can be injected from a ferromagnet into graphene with a spin polarization which can be tuned continuously from -80% to 40%, using a bias range from -0.3V to 0.3V across the barrier. These unique record values of the spin polarization are not yet understood, but they highlight the potential of Van der Waals stacking of graphene and related 2D materials for spintronics.
Use of an Intravascular Fluorescent Continuous Glucose Sensor in ICU Patients.
Strasma, Paul J; Finfer, Simon; Flower, Oliver; Hipszer, Brian; Kosiborod, Mikhail; Macken, Lewis; Sechterberger, Marjolein; van der Voort, Peter H J; DeVries, J Hans; Joseph, Jeffrey I
2015-07-01
Hyperglycemia and hypoglycemia are associated with adverse clinical outcomes in intensive care patients. In product development studies at 4 ICUs, the safety and performance of an intravascular continuous glucose monitoring (IV-CGM) system was evaluated in 70 postsurgical patients. The GluCath System (GluMetrics, Inc) used a quenched chemical fluorescence mechanism to optically measure blood glucose when deployed via a radial artery catheter or directly into a peripheral vein. Periodic ultrasound assessed blood flow and thrombus formation. Patient glucose levels were managed according to the standard of care and existing protocols at each site. Reference blood samples were acquired hourly and compared against prospectively calibrated sensor results. In all, 63 arterial sensors and 9 venous sensors were deployed in 70 patients. Arterial sensors did not interfere with invasive blood pressure monitoring, sampling or other aspects of patient care. A majority of venous sensors (66%) exhibited thrombus on ultrasound. In all, 89.4% (1383/1547) of arterial and 72.2% (182/252) of venous measurements met ISO15197:2003 criteria (within 20%), and 72.7% (1124/1547) of arterial and 56.3% (142/252) of venous measurements met CLSI POCT 12-A3 criteria (within 12.5%). The aggregate mean absolute relative difference (MARD) between the sensors and the reference was 9.6% for arterial and 14.2% for venous sensors. The GluCath System exhibited acceptable accuracy when deployed in a radial artery for up to 48 hours in ICU patients after elective cardiac surgery. Accuracy of venous deployment was substantially lower with significant rates of intravascular thrombus observed using ultrasound. © 2015 Diabetes Technology Society.
2009-09-01
identified the high density (3000 Hounsfield Units ) intravascular pulmonary fragment in the same location, right lower lobe pulmonary artery, measuring...debridement and a four- compartment fasciotomy due to increasing compartment pressures. Anticoagulation was continued, 4 units of blood Report...NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Uniformed
NASA Technical Reports Server (NTRS)
Scudder, N F
1935-01-01
The investigation of the effect of mass distribution on the spinning of airplanes initiated with tests on the NY-1 airplane has been continued by tests on another airplane in order to increase the scope of the information and to observe particularly the behavior of an airplane that shows considerable change in sideslip angle for its various conditions of spinning. The XN2Y-1 naval training biplane was used for the present tests in which changes of ballast along the longitudinal and lateral axes and changes of aileron, stabilizer, and elevator settings were made. The effects of these changes on the steady spin were measured in flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, G.; Miller, R.; Ogden, L.
2016-09-05
Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrummore » with increasing frequency.« less
Veno-arterial extracorporeal membrane oxygenation for adult cardiovascular failure.
Pellegrino, Vincent; Hockings, Lisen E; Davies, Andrew
2014-10-01
To examine the utility and technical challenges of applying veno-arterial extracorporeal membrane oxygenation for acute cardiovascular failure in adults with acute and chronic causes of heart failure. The role of mechanical circulatory support in acute cardiovascular continues to evolve as technology and clinical experience develop. There is increasing interest in the role of veno-arterial extracorporeal membrane oxygenation as a bridging therapy and as an adjunct to conventional cardiopulmonary resuscitation. Veno-arterial extracorporeal membrane oxygenation is an expensive, complex, resource intensive support. It is essential that its future use be guided by evidence obtained from centres that have demonstrated timely, safe support.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bojtos, P.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dartez, L.; Dattilo, V.; Dave, I.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gatto, A.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heidmann, A.; Heintze, M.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Kutynia, A.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mangano, V.; Mansell, G. L.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meacher, D.; Meadors, G. D.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Reula, O.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Serafinelli, R.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Swinkels, B.; Szczepanczyk, M.; Szeifert, G.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
NASA Technical Reports Server (NTRS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Adams, T.;
2015-01-01
In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.
Bosons with Synthetic Rashba Spin-Orbit Coupling at Finite Power
NASA Astrophysics Data System (ADS)
Anderson, Brandon; Clark, Charles
2013-05-01
Isotropic spin-orbit couplings, such as Rashba in two dimensions, have a continuous symmetry that produces a large degeneracy in the momentum-space dispersion. This degeneracy leads to an enhanced density-of-states, producing novel phases in systems of bosonic atoms. This model is idealistic, however, in that the symmetry of the lasers will weakly break the continuous symmetry to a discrete one in experimental manifestations. This perturbation typically scales inversely with the optical power, and only at infinite power will ideal symmetry be restored. In this talk, we consider the effects of this weak symmetry breaking in a system of bosons at finite power with synthetic Rashba coupling. We solve the mean-field equations and find new phases, such as a stripe phase with a larger symmetry group. We then consider the experimentally relevant scheme where the spin-orbit fields are turned on adiabatically from an initial spin-polarized state. At intermediate power, stripe phases are found, while at sufficiently high power it appears that the system quenches to phases similar to that of the ideal limit. Techniques for optimizing the adiabatic ramping sequence are discussed. NSF PFC Grant PHY-0822671 and by the ARO under the DARPA OLE program.
Ferromagnetic resonance in a topographically modulated permalloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklenar, J.; Tucciarone, P.; Lee, R. J.
2015-04-01
A major focus within the field of magnonics involves the manipulation and control spin wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the magnon spectrum. To demonstrate this technique we have performed in-plane, broad-band, ferromagnetic res- onance studies on a 100 nm Permalloy film sputtered unto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were studied as a function ofmore » the in plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary spin wave modes; the ratio of the amplitude of these two modes exhibits a six-fold dependence. Modeling shows that both modes are fundamental modes that are nodeless in the unit cell but reside in different demagnetized regions of the unit cell. Additionally, modeling suggests the presence of new higher order topographically modified spin wave modes. Our results demonstrate that topographic modification of magnetic thin films opens new directions for manipulating spin wave modes.« less
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas
2017-05-01
Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer). Copyright © 2017 Elsevier B.V. All rights reserved.
Measurement of complete and continuous Wigner functions for discrete atomic systems
NASA Astrophysics Data System (ADS)
Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai
2018-01-01
We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.
Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Rojas-Sánchez, Juan-Carlos; Pham, Thai Ha; Vallobra, Pierre; Malinowski, Gregory; Lacour, Daniel; Fache, Thibaud; Cyrille, Marie-Claire; Kim, Dae-Yun; Choe, Sug-Bong; Belmeguenai, Mohamed; Hehn, Michel; Mangin, Stéphane; Gaudin, Gilles; Boulle, Olivier
2018-02-01
We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.
NASA Astrophysics Data System (ADS)
Czachor, A.
2008-04-01
For the Kittel-Shore-Kac interspin coupling K/N between N Ising spins the ferromagnetic phase transition in specific heat vs. T plot has appeared in literature as a purely mathematical phenomenon, via the exact calculation of the sum of states Z(T) and subsequent differentiations with respect to temperature T. Physical nature of the transition remains in such derivation invisible. As it is expected to be related to the interaction/temperature competition in populating energy levels of the system, in this paper we construct the density of energy states D(E) (or energy spectrum) of such systems, both for the ferromagnetic (K > 0) and antiferromagnetic (K < 0) coupling between spins. This allows one to see the essence of the difference between these systems as related to the discrete vs. quasi-continuous shape of the spectra at low energy states.
Automated detection of arterial input function in DSC perfusion MRI in a stroke rat model
NASA Astrophysics Data System (ADS)
Yeh, M.-Y.; Lee, T.-H.; Yang, S.-T.; Kuo, H.-H.; Chyi, T.-K.; Liu, H.-L.
2009-05-01
Quantitative cerebral blood flow (CBF) estimation requires deconvolution of the tissue concentration time curves with an arterial input function (AIF). However, image-based determination of AIF in rodent is challenged due to limited spatial resolution. We evaluated the feasibility of quantitative analysis using automated AIF detection and compared the results with commonly applied semi-quantitative analysis. Permanent occlusion of bilateral or unilateral common carotid artery was used to induce cerebral ischemia in rats. The image using dynamic susceptibility contrast method was performed on a 3-T magnetic resonance scanner with a spin-echo echo-planar-image sequence (TR/TE = 700/80 ms, FOV = 41 mm, matrix = 64, 3 slices, SW = 2 mm), starting from 7 s prior to contrast injection (1.2 ml/kg) at four different time points. For quantitative analysis, CBF was calculated by the AIF which was obtained from 10 voxels with greatest contrast enhancement after deconvolution. For semi-quantitative analysis, relative CBF was estimated by the integral divided by the first moment of the relaxivity time curves. We observed if the AIFs obtained in the three different ROIs (whole brain, hemisphere without lesion and hemisphere with lesion) were similar, the CBF ratios (lesion/normal) between quantitative and semi-quantitative analyses might have a similar trend at different operative time points. If the AIFs were different, the CBF ratios might be different. We concluded that using local maximum one can define proper AIF without knowing the anatomical location of arteries in a stroke rat model.
Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B
2013-11-30
This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.
Arterial Wall Imaging in Pediatric Stroke.
Dlamini, Nomazulu; Yau, Ivanna; Muthusami, Prakash; Mikulis, David J; Elbers, Jorina; Slim, Mahmoud; Askalan, Rand; MacGregor, Daune; deVeber, Gabrielle; Shroff, Manohar; Moharir, Mahendranath
2018-04-01
Arteriopathy is common in childhood arterial ischemic stroke (AIS) and predicts stroke recurrence. Currently available vascular imaging techniques mainly image the arterial lumen rather than the vessel wall and have a limited ability to differentiate among common arteriopathies. We aimed to investigate the value of a magnetic resonance imaging-based technique, namely noninvasive arterial wall imaging (AWI), for distinguishing among arteriopathy subtypes in a consecutive cohort of children presenting with AIS. Children with confirmed AIS and magnetic resonance angiography underwent 3-Tesla AWI including T1-weighted 2-dimensional fluid-attenuated inversion recovery fast spin echo sequences pre- and post-gadolinium contrast. AWI characteristics, including wall enhancement, wall thickening, and luminal stenosis, were documented for all. Twenty-six children with AIS had AWI. Of these, 9 (35%) had AWI enhancement. AWI enhancement was associated with anterior circulation magnetic resonance angiography abnormality and cortical infarction in 8 of 9 (89%) children and normal magnetic resonance angiography with posterior circulation subcortical infarction in 1 (1 of 9; 11%) child. AWI enhancement was not seen in 17 (65%), 10 (59%) of whom had an abnormal magnetic resonance angiography. Distinct patterns of pre- and postcontrast signal abnormality were demonstrated in the vessel wall in the region of interest in children with transient cerebral arteriopathy, arterial dissection, primary central nervous system angiitis, dissecting aneurysm, and cardioembolic stroke. AWI is a noninvasive, high-resolution magnetic resonance AWI technique, which can be successfully used in children presenting with AIS. Patterns of AWI enhancement are recognizable and associated with specific AIS pathogeneses. Further studies are required to assess the additional diagnostic utility of AWI over routine vascular imaging techniques, in childhood AIS. © 2018 American Heart Association, Inc.
Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.
Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M
2017-01-01
Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Percutaneous Femoropopliteal Recanalization Using a Completely Transpedal/Transtibial Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Timothy W.I., E-mail: timothy.clark@uphs.upenn.edu; Watts, Micah M.; Kwan, Tak W.
PurposeTo report preliminary experience with femoropopliteal revascularization using a completely transpedal/transtibial approach.Materials and MethodsThree patients with Rutherford 3–4 disease underwent revascularization of TASC C/D lesions using a pedal/tibial artery as the only site of arterial access.ResultsOne patient with a chronic superficial femoral artery occlusion had continuity achieved to the common femoral artery using a dedicated reentry device and stenting; in a second patient, an occluded popliteal artery stent was successfully revised with an endograft; and in a third patient with morbid obesity, a chronic SFA occlusion was successfully stented. All patients experienced complete resolution of presenting symptoms; no puncture sitemore » complications were seen.ConclusionsUse of a pedal/tibial approach as the sole site of arterial access may become an important access technique for femoropopliteal revascularization when patients have limited femoral access options.« less
NASA Astrophysics Data System (ADS)
Shimazaki, Natsumi; Naruse, Sho; Arai, Tsunenori; Imanishi, Nobuaki; Aiso, Sadakazu
2013-03-01
The purpose of this study was to investigate the artery dilatation performance of the short-duration heating balloon catheter in cadaver stenotic arteries. We designed a prototype short-duration heating balloon catheter that can heat artery media to around 60 °C in 15-25 s by a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. We performed ex vivo short-duration heating dilatation in the cadaver atherosclerotic femoral arteries (initial percent diameter stenosis was 36-98%), with the maximum balloon temperature of 65+/-5 °C, laser irradiation duration of 25 s, and balloon dilatation pressure of 3.5 atm. The artery lumen configurations before and after the dilatations were assessed with a commercial IVUS system. After the short-duration heating dilatations, the percent diameter stenosis was reduced below 30% without any artery tears or dissections. We estimated that the artery media temperature was raised to around 60 °C in which plaque thickness was below 0.8 mm by a thermal conduction calculation. The estimated maximum temperature in artery adventitia and surrounding tissue was up to 45 °C. We found that the short-duration heating balloon could sufficiently dilate the cadaver stenotic arteries, without thermal injury in artery adventitia and surroundings.
Maeda, Ryoko; Kohno, Yumiko; Hoshino, Hajime; Suzuki, Hideo; Hirabayashi, Yoshiyuki; Seo, Norimasa
2003-08-01
A 48-year-old woman with aortitis syndrome underwent clipping of dissecting aneurysm of the left posterior inferior cerebellar artery following subarachnoid hemorrhage. Preoperative echocardiography demonstrated moderate aortic regurgitation and pulmonary hypertension. Intravenous infusion (1900 ml.day-1) was performed to avoid cerebral vasospasm, but the patient developed lung edema. She received delayed surgical treatment after the improvement of lung symptoms. Anesthesia was induced with fentanyl (0.1 mg), propofol (90 mg) and vecuronium (6 mg). Radial arterial flow was judged to be insufficient for cannulation, and a cannulation was therefore performed on the dorsal pedis artery. During induction of anesthesia, there was a significant decrease in the arterial pressure, that required a total of 32 mg of intravenous ephedrine. Following tracheal intubation, a central venous catheter was inserted and dopamine was continuously administered. The patient was positioned in the park bench position. We thought that the placement of the introducer for Swan-Ganz catheter was difficult under the position and Swan-Ganz catheter was not inserted. Anesthesia was maintained with sevoflurane, air, and oxygen. We continuously monitored the central venous pressure as an indicator of fluid balance. In this case, we monitored dorsal pedis arterial pressure directly, which might not be sufficiently reliable to predict the decrease in cerebral blood flow.
Single source photoplethysmograph transducer for local pulse wave velocity measurement.
Nabeel, P M; Joseph, Jayaraj; Awasthi, Vartika; Sivaprakasam, Mohanasankar
2016-08-01
Cuffless evaluation of arterial blood pressure (BP) using pulse wave velocity (PWV) has received attraction over the years. Local PWV based techniques for cuffless BP measurement has more potential in accurate estimation of BP parameters. In this work, we present the design and experimental validation of a novel single-source Photoplethysmograph (PPG) transducer for arterial blood pulse detection and cycle-to-cycle local PWV measurement. The ability of the transducer to continuously measure local PWV was verified using arterial flow phantom as well as by conducting an in-vivo study on 17 volunteers. The single-source PPG transducer could reliably acquire dual blood pulse waveforms, along small artery sections of length less than 28 mm. The transducer was able to perform repeatable measurements of carotid local PWV on multiple subjects with maximum beat-to-beat variation less than 12%. The correlation between measured carotid local PWV and brachial BP parameters were also investigated during the in-vivo study. Study results prove the potential use of newly proposed single-source PPG transducers in continuous cuffless BP measurement systems.
Barzgari, Amy; Sojkova, Jitka; Maritza Dowling, N; Pozorski, Vincent; Okonkwo, Ozioma C; Starks, Erika J; Oh, Jennifer; Thiesen, Frances; Wey, Alexandra; Nicholas, Christopher R; Johnson, Sterling; Gallagher, Catherine L
2018-05-09
Parkinson's disease (PD) is an age-related neurodegenerative disease that produces changes in movement, cognition, sleep, and autonomic function. Motor learning involves acquisition of new motor skills through practice, and is affected by PD. The purpose of the present study was to evaluate regional differences in resting cerebral blood flow (rCBF), measured using arterial spin labeling (ASL) MRI, during a finger-typing task of motor skill acquisition in PD patients compared to age- and gender-matched controls. Voxel-wise multiple linear regression models were used to examine the relationship between rCBF and several task variables, including initial speed, proficiency gain, and accuracy. In these models, a task-by-disease group interaction term was included to investigate where the relationship between rCBF and task performance was influenced by PD. At baseline, perfusion was lower in PD subjects than controls in the right occipital cortex. The task-by-disease group interaction for initial speed was significantly related to rCBF (p < 0.05, corrected) in several brain regions involved in motor learning, including the occipital, parietal, and temporal cortices, cerebellum, anterior cingulate, and the superior and middle frontal gyri. In these regions, PD patients showed higher rCBF, and controls lower rCBF, with improved performance. Within the control group, proficiency gain over 12 typing trials was related to greater rCBF in cerebellar, occipital, and temporal cortices. These results suggest that higher rCBF within networks involved in motor learning enable PD patients to compensate for disease-related deficits.
Boscolo Galazzo, Ilaria; Storti, Silvia Francesca; Del Felice, Alessandra; Pizzini, Francesca Benedetta; Arcaro, Chiara; Formaggio, Emanuela; Mai, Roberto; Chappell, Michael; Beltramello, Alberto; Manganotti, Paolo
2015-01-01
Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients. PMID:25946055
Mild Thyrotoxicosis Leads to Brain Perfusion Changes: An Arterial Spin Labelling Study.
Göbel, A; Heldmann, M; Sartorius, A; Göttlich, M; Dirk, A-L; Brabant, G; Münte, T F
2017-01-01
Hypo- and hyperthyroidism have effects on brain structure and function, as well as cognitive processes, including memory. However, little is known about the influence of thyroid hormones on brain perfusion and the relationship of such perfusion changes with cognition. The present study aimed to demonstrate the effect of short-term experimental hyperthyroidism on brain perfusion in healthy volunteers and to assess whether perfusion changes, if present, are related to cognitive performance. It is known that an interaction exists between brain perfusion and cerebral oxygen consumption rate and it is considered that neural activation increases cerebral regional perfusion rate in brain areas associated with memory. Measuring cerebral blood flow may therefore represent a proxy for neural activity. Therefore, arterial spin labelling (ASL) measurements were conducted and later analysed to evaluate brain perfusion in 29 healthy men before and after ingesting thyroid hormones for 8 weeks. Psychological tests concerning memory were performed at the same time-points and the results were correlated with the imaging results. In the hyperthyroid condition, perfusion was increased in the posterior cerebellum in regions connected with cerebral networks associated with cognitive control and the visual cortex compared to the euthyroid condition. In addition, these perfusion changes were positively correlated with changes of performance in the German version of the Auditory Verbal Learning Task [AVLT, Verbaler Lern-und-Merkfähigkeits-Test (VLMT)]. Cerebellar perfusion and function therefore appears to be modulated by thyroid hormones, likely because the cerebellum hosts a high number of thyroid hormone receptors. © 2016 British Society for Neuroendocrinology.
Bangen, Katherine J; Restom, Khaled; Liu, Thomas T; Wierenga, Christina E; Jak, Amy J; Salmon, David P; Bondi, Mark W
2012-01-01
Functional magnetic resonance imaging (fMRI) of older adults at risk for Alzheimer's disease (AD) by virtue of their cognitive (i.e., mild cognitive impairment [MCI]) and/or genetic (i.e., apolipoprotein E [APOE] ε4 allele) status demonstrate divergent brain response patterns during memory encoding across studies. Using arterial spin labeling MRI, we examined the influence of AD risk on resting cerebral blood flow (CBF) as well as the CBF and blood oxygenation level dependent (BOLD) signal response to memory encoding in the medial temporal lobes (MTL) in 45 older adults (29 cognitively normal [14 APOE ε4 carriers and 15 noncarriers]; 16 MCI [8 APOE ε4 carriers, 8 noncarriers]). Risk groups were comparable in terms of mean age, years of education, gender distribution, and vascular risk burden. Individuals at genetic risk for AD by virtue of the APOE ε4 allele demonstrated increased MTL resting state CBF relative to ε4 noncarriers, whereas individuals characterized as MCI showed decreased MTL resting state CBF relative to their cognitively normal peers. For percent change CBF, there was a trend toward a cognitive status by genotype interaction. In the cognitively normal group, there was no difference in percent change CBF based on APOE genotype. In contrast, in the MCI group, APOE ε4 carriers demonstrated significantly greater percent change in CBF relative to ε4 noncarriers. No group differences were found for BOLD response. Findings suggest that abnormal resting state CBF and CBF response to memory encoding may be early indicators of brain dysfunction in individuals at risk for developing AD.
Cutajar, Marica; Thomas, David L; Hales, Patrick W; Banks, T; Clark, Christopher A; Gordon, Isky
2014-06-01
To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min(-1) [100 ml tissue](-1), and using DCE MRI was 287 ± 70 ml min(-1) [100 ml tissue](-1). The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable. Renal arterial spin labelling MRI is robust and repeatable. Renal dynamic contrast-enhanced MRI is robust and repeatable. ASL blood flow values are similar to those obtained using DCE-MRI.
Cutajar, Marica; Hilton, Rachel; Olsburgh, Jonathon; Marks, Stephen D; Thomas, David L; Banks, Tina; Clark, Christopher A; Gordon, Isky
2015-08-01
Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.
Artz, Nathan S; Wentland, Andrew L; Sadowski, Elizabeth A; Djamali, Arjang; Grist, Thomas M; Seo, Songwon; Fain, Sean B
2011-02-01
The purpose of this study was to assess the ability of a flow-sensitive alternating inversion recovery-arterial spin labeling (FAIR-ASL) technique to track renal perfusion changes during pharmacologic and physiologic alterations in renal blood flow using microspheres as a gold standard. Fluorescent microsphere and FAIR-ASL perfusion were compared in the cortex of the kidney for 11 swine across 4 interventional time points: (1) under baseline conditions, (2) during an acetylcholine and fluid bolus challenge to increase perfusion, (3) initially after switching to isoflurane anesthesia, and (4) after 2 hours of isoflurane anesthesia. In 10 of the 11 swine, a bag of ice was placed on the hilum of 1 kidney at the beginning of isoflurane administration to further reduce perfusion in 1 kidney. Both ASL and microspheres tracked the expected cortical perfusion changes (P < 0.02) across the interventions, including an increase in perfusion during the acetylcholine challenge and decrease during the administration of isoflurane. Both techniques also measured lower cortical perfusion in the iced compared with the non-iced kidneys (P ≤ 0.01). The ASL values were systematically lower compared with microsphere perfusion. Very good correlation (r = 0.81, P < 0.0001) was observed between the techniques, and the relationship appeared linear for perfusion values in the expected physiologic range (microsphere perfusion <550 mL/min/100 g) although ASL values saturated for perfusion >550 mL/min/100 g. Cortical perfusion measured with ASL correlated with microspheres and reliably detected changes in renal perfusion in response to physiologic challenge.
Pavilla, Aude; Arrigo, Alessandro; Mejdoubi, Mehdi; Duvauferrier, Régis; Gambarota, Giulio; Saint-Jalmes, Hervé
The aim of this study was to demonstrate the feasibility to assess cerebral hypoperfusion with a hyperventilation (HV) challenge protocol using intravoxel incoherent motion (IVIM) magnetic resonance imaging. Magnetic resonance imaging experiments were performed on 10 healthy volunteers at 1.5 T, with a diffusion IVIM magnetic resonance imaging protocol using a set of b-values optimized by Cramer-Rao Lower Bound analysis. Hypoperfusion was induced by an HV maneuver. Measurements were performed in normoventilation and HV conditions. Biexponential curve fitting was used to obtain the perfusion fraction (f), pseudodiffusion coefficient (D*), and the product fD* in gray matter (GM) regions of interest (ROIs). Regional cerebral blood flow in the same ROIs was also assessed with arterial spin labeling. The HV challenge led to a diminution of IVIM perfusion-related parameters, with a decrease of f and fD* in the cerebellum (P = 0.03 for f; P = 0.01 for fD*), thalamus GM (P = 0.09 for f; P = 0.01 for fD*), and lenticular nuclei (P = 0.03 for f; P = 0.02 for fD*). Mean GM cerebral blood flow (in mL/100 g tissue/min) measured with arterial spin labeling averaged over all ROIs also decreased (normoventilation: 42.7 ± 4.1 vs HV: 33.2 ± 2.2, P = 0.004) during the HV challenge. The optimized IVIM protocol proposed in the current study allows for measurements of cerebral hypoperfusion that might be of great interest for pathologies diagnosis such as ischemic stroke.
Xie, Yibin; Yang, Qi; Xie, Guoxi; Pang, Jianing; Fan, Zhaoyang; Li, Debiao
2016-06-01
The purpose of this study was to develop a three-dimensional black blood imaging method for simultaneously evaluating the carotid and intracranial arterial vessel walls with high spatial resolution and excellent blood suppression with and without contrast enhancement. The delay alternating with nutation for tailored excitation (DANTE) preparation module was incorporated into three-dimensional variable flip angle turbo spin echo (SPACE) sequence to improve blood signal suppression. Simulations and phantom studies were performed to quantify image contrast variations induced by DANTE. DANTE-SPACE, SPACE, and two-dimensional turbo spin echo were compared for apparent signal-to-noise ratio, contrast-to-noise ratio, and morphometric measurements in 14 healthy subjects. Preliminary clinical validation was performed in six symptomatic patients. Apparent residual luminal blood was observed in five (pre-contrast) and nine (post-contrast) subjects with SPACE and only two (post-contrast) subjects with DANTE-SPACE. DANTE-SPACE showed 31% (pre-contrast) and 100% (post-contrast) improvement in wall-to-blood contrast-to-noise ratio over SPACE. Vessel wall area measured from SPACE was significantly larger than that from DANTE-SPACE due to possible residual blood signal contamination. DANTE-SPACE showed the potential to detect vessel wall dissection and identify plaque components in patients. DANTE-SPACE significantly improved arterial and venous blood suppression compared with SPACE. Simultaneous high-resolution carotid and intracranial vessel wall imaging to potentially identify plaque components was feasible with a scan time under 6 min. Magn Reson Med 75:2286-2294, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The effects of Y-27632 on pial microvessels during global brain ischemia and reperfusion in rabbits.
Shintani, Noriyuki; Ishiyama, Tadahiko; Kotoda, Masakazu; Asano, Nobumasa; Sessler, Daniel I; Matsukawa, Takashi
2017-03-07
Global brain ischemia-reperfusion during propofol anesthesia provokes persistent cerebral pial constriction. Constriction is likely mediated by Rho-kinase. Cerebral vasoconstriction possibly exacerbates ischemic brain injury. Because Y-27632 is a potent Rho-kinase inhibitor, it should be necessary to evaluate its effects on cerebral pial vessels during ischemia-reperfusion period. We therefore tested the hypotheses that Y-27632 dilates cerebral pial arterioles after the ischemia-reperfusion injury, and evaluated the time-course of cerebral pial arteriolar status after the ischemia-reperfusion. Japanese white rabbits were anesthetized with propofol, and a closed cranial window inserted over the left hemisphere. Global brain ischemia was produced by clamping the brachiocephalic, left common carotid, and left subclavian arteries for 15 min. Rabbits were assigned to cranial window perfusion with: (1) artificial cerebrospinal fluid (Control group, n = 7); (2) topical infusion of Y-27632 10 -6 mol · L -1 for 30 min before the initiation of global brain ischemia (Pre group, n = 7); (3) topical infusion of Y-27632 10 -6 mol · L -1 starting 30 min before ischemia and continuing throughout the study period (Continuous group, n = 7); and, (4) topical infusion of Y-27632 10 -6 mol · L -1 starting 10 min after the ischemia and continuing until the end of the study (Post group, n = 7). Cerebral pial arterial and venule diameters were recorded 30 min before ischemia, just before arterial clamping, 10 min after clamping, and 5, 10, 20, 40, 60, 80, 100, and 120 min after unclamping. Mean arterial blood pressure and blood glucose concentration increased significantly after global brain ischemia except in the Continuous group. In the Pre and Continuous groups, topical application of Y-27632 produced dilation of large (mean 18-19%) and small (mean; 25-29%) pial arteries, without apparent effect on venules. Compared with the Control and Pre groups, arterioles were significantly dilated during the reperfusion period in the Continuous and Post groups (mean at 120 min: 5-8% in large arterioles and 11-12% in small arterioles). Y-27632 dilated cerebral pial arterioles during reperfusion. Y-27632 may enhance recovery from ischemia by preventing arteriolar vasoconstriction during reperfusion.
Grebenkov, Denis S
2011-02-01
A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary rocks and, potentially, brain or lungs. Copyright © 2010 Elsevier Inc. All rights reserved.
Miniaturized pulse oximeter sensor for continuous vital parameter monitoring
NASA Astrophysics Data System (ADS)
Fiala, Jens; Reichelt, Stephan; Werber, Armin; Bingger, Philipp; Zappe, Hans; Förster, Katharina; Klemm, Rolf; Heilmann, Claudia; Beyersdorf, Friedhelm
2007-07-01
A miniaturized photoplethysmographic sensor system which utilizes the principle of pulse oximetry is presented. The sensor is designed to be implantable and will permit continuous monitoring of important human vital parameters such as arterial blood oxygen saturation as well as pulse rate and shape over a long-term period in vivo. The system employs light emitting diodes and a photo transistor embedded in a transparent elastic cu. which is directly wrapped around an arterial vessel. This paper highlights the specific challenges in design, instrumentation, and electronics associated with that sensor location. In vitro measurements were performed using an artificial circulation system which allows for regulation of the oxygen saturation and pulsatile pumping of whole blood through a section of a domestic pig's arterial vessel. We discuss our experimental results compared to reference CO-oximeter measurements and determine the empirical calibration curve. These results demonstrate the capabilities of the pulse oximeter implant for measurement of a wide range of oxygen saturation levels and pave the way for a continuous and mobile monitoring of high-risk cardiovascular patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aburano, T.; Takayama, T.; Nakajima, K.
The three different methods to evaluate the alterations of split renal function following continued captopril treatment were studied in patients with hypertension. Five patients had unilateral and 2 had bilateral renal artery stenosis, and 13 had normal renal arteries. The studies were performed the day prior to receiving captopril (baseline), and 6th or 7th day following continued captorpril treatment (37.5mg or 75mg/day): Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 iodohippuran and Tc-99m DTPA were measured respectively by the methods using kidney counting corrected for depth and dose, described by Schlegel and Gates.more » And Tc-99m DMSA uptake was also evaluated qualitatively. In most of patients with renal artery stenosis, split GFR and Tc-99m DMSA uptake in the affected kidney were markedly decreased 6th or 7th day following continued captorpril treatment. These findings suggest that the captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination and Tc-99m DMSA study are more useful than split ERPF determination.« less
Brasil, Ivelise Regina Canito; de Araujo, Igor Farias; Lima, Adriana Augusta Lopes de Araujo; Melo, Ernesto Lima Araujo; Esmeraldo, Ronaldo de Matos
2018-01-01
To describe the main anatomical variations of the celiac trunk and the hepatic artery at their origins. This was a prospective analysis of 100 consecutive computed tomography angiography studies of the abdomen performed during a one-year period. The findings were stratified according to classification systems devised by Sureka et al. and Michels. The celiac trunk was "normal" (i.e., the hepatogastrosplenic trunk and superior mesenteric artery originating separately from the abdominal aorta) in 43 patients. In our sample, we identified four types of variations of the celiac trunk. Regarding the hepatic artery, a normal anatomical pattern (i.e., the proper hepatic artery being a continuation of the common hepatic artery and bifurcating into the right and left hepatic arteries) was seen in 82 patients. We observed six types of variations of the hepatic artery. We found rates of variations of the hepatic artery that are different from those reported in the literature. Our findings underscore the need for proper knowledge and awareness of these anatomical variations, which can facilitate their recognition and inform decisions regarding the planning of surgical procedures, in order to avoid iatrogenic intraoperative injuries, which could lead to complications.
Spin coherent-state path integrals and the instanton calculus
NASA Astrophysics Data System (ADS)
Garg, Anupam; Kochetov, Evgueny; Park, Kee-Su; Stone, Michael
2003-01-01
We use an instanton approximation to the continuous-time spin coherent-state path integral to obtain the tunnel splitting of classically degenerate ground states. We show that provided the fluctuation determinant is carefully evaluated, the path integral expression is accurate to order O(1/j). We apply the method to the LMG model and to the molecular magnet Fe8 in a transverse field.
NASA Astrophysics Data System (ADS)
Reshetnyak, A.
2013-04-01
We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST-BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, arXiv:1110.5044 [hep-th
'Cardiogenic vertigo'--true vertigo as the presenting manifestation of primary cardiac disease.
Newman-Toker, David E; Camargo, Carlos A
2006-03-01
A 90-year-old woman presented to a hospital emergency department with a brief loss of consciousness that was heralded by spinning vertigo lasting approximately 2 min. She had a long history of intermittent brief episodes of rotatory vertigo, presyncope, and non-vertiginous dizziness, occurring either with or without loss of consciousness. Although initially attributed to symptomatic carotid artery stenosis, these episodes persisted, despite surgical restoration of carotid artery blood flow 1 year after her first syncope. Her medical history was otherwise notable for hypertension, mild depression and a gradual decline in gait and balance function attributed to left hip arthritis and older age. Bedside history and examination, non-contrast head CT scan, electrocardiogram, transthoracic echocardiogram, and bedside cardiac telemetry. Sick sinus syndrome or severe reflex bradycardia with asystole causing recurrent, episodic vertigo, presyncope, non-vertiginous dizziness and syncope (Stokes-Adams attacks). Placement of a temporary pacing wire, followed by surgical implantation of a single-chamber ventricular (VVI) pacemaker.
Mohri, Masanao; Ichinose, Toshiya; Uchiyama, Naoyuki; Misaki, Kouichi; Nambu, Iku; Takabatake, Yasushi; Nakada, Mitsutoshi
2018-04-21
Hyperperfusion syndrome associated with aneurysm surgery is rare. The occurrence of the syndrome after trapping with high-flow bypass has not been described previously. Herein, we present a case of the syndrome occurring after trapping with high-flow bypass of an unruptured giant paraclinoid internal carotid artery (ICA) aneurysm. The patient was a 68-year-old woman with progressive loss of vision in her left eye. After a diagnosis of a left giant ICA aneurysm, she underwent successful trapping with high-flow bypass. No new neurological deficits were observed after surgery. Computed tomography (CT) on the same day and magnetic resonance imaging (MRI) on the next day revealed no hemorrhage or infarction. The patient had a headache and transit motor aphasia on postoperative day (POD) 8. Arterial spin-labeling magnetic resonance perfusion image on the same day and single photon emission CT scan on POD 10 demonstrated hyperperfusion in the left cerebral cortex. The symptoms gradually improved over a week and she had no new neurological deficits when discharged from hospital. This report suggests that, although rare, hyperperfusion syndrome after trapping with high-flow bypass should be considered in giant aneurysmal patients if they present with headache and neurological deficits in a delayed period. Copyright © 2018. Published by Elsevier Inc.
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...
2017-09-13
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Coherent manipulation of three-qubit states in a molecular single-ion magnet
NASA Astrophysics Data System (ADS)
Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.
2017-02-01
We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.
Hydrodynamics of Turning Flocks.
Yang, Xingbo; Marchetti, M Cristina
2015-12-18
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
First-order melting of a weak spin-orbit mott insulator into a correlated metal
Hogan, Tom; Yamani, Z.; Walkup, D.; ...
2015-06-25
Herein, the electronic phase diagram of the weak spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7 is determined via an exhaustive experimental study. Upon doping electrons via La substitution, an immediate collapse in resistivity occurs along with a narrow regime of nanoscale phase separation comprised of antiferromagnetic, insulating regions and paramagnetic, metallic puddles persisting until x≈0.04. Continued electron doping results in an abrupt, first-order phase boundary where the Néel state is suppressed and a homogenous, correlated, metallic state appears with an enhanced spin susceptibility and local moments. In conclusion, as the metallic state is stabilized, a weak structural distortionmore » develops and suggests a competing instability with the parent spin-orbit Mott state.« less
Spin polarization effects and their time evolutions
NASA Astrophysics Data System (ADS)
Vernes, A.; Weinberger, P.
2015-04-01
The time evolution of the density corresponding to the polarization operator, originally constructed to commute with the Dirac Hamiltonian in the absence of an external electromagnetic field, is investigated in terms of the time-dependent Dirac equation taking the presence of an external electromagnetic field into account. It is found that this time evolution leads to 'tensorial' and 'vectorial' particle current densities and to the interaction of the spin density with the external electromagnetic field. As the time evolution of the spin density does not refer to a constant of motion (continuity condition) it only serves as auxiliary density. By taking the non-relativistic limit, it is shown that the polarization, spin and magnetization densities are independent of electric field effects and, in addition, no preferred directions can be defined.
An endovascular option is the final treatment for a giant arteriovenous malformation.
Benedetto, Filippo; Pipitò, Narayana; Barillà, David; Spinelli, Domenico; Stilo, Francesco; Spinelli, Francesco
2014-11-01
We report the case of a 58-year-old man presented with bleeding ulcer of the left arm caused by a high-flow type-C arteriovenous malformation (AVM), feed by branches from both the subclavian arteries. He had been previously treated with AVM sclerotherapy, embolization, humeral artery endografting, and open surgery. We urgently performed coil embolization of the left vertebral artery, and we covered the huge subclavian artery by a thoracic endograft. Then, we embolized the right tyrocervical trunk. The result was an immediate interruption of bleeding. At 12 months, the patient had no neurologic complications, and the upper limb continued to decompress. Copyright © 2014 Elsevier Inc. All rights reserved.
Mishra, Manisha; Sawhney, Ravindra; Kumar, Anil; Bapna, Kumar Ramesh; Kohli, Vijay; Wasir, Harpreet; Trehan, Naresh
2014-01-01
The fetal death rate associated with cardiac surgery with cardiopulmonary bypass (CPB) is as high as 9.5-29%. We report continuous monitoring of fetal heart rate and umbilical artery flow-velocity waveforms by transvaginal ultrasonography and their analyses in relation to events of the CPB in two cases in second trimester of pregnancy undergoing mitral valve replacement. Our findings suggest that the transition of circulation from corporeal to extracorporeal is the most important event during surgery; the associated decrease in mean arterial pressure (MAP) at this stage potentially has deleterious effects on the fetus, which get aggravated with the use of vasopressors. We suggest careful management of CPB at this stage, which include partial controlled CPB at initiation and gradual transition to full CPB; this strategy maintains high MAP and avoids the use of vasopressors. Maternal and fetal monitoring can timely recognize the potential problems and provide window for the required treatment.
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
Imai, T.; Lee, Y. S.
2018-03-14
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 2; Temperature Stability
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Kaya, Taril; Rogers, Paul; Hoff, Craig
2000-01-01
The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. LHP's are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the second part of the experimental study, i.e. the effect of an accelerating force on the LHP operating temperature. It has been known that in stationary tests the LHP operating temperature is a function of the evaporator power and the condenser sink temperature when the compensation temperature is not actively controlled. Results of this test program indicate that any change in the accelerating force will result in a chance in the LHP operating temperature through its influence on the fluid distribution in the evaporator, condenser and compensation chamber. However, the effect is not universal, rather it is a function of other test conditions. A steady, constant acceleration may result in an increase or decrease of the operating temperature, while a periodic spin will lead to a quasi-steady operating temperature over a sufficient time interval. In addition, an accelerating force may lead to temperature hysteresis and changes in the temperature oscillation. In spite of all these effects, the LHP continued to operate without any problems in all tests.
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, T.; Lee, Y. S.
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
Effect of CPAP on arterial stiffness in severely obese patients with obstructive sleep apnoea.
Seetho, Ian W; Asher, Rebecca; Parker, Robert J; Craig, Sonya; Duffy, Nick; Hardy, Kevin J; Wilding, John P H
2015-12-01
Obstructive sleep apnoea (OSA) may independently increase cardiovascular risk in obesity. Although there is evidence that arterial stiffness is altered in OSA, knowledge of these effects with continuous positive airway pressure (CPAP) in severe obesity (body mass index (BMI) ≥ 35 kg/m(2)) is limited. This study aimed to explore how arterial stiffness, as measured by the augmentation index (Aix), changed in severely obese patients with OSA who were treated with CPAP and in patients without OSA. Forty-two patients with severe obesity-22 with OSA, 20 without OSA-were recruited at baseline and followed-up after a median of 13.5 months. Pulse wave analysis (PWA) was performed using applanation tonometry at the radial artery to measure augmentation index (Aix), augmentation pressure (AP) and subendocardial viability ratio (SEVR). Cardiovascular parameters and body composition were also measured. There were significant improvements in Aix, AP (both P < 0.001) and SEVR (P = 0.021) in OSA patients on CPAP compared with subjects without OSA. Epworth scores (P < 0.001), systolic (P < 0.001) and mean arterial pressures (P = 0.002) improved with CPAP. Regression showed that CPAP was significantly associated with change in arterial stiffness from baseline. However, patients with OSA on CPAP continued to have increased arterial stiffness (Aix) (P < 0.001), AP (P = 0.028) and reduced SEVR (P = 0.002) relative to non-OSA patients. Although sleepiness and blood pressure improve with CPAP in severe obesity, CPAP alone is not sufficient to modify PWA measures to levels comparable with non-OSA patients. This supports a need for a multifaceted approach when managing cardiovascular risk in patients with severe obesity and obstructive sleep apnoea receiving CPAP therapy.
Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions
NASA Astrophysics Data System (ADS)
Sawyer, Brian
2013-05-01
Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.
Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Luyi
2013-05-17
Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s -1.« less
Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.
Xue, Fei; MacDonald, A H
2018-05-04
We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.
Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions
NASA Astrophysics Data System (ADS)
Xue, Fei; MacDonald, A. H.
2018-05-01
We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses
Pei, Zhipu; Ju, Dongying
2017-01-01
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779
Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.
Pei, Zhipu; Ju, Dongying
2017-04-17
The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
Practical Vascular Anatomy in the Preparation of Radioembolization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paprottka, P. M., E-mail: philipp.paprottka@med.uni-muenchen.de; Jakobs, T. F., E-mail: tobias.jakobs@barmherzige-muenchen.de; Reiser, M. F.
2012-06-15
As the incidence of primary and metastatic liver cancer continues to increase, the use of minimally invasive techniques as a treatment option is becoming more common. Radioembolization, a form of intra-arterial brachytherapy, is a technique where particles of glass or resin, impregnated with the isotope {sup 90}yttrium ({sup 90}Y), are infused through a catheter directly into the hepatic arteries. This modality is based on the fact that hepatic malignancies receive their blood supply from the hepatic artery, whereas normal hepatocytes are perfused mostly from the portal circulation, which allows delivery of high doses to the tumor vasculature with relative sparingmore » of normal liver tissue. This has been shown to be effective for both primary and metastatic tumors. A variety of complications may be related to hepatic intra-arterial treatments, especially to the gastroduodenal region. These complications are known to come from inadvertent extrahepatic infusion of {sup 90}Y particles, through arteries originating from the hepatic arterial branches such as the falciform artery, cystic artery, arteries from the pancreaticoduodenal arcade, gastroduodenal artery, or right gastric artery. Surgeons and interventional radiologists rely on accurate imaging and assessment of the hepatic arterial supply. It is important to know the common anatomic variations and technical considerations before radioembolization. We recommend an aggressive occlusion of all the above-mentioned arteries; further, clinicians should watch out for any other aberrant branches, and if in doubt, they ought to be coiled.« less
Exercise after SCUBA diving increases the incidence of arterial gas embolism.
Madden, Dennis; Lozo, Mislav; Dujic, Zeljko; Ljubkovic, Marko
2013-09-01
Arterialization of gas bubbles after decompression from scuba diving has traditionally been associated with pulmonary barotraumas or cardiac defects, such as the patent foramen ovale. Recent studies have demonstrated the right-to-left passage of bubbles through intrapulmonary arterial-venous anastamoses (IPAVA) that allow blood to bypass the pulmonary microcirculation. These passages open up during exercise, and the aim of this study is to see if exercise in a postdiving period increases the incidence of arterialization. After completing a dive to 18 m for 47 min, patent foramen ovale-negative subjects were monitored via transthoracic echocardiography, within 10 min after surfacing, for bubble score at rest. Subjects then completed an incremental cycle ergometry test to exhaustion under continuous transthoracic echocardiography observation. Exercise was suspended if arterialization was observed and resumed when the arterialization cleared. If arterialization was observed a second time, exercise was terminated, and oxygen was administered. Out of 23 subjects, 3 arterialized at rest, 12 arterialized with exercise, and 8 did not arterialize at all even during maximal exercise. The time for arterialization to clear with oxygen was significantly shorter than without. Exercise after diving increased the incidence of arterialization from 13% at rest to 52%. This study shows that individuals are capable of arterializing through IPAVA, and that the intensity at which these open varies by individual. Basic activities associated with SCUBA diving, such as surface swimming or walking with heavy equipment, may be enough to allow the passage of venous gas emboli through IPAVA.
True Aneurysm of the Left Internal Thoracic Artery.
Ouldsalek, El Hadj; El Fatemi, Bouthianah; Bakkali, Tarek; El Idrissi, Radouane; El Khaloufi, Samir; Lekehal, Brahim; Sefiani, Yasser; El Mesnaoui, Abbas; Bensaid, Younès
2016-02-01
Aneurysms of the internal thoracic artery (ITA) are rare and can have many etiologies. Hyperflow is an exceptional etiology. We report the case of a 56-year-old woman who presented with a stress-induced ischemia of the left arm. Computed tomography angiography showed occlusion of the subclavian artery and a true aneurysm of the ITA. The ITA aneurysm was resected without restoration of the ITA continuity and a carotid-subclavian bypass was performed. Pathological examination of the aneurysm sac was not specific. Copyright © 2016 Elsevier Inc. All rights reserved.
Beating the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; Kim, N.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parameswaran, A.; Pardi, S.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szokoly, G. P.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Hotan, A.; Palfreyman, J.
2011-08-01
We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of belief. These limits are below the indirect spin-down limit of 3.3 × 10-24 for the Vela pulsar, defined by the energy loss rate inferred from observed decrease in Vela's spin frequency, and correspond to a limit on the star ellipticity of ~10-3. Slightly less stringent results, but still well below the spin-down limit, are obtained assuming the star's spin axis inclination and the wave polarization angles are unknown.
Morphological and clinical aspects of the occurrence of accessory (multiple) renal arteries
Gulas, Ewelina; Wysiadecki, Grzegorz; Szymański, Jacek; Majos, Agata; Stefańczyk, Ludomir; Topol, Mirosław
2016-01-01
Renal vascularization variants vastly differ between individuals due to the very complex embryogenesis of the kidneys. Moreover, each variant may have implications for clinical and surgical interventions. The number of operating procedures continues to grow, and includes renal transplants, aneurysmorrhaphy and other vascular reconstructions. In any surgical technique, unawareness of the presence of multiple renal arteries may result in a fatal outcome, especially if laparoscopic methods are used. The aim of this review is to comprehensively identify the variation within multiple renal arteries and to highlight the connections between the presence of accessory renal arteries and the coexistence of other variants of vascularization. Another aim is to determine the potential clinical implications of the presence of accessory renal arteries. This study is of particular importance for surgeons, intervention radiologists, nephrologists and vascular surgeons. PMID:29593819
Bariatric Embolization of the Gastric Arteries for the Treatment of Obesity
Weiss, Clifford R.; Gunn, Andrew J.; Kim, Charles Y.; Paxton, Ben E.; Kraitchman, Dara L.; Arepally, Aravind
2015-01-01
Obesity is a public health epidemic in the United States, which results in significant morbidity, mortality, and cost to the healthcare system. Despite advancements in therapeutic options for the bariatric patients, the number of overweight and obese individuals continues to rise. Thus, complimentary or alternative treatments to lifestyle changes and surgery are urgently needed. Embolization of the left gastric artery, or ‘bariatric arterial embolization’, has been shown to modulate body weight in animal models and early clinical studies. If successful, bariatric arterial embolization represents a potential minimally invasive approach to treat obesity offered by interventional radiologists. The purpose of the following review will be to introduce the interventional radiologist to bariatric arterial embolization by presenting its physiologic and anatomic bases, reviewing the pre-clinical and clinical data, and discussing current and future investigations. PMID:25777177
Dong, Mei-Xue; Hu, Ling; Huang, Yuan-Jun; Xu, Xiao-Min; Liu, Yang; Wei, You-Dong
2017-07-01
To determine cerebrovascular risk factors for patients with cerebral watershed infarction (CWI) from Southwest China.Patients suffering from acute ischemic stroke were categorized into internal CWI (I-CWI), external CWI (E-CWI), or non-CWI (patients without CWI) groups. Clinical data were collected and degrees of steno-occlusion of all cerebral arteries were scored. Arteries associated with the circle of Willis were also assessed. Data were compared using Pearson chi-squared tests for categorical data and 1-way analysis of variance with Bonferroni post hoc tests for continuous data, as appropriate. Multivariate binary logistic regression analysis was performed to determine independent cerebrovascular risk factors for CWI.Compared with non-CWI, I-CWI had higher degrees of steno-occlusion of the ipsilateral middle cerebral artery, ipsilateral carotid artery, and contralateral middle cerebral artery. E-CWI showed no significant differences. All the 3 arteries were independent cerebrovascular risk factors for I-CWI confirmed by multivariate binary logistic regression analysis. I-CWI had higher degrees of steno-occlusion of the ipsilateral middle cerebral artery compared with E-CWI. No significant differences were found among arteries associated with the circle of Willis.The ipsilateral middle cerebral artery, carotid artery, and contralateral middle cerebral artery were independent cerebrovascular risk factors for I-CWI. No cerebrovascular risk factor was identified for E-CWI.
Cost considerations in selecting coronary artery revascularization therapy in the elderly.
Maziarz, David M; Koutlas, Theodore C
2004-01-01
This article presents some of the cost factors involved in selecting coronary artery revascularization therapy in an elderly patient. With the percentage of gross national product allocated to healthcare continuing to rise in the US, resource allocation has become an issue. Percutaneous coronary intervention continues to be a viable option for many patients, with lower initial costs. However, long-term angina-free results often require further interventions or eventual surgery. Once coronary artery revascularization therapy is selected, it is worthwhile to evaluate the cost considerations inherent to various techniques. Off-pump coronary artery bypass graft surgery has seen a resurgence, with improved technology and lower hospital costs than on-pump bypass surgery. Numerous factors contributing to cost in coronary surgery have been studied and several are documented here, including the potential benefits of early extubation and the use of standardized optimal care pathways. A wide range of hospital-level cost variation has been noted, and standardization issues remain. With the advent of advanced computer-assisted robotic techniques, a push toward totally endoscopic bypass surgery has begun, with the eventual hope of reducing hospital stays to a minimum while maximizing outcomes, thus reducing intensive care unit and stepdown care times, which contribute a great deal toward overall cost. At the present time, these techniques add a significant premium to hospital charges, outweighing any potential length-of-stay benefits from a cost standpoint. As our elderly population continues to grow, use of healthcare resource dollars will continue to be heavily scrutinized. Although the clinical outcome remains the ultimate benchmark, cost containment and optimization of resources will take on a larger role in the future. Copyright 2004 Adis Data Information BV
Negarandeh, Reza; Nayeri, Nahid Dehghan; Shirani, Farimah; Janani, Leila
2012-12-01
Grafting coronary arteries and post operative recovery has many challenges, which can be ameliorated through continues care and an appropriate discharge plan. Therefore, the current study was undertaken aiming to evaluate the impact of discharge plan on satisfaction with nursing care, ability to self-care, and incidence of re-admission. This is a quasi experimental study involving patients who were due to undergo coronary artery bypass graft in Chamran Hospital in 2010. In the intervention group, the discharge plan was initiated at the time of admission and continued for 2 weeks after discharge by home visit and telephone follow ups. Satisfaction with nursing care was assessed 2 days after discharge, whilst patients' ability for self-care was measured 6 weeks and 3 months post discharge and the incidence of re-admission was determined at the 3 months point. Satisfaction levels with nursing care and the ability to take self-care were higher in intervention group comparing with control group (p < 0.001). There was a significant difference for self-care ability between pre test and post test in both groups but the improvement was more pronounced for the intervention group (p = 0.04). There was no significant difference between the two groups in terms of re-admission incidence after 3 months (p = 0.15). The results indicate that the discharge plan, as a method of continual care plan, can lead to higher satisfaction levels and enhanced self-care abilities of patients. Such discharge plan can therefore be utilised as an effective method of continuous care for patients who are going to undergo coronary artery bypass graft.
A mild traumatic brain injury in mice produces lasting deficits in brain metabolism.
Lyons, Danielle N; Vekaria, Hemendra; Macheda, Teresa; Bakshi, Vikas; Powell, David K; Gold, Brian T; Lin, Ai-Ling; Sulllivan, Pat; Bachstetter, Adam D
2018-05-29
Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (ATP production) and state-V (complex-I) driven mitochondrial respiration was found at 1-month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at 1-month post injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid (NAA), and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyper- perfusion, as measured by a pseudo-continuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration following a mild TBI. Magnetic resonance spectroscopy provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.
Cerebral white matter blood flow and energy metabolism in multiple sclerosis.
Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M; Fierens, Yves; Cambron, Melissa; Mostert, Jop P; Heersema, Dorothea J; Koch, Marcus W; De Keyser, Jacques
2013-09-01
Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using (1)H-MR spectroscopy and PCr/β-ATP ratios using (31)P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls (p = 0.02), but not in MS subjects (p = 0.68). Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.
Park, Sung-Hong; Wang, Danny J J; Duong, Timothy Q
2013-09-01
We implemented pseudo-continuous ASL (pCASL) with 2D and 3D balanced steady state free precession (bSSFP) readout for mapping blood flow in the human brain, retina, and kidney, free of distortion and signal dropout, which are typically observed in the most commonly used echo-planar imaging acquisition. High resolution functional brain imaging in the human visual cortex was feasible with 3D bSSFP pCASL. Blood flow of the human retina could be imaged with pCASL and bSSFP in conjunction with a phase cycling approach to suppress the banding artifacts associated with bSSFP. Furthermore, bSSFP based pCASL enabled us to map renal blood flow within a single breath hold. Control and test-retest experiments suggested that the measured blood flow values in retina and kidney were reliable. Because there is no specific imaging tool for mapping human retina blood flow and the standard contrast agent technique for mapping renal blood flow can cause problems for patients with kidney dysfunction, bSSFP based pCASL may provide a useful tool for the diagnosis of retinal and renal diseases and can complement existing imaging techniques. Copyright © 2013 Elsevier Inc. All rights reserved.
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
NASA Astrophysics Data System (ADS)
Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo
2010-02-01
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo
2010-02-05
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Discrete model of gas-free spin combustion of a powder mixture
NASA Astrophysics Data System (ADS)
Klimenok, Kirill L.; Rashkovskiy, Sergey A.
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
Losses Disguised as Wins Affect Game Selection on Multiline Slots.
Graydon, Candice; Stange, Madison; Dixon, Mike J
2018-05-05
Multiline slots are exciting games that contain features which make them alluring. One such feature is a loss disguised as a win (LDW); wherein, players win less than they wager (e.g., bet 2 dollars, win back 50 cents), but this net loss is disguised by flashing graphics and winning sounds. Research to date concludes that LDWs are both rewarding and reinforcing. Here, we investigated whether LDWs affect players' game selection. Thirty-two undergraduate students with experience playing slot machines played 100 spins on four games-two had positive payback percentages (115%) and two had negative payback percentages (85%) after 100 spins. For each payback percentage condition, there was a game with no LDWs and a game with a moderate number of LDWs. For the 100 spins, players could choose to play whichever game they wished. They then rated their preference for each game following the 100-spins and chose a game to continue playing. The majority of players preferred playing the positive payback percentage game with LDWs and chose to continue playing this game over the three other games. We conclude that in addition to LDWs being reinforcing and rewarding, LDWs do in fact influence game selection. We conclude that responsible gambling initiatives should educate players about LDWs.
Discrete model of gas-free spin combustion of a powder mixture.
Klimenok, Kirill L; Rashkovskiy, Sergey A
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Hosseini, S.; Poostforush, A.
2017-05-01
Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.
1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.
We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.
De Santis, F; Martini, G; Mani, G; Zywica, M; Zipponi, D
2013-06-01
Arterial aneurysms in the forearm, wrist and hand are relatively uncommon. Penetrating injuries, arterial traumas, infections and repetitive microtraumas represent the most frequent cause of these secondary aneurysms or pseudo-aneurysms, while true nontraumaticor infective peripheral aneurysms of the upper extremities are very rarely encountered. Over the last 20 years these have been reported only sporadically, both in adults and children. We describe a case of bilateral true idiopathic saccular artery aneurysms in the hypothenar eminence, treated with excision and arterial continuity restoration by primary end-to-end anastomosis on the left side and conservatively on the right. To our knowledge, no other similar case has been documented to date. Starting from this original case we conducted a systematic review of the literature via PubMed search on peripheral aneurysms of the forearm and hand arteries from 1933 to the present, including specifically true distal ulnar and radial artery aneurysms. Etiology, clinical characteristics and management of these rare pathological entities are extensively discussed.
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; ...
2017-07-17
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (~7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. Wemore » take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.« less
NASA Technical Reports Server (NTRS)
Seidman, Oscar; Neihouse, A I
1940-01-01
The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.
NASA Astrophysics Data System (ADS)
Akhtar, W.; Schnegg, A.; Veber, S.; Meier, C.; Fehr, M.; Lips, K.
2015-08-01
Here we describe a new high frequency/high field continuous wave and pulsed electrically detected magnetic resonance (CW EDMR and pEDMR) setup, operating at 263 GHz and resonance fields between 0 and 12 T. Spin dependent transport in illuminated hydrogenated amorphous silicon p-i-n solar cells at 5 K and 90 K was studied by in operando 263 GHz CW and pEDMR alongside complementary X-band CW EDMR. Benefiting from the superior resolution at 263 GHz, we were able to better resolve EDMR signals originating from spin dependent hopping and recombination processes. 5 K EDMR spectra were found to be dominated by conduction and valence band tail states involved in spin dependent hopping, with additional contributions from triplet exciton states. 90 K EDMR spectra could be assigned to spin pair recombination involving conduction band tail states and dangling bonds as the dominating spin dependent transport process, with additional contributions from valence band tail and triplet exciton states.
NASA Astrophysics Data System (ADS)
Asfaw, A. T.; Sigillito, A. J.; Tyryshkin, A. M.; Schenkel, T.; Lyon, S. A.
2017-07-01
In this work, we demonstrate the use of frequency-tunable superconducting NbTiN coplanar waveguide microresonators for multi-frequency pulsed electron spin resonance (ESR) experiments. By applying a bias current to the center pin, the resonance frequency (˜7.6 GHz) can be continuously tuned by as much as 95 MHz in 270 ns without a change in the quality factor of 3000 at 2 K. We demonstrate the ESR performance of our resonators by measuring donor spin ensembles in silicon and show that adiabatic pulses can be used to overcome magnetic field inhomogeneities and microwave power limitations due to the applied bias current. We take advantage of the rapid tunability of these resonators to manipulate both phosphorus and arsenic spins in a single pulse sequence, demonstrating pulsed double electron-electron resonance. Our NbTiN resonator design is useful for multi-frequency pulsed ESR and should also have applications in experiments where spin ensembles are used as quantum memories.
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
Managing vulvovaginal hematoma by arterial embolization as first-line hemostatic therapy.
Takagi, Kenjiro; Akashi, Keiko; Horiuchi, Isao; Nakamura, Eishin; Samejima, Koki; Ushijima, Junko; Okochi, Tomohisa; Hamamoto, Kohei; Tanno, Keisuke
2017-04-01
A puerperal vulvovaginal hematoma may continue to grow after a surgical procedure and may require blood transfusion. Thus, we selected arterial embolization for hemostasis as the first-line management in two cases of large vulvovaginal hematoma. Case 1 was a 32-year-old pregnant woman. After delivery, a 10-cm vulvar hematoma developed. An enhanced computed tomography (CT) scan revealed active bleeding. Arterial embolization was performed and complete hemostasis was obtained. Case 2 was a 34-year-old woman with a recurring hematoma after delivery. An enhanced CT scan revealed extravasation in the hematoma. Gelatin sponges were applied and complete hemostasis was obtained. In both cases, arterial embolization was successful without requiring blood transfusions. We successfully managed two cases of puerperal vulvovaginal hematoma by arterial embolization based on the evaluation of an enhanced CT scan. In conclusion, we suggest arterial embolization to be a viable option for first-line treatment in the management of vulvovaginal hematomas. Copyright © 2017. Published by Elsevier B.V.
Sato, Kenichi; Matsumoto, Yasushi; Endo, Hidenori; Tominaga, Teiji
2017-06-01
We report a case of tentorial dural arteriovenous fistula (DAVF) with a severe intracranial hemorrhage occurring after Onyx embolization. A 40-year-old man presented with an asymptomatic tentorial DAVF on angiography. Transarterial embolization with Onyx was performed via the middle meningeal artery, and the cast filled the fistula itself and its proximal draining vein. Postoperative angiography confirmed complete occlusion of the DAVF. A computed tomography scan performed immediately after the procedure demonstrated an acute subdural hematoma with the temporal hemorrhage. Emergency craniotomy revealed continuous arterial bleeding from a viable glomus-like vascular structure around the proximal part of the embolized draining vein, fed by a pial artery arising from the posterior cerebral artery. Pathologic findings suggested diagnosis of vascular malformation extending into the subdural space. Tentorial DAVFs can extend to the subdural space along their drainage route, and may be involved in severe hemorrhagic complications of curative endovascular treatment using Onyx, particularly those with pial arterial supply.
Noninvasive and continuous blood pressure measurement via superficial temporal artery tonometry.
Canning, Julia; Helbert, Kendall; Iashin, Grigoriy; Matthews, Jonathan; Yang, Jason; Delano, Margaret K; Sodini, Charles G; Quan Zhang
2016-08-01
The measurement of blood pressure is an important cardiovascular health assessment, yet the current set of methodologies is limited in resolution, repeatability, accuracy, simplicity, and safety. This paper presents the design and prototype implementation of a novel and easy-to-use medical device for noninvasive and continuous blood pressure monitoring through tonometry at the superficial temporal artery (STA). The device features a stable form factor inspired by over-ear headphones that adjusts easily from person to person using a combination prismatic and rotational joint. A stepper motor and pressure sensor, built into the device, apply a controlled force to flatten the artery and measure the wearer's blood pressure. The design is fully wireless, using Bluetooth communication to connect to a custom control and monitoring interface on the user's laptop that allows for easy calibration and real-time measurement. Preliminary testing of the device showed a percentage error from a blood pressure cuff mean arterial pressure measurement of 7.7% (7.0 mmHg). This was also compared to a Nexfin vascular unloading device, which showed a percentage error from the blood pressure cuff of 7.3% (6.6 mmHg).
Dissipatively Stabilized Quantum Sensor Based on Indirect Nuclear-Nuclear Interactions
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Plenio, M. B.
2017-07-01
We propose to use a dissipatively stabilized nitrogen vacancy (NV) center as a mediator of interaction between two nuclear spins that are protected from decoherence and relaxation of the NV due to the periodical resets of the NV center. Under ambient conditions this scheme achieves highly selective high-fidelity quantum gates between nuclear spins in a quantum register even at large NV-nuclear distances. Importantly, this method allows for the use of nuclear spins as a sensor rather than a memory, while the NV spin acts as an ancillary system for the initialization and readout of the sensor. The immunity to the decoherence and relaxation of the NV center leads to a tunable sharp frequency filter while allowing at the same time the continuous collection of the signal to achieve simultaneously high spectral selectivity and high signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia; Strečka, Jozef
2018-05-01
The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.
Gate-Controlled Spin-Valley Locking of Resident Carriers in WSe2 Monolayers
NASA Astrophysics Data System (ADS)
Dey, P.; Yang, Luyi; Robert, C.; Wang, G.; Urbaszek, B.; Marie, X.; Crooker, S. A.
2017-09-01
Using time-resolved Kerr rotation, we measure the spin-valley dynamics of resident electrons and holes in single charge-tunable monolayers of the archetypal transition-metal dichalcogenide (TMD) semiconductor WSe2 . In the n -type regime, we observe long (˜130 ns ) polarization relaxation of electrons that is sensitive to in-plane magnetic fields By, indicating spin relaxation. In marked contrast, extraordinarily long (˜2 μ s ) polarization relaxation of holes is revealed in the p -type regime, which is unaffected by By, directly confirming long-standing expectations of strong spin-valley locking of holes in the valence band of monolayer TMDs. Supported by continuous-wave Kerr spectroscopy and Hanle measurements, these studies provide a unified picture of carrier polarization dynamics in monolayer TMDs, which can guide design principles for future valleytronic devices.
Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...
2017-03-08
Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less
Intravascular Drug Release Kinetics Dictate Arterial Drug Deposition, Retention, and Distribution
Balakrishnan, Brinda; Dooley, John F.; Kopia, Gregory; Edelman, Elazer R.
2007-01-01
Millions of patients worldwide have received drug-eluting stents to reduce their risk for in-stent restenosis. The efficacy and toxicity of these local therapeutics depend upon arterial drug deposition, distribution, and retention. To examine how administered dose and drug release kinetics control arterial drug uptake, a model was created using principles of computational fluid dynamics and transient drug diffusion-convection. The modeling predictions for drug elution were validated using empiric data from stented porcine coronary arteries. Inefficient, minimal arterial drug deposition was predicted when a bolus of drug was released and depleted within seconds. Month-long stent-based drug release efficiently delivered nearly continuous drug levels, but the slow rate of drug presentation limited arterial drug uptake. Uptake was only maximized when the rates of drug release and absorption matched, which occurred for hour-long drug release. Of the two possibly means for increasing the amount of drug on the stent, modulation of drug concentration potently impacts the magnitude of arterial drug deposition, while changes in coating drug mass affect duration of release. We demonstrate the importance of drug release kinetics and administered drug dose in governing arterial drug uptake and suggest novel drug delivery strategies for controlling spatio-temporal arterial drug distribution. PMID:17868948
Hirano, Megumi; Ohta, Tomoyuki; Nakata, Norio; Kawakami, Reina; Takamura, Kimihiro; Matsuda, Tosiharu; Nishioka, Makiko; Sakurai, Tomoo; Matsuo, Kouichi; Miyamoto, Yukio
2014-10-01
A 23-year-old woman was referred to our hospital for an interventional procedure for chronic total occlusion of the right renal artery, probably due to fibromuscular dysplasia (FMD), and for control of renal vascular hypertension. Before percutaneous transluminal renal angioplasty (PTRA), aortography revealed collateral circulation to the right kidney from the lower lumbar artery. After PTRA, however, blood flow in the renal side of the collateral circulation flowed outside from the right renal parenchyma. 4 months later, we could not find a blood flow signal in the right renal artery, and there was a contrary flow signal in the right kidney parenchyma continuously from the extrahilar vessel, possibly a collateral artery. These findings indicated reocclusion of the right artery. We confirmed reocclusion of the renal artery and collateral feeding by contrast dynamic computed tomography (CT), and PTRA was performed again without any complications or reocclusion for 5 months. This is the first case report showing that a back-flowing signal in the right renal parenchyma from the extrahilar artery is useful as an indirect finding suggesting reocclusion.
Return probability after a quench from a domain wall initial state in the spin-1/2 XXZ chain
NASA Astrophysics Data System (ADS)
Stéphan, Jean-Marie
2017-10-01
We study the return probability and its imaginary (τ) time continuation after a quench from a domain wall initial state in the XXZ spin chain, focusing mainly on the region with anisotropy \\vert Δ\\vert < 1 . We establish exact Fredholm determinant formulas for those, by exploiting a connection to the six-vertex model with domain wall boundary conditions. In imaginary time, we find the expected scaling for a partition function of a statistical mechanical model of area proportional to τ2 , which reflects the fact that the model exhibits the limit shape phenomenon. In real time, we observe that in the region \\vert Δ\\vert <1 the decay for long time t is nowhere continuous as a function of anisotropy: it is Gaussian at roots of unity and exponential otherwise. We also determine that the front moves as x_f(t)=t\\sqrt{1-Δ^2} , by the analytic continuation of known arctic curves in the six-vertex model. Exactly at \\vert Δ\\vert =1 , we find the return probability decays as e-\\zeta(3/2) \\sqrt{t/π}t1/2O(1) . It is argued that this result provides an upper bound on spin transport. In particular, it suggests that transport should be diffusive at the isotropic point for this quench.
Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals
NASA Astrophysics Data System (ADS)
Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine
2017-10-01
The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.
Gim, Y.; Sethi, A.; Zhao, Q.; ...
2016-01-11
A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash; Demler, Eugene; Knap, Michael
2015-10-01
We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].
Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation
NASA Astrophysics Data System (ADS)
Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.
2014-04-01
Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of ½
Maryasov, Alexander G.
2012-01-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or ‘powder’ sample when g tensor anisotropy is significant. PMID:22743542
Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2
NASA Astrophysics Data System (ADS)
Maryasov, Alexander G.; Bowman, Michael K.
2012-08-01
The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakagawa, Motoo, E-mail: lmloltlolol@gmail.com; Ogino, Hiroyuki; Shimohira, Masashi
2009-05-15
A case of acute necrotizing pancreatitis due to Mycoplasma pneumoniae infection was treated in an 8-year-old girl. She experienced acute pancreatitis during treatment for M. pneumoniae. Contrast-enhanced computed tomographic scan revealed necrotizing pancreatitis. The computed tomographic severity index was 8 points (grade E). A protease inhibitor, ulinastatin, was provided via intravenous infusion but was ineffective. Continuous regional arterial infusion therapy was provided with gabexate mesilate (FOY-007, a protease inhibitor) and meropenem trihydrate, and the pancreatitis improved. This case suggests that infusion therapy is safe and useful in treating necrotizing pancreatitis in children.
Suzuki, Tomoyuki; Kawamoto, Shunsuke; Kumagai, Kiichiro; Adachi, Osamu; Kanda, Keisuke; Ishikawa, Masaaki; Okitsu, Yoko; Harigae, Hideo; Kurosawa, Shin; Saiki, Yoshikatsu
2016-08-01
We herein report our experience of successfully managing the hemostatic system by controlling serum factor IX levels throughout the perioperative period in a patient with hemophilia B. Coronary artery bypass grafting with cardiopulmonary bypass was planned for a 52-year-old man with moderate severity of hemophilia B. During surgery, recombinant factor IX (rFIX; BeneFIX(®) Pfizer Japan inc., Tokyo, Japan) was administered by bolus infusion followed by continuous infusion as per the guidelines of the Japanese Society on Thrombosis and Hemostasis. The operative course was uneventful without any considerable bleeding or complications.
Harigae, M; Hirose, Y; Gamo, M; Hirose, M; Fujiwara, C; Matsuo, K
1999-03-01
We applied a continuous intra-arterial blood gas monitoring system (Paratrend 7) to a patient with pulmonary alveolar proteinosis during pulmonary lavage. Lavage was performed under general anesthesia with one lung ventilation. We inserted the sensor of Patatrend 7 through a 20 G catheter into the radial artery, and monitored pH, PaCO2 and PaO2 continuously throughout the procedure. SpO2 and EtCO2 were also monitored. Saline 1000-1500 ml was instilled and drained repeatedly by volume limited methods. PaO2 values by Paratrend 7 increased during instillation and decreased during drainage of the irrigating fluid. In contrast, PaCO2 value by Paratrend 7 decreased slightly during instillation and increased during drainage. The change of SpO2 was almost the same as that by Paratrend 7, but the response time of pulse oxymetry was a little quicker than Paratrend 7. During the lavage procedure, respiratory and circulatory condition changed very rapidly, and it is necessary to monitor blood gas change intensively. Paratrend 7 is useful as a perioperative monitoring system, but pulse oxymetry might be sufficient during pulmonary lavage considering its cost.
All-optical spin switching: A new frontier in femtomagnetism — A short review and a simple theory
NASA Astrophysics Data System (ADS)
Zhang, G. P.; Latta, T.; Babyak, Z.; Bai, Y. H.; George, Thomas F.
2016-08-01
Using an ultrafast laser pulse to manipulate the spin degree of freedom has broad technological appeal. It allows one to control the spin dynamics on a femtosecond time scale. The discipline, commonly called femtomagnetism, started with the pioneering experiment by Beaurepaire and coworkers in 1996, who showed subpicosecond demagnetization occurs in magnetic Ni thin films. This finding has motivated extensive research worldwide. All-optical helicity-dependent spin switching (AO-HDS) represents a new frontier in femtomagnetism, where a single ultrafast laser pulse can permanently switch spin without any assistance from a magnetic field. This review summarizes some of the crucial aspects of this new discipline: key experimental findings, leading mechanisms, controversial issues, and possible future directions. The emphasis is on our latest investigation. We first develop the all-optical spin switching (AOS) rule that determines how the switchability depends on the light helicity. This rule allows one to understand microscopically how the spin is reversed and why the circularly polarized light appears more powerful than the linearly polarized light. Then we invoke our latest spin-orbit coupled harmonic oscillator model to simulate single spin reversal. We consider both continuous wave (cw) excitation and pulsed laser excitation. The results are in a good agreement with the experimental result (a MatLab code is available upon request from the author). We then extend the code to include the exchange interaction among different spin sites. We show where the “inverse-Faraday field” comes from and how the laser affects the spin reversal nonlinearly. Our hope is that this review will motivate new experimental and theoretical investigations and discussions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, Jan Peter, E-mail: janpeter.goltz@uksh.de; Loesaus, Julia; Frydrychowicz, Alex
We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft.more » The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel’s orifice despite the stentgraft being in place.« less
Iacob, Nicoleta; Pusztai, Agneta Maria; Miclăuş, Graţian Dragoslav; Pop, Elena; Matusz, Petru
2018-01-01
The authors describe a case of a 61-year-old female patient, which presented on multidetector computed tomographic (MDCT) angiography a gastrosplenic trunk (GST) and common hepatic artery (CHA) arose independently from abdominal aorta (AA). The GST arose from the anterior wall of the AA, at the level of upper edge of the L1 vertebral body. The left gastric artery (LGA) arose from the superior wall of the GST. The splenic artery (SA) continuous the path of GST. The CHA arose from the anterior wall of the AA, at the level of upper one third of the L1 vertebral body, at 15.3 mm above the origin of superior mesenteric artery (SMA). The incidence and developmental and clinical significance of this vascular variation is discussed with a detailed review of the literature.
Goltz, Jan Peter; Loesaus, Julia; Frydrychowicz, Alex; Barkhausen, Jörg; Wiedner, Marcus
2016-02-01
We report an endovascular technique for the treatment of type Ia endoleak after a plain tubular stentgraft had been implanted for a large common iliac artery aneurysm with an insufficient proximal landing zone and without occlusion of the hypogastric in another hospital. CT follow-up showed an endoleak with continuous sac expansion over 12 months. This was classified as type Ia by means of dynamic contrast-enhanced MRI. Before a bifurcated stentgraft was implanted to relocate the landing zone more proximally, the still perfused ipsilateral hypogastric artery was embolized to prevent a type II endoleak. A guidewire was manipulated alongside the indwelling stentgraft. The internal iliac artery could then be selectively intubated followed by successful plug embolization of the vessel's orifice despite the stentgraft being in place.
Furtner, J; Schöpf, V; Preusser, M; Asenbaum, U; Woitek, R; Wöhrer, A; Hainfellner, J A; Wolfsberger, S; Prayer, D
2014-05-01
Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n=22) and PCNSL (n=8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p=0.011) and ITSS (p=0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Shirzadi, Zahra; Crane, David E; Robertson, Andrew D; Maralani, Pejman J; Aviv, Richard I; Chappell, Michael A; Goldstein, Benjamin I; Black, Sandra E; MacIntosh, Bradley J
2015-11-01
To evaluate the impact of rejecting intermediate cerebral blood flow (CBF) images that are adversely affected by head motion during an arterial spin labeling (ASL) acquisition. Eighty participants were recruited, representing a wide age range (14-90 years) and heterogeneous cerebrovascular health conditions including bipolar disorder, chronic stroke, and moderate to severe white matter hyperintensities of presumed vascular origin. Pseudocontinuous ASL and T1 -weigthed anatomical images were acquired on a 3T scanner. ASL intermediate CBF images were included based on their contribution to the mean estimate, with the goal to maximize CBF detectability in gray matter (GM). Simulations were conducted to evaluate the performance of the proposed optimization procedure relative to other ASL postprocessing approaches. Clinical CBF images were also assessed visually by two experienced neuroradiologists. Optimized CBF images (CBFopt ) had significantly greater agreement with a synthetic ground truth CBF image and greater CBF detectability relative to the other ASL analysis methods (P < 0.05). Moreover, empirical CBFopt images showed a significantly improved signal-to-noise ratio relative to CBF images obtained from other postprocessing approaches (mean: 12.6%; range 1% to 56%; P < 0.001), and this improvement was age-dependent (P = 0.03). Differences between CBF images from different analysis procedures were not perceptible by visual inspection, while there was a moderate agreement between the ratings (κ = 0.44, P < 0.001). This study developed an automated head motion threshold-free procedure to improve the detection of CBF in GM. The improvement in CBF image quality was larger when considering older participants. © 2015 Wiley Periodicals, Inc.
Perthen, Joanna E; Bydder, Mark; Restom, Khaled; Liu, Thomas T
2008-05-01
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a radicalR loss in SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data, respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI selection, most likely due to the inherently low SNR of functional perfusion data.
Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A
2013-01-01
Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012
Fällmar, David; Haller, Sven; Lilja, Johan; Danfors, Torsten; Kilander, Lena; Tolboom, Nelleke; Egger, Karl; Kellner, Elias; Croon, Philip M; Verfaillie, Sander C J; van Berckel, Bart N M; Ossenkoppele, Rik; Barkhof, Frederik; Larsson, Elna-Marie
2017-10-01
Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Data were combined from two separate sites, each cohort consisting of patients with Alzheimer's disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.
Gaxiola-Valdez, Ismael; Goodyear, Bradley G
2012-12-01
Accurate localization of brain activity using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been challenged because of the large BOLD signal within distal veins. Arterial spin labeling (ASL) techniques offer greater sensitivity to the microvasculature but possess low temporal resolution and limited brain coverage. In this study, we show that the physiological origins of BOLD and ASL depend on whether percent change or statistical significance is being considered. For BOLD and ASL fMRI data collected during a simple unilateral hand movement task, we found that in the area of the contralateral motor cortex the centre of gravity (CoG) of the intersubject coefficient of variation (CV) of BOLD fMRI was near the brain surface for percent change in signal, whereas the CoG of the intersubject CV for Z-score was in close proximity of sites of brain activity for both BOLD and ASL. These findings suggest that intersubject variability of BOLD percent change is vascular in origin, whereas the origin of inter-subject variability of Z-score is neuronal for both BOLD and ASL. For longer duration tasks (12 s or greater), however, there was a significant correlation between BOLD and ASL percent change, which was not evident for short duration tasks (6 s). These findings suggest that analyses directly comparing percent change in BOLD signal between pre-defined regions of interest using short duration stimuli, as for example in event-related designs, may be heavily weighted by large-vessel responses rather than neuronal responses. Copyright © 2012 Elsevier Inc. All rights reserved.
Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression.
Ho, Tiffany C; Wu, Jing; Shin, David D; Liu, Thomas T; Tapert, Susan F; Yang, Guang; Connolly, Colm G; Frank, Guido K W; Max, Jeffrey E; Wolkowitz, Owen; Eisendrath, Stuart; Hoeft, Fumiko; Banerjee, Dipavo; Hood, Korey; Hendren, Robert L; Paulus, Martin P; Simmons, Alan N; Yang, Tony T
2013-10-01
Although substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). A total of 25 medication-naive adolescents (13-17 years of age) diagnosed with major depressive disorder (MDD) and 26 well-matched control subjects underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p < .05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p < .05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p < .05, corrected). Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments, and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Tiwari, Yash V; Lu, Jianfei; Shen, Qiang; Cerqueira, Bianca; Duong, Timothy Q
2017-08-01
Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (K w ) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using K w magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group K w magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal K w . Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, K w magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal K w showed substantial overlap with regions of hyperintense T 2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The K w values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min -1 , respectively (P < 0.05, n = 9). K w magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. K w magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.
Syrimi, Zoe Joanna; Vojtisek, Lubomir; Eliasova, Ilona; Viskova, Jana; Svatkova, Alena; Vanicek, Jiri; Rektorova, Irena
2017-05-01
While previous studies suggested that perfusion abnormalities in Parkinson's disease (PD) are driven by dementia, our study aimed to identify perfusion underpinning of cognitive alteration in non-demented PD patients. Cerebral blood flow was measured using arterial spin labelling (ASL) in 28 PD patients (age 65 years ± 9.9 SD) and 16 age-matched healthy controls (HC) (age 65 years ± 7.8 SD), who also underwent neurological and cognitive testing. The 3D pseudocontinuous ASL and T2-weighted scans from 22 PD patients and 16 HC were analysed in a voxel-wise manner using SPM8 software. Associations between the ASL values in volumes of interest (VOIs) and behavioural and cognitive measures were assessed by Spearman correlation analysis. Posterior cortical hypoperfusion was found in PD patients compared to HC in the left supramarginal gyrus/superior temporal gyrus (VOI1) and left posterior cingulate/precuneus (VOI2). Positive correlation was revealed between perfusion in the VOI2 and Addenbrooke's Cognitive Examination Revised (ACE-R) scores after filtering out the effect of age, levodopa equivalent dose (LED), and total intracranial volume (TIV) (R = 0.51, p = 0.04). Conversely, negative correlation between VOI1 and ACE-R was detected (R = -0.62, p = 0.01) after regressing out the effects of motor impairment, age, LED, and TIV. In non-demented subjects with PD, blood flow abnormalities in precuneus/posterior cingulate were linked to the level of motor impairment and global cognitive performance. Oppositely, perfusion abnormalities in supramarginal gyrus might serve as a compensatory mechanism for brain degeneration and decreased cognitive performance.
Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V Andrew; Pohmann, Rolf; Fernández-Seara, Maria A; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; Ma, Jingfei; Hazle, John D; Gach, H Michael
2017-03-01
Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient. © 2017 American Association of Physicists in Medicine.
Sunwoo, Leonard; Yun, Tae Jin; You, Sung-Hye; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sun-Won; Jung, Cheolkyu; Park, Chul-Kee
2016-01-01
To evaluate the diagnostic performance of cerebral blood flow (CBF) by using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging to differentiate glioblastoma (GBM) from brain metastasis. The institutional review board of our hospital approved this retrospective study. The study population consisted of 128 consecutive patients who underwent surgical resection and were diagnosed as either GBM (n = 89) or brain metastasis (n = 39). All participants underwent preoperative MR imaging including ASL. For qualitative analysis, the tumors were visually graded into five categories based on ASL-CBF maps by two blinded reviewers. For quantitative analysis, the reviewers drew regions of interest (ROIs) on ASL-CBF maps upon the most hyperperfused portion within the tumor and upon peritumoral T2 hyperintensity area. Signal intensities of intratumoral and peritumoral ROIs for each subject were normalized by dividing the values by those of contralateral normal gray matter (nCBFintratumoral and nCBFperitumoral, respectively). Visual grading scales and quantitative parameters between GBM and brain metastasis were compared. In addition, the area under the receiver-operating characteristic curve was used to evaluate the diagnostic performance of ASL-driven CBF to differentiate GBM from brain metastasis. For qualitative analysis, GBM group showed significantly higher grade compared to metastasis group (p = 0.001). For quantitative analysis, both nCBFintratumoral and nCBFperitumoral in GBM were significantly higher than those in metastasis (both p < 0.001). The areas under the curve were 0.677, 0.714, and 0.835 for visual grading, nCBFintratumoral, and nCBFperitumoral, respectively (all p < 0.001). ASL perfusion MR imaging can aid in the differentiation of GBM from brain metastasis.
Robson, Holly; Specht, Karsten; Beaumont, Helen; Parkes, Laura M; Sage, Karen; Lambon Ralph, Matthew A; Zahn, Roland
2017-07-01
Behavioural impairment post-stroke is a consequence of structural damage and altered functional network dynamics. Hypoperfusion of intact neural tissue is frequently observed in acute stroke, indicating reduced functional capacity of regions outside the lesion. However, cerebral blood flow (CBF) is rarely investigated in chronic stroke. This study investigated CBF in individuals with chronic Wernicke's aphasia (WA) and examined the relationship between lesion, CBF and neuropsychological impairment. Arterial spin labelling CBF imaging and structural MRIs were collected in 12 individuals with chronic WA and 13 age-matched control participants. Joint independent component analysis (jICA) investigated the relationship between structural lesion and hypoperfusion. Partial correlations explored the relationship between lesion, hypoperfusion and language measures. Joint ICA revealed significant differences between the control and WA groups reflecting a large area of structural lesion in the left posterior hemisphere and an associated area of hypoperfusion extending into grey matter surrounding the lesion. Small regions of remote cortical hypoperfusion were observed, ipsilateral and contralateral to the lesion. Significant correlations were observed between the neuropsychological measures (naming, repetition, reading and semantic association) and the jICA component of interest in the WA group. Additional ROI analyses found a relationship between perfusion surrounding the core lesion and the same neuropsychological measures. This study found that core language impairments in chronic WA are associated with a combination of structural lesion and abnormal perfusion in non-lesioned tissue. This indicates that post-stroke impairments are due to a wider disruption of neural function than observable on structural T1w MRI. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mak, Henry Ka-Fung; Qian, Wenshu; Ng, Kwok Sing; Chan, Queenie; Song, You-Qiang; Chu, Leung Wing; Yau, Kelvin Kai-Wing
2014-01-01
Structural magnetic resonance imaging has been employed for evaluation of medial temporal atrophy in patients with Alzheimer's disease (AD). Arterial spin labeling (ASL) technique could detect cerebral perfusion abnormalities in AD. We hypothesized that combination of hippocampal volumetry and cerebral blood flow yield higher accuracy than either method alone in discriminating AD patients from cognitively normal elderly adults. 13 AD patients and 15 healthy controls were studied using a 3-tesla scanner. Standardized T1W 3D volumetric Fast Field Echo and QUASAR ASL sequences were employed for cerebral volumetry and perfusion respectively. Manual Right and left hippocampal volumetry was performed manually by ANALYZE software, with total intracranial volume normalization. ASL data were analyzed by institutional specially-design software to calculate cerebral blood flow of region-of-interests placed at the middle and posterior cingulate gyri. Right and left hippocampal volumes and middle and posterior cingulate gyri cerebral blood flows were significantly lower in the patients than in the controls (independent-samples t-tests, p < 0.05), and prediction accuracies of 89.3%, 82.1%, 75.0% and 71.4% were achieved for each of the above parameters, respectively. In distinguishing patients from controls using corresponding optimized cut-off values, various combinations of these parameters were used to create the Receiver Operating Characteristic curves. The highest area under curve value was 0.944, by combining cerebral blood flow at the middle cingulate gyrus, normalized right and left hippocampal volumes. A 'one-stop-shop' magnetic resonance study of combined hippocampal volumetry and cerebral perfusion has improved efficacy in discriminating AD patients from cognitively normal elderly adults.
Lv, Peng; Dai, Yuanyuan; Lin, Jiang; Zhang, Weisheng; Liu, Hao; Liu, Hui; Tang, Xiao
2017-03-01
The aim of this study was to compare 3D T2-weighted sampling perfection with application optimized contrast using different flip angle evolutions (T2w SPACE) with conventional 2D T2w turbo-spin echo (TSE) in plaque imaging of carotid artery. 45 patients underwent 3.0-T MRI for carotid arteries imaging. MR sequences included T2w SPACE, T2w TSE, Time of flight (TOF) and T1-weighted (T1w) TSE. The signal intensity of intra-plaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and loose matrix (LM) were measured and their contrast ratios (CRs) against adjacent muscle were calculated. CRs from T2w SPACE and T2w TSE were compared to each other. CRs of LM, LRNC, and IPH measured on T2w SPACE were 1.74-3.04 (2.44), 0.98-1.66 (1.39), and 1.91-2.93 (2.51), respectively. CRs of LM, LRNC, and IPH on T2w TSE were 1.97-3.41 (2.44), 1.18-1.73 (1.43), and 2.26-3.75 (2.26), respectively. There was no significant difference of CR of the carotid plaques between T2w SPACE and T2w TSE (p = 0.455). Markedly significant differences of CRs were found between LM and LRNC (p < 0.001), and between LRNC and IPH (p < 0.001) on T2w SPACE and T2w TSE. T2w SPACE was comparable with conventional T2w TSE in characterization of carotid plaque.
Inoue, Yuji; Yoneyama, Masami; Nakamura, Masanobu; Ozaki, Satoshi; Ito, Kenjiro; Hiura, Mikio
2012-01-01
Vulnerable plaque can be attributed to induction of ischemic symptoms and magnetic resonance imaging of carotid artery is valuable to detect the plaque. Magnetization prepared rapid acquisition with gradient echo (MPRAGE) method could detect hemorrhagic vulnerable plaque as high intensity signal; however, blood flow is not sufficiently masked by this method. The contrast for plaque in T
Kang, Ji Hee; Yun, Tae Jin; Rhim, Jong Kook; Cho, Young Dae; Yoo, Dong Hyun; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Han, Moon Hee
2018-05-01
Cortical venous drainage (CVD) increases the probability of intracranial hemorrhage and mortality rate of dural arteriovenous fistulas (DAVF). Although digital subtraction angiography (DSA) is the most accurate method to determine CVD in DAVFs, this modality has limitations due to its invasive nature and radiation issues. The purpose of this study was to evaluate the diagnostic utility of arterial spin-labeling perfusion-weighted images (ASL-PWI) to identify CVD in patients with DAVF.The Institutional Review Board of our hospital approved this retrospective study. ASL-PWI features of 22 patients with DAVF were retrospectively reviewed for the presence of bright signal intensity in cortical veins and brain parenchyma. DAVF with bright signal intensity in cortical veins and/or brain parenchyma was regarded as having CVD. Using DSA as a reference standard, sensitivity, specificity, positive predictive value, and negative predictive value of ASL-PWI for detecting CVD were calculated.Based on DSA features, 11 (11/22, 50%) patients were classified as having "aggressive" pattern with CVD. Eleven (11/22, 50%) patients also showed bright signal intensity in cortical veins (9/22, 41%) and/or brain parenchyma (4/22, 18%) on ASL-PWI. The 11 patients who had "Aggressive" pattern on DSA were the same 11 patients who were classified as having "aggressive" pattern on ASL-PWI. ASL-PWI showed perfect diagnostic performance for identifying CVD with sensitivity, specificity, positive predictive value, and negative predictive value of 100% for all.Thus, ASL-PWI could be used as a noninvasive mean to predict the presence of CVD in patients with DAVFs. It has the potential as a screening tool to evaluate DAVF prior to invasive DSA.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.
2014-07-01
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.
Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I
2013-12-01
The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in symptomatic patients with PAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Raj, E-mail: rajdas@nhs.net; Gonsalves, Michael; Vlahos, Ioannis
Purpose: We have observed significant rates of uterine artery patency after uterine artery embolization (UAE) with nonspherical polyvinyl alcohol (nsPVA) on 6 month follow-up MR scanning. The study aim was to quantitatively assess uterine artery patency after UAE with nsPVA and to assess the effect of continued uterine artery patency on outcomes. Methods: A single centre, retrospective study of 50 patients undergoing bilateral UAE for uterine leiomyomata was undertaken. Pelvic MRI was performed before and 6 months after UAE. All embolizations were performed with nsPVA. Outcome measures included uterine artery patency, uterine and dominant fibroid volume, dominant fibroid percentage infarction,more » presence of ovarian arterial collaterals, and symptom scores assessed by the Uterine Fibroid Symptom and Quality of Life questionnaire (UFS-QOL). Results: Magnetic resonance angiographic evidence of uterine artery recanalization was demonstrated in 90 % of the patients (64 % bilateral, 26 % unilateral) at 6 months. Eighty percent of all dominant fibroids demonstrated >90 % infarction. The mean percentage reduction in dominant fibroid volume was 35 %. No significant difference was identified between nonpatent, unilateral, and bilateral recanalization of the uterine arteries with regard to percentage dominant fibroid infarction or dominant fibroid volume reduction. The presence of bilaterally or unilaterally patent uterine arteries was not associated with inferior clinical outcomes (symptom score or UFS-QOL scores) at 6 months. Conclusion: The high rates of uterine artery patency challenge the current paradigm that nsPVA is a permanent embolic agent and that permanent uterine artery occlusion is necessary to optimally treat uterine fibroids. Despite high rates of uterine artery recanalization in this cohort, satisfactory fibroid infarction rates and UFS-QOL scores were achieved.« less
Extracellular Matrix and the Mechanics of Large Artery Development
Cheng, Jeffrey K.; Wagenseil, Jessica E.
2012-01-01
The large, elastic arteries, as their name suggests, provide elastic distention and recoil during the cardiac cycle in vertebrate animals. The arteries are distended from the pressure of ejecting blood during active contraction of the left ventricle (LV) during systole, and recoil to their original dimensions during relaxation of the LV during diastole. The cyclic distension occurs with minimal energy loss, due to the elastic properties of one of the major structural extracellular matrix (ECM) components, elastin. The maximum distension is limited to prevent damage to the artery by another major ECM component, collagen. The mix of ECM components in the wall largely determines the passive mechanical behavior of the arteries and the subsequent load on the heart during systole. While much research has focused on initial artery formation, there has been less attention on the continuing development of the artery to produce the mature composite wall complete with endothelial cells (ECs), smooth muscle cells (SMCs), and the necessary mix of ECM components for proper cardiovascular function. This review focuses on the physiology of large artery development, including SMC differentiation and ECM production. The effects of hemodynamic forces and ECM deposition on the evolving arterial structure and function are discussed. Human diseases and mouse models with genetic mutations in ECM proteins that affect large artery development are summarized. A review of constitutive models and growth and remodeling theories is presented, along with future directions to improve understanding of ECM and the mechanics of large artery development. PMID:22584609
Coronary Revascularization in Children at a Mexican Cardiac Center: Thirteen-Year Outcomes.
Ramírez-Marroquín, Samuel E; Iturriaga-Hernández, Alejandra; Calderón-Colmenero, Juan; Benita-Bordes, Antonio; Cervantes-Salazar, Jorge L
2017-09-01
The indications for pediatric coronary revascularization are diverse. There are a large proportion of patients with sequelae of severe inflammatory diseases such as Kawasaki disease, and other less common causes. Retrospective review of ten pediatric patients undergoing coronary artery bypass surgery from January 2004 to December 2016. Ten children and adolescents ranging in age from 2 to 17 (median, 6) years at operation were followed up for as long as 13 years with a median follow-up of 2 years. The surgical indications include ischemia symptoms and/or coronary stenosis angiographically documented. Diagnoses include Kawasaki disease, anomalous origin of the left coronary artery from the pulmonary artery, and iatrogenic lesion of the right coronary artery. All the surgical procedures were performed with cardiopulmonary bypass with crystalloid cardioplegic arrest. The number of distal anastomoses was 1.6 per patient, and the left internal thoracic artery was used in one patient, the right internal thoracic artery in four patients, bilateral internal thoracic artery in four patients, and bilateral internal thoracic artery plus left radial artery in one patient, most frequently for right coronary artery revascularization. The patients underwent noninvasive diagnostic study during follow-up to evaluate their coronary status. The ten patients had no symptoms, and there was no mortality. Although survival was excellent after pediatric coronary bypass in our center, we need to continue the follow-up. Coronary revascularization by means of arterial grafting is a safe and reliable surgical modality for coronary disease in children.
[Clinical study of recurrent stomach cancer].
Taguchi, T
1983-11-01
There are various patterns of recurrence of gastric cancer after radical resection, such as hepatic metastasis, carcinomatous peritonitis, residual stomach recurrence, local lymph node metastasis and establishment of distant metastasis. In cases of residual stomach recurrence, resection is sometimes feasible. Kruckenberg's tumor resulting from metastasis to the ovary can frequently be removed. With such resectable metastasis, surgical procedure is actively employed, with subsequent chemotherapy. Chemotherapy in such a case consists of combined chemotherapy by arterial infusion for induction of remission and administration of oral preparation and/or suppositories for maintenance. In the treatment of recurrent gastric cancer by arterial infusion, we made it a rule to administer drugs through a catheter inserted subselectively into the aorta. In the treatment by arterial infusion, the daily administration of 5-FU serves as the basic regimen. Dissolve 250 mg 5-FU in about 20 cc physiologic saline or 5% dextrose solution, and infuse the solution over 2 hrs with the use of a continuous arterial infusion pump. Administer of 5-FU daily, and fortify this treatment by one-shot injection of MMC 10mg/body each time, MMC is usually given 3-4 times, with intervals between its administrations adjusted according to WBC and platelet counts. ADM is given at dosage of 40 mg/body each time. We found it advisable to continue the administrations of 5-FU until its total dose reached about 20 g, while giving sufficient doses of ADM or MMC for induction of remission. The results obtained from 108 cases of the recurrent gastric cancer were shown as follows. The median survival period was 5 months. The twenty-one cases out of 108 cases in recurrent gastric cancer survived more than one year, because they received the intensive chemotherapy such as arterial infusion chemotherapy and oral or rectal administration of FT. The most patients with liver metastasis were treated with selective arterial infusion chemotherapy consisting of 5-FU plus MMC or ACNU. And the efficacy of arterial infusion chemotherapy was remarkable. Our efforts must be made to continue any treatment as long as possible and change drugs as necessary. Also we must keep general condition of the patients as good as possible using support therapy such as IVH, prevention of infection, immunotherapy, drainage so on.
Left Ventricular Retraining and Late Arterial Switch for D-Transposition of the Great Arteries.
Watanabe, Naruhito; Mainwaring, Richard D; Carrillo, Sergio A; Lui, George K; Reddy, V Mohan; Hanley, Frank L
2015-05-01
For many decades, patients with d-transposition of the great arteries underwent an atrial switch procedure. Although many of these patients have continued to do well, a subset experience profound right ventricular failure. Some may be candidates for left ventricular (LV) retraining and late arterial switch. The purpose of this study was to review our experience with LV retraining and late arterial switch. This was a retrospective review of 32 patients with d-transposition. Thirty patients underwent a previous atrial switch and subsequently experienced right ventricular failure, whereas 2 presented late (8 months and 6 years) without previous intervention. The median age at the time of enrollment in this program was 15 years. Seven patients proceeded directly to late arterial switch owing to systemic LV pressures. The remaining 25 underwent a pulmonary artery band for LV retraining. Twenty of the 32 (63%) patients enrolled in this program were able to undergo a late arterial switch. There were 2 operative mortalities (10%). Two additional patients survived surgery but died in the early outpatient time period. There has been no late mortality after the arterial switch with a median follow-up of 5 years. Twelve patients underwent one or more pulmonary artery band procedures without evidence of effective LV retraining. There have been 2 early and 3 late (42%) deaths in this subgroup. The outcomes after arterial switch are encouraging and suggest that LV retraining and late arterial switch provide a viable option for this complex group of patients. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
8A.03: CONTINUOUS MONITORING OF HEMODYNAMICS IN THE SHORT ARM HUMAN CENTRIFUGE: A FEASIBILITY STUDY.
Londono, F; Uytterhaegen, B; Kassel, R; Vanraemdonck, R; Beck, A; Comet, B; Runge, A; Segers, P
2015-06-01
The aim was to test the technical feasibility of a set up combining tonometry and ultrasound, designated as Continuous Physiological and Medical Monitoring (CPMM), for cardiovascular assessment on humans and to evaluate the ability to assess physiological changes induced by artificial gravity in the short arm human centrifuge (SAHC, Verhaert, Belgium) for detecting and preventing potential disorders induced by weightlessness. The project was developed under an European Space Agency (ESA) contract (4000101988/10/NL/EM) and with its support, by the company Verhaert in consortium with the Institute for Space Medicine and Physiology (MEDES) and Ghent University. Measurements were performed at MEDES facilities in 4 young (presumably) healthy volunteers (3 males). For two volunteers, the protocol was divided in three periods: acceleration, steady rotation velocity and deceleration, obtaining carotid pulsed wave (PW)-Mode ultrasound sequences. For another volunteer (female), carotid PW-Mode ultrasound images and brachial and radial tonometry signals were acquired at baseline and during steady rotation. For the fourth volunteer, carotid and femoral PW-Mode ultrasound images and brachial, radial and carotid tonometry signals were acquired at baseline and during an initial (velocity1) and a following faster (velocity2) rotation velocity (see figure on the following page). Carotid PW-Mode ultrasound imaging was obtained in all 4 volunteers during different steps of the protocol. Femoral ultrasound imaging presented more difficulties related mainly to the placement of the probe after baseline, even if in one case results were feasible. Tonometry was, generally, a bigger challenge due to the intrinsic sensitivity of the method. Overall, radial artery tonometry provided the best results, while brachial artery results were acceptable only in one occasion. Carotid tonometry was measured only for one subject with suitable results for processing. Tonometry measurements were feasible under a spin velocity limit, while PW-Mode ultrasound images were more robust and stable. Although general conclusions must be supported by a larger sample, suitable signals and locations were identified and a user friendly and mobile set-up was tested successfully and it is available for further research to identified and assess mechanisms and reflexes acting in physiological adaptation to various gravity conditions.(Figure is included in full-text article.).
Atherectomy in Peripheral Artery Disease: A Review.
Bhat, Tariq M; Afari, Maxwell E; Garcia, Lawrence A
2017-04-01
Peripheral arterial disease (PAD) is a clinical manifestation of systemic atherosclerosis and is associated with significant morbidity and mortality. The physiological force and shear stress from angioplasty and stenting have made PAD treatment challenging. Atherectomy devices have continued to emerge as a major therapy in the management of peripheral vascular disease. This article presents a review of the current literature for the atherectomy devices used in PAD.
Computer Simulations of Coronary Blood Flow Through a Constriction
2014-03-01
interventional procedures (e.g., stent deployment). Building off previous models that have been partially validated with experimental data, this thesis... stent deployment). Building off previous models that have been partially validated with experimental data, this thesis continues to develop the...the artery and increase blood flow. Generally a stent , or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudoh, Kouichi, E-mail: cdk70770@par.odn.ne.jp; Kadota, Masataka; Nakayama, Yoshiharu
2003-09-15
A girl with continuous urinary incontinence was successfully treated by angiographic embolization of a hypoplastic pelvic kidney with a single unilateral vaginal ectopic opening of the ureter. For this intervention, CT angiography was useful for detecting the corresponding renal artery of the hypoplastic kidney.
Observations of Accreting Pulsars
NASA Technical Reports Server (NTRS)
Bildsten, Lars; Chakrabarty, Deepto; Chiu, John; Finger, Mark H.; Koh, Danny T.; Nelson, Robert W.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Matthew; Stollberg, Mark;
1997-01-01
We summarize 5 years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered five new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A0535+26, GRO J2058+42, 4U 1145-619, and A1118-616), and also measured the accretion torque history during outbursts of six of those transients whose orbital param- eters were also known. We have also continuously measured the pulsed flux and spin frequency for eiaht persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic neutron stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long timescales, which blurs the con- ventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars but are uncorrelated, or even anti- correlated, in persistent sources. We describe daily folded pulse profiles, frequency, and flux measurements that are available through the Compton Observatory Science Support Center at NASA/Goddard Space Flight Center.
Synchrotron oscillation effects on an rf-solenoid spin resonance
NASA Astrophysics Data System (ADS)
Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.
2012-12-01
New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.
Phonon induced magnetism in ionic materials
NASA Astrophysics Data System (ADS)
Restrepo, Oscar D.; Antolin, Nikolas; Jin, Hyungyu; Heremans, Joseph P.; Windl, Wolfgang
2014-03-01
Thermoelectric phenomena in magnetic materials create exciting possibilities in future spin caloritronic devices by manipulating spin information using heat. An accurate understanding of the spin-lattice interactions, i.e. the coupling between magnetic excitations (magnons) and lattice vibrations (phonons), holds the key to unraveling their underlying physics. We report ab initio frozen-phonon calculations of CsI that result in non-zero magnetization when the degeneracy between spin-up and spin-down electronic density of states is lifted for certain phonon displacement patterns. For those, the magnetization as a function of atomic displacement shows a sharp resonance due to the electronic states on the displaced Cs atoms, while the electrons on indium form a continuous background magnetization. We relate this resonance to the generation of a two-level system in the spin-polarized Cs partial density of states as a function of displacement, which we propose to be described by a simple resonant-susceptibility model. Current work extends these investigations to semiconductors such as InSb. ODR and WW are supported by the Center for Emergent Materials, an NSF MRSEC at OSU (Grant DMR-0820414).HJ and JPH are supported by AFOSR MURI Cryogenic Peltier Cooling, Contract #FA9550-10-1-0533.
Lin, Hung-Yu; Flask, Chris A; Dale, Brian M; Duerk, Jeffrey L
2007-06-01
To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.
Inverse participation ratios in the XX spin chain
NASA Astrophysics Data System (ADS)
Tsukerman, Emmanuel
2017-03-01
We continue the study of the inverse participation ratios (IPRs) of the XXZ Heisenberg spin chain initiated by Stéphan, Furukawa, Misguich, and Pasquier (2009) and continued by Misguich, Pasquier, and Luck (2016) by focusing on the case of the XX Heisenberg spin chain. For the ground state, Stéphan et al. note that calculating the IPR is equivalent to Dyson's constant term ex-conjecture. We express the IPRs of excited states as an apparently new "discrete" Hall inner product. We analyze this inner product using the theory of symmetric functions (Jack polynomials, Schur polynomials, the standard Hall inner product, and ωq ,t) to determine some exact expressions and asymptotics for IPRs. We show that IPRs can be indexed by partitions, and asymptotically the IPR of a partition is equal to that of the conjugate partition. We relate the IPRs to two other models from physics, namely, the circular symplectic ensemble of Dyson and the Dyson-Gaudin two-dimensional Coulomb lattice gas. Finally, we provide a description of the IPRs in terms of a signed count of diagonals of permutohedra.
Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole
NASA Astrophysics Data System (ADS)
van de Meent, Maarten
2017-01-01
The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the ISCO shift is further extended into the near-extremal regime (with spins up to 1 -a =10-20), revealing new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-defined extremal limit but instead continues to oscillate.
NASA Technical Reports Server (NTRS)
Zmuidzinas, J. S. (Inventor)
1978-01-01
A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.
NASA Astrophysics Data System (ADS)
Manmana, Salvatore R.; Möller, Marcel; Gezzi, Riccardo; Hazzard, Kaden R. A.
2017-10-01
We compute physical properties across the phase diagram of the t -J⊥ chain with long-range dipolar interactions, which describe ultracold polar molecules on optical lattices. Our results obtained by the density-matrix renormalization group indicate that superconductivity is enhanced when the Ising component Jz of the spin-spin interaction and the charge component V are tuned to zero and even further by the long-range dipolar interactions. At low densities, a substantially larger spin gap is obtained. We provide evidence that long-range interactions lead to algebraically decaying correlation functions despite the presence of a gap. Although this has recently been observed in other long-range interacting spin and fermion models, the correlations in our case have the peculiar property of having a small and continuously varying exponent. We construct simple analytic models and arguments to understand the most salient features.
Kaminker, Ilia; Han, Songi
2018-06-07
Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).
Photodrive of magnetic bubbles via magnetoelastic waves
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-01-01
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets. PMID:26150487
Photodrive of magnetic bubbles via magnetoelastic waves.
Ogawa, Naoki; Koshibae, Wataru; Beekman, Aron Jonathan; Nagaosa, Naoto; Kubota, Masashi; Kawasaki, Masashi; Tokura, Yoshinori
2015-07-21
Precise control of magnetic domain walls continues to be a central topic in the field of spintronics to boost infotech, logic, and memory applications. One way is to drive the domain wall by current in metals. In insulators, the incoherent flow of phonons and magnons induced by the temperature gradient can carry the spins, i.e., spin Seebeck effect, but the spatial and time dependence is difficult to control. Here, we report that coherent phonons hybridized with spin waves, magnetoelastic waves, can drive magnetic bubble domains, or curved domain walls, in an iron garnet, which are excited by ultrafast laser pulses at a nonabsorbing photon energy. These magnetoelastic waves were imaged by time-resolved Faraday microscopy, and the resultant spin transfer force was evaluated to be larger for domain walls with steeper curvature. This will pave a path for the rapid spatiotemporal control of magnetic textures in insulating magnets.
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
2016-10-10
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
Sun, Jing; Chen, Hanjian; Zheng, Jun; Mao, Bin; Zhu, Shengmei; Feng, Jingyi
2017-12-01
Radial artery applanation tonometry (RAAT) has been developed and utilized for continuous arterial pressure monitoring. However, evidence is lacking to clinically verify the RAAT technology and identify appropriate patient groups before routine clinical use. This study aims to evaluate the RAAT technology by comparing systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP) values in patients undergoing colon carcinoma surgery. Blood Pressure (BP) values obtained via RAAT (TL-300, Tensys Medical Inc., San Diego, CA, USA) and conventional arterial catheterization from 30 colon carcinoma surgical patients were collected and compared via Bland-Atman method, linear regression and 4-quadrant plot concordance analysis. For SBPs, MBPs and DBPs, means of the differences (±standard deviation; 95% limits of agreement) were -0.9 (±7.6; -15.7 to 13.9) mmHg, 3.1 (±6.5; -9.6 to 15.8) mmHg and 4.3 (±7.4; -10.3 to 18.8) mmHg, respectively. Linear regression coefficients of determination were 0.8706 for SBPs, 0.8353 for MBPs and 0.6858 for DBPs. Four-quadrant concordance correlation coefficients were 0.8740, 0.8522 and 0.7108 for SBPs, MBPs and DBPs, respectively. A highly selected patient collective undergoing colon carcinoma surgery was studied. BP measurements obtained via the TL-300 had clinically acceptable agreement with that acquired invasively using an arterial catheter. For use in clinical routine, it is necessary to take measures for improvement regarding movement artifacts and dilution of noise. A large sample size of patients under various conditions is also needed to further evaluate the RAAT technology before clinically routine use.
Jun, Ji Eun; Lee, You-Bin; Lee, Seung-Eun; Ahn, Ji Yeon; Kim, Gyuri; Jin, Sang-Man; Hur, Kyu Yeon; Lee, Moon-Kyu; Kang, Mi Ra; Kim, Jae Hyeon
2018-05-01
Hyperuricemia was frequently noted in subjects with a high risk of cardiovascular disease (CVD). This study aimed to elucidate whether serum uric acid (SUA) is associated with development of moderate coronary artery calcification in generally healthy adults. A total of 9297 subjects underwent multidetector CT for the evaluation of CAC at least two times during their annual health examinations. Among them, 4461 participants without CVD history and who had no (scores 0) or minimal CAC (scores 1-10) in their first examination were enrolled. The association between SUA as a continuous and categorical variable and development of moderate coronary artery calcification (CAC score > 100) was assessed by Cox regression analysis. Receiver-operating characteristic (ROC) curves were constructed to investigate the diagnostic efficacy of SUA. During a median follow-up of 4.1 years, 131 incident cases of moderate calcification developed. Baseline SUA concentration was significantly higher in subjects with progression to moderate coronary artery calcification (6.6 ± 1.3 vs. 5.8 ± 1.3 mg/dL, p < 0.001). SUA as a continuous variable (per 1 mg/dL) and divided into quartiles was positively associated with a higher risk of development of moderate calcification after adjustment for conventional CVD risk factors. The addition of SUA to the conventional CVD risk factors improved the predictive power for development of moderate coronary artery calcification. SUA was an independent predictor for development of moderate coronary artery calcification in subjects with no or minimal calcification. Copyright © 2018 Elsevier B.V. All rights reserved.
Anomalous Origin of Coronary Artery From Main Pulmonary Artery in Hypoplastic Left Heart Syndrome.
Turiy, Yuliya; Douglas, William; Balaguru, Duraisamy
2015-12-01
We report a case of anomalous origin of the left anterior descending coronary artery (LAD) from the main pulmonary artery in a child with hypoplastic left heart syndrome (mitral atresia/aortic atresia). Mechanical circulatory support was necessary because of the inability to wean from cardiopulmonary bypass after the Norwood procedure. The patient died at 4 months of age having continued depressed right ventricular function. The diagnosis was made during a catheterization performed 6 weeks after surgery because of concern for stenosis of Blalock-Taussig shunt. We believe his prolonged postoperative recovery and eventual demise can partially be attributed to lack of cardioplegia to the anomalous LAD territory during surgery. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
The role of heat shock proteins in protection and pathophysiology of the arterial wall.
Xu, Q; Wick, G
1996-09-01
The arterial wall is an integrated functional component of the circulatory system that is continually remodelling in response to various stressors, including localized injury, toxins, smoking and hypercholesterolaemia. These stimuli directly or indirectly cause changes in blood pressure and damage to the vessel wall, and eventually induce arterial stiffness and obstruction. To maintain the homeostasis of the vessel wall, the vascular cells produce a high level of stress proteins, also known as heat shock proteins, which protect against damage during haemodynamic stress. However, an immune reaction to heat shock proteins might contribute to the development of atherosclerosis. We hypothesize that the induction of heat shock proteins is beneficial in the arterial wall's response to stress but is harmful in certain other circumstances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichihashi, Shigeo, E-mail: shigeoichihashi@yahoo.co.jp; Higashiura, Wataru; Itoh, Hirofumi
Purpose. To evaluate the efficacy of iliac artery stent placement for relief of claudication in patients with both iliac and superficial femoral artery (SFA) lesions. Methods. Stent placement for only iliac artery occlusive disease was performed in 94 limbs (74 patients) with both iliac and SFA occlusive disease on the same limb. All procedures were performed because intermittent claudication did not improve after continuation of antiplatelet medication therapy and home-based exercise for 3 months. Rutherford classification was 2 in 20 limbs and 3 in 74 limbs. Patients with critical limb ischemia were excluded. Median duration of follow-up was 40 months.more » Primary patency rates of the iliac stent, clinical improvement rates, and risk factors for requiring additional SFA procedures were evaluated. Results. Primary patency rates of the iliac stent at 1, 3, 5, and 7 years were 97, 93, 79, and 79 %, respectively. The initial clinical improvement rate was 87 %. Continued clinical improvement rates at 1, 3, 5, and 7 years were 87, 81, 69, and 66 %, respectively. SFA Trans-Atlantic Inter-Society Consensus (TASC) II C/D lesion was a significant risk factor for requiring additional SFA procedures. Conclusion. Intermittent claudication was relieved by iliac stent placement in most patients with both iliac and SFA lesions. Thus, the indications for treatment of the SFA intended for claudicants should be evaluated after treatment of the iliac lesion.« less
Gao, Shuang; Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu
2005-08-01
The Na(+) receptor that exists in the hepatoportal region plays an important role in postprandial natriuresis and the regulation of Na(+) balance during NaCl load. Thus it would be considered that a dysfunction of the hepatic Na(+) receptor might result in the elevation of arterial pressure under a condition of high NaCl diet. To elucidate this hypothesis, arterial pressure was continuously measured during three weeks of high NaCl diet (8% NaCl) in four groups of rats: (i) intact rats, (ii) rats with hepatic denervation (HD), (iii) rats with sinoaortic denervation (SAD), and (iv) rats with SAD+HD. During a 1-week normal NaCl diet period, there was no difference in arterial pressure among the four groups. A high NaCl diet had no influence on arterial pressure in intact or HD rats; however, it significantly increased by 11 +/- 3 mmHg in SAD rats. The addition of HD to SAD had no synergistic effect on arterial pressure; i.e., in SAD+HD rats, mean arterial pressure increased by 13 +/- 1 mmHg. In conclusion, sinoaortic baroreceptor, but not hepatic Na(+) receptor, has a significant role in the long-term regulation of arterial pressure on a high NaCl diet.
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Ingerman-Wojenski, C; Silver, M J; Smith, J B; Nissenbaum, M; Sedar, A W
1981-04-01
The central artery of the rabbit ear was perfused in situ and effluent fractions from the artery were assayed for 6-keto-prostaglandin F1 alpha (6-K-PGF1 alpha) and thromboxane B2 (TxB2), the stable metabolites of prostacyclin (PGI2) and TxA2, using specific radioimmunoassays. These metabolites of arachidonic acid (AA) were not detected in the effluent during infusion of Tyrode's solution but both metabolites were detected when small amounts of AA were infused into the artery. Examination of the arteries by scanning electron microscopy revealed that high concentrations of AA which caused a short burst of 6-K-PGF1 alpha and TxB2 production damaged the endothelial cells while lower concentrations which stimulated continuous production did not cause damage. When a non-damaging concentration of AA was infused into an artery that had previously received a damaging concentration, PG production was greatly reduced. Pretreatment of the rabbits with 4 mg/kg acetyl-salicylic acid (ASA) inhibited 6-K-PGF1 alpha production by the rabbit ear artery in response to AA and 70% inhibition was still evident 18 hours after ASA.
Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.
2009-01-01
Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D contrast-enhanced MR angiography of the peripheral vasculature by using CAPR and eightfold accelerated 2D SENSE has been demonstrated. © RSNA, 2009 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.2533081744/-/DC1 PMID:19789238
Arterial wall histology in chronic pulsatile-flow and continuous-flow device circulatory support.
Potapov, Evgenij V; Dranishnikov, Nikolay; Morawietz, Lars; Stepanenko, Alexander; Rezai, Sajjad; Blechschmidt, Cristiane; Lehmkuhl, Hans B; Weng, Yuguo; Pasic, Miralem; Hübler, Michael; Hetzer, Roland; Krabatsch, Thomas
2012-11-01
Continuous-flow (CF) ventricular assist devices (VAD) are an established option for treatment of end-stage heart failure. However, the effect of long-term CF with lack of peripheral arterial wall motions on blood pressure regulation and end-organ arterial wall sclerosis, especially in the case of long-term support (> 3 years), remains unclear. Tissue samples obtained at autopsy from liver, kidney, coronary arteries, and brain from 27 VAD recipients supported for > 180 days between 2000 and 2010 were histologically examined to assess vascular alterations, including perivascular infiltrate, intravascular infiltrate, wall thickness, thrombosis, endothelial cell swelling, vessel wall necrosis, and peri-vascular fibrosis. Pulsatile-flow (PF) devices had been inserted in 9 patients and CF devices had been inserted in 16. The pathologist was blinded to the group distribution. Demographic, pharmacologic, and clinical data were retrospectively analyzed before surgery and during the follow-up period of up to 24 months. Median duration of support was 467 days (range, 235-1,588 days) in the PF group and 263 days (range, 182-942 days) in the CF group. Demographic and clinical data before and after surgery were similar. Amiodarone was more often used during follow-up in CF group than in the PF group (61% vs 10%, p = 0.009). Throughout the follow-up period, mean arterial pressure did not differ between recipients of the 2 pump types, nor did systolic and diastolic pressure, except at 2 weeks after VAD implantation, when systolic blood pressure was higher (p = 0.05) and diastolic lower (p = 0.03) in the PF group. Histologic studies did not identify any relevant differences in arterial wall characteristics between the 2 groups. Long-term mechanical circulatory support with CF devices does not adversely influence arterial wall properties of the end-organ vasculature. Copyright © 2012 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Benninger, Brion
2014-10-01
The objective of this study is to investigate the terminology of the femoral artery and recommended alternative terminology that satisfies both anatomy and clinical arenas.The femoral artery (FA) is often defined as the continuation of the external iliac artery. Specifically, when the external iliac artery reaches directly beneath the inguinal ligament, it becomes the FA. Currently, Terminologia Anatomica (TA) records the profunda femoris or deep femoral as a terminal branch. Clinicians often use superficial femoral artery (SFA) rather than FA and profunda or deep FA. SFA is actually very deep and well protected for most of its journey. On observation, the terminology in current use is not intuitive. The objective of this study was to investigate the terminology associated with the anatomical and clinical anatomical interpretations of the FA and its terminal branches and to suggest a more appropriate terminology that addresses the points of view of the macro anatomist, as well as that of the clinician. Literature search was conducted regarding the nomenclature of the FA and its terminal branches. Dissection of 89 embalmed cadavers (49F, 40M, ages 47-89) was conducted to analyze the morphology of the FA and its branches. Perusal of the literature revealed a difference in terminology between anatomical and clinical textbooks/atlases/journals regarding the FA and its terminal branch. Our dissections suggested that the FA may be better defined vis-à-vis its relationship to the anterior and posterior compartments of the thigh. A difference in terminology exists between the anatomical and clinical arenas. A need for a standardized terminology is necessary because clinicians and their publishers have not adopted TA. This study suggests that the current FA be considered the common FA and the continuation of the FA, the SFA be renamed the anterior FA and the current profunda (the deep FA) be renamed the posterior FA, respectively. The proposed terminology mirrors the lower limb anterior/posterior tibial artery terminology. © 2014 Wiley Periodicals, Inc.
Liu, Peiying; Lu, Hanzhang; Filbey, Francesca M.; Pinkham, Amy E.; McAdams, Carrie J.; Adinoff, Bryon; Daliparthi, Vamsi; Cao, Yan
2014-01-01
Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries, requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow measurement using this algorithm showed an inter-session coefficient of variation (CoV) of . The Bland-Altman method showed that the automatic method differs from the manual method by between and , for of the CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic positioning algorithm could improve the application of PC-MRI in CBF quantification. PMID:24787742
Edelman, Robert R; Serhal, Ali; Pursnani, Amit; Pang, Jianing; Koktzoglou, Ioannis
2018-02-19
Existing cine imaging techniques rely on balanced steady-state free precession (bSSFP) or spoiled gradient-echo readouts, each of which has limitations. For instance, with bSSFP, artifacts occur from rapid through-plane flow and off-resonance effects. We hypothesized that a prototype cine technique, radial fast interrupted steady-state (FISS), could overcome these limitations. The technique was compared with standard cine bSSFP for cardiac function, coronary artery conspicuity, and aortic valve morphology. Given its advantageous properties, we further hypothesized that the cine FISS technique, in combination with arterial spin labeling (ASL), could provide an alternative to phase contrast for visualizing in-plane flow patterns within the aorta and branch vessels. The study was IRB-approved and subjects provided consent. Breath-hold cine FISS and bSSFP were acquired using similar imaging parameters. There was no significant difference in biplane left ventricular ejection fraction or cardiac image quality between the two techniques. Compared with cine bSSFP, cine FISS demonstrated a marked decrease in fat signal which improved conspicuity of the coronary arteries, while suppression of through-plane flow artifact on thin-slice cine FISS images improved visualization of the aortic valve. Banding artifacts in the subcutaneous tissues were reduced. In healthy subjects, dynamic flow patterns were well visualized in the aorta, coronary and renal arteries using cine FISS ASL, even when the slice was substantially thicker than the vessel diameter. Cine FISS demonstrates several benefits for cardiovascular imaging compared with cine bSSFP, including better suppression of fat signal and reduced artifacts from through-plane flow and off-resonance effects. The main drawback is a slight (~ 20%) decrease in temporal resolution. In addition, preliminary results suggest that cine FISS ASL provides a potential alternative to phase contrast techniques for in-plane flow quantification, while enabling an efficient, visually-appealing, semi-projective display of blood flow patterns throughout the course of an artery and its branches.
Halabi, Carmen M.; Broekelmann, Thomas J.; Knutsen, Russell H.; Ye, Li; Mecham, Robert P.
2015-01-01
Increased arterial stiffness is a common characteristic of humans with Williams-Beuren syndrome and mouse models of elastin insufficiency. Arterial stiffness is associated with multiple negative cardiovascular outcomes, including myocardial infarction, stroke, and sudden death. Therefore, identifying therapeutic interventions that improve arterial stiffness in response to changes in elastin levels is of vital importance. The goal of this study was to determine the effect of chronic pharmacologic therapy with different classes of antihypertensive medications on arterial stiffness in elastin insufficiency. Elastin-insufficient mice 4–6 wk of age and wild-type littermates were subcutaneously implanted with osmotic micropumps delivering a continuous dose of one of the following: vehicle, losartan, nicardipine, or propranolol for 8 wk. At the end of treatment period, arterial blood pressure and large artery compliance and remodeling were assessed. Our results show that losartan and nicardipine treatment lowered blood pressure and pulse pressure in elastin-insufficient mice. Elastin and collagen content of abdominal aortas as well as ascending aorta and carotid artery biomechanics were not affected by any of the drug treatments in either genotype. By reducing pulse pressure and shifting the working pressure range of an artery to a more compliant region of the pressure-diameter curve, antihypertensive medications may mitigate the consequences of arterial stiffness, an effect that is drug class independent. These data emphasize the importance of early recognition and long-term management of hypertension in Williams-Beuren syndrome and elastin insufficiency. PMID:26232234
Knobloch, Gesine; Lauff, Marie-Teres; Hirsch, Sebastian; Schwenke, Carsten; Hamm, Bernd; Wagner, Moritz
2016-12-01
To prospectively compare 3D flow-dependent subtractive MRA vs. 2D flow-independent non-subtractive MRA for assessment of the calf arteries at 3 Tesla. Forty-two patients with peripheral arterial occlusive disease underwent nonenhanced MRA of calf arteries at 3 Tesla with 3D flow-dependent subtractive MRA (fast spin echo sequence; 3D-FSE-MRA) and 2D flow-independent non-subtractive MRA (balanced steady-state-free-precession sequence; 2D-bSSFP-MRA). Moreover, all patients underwent contrast-enhanced MRA (CE-MRA) as standard-of-reference. Two readers performed a per-segment evaluation for image quality (4 = excellent to 0 = non-diagnostic) and severity of stenosis. Image quality scores of 2D-bSSFP-MRA were significantly higher compared to 3D-FSE-MRA (medians across readers: 4 vs. 3; p < 0.0001) with lower rates of non-diagnostic vessel segments on 2D-bSSFP-MRA (reader 1: <1 % vs. 15 %; reader 2: 1 % vs. 29 %; p < 0.05). Diagnostic performance of 2D-bSSFP-MRA and 3D-FSE-MRA across readers showed sensitivities of 89 % (214/240) vs. 70 % (168/240), p = 0.0153; specificities: 91 % (840/926) vs. 63 % (585/926), p < 0.0001; and diagnostic accuracies of 90 % (1054/1166) vs. 65 % (753/1166), p < 0.0001. 2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust nonenhanced MRA technique for assessment of the calf arteries at 3 Tesla with significantly higher image quality and diagnostic accuracy compared to 3D flow-dependent subtractive MRA (3D-FSE-MRA). • 2D flow-independent non-subtractive MRA (2D-bSSFP-MRA) is a robust NE-MRA technique at 3T • 2D-bSSFP-MRA outperforms 3D flow-dependent subtractive MRA (3D-FSE-MRA) as NE-MRA of calf arteries • 2D-bSSFP-MRA is a promising alternative to CE-MRA for calf PAOD evaluation.
Vessel-wall imaging and quantification of flow-mediated dilation using water-selective 3D SSFP-echo.
Langham, Michael C; Li, Cheng; Englund, Erin K; Chirico, Erica N; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2013-10-30
To introduce a new, efficient method for vessel-wall imaging of carotid and peripheral arteries by means of a flow-sensitive 3D water-selective SSFP-echo pulse sequence. Periodic applications of RF pulses will generate two transverse steady states, immediately after and before an RF pulse; the latter being referred to as the SSFP-echo. The SSFP-echo signal for water protons in blood is spoiled as a result of moving spins losing phase coherence in the presence of a gradient pulse along the flow direction. Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate method's potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects. The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane spatial resolution ranging from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values. Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.
Hyler, Stefan; Pischke, Søren E; Halvorsen, Per Steinar; Espinoza, Andreas; Bergsland, Jacob; Tønnessen, Tor Inge; Fosse, Erik; Skulstad, Helge
2015-04-01
Sensitive methods for the early detection of myocardial dysfunction are still needed, as ischemia is a leading cause of decreased ventricular function during and after heart surgery. The aim of this study was to test the hypothesis that low-grade ischemia could be detected quantitatively by a miniaturized epicardial ultrasound transducer (Ø = 3 mm), allowing continuous monitoring. In 10 pigs, transducers were positioned in the left anterior descending and circumflex coronary artery areas. Left ventricular pressure was obtained by a micromanometer. The left internal mammary artery was grafted to the left anterior descending coronary artery, which was occluded proximal to the anastomosis. Left internal mammary artery flow was stepwise reduced by 25%, 50%, and 75% for 18 min each. From the transducers, M-mode traces were obtained, allowing continuous tissue velocity traces and displacement measurements. Regional work was assessed as left ventricular pressure-displacement loop area. Tissue lactate measured from intramyocardial microdialysis was used as reference method to detect ischemia. All steps of coronary flow reduction demonstrated reduced peak systolic velocity (P < .05) and regional work (P < .01).The decreases in peak systolic velocity and regional work were closely related to the degree of ischemia, demonstrated by their correlations with lactate (R = -0.74, P < .01, and R = -0.64, P < .01, respectively). The circumflex coronary artery area was not affected by any of the interventions. The epicardially attached miniaturized ultrasound transducer allowed the precise detection of different levels of coronary flow reduction. The results also showed a quantitative and linear relationship among coronary flow, ischemia, and myocardial function. Thus, the ultrasound transducer has the potential to improve the monitoring of myocardial ischemia and to detect graft failure during and after heart surgery. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
PREFACE: Viewing the World through Spin Glasses
NASA Astrophysics Data System (ADS)
Coolen, Ton; Nishimori, Hidetoshi; Sourlas, Nicolas; Wong, Michael
2008-08-01
This special issue of Journal of Physics A: Mathematical and Theoretical collects papers by speakers and participants of the conference `Viewing the World through Spin Glasses', held in Oxford (UK) on 31 August and 1 September 2007 in honour of Professor David Sherrington. It also includes contributions by many other active researchers in the field of spin glasses and related problems. The theory of spin glasses has a history of more than 30 years and continues to develop within itself as well as into an unexpectedly vast range of interdisciplinary subjects, including neural networks, error-correcting codes, optimization problems and social problems. Most of these amazing developments have their formal basis in the ground-breaking work of David Sherrington with Scott Kirkpatrick, centred on the SK model and the techniques devised to analyse it via the replica method. In this 'classic-of-classics' paper, a theoretical paradigm was suddenly established which became the common tool of analysis for thousands of papers in the following decades. It also led to deep developments in probability theory, through the efforts to understand the enigmatic Parisi solution of the SK model. The work of Professor Sherrington will continue to be an infinite source of our inspiration in many years to come. The purpose of the conference `Viewing the World through Spin Glasses' was to provide an overview of the present status of the fields which Professor Sherrington initiated, on the occasion of his 65th birthday, organized by John Cardy, Juan P Garrahan and the present Guest Editors. The first contribution in this special issue, by Professor Paul Goldbart, reflects his salute delivered at the conference dinner, and conveys its atmosphere very well. The papers that follow, ordered by the date of acceptance, represent the current activities of leading researchers in spin glasses and related fields, and we expect these to serve as milestones for future developments. We thank all the authors of this special issue and the participants of the conference for their valuable contributions.
Creation of artificial skyrmions and antiskyrmions by anisotropy engineering
NASA Astrophysics Data System (ADS)
Zhang, S.; Petford-Long, A. K.; Phatak, C.
2016-08-01
Topologically non-trivial spin textures form a fundamental paradigm in solid-state physics and present unique opportunities to explore exciting phenomena such as the topological Hall effect. One such texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the perpendicular anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique spin configurations of artificial skyrmions and antiskyrmions that are stabilized by their demagnetization energy. We elucidate their behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. This research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hanquan, E-mail: hanquan.wang@gmail.com; Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can bemore » computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.« less
Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices
NASA Astrophysics Data System (ADS)
Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi
2014-06-01
We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.
Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO 4
Paddison, Joseph A. M.; Daum, Marcus; Dun, Zhiling; ...
2016-12-05
A quantum spin liquid (QSL) is an exotic state of matter in which electrons’ spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. We report neutron-scattering experiments on YbMgGaO 4, a QSL candidate in which Yb 3+ ions with effective spin-1/2 occupy a triangular lattice. Furthermore, our measurements reveal a continuum of magnetic excitations—the essential experimental hallmark of a QSL7—at verymore » low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbour interactions do not yield a QSL ground state on the triangular lattice. In using measurements the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactions spin-space anisotropies and chemical disorder between the magnetic layers as key ingredients in YbMgGaO 4.« less
Creation of artificial skyrmions and antiskyrmions by anisotropy engineering
Zhang, S.; Petford-Long, A. K.; Phatak, C.
2016-08-10
Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less
Nishida, Shinsuke; Fukui, Kozo; Morita, Yasushi
2014-02-01
The stable tetrathiafulvalene (TTF)-linked 6-oxophenalenoxyl neutral radical exhibits a spin-center transfer with a continuous color change in solution caused by an intramolecular electron transfer, which is dependent on solvent and temperature. Cyclic voltammetry measurements showed that addition of 2,2,2-trifluoroethanol (TFE) to a benzonitrile solution of the neutral radical induces a redox potential shift that is favorable for the spin-center transfer. Temperature-dependent cyclic voltammetry of the neutral radical using a novel low-temperature electrochemical cell demonstrated that the redox potentials change with decreasing temperature in a 199:1 CH2Cl2/TFE mixed solvent. Furthermore, theoretical calculation revealed that the energy levels of the frontier molecular orbitals involved in the spin-center transfer are lowered by the hydrogen-bonding interaction of TFE with the neutral radical. These results indicate that the hydrogen-bonding effect is a key factor for the occurrence of the spin-center transfer of TTF-linked 6-oxophenalenoxyl. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Creation of artificial skyrmions and antiskyrmions by anisotropy engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Petford-Long, A. K.; Phatak, C.
Topological spin textures form a fundamental paradigm in solid state physics and present unique opportunities to explore exciting phenomena such as the quantum Hall effect. One such non-trivial spin texture is a skyrmion, in which the spins can be mapped to point in all directions wrapping around a sphere. Understanding the formation of these spin textures, and their topological and energetic stability, is crucial in order to control their behavior. In this work, we report on controlling the anisotropy of continuous Co/Pt multilayer films with ion irradiation to form unique domain configurations of artificial skyrmions and antiskyrmions. We elucidate theirmore » behavior using aberration-corrected Lorentz transmission electron microscopy. We also discuss the energetic stability of these structures studied through in-situ magnetizing experiments performed at room temperature, combined with micromagnetic simulations that successfully reproduce the spin textures and behavior. As a result, this research offers new opportunities towards creation of artificial skyrmion or antiskyrmion lattices that can be used to investigate not only fundamental properties of their interaction with electron currents but also technological applications such as artificial magnonic crystals.« less
Transitioning the Defense Automated Neurobehavioral Assessment (DANA) to Operational Use
2015-12-01
while continuing to breathe supplemental oxygen for , two hrs until the first subject had completed the arterial/ venous catheterization and cognitive...improving arterial oxygenation and exercise performance are central tenets of PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e92191...months (including air travel); using prescription medications; smoking; being pregnant or lactating; having a history of serious head injury (loss of
Podbregar, M; Voga, G; Horvat, M; Zuran, I; Krivec, B; Skale, R; Pareznik, R
1999-01-01
The first dose of angiotensin-converting enzyme (ACE) inhibitors may trigger a considerable fall of blood pressure in chronic heart failure. The response may be dose-related. To determine hemodynamic and systemic oxygenation effects of low-dose enalaprilat, we administered intravenous enalaprilat (0.004 mg/kg) as bolus (group B) or continuous 1-hour infusion (group C) in 20 patients with congestive heart failure due to ischemic heart disease with acute decompensation refractory to inotropic, vasodilator and diuretic therapy. Hemodynamic and systemic oxygenation variables were recorded at baseline (+0 min), +30, +60, +120, +180, and +360 min after the start of intervention. Mean arterial pressure (MAP) (p < 0. 001), mean pulmonary artery pressure (MPAP) (p < 0.001), pulmonary artery occlusion pressure (PAOP) (p < 0.001), oxygen extraction ratio (ER) (p < 0.026) decreased regardless of enalaprilat application. Compared to group B, there was in group C prolonged decrease of MAP, MPAP, PAOP, ER and increase of pulmonary artery oxyhemoglobin saturation in regard to baseline values. Cardiac index, heart rate, central venous pressure and oxygen consumption index did not change. A low dose of intravenous enalaprilat (0.004 mg/kg) can be used to safely improve hemodynamics and systemic oxygenation in congestive heart failure due to ischemic heart disease with acute refractory decompensation.
Obata, Yurie; Ruzankin, Pavel; Berkowitz, Dan E.; Steppan, Jochen
2017-01-01
Pulse wave velocity (PWV) has been recommended as an arterial damage assessment tool and a surrogate of arterial stiffness. However, the current technology does not allow to measure PWV both continuously and in real-time. We reported previously that peripherally measured ejection time (ET) overestimates ET measured centrally. This difference in ET is associated with the inherent vascular properties of the vessel. In the current study we examined ETs derived from plethysmography simultaneously at different peripheral locations and examined the influence of the underlying arterial properties on ET prolongation by changing the subject’s position. We calculated the ET difference between two peripheral locations (ΔET) and its corresponding PWV for the same heartbeat. The ΔET increased with a corresponding decrease in PWV. The difference between ΔET in the supine and standing (which we call ET index) was higher in young subjects with low mean arterial pressure and low PWV. These results suggest that the difference in ET between two peripheral locations in the supine vs standing positions represents the underlying vascular properties. We propose ΔET in the supine position as a potential novel real-time continuous and non-invasive parameter of vascular properties, and the ET index as a potential non-invasive parameter of vascular reactivity. PMID:29186151
Applications of remanent supermirror polarizers
NASA Astrophysics Data System (ADS)
Böni, P.; Clemens, D.; Kumar, M. Senthil; Pappas, C.
1999-06-01
Recent developments in sputtering techniques allow the fabrication of multilayers with a high degree of perfection over large areas. We show, that using reactive sputtering, it is possible to adjust the index of refraction for neutrons, ni, of the individual layers. This property is particularly important for polarizing mirrors, where nnm for the non-magnetic layers can be matched to nm of the magnetic layers such that neutrons for one spin-eigenstate are not reflected by the coating, whereas the reflectivity is high for the other spin-eigenstate. In addition, by using anisotropic sputtering conditions it is possible to orient the easy axis of magnetization within the plane of the mirrors in any particular direction resulting in a simultaneous appearance of a pronounced remanence and coercivity. Remanent polarizers can be used as broad band spin selectors at continuous and in particular at pulsed neutron sources thus eliminating the need of spin flippers, whose performance depends on the wavelength of the neutrons and is often strongly influenced by stray magnetic fields from the sample environment. The possibility to operate remanent supermirrors in arbitrary small fields leads to attractive applications of polarizing devices in low field environments such as they occur in neutron-spin-echo or in spin selective neutron guides. We present applications, where several tasks like polarizing, focusing and spin selection are performed in one single device thus reducing the problem of phase space matching between different neutron optical components.
Broadband Transmission EPR Spectroscopy
Hagen, Wilfred R.
2013-01-01
EPR spectroscopy employs a resonator operating at a single microwave frequency and phase-sensitive detection using modulation of the magnetic field. The X-band spectrometer is the general standard with a frequency in the 9–10 GHz range. Most (bio)molecular EPR spectra are determined by a combination of the frequency-dependent electronic Zeeman interaction and a number of frequency-independent interactions, notably, electron spin – nuclear spin interactions and electron spin – electron spin interactions, and unambiguous analysis requires data collection at different frequencies. Extant and long-standing practice is to use a different spectrometer for each frequency. We explore the alternative of replacing the narrow-band source plus single-mode resonator with a continuously tunable microwave source plus a non-resonant coaxial transmission cell in an unmodulated external field. Our source is an arbitrary wave digital signal generator producing an amplitude-modulated sinusoidal microwave in combination with a broadband amplifier for 0.8–2.7 GHz. Theory is developed for coaxial transmission with EPR detection as a function of cell dimensions and materials. We explore examples of a doublet system, a high-spin system, and an integer-spin system. Long, straigth, helical, and helico-toroidal cells are developed and tested with dilute aqueous solutions of spin label hydroxy-tempo. A detection limit of circa 5 µM HO-tempo in water at 800 MHz is obtained for the present setup, and possibilities for future improvement are discussed. PMID:23555819
Ali, Muhammad Asghar; Yahya, Muhammad
2017-01-01
Fundamental medical care includes intravenous (IV) access which provides prompt resuscitation and reliable delivery of analgesics, antibiotics, and vasoactive medication. Difficult access populations, especially in critical area, continue to challenge providers to consider and utilize alternative means to provide IV access. Potential options under such circumstances include intramuscular, intraosseous, and intratracheal drug administration, but in extreme cases where no other options are available, intra-arterial route might be considered. We present a case where midazolam was intentionally injected intra-arterially to abort seizure activity in a patient with status epilepticus in the Intensive Care Unit. PMID:29033730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckett, David; Gaines, Peter A.
2008-01-15
Carotid endarterectomy (CEA) was established as the gold standard for treatment of carotid occlusive disease by several landmark papers published in the 1990s. With the continued trend toward less invasive therapies, carotid artery stenting (CAS) has challenged CEA for treatment of significant carotid artery disease. Several trials have now compared CEA and CAS and a subsequent Cochrane review indicated that the 30-day complication rates were equivalent. Unfortunately, comparative long-term data are still lacking. Two new trials comparing CAS with CAE in patients with symptomatic internal carotid artery disease have recently been published, but to what extent have they usefully addedmore » to the available data?.« less
RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2015-10-29
A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.
NASA Astrophysics Data System (ADS)
Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.
2009-06-01
Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.
Adjustable Spin-Spin Interaction with 171Yb+ ions and Addressing of a Quantum Byte
NASA Astrophysics Data System (ADS)
Wunderlich, Christof
2015-05-01
Trapped atomic ions are a well-advanced physical system for investigating fundamental questions of quantum physics and for quantum information science and its applications. When contemplating the scalability of trapped ions for quantum information science one notes that the use of laser light for coherent operations gives rise to technical and also physical issues that can be remedied by replacing laser light by microwave (MW) and radio-frequency (RF) radiation employing suitably modified ion traps. Magnetic gradient induced coupling (MAGIC) makes it possible to coherently manipulate trapped ions using exclusively MW and RF radiation. After introducing the general concept of MAGIC, I shall report on recent experimental progress using 171Yb+ ions, confined in a suitable Paul trap, as effective spin-1/2 systems interacting via MAGIC. Entangling gates between non-neighbouring ions will be presented. The spin-spin coupling strength is variable and can be adjusted by variation of the secular trap frequency. In general, executing a quantum gate with a single qubit, or a subset of qubits, affects the quantum states of all other qubits. This reduced fidelity of the whole quantum register may preclude scalability. We demonstrate addressing of individual qubits within a quantum byte (eight qubits interacting via MAGIC) using MW radiation and measure the error induced in all non-addressed qubits (cross-talk) associated with the application of single-qubit gates. The measured cross-talk is on the order 10-5 and therefore below the threshold commonly agreed sufficient to efficiently realize fault-tolerant quantum computing. Furthermore, experimental results on continuous and pulsed dynamical decoupling (DD) for protecting quantum memories and quantum gates against decoherence will be briefly discussed. Finally, I report on using continuous DD to realize a broadband ultrasensitive single-atom magnetometer.
NASA Astrophysics Data System (ADS)
Mukherjee, Arunava; Messenger, Chris; Riles, Keith
2018-02-01
The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.
Hotta, Arisa; Yagi, Yuuki; Hakata, Saaya; Tsumura, Yae; Shimizu, Motoko; Kukida, Ayako; Nakamoto, Ai; Yoshikawa, Noriko; Oohira, Naoko; Tatekawa, Shigeki
2013-12-01
Ultrasound-guided peripheral nerve blocks in the abdominal wall, such as transversus abdominis plane block (TAP block) and rectus sheath block, are now widely used. We report a case of Leriche's syndrome treated with safe and effective analgesia after laparotomy by abdominal wall block and continuous infusion. A 61-year-old man diagnosed with Leriche's syndrome underwent Y-graft replacement for an abdominal aortic aneurysm. Preoperative enhanced and 3-dimensional CTs showed many collateral arterial systems, especially in the right abdominal wall. It was suggested that the right internal iliac artery had been completely occluded, and the left one showed severe stenosis. After the induction of general anesthesia, we recognized collateral arteries through an ultrasound view as on preoperative CTs. We lowered the pulse repetition frequency more than usual in order not to injure them. We injected 0.1875% ropivacaine 60 ml as TAP block, and 20 ml as rectus sheath block. When the wound was closed, a catheter was passed through an 18-gauge Tuohy needle placed above the fascia along the supraumbilical site. After the operation, 0.2% ropivacaine was continuously delivered at a rate of 6 ml hr-1 through the catheter. We could provide the patient with effective analgesia after surgery.
Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors
Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang
2014-01-01
Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869
Witkowski, Maria Carolina; de Moraes, Maria Antonieta P.; Firpo, Cora Maria F.
2013-01-01
OBJECTIVE: To compare two systems of arterial catheters maintenance in postoperative pediatric surgery using intermittent or continuous infusion of heparin solution and to analyze adverse events related to the site of catheter insertion and the volume of infused heparin solution. METHODS: Randomized control trial with 140 patients selected for continuous infusion group (CIG) and intermittent infusion group (IIG). The variables analyzed were: type of heart disease, permanence time and size of the catheter, insertion site, technique used, volume of heparin solution and adverse events. The descriptive variables were analyzed by Student's t-test and the categorical variables, by chi-square test, being significant p<0.05. RESULTS: The median age was 11 (0-22) months, and 77 (55%) were females. No significant differences between studied variables were found, except for the volume used in CIG (12.0±1.2mL/24 hours) when compared to IIG (5.3±3.5mL/24 hours) with p<0.0003. CONCLUSIONS: The continuous infusion system and the intermittent infusion of heparin solution can be used for intra-arterial catheters maintenance in postoperative pediatric surgery, regardless of patient's clinical and demographic characteristics. Adverse events up to the third postoperative day occurred similarly in both groups. However, the intermittent infusion system usage in underweight children should be considered, due to the lower volume of infused heparin solution [ClinicalTrials.gov Identifier: NCT01097031]. PMID:24473958
Nazarena Pizzi, M; Aguadé Bruix, S; Cuéllar Calabria, H; Aliaga, V; Candell Riera, J
2010-01-01
A 77-year old patient was admitted for acute coronary syndrome without ST elevation. His risk was stratified using the myocardial perfusion gated SPECT, mild inferior ischemia being observed. Thus, medical therapy was optimized and the patient was discharged. He continued with exertional dyspnea so a coronary CT angiography was performed. It revealed severe lesions in the proximal RCA. SPECT-CT fusion images correlated the myocardial perfusion defect with a posterior descending artery from the RCA, in a co-dominant coronary area. Subsequently, cardiac catheterism was indicated for his treatment. The current use of image fusion studies is limited to patients in whom it is difficult to attribute a perfusion defect to a specific coronary artery. In our patient, the fusion images helped to distinguish between the RCA and the circumflex artery as the culprit artery of ischemia. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.