Sample records for continuous carbon dioxide

  1. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon monoxide and carbon dioxide... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon...

  2. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  3. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  4. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  5. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  6. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  7. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  8. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  9. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...

  10. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...

  11. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  12. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide...

  13. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  15. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  16. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally...

  17. 21 CFR 582.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is generally... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS...

  18. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  19. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  20. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  1. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  2. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  3. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...

  4. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...

  5. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive heated...

  6. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  7. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Carbon dioxide and certain other gases. 201.161... (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene, helium, and nitrous oxide gases intended for drug use are...

  8. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  9. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  10. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  11. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  12. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  13. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868.1400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer...

  14. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a) Except as provided in...

  15. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM...

  16. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  17. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide systems: General. 108.431 Section 108.431 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.431 Carbon dioxide systems: General. (a)...

  18. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide...

  19. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  20. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carbon dioxide absorbent. 868.5300 Section 868.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a...

  1. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a devic...

  2. CONTINUOUS, AUTOMATED AND SIMULTANEOUS MEASUREMENT OF OXYGEN UPTAKE AND CARBON DIOXIDE EVOLUTION IN BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Commercial respirometers are capable of continuously and automatically measuring oxygen uptake in bioreactors. A method for continuously and automatically measuring carbon dioxide evolution can be retrofitted to commercial respirometers. Continuous and automatic measurements of...

  3. 40 CFR 62.15205 - What minimum amount of monitoring data must I collect with my continuous emission monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...

  4. 40 CFR 62.15205 - What minimum amount of monitoring data must I collect with my continuous emission monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...

  5. 40 CFR 62.15205 - What minimum amount of monitoring data must I collect with my continuous emission monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... averages for sulfur dioxide, nitrogen oxides (Class I municipal waste combustion units only), and carbon monoxide are in parts per million by dry volume at 7 percent oxygen (or the equivalent carbon dioxide level). Use the 1-hour averages of oxygen (or carbon dioxide) data from your continuous emission monitoring...

  6. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...

  7. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  8. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  9. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  10. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  11. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN...

  12. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  13. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM...

  14. 46 CFR 169.732 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 169.732 Section 169.732 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide and clean agent alarms. (a) Each carbon dioxide o...

  15. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...

  16. 21 CFR 201.161 - Carbon dioxide and certain other gases.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Carbon dioxide and certain other gases. 201.161 Section 201.161 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING Other Exemptions § 201.161 Carbon dioxide and certain other gases. (a) Carbon dioxide, cyclopropane, ethylene,...

  17. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  18. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  19. 46 CFR 131.815 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 131.815 Section 131.815 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.815 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  20. 46 CFR 108.627 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 108.627 Section 108.627 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide and clean agent alarms. Each carbon dioxide alarm must be...

  1. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  2. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  3. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  4. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  5. 46 CFR 97.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 97.37-9 Section 97.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent...

  6. 46 CFR 78.47-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 78.47-9 Section 78.47-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide and clean agent alarms. Each carbon dioxide or clean agent fire...

  7. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  8. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  9. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  10. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  11. 40 CFR 60.1745 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 60.1745 Section 60.1745 Protection of Environment... choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous emission monitoring...

  12. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...

  13. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...

  14. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...

  15. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...

  16. 40 CFR 62.15200 - What must I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide instead of oxygen as a diluent gas? 62.15200 Section 62.15200 Protection of Environment... I do if I choose to monitor carbon dioxide instead of oxygen as a diluent gas? You must establish the relationship between oxygen and carbon dioxide during the initial evaluation of your continuous...

  17. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  18. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  19. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid...

  20. 46 CFR 76.15-30 - Alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...

  1. 46 CFR 76.15-30 - Alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...

  2. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for the...

  3. 46 CFR 76.15-30 - Alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...

  4. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Procedures § 86.1524 Carbon dioxide analyzer calibration. (a) The calibration requirements for the dilute...

  5. 46 CFR 76.15-30 - Alarms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-30 Alarms. (a) Spaces which are protected by a carbon dioxide... such spaces which will be automatically sounded when the carbon dioxide is admitted to the space. The...

  6. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  7. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...

  8. 46 CFR 169.565 - Fixed carbon dioxide system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The...

  9. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...

  10. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...

  11. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...

  12. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...

  13. 46 CFR 131.817 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 131.817 Section 131.817 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.817 Carbon dioxide warning signs. Each entrance...

  14. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...

  15. 46 CFR 108.626 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 108.626 Section 108.626 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.626 Carbon dioxide warning signs. Each...

  16. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle Heavy-Duty...

  17. 40 CFR 86.1524 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration. 86.1524 Section 86.1524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle Heavy-Duty...

  18. 40 CFR 60.1245 - Am I exempt from any appendix B or appendix F requirements to evaluate continuous emission...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appendix F requirements to evaluate continuous emission monitoring systems? 60.1245 Section 60.1245... Commenced After June 6, 2001 Continuous Emission Monitoring § 60.1245 Am I exempt from any appendix B or... carbon dioxide) continuous emission monitoring system. Therefore, your oxygen (or carbon dioxide...

  19. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its...

  20. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer...

  1. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  2. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  3. 46 CFR 97.37-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 97.37-11 Section 97.37-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-11 Carbon dioxide warning signs. Each...

  4. Development Requirements for the Exploration PLSS (xPLSS) Carbon Dioxide and Humidity Control Unit (CDHCU)

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2017-01-01

    Functional Requirements for the Carbon Dioxide and Humidity Control Unit (CDHCU): The CDHCU is a component of the Exploration Portable Life Support System (xPLSS) to provide carbon dioxide (CO2) and humidity control within the spacesuit for a crewmember to perform extravehicular activities (EVA) in vacuum (micro-g), lunar, and Mars environments for up to 8 hours continuous, and during EVA preparation in airlocks or support vehicles for an additional 2 hours (TBR) continuous.

  5. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons, carbon monoxide, oxides of nitrogen, particulate, methanol and formaldehyde, as applicable. The... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide... levels of hydrocarbon, carbon monoxide, carbon dioxide, and oxides of nitrogen and, if appropriate...

  6. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons, carbon monoxide, oxides of nitrogen, particulate, methanol and formaldehyde, as applicable. The... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide... levels of hydrocarbon, carbon monoxide, carbon dioxide, and oxides of nitrogen and, if appropriate...

  7. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-1 Application. (a) The provisions of this... this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in... carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be specifically...

  8. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-1 Application. (a) The... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is... which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  9. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  10. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  11. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  12. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Carbon dioxide and halon fire extinguishing systems. 147.65 Section 147.65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES Stowage and Other Special Requirements for Particular Materials § 147.65 Carbon dioxide and halon fire extinguishing...

  13. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  14. 46 CFR 167.45-45 - Carbon dioxide fire extinguishing system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide fire extinguishing system requirements. 167.45-45 Section 167.45-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-45 Carbon dioxide fire extinguishing system...

  15. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space...

  16. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space...

  17. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a...

  18. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a...

  19. 46 CFR 78.47-11 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide warning signs. 78.47-11 Section 78.47-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-11 Carbon dioxide warning signs. Each entrance to a space...

  20. 46 CFR 196.37-8 - Carbon dioxide warning signs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide warning signs. 196.37-8 Section 196.37-8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-8 Carbon dioxide warning signs. Each entrance to a...

  1. 46 CFR 196.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms. 196.37-9 Section 196.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide and clean agent alarms. Each extinguishing system using...

  2. 46 CFR 196.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms. 196.37-9 Section 196.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide and clean agent alarms. Each extinguishing system using...

  3. 46 CFR 196.37-9 - Carbon dioxide and clean agent alarms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms. 196.37-9 Section 196.37-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide and clean agent alarms. Each extinguishing system using...

  4. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  5. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compatibility necessary for transportation of hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY...

  6. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compatibility necessary for transportation of hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY...

  7. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compatibility necessary for transportation of hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY...

  8. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1 Section 179.102-1 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car...

  9. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480 Section 868.2480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A...

  10. Nasal continuous positive airway pressure: does bubbling improve gas exchange?

    PubMed

    Morley, C J; Lau, R; De Paoli, A; Davis, P G

    2005-07-01

    In a randomised crossover trial, 26 babies, treated with Hudson prong continuous positive airway pressure (CPAP) from a bubbling bottle, received vigorous, high amplitude, or slow bubbling for 30 minutes. Pulse oximetry, transcutaneous carbon dioxide, and respiratory rate were recorded. The bubbling rates had no effect on carbon dioxide, oxygenation, or respiratory rate.

  11. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year...

  12. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Carbon dioxide analyzer calibration. 86.124-78 Section 86.124-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New...

  13. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide laser for etching food. 179.43 Section 179.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF...

  14. 46 CFR 76.15-50 - Lockout valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... any carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and... system from the protected space or spaces, making it impossible for carbon dioxide to discharge in the... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon...

  15. 46 CFR 76.15-50 - Lockout valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... any carbon dioxide extinguishing system protecting a space over 6,000 cubic feet in volume and... system from the protected space or spaces, making it impossible for carbon dioxide to discharge in the... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon...

  16. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operate a continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon... control room instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator... catalytic regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke...

  17. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operate a continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon... control room instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator... catalytic regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke...

  18. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon monoxide, and... instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator exhaust, percent by... regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke burn and...

  19. A hybrid absorption–adsorption method to efficiently capture carbon

    PubMed Central

    Liu, Huang; Liu, Bei; Lin, Li-Chiang; Chen, Guangjin; Wu, Yuqing; Wang, Jin; Gao, Xueteng; Lv, Yining; Pan, Yong; Zhang, Xiaoxin; Zhang, Xianren; Yang, Lanying; Sun, Changyu; Smit, Berend; Wang, Wenchuan

    2014-01-01

    Removal of carbon dioxide is an essential step in many energy-related processes. Here we report a novel slurry concept that combines specific advantages of metal-organic frameworks, ion liquids, amines and membranes by suspending zeolitic imidazolate framework-8 in glycol-2-methylimidazole solution. We show that this approach may give a more efficient technology to capture carbon dioxide compared to conventional technologies. The carbon dioxide sorption capacity of our slurry reaches 1.25 mol l−1 at 1 bar and the selectivity of carbon dioxide/hydrogen, carbon dioxide/nitrogen and carbon dioxide/methane achieves 951, 394 and 144, respectively. We demonstrate that the slurry can efficiently remove carbon dioxide from gas mixtures at normal pressure/temperature through breakthrough experiments. Most importantly, the sorption enthalpy is only −29 kJ mol−1, indicating that significantly less energy is required for sorbent regeneration. In addition, from a technological point of view, unlike solid adsorbents slurries can flow and be pumped. This allows us to use a continuous separation process with heat integration. PMID:25296559

  20. Using Ozone To Clean and Passivate Oxygen-Handling Hardware

    NASA Technical Reports Server (NTRS)

    Torrance, Paul; Biesinger, Paul

    2009-01-01

    A proposed method of cleaning, passivating, and verifying the cleanliness of oxygen-handling hardware would extend the established art of cleaning by use of ozone. As used here, "cleaning" signifies ridding all exposed surfaces of combustible (in particular, carbon-based) contaminants. The method calls for exposing the surfaces of the hardware to ozone while monitoring the ozone effluent for carbon dioxide. The ozone would passivate the hardware while oxidizing carbon-based residues, converting the carbon in them to carbon dioxide. The exposure to ozone would be continued until no more carbon dioxide was detected, signifying that cleaning and passivation were complete.

  1. Record annual increase of carbon dioxide observed at Mauna Loa for 2015 |

    Science.gov Websites

    related to atmospheric change since the 1950's. The annual growth rate of atmospheric carbon dioxide year. Continued high emissions from fossil fuel consumption are driving the underlying growth rate over

  2. Controlling Processes on Carbonate Chemistry across the Pacific

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.

    2016-12-01

    The SWIRE NOC Ocean Monitoring System (SNOMS) project is an innovative programme helping to answer important questions about global climate change by using a commercial ship of opportunity to measure carbon in the surface of the ocean. Daily sampling coupled to continuous underway observation from a ship of opportunity (MV Shengking) provides new insights into the processes controlling variability in the carbonate system across the Pacific. The ships track runs from Vancouver (Canada) to Brisbane (Australia). Daily samples were taken on-board and measurements of Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined. This was alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, carbon dioxide and dissolved oxygen (DO). These sensor based measurements were validated using the discrete samples. Carbon dioxide calculated from DIC and TA showed an offset from the sensor data of up to 8uatm. This and comparisons with climatology were used to calibrate the sensor data. The data have been compared with previous data from the MV Pacific Celebes that ran a similar route until 2012. The data show a clear increase in seawater carbon dioxide, tracking the atmospheric increases. Along track the partial pressure of seawater carbon dioxide varied by over 150 uatm. The highest values were seen just south of the equator in the Pacific, which is an important source region for carbon dioxide to the atmosphere.

  3. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  4. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  5. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  6. DISPERSION POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE IN SUPERCRITICAL CARBON DIOXIDE. (R826115)

    EPA Science Inventory

    Herein we report a successful dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1-dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2-hydroxyethyl methacrylate) was ...

  7. 40 CFR 60.1735 - Am I exempt from any appendix B or appendix F requirements to evaluate continuous emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appendix F requirements to evaluate continuous emission monitoring systems? 60.1735 Section 60.1735... systems? Yes, the accuracy tests for your sulfur dioxide continuous emission monitoring system require you to also evaluate your oxygen (or carbon dioxide) continuous emission monitoring system. Therefore...

  8. 40 CFR 60.1735 - Am I exempt from any appendix B or appendix F requirements to evaluate continuous emission...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appendix F requirements to evaluate continuous emission monitoring systems? 60.1735 Section 60.1735... systems? Yes, the accuracy tests for your sulfur dioxide continuous emission monitoring system require you to also evaluate your oxygen (or carbon dioxide) continuous emission monitoring system. Therefore...

  9. 40 CFR 62.15190 - Am I exempt from any 40 CFR part 60 appendix B or appendix F requirements to evaluate continuous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appendix B or appendix F requirements to evaluate continuous emission monitoring systems? 62.15190 Section... evaluate continuous emission monitoring systems? Yes, the accuracy tests for your sulfur dioxide continuous emission monitoring system require you to also evaluate your oxygen (or carbon dioxide) continuous emission...

  10. 40 CFR 62.15190 - Am I exempt from any 40 CFR part 60 appendix B or appendix F requirements to evaluate continuous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appendix B or appendix F requirements to evaluate continuous emission monitoring systems? 62.15190 Section... evaluate continuous emission monitoring systems? Yes, the accuracy tests for your sulfur dioxide continuous emission monitoring system require you to also evaluate your oxygen (or carbon dioxide) continuous emission...

  11. Corona Preionization Technique for Carbon Dioxide TEA Lasers.

    DTIC Science & Technology

    1982-11-30

    34’" " " " "- -. .. " "I~ 82R8O701-02 CORONA PREIONIZATION TECHNIQUE FOR CARBON DIOXIDE TEA LASERS W after R. Kamnki SUnited Technologiles Research Center C...TITLE (and Subtitle) S. TYPE OF REPORT a PERIOD COVERED CORONA PREIONIZATION TECHNIQUE FOR CARBON Final Report DIOXIDE TEA LASERS May 5, 1981...Preionization Laser UV Preionization Pulsed CO2 Laser Corona Preionization CO2 TEA Laser 10. ABSTRACT (Continue on reverse side If neceeeiny md Identify

  12. Electrode Build-Up of Reducible Metal Composites toward Achievable Electrochemical Conversion of Carbon Dioxide.

    PubMed

    Lee, Seunghwa; Lee, Jaeyoung

    2016-02-19

    At the beginning of the 21st century, our world is faced with a global-warming problem due to the continuous increase in carbon dioxide emission, and thus, the development of novel experimental techniques is needed. The electrochemical conversion of carbon dioxide into high-value organic compounds could be of vital importance to solve this issue. The biggest challenge has always been to develop an electrocatalyst that is chemically active and structurally stable. Herein, previous studies, recent approaches, and current points of view on the electrode structure of metal oxide composites for the advanced electrochemical conversion of carbon dioxide are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system.

    PubMed

    Paniagua-Martínez, I; Mulet, A; García-Alvarado, M A; Benedito, J

    2018-01-01

    Supercritical carbon dioxide inactivation technology represents a promising nonthermal processing method, as it causes minimum impact on the nutritional food properties. The aim of this study was to analyze the combined effect of supercritical carbon dioxide and high-power ultrasound on the inactivation of natural microbiota and the quality attributes of pineapple juice treated in a continuous flow system. Different juice residence times (3.06-4.6 min), at 100 bar and 31.5 ℃, were used. The results indicated that the microbiota inactivation was complete and the differences obtained in the quality attributes (2.2% for pH, 4.8% for °Brix, 2% for vitamin C) were minimal. During storage, microorganisms were not able to recover and the vitamin C decrease could be limited to 8.2% after four weeks. The results demonstrated that the supercritical carbon dioxide-high-power ultrasound technique could be an excellent alternative for the cold pasteurization of pineapple juice.

  14. Carbon dioxide inhalation treatments of neurotic anxiety. An overview.

    PubMed

    Wolpe, J

    1987-03-01

    A lucky chance more than 30 years ago revealed the remarkable efficacy of single inhalations of high concentrations of carbon dioxide in eliminating or markedly reducing free-floating anxiety. The reduction of anxiety lasts for days, weeks, or longer--well beyond the persistence of carbon dioxide in the body. The effects are explicable on the hypothesis that free-floating anxiety is anxiety conditioned to continuously present sources of stimulation, such as background noise or the awareness of space or time, and that the anxiety response habit is weakened when the anxiety is inhibited by the competition of responses that carbon dioxide induces. More recently, it has become apparent that inhalations of carbon dioxide, applied in a different manner, are effective in overcoming maladaptive anxiety responses to specific stimuli, e.g., social stimuli. The substance is also proving to be a valuable resource in the treatment of the common variety of panic attacks.

  15. Studies on utilization of treated stack gas. II. Growth of water hyacinths (Eichhornia crassipes) in carbon dioxide-rich atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.F.; Hewes, K.A.

    1984-01-01

    Water hyacinths survive atmospheric carbon dioxide concentrations ranging from ambient to 15% (v/v). The optimum growth during a one-week period with continuous laboratory lighting (200 ..mu..Es/m/sup 2//sec) appeared to be about 10%. Under these conditions, the equation defining inorganic carbon fixed as a function of the atmospheric concentration of carbon dioxide indicated a maximum of about 75% of available carbon was fixed over the range 1-10% CO/sub 2/. Under a typical light cycle, the percent fixed was reduced to about 60%. The implications of the results are considered.

  16. 46 CFR 95.15-30 - Alarms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... automatically and audibly for at least 20 seconds before carbon dioxide is discharged into the space; (2) Be..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-30 Alarms. (a) A protected space must be fitted with an...

  17. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  18. A new look at atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Butler, James H.; Tans, Pieter P.

    Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.

  19. 46 CFR 76.15-15 - Piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Piping. 76.15-15 Section 76.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide... forth in this paragraph. Only carbon dioxide or other inert gas shall be used for this test. (2) The...

  20. 46 CFR 76.15-15 - Piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Piping. 76.15-15 Section 76.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide... forth in this paragraph. Only carbon dioxide or other inert gas shall be used for this test. (2) The...

  1. 46 CFR 76.15-15 - Piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Piping. 76.15-15 Section 76.15-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide... forth in this paragraph. Only carbon dioxide or other inert gas shall be used for this test. (2) The...

  2. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon dioxide...

  3. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bicarbonate/carbon dioxide test system. 862.1160 Section 862.1160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  4. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bicarbonate/carbon dioxide test system. 862.1160 Section 862.1160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  5. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bicarbonate/carbon dioxide test system. 862.1160 Section 862.1160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  6. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bicarbonate/carbon dioxide test system. 862.1160 Section 862.1160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  7. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... storage. (a) Except as provided in paragraph (b) of this section, the cylinders shall be located outside...

  8. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... storage. (a) Except as provided in paragraph (b) of this section, the cylinders shall be located outside...

  9. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Uterotubal carbon dioxide insufflator and accessories. 884.1300 Section 884.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Diagnostic Devices § 884.1300...

  10. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Uterotubal carbon dioxide insufflator and accessories. 884.1300 Section 884.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Diagnostic Devices § 884.1300...

  11. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  12. 46 CFR 193.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... requirements of this subpart are based on a “high pressure system,” i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems,” i.e., those in which the carbon dioxide is stored in liquid form at a continuously controlled low temperature, may be...

  13. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  14. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  15. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  16. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  17. 49 CFR Appendix B to Part 195 - Risk-Based Alternative to Pressure Testing Older Hazardous Liquid and Carbon Dioxide Pipelines

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) (Propane, butane, Natural Gas Liquid (NGL), ammonia) Highly toxic (Benzene, high Hydrogen Sulfide content... Hazardous Liquid and Carbon Dioxide Pipelines B Appendix B to Part 195 Transportation Other Regulations... OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Pt. 195...

  18. 21 CFR 179.43 - Carbon dioxide laser for etching food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide laser for etching food. 179.43 Section 179.43 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources...

  19. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of themore » emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.« less

  20. Numerically Simulating Carbonate Mineralization of Basalt with Injection of Carbon Dioxide into Deep Saline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.

    2006-07-08

    The principal mechanisms for the geologic sequestration of carbon dioxide in deep saline formations include geological structural trapping, hydrological entrapment of nonwetting fluids, aqueous phase dissolution and ionization, and geochemical sorption and mineralization. In sedimentary saline formations the dominant mechanisms are structural and dissolution trapping, with moderate to weak contributions from hydrological and geochemical trapping; where, hydrological trapping occurs during the imbibition of aqueous solution into pore spaces occupied by gaseous carbon dioxide, and geochemical trapping is controlled by generally slow reaction kinetics. In addition to being globally abundant and vast, deep basaltic lava formations offer mineralization kinetics that makemore » geochemical trapping a dominate mechanism for trapping carbon dioxide in these formations. For several decades the United States Department of Energy has been investigating Columbia River basalt in the Pacific Northwest as part of its environmental programs and options for natural gas storage. Recently this nonpotable and extensively characterized basalt formation is being reconsidered as a potential reservoir for geologic sequestration of carbon dioxide. The reservoir has an estimated storage capacity of 100 giga tonnes of carbon dioxide and comprises layered basalt flows with sublayering that generally alternates between low permeability massive and high permeability breccia. Chemical analysis of the formation shows 10 wt% Fe, primarily in the +2 valence. The mineralization reaction that makes basalt formations attractive for carbon dioxide sequestration is that of calcium, magnesium, and iron silicates reacting with dissolved carbon dioxide, producing carbonate minerals and amorphous quartz. Preliminary estimates of the kinetics of the silicate-to-carbonate reactions have been determined experimentally and this research is continuing to determine effects of temperature, pressure, rock composition and mineral assemblages on the reaction rates. This study numerically investigates the injection, migration and sequestration of supercritical carbon dioxide in deep Columbia River basalt formations using the multifluid subsurface flow and reactive transport simulator STOMP-CO2 with its ECKEChem module. Simulations are executed on high resolution multiple stochastic realizations of the layered basalt systems and demonstrate the migration behavior through layered basalt formations and the mineralization of dissolved carbon dioxide. Reported results include images of the migration behavior, distribution of carbonate formation, quantities of injected and sequestered carbon dioxide, and percentages of the carbon dioxide sequestered by different mechanisms over time.« less

  1. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Carbon dioxide; exemption from the requirement of a tolerance. 180.1049 Section 180.1049 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1049 Carbo...

  2. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Carbon dioxide; exemption from the requirement of a tolerance. 180.1049 Section 180.1049 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1049 Carbo...

  3. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Carbon dioxide; exemption from the requirement of a tolerance. 180.1049 Section 180.1049 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1049 Carbo...

  4. Carbon Dioxide - Our Common "Enemy"

    NASA Technical Reports Server (NTRS)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon dioxide that could meet the 1000-day SMAC of 0.5%, which would apply to long-duration voyages to Mars.

  5. A compilation of sulfur dioxide and carbon dioxide emission-rate data from Cook Inlet volcanoes (Redoubt, Spurr, Iliamna, and Augustine), Alaska during the period from 1990 to 1994

    USGS Publications Warehouse

    Doukas, Michael P.

    1995-01-01

    Airborne sulfur dioxide (SO2) gas sampling of the Cook Inlet volcanoes (Mt. Spurr, Redoubt, Iliamna, and Augustine) began in 1986 when several measurements were carried out at Augustine volcano during the eruption of 1986 (Rose and others, 1988). More systematic monitoring for SO2 began in March 1990 and for carbon dioxide (CO2) began in June, 1990 at Redoubt Volcano (Brantley, 1990 and Casadevall and others, 1994) and continues to the present. This report contains all of the available daily SO2 and CO2 emission rates determined by the U.S. Geological Survey (USGS) from March 1990 through July 1994. Intermittent measurements (four to six month intervals) at Augustine and Iliamna began in 1990 and continues to the present. Intermittent measurements began at Mt. Spurr volcano in 1991, and were continued at more regular intervals from June, 1992 through the 1992 eruption at the Crater Peak vent to the present.

  6. On the development of a methodology for extensive in-situ and continuous atmospheric CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chang, S.; Jhang, T.

    2010-12-01

    Carbon dioxide is recognized as the dominating greenhouse gas contributing to anthropogenic global warming. Stringent controls on carbon dioxide emissions are viewed as necessary steps in controlling atmospheric carbon dioxide concentrations. From the view point of policy making, regulation of carbon dioxide emissions and its monitoring are keys to the success of stringent controls on carbon dioxide emissions. Especially, extensive atmospheric CO2 monitoring is a crucial step to ensure that CO2 emission control strategies are closely followed. In this work we develop a methodology that enables reliable and accurate in-situ and continuous atmospheric CO2 monitoring for policy making. The methodology comprises the use of gas filter correlation (GFC) instrument for in-situ CO2 monitoring, the use of CO2 working standards accompanying the continuous measurements, and the use of NOAA WMO CO2 standard gases for calibrating the working standards. The use of GFC instruments enables 1-second data sampling frequency with the interference of water vapor removed from added dryer. The CO2 measurements are conducted in the following timed and cycled manner: zero CO2 measurement, two standard CO2 gases measurements, and ambient air measurements. The standard CO2 gases are calibrated again NOAA WMO CO2 standards. The methodology is used in indoor CO2 measurements in a commercial office (about 120 people working inside), ambient CO2 measurements, and installed in a fleet of in-service commercial cargo ships for monitoring CO2 over global marine boundary layer. These measurements demonstrate our method is reliable, accurate, and traceable to NOAA WMO CO2 standards. The portability of the instrument and the working standards make the method readily applied for large-scale and extensive CO2 measurements.

  7. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    PubMed

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the formulation of the rock cycle and to the dissolution of deep sea carbonate sediments. Atmospheric carbon dioxide continues to increase as long fossil fuel is burned at a significant rate, because the rate of fossil fuel production of carbon dioxide far exceeds the rates at which geochemical processes can remove carbon dioxide from the atmosphere. The maximum concentration of carbon dioxide achieved in the atmosphere depends on the total amount of fossil fuel burned, but only weakly on the rate of burning. The future course of atmospheric carbon dioxide is, however, very sensitive to the fate of the forests in this simulation because of the important role assigned to carbon dioxide fertilization of plant growth rate. Forest clearance drives up atmospheric carbon dioxide not only by converting biomass into atmospheric carbon dioxide but more importantly by reducing the capacity of the biota to sequester fossil fuel carbon dioxide. In this simulation, atmospheric carbon dioxide levels could be sustained indefinitely below 500 parts per million (ppm) if fossil fuel combustion rates were immediately cut from their present value of 5 x 10(14) m/y to 0.2 x 10(14) m/y (a factor of 25 reduction) and if further forest clearance were halted. If neither of these conditions is met and if we consume most of the world's fossil fuel reserves, peak carbon dioxide concentrations of 1000-2000 ppm are probable within the next few centuries.

  8. FACTORS AFFECTING CARBON ACCUMULATION IN NEW ENGLAND EELGRASS MEADOWS

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  9. Quantification of carbon accumulation in eleven New England eelgrass meadows

    EPA Science Inventory

    As atmospheric and oceanic concentrations of carbon dioxide continue to increase, quantifying the carbon storage potential of seagrass meadows and improving the understanding of the factors controlling carbon sequestration in seagrass meadows is essential information for decision...

  10. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland

    Treesearch

    D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen

    2013-01-01

    Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...

  11. The United States Army Medical Department Journal. October - December 2012

    DTIC Science & Technology

    2012-12-01

    assess effect on weight change following injury. Nutritional programs aimed at smaller meal consumption , inclusion of breakfast, making healthier...electrocardiography, blood pres- sure, oxygen saturation, end-tidal carbon dioxide, and rectal temperatures were continuously monitored for the...blood pressure, oxygen saturation, end-tidal carbon dioxide, and rectal temperatures . Body temperature was maintained greater than 36.0°C. When

  12. Maximising biohydrogen yields via continuous electrochemical hydrogen removal and carbon dioxide scrubbing.

    PubMed

    Massanet-Nicolau, Jaime; Jones, Rhys Jon; Guwy, Alan; Dinsdale, Richard; Premier, Giuliano; Mulder, Martijn J J

    2016-10-01

    The use of electrochemical hydrogen removal (EHR) together with carbon dioxide removal (CDR) was demonstrated for the first time using a continuous hydrogen producing fermenter. CDR alone was found to increase hydrogen yields from 0.07molH2molhexose to 0.72molH2molhexose. When CDR was combined with EHR, hydrogen yields increased further to 1.79molH2molhexose. The pattern of carbohydrate utilisation and volatile fatty acid (VFA) production are consistent with the hypothesis that increased yields are the result of relieving end product inhibition and inhibition of microbial hydrogen consumption. In situ removal of hydrogen and carbon dioxide as demonstrated here not only increase hydrogen yield but also produces a relatively pure product gas and unlike other approaches can be used to enhance conventional, mesophilic, CSTR type fermentation of low grade/high solids biomass. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  14. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.

    PubMed

    Moret, Séverine; Dyson, Paul J; Laurenczy, Gábor

    2014-06-02

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes.

  15. Long-term effects of elevated carbon dioxide concentration on sour orange wood specific gravity, modulus of elasticity, and microfibril angle

    Treesearch

    David Kretschmann; James Evans; Mike Wiemann; Bruce A. Kimball; Sherwood B. Idso

    2007-01-01

    The carbon dioxide (CO2) concentration of Earth’s atmosphere continues to rise. Plants in general are responsive to changing CO2 concentrations, which suggests changes in agricultural productivity in the United States and around the world. The ability of plants to absorb CO2 during photosynthesis and then store carbon in their structure or sequester it in the soil has...

  16. The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective

    NASA Astrophysics Data System (ADS)

    Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.

    2014-12-01

    NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.

  17. Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies.

    PubMed

    Appiah, Kingsley; Du, Jianguo; Poku, John

    2018-06-20

    Continuous threat posed by climate change caused by carbon dioxide emission has reignited global advocacy to confront its negative ramification with the greatest possible firmness. Global food security and agriculture face major challenges under climate change as a result of the potential negative effect of production and implementation of sectoral action to limit global warming. Overall, agricultural greenhouse emissions continue to rise and the analysis of superior data on emissions from farming, livestock, and fisheries can help countries identify opportunities to contemporaneously reduce emissions and address their food security. This study seeks to contribute to the recent literature by examining the causal relationship between agriculture production and carbon dioxide emissions in selected emerging economies for the period 1971 to 2013. The study, therefore, disaggregated agriculture production into crop production index and livestock production index to explicate the distinct and to find individual variable contribution to carbon dioxide emissions. By using FMOLS and DOLS, empirical results indicate that 1% increase in economic growth, crop production index, and livestock production index will cause a proportional increase in carbon dioxide emission by 17%, 28%, and 28% correspondingly, while 1% increase in energy consumption and population improves the environment of emerging economies. The direction of causality among the variables was, accordingly, examined using PMG estimator. Potentially, for emerging countries to achieve Sustainable Development Goal of ensuring zero hunger for their citizenry requires the need to alter their farming production techniques and also adopt agricultural technology method, which is more environmentally friendly.

  18. [Thoracoscopic thymectomy with carbon dioxide insufflation in the mediastinum].

    PubMed

    Ferrero-Coloma, C; Navarro-Martinez, J; Bolufer, S; Rivera-Cogollos, M J; Alonso-García, F J; Tarí-Bas, M I

    2015-02-01

    The case is presented of a 71 year-old male, diagnosed with a thymoma. A thoracoscopic thymectomy was performed using the carbon dioxide insufflation technique in the mediastinum. During the procedure, while performing one-lung ventilation, the patient's respiration worsened. The contralateral lung had collapsed, as carbon dioxide was travelling from the mediastinum to the thorax through the opened pleura. Two-lung ventilation was decided upon, which clearly improved oxygenation in the arterial gases and airway pressures. Both pH and pCO2 stabilized. The surgical approach and the carbon dioxide technique were continued because 2-lung ventilation did not affect the surgical procedure. This technique has many serious complications and it should always be performed using 2-lung ventilation. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. US EPA Base Study Standard Operating Procedure for Continuous Monitoring of Outdoor Air

    EPA Pesticide Factsheets

    The procedure described is intended for monitoring continuously and simultaneously outdoor air quality parameters that are most commonly associated with indoor air quality: the concentrations of carbon dioxide (CO2) and carbon monoxide (CO), temperature, nd relative humidity (RH).

  20. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow

    NASA Astrophysics Data System (ADS)

    Seo, Hyowon; Katcher, Matthew H.; Jamison, Timothy F.

    2017-05-01

    Although carbon dioxide (CO2) is highly abundant, its low reactivity has limited its use in chemical synthesis. In particular, methods for carbon-carbon bond formation generally rely on two-electron mechanisms for CO2 activation and require highly activated reaction partners. Alternatively, radical pathways accessed via photoredox catalysis could provide new reactivity under milder conditions. Here we demonstrate the direct coupling of CO2 and amines via the single-electron reduction of CO2 for the photoredox-catalysed continuous flow synthesis of α-amino acids. By leveraging the advantages of utilizing gases and photochemistry in flow, a commercially available organic photoredox catalyst effects the selective α-carboxylation of amines that bear various functional groups and heterocycles. The preliminary mechanistic studies support CO2 activation and carbon-carbon bond formation via single-electron pathways, and we expect that this strategy will inspire new perspectives on using this feedstock chemical in organic synthesis.

  1. The use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kumagai, Naokazu; Izumiya, Koichi; Takano, Hiroyuki; Shinomiya, Hiroyuki; Sasaki, Yusuke; Yoshida, Tetsuya; Kato, Zenta

    2016-12-01

    The history reveals the continuous increase in world energy consumption and carbon emissions. For prevention of intolerable global warming and complete exhaustion of fossil fuels we need complete conversion from fossil fuel consumption to renewable energy. We have been performing the research and development of global carbon dioxide recycling for more than 25 years to supply renewable energy to the world in the form of methane produced by the reaction of carbon dioxide captured from chimney with hydrogen generated electrolytically using electricity generated by renewable energy. We created the cathode and anode for electrolytic hydrogen generation and the catalyst for carbon dioxide methanation by the reaction with hydrogen. The methane formation from renewable energy will be the most convenient and efficient key technology for the use of renewable energy by storage of intermittent and fluctuating electricity generated from renewable energy and by regeneration of stable electricity. Domestic and international cooperation of companies for industrialization is in progress.

  2. Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids

    NASA Technical Reports Server (NTRS)

    Coleman, Max; Kudryavtsev, Vitaly A.; Spooner, Neil J.; Fung, Cora; Gluyas, John

    2013-01-01

    Muon tomography has been used to seek hidden chambers in Egyptian pyramids and image subsurface features in volcanoes. It seemed likely that it could be used to image injected, supercritical carbon dioxide as it is emplaced in porous geological structures being used for carbon sequestration, and also to check on subsequent leakage. It should work equally well in any other application where there are two fluids of different densities, such as water and oil, or carbon dioxide and heavy oil in oil reservoirs. Continuous monitoring of movement of oil and/or flood fluid during enhanced oil recovery activities for managing injection is important for economic reasons. Checking on leakage for geological carbon storage is essential both for safety and for economic purposes. Current technology (for example, repeat 3D seismic surveys) is expensive and episodic. Muons are generated by high- energy cosmic rays resulting from supernova explosions, and interact with gas molecules in the atmosphere. This innovation has produced a theoretical model of muon attenuation in the thickness of rock above and within a typical sandstone reservoir at a depth of between 1.00 and 1.25 km. Because this first simulation was focused on carbon sequestration, the innovators chose depths sufficient for the pressure there to ensure that the carbon dioxide would be supercritical. This innovation demonstrates for the first time the feasibility of using the natural cosmic-ray muon flux to generate continuous tomographic images of carbon dioxide in a storage site. The muon flux is attenuated to an extent dependent on, amongst other things, the density of the materials through which it passes. The density of supercritical carbon dioxide is only three quarters that of the brine in the reservoir that it displaces. The first realistic simulations indicate that changes as small as 0.4% in the storage site bulk density could be detected (equivalent to 7% of the porosity, in this specific case). The initial muon flux is effectively constant at the surface of the Earth. Sensitivity of the method would be decreased with increasing depth. However, sensitivity can be improved by emplacing a greater array of particle detectors at the base of the reservoir.

  3. The relative attractiveness of carbon dioxide and octenol in CDC- and EVS-type light traps for sampling the mosquitoes Aedes aegypti (L.), Aedes polynesiensis Marks, and Culex quinquefasciatus say in Moorea, French Polynesia.

    PubMed

    Russell, Richard C

    2004-12-01

    Two dominant day-biting pests and vector species on the island of Moorea in French Polynesia are Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) polynesiensis Marks, major vectors of dengue viruses and Wuchereria bancrofti, respectively. Their surveillance is hindered by a relative lack of attraction to light traps, necessitating the undesirable use of human bait collections with the inherent risks of pathogen transmission. The effectiveness of CDC- and EVS-type light traps baited with olfactory attractants was evaluated for these two Aedes species and the nocturnal Culex (Culex) quinquefasciatus Say in three sites in urban and semi-rural environments on Moorea in October/November 2003. Firstly, four CDC-type traps with light only, light with octenol, light with carbon dioxide (dry ice), and light with octenol plus carbon dioxide were operated continuously over four days with daily rotation to compensate for position effects. Secondly, two CDC- and two EVS-type traps with carbon dioxide or carbon dioxide plus octenol were operated continuously over four days with similar rotation. Variation was found in the numbers of the three species collected at the different sites, reflecting the relative availability of their preferred larval habitats. With the CDC traps in the first trial, the addition of octenol to the light did not significantly increase the collection of any species, the addition of carbon dioxide did significantly increase collection of all three species, while the addition of octenol to the light plus carbon dioxide did not significantly increase the collections further. In the second trial, there was no significant difference in the mean number of Ae. aegypti or Ae. polynesiensis collected in either EVS or CDC traps when baited with carbon dioxide or with octenol added. For Cx. quinquefasciatus, the supplementation with octenol made no significant difference with EVS traps but resulted in significantly reduced collections in CDC traps. Overall, neither trap, however baited, provided large samples when compared with landing/ biting collections at human bait. Only two other species were collected, Culex (Culex) roseni Belkin and Aedes (Aedimorphus) nocturnus (Theobald), the latter being a first record for the island of Moorea and for French Polynesia.

  4. Analysis of Surface Fluxes at Eureka Climate Observatory in Arctic

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Albee, Robert; Fairall, Christopher; Hare, Jeffrey; Persson, Ola; Uttal, Taneil

    2010-05-01

    The Arctic region is experiencing unprecedented changes associated with increasing average temperatures (faster than the pace of the globally-averaged increase) and significant decreases in both the areal extent and thickness of the Arctic pack ice. These changes are early warning signs of shifts in the global climate system that justifies increased scientific focus on this region. The increase in atmospheric carbon dioxide has raised concerns worldwide about future climate change. Recent studies suggest that huge stores of carbon dioxide (and other climate relevant compounds) locked up in Arctic soils could be unexpectedly released due to global warming. Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. In this study we analyze variability of turbulent fluxes including water vapor and carbon dioxide transfer based on long-term measurements made at Eureka observatory (80.0 N, 85.9 W) located near the coast of the Arctic Ocean (Canadian territory of Nunavut). Turbulent fluxes and mean meteorological data are continuously measured and reported hourly at various levels on a 10-m flux tower. Sonic anemometers are located at 3 and 8 m heights while high-speed Licor 7500 infrared gas analyzer (water moisture and carbon dioxide measurements) at 7.5 m height. According to our data, that the sensible heat flux, carbon dioxide and water vapor fluxes exhibited clear diurnal cycles in Arctic summer. This behavior is similar to the diurnal variation of the fluxes in mid-latitudes during the plants growing season, with carbon dioxide uptake from the atmosphere during the day due to photosynthesis, and carbon dioxide loss to the atmosphere due to vegetation respiration during the night. However, at Eureka vegetation was a source of carbon dioxide during sunlit periods. Thus the sign of carbon dioxide flux was controlled by air temperature even during Arctic summer.

  5. US EPA Base Study Standard Operating Procedure for Continuous Monitoring of Indoor Air

    EPA Pesticide Factsheets

    The procedure described is intended for monitoring continuously and simultaneously, at selected work sites, parameters that are most commonly associated with the quality of indoor environments: the concentrations of carbon dioxide (CO2), carbon monoxide (CO), temperature, relative humidity (RH), illumination, and noise.

  6. Trade, transport, and sinks extend the carbon dioxide responsibility of countries: An editorial essay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.

    2009-01-01

    Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purposemore » of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, John, E-mail: jokavana@tcd.ie; Siemienowicz, Miranda L.; Lyen, Stephen

    PurposeTransthoracic needle biopsy (TTNB) is an established procedure in the management of pulmonary nodules. The most common complications are directly related to crossing the lung or visceral pleura during the biopsy. In this study, we describe the use of carbon dioxide instead of room air to create a protective “capnothorax” during TTNB.Materials and MethodsFive patients underwent creation of a capnothorax during TTNB. Parameters recorded were location and size of target, distance from pleura, length of procedure, volume of carbon dioxide, periprocedural complications and biopsy result.ResultsInduction of capnothorax was successful in all cases. In two patients, a continuous infusion of carbonmore » dioxide was required to maintain an adequate volume of intrapleural gas. In two patients, the carbon dioxide resolved spontaneously and in the remaining patients it was aspirated at the end of the procedure. All biopsies were diagnostic with no periprocedural or postprocedural complications.ConclusionThis study suggests that protective iatrogenic capnothorax is a safe and effective technique during TTNB. The intrinsic properties and availability of carbon dioxide make it an attractive alternative to room air.« less

  8. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  9. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...) The use of linearizing circuits is permitted. (c) The minimum water rejection ratio (maximum CO 2...) The minimum CO 2 rejection ratio (maximum CO 2 interference) as measured by § 86.322 for CO analyzers...

  10. Nitrogen Deposition: A Component of Global Change Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the developmentmore » of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.« less

  11. Use of an Airway Exchange Catheter-Assisted Extubation With Continuous End-Tidal Carbon Dioxide Monitoring in a Pediatric Patient With a Known Difficult Airway: A Case Report.

    PubMed

    Yegian, Courtney C; Volz, Lana M; Galgon, Richard E

    2018-05-11

    Tracheal extubation in children with known difficult airways is associated with an increased risk of adverse events. Currently, there is no reliable measure to predict the need for emergent reintubation due to airway inadequacy. Airway exchange catheter-assisted extubation has been shown to be a useful adjunct in decreasing the risk of adverse events due to failed extubation. We report a case of using an airway exchange catheter-assisted extubation with continuous end-tidal carbon dioxide monitoring for a pediatric patient with a known difficult airway.

  12. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide andmore » simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T. crunogena produces a reasonable return when treating a sour gas stream of 120 million SCFD containing 2.5 percent H2S. In this case, the primary source of revenue is from desulfurization of the gas stream. While the technology has significant application in sequestering carbon dioxide in cell biomass or single cell proten (SCP), perhaps the most immediate application is in desulfurizing LGNG or other gas streams. This biological approach is a viable economical alternative to existing hydrogen sulfide removal technology, and is not sensitive to the presence of hydrocarbons which act as catalyst poisons.« less

  13. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  14. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Treesearch

    Jingfeng Xiao; Qianlai Zhuang; Beverly E. Law; Jiquan Chen; Dennis D. Baldocchi; David R. Cook; Ram Oren; Andrew D. Richardson; Sonia Wharton; Siyan Ma; Tomothy A. Martin; Shashi B. Verma; Andrew E. Suyker; Russel L. Scott; Russel K. Monson; Marcy Litvak; David Y. Hollinger; Ge Sun; Kenneth J. Davis; Paul V. Bolstad; Sean P. Burns; Peter S. Curtis; BErt G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; Gabriel G. Katul; Roser Matamala; Steve McNulty; Tilden P. Meyers; J. William Munger; Asko Noormets; Walter C. Oechel; Kyaw Tha U Paw; Hans Peter Schmid; Gregory Starr; Margaret S. Torn; Steven C. Wofsy

    2010-01-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales....

  15. Continuous catalytic decomposition of methane

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.; Hillenbrand, L. J.; Kim, B. C.; Kolic, E. S.; Zupan, J.

    1973-01-01

    Water is conserved by employing sequence of reactions whereby 75 percent of methane from Sabatier reaction is decomposed to solid carbon and hydrogen; hydrogen is then separated from residual methane and utilized in usual Sabatier reaction to reduce remaining metabolic carbon dioxide.

  16. CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.

    2014-12-01

    The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.

  17. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources.

    PubMed

    Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B

    2016-02-01

    Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.

  18. Optimized heat exchange in a CO2 de-sublimation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Larry; Terrien, Paul; Tessier, Pascal

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less

  19. Vulnerability of wetland soil carbon stocks to climate warming in the perhumid coastal temperate rainforest

    Treesearch

    Jason B. Fellman; David V. D’Amore; Eran Hood; Pat Cunningham

    2017-01-01

    The perhumid coastal temperate rainforest (PCTR) of southeast Alaska has some of the densest soil organic carbon (SOC) stocks in the world (>300 Mg C ha-1) but the fate of this SOC with continued warming remains largely unknown. We quantified dissolved organic carbon (DOC) and carbon dioxide (CO2) yields from four...

  20. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Fraser-Smith, Antony

    1968-01-01

    A single culture of Chlorella pyrenoidosa (700 ml) was grown continuously under uniform environmental conditions for a period of 11 months. During this time, the culture remained uncontaminated and its oxygen production, carbon dioxide consumption, and photosynthetic quotient (PQ = CO2/O2) were monitored on a 24-hr basis. The gas exchange characteristics of the alga were found to be extremely reliable; the average oxygen production was 1.21 ± 0.03 ml per min, the carbon dioxide consumption was 1.09 ± 0.03 ml per min, and the PQ was 0.90 ± 0.01 when changes in both lamp intensity and instrument accuracy were taken into consideration. Such long-term dependability in the production of oxygen, consumption of carbon dioxide, and maintenance of a uniform PQ warrants the use of C. pyrenoidosa in a regenerative life support system for space travel. PMID:4385488

  1. Superpulsed carbon dioxide laser: an update on cutaneous surgical applications

    NASA Astrophysics Data System (ADS)

    Wheeland, Ronald G.

    1990-06-01

    Superpulsing the carbon dioxide laser allows delivery of high energy pulses separated by short pauses during which tissue cooling can occur.1 This new technology can provide several important advantages in cutaneous surgery over similar procedures performed with conventional continuous discharge carbon dioxide laser systems. In the excisional mode, there is a two-thirds reduction in thermal necrosis of the wound edge.2 This should translate into more rapid healing3 and increased rate of gain in tensile strength. In the vaporizational mode, precise, superficial and bloodless ablation of multiple benign appendigeal tumors is possible with less thermal damage yielding excellent cosmetic results. The establishment through additional research of accurate laser parameters, pulse duration, peak energy levels, and frequency of pulses, will help improve the specificity of the laser-tissue interaction to provide even better surgical results.

  2. System study of the carbon dioxide observational platform system (CO-OPS): Project overview

    NASA Technical Reports Server (NTRS)

    Stephens, J. Briscoe; Thompson, Wilbur E.

    1987-01-01

    The resulting options from a system study for a near-space, geo-stationary, observational monitoring platform system for use in the Department of Energy's (DOE) National Carbon Dioxide Observational Platform System (CO-OPS) on the greenhouse effect are discussed. CO-OPS is being designed to operate continuously for periods of up to 3 months in quasi-fixed position over most global regional targets of interest and could make horizon observations over a land-sea area of circular diameter up to about 600 to 800 statute miles. This affords the scientific and engineering community a low-cost means of operating their payloads for monitoring the regional parameters they deem relevant to their investigations of the carbon dioxide greenhouse effect at one-tenth the cost of most currently utilized comparable remote sensing techniques.

  3. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  4. 40 CFR 60.1735 - Am I exempt from any appendix B or appendix F requirements to evaluate continuous emission...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appendix F requirements to evaluate continuous emission monitoring systems? 60.1735 Section 60.1735... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1735... to also evaluate your oxygen (or carbon dioxide) continuous emission monitoring system. Therefore...

  5. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  6. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan.

    PubMed

    Long, Ruyin; Li, Jinqiu; Chen, Hong; Zhang, Linling; Li, Qianwen

    2018-03-01

    Carbon dioxide embodied flow in international trade has become an important factor in defining global carbon emission responsibility and climate policy. We conducted an empirical analysis for China and Japan for the years 2000-2014, using a multi-region input-output model and considering the rest of the world as a comparison group. We compared the two countries' direct and complete carbon dioxide emissions intensity and bilateral economic activities such as imports and exports, production and consumption to analyze the difference between China and Japan. The results showed that the intensities of carbon emissions in all sectors of China were higher than that in Japan and that China's annual production-based emissions were greater than consumption-based emissions, the opposite of these relationships in Japan. China was a typical net carbon export country, and carbon embodied in its imports and exports continued to increase throughout the study period. In contrast, Japan's volume and growth rate of embodied carbon emissions were far less than China's and Japan was a typical net carbon import country. Finally, the conclusions of this study support recommendations for the formulation of international carbon emission responsibility allocation, domestic abatement policy as well as China's trade policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catchpole, O.J.; Kamp, J.C. von; Grey, J.B.

    1997-10-01

    Continuous extraction of squalene from shark liver oil using supercritical carbon dioxide was carried out in both laboratory and pilot scale plant. The shark liver oil contained around 50% by weight squalene, which was recovered as the main extract stream. The other major components in the oil were triglycerides, which were recovered as raffinate, and pristane, which was recovered as a second extract stream. Separation performance was determined as a function of temperature; pressure; oil to carbon dioxide flow rate ratio, packed height and type of packing; and reflux ratio. The pressure, temperature, and feed oil concentration of squalene determinedmore » the maximum loading of oil in carbon dioxide. The oil to carbon dioxide ratio determined the squalene concentration in both the product stream and raffinate stream. The ratio of oil flow rate to the flow rate of squalene required to just saturate carbon dioxide was found to be a useful correlating parameter for the oil loadings and product compositions. Of the three packings investigated, wire wool gave the best separation efficiency and Raschig rings the worst efficiency. Mass transfer correlations from the literature were used to estimate the number of transfer units (NTU) from experimental data and literature correlations. NTU`s from the experimental data were comparable to predictions at a pilot scale but were underpredicted at the laboratory scale. The use of reflux at the pilot scale enabled the concentration of squalene in the product stream to be increased from 92% by mass to a maximum of 99% by mass at fractionation conditions of 250 bar and 333 K.« less

  8. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  9. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  10. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  11. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  12. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  13. 40 CFR 60.1730 - How do I make sure my continuous emission monitoring systems are operating correctly?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission monitoring systems are operating correctly? 60.1730 Section 60.1730 Protection of Environment... continuous emission monitoring systems are operating correctly? (a) Conduct initial, daily, quarterly, and annual evaluations of your continuous emission monitoring systems that measure oxygen (or carbon dioxide...

  14. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1967-01-01

    The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391

  15. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    Treesearch

    Jingfeng Xiao; Qianlai Zhuang; Dennis D. Baldocchi; Beverly E. Law; Andrew D. Richardson; Jiquan Chen; Ram Oren; Gegory Starr; Asko Noormets; Siyan Ma; Sashi B. Verma; Sonia Wharton; Steven C. Wofsy; Paul V. Bolstad; Sean P. Burns; David R. Cook; Peter S. Curtis; Bert G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; David Y. Hollinger; Gabriel G. Katul; Marcy Litvak; Timothy Martin; Roser Matamala; Steve McNulty; Tilden P. Meyers; Russell K. Monson; J. William Munger; Walter C. Oechel; Kyaw Tha Paw U; Hans Peter Schmid; Russell L. Scott; Ge Sun; Andrew E. Suyker; Margaret S. Torn

    2008-01-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents,...

  16. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    PubMed

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  17. 46 CFR 193.15-30 - Alarms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Alarms. 193.15-30 Section 193.15-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon..., and the alarm shall depend on no source of power other than the carbon dioxide. ...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process inmore » five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.« less

  19. Environmental change and the conversion of permanently frozen ground to wetlands

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Much of the land around the arctic is permanently frozen, even in the summer. However, because the world is getting warmer, this frozen ground, known as permafrost, is thawing. When permafrost thaws, the ground collapses and sinks, and often a wetland forms within the collapsed area. This conversion of a permanently frozen landscape to a wetland changes the exchange of greenhouse gases between the land and atmosphere, which can, in turn, impact global temperatures and environmental conditions. Wetlands pull carbon dioxide out of the atmosphere because they support the growth of many plants. This uptake of atmospheric carbon dioxide by wetlands helps reduce global warming. However, wetlands also release methane into the atmosphere, which is a potent greenhouse gas — more potent than carbon dioxide. The net effect on global temperatures and environmental conditions depends on the balance between wetland uptake of atmospheric carbon dioxide and release of methane. We are measuring the exchange of these two greenhouse gases between the land and atmosphere in a wetland that formed after permafrost thawed so we can know how global temperatures and environmental conditions will change as northern landscapes continue to thaw.

  20. Summer South Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    13 April 2004 The martian south polar residual ice cap is composed mainly of frozen carbon dioxide. Each summer, a little bit of this carbon dioxide sublimes away. Pits grow larger, and mesas get smaller, as this process continues from year to year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of a small portion of the south polar cap as it appeared in mid-summer in January 2004. The dark areas may be places where the frozen carbon dioxide contains impurities, such as dust, or places where sublimation of ice has roughened the surface so that it appears darker because of small shadows cast by irregularities in the roughened surface. The image is located near 86.9oS, 7.6oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  1. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  2. Carbon Dioxide Embolism during Laparoscopic Surgery

    PubMed Central

    Park, Eun Young; Kwon, Ja-Young

    2012-01-01

    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ranges from asymptomatic to neurologic injury, cardiovascular collapse or even death, which is dependent on the rate and volume of carbon dioxide entrapment and the patient's condition. We reviewed extensive literature regarding carbon dioxide embolism in detail and set out to describe the complication from background to treatment. We hope that the present work will improve our understanding of carbon dioxide embolism during laparoscopic surgery. PMID:22476987

  3. 40 CFR 52.1621 - Classification of regions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1621 Classification of regions. The New Mexico plan was evaluated on the basis of the following classifications: Air quality control region Pollutant Particulate matter Sulfur oxides Nitrogen dioxide Carbon monoxide Ozone...

  4. 40 CFR 52.1621 - Classification of regions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) New Mexico § 52.1621 Classification of regions. The New Mexico plan was evaluated on the basis of the following classifications: Air quality control region Pollutant Particulate matter Sulfur oxides Nitrogen dioxide Carbon monoxide Ozone...

  5. 40 CFR 98.471 - Reporting threshold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.471 Section 98.471 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Injection of Carbon Dioxide § 98.471 Reporting threshold. (a) You must...

  6. 40 CFR 98.421 - Reporting threshold.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Reporting threshold. 98.421 Section 98.421 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.421 Reporting threshold. Any supplier of...

  7. 40 CFR 98.421 - Reporting threshold.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Reporting threshold. 98.421 Section 98.421 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.421 Reporting threshold. Any supplier of...

  8. Carbon dioxide conversion over carbon-based nanocatalysts.

    PubMed

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman

    2013-07-01

    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity.

  9. Anaesthesia for laparoscopic nephrectomy: Does end-tidal carbon dioxide measurement correlate with arterial carbon dioxide measurement?

    PubMed

    Jayan, Nithin; Jacob, Jaya Susan; Mathew, Mohan

    2018-04-01

    Not many studies have explored the correlation between arterial carbon dioxide tension (PaCO 2 ) and end-tidal carbon dioxide tension (ETCO 2 ) in surgeries requiring pneumoperitoneum of more than 1 hour duration with the patient in non-supine position. The aim of our study was to evaluate the correlation of ETCO 2 with PaCO 2 in patients undergoing laparoscopic nephrectomy under general anaesthesia. A descriptive study was performed in thirty patients undergoing laparoscopic nephrectomy from September 2014 to August 2015. The haemodynamic parameters, minute ventilation, PaCO 2 and ETCO 2 measured at three predetermined points during the procedure were analysed. Correlation was checked using Pearson's Correlation Coefficient Test. P <0.05 was considered statistically significant. Statistical analysis of the values showed a positive correlation between ETCO 2 and PaCO 2 ( P < 0.05). Following carbon dioxide insufflation, both ETCO 2 and PaCO 2 increased by 5.4 and 6.63 mmHg, respectively, at the end of the 1 st hour. The PaCO 2 -ETCO 2 gradient was found to increase during the 1 st hour following insufflation (4.07 ± 2.05 mmHg); it returned to the pre-insufflation values in another hour (2.93 ± 1.43 mmHg). Continuous ETCO 2 monitoring is a reliable indicator of the trend in arterial CO 2 fluctuations in the American Society of Anesthesiologists Grades 1 and 2 patients undergoing laparoscopic nephrectomy under general anaesthesia.

  10. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide..., methane and/or methanol and/or formaldehyde. In addition, for diesel-cycle engines, particulates are... if typical of the in-use application. (5) The engine may be equipped with a production-type starter...

  11. 40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide..., methane and/or methanol and/or formaldehyde. In addition, for diesel-cycle engines, particulates are... if typical of the in-use application. (5) The engine may be equipped with a production-type starter...

  12. Reducing CO2 flux by decreasing tillage in Ohio: overcoming conjecture with data

    USDA-ARS?s Scientific Manuscript database

    Soil could become an important sink for atmospheric carbon dioxide (CO2) as global agricultural greenhouse gas emissions continue to grow, but data to support this conjecture are few. Sequestering soil carbon (C) depends upon many factors including soil type, climate, crop, tillage, nitrogen fertili...

  13. 40 CFR 60.1885 - What must I include in my annual report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for... diluent gas, documentation of the relationship between oxygen and carbon dioxide, as specified in § 60...? 60.1885 Section 60.1885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  14. 40 CFR 60.1885 - What must I include in my annual report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for... diluent gas, documentation of the relationship between oxygen and carbon dioxide, as specified in § 60...? 60.1885 Section 60.1885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  15. 40 CFR 60.1885 - What must I include in my annual report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for... diluent gas, documentation of the relationship between oxygen and carbon dioxide, as specified in § 60...? 60.1885 Section 60.1885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  16. Measurement of Near-Surface Carbon Dioxide Concentrations with an Open-Path Tunable Diode Laser Sensor and a Non-Dispersive Infrared Sensor at the Bonanza Creek Long Term Ecological Research Site near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Bailey, D. M.; Caine, K. M.; Miller, J. H. H.

    2016-12-01

    Continuous collection of carbon dioxide (CO2) concentrations is imperative in understanding seasonal and inter-annual variability of carbon feedbacks above thawing permafrost. Permafrost makes up one-quarter of the Earth's terrestrial surface and has the potential to release twice the amount of carbon than is currently in the atmosphere if global temperatures continue to increase. A collaborative effort with the University of Alaska - Fairbanks, NASA Goddard Space Flight Center, and our group at George Washington University is underway to monitor these feedbacks near Fairbanks, Alaska. In June 2016, we deployed an open-path tunable diode laser sensor along with a non-dispersive infrared (NDIR) sensor at the Bonanza Creek Long Term Ecological Research Site as an exploratory study for their use in collecting near-surface CO2 concentrations above thawing permafrost. The open-path instrument (OPI) collected spatially-integrated measurements approximately 1.5 meters above the surface of a young thermokarst bog over a 15-day period whereas the NDIR sensor collected localized measurements 1 meter above the surface for 16 days. Near-continuous measurements were achieved with the NDIR sensor which was limited only by the availability of solar-produced power. The OPI measurements were further limited by maintaining laser alignment under changing environmental conditions. However, the campaign achieved a nearly 80% duty cycle for the entire test period. Here we compare both the localized and spatially-integrated carbon dioxide measurements and their observed diurnal concentration cycles, whose magnitude showed a strong dependence on daily weather at the test site.

  17. Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2000-05-01

    The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.

  18. Research Progress in Carbon Dioxide Storage and Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Wang, Gang; Lu, Chunjing

    2018-02-01

    With the rapid development of global economy, human beings have become highly dependent upon fossil fuel such as coal and petroleum. Much fossil fuel is consumed in industrial production and human life. As a result, carbon dioxide emissions have been increasing, and the greenhouse effects thereby generated are posing serious threats to environment of the earth. These years, increasing average global temperature, frequent extreme weather events and climatic changes cause material disasters to the world. After scientists’ long-term research, ample evidences have proven that emissions of greenhouse gas like carbon dioxide have brought about tremendous changes to global climate. To really reduce carbon dioxide emissions, governments of different countries and international organizations have invested much money and human resources in performing research related to carbon dioxide emissions. Manual underground carbon dioxide storage and carbon dioxide-enhanced oil recovery are schemes with great potential and prospect for reducing carbon dioxide emissions. Compared with other schemes for reducing carbon dioxide emissions, aforementioned two schemes exhibit high storage capacity and yield considerable economic benefits, so they have become research focuses for reducing carbon dioxide emissions. This paper introduces the research progress in underground carbon dioxide storage and enhanced oil recovery, pointing out the significance and necessity of carbon dioxide-driven enhanced oil recovery.

  19. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  20. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  1. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  2. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  3. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  4. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  5. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diluent gas, document the relationship between oxygen and carbon dioxide, as specified in § 60.1255. (h... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must...

  6. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  7. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Progress report, May 1991, DOE Grant DE-FG09-84ER60255

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, D.E.

    1991-05-01

    Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less

  8. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  9. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  10. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  11. 46 CFR 108.627 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next to...

  12. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  13. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7... Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing... AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  14. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  15. 46 CFR 169.732 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” ...

  16. 21 CFR 868.1400 - Carbon dioxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide gas analyzer. 868.1400 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1400 Carbon dioxide gas analyzer. (a) Identification. A carbon dioxide gas analyzer is a device intended to measure the concentration of carbon dioxide...

  17. 21 CFR 862.1160 - Bicarbonate/carbon dioxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bicarbonate/carbon dioxide test system. 862.1160... Systems § 862.1160 Bicarbonate/carbon dioxide test system. (a) Identification. A bicarbonate/carbon dioxide test system is a device intended to measure bicarbonate/carbon dioxide in plasma, serum, and whole...

  18. Carbon dioxide production during cardiopulmonary bypass: pathophysiology, measure and clinical relevance.

    PubMed

    Ranucci, Marco; Carboni, Giovanni; Cotza, Mauro; de Somer, Filip

    2017-01-01

    Carbon dioxide production during cardiopulmonary bypass derives from both the aerobic metabolism and the buffering of lactic acid produced by tissues under anaerobic conditions. Therefore, carbon dioxide removal monitoring is an important measure of the adequacy of perfusion and oxygen delivery. However, routine monitoring of carbon dioxide removal is not widely applied. The present article reviews the main physiological and pathophysiological sources of carbon dioxide, the available techniques to assess carbon dioxide production and removal and the clinically relevant applications of carbon dioxide-related variables as markers of the adequacy of perfusion during cardiopulmonary bypass.

  19. Shipboard monitoring of non-CO2 greenhouse gases in Asia and Oceania using commercially cargo vessels

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Mukai, H.; Nojiri, Y.; Tohjima, Y.; Machida, T.; Hashimoto, S.

    2011-12-01

    The National Institute for Environmental Studies (NIES) has been performing a long-term program for monitoring trace gases of atmospheric importance over the Pacific Ocean since 1995. The NIES Voluntary Observing Ships (NIES-VOS) program currently makes use of commercial cargo vessels because they operate regularly over fixed routes for long periods and sail over a wide area between various ports (e.g., between Japan and the United States, between Japan and Australia/New Zealand, and between Japan and southeast Asia). This program allows systematic and continuous measurements of non-CO2 greenhouse gases, providing long-term datasets for background air over the Pacific Ocean and regionally polluted air around east Asia. We observe both long-lived greenhouse gases (e.g., carbon dioxide) and short-lived air pollutants (e.g., tropospheric ozone, carbon monoxide) on a continuous basis. Flask samples are collected for later laboratory analysis of carbon dioxide, methane, nitrous oxide, and carbon monoxide by using gas chromatographic techniques. In addition, we recently installed cavity ringdown spectrometers for high-resolution measurement of methane and carbon dioxide to capture their highly variable features in regionally polluted air around southeast Asia (e.g., Hong Kong, Thailand, Singapore, Malaysia, Indonesia and Philippine), which is now thought to be a large source due to expanding socioeconomic activities as well as biomass burnings. Contrasting the Japan-Australia/New Zealand and Japan-southeast Asia cruises revealed regional characteristics of sources and sinks of these atmospherically important species, suggesting the existence of additional sources for methane, nitrous oxides, and carbon monoxide in this tropical Asian region.

  20. Warming early Mars with carbon dioxide clouds that scatter infrared radiation.

    PubMed

    Forget, F; Pierrehumbert, R T

    1997-11-14

    Geomorphic evidence that Mars was warm enough to support flowing water about 3.8 billion years ago presents a continuing enigma that cannot be explained by conventional greenhouse warming mechanisms. Model calculations show that the surface of early Mars could have been warmed through a scattering variant of the greenhouse effect, resulting from the ability of the carbon dioxide ice clouds to reflect the outgoing thermal radiation back to the surface. This process could also explain how Earth avoided an early irreversible glaciation and could extend the size of the habitable zone on extrasolar planets around stars.

  1. Use of a pediatric oxygenator integrated in a veno-venous hemofiltration circuit to remove CO2: a case report in a severe burn patient with refractory hypercapnia.

    PubMed

    Rousseau, Anne-Françoise; Damas, Pierre; Renwart, Ludovic; Amand, Théo; Erpicum, Marie; Morimont, Philippe; Dubois, Bernard; Massion, Paul B

    2014-11-01

    Acute respiratory distress syndrome management is currently based on lung protective ventilation. Such strategy may lead to hypercapnic acidosis. We report a case of refractory hypercapnia in a severe burn adult, treated with simplified veno-venous extracorporeal carbon dioxide removal technique. We integrated a pediatric oxygenator in a continuous veno-venous hemofiltration circuit. This technique, used during at least 96h, was feasible, sure and efficient with carbon dioxide removal rate up to 32%. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  2. Greening coal: breakthroughs and challenges in carbon capture and storage.

    PubMed

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  3. Carbon dioxide sensor. [partial pressure measurement using monochromators

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analytical techniques for measuring CO2 were evaluated and rated for use with the advanced extravehicular mobility unit. An infrared absorption concept using a dual-wavelength monochromator was selected for investigation. A breadboard carbon dioxide sensor (CDS) was assembled and tested. The CDS performance showed the capability of measuring CO2 over the range of 0 to 4.0 kPa (0 to 30 mmHg) P sub (CO2). The volume and weight of a flight configured CDS should be acceptable. It is recommended that development continue to complete the design of a flight prototype.

  4. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...

  5. 46 CFR 35.40-8 - Carbon dioxide warning signs-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide warning signs-T/ALL. 35.40-8 Section 35... Marking Requirements-TB/ALL § 35.40-8 Carbon dioxide warning signs—T/ALL. Each entrance to a space storing carbon dioxide cylinders, a space protected by carbon dioxide systems, or any space into which carbon...

  6. Green trees for greenhouse gases: a fair trade-off?

    PubMed

    Schmidt, C W

    2001-03-01

    While forests retain carbon in plants, detritus, and soils, utility companies spew it into the air as carbon dioxide, the main greenhouse gas behind global warming. Industrial carbon dioxide emissions aren't currently regulated by federal law, but a number of companies are trying to address the problem voluntarily by launching carbon sequestration programs in heavily forested countries, where carbon is contained in so-called sinks. But the November 2000 meeting of the Kyoto Protocol delegates in The Hague collapsed over the issue of the acceptability of carbon sinks as a source of carbon pollution credits, delivering what many see as a deathblow to the concept. At issue are a host of ecological and statistical questions, differing local land use practices, cultural factors, issues of verifiability, and even disagreement over definitions of basic terms such as "forest" Kyoto negotiators are gearing up for another round of discussions in Bonn in May 2001, and it is likely that the continuing debate over carbon sinks will dominate the agenda.

  7. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  8. Visual and reversible carbon dioxide sensing enabled by doctor blade coated macroporous photonic crystals.

    PubMed

    Lin, Yi-Han; Suen, Shing-Yi; Yang, Hongta

    2017-11-15

    With significant impacts of carbon dioxide on global climate change, carbon dioxide sensing is of great importance. However, most of the existing sensing technologies are prone to interferences from carbon monoxide, or suffer from the use of sophisticated instruments. This research reports the development of reproducible carbon dioxide sensor using roll-to-roll compatible doctor blade coated three-dimensional macroporous photonic crystals. The pores are functionalized with amine groups to allow the reaction with carbon dioxide in the presence of humidity. The adsorption of carbon dioxide leads to red-shift and amplitude reduction of the optical stop bands, resulting in carbon dioxide detection with visible readout. The dependences of the diffraction wavelength on carbon dioxide partial pressure for various amine-functionalized photonic crystals and different humidities in the environment are systematically investigated. In addition, the reproducibility of carbon dioxide sensing has also been demonstrated in this research. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. 46 CFR 78.47-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b) [Reserved] ...

  10. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  11. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If the...

  12. 46 CFR 97.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  13. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  14. 46 CFR 196.37-9 - Carbon dioxide alarm.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING...

  15. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  16. NASA Carbon Sleuth Begins Year Two

    NASA Image and Video Library

    2015-10-29

    Global average carbon dioxide concentrations as seen by NASA’s Orbiting Carbon Observatory-2 mission, June 1-15, 2015. OCO-2 measures carbon dioxide from the top of Earth's atmosphere to its surface. Higher carbon dioxide concentrations are in red, with lower concentrations in yellows and greens. Scientists poring over data from OCO-2 mission are seeing patterns emerge as they seek answers to questions about atmospheric carbon dioxide. Among the most striking features visible in the first year of OCO-2 data is the increase in carbon dioxide in the northern hemisphere during winter, when trees are not removing carbon dioxide, followed by its decrease in spring, as trees start to grow and remove carbon dioxide from the atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA20039

  17. Carbon dioxide separation using adsorption with steam regeneration

    DOEpatents

    Elliott, Jeannine Elizabeth; Copeland, Robert James; Leta, Daniel P.; McCall, Patrick P.; Bai, Chuansheng; DeRites, Bruce A.

    2016-11-29

    A process for separating a carbon dioxide from a gas stream is disclosed. The process can include passing the gas stream over a sorbent that adsorbs the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement. A carbon dioxide separation system is also disclosed. Neither the system nor the process rely on temperature swing or pressure swing adsorption.

  18. Kidneys and Urinary Tract

    MedlinePlus

    ... several kinds of wastes, including sweat, carbon dioxide gas, feces (also known as stool or poop), and ... leaves the kidney through the renal vein and flows back to the heart. The continuous blood supply ...

  19. Measuring the Spectral Expression of Carbon Dioxide in the Solar Reflected Spectrum with AVIRIS

    NASA Technical Reports Server (NTRS)

    Green, Robert O.

    2001-01-01

    Carbon dioxide is a low-concentration, but important, component of the Earth's atmosphere. This gas absorbs electromagnetic radiation (EMR) in several regions of the spectrum. Absorption of energy by carbon dioxide adds heat to the atmosphere. In the world today, the burning of fossil fuels and other anthropogenic processes adds carbon dioxide to the atmosphere. Other natural processes in the Earth's system both add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at selected sites around the globe show an increased carbon dioxide concentration in the atmosphere. A figure shows the measured carbon dioxide from Mauna Loa, Hawaii, from 1958 to 2000. Overall, the concentration has increased from 315 to 365 ppm at this site over this period. (There is also a yearly cycle to the concentration that is timed with and hypothesized to be related to the vegetation growing season in the Northern Hemisphere.) The overall expected effect of this increase of atmospheric carbon dioxide is trapping of heat in the atmosphere and global warming. While this overall relationship between carbon dioxide and global warming seems straightforward, many of the specific details relating to regional and local sources and sinks and gradients of carbon dioxide are not well understood. A remote sensing capability to measure carbon dioxide could provide important inputs for scientific research to better understand the distribution and change in atmospheric carbon dioxide at detailed spatial and temporal levels. In pursuit of this remote sensing of carbon dioxide objective, this paper analyzes the expression of carbon dioxide in the spectral range measured by the Airborne Visible/Infrared Imagery Spectrometer (AVIRIS). Based on these analyses, a spectral-fitting algorithm that uses AVIRIS measured spectra and MODTRAN radiative-transfer code modeled spectra to derive total column carbon dioxide abundance has been developed. This algorithm has been applied to an AVIRIS data set acquired over Pasadena, California, in 1999 and a data set acquired over the Pacific Ocean near Hawaii in 2000 with promising results. This is ongoing research; the current initial analyses, measurements, and results are reported in this paper.

  20. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and....1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No. 124-38-9) occurs as a..., sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon dioxide is prepared as a byproduct...

  1. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  2. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  3. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  4. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  5. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  6. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... of carbon dioxide per 100 milliliters of wine or where the variation results from the use of methods...

  7. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  8. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  9. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon dioxide... systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... Continuous Emission Monitoring § 60.1230 What continuous emission monitoring systems must I install for...

  10. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy.

    PubMed

    Baubron, J C; Allard, P; Toutain, J P

    1990-03-01

    RECENT investigations on Mount Etna (Sicily)(1-3) have revealed that volcanoes may release abundant carbon dioxide not only from their active craters, but also from their flanks, as diffuse soil emanations. Here we present analyses of soil gases and air in water wells on Vulcano Island which provide further evidence of such lateral degassing. Nearly pure carbon dioxide, enriched in helium and radon, escapes from the slopes of the Fossa active cone, adding a total output of 30 tonnes per day to the fumarolic crater discharge ( 180 tonnes CO(2) per day). This emanation has similar He/CO(2) and (13)C/(12)C ratios to those of the crater fumaroles (300%ndash;500 degrees C) and therefore a similar volcanic origin. Gases rich in carbon dioxide also escape at sea level along the isthmus between the Fossa and Vulcanello volcanic cones, but their depletion in both He and (13)C suggests a distinct source. Diffuse volcanic gas emanations, once their genetic link with central fumarole degassing has been demonstrated, can be used for continuous volcano monitoring, at safe distances from active craters. Such monitoring has been initiated at Vulcano, where soil and well emanations of nearly pure CO(2) themselves represent a threat to the local population.

  11. 46 CFR 108.431 - Carbon dioxide systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Carbon dioxide systems: General. (a) Sections 108.431 through 108.457 apply to high pressure carbon dioxide fire extinguishing systems. (b) Low pressure systems, that is, those in which the carbon dioxide...

  12. The Mauna Loa carbon dioxide record: lessons for long-term Earth observations

    USGS Publications Warehouse

    Sundquist, Eric T.; Keeling, Ralph F.

    2009-01-01

    The Mauna Loa carbon dioxide record is an iconic symbol of the human capacity to alter the planet. Yet this record would not have been possible without the remarkable work of one man, Charles David Keeling. We describe three emergent themes that characterized his work: (1) his desire to study and understand the processes that control atmospheric CO2 and the global carbon cycle, (2) his campaign to identify and minimize systematic measurement error, and (3) his tenacious efforts to maintain continuous funding despite changing government priorities and institutions. In many ways, the story of the Mauna Loa record demonstrates that distinctions between research and “routine” measurements are not very useful in long-term monitoring of Earth properties and processes.

  13. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  14. Ocean acidification in a geoengineering context

    PubMed Central

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  15. A continuous physiological data collector

    NASA Technical Reports Server (NTRS)

    Bush, J. C.

    1972-01-01

    COP-DAC system utilizes oxygen and carbon dioxide analyzers, gas-flow meter, gas breathe-through system, analog computer, and data storage system to provide actual rather than average measurements of physiological and metabolic functions.

  16. IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.E.; Harrison, J.D.L.; Brett, N.H.

    A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)

  17. Path of Carbon in Photosynthesis III.

    DOE R&D Accomplishments Database

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  18. 40 CFR 98.423 - Calculating CO2 supply.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating CO2 supply. 98.423 Section 98.423 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.423 Calculating CO2 supply. (a) Except...

  19. 40 CFR 98.422 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false GHGs to report. 98.422 Section 98.422 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.422 GHGs to report. (a) Mass of CO2 captured from...

  20. 40 CFR 98.422 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false GHGs to report. 98.422 Section 98.422 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.422 GHGs to report. (a) Mass of CO2 captured from...

  1. 40 CFR 98.471 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.471 Section 98.471 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Injection of Carbon Dioxide § 98.471 Reporting threshold. (a) You must report under this subpart if your facility...

  2. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  3. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  4. 40 CFR 98.471 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.471 Section 98.471 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Injection of Carbon Dioxide § 98.471 Reporting threshold. (a) You must report under this subpart if your facility...

  5. 40 CFR 98.471 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.471 Section 98.471 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Injection of Carbon Dioxide § 98.471 Reporting threshold. (a) You must report under this subpart if your facility...

  6. 40 CFR 98.441 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.441 Section 98.441 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Geologic Sequestration of Carbon Dioxide § 98.441 Reporting threshold. (a) You must report under this subpart if...

  7. Designed amyloid fibers as materials for selective carbon dioxide capture

    PubMed Central

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.

    2014-01-01

    New materials capable of binding carbon dioxide are essential for addressing climate change. Here, we demonstrate that amyloids, self-assembling protein fibers, are effective for selective carbon dioxide capture. Solid-state NMR proves that amyloid fibers containing alkylamine groups reversibly bind carbon dioxide via carbamate formation. Thermodynamic and kinetic capture-and-release tests show the carbamate formation rate is fast enough to capture carbon dioxide by dynamic separation, undiminished by the presence of water, in both a natural amyloid and designed amyloids having increased carbon dioxide capacity. Heating to 100 °C regenerates the material. These results demonstrate the potential of amyloid fibers for environmental carbon dioxide capture. PMID:24367077

  8. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  9. 46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...

  10. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Use of carbon dioxide in... Use of carbon dioxide in still wine. The addition of carbon dioxide to (and retention in) still wine... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0...

  11. 46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7... Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or...: “WHEN ALARM SOUNDS VACATE AT ONCE. [CARBON DIOXIDE/CLEAN AGENT—as appropriate] BEING RELEASED.” [USCG...

  12. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  13. Energy efficient solvent regeneration process for carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  14. Kidneys and Urinary Tract (For Parents)

    MedlinePlus

    ... several kinds of wastes, including sweat, carbon dioxide gas, feces (stool or poop), and urine (pee). These ... leaves the kidney through the renal vein and flows back to the heart. The continuous blood supply ...

  15. Screen for Carbon Dioxide.

    ERIC Educational Resources Information Center

    Foster, John; And Others

    1986-01-01

    Presents a set of laboratory experiments that can assist students in the detection of carbon dioxide. Offers a variation of the supported drop method of carbon dioxide detection that provides readily visible positive results. Includes background information on carbon dioxide. (ML)

  16. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  17. Carbon dioxide transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.; Stephens, B.; Guenther, A.; Anderson, D.E.; Monson, R.

    2004-01-01

    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  18. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  19. 46 CFR 147.65 - Carbon dioxide and halon fire extinguishing systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Carbon dioxide and halon fire extinguishing systems. 147... dioxide and halon fire extinguishing systems. (a) Carbon dioxide or halon cylinders forming part of a...) Carbon dioxide or halon cylinders must be rejected for further service when they— (1) Leak; (2) Are...

  20. Carbon Dioxide Insufflation Increases Colonoscopic Adenoma Detection Rate Compared With Air Insufflation.

    PubMed

    Mills, Christopher D; McCamley, Chere; Swan, Michael P

    2018-03-07

    To determine the effect of carbon dioxide insufflation on the most important outcome measure of colonoscopic quality: adenoma detection rate (ADR). Bowel cancer is the second most common cause of cancer deaths in males and females in Australia. Carbon dioxide has in recent times become the insufflation methodology of choice for screening colonoscopy for bowel cancer, as this has been shown to have significant advantages when compared with traditional air insufflation. Endoscopies performed over a period of 9 months immediately before and after the implementation of carbon dioxide insufflation at endoscopy centers were eligible for inclusion. The difference in ADR between the carbon dioxide and air insufflation methods was statistically significant, with an increased ADR in the carbon dioxide group. The superiority of carbon dioxide insufflation was sustained with a logistic regression model, which showed ADR was significantly impacted by insufflation method. Carbon dioxide insufflation is known to reduce abdominal pain, postprocedural duration of abdominal pain, abdominal distension, and analgesic requirements. This study represents for the first time the beneficial effect of carbon dioxide insufflation upon the key quality colonoscopy indicator of ADR.

  1. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    PubMed

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  3. Carbon dioxide-soluble polymers and swellable polymers for carbon dioxide applications

    DOEpatents

    DeSimone, Joseph M.; Birnbaum, Eva; Carbonell, Ruben G.; Crette, Stephanie; McClain, James B.; McCleskey, T. Mark; Powell, Kimberly R.; Romack, Timothy J.; Tumas, William

    2004-06-08

    A method for carrying out a catalysis reaction in carbon dioxide comprising contacting a fluid mixture with a catalyst bound to a polymer, the fluid mixture comprising at least one reactant and carbon dioxide, wherein the reactant interacts with the catalyst to form a reaction product. A composition of matter comprises carbon dioxide and a polymer and a reactant present in the carbon dioxide. The polymer has bound thereto a catalyst at a plurality of chains along the length of the polymer, and wherein the reactant interacts with the catalyst to form a reaction product.

  4. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.

    PubMed

    Orr, James C; Fabry, Victoria J; Aumont, Olivier; Bopp, Laurent; Doney, Scott C; Feely, Richard A; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G; Plattner, Gian-Kasper; Rodgers, Keith B; Sabine, Christopher L; Sarmiento, Jorge L; Schlitzer, Reiner; Slater, Richard D; Totterdell, Ian J; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew

    2005-09-29

    Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

  6. Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?

    PubMed Central

    McElwain, J. C.

    1998-01-01

    Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.

  7. Technical and economical evaluation of carbon dioxide capture and conversion to methanol process

    NASA Astrophysics Data System (ADS)

    Putra, Aditya Anugerah; Juwari, Handogo, Renanto

    2017-05-01

    Phenomenon of global warming, which is indicated by increasing of earth's surface temperature, is caused by high level of greenhouse gases level in the atmosphere. Carbon dioxide, which increases year by year because of high demand of energy, gives the largest contribution in greenhouse gases. One of the most applied solution to mitigate carbon dioxide level is post-combustion carbon capture technology. Although the technology can absorb up to 90% of carbon dioxide produced, some worries occur that captured carbon dioxide that is stored underground will be released over time. Utilizing captured carbon dioxide could be a promising solution. Captured carbon dioxide can be converted into more valuable material, such as methanol. This research will evaluate the conversion process of captured carbon dioxide to methanol, technically and economically. From the research, it is found that technically methanol can be made from captured carbon dioxide. Product gives 25.6905 kg/s flow with 99.69% purity of methanol. Economical evaluation of the whole conversion process shows that the process is economically feasible. The capture and conversion process needs 176,101,157.69 per year for total annual cost and can be overcome by revenue gained from methanol product sales.

  8. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...

  9. 21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...

  10. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  11. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  12. The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.

    2017-12-01

    The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. SOCCR-2 highlights key data gaps in carbon accounting frameworks, uncertainties in modeling and estimation approaches, and integrated frameworks for improving our understanding of the North American carbon cycle.

  13. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  14. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18% respectively. Pumping below the gas hydrate stability phase boundary occurred in two periods with the composition of the produced gases continually increasing in methane reaching an excess of 96%, along with carbon dioxide decreasing to <1% and nitrogen to ~3%. The isotopic composition of all the gases was monitored. Methane carbon and hydrogen isotopic compositions remained stable throughout the test, while the carbon dioxide carbon became isotopically heavier. Nitrogen isotopic composition remained stable or became slightly isotopically depleted at the later phase of the test. These results imply that the produced methane was not isotopically fractionated, whereas carbon dioxide was fractionated becoming isotopically heavier at the end of each production phase. In addition, water samples were analyzed during the production phase documenting an increase in salinity.

  15. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.

    An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

  16. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  17. Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation

    PubMed Central

    Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.

    2017-01-01

    Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero‐carbon energy source. PMID:29171724

  18. Efficacy of glyphosate and halosulfuron for control of purple and yellow nutsedge in elevated CO2 environments

    USDA-ARS?s Scientific Manuscript database

    Carbon dioxide (CO2) concentrations in the earth’s atmosphere have continually increased each year since the beginning of the Industrial revolution and are expected to continue rising in the future, which could have a dramatic impact on agricultural production. Previous research has shown that eleva...

  19. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  20. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  1. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  2. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  3. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon dioxide, as specified in § 60.1745. (h) Records of calendar dates. Include the calendar date on... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... or Before August 30, 1999 Model Rule-Recordkeeping § 60.1850 What records must I keep for...

  4. 40 CFR 98.421 - Reporting threshold.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Reporting threshold. 98.421 Section 98.421 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.421 Reporting threshold. Any supplier of CO2 who meets the requirements of § 98.2...

  5. 40 CFR 98.421 - Reporting threshold.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Reporting threshold. 98.421 Section 98.421 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.421 Reporting threshold. Any supplier of CO2 who meets the requirements of § 98.2...

  6. 40 CFR 98.421 - Reporting threshold.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Reporting threshold. 98.421 Section 98.421 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Carbon Dioxide § 98.421 Reporting threshold. Any supplier of CO2 who meets the requirements of § 98.2...

  7. Technique for Simultaneous Determination of [35S]Sulfide and [14C]Carbon Dioxide in Anaerobic Aqueous Samples †

    PubMed Central

    Taylor, Craig D.; Ljungdahl, Per O.; Molongoski, John J.

    1981-01-01

    A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide. PMID:16345742

  8. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Putri, Sylvania; Krisanti, Elsa; Nasruddin

    2017-03-01

    This study was conducted to determine the effectiveness of Natural Deep Eutectic Solvent (NADES), consisting of choline chloride and a hydrogen bonding donor (HBD) compound, in terms of carbon dioxide absorption. Solubility of carbon dioxide in NADES was found to be influenced HBD compound used and choline chloride to HBD ratio, carbon dioxide pressure, and contact time. HBD and choline/HBD ratios used were 1,2-propanediol (1:2), glycerol (1:2), and malic acid (1:1). The carbon dioxide absorption measurement was conducted using an apparatus that utilizes the volumetric method. Absorption curves were obtained up to pressures of 30 bar, showing a linear relationship between the amount absorbed and the final pressure of carbon dioxide. The choline and 1,2-propanediol eutectic mixture absorbs the highest amount of carbon dioxide, approaching 0.1 mole-fraction at 3.0 MPa and 50°C. We found that NADES ability to absorb carbon dioxide correlates with its polarity as tested using Nile Red as a solvatochromic probe.

  9. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  10. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  11. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  12. 21 CFR 184.1240 - Carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C. Carbon...

  13. A simple diagnostic test to confirm correct intravascular placement of peripheral catheters in order to avoid extravasation.

    PubMed

    Keidan, Ilan; Sidi, Avner; Ben-Menachem, Erez; Derazne, Estela; Berkenstadt, Haim

    2015-11-01

    Intravenous catheters are ubiquitous among modern medical management of patients, yet misplaced or tissued cannulas can result in serious iatrogenic injury due to infiltration or extravasation of injectate. Prevention is difficult, and currently few reliable tests exist to confirm intravascular placement of catheters in awake spontaneously breathing patients. Twenty conscious spontaneously breathing healthy volunteers were injected with 50 mL normal saline and 50 mL 4.2%, or 50 mL 2.1%, or 20 mL 4.2% sodium bicarbonate in a random order. A blinded anesthetist observed continuous sampling of exhaled carbon dioxide and was asked to differentiate between the sodium bicarbonate and saline injections. Peak increase in measured exhaled carbon dioxide was also calculated. Exhaled carbon dioxide increased significantly in participants injected with intravenous sodium bicarbonate. Mean peak increase was 7.4 mm Hg (±2.1 mm Hg) for 50 mL 4.2% sodium bicarbonate, 4.7 mm Hg (±2.5 mm Hg) for 20 mL 4.2% sodium bicarbonate, and 3.5 mm Hg (±1. 8 mm Hg) for 50 mL 2.1% sodium bicarbonate. The blinded observer correctly identified the injection as sodium bicarbonate or normal saline in every instance. Intravenous injection of dilute sodium bicarbonate with exhaled carbon dioxide monitoring reliably confirms correct intravascular placement of a catheter. A transient increase of exhaled carbon dioxide by 10% or more is an objective and reliable confirmation of intravascular location of the catheter. We recommend using 20 mL of 4.2% sodium bicarbonate to minimize the mEq dose of sodium bicarbonate required. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Carbon Dioxide Laser Fiber Optics In Endoscopy

    NASA Astrophysics Data System (ADS)

    Fuller, Terry A.

    1982-12-01

    Carbon dioxide laser surgery has been limited to a great extent to surgical application on the integument and accessible cavities such as the cervix, vagina, oral cavities, etc. This limitation has been due to the rigid delivery systems available to all carbon dioxide lasers. Articulating arms (series of hollow tubes connected by articulating mirrors) have provided an effective means of delivery of laser energy to the patient as long as the lesion was within the direct line of sight. Even direct line-of-sight applications were restricted to physical dimension of the articulating arm or associated hand probes, manipulators and hollow tubes. The many attempts at providing straight endoscopic systems to the laser only stressed the need for a fiber optic capable of carrying the carbon dioxide laser wavelength. Rectangular and circular hollow metal waveguides, hollow dielectric waveguides have proven ineffective to the stringent requirements of a flexible surgical delivery system. One large diameter (1 cm) fiber optic delivery system, incorporates a toxic thalliumAbased fiber optic material. The device is an effective alternative to an articulating arm for external or conventional laser surgery, but is too large and stiff to use as a flexible endoscopic tool. The author describes the first highly flexible inexpensive series of fiber optic systems suitable for either conventional or endoscopic carbon dioxide laser surgery. One system (IRFLEX 3) has been manufactured by Medlase, Inc. for surgical uses capable of delivering 2000w, 100 mJ pulsed energy and 15w continuous wave. The system diameter is 0.035 inches in diameter. Surgically suitable fibers as small as 120 um have been manufactured. Other fibers (IRFLEX 142,447) have a variety of transmission characteristics, bend radii, etc.

  15. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  16. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  17. 21 CFR 868.5300 - Carbon dioxide absorbent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorbent. 868.5300 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5300 Carbon dioxide absorbent. (a) Identification. A carbon dioxide absorbent is a device intended for medical purposes that consists of an...

  18. U.S. Energy-Related Carbon Dioxide Emissions

    EIA Publications

    2017-01-01

    U.S. Energy Information Administration releases its online analysis of 2016 energy-related carbon dioxide emissions today. It indicates U.S. carbon dioxide emissions from the consumption of fossil fuels were 5,170 million metric tons carbon dioxide in 2016, a decrease of 1.7 percent from the 2015 level. Energy-related carbon dioxide emissions have declined in six of the last ten years. This analysis is based on data contained in the August 2017 Monthly Energy Review.

  19. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  20. Development of a solid electrolyte carbon dioxide and water reduction system for oxygen recovery

    NASA Technical Reports Server (NTRS)

    Elikan, L.; Morris, J. P.; Wu, C. K.

    1972-01-01

    A 1/4-man solid electrolyte oxygen regeneration system, consisting of an electrolyzer, a carbon deposition reactor, and palladium membranes for separating hydrogen, was operated continuously in a 180-day test. Oxygen recovery from the carbon dioxide-water feed was 95%. One percent of the oxygen was lost to vacuum with the hydrogen off-gas. In a space cabin, the remaining 4% would have been recycled to the cabin and recovered. None of the electrolysis cells used in the 180-day test failed. Electrolysis power rose 20% during the test; the average power was 283.5 watts/man. Crew time was limited to 18 min/day of which 12 min/day was used for removing carbon. The success achieved in operating the system can be attributed to an extensive component development program, which is described. Stability of operation, ease of control, and flexibility in feed composition were demonstrated by the life test.

  1. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Utilizing Diffusion Theory to predict carbon dioxide concentration in an indoor environment

    NASA Astrophysics Data System (ADS)

    Kramer, Andrew R.

    This research details a new method of relating sources of carbon dioxide to carbon dioxide concentration in a room operating in a reduced ventilation mode by utilizing Diffusion Theory. The theoretical basis of this research involved solving Fick's Second Law of Diffusion in spherical coordinates for a source of carbon dioxide flowing at a constant rate and located in the center of an impermeable spherical boundary. The solution was developed using a Laplace Transformation. A spherical diffusion test chamber was constructed and used to validate and benchmark the developed theory. The method was benchmarked by using Dispersion Coefficients for large carbon dioxide flow rates due to diffusion induced convection. The theoretical model was adapted to model a room operating with restricted ventilation in the presence of a known, constant source of carbon dioxide. The room was modeled as a sphere of volume equal to the room and utilized a Dispersion Coefficient that is consistent with published values. The developed Diffusion Model successfully predicted the spatial concentration of carbon dioxide in a room operating in a reduced ventilation mode in the presence of a source of carbon dioxide. The flow rates of carbon dioxide that were used in the room are comparable to the average flow rate of carbon dioxide from a person during quiet breathing, also known as the Tidal Breathing. This indicates the Diffusion Model developed from this research has the potential to correlate carbon dioxide concentration with static occupancy levels which can lead to energy savings through a reduction in air exchange rates when low occupancy is detected.

  3. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  4. Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.

    PubMed

    Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison

    2018-01-10

    An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Stabilized Lasers and Precision Measurements.

    ERIC Educational Resources Information Center

    Hall, J. L.

    1978-01-01

    Traces the development of stabilized lasers from the Massachusetts Institute of Technology passive-stabilization experiments of the early 1960s up through the current epoch of highly stabilized helium-neon and carbon dioxide and continuous wave dye lasers. (Author/HM)

  6. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  7. 40 CFR 86.524-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.524-78 Carbon dioxide analyzer calibration. (a) Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide...

  8. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  9. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  10. 46 CFR 95.15-60 - Odorizing units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  11. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  12. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  13. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  14. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to...

  15. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  16. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  17. 46 CFR 193.15-17 - Odorizing units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-17 Odorizing units. Each carbon dioxide extinguishing system installed or altered after July 9, 2013, must have an approved... carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may...

  18. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  19. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  20. 46 CFR 76.15-60 - Odorizing units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Carbon Dioxide Extinguishing Systems, Details § 76.15-60 Odorizing units. Each carbon dioxide... the scent of wintergreen, the detection of which will serve as an indication that carbon dioxide gas is present in a protected area and any other area into which the carbon dioxide may migrate. “Altered...

  1. 40 CFR 86.124-78 - Carbon dioxide analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Carbon dioxide analyzer calibration... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its introduction into service and monthly thereafter the NDIR carbon dioxide analyzer shall be calibrated: (a...

  2. 21 CFR 884.1300 - Uterotubal carbon dioxide insufflator and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Uterotubal carbon dioxide insufflator and... Gynecological Diagnostic Devices § 884.1300 Uterotubal carbon dioxide insufflator and accessories. (a) Identification. A uterotubal carbon dioxide insufflator and accessories is a device used to test the patency...

  3. 27 CFR 24.319 - Carbon dioxide record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted to... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Carbon dioxide record. 24...

  4. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  5. Carbon dioxide in Arctic and subarctic regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, themore » hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.« less

  6. Carbon Sequestration: is Science Leading Policy or Will Policy Direct Science?

    NASA Astrophysics Data System (ADS)

    Anderson, A. K.

    2007-12-01

    Climate-related policy is in its infancy on capital hill, as policy makers only recently started to converge on the acceptance that climate change is a credible, scientific reality. Until recently much of the debate and policy decisions have been related to whether or not climate change, or more specifically global warming, is occurring. The climate debate has shifted from discussing the science behind climate change to addressing how we can reduce carbon dioxide emissions. In the 110th Congress, policy makers have come to realize and accept that we, as a nation, are one of the largest global emitters of carbon dioxide to the atmosphere. Geologic carbon sequestration has gained significant congressional attention and is considered to be one of the most promising carbon mitigation tools. In the present Congress, scientific experts have testified before numerous committees about the various caveats of geologic carbon sequestration. As a result, policy has been and is currently being drafted to address the challenges facing large-scale commercial demonstration of geologic sequestration facilities. Policy has been passed through both the House and Senate that is aimed at increasing funding for basic and advanced research, development, and demonstration of small- to large-scale carbon dioxide injection projects. This legislation is only the beginning of a series of legislation that is under development. In the next year, policy will be introduced that will likely address issues related to pore space and mineral rights ownership, regulatory framework for carbon dioxide transport and injection, long-term injection site monitoring protocol, personal and environmental safety, and liability issues, to name a few. Policy is not limited to the technical aspects of carbon capture, transport, and storage, but is also being developed to help stimulate a market that will be operating under climate constraints. Financial incentives have been proposed that will assist industrial carbon dioxide emitters in making the transition into a carbon-constrained economy. Science has driven the initial policy that has been proposed to date; however, the topic of carbon sequestration has been advanced through Congress at a near record-breaking pace. As such, there is an increased need to hear from scientists in academia and industry alike to continue to make good policy decisions related to carbon sequestration based on sound scientific advice.

  7. Transition Organometallic Heterobimettalic Microns-Carbon Dioxide and Microns-Format Complexes in Homogeneous Carbon Dioxide Fixation

    DTIC Science & Technology

    1992-08-12

    AD-A254 538 OFFICE OF NAVAL RESEARCH FINAL REPORT FCR Contract N00014-87-K-0465 R&T Code 413j006 "Transition Organometallic Heterobimetallic ix...ransition Organometallic Heterobimetallic P-Carbon Dioxide and p-FormateComplexes in Homogeneous Carbon Dioxide Fixation 12. PERSONAL AUTHOR(S) Alan R...J. L. Shibley, and A. R. Cutler, J. Organomet. Chem. 1989,378, 421.* "Characterization of the Heterobimetallic ±(r011-C: T12 -O,O’) Carbon Dioxide

  8. Effect of dissolved carbon dioxide on penicillin fermentations: mycelial growth and penicillin production. [Penicillium chrysogenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.S.; Smith, M.D.

    The effect of dissolved carbon dioxide on the specific growth rate and the penicillin production rate of Penicillium chrysogenum was examined experimentally. The dissolved carbon dioxide was found to inhibit the specific growth rate and the penicillin production rate when the aerated submerged penicillin fermentation was exposed to influent gases of 12.6 and 20% carbon dioxide, respectively. Upon exposure to influent gases of 3 and 5% carbon dioxide, no pronounced metabolic inhibition was noted.

  9. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    USGS Publications Warehouse

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.

  10. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    PubMed

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    PubMed

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, A.G.; Ho, C.S.

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase ofmore » 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur.« less

  13. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou

    2001-04-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  14. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...

  15. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  16. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  17. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  18. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  19. 40 CFR 180.1049 - Carbon dioxide; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Carbon dioxide; exemption from the... Exemptions From Tolerances § 180.1049 Carbon dioxide; exemption from the requirement of a tolerance. The insecticide carbon dioxide is exempted from the requirement of a tolerance when used after harvest in modified...

  20. 21 CFR 868.5310 - Carbon dioxide absorber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carbon dioxide absorber. 868.5310 Section 868.5310...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5310 Carbon dioxide absorber. (a) Identification. A carbon dioxide absorber is a device that is intended for medical purposes and that is used in a...

  1. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  2. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  3. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  4. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  5. 21 CFR 868.1150 - Indwelling blood carbon dioxide partial pressure (PCO2) analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood carbon dioxide partial pressure....1150 Indwelling blood carbon dioxide partial pressure (PCO2) analyzer. (a) Identification. An indwelling blood carbon dioxide partial pressure PCO2 analyzer is a device that consists of a catheter-tip...

  6. 27 CFR 26.222 - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine...

  7. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M Mercedes [State College, PA; Zhang, Yinzhi [State College, PA; Kuchta, Matthew E [State College, PA; Andresen, John M [State College, PA; Fauth, Dan J [Pittsburgh, PA

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  8. Effect of Carbon Dioxide on Testing of Susceptibilities of Respiratory Tract Pathogens to Macrolide and Azalide Antimicrobial Agents

    PubMed Central

    Johnson, M. M.; Hill, S. L.; Piddock, Laura J. V.

    1999-01-01

    The in vitro activities of erythromycin, azithromycin, and clarithromycin against 178 clinical isolates from the lower respiratory tract of patients with chronic obstructive pulmonary disease were determined by an agar dilution method. The plates were incubated in air alone or in 5% carbon dioxide. The MICs measured in air alone were lower for most isolates than those measured in 5% carbon dioxide, illustrating the “pH effect” of incubation in carbon dioxide. Testing of isolates in 5% carbon dioxide on pH-adjusted medium (pH 8.4) resulted in MICs of one or two doubling dilutions lower than those obtained on agar with a neutral pH. A bioassay of the three agents incubated in air and in 5% carbon dioxide resulted in a significant loss of activity of all three agents in the carbon dioxide-enriched atmosphere. However, this loss-of-activity effect was significantly reduced when the bioassay medium was adjusted to pH 8.4 prior to incubation in 5% carbon dioxide. PMID:10428903

  9. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caulfield, F.; Bunce, J.A.

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbonmore » dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.« less

  10. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    PubMed Central

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, ChandraSekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-01-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts. PMID:27958290

  11. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    PubMed

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. High Temperature Raman Spectroscopy Study of the Conversion of Formate into Oxalate: Search for the Elusive CO 2 2 - Intermediate

    NASA Astrophysics Data System (ADS)

    Ryan, Charles; Mead, Anna; Lakkaraju, Prasad; Kaczur, Jerry; Bennett, Christopher; Dobbins, Tabbetha

    Research on conversion of carbon dioxide into chemicals and fuels has the potential to address three problems of global relevance. (a) By removing carbon dioxide from the atmosphere, we are able to reduce the amount of greenhouse gases in the atmosphere, (b) by converting carbon dioxide into fuels, we are providing pathways for renewable energy sources, (c) by converting carbon dioxide into C2 and higher order compounds, and we are able to generate valuable precursors for organic synthesis. Formate salts are formed by the electrochemical reduction of carbon dioxide in aqueous media. However, in order to increase the utilization of carbon dioxide, methods need to be developed for the conversion of formate into compounds containing two carbon atoms such as oxalate or oxalic acid. Recently, we examined the thermal conversion of sodium formate into sodium oxalate utilizing a hydride ion catalyst. The proposed mechanism for this reaction involves the carbon dioxide dianion. Currently at NASA Goddard Space Flight Center.

  13. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  14. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thistle, D

    2008-09-30

    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide andmore » the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim away from an advancing front of carbon dioxide-rich sea water (Thistle et al. 2007). This result demonstrates a second way that deep-sea meiofauna react negatively to carbon dioxide-rich sea water. In summary, we used in situ experiments to show that carbon dioxide-rich sea water triggers an escape response in some harpacticoid species. It kills most individuals of most harpacticoid species that do not flee, but a few species seem to be unaffected. Proposals to reduce global warming by sequestering industrial carbon dioxide in the deep ocean should take note of these environmental consequences when pros and cons are weighed.« less

  15. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    NASA Astrophysics Data System (ADS)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  16. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  17. 46 CFR 35.40-7 - Carbon dioxide alarm-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide alarm-T/ALL. 35.40-7 Section 35.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL. § 35.40-7 Carbon dioxide alarm—T/ALL. Adjacent to all carbon dioxide fire extinguishing...

  18. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  19. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  20. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...

  1. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  2. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...

  3. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  4. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  5. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  6. 27 CFR 27.42a - Still wines containing carbon dioxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine; except that a tolerance to this maximum limitation, not to exceed 0.009 gram of carbon dioxide per 100 milliliters of wine, will be allowed where the amount of carbon dioxide in excess of 0.392 gram per 100...

  7. 27 CFR 24.245 - Use of carbon dioxide in still wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than 0.392 grams of carbon dioxide per 100 milliliters of wine. However, a tolerance of not more than 0.009 grams per 100 milliliters to the maximum limitation of carbon dioxide in still wine will be allowed where the amount of carbon dioxide in excess of 0.392 grams per 100 milliliters is due to...

  8. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; O'Brien, Michael Joseph

    2015-12-29

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  9. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James; O'Brien, Michael Joseph

    2014-06-10

    In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.

  10. Carbon dioxide absorbent and method of using the same

    DOEpatents

    Perry, Robert James [Niskayuna, NY; Lewis, Larry Neil [Scotia, NY; O'Brien, Michael Joseph [Clifton Park, NY; Soloveichik, Grigorii Lev [Latham, NY; Kniajanski, Sergei [Clifton Park, NY; Lam, Tunchiao Hubert [Clifton Park, NY; Lee, Julia Lam [Niskayuna, NY; Rubinsztajn, Malgorzata Iwona [Ballston Spa, NY

    2011-10-04

    In accordance with one aspect, the present invention provides an amino-siloxane composition comprising at least one of structures I, II, III, IV or V said compositions being useful for the capture of carbon dioxide from gas streams such as power plant flue gases. In addition, the present invention provides methods of preparing the amino-siloxane compositions are provided. Also provided are methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention as species which react with carbon dioxide to form an adduct with carbon dioxide. The reaction of the amino-siloxane compositions provided by the present invention with carbon dioxide is reversible and thus, the method provides for multicycle use of said compositions.

  11. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  12. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  13. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  14. Carbon-14 analyses reveal fine structure of the urban carbon dioxide dome in the Salt Lake Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.

    2013-12-01

    Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.

  15. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    PubMed

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds

    USGS Publications Warehouse

    Cupp, Aaron R.; Erickson, Richard A.; Fredricks, Kim T.; Swyers, Nicholas M.; Hatton, Tyson; Amberg, Jon J.

    2017-01-01

    Resource managers need for effective methods to prevent the movement of silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) from the Mississippi River basin into the Laurentian Great Lakes. In this study, we evaluated dissolved carbon dioxide (CO2) as a barrier and deterrent to silver (278 ± 30.5 mm) and bighead (212 ± 7.7 mm) carp movement in continuous-flow outdoor ponds. As a barrier, CO2 significantly reduced upstream movement but was not 100% effective at blocking fish passage. As a deterrent, we observed a significant shift away from areas of high CO2 relative to normal movement before and after injection. Carbon dioxide concentrations varied across the pond during injection and reached maximum concentrations of 74.5±1.9 mg/L CO2; 29 532 – 41 393 µatm at the site of injection during three independent trials. We conclude that CO2 altered silver and bighead carp movement in outdoor ponds and recommend further research to determine barrier effectiveness during field applications.

  17. Carbon dioxide flux, transpiration and light response of millet in the Sahel

    NASA Astrophysics Data System (ADS)

    Friborg, T.; Boegh, E.; Soegaard, H.

    1997-02-01

    Within the framework of the HAPEX-Sahel experiment carried out in Niger during the rainy season of 1992, measurements of fluxes defining the vegetation-atmosphere interaction were conducted over a millet field, for a period of nearly 2 months. These measurements comprised continuous recording of solar radiation, atmospheric carbon dioxide fluxes using the eddy correlation technique, and sap flow through millet plants. Based on biometric measurements of the millet plants comprising height, spacing and leaf area index, the solar radiation is converted to absorbed photosynthetically active radiation (aPAR). The coupling between the three parameters is examined in pairs. The diurnal and seasonal variations are analysed in relation to plant development. A strong linear relationship between aPAR and carbon dioxide assimilation can be established from the measurements, giving a quantum yield of 0.03 mol CO 2 mol -1 quanta. A comparison between CO 2 flux and transpiration shows that this relationship is affected by the water vapour pressure deficit of the atmosphere, but corresponds to the results found for other drought-tolerant C 4 crops.

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Measuring the decomposition of organic carbon sequestered by salt marsh sediment

    NASA Astrophysics Data System (ADS)

    Light, T.; Mctigue, N.; Currin, C.

    2016-12-01

    As atmospheric carbon dioxide concentrations continue to rise, salt marshes are increasingly being recognized as a natural carbon sink, for large amounts of organic carbon are sequestered by salt marsh sediments. However, little is known regarding the fate of this "blue carbon" after salt marsh sediment is disturbed via erosion or lost due to sea level rise. This investigation explored novel methodologies for determining the lability of carbon sequestered by salt marsh sediment. Sediment cores were collected from a Spartina alterniflora-dominated marsh in Camp Lejeune, NC, and elemental analysis revealed that the upper 76 cm of sediment at the site contains a total carbon stock of 28.4 kg /m2. Sediment ranging from 251-545 years old, as determined through radiocarbon dating, was incubated under sub-aerial and aqueous conditions for 18 days and 25 days respectively. Carbon dioxide flux measurements revealed that shallower sediment organic matter decomposed more rapidly than deeper sediment in sub-aerial incubations, but decomposition was fairly slow in both treatments. No significant organic matter decomposition was observed in the aqueous incubations, as revealed by analyses of organic carbon remaining after the incubation period. The aqueous incubation included a treatment that had been "primed" with highly labile yeast extract, but no significant priming effect was observed over 25 days. While further investigation on the fate of this sediment carbon is needed, these preliminary findings indicate that salt marshes facilitate long-term carbon sequestration even after disturbances. This in turn supports the argument for mitigating anthropogenic carbon dioxide emissions through salt marsh restoration, and supports a policy of preserving and conserving coastal wetlands for this valuable ecosystem service.

  1. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    NASA Astrophysics Data System (ADS)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity, water surface disturbance indicated by Froude number, and turbulent mixing indicated by Reynolds number. Similar relationships with season, flow velocity and turbulence have been reported previously, but there is little known about the mechanisms involved. When comparing spot carbon dioxide efflux measurements to river stage time series data, carbon dioxide efflux is more sensitive to an increase in stage at more turbulent measurement points. Further investigation of the mechanisms will be obtained by measurement of DIC concentration and isotopic composition to assess the controls of carbon source versus degassing, and the analysis of the interactions between hydraulic and seasonal controls and carbon dioxide fluxes extended.

  2. Climate indices strongly influence old-growth forest carbon exchange

    Treesearch

    Sonia Wharton; Matthias Falk

    2016-01-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running...

  3. Solubility of Carbon Dioxide in Water.

    ERIC Educational Resources Information Center

    Bush, Pat; And Others

    1992-01-01

    Describes an activity measuring the amount of dissolved carbon dioxide in carbonated water at different temperatures. The amount of carbon dioxide is measured by the amount of dilute ammonia solution needed to produce a pH indicator color change. (PR)

  4. Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971-2013.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2016-07-01

    In this study, the relationship between carbon dioxide emissions, GDP, energy use, and population growth in Ghana was investigated from 1971 to 2013 by comparing the vector error correction model (VECM) and the autoregressive distributed lag (ARDL). Prior to testing for Granger causality based on VECM, the study tested for unit roots, Johansen's multivariate co-integration and performed a variance decomposition analysis using Cholesky's technique. Evidence from the variance decomposition shows that 21 % of future shocks in carbon dioxide emissions are due to fluctuations in energy use, 8 % of future shocks are due to fluctuations in GDP, and 6 % of future shocks are due to fluctuations in population. There was evidence of bidirectional causality running from energy use to GDP and a unidirectional causality running from carbon dioxide emissions to energy use, carbon dioxide emissions to GDP, carbon dioxide emissions to population, and population to energy use. Evidence from the long-run elasticities shows that a 1 % increase in population in Ghana will increase carbon dioxide emissions by 1.72 %. There was evidence of short-run equilibrium relationship running from energy use to carbon dioxide emissions and GDP to carbon dioxide emissions. As a policy implication, the addition of renewable energy and clean energy technologies into Ghana's energy mix can help mitigate climate change and its impact in the future.

  5. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...

  6. 46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...

  7. TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2N)

    Atmospheric Science Data Center

    2018-01-18

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2N) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.2 x 8.5 km nadir ... Contact User Services Parameters:  Carbon Dioxide Legacy:  Retired data product , click here ...

  8. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b) of this section, the cylinders...

  9. TES/Aura L2 Carbon Dioxide (CO2) Nadir V6 (TL2CO2NS)

    Atmospheric Science Data Center

    2018-01-22

    TES/Aura L2 Carbon Dioxide (CO2) Nadir (TL2CO2NS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Carbon Dioxide Spatial Coverage:  5.3 x 8.5 km nadir ... Contact ASDC User Services Parameters:  Carbon Dioxide Legacy:  Retired data product , click here ...

  10. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  11. The impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution: evidence from Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-03-01

    In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.

  12. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K [Worthington, OH; Lee, Inhee [Columbus, OH; Akbar, Sheikh A [Hilliard, OH

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papersmore » have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.« less

  14. Preparation and characterization of Polyacrylonitrile/ Manganese Dioxides- based Carbon Nanofibers via electrospinning process

    NASA Astrophysics Data System (ADS)

    Che Othman, F. E.; Yusof, N.; Jaafar, J.; Ismail, A. F.; Hasbullah, H.; Abdullah, N.; Ismail, M. S.

    2016-06-01

    This research reports the production of precursor polyacrylonitrile (PAN)/ manganese dioxide (MnO2) nanofibers (NFs) via electrospinning method followed by stabilization and carbonization processes. Nowadays, electrospinning has become a suitable method in manufacturing continuous NFs, thus it is employed to fabricate NFs in this study. The microstructural properties and adsorption competencies of the produced NFs were also studied. The NFs were prepared by electrospinning the polymer solution of Polyacrylonitrile (PAN) and Manganese Dioxide (MnO2) in, N, N-Dimethylformamide (DMF) solvent. The factors considered in this study were various polymer PAN/MnO2 concentrations which will significantly affect the specific surface area, fiber morphology and the diameter of the NFs prepared. Subsequently, heat treatment is applied by setting up the stabilization temperature at 275 °C and carbonization temperature at 800 °C with constant dwelling time (30 min). Nitrogen gas at constant rate 0.2 L/min was used for stabilization and carbonization with the stabilization rate (2 °C/min) and carbonization rate (5 °C/min). The carbon nanofibers (CNFs) produced were characterized using Scanning Electron Microscopy (SEM), Brunauer Emmett and Teller (BET) surface area and Fourier Transmission Infrared Spectroscopy (FTIR). It was found that the PAN/MnO2 CNFs were successfully produced with the carbonization temperature of 800 °C. The prepared PAN/MnO2 CNFs prepared showed an enhanced in specific surface area about two times compared to it precursor NFs.

  15. Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.

    PubMed

    Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia

    2018-06-20

    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

  16. Experimental measurement and thermodynamic modeling of the solubility of carbon dioxide in aqueous blends of monoethanolamine and diethanolamine

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2017-12-01

    In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.

  17. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  18. Epoxide-functionalization of polyethyleneimine for synthesis of stable carbon dioxide adsorbent in temperature swing adsorption

    PubMed Central

    Choi, Woosung; Min, Kyungmin; Kim, Chaehoon; Ko, Young Soo; Jeon, Jae Wan; Seo, Hwimin; Park, Yong-Ki; Choi, Minkee

    2016-01-01

    Amine-containing adsorbents have been extensively investigated for post-combustion carbon dioxide capture due to their ability to chemisorb low-concentration carbon dioxide from a wet flue gas. However, earlier studies have focused primarily on the carbon dioxide uptake of adsorbents, and have not demonstrated effective adsorbent regeneration and long-term stability under such conditions. Here, we report the versatile and scalable synthesis of a functionalized-polyethyleneimine (PEI)/silica adsorbent which simultaneously exhibits a large working capacity (2.2 mmol g−1) and long-term stability in a practical temperature swing adsorption process (regeneration under 100% carbon dioxide at 120 °C), enabling the separation of concentrated carbon dioxide. We demonstrate that the functionalization of PEI with 1,2-epoxybutane reduces the heat of adsorption and facilitates carbon dioxide desorption (>99%) during regeneration compared with unmodified PEI (76%). Moreover, the functionalization significantly improves long-term adsorbent stability over repeated temperature swing adsorption cycles due to the suppression of urea formation and oxidative amine degradation. PMID:27572662

  19. The Impact of Carbon Dioxide on Climate.

    ERIC Educational Resources Information Center

    MacDonald, Gordon J.

    1979-01-01

    Examines the relationship between climatic change and carbon dioxide from the historical perspective; details the contributions of carbon-based fuels to increasing carbon dioxide concentrations; and using global circulation models, discusses the future impact of the heavy reliance of our society on carbon-based fuels on climatic change. (BT)

  20. Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeolitic thiophene-benzimidazolate framework

    EPA Science Inventory

    A titanium-based zeolitic thiophene-benzimidazolate framework has been designed for the direct synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide. The developed catalyst activates carbon dioxide and delivers over 16% yield of DMC without the use of any dehydra...

  1. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle; Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50 because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  2. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Meier, Anne J.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane, which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon is capable of recovering all the oxygen from carbon dioxide, and is the only real alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon and the resulting carbon buildup will eventually foul the nickel or iron catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  3. Self-Cleaning Boudouard Reactor for Full Oxygen Recovery from Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Muscatello, Anthony C.; Gibson, Tracy L.; Captain, James G.; Lunn, Griffin M.; Devor, Robert W.; Bauer, Brint; Parks, Steve

    2016-01-01

    Oxygen recovery from respiratory carbon dioxide is an important aspect of human spaceflight. Methods exist to sequester the carbon dioxide, but production of oxygen needs further development. The current International Space Station Carbon Dioxide Reduction System (CRS) uses the Sabatier reaction to produce water (and ultimately breathing air). Oxygen recovery is limited to 50% because half of the hydrogen used in the Sabatier reactor is lost as methane which is vented overboard. The Bosch reaction, which converts carbon dioxide to oxygen and solid carbon, is capable of recovering all the oxygen from carbon dioxide, and it is a promising alternative to the Sabatier reaction. However, the last reaction in the cycle, the Boudouard reaction, produces solid carbon, and the resulting carbon buildup eventually fouls the catalyst, reducing reactor life and increasing consumables. To minimize this fouling and increase efficiency, a number of self-cleaning catalyst designs have been created. This paper will describe recent results evaluating one of the designs.

  4. Primary discussion of a carbon sink in the oceans

    NASA Astrophysics Data System (ADS)

    Ma, Caihua; You, Kui; Ji, Dechun; Ma, Weiwei; Li, Fengqi

    2015-04-01

    As a consequence of global warming and rising sea levels, the oceans are becoming a matter of concern for more and more people because these changes will impact the growth of living organisms as well as people's living standards. In particular, it is extremely important that the oceans absorb massive amounts of carbon dioxide. This paper takes a pragmatic approach to analyzing the oceans with respect to the causes of discontinuities in oceanic variables of carbon dioxide sinks. We report on an application of chemical, physical and biological methods to analyze the changes of carbon dioxide in oceans. Based on the relationships among the oceans, land, atmosphere and sediment with respect to carbon dioxide, the foundation of carbon dioxide in shell-building and ocean acidification, the changes in carbon dioxide in the oceans and their impact on climate change, and so on, a vital conclusion can be drawn from this study. Specifically, under the condition that the oceans are not disturbed by external forces, the oceans are a large carbon dioxide sink. The result can also be inferred by the formula: C=A-B and G=E+F when the marine ecosystem can keep a natural balance and the amount of carbon dioxide emission is limited within the carrying capacity of the oceans.

  5. Carbon Dioxide Fluctuations Are Associated with Changes in Cerebral Oxygenation and Electrical Activity in Infants Born Preterm.

    PubMed

    Dix, Laura Marie Louise; Weeke, Lauren Carleen; de Vries, Linda Simone; Groenendaal, Floris; Baerts, Willem; van Bel, Frank; Lemmers, Petra Maria Anna

    2017-08-01

    To evaluate the effects of acute arterial carbon dioxide partial pressure changes on cerebral oxygenation and electrical activity in infants born preterm. This retrospective observational study included ventilated infants born preterm with acute fluctuations of continuous end-tidal CO 2 (etCO 2 ) as a surrogate marker for arterial carbon dioxide partial pressure, during the first 72 hours of life. Regional cerebral oxygen saturation and fractional tissue oxygen extraction were monitored with near-infrared spectroscopy. Brain activity was monitored with 2-channel electroencephalography. Spontaneous activity transients (SATs) rate (SATs/minute) and interval between SATs (in seconds) were calculated. Ten-minute periods were selected for analysis: before, during, and after etCO 2 fluctuations of ≥5  mm Hg. Thirty-eight patients (mean ± SD gestational age of 29 ± 1.8 weeks) were included, with 60 episodes of etCO 2 increase and 70 episodes of etCO 2 decrease. During etCO 2 increases, brain oxygenation increased (regional cerebral oxygen saturation increased, fractional tissue oxygen extraction decreased; P < .01) and electrical activity decreased (SATs/minute decreased, interval between SATs increased; P < .01). All measures recovered when etCO 2 returned to baseline. During etCO 2 decreases, brain oxygenation decreased (regional cerebral oxygen saturation decreased, fractional tissue oxygen extraction decreased; P < .01) and brain activity increased (SATs/minute increased, P < .05), also with recovery after return of etCO 2 to baseline. An acute increase in etCO 2 is associated with increased cerebral oxygenation and decreased brain activity, whereas an acute decrease is associated with decreased cerebral oxygenation and slightly increased brain activity. Combining continuous CO 2 monitoring with near-infrared spectroscopy may enable the detection of otherwise undetected fluctuations in arterial carbon dioxide partial pressure that may be harmful to the neonatal brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enhanced open ocean storage of CO2 from shelf sea pumping.

    PubMed

    Thomas, Helmuth; Bozec, Yann; Elkalay, Khalid; de Baar, Hein J W

    2004-05-14

    Seasonal field observations show that the North Sea, a Northern European shelf sea, is highly efficient in pumping carbon dioxide from the atmosphere to the North Atlantic Ocean. The bottom topography-controlled stratification separates production and respiration processes in the North Sea, causing a carbon dioxide increase in the subsurface layer that is ultimately exported to the North Atlantic Ocean. Globally extrapolated, the net uptake of carbon dioxide by coastal and marginal seas is about 20% of the world ocean's uptake of anthropogenic carbon dioxide, thus enhancing substantially the open ocean carbon dioxide storage.

  7. Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery.

    PubMed

    Yu, Tianwu; Cheng, Yao; Wang, Xiaomei; Tu, Bing; Cheng, Nansheng; Gong, Jianping; Bai, Lian

    2017-06-21

    This is an update of the review published in 2013.Laparoscopic surgery is now widely performed to treat various abdominal diseases. Currently, carbon dioxide is the most frequently used gas for insufflation of the abdominal cavity (pneumoperitoneum). Although carbon dioxide meets most of the requirements for pneumoperitoneum, the absorption of carbon dioxide may be associated with adverse events. People with high anaesthetic risk are more likely to experience cardiopulmonary complications and adverse events, for example hypercapnia and acidosis, which has to be avoided by hyperventilation. Therefore, other gases have been introduced as alternatives to carbon dioxide for establishing pneumoperitoneum. To assess the safety, benefits, and harms of different gases (i.e. carbon dioxide, helium, argon, nitrogen, nitrous oxide, and room air) used for establishing pneumoperitoneum in participants undergoing laparoscopic general abdominal or gynaecological pelvic surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 9), Ovid MEDLINE (1950 to September 2016), Ovid Embase (1974 to September 2016), Science Citation Index Expanded (1970 to September 2016), Chinese Biomedical Literature Database (CBM) (1978 to September 2016), ClinicalTrials.gov (September 2016), and World Health Organization International Clinical Trials Registry Platform (September 2016). We included randomised controlled trials (RCTs) comparing different gases for establishing pneumoperitoneum in participants (irrespective of age, sex, or race) undergoing laparoscopic abdominal or gynaecological pelvic surgery under general anaesthesia. Two review authors identified the trials for inclusion, collected the data, and assessed the risk of bias independently. We performed the meta-analyses using Review Manager 5. We calculated risk ratio (RR) for dichotomous outcomes (or Peto odds ratio for very rare outcomes), and mean difference (MD) or standardised mean difference (SMD) for continuous outcomes with 95% confidence intervals (CI). We used GRADE to rate the quality of evidence, MAIN RESULTS: We included nine RCTs, randomising 519 participants, comparing different gases for establishing pneumoperitoneum: nitrous oxide (three trials), helium (five trials), or room air (one trial) was compared to carbon dioxide. Three trials randomised participants to nitrous oxide pneumoperitoneum (100 participants) or carbon dioxide pneumoperitoneum (96 participants). None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of nitrous oxide and carbon dioxide on cardiopulmonary complications (RR 2.00, 95% CI 0.38 to 10.43; two studies; 140 participants; very low quality of evidence), or surgical morbidity (RR 1.01, 95% CI 0.18 to 5.71; two studies; 143 participants; very low quality of evidence). There were no serious adverse events related to either nitrous oxide or carbon dioxide pneumoperitoneum (three studies; 196 participants; very low quality of evidence). We could not combine data from two trials (140 participants) which individually showed lower pain scores (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain) with nitrous oxide pneumoperitoneum at various time points on the first postoperative day, and this was rated asvery low quality .Four trials randomised participants to helium pneumoperitoneum (69 participants) or carbon dioxide pneumoperitoneum (75 participants) and one trial involving 33 participants did not state the number of participants in each group. None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of helium or carbon dioxide on cardiopulmonary complications (RR 1.46, 95% CI 0.35 to 6.12; three studies; 128 participants; very low quality of evidence) or pain scores (visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain; MD 0.49 cm, 95% CI -0.28 to 1.26; two studies; 108 participants; very low quality of evidence). There were three serious adverse events (subcutaneous emphysema) related to helium pneumoperitoneum (three studies; 128 participants; very low quality of evidence).One trial randomised participants to room air pneumoperitoneum (70 participants) or carbon dioxide pneumoperitoneum (76 participants). The trial was at unclear risk of bias. There were no cardiopulmonary complications or serious adverse events observed related to either room air or carbon dioxide pneumoperitoneum (both outcomes very low quality of evidence). The evidence of lower hospital costs and reduced pain during the first postoperative day with room air pneumoperitoneum compared with carbon dioxide pneumoperitoneum (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain, was rated as very low quality of evidence. The quality of the current evidence is very low. The effects of nitrous oxide and helium pneumoperitoneum compared with carbon dioxide pneumoperitoneum are uncertain. Evidence from one trial of small sample size suggests that room air pneumoperitoneum may decrease hospital costs in people undergoing laparoscopic abdominal surgery. The safety of nitrous oxide, helium, and room air pneumoperitoneum has yet to be established.Further trials on this topic are needed, and should compare various gases (i.e. nitrous oxide, helium, argon, nitrogen, and room air) with carbon dioxide under standard pressure pneumoperitoneum with cold gas insufflation for people with high anaesthetic risk. Future trials should include outcomes such as complications, serious adverse events, quality of life, and pain.

  8. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, C.E.; Robinson, P.R.

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  9. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, Carlos E.; Robinson, Paul R.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  10. Development of the Fabry-Perot Spectrometer Application

    NASA Technical Reports Server (NTRS)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  11. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  12. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  13. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  14. 46 CFR 76.15-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Dioxide Extinguishing Systems, Details § 76.15-1 Application. (a) Where a carbon dioxide extinguishing... “high pressure system”, i.e., one in which the carbon dioxide is stored in liquid form at atmospheric temperature. Details for “low pressure systems”, i.e., those in which the carbon dioxide is stored in liquid...

  15. [Simplified identification and filter device of carbon dioxide].

    PubMed

    Mei, Xue-qin; Zhang, Yi-ping

    2009-11-01

    This paper presents the design and implementation ways of a simplified device to identify and filter carbon dioxide. The gas went through the test interface which had wet litmus paper before entering the abdominal cavity. Carbon dioxide dissolving in water turned acidic, making litmus paper change color to identify carbon dioxide, in order to avoid malpractice by connecting the wrong gas when making Endoscopic surgery.

  16. 46 CFR 35.40-7 - Carbon dioxide and clean agent alarms-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide and clean agent alarms-T/ALL. 35.40-7 Section 35.40-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-7 Carbon dioxide and clean agent alarms—T/ALL. Each carbon dioxide or clean agent fire extinguishing alarm...

  17. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture

    PubMed

    Rubio; Fernandez; Perez; Camacho; Grima

    1999-01-05

    A model is developed for prediction of axial concentration profiles of dissolved oxygen and carbon dioxide in tubular photobioreactors used for culturing microalgae. Experimental data are used to verify the model for continuous outdoor culture of Porphyridium cruentum grown in a 200-L reactor with 100-m long tubular solar receiver. The culture was carried out at a dilution rate of 0.05 h-1 applied only during a 10-h daylight period. The quasi-steady state biomass concentration achieved was 3.0 g. L-1, corresponding to a biomass productivity of 1.5 g. L-1. d-1. The model could predict the dissolved oxygen level in both gas disengagement zone of the reactor and at the end of the loop, the exhaust gas composition, the amount of carbon dioxide injected, and the pH of the culture at each hour. In predicting the various parameters, the model took into account the length of the solar receiver tube, the rate of photosynthesis, the velocity of flow, the degree of mixing, and gas-liquid mass transfer. Because the model simulated the system behavior as a function of tube length and operational variables (superficial gas velocity in the riser, composition of carbon dioxide in the gas injected in the solar receiver and its injection rate), it could potentially be applied to rational design and scale-up of photobioreactors. Copyright 1999 John Wiley & Sons, Inc.

  18. Solar electricity and solar fuels

    NASA Astrophysics Data System (ADS)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  19. Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite

    ERIC Educational Resources Information Center

    Miyauchi, Takuya; Kamata, Masahiro

    2012-01-01

    An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…

  20. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO{sub 2}) in a polar environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni, E-mail: brantmj@hawaii.edu

    Carbon dioxide (CO{sub 2}) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν{sub 3} band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO{sub 2} band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present amore » rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H{sub 2}O)-carbon dioxide (CO{sub 2}) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν{sub 3} band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.« less

Top