Sample records for continuous conduction mode

  1. State-plane analysis of parallel resonant converter

    NASA Technical Reports Server (NTRS)

    Oruganti, R.; Lee, F. C.

    1985-01-01

    A method for analyzing the complex operation of a parallel resonant converter is developed, utilizing graphical state-plane techniques. The comprehensive mode analysis uncovers, for the first time, the presence of other complex modes besides the continuous conduction mode and the discontinuous conduction mode and determines their theoretical boundaries. Based on the insight gained from the analysis, a novel, high-frequency resonant buck converter is proposed. The voltage conversion ratio of the new converter is almost independent of load.

  2. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  3. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  4. Enzyme-assisted supercritical carbon dioxide extraction of black pepper oleoresin for enhanced yield of piperine-rich extract.

    PubMed

    Dutta, Sayantani; Bhattacharjee, Paramita

    2015-07-01

    Black pepper (Piper nigrum L.), the King of Spices is the most popular spice globally and its active ingredient, piperine, is reportedly known for its therapeutic potency. In this work, enzyme-assisted supercritical carbon dioxide (SC-CO2) extraction of black pepper oleoresin was investigated using α-amylase (from Bacillus licheniformis) for enhanced yield of piperine-rich extract possessing good combination of phytochemical properties. Optimization of the extraction parameters (without enzyme), mainly temperature and pressure, was conducted in both batch and continuous modes and the optimized conditions that provided the maximum yield of piperine was in the batch mode, with a sample size of 20 g of black pepper powder (particle diameter 0.42 ± 0.02 mm) at 60 °C and 300 bar at 2 L/min of CO2 flow. Studies on activity of α-amylase were conducted under these optimized conditions in both batch and continuous modes, with varying amounts of lyophilized enzyme (2 mg, 5 mg and 10 mg) and time of exposure of the enzyme to SC-CO2 (2.25 h and 4.25 h). The specific activity of the enzyme increased by 2.13 times when treated in the continuous mode than in the batch mode (1.25 times increase). The structural changes of the treated enzymes were studied by (1)H NMR analyses. In case of α-amylase assisted extractions of black pepper, both batch and continuous modes significantly increased the yields and phytochemical properties of piperine-rich extracts; with higher increase in batch mode than in continuous. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  6. Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Han, Minah; Baek, Jongduk

    2017-03-01

    Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.

  7. Air-Gapped Structures as Magnetic Elements for Use in Power Processing Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.

    1977-01-01

    Methodical approaches to the design of inductors for use in LC filters and dc-to-dc converters using air gapped magnetic structures are presented. Methods for the analysis and design of full wave rectifier LC filter circuits operating with the inductor current in both the continuous conduction and the discontinuous conduction modes are also described. In the continuous conduction mode, linear circuit analysis techniques are employed, while in the case of the discontinuous mode, the method of analysis requires computer solutions of the piecewise linear differential equations which describe the filter in the time domain. Procedures for designing filter inductors using air gapped cores are presented. The first procedure requires digital computation to yield a design which is optimized in the sense of minimum core volume and minimum number of turns. The second procedure does not yield an optimized design as defined above, but the design can be obtained by hand calculations or with a small calculator. The third procedure is based on the use of specially prepared magnetic core data and provides an easy way to quickly reach a workable design.

  8. Nonlinear mode interaction in equal-leg angle struts susceptible to cellular buckling.

    PubMed

    Bai, L; Wang, F; Wadee, M A; Yang, J

    2017-11-01

    A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.

  9. Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond.

    PubMed

    He, Qiaoning; Yang, Haijian; Hu, Chunxiang

    2016-10-01

    Cultivation modes of autotrophic microalgae for biodiesel production utilizing open raceway pond were analyzed in this study. Five before screened good microalgae were tested their lipid productivity and biodiesel quality again in outdoor 1000L ORP. Then, Chlorella sp. L1 and Monoraphidium dybowskii Y2 were selected due to their stronger environmental adaptability, higher lipid productivity and better biodiesel properties. Further scale up cultivation for two species with batch and semi-continuous culture was conducted. In 40,000L ORP, higher lipid productivity (5.15 versus 4.06gm(-2)d(-1) for Chlorella sp. L1, 5.35 versus 3.00gm(-2)d(-1) for M. dybowskii Y2) was achieved in semi-continuous mode. Moreover, the financial costs of 14.18$gal(-1) and 13.31$gal(-1) for crude biodiesel in two microalgae with semi-continuous mode were more economically feasible for commercial production on large scale outdoors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hardness variation of welded boron steel using continuous wave (CW) and pulse wave (PW) mode of fiber laser

    NASA Astrophysics Data System (ADS)

    Yaakob, K. I.; Ishak, M.; Idris, S. R. A.; Aiman, M. H.; Khalil, N. Z.

    2017-09-01

    Recent car manufacturer requirement in lightweight and optimum safety lead to utilization of boron steel with tailor welded blank approach. Laser welding process in tailor welded blank (TWB) production can be applied in continuous wave (CW) of pulse wave (PW) which produce different thermal experience in welded area. Instead of microstructure identification, hardness properties also can determine the behavior of weld area. In this paper, hardness variation of welded boron steel using PW and CW mode is investigated. Welding process is conducted using similar average power for both welding mode. Hardness variation across weld area is observed. The result shows similar hardness pattern across weld area for both welding mode. Hardness degradation at fusion zone (FZ) is due to ferrite formation existence from high heat input applied. With additional slower cooling rate for CW mode, the hardness degradation is become obvious. The normal variation of hardness behavior with PW mode might lead to good strength.

  11. Jet behaviors and ejection mode recognition of electrohydrodynamic direct-write

    NASA Astrophysics Data System (ADS)

    Zheng, Jianyi; Zhang, Kai; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Liu, Yifang; Liu, Juan; Zheng, Gaofeng

    2018-01-01

    By introducing image recognition and micro-current testing, jet behavior research was conducted, in which the real-time recognition of ejection mode was realized. To study the factors influencing ejection modes and the current variation trends under different modes, an Electrohydrodynamic Direct-Write (EDW) system with functions of current detection and ejection mode recognition was firstly built. Then a program was developed to recognize the jet modes. As the voltage applied to the metal tip increased, four jet ejection modes in EDW occurred: droplet ejection mode, Taylor cone ejection mode, retractive ejection mode and forked ejection mode. In this work, the corresponding relationship between the ejection modes and the effect on fiber deposition as well as current was studied. The real-time identification of ejection mode and detection of electrospinning current was realized. The results in this paper are contributed to enhancing the ejection stability, providing a good technical basis to produce continuous uniform nanofibers controllably.

  12. On the Alternate Stirring Mode of F-EMS for Bloom Continuous Castings

    NASA Astrophysics Data System (ADS)

    Sun, Haibo; Li, Liejun; Ye, Dexin; Wu, Xuexing

    2018-05-01

    Local solute transportation behaviors under different alternate stirring parameters of final electromagnetic stirring (F-EMS) and their influences on the internal quality of the as-cast bloom are compared and evaluated based on a developed coupled model of electromagnetism, heat, and solute transport. To this end, plant trials were conducted in Shaoguan Steel, China. Under the action of F-EMS, a negative segregation band in an ellipse shape is observed at the central area of strand cross section, where the minimum carbon segregation degree is decreased from 0.98 to 0.84 as the stirring duration increases from 15 to 35 seconds in the alternate stirring mode, while it is reduced to 0.805 in the continuous stirring mode. The white band and shrinkage cavity are simultaneously observed at strand center under the conditions of continuous stirring mode, and alternate stirring mode with a stirring period of 35 seconds because of the local over-sustaining melt rotation. In contrast, the V-shape porosity belt width and strand center segregation fluctuation range increase from 60 to 90 mm and from 0.12 to 0.30, respectively, as the stirring duration is reduced from 25 to 15 seconds in the alternate stirring mode because of the poor mixing of the local melt at the strand center.

  13. Influences of operational parameters on phosphorus removal in batch and continuous electrocoagulation process performance.

    PubMed

    Nguyen, Dinh Duc; Yoon, Yong Soo; Bui, Xuan Thanh; Kim, Sung Su; Chang, Soon Woong; Guo, Wenshan; Ngo, Huu Hao

    2017-11-01

    Performance of an electrocoagulation (EC) process in batch and continuous operating modes was thoroughly investigated and evaluated for enhancing wastewater phosphorus removal under various operating conditions, individually or combined with initial phosphorus concentration, wastewater conductivity, current density, and electrolysis times. The results revealed excellent phosphorus removal (72.7-100%) for both processes within 3-6 min of electrolysis, with relatively low energy requirements, i.e., less than 0.5 kWh/m 3 for treated wastewater. However, the removal efficiency of phosphorus in the continuous EC operation mode was better than that in batch mode within the scope of the study. Additionally, the rate and efficiency of phosphorus removal strongly depended on operational parameters, including wastewater conductivity, initial phosphorus concentration, current density, and electrolysis time. Based on experimental data, statistical model verification of the response surface methodology (RSM) (multiple factor optimization) was also established to provide further insights and accurately describe the interactive relationship between the process variables, thus optimizing the EC process performance. The EC process using iron electrodes is promising for improving wastewater phosphorus removal efficiency, and RSM can be a sustainable tool for predicting the performance of the EC process and explaining the influence of the process variables.

  14. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.

    PubMed

    Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D

    2017-05-01

    A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7  CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice.

    PubMed

    Kundu, Iman; Dean, Paul; Valavanis, Alexander; Chen, Li; Li, Lianhe; Cunningham, John E; Linfield, Edmund H; Davies, A Giles

    2017-01-09

    We demonstrate quasi-continuous tuning of the emission frequency from coupled cavity terahertz frequency quantum cascade lasers. Such coupled cavity lasers comprise a lasing cavity and a tuning cavity which are optically coupled through a narrow air slit and are operated above and below the lasing threshold current, respectively. The emission frequency of these devices is determined by the Vernier resonance of longitudinal modes in the lasing and the tuning cavities, and can be tuned by applying an index perturbation in the tuning cavity. The spectral coverage of the coupled cavity devices have been increased by reducing the repetition frequency of the Vernier resonance and increasing the ratio of the free spectral ranges of the two cavities. A continuous tuning of the coupled cavity modes has been realized through an index perturbation of the lasing cavity itself by using wide electrical heating pulses at the tuning cavity and exploiting thermal conduction through the monolithic substrate. Single mode emission and discrete frequency tuning over a bandwidth of 100 GHz and a quasi-continuous frequency coverage of 7 GHz at 2.25 THz is demonstrated. An improvement in the side mode suppression and a continuous spectral coverage of 3 GHz is achieved without any degradation of output power by integrating a π-phase shifted photonic lattice in the laser cavity.

  16. Bioprocessing Data for the Production of Marine Enzymes

    PubMed Central

    Sarkar, Sreyashi; Pramanik, Arnab; Mitra, Anindita; Mukherjee, Joydeep

    2010-01-01

    This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors. PMID:20479981

  17. Plasmon modes supported by left-handed material slab waveguide with conducting interfaces

    NASA Astrophysics Data System (ADS)

    Taya, Sofyan A.

    2018-07-01

    Theoretical analysis of left-handed material core layer waveguide in the presence of interface free charge layers is presented. The thickness of the interface charge layer can be neglected compared with the incident wavelength. The tangential component of the magnetic field is no longer continuous due to the conducting interfaces. The non-homogeneous boundary conditions are solved and the corresponding dispersion relation is found. The dispersion properties are studied. The proposed structure is found to support even as well as odd plasmon modes. Moreover, the structure shows abnormal dispersion property of decreasing the effective index with the increase of the frequency which means negative group velocity.

  18. Modifications to the synthetic aperture microwave imaging diagnostic.

    PubMed

    Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L

    2016-11-01

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.

  19. Modifications to the synthetic aperture microwave imaging diagnostic

    DOE PAGES

    Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...

    2016-09-02

    The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less

  20. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    PubMed

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  1. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  2. AN EVALUATION OF PRIMARY DATA-COLLECTION MODES IN AN ADDRESS-BASED SAMPLING DESIGN.

    PubMed

    Amaya, Ashley; Leclere, Felicia; Carris, Kari; Liao, Youlian

    2015-01-01

    As address-based sampling becomes increasingly popular for multimode surveys, researchers continue to refine data-collection best practices. While much work has been conducted to improve efficiency within a given mode, additional research is needed on how multimode designs can be optimized across modes. Previous research has not evaluated the consequences of mode sequencing on multimode mail and phone surveys, nor has significant research been conducted to evaluate mode sequencing on a variety of indicators beyond response rates. We conducted an experiment within the Racial and Ethnic Approaches to Community Health across the U.S. Risk Factor Survey (REACH U.S.) to evaluate two multimode case-flow designs: (1) phone followed by mail (phone-first) and (2) mail followed by phone (mail-first). We compared response rates, cost, timeliness, and data quality to identify differences across case-flow design. Because surveys often differ on the rarity of the target population, we also examined whether changes in the eligibility rate altered the choice of optimal case flow. Our results suggested that, on most metrics, the mail-first design was superior to the phone-first design. Compared with phone-first, mail-first achieved a higher yield rate at a lower cost with equivalent data quality. While the phone-first design initially achieved more interviews compared to the mail-first design, over time the mail-first design surpassed it and obtained the greatest number of interviews.

  3. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  4. Effect of Pulse and dc Formation on the Performance of One-Transistor and One-Resistor Resistance Random Access Memory Devices

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Tao; Yang, Bao-He; Lv, Hang-Bing; Xu, Xiao-Xin; Luo, Qing; Wang, Guo-Ming; Zhang, Mei-Yun; Long, Shi-Bing; Liu, Qi; Liu, Ming

    2015-02-01

    We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (HRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher HRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.

  5. Quantitative investigation of resolution increase of free-flow electrophoresis via simple interval sample injection and separation.

    PubMed

    Shao, Jing; Fan, Liu-Yin; Cao, Cheng-Xi; Huang, Xian-Qing; Xu, Yu-Quan

    2012-07-01

    Interval free-flow zone electrophoresis (FFZE) has been used to suppress sample band broadening greatly hindering the development of free-flow electrophoresis (FFE). However, there has been still no quantitative study on the resolution increase of interval FFZE. Herein, we tried to make a comparison between bandwidths in interval FFZE and continuous one. A commercial dye with methyl green and crystal violet was well chosen to show the bandwidth. The comparative experiments were conducted under the same sample loading of the model dye (viz. 3.49, 1.75, 1.17, and 0.88 mg/h), the same running time (viz. 5, 10, 15, and 20 min), and the same flux ratio between sample and background buffer (= 10.64 × 10⁻³). Under the given conditions, the experiments demonstrated that (i) the band broadening was evidently caused by hydrodynamic factor in continuous mode, and (ii) the interval mode could clearly eliminate the hydrodynamic broadening existing in continuous mode, greatly increasing the resolution of dye separation. Finally, the interval FFZE was successfully used for the complete separation of two-model antibiotics (herein pyoluteorin and phenazine-1-carboxylic acid coexisting in fermentation broth of a new strain Pseudomonas aeruginosa M18), demonstrating the feasibility of interval FFZE mode for separation of biomolecules. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A survey on the preference for continuing professional dental education amongst general dental practitioners who attended the 26th Asia Pacific Dental Congress.

    PubMed

    Chan, W C; Ng, C H; Yiu, B K; Liu, C Y; Ip, C M; Siu, H H; Chiu, G K C; Hägg, U; Jin, L J

    2006-11-01

    To identify the subjects of interest and to examine the modes as well as means of study for continuing professional dental education amongst general dental practitioners who attended the 26th Asia Pacific Dental Congress, 28 May-1 June 2004, Hong Kong. A total of 381 general dental practitioners as the registered conference delegates from Hong Kong, Mainland China and other Asia-Pacific regions were randomly selected for the present survey. The survey was conducted through face-to-face interviews by a group of practising dentists in Hong Kong. Overall, orthodontics and prosthodontics were the most popular subjects for clinical degree programmes, whilst oral implantology and cosmetic dentistry were the highly preferred subjects for continuing education courses. Concerning the preferred mode of study for degree programmes, the part-time study mode was chosen by 68.3% of the participating dentists. A didactic teaching approach was preferred by most of the participants (81.7%) for postgraduate study. The majority of the interviewees (76.5%) were interested in a proposed clinical degree programme to be offered jointly by The University of Hong Kong and a leading university in the Mainland. Overall, there was no marked difference in the preference for continuing dental education amongst the respondents from Hong Kong, Mainland China and other Asia-Pacific regions. The present survey shows the currently preferred specialty areas and subjects for continuing professional dental education amongst the general dental practitioners who attended the 26th Asia Pacific Dental Congress, with didactic teaching as the most preferred mode of study on a part-time basis.

  7. Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity

    USDA-ARS?s Scientific Manuscript database

    Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii 260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 deg C using a 14-L bio...

  8. Mode switching characteristics of PSR B0329+54 at 150 MHz

    NASA Astrophysics Data System (ADS)

    Białkowski, Sławomir; Lewandowski, Wojciech; Kijak, Jarosław; Błaszkiewicz, Leszek; Krankowski, Andrzej; Osłowski, Stefan

    2018-06-01

    We present the results of 60 hours of observations of PSR B0329+54 with the LOFAR PL-612 station located in Bałdy near Olsztyn, Poland and managed by University of Warmia and Mazury in Olsztyn (UWM). Observations were conducted in August/September 2016 and in May and August 2017 using the HBA antennas, at the central frequency of about 140 MHz, and they were conducted in form of six 10-hour semi-continuous observing sessions. The main goal of the analysis was the study of the mode switching phenomenon in this pulsar, and our results show that at this frequency the abnormal profile mode is present only for about 12.6% of time on average, which is lower than for the analysis of a very large set of 1.5 GHz observations performed at Ürümqi observatory in 2011. Also worth mentioning is the fact, that the results shown in this paper also demonstrate the first scientific output concerning pulsar observations with the PL-612 station.

  9. A study on using fireclay as a biomass carrier in an activated sludge system.

    PubMed

    Tilaki, Ramazan Ali Dianati

    2011-01-01

    By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.

  10. Modeling and analysis of fractional order DC-DC converter.

    PubMed

    Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher

    2017-07-11

    Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  12. A transverse Kelvin-Helmholtz instability in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P.; Dangelo, N.

    1977-01-01

    An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.

  13. Microbial fuel cells as power supply of a low-power temperature sensor

    NASA Astrophysics Data System (ADS)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno

    2016-02-01

    Microbial fuel cells (MFCs) show great promise as a concomitant process for water treatment and as renewable energy sources for environmental sensors. The small energy produced by MFCs and the low output voltage limit the applications of MFCs. Specific converter topologies are required to step-up the output voltage of a MFC. A Power Management Unit (PMU) is proposed for operation at low input voltage and at very low power in a completely autonomous way to capture energy from MFCs with the highest possible efficiency. The application of sensors for monitoring systems in remote locations is an important approach. MFCs could be an alternative energy source in this case. Powering a sensor with MFCs may prove the fact that wastewater may be partly turned into renewable energy for realistic applications. The Power Management Unit is demonstrated for 3.6 V output voltage at 1 mW continuous power, based on a low-cost 0.7-L MFC. A temperature sensor may operate continuously on 2-MFCs in continuous flow mode. A flyback converter under discontinuous conduction mode is also tested to power the sensor. One continuously fed MFC was able to efficiently and continuously power the sensor.

  14. Low Power Operation of Temperature-Modulated Metal Oxide Semiconductor Gas Sensors.

    PubMed

    Burgués, Javier; Marco, Santiago

    2018-01-25

    Mobile applications based on gas sensing present new opportunities for low-cost air quality monitoring, safety, and healthcare. Metal oxide semiconductor (MOX) gas sensors represent the most prominent technology for integration into portable devices, such as smartphones and wearables. Traditionally, MOX sensors have been continuously powered to increase the stability of the sensing layer. However, continuous power is not feasible in many battery-operated applications due to power consumption limitations or the intended intermittent device operation. This work benchmarks two low-power, duty-cycling, and on-demand modes against the continuous power one. The duty-cycling mode periodically turns the sensors on and off and represents a trade-off between power consumption and stability. On-demand operation achieves the lowest power consumption by powering the sensors only while taking a measurement. Twelve thermally modulated SB-500-12 (FIS Inc. Jacksonville, FL, USA) sensors were exposed to low concentrations of carbon monoxide (0-9 ppm) with environmental conditions, such as ambient humidity (15-75% relative humidity) and temperature (21-27 °C), varying within the indicated ranges. Partial Least Squares (PLS) models were built using calibration data, and the prediction error in external validation samples was evaluated during the two weeks following calibration. We found that on-demand operation produced a deformation of the sensor conductance patterns, which led to an increase in the prediction error by almost a factor of 5 as compared to continuous operation (2.2 versus 0.45 ppm). Applying a 10% duty-cycling operation of 10-min periods reduced this prediction error to a factor of 2 (0.9 versus 0.45 ppm). The proposed duty-cycling powering scheme saved up to 90% energy as compared to the continuous operating mode. This low-power mode may be advantageous for applications that do not require continuous and periodic measurements, and which can tolerate slightly higher prediction errors.

  15. Delivery of Open, Distance, and E-Learning in Kenya

    ERIC Educational Resources Information Center

    Nyerere, Jackline Anyona; Gravenir, Frederick Q.; Mse, Godfrey S.

    2012-01-01

    The increased demand and need for continuous learning have led to the introduction of open, distance, and e-learning (ODeL) in Kenya. Provision of this mode of education has, however, been faced with various challenges, among them infrastructural ones. This study was a survey conducted in two public universities offering major components of ODeL,…

  16. Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films.

    PubMed

    Li, Yun-Mei; Xiao, Jiang; Chang, Kai

    2018-05-09

    Manipulation of magnons opens an attractive direction in the future energy-efficient information processing devices. Such quasi-particles can transfer and process information free from the troublesome Ohmic loss in conventional electronic devices. Here, we propose to realize topologically protected magnon modes using the interface between the patterned ferrimagnetic insulator thin films of different configurations without the Dzyaloshinskii-Moriya interaction. The interface thus behaves like a perfect waveguide to conduct the magnon modes lying in the band gap. These modes are immune to backscattering even in sharply bent tracks, robust against the disorders, and maintain a high degree of coherence during propagation. We design a magnonic Mach-Zehnder interferometer, which realizes a continuous change of magnon signal with varying external magnetic field or driving frequency. Our results pave a new way for realizing topologically protected magnon waveguide and finally achieving a scalable low-dissipation spintronic devices and even the magnonic integrated circuit.

  17. Crew Exploration Vehicle Ascent Abort Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B., Jr.; Madsen, Jennifer M.; Proud, Ryan W.; Merritt, Deborah S.; Sparks, Dean W., Jr.; Kenyon, Paul R.; Burt, Richard; McFarland, Mike

    2007-01-01

    One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed.

  18. Micro thermal diode with glass thermal insulation structure embedded in a vapor chamber

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takashiro; Hirayanagi, Takashi; Tanaka, Shuji

    2017-04-01

    This paper reports a micro thermal diode based on one-way working fluid circulation driven by surface tension force. In forward mode, working fluid evaporates and condenses at a heated and cooled area, respectively, and the condensed liquid returns to the evaporation area due to the wettability difference. By this vapor-liquid phase change mechanism, the overall heat transfer coefficient becomes high. On the other hand, in reverse mode, no continuous evaporation-condensation cycle exists. The conductive heat loss in reverse mode was minimized by an embedded glass thermal isolation structure, which makes overall heat transfer coefficient low. The test device was made by a standard MEMS process combined with glass reflow and gold bump sealing. The overall heat transfer coefficients of 13 300 \\text{W}~{{\\text{m}}-2}~\\text{K} for forward mode and 4790 \\text{W}~{{\\text{m}}-2}~\\text{K} for reverse mode were measured. The performance index of the micro thermal diode was about 2.8.

  19. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  20. Damage localization by statistical evaluation of signal-processed mode shapes

    NASA Astrophysics Data System (ADS)

    Ulriksen, M. D.; Damkilde, L.

    2015-07-01

    Due to their inherent, ability to provide structural information on a local level, mode shapes and t.lieir derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement, noise. The present, article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement, noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet, transformation (CWT) and subsequent, application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact, damage-induced, outlier analysis of principal components of the signal-processed mode shapes is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context, of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.

  1. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  2. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    PubMed

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  4. Energetic-particle-modified global Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.

    2018-04-01

    Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v0/vA and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v0/vA . This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.

  5. Energetic-particle-modified global Alfven eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.

    Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less

  6. Energetic-particle-modified global Alfven eigenmodes

    DOE PAGES

    Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.

    2018-04-30

    Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less

  7. Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission

    DOEpatents

    Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.; Naqvi, Ali K.; Heap, Anthony H.; Sah, Jy-Jen F.

    2014-08-12

    A hybrid transmission includes first and second electric machines. A method for operating the hybrid transmission in response to a command to execute a shift from an initial continuously variable mode to a target continuously variable mode includes increasing torque of an oncoming clutch associated with operating in the target continuously variable mode and correspondingly decreasing a torque of an off-going clutch associated with operating in the initial continuously variable mode. Upon deactivation of the off-going clutch, torque outputs of the first and second electric machines and the torque of the oncoming clutch are controlled to synchronize the oncoming clutch. Upon synchronization of the oncoming clutch, the torque for the oncoming clutch is increased and the transmission is operated in the target continuously variable mode.

  8. Microscopic Analysis of Current and Mechanical Properties of Nafion® Studied by Atomic Force Microscopy

    PubMed Central

    Hiesgen, Renate; Helmly, Stefan; Galm, Ines; Morawietz, Tobias; Handl, Michael; Friedrich, K. Andreas

    2012-01-01

    The conductivity of fuel cell membranes as well as their mechanical properties at the nanometer scale were characterized using advanced tapping mode atomic force microscopy (AFM) techniques. AFM produces high-resolution images under continuous current flow of the conductive structure at the membrane surface and provides some insight into the bulk conducting network in Nafion membranes. The correlation of conductivity with other mechanical properties, such as adhesion force, deformation and stiffness, were simultaneously measured with the current and provided an indication of subsurface phase separations and phase distribution at the surface of the membrane. The distribution of conductive pores at the surface was identified by the formation of water droplets. A comparison of nanostructure models with high-resolution current images is discussed in detail. PMID:24958429

  9. Comparative Analyses of Multi-Pulse Phase Controlled Rectifiers in Continuous Conduction Mode with a Two-Pole LC Output Filter for Surface Ship DC Applications

    DTIC Science & Technology

    2013-03-01

    for this sub-mode, the minimum inductor current occurs at an angle 3 3t  (where 3 60    referenced to  ), as shown in Figure 13. 24...can be rewritten as    sin cos cosb b b ApA B      . (73) Grouping similar terms, yields  sin cosb b ApA B         , (74...where the fundamental frequency and each harmonic component are displayed graphically in a bar chart format as shown in Figure 25. The total current

  10. Sampling of the telescope image plane using single- and few-mode fibre arrays

    NASA Astrophysics Data System (ADS)

    Corbett, Jason C.

    2009-02-01

    The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes. This work is of direct relevance to the coupling of celestial light into photonic instrumentation and the removal of image scrambling and reduction of focal ratio degradation (FRD) using multi-mode fibre to single-mode fibre array converters.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  12. Molecular epidemiology of HIV-1 subtype A in former Soviet Union countries.

    PubMed

    Aibekova, Lazzat; Foley, Brian; Hortelano, Gonzalo; Raees, Muhammad; Abdraimov, Sabit; Toichuev, Rakhmanbek; Ali, Syed

    2018-01-01

    While in other parts of the world it is on decline, incidence of HIV infection continues to rise in the former Soviet Union (FSU) countries. The present study was conducted to investigate the patterns and modes of HIV transmission in FSU countries. We performed phylogenetic analysis of publicly available 2705 HIV-1 subtype A pol sequences from thirteen FSU countries: Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Ukraine and Uzbekistan. Our analysis showed that the clusters from FSU countries were intermixed, indicating a possible role of transmigration in HIV transmission. Injection drug use was found to be the most frequent mode of transmission, while the clusters from PWID and heterosexual transmission were intermixed, indicating bridging of HIV infection across populations. To control the expanding HIV epidemic in this region, harm reduction strategies should be focused on three modes of transmission, namely, cross-border migration, injection drug use and heterosexual.

  13. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  14. Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: Optimization of applied potential and flow of wastewater.

    PubMed

    Mohanakrishna, Gunda; Al-Raoush, Riyadh I; Abu-Reesh, Ibrahim M

    2018-07-01

    Hybrid based bioelectrochemical system (BES) configured with embedded anode and cathode electrodes in soil was tested for the bioelectrochemical degradation of petroleum refinery wastewater (PRW). Four applied potentials were studied to optimize under batch mode operation, among which 2 V resulted in higher COD degradation (69.2%) and power density (725 mW/m 2 ) during 7 days of operation. Further studies with continuous mode of operation at optimized potential (2 V) showed that hydraulic retention time (HRT) of 19 h achieved the highest COD removal (37%) and highest power density (561 mW/m 2 ). BES function with respect to treatment efficiencies of other pollutants of PRW was also identified with respect to oil and grease (batch mode, 91%; continuous mode, 34%), total dissolved salts (batch mode, 53%; continuous mode, 24%) and sulfates (batch mode, 59%; continuous mode, 42%). Soil microenvironment in association with BES forms complex processes, providing suitable conditions for efficient treatment of PRW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Experimental Design and Analysis of M1A1 Commander/Gunner Performance during CONOPS (Continuous Operations) Using the U-COFT (Unit Conduct of Fire Trainer)

    DTIC Science & Technology

    1989-09-01

    gun b. 7.62-mm coax manchine gun c. Commander’s weapon station caliber .50 machine gun d. M250 grenade launchers 2. Ammunition Simulation a. 105-mm...7.62-mm machine gun f. M250 smoke grenades 3. Normal Mode Simulation a. Stabilized coax machine gun b. Stabilized main gun c. Commander’s weapon d

  16. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less

  17. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng

    2015-12-01

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

  18. Measuring rectilinear flow within the anterior chamber in phacoemulsification procedures.

    PubMed

    Oki, Kotaro

    2004-08-01

    To measure and photograph rectilinear flow generated in an anterior chamber model during different power phases of phacoemulsification. Oki Eye Surgery Center, Tokyo, Japan. An ultrasound (US) needle was fitted to a Sovereign WhiteStar (AMO) phacoemulsification unit. The sleeved needle was inserted into a silicone test chamber filled with balanced salt solution with glutation (BSS Plus). An LV-1610 laser Doppler vibrometer (Ono-Sokki) captured and processed the velocity and displacement of vibrations on the surface of the test chamber. Measurements were processed in a CF-520 Fast Fourier Transform (FFT) analyzer with the results shown in real time on the FFT analyzer and displayed on a computer monitor using 3-dimensional software. Four US delivery modes were measured: WhiteStar DB, WhiteStar CF, continuous mode, and short-pulse mode at 6 pulses per second (pps). Flow and vacuum were set at 20 cc/min and 200 mm Hg, respectively, and US power was 20% and 50%. Schlieren photography of the fluid flow was performed with an ultra-high-speed Memrecam fx 6000 camera (NAC Image Technology). The peak vibration velocity (m/s) and displacement at the distal end of the test chamber were greatest for continuous mode, followed by short pulse (6 pps), WhiteStar DB, and WhiteStar CF, in descending order. At 20% power, the US needle generated a peak velocity of 8.64 x 10(-3) m/s in continuous mode, 7.30 x 10(-3) m/s in short-pulse mode, 5.03 x 10(-3) m/s in DB mode, and 3.74 x 10(-3) m/s in CF mode. At 50% power, the US needle generated a peak velocity of 12.8 x 10(-3) m/s in continuous mode, 10.9 x 10(-3) m/s in short-pulse mode, 8.52 x 10(-3) m/s in DB mode, and 6.37 x 10(-3) m/s in CF mode. Schlieren photography showed the greatest wave speed, intensity, and turbulence in continuous mode and the least with the WhiteStar modes. Peak vibration velocity and amplitude of displacement were less with the WhiteStar delivery modes than with continuous power or short-pulse modes. A similar reduction was seen in the rectilinear flow under Schlieren photography. Attenuation of rectilinear flow and turbulence patterns may have clinical implications for the corneal endothelium during phacoemulsification.

  19. Growth performance, innate immune responses and disease resistance of fingerling blunt snout bream, Megalobrama amblycephala adapted to different berberine-dietary feeding modes.

    PubMed

    Xu, Wei-Na; Chen, Dan-Hong; Chen, Qing-Qing; Liu, Wen-Bin

    2017-09-01

    A 8-week feeding trial was conducted to evaluate the effect of different berberine-dietary feeding modes on growth, non-specific immune responses and disease resistance of blunt snout bream, Megalobrama amblycephala. Fish (average initial weight 4.70 ± 0.02 g) were fed two fat levels (5% and 10%) diets in three berberine-feeding modes (supplementing 50 mg/kg berberine continuously, two-week or four-week intervals) with four replicates, respectively. Then, fish were challenged by Aeromonas hydrophila and mortality was recorded for the next 96 h after feeding trial. The results showed that different feeding modes of berberine significantly influenced growth, innate immunity and antioxidant capability of fish. Fish fed normal diet with 50 mg/kg berberine at two-week interval mode reflected remarkably (P < 0.05) high weight gain (WG). Plasma TC and TG contents were significantly (P < 0.05) decreased. The lysozyme (LYZ) activities, complement component 3 (C3) and complement component 4 (C4) concentrations were significantly (P < 0.05) increased. Fish not only exhibited relatively low hepatopancreas malondialdehyde (MDA) and lipid peroxide (LPO) contents, but also significantly (P < 0.05) improved superoxide dismutase (SOD) and catalase (CAT) activities. Fish mortality after challenged by Aeromonas hydrophila was decreased. Same results were also presented in fish fed high-fat diet with 50 mg/kg berberine at two-week, four-week intervals or continuous feeding modes. Based on fish healthy improvement and feeding cost saving, blunt snout bream fed normal diet with 50 mg/kg berberine at two-week interval or fed high-fat diet with berberine at two-week or four-week intervals were optimal feeding mode, respectively. Copyright © 2017. Published by Elsevier Ltd.

  20. Twin rotor damper for the damping of stochastically forced vibrations using a power-efficient control algorithm

    NASA Astrophysics Data System (ADS)

    Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe

    2018-01-01

    The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.

  1. In situ bioremediation of a former natural gas dehydrator site using bioventing/biosparging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamory, B.D.; Lawrence, A.W.; Miller, D.L.

    1995-12-01

    The Gas Research Institute (GRI) is conducting a research program on site remediation and residuals management for natural gas exploration and production (E&P) activities. Biological processes are considered to be a key component of the GRI remedial strategy since most of the chemicals-of-interest in soils and groundwater at E&P sites have been reported to be biodegradable. A bioventing/biosparging field demonstration was conducted over a ten month period at a former glycol dehydrator site, located near Traverse City, Michigan. The chemicals-of-interest at this site were benzene, toluene, ethylbenzene, and xylenes; and alkanes (primarily C{sub 4} through C{sub 10}). The goal ofmore » the project was to determine the feasibility of using this technology for dehydrator site remediation and to develop engineering basis of design concepts for applying bioventing/biosparging at other similar sites. Three different air sparging operational modes (pulsed, continuous, and offgas recycle) were tested to determine the optimum process configuration for site remediation. Biodegradation was also evaluated. Operational mode performance was evaluated by situ conducting in situ respirometry studies. Depletion of oxygen and hydrocarbons and production of carbon dioxide were used to calculated biodegradation rates in the vadose and saturated zones. The mass of hydrocarbons biologically degraded was estimated based on these biokinetic rates. In addition, biodegradation was also estimated based on contaminant removal shown by analytical sampling of soil and groundwater and based on other losses attributed to pump and treat and soil vapor extraction systems. In addition, an engineering evaluation of the operating modes is presented. The results of this study suggest that bioventing/biosparging is a feasible technology for in situ remediation of soil and groundwater at gas industry glycol dehydrator sites and that the pulsed operating mode may have an advantage over the other modes.« less

  2. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun

    2009-08-03

    We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.

  3. Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirandola, Stefano; Mancini, Stefano; Vitali, David

    2003-12-01

    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.

  4. Dual-Pump CARS Measurements in the University of Virginia's Dual-Mode Scramjet: Configuration "C"

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca; Gallo, Emanuela; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2013-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility in configuration C of the dual-mode scramjet. This is a continuation of previously published works on configuration A. The scramjet is hydrogen fueled and operated at two equivalence ratios, one representative of the scram mode and the other of the ram mode. Dual-pump CARS was used to acquire the mole fractions of the major species as well as the rotational and vibrational temperatures of N2. Developments in methods and uncertainties in fitting CARS spectra for vibrational temperature are discussed. Mean quantities and the standard deviation of the turbulent fluctuations at multiple planes in the flow path are presented. In the scram case the combustion of fuel is completed before the end of the measurement domain, while for the ram case the measurement domain extends into the region where the flow is accelerating and combustion is almost completed. Higher vibrational than rotational temperature is observed in those parts of the hot combustion plume where there is substantial H2 (and hence chemical reaction) present.

  5. Gate sequence for continuous variable one-way quantum computation

    PubMed Central

    Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2013-01-01

    Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.

  6. Mode selection in square resonator microlasers for widely tunable single mode lasing.

    PubMed

    Tang, Ming-Ying; Sui, Shao-Shuai; Yang, Yue-De; Xiao, Jin-Long; Du, Yun; Huang, Yong-Zhen

    2015-10-19

    Mode selection in square resonator semiconductor microlasers is demonstrated by adjusting the width of the output waveguide coupled to the midpoint of one side. The simulation and experimental results reveal that widely tunable single mode lasing can be realized in square resonator microlasers. Through adjusting the width of the output waveguide, the mode interval of the high-Q modes can reach four times of the longitudinal mode interval. Therefore, mode hopping can be efficiently avoided and the lasing wavelength can be tuned continuously by tuning the injection current. For a 17.8-μm-side-length square microlaser with a 1.4-μm-width output waveguide, mode-hopping-free single-mode operation is achieved with a continuous tuning range of 9.2 nm. As a result, the control of the lasing mode is realized for the square microlasers.

  7. [Usefulness of Bolus Administration Using the FLEX Mode(Bolus Infusion Mode)for Baclofen Tolerance].

    PubMed

    Tanaka, Kazunori

    2017-02-01

    Intrathecal baclofen(ITB)is used to treat intractable spasticity of various etiologies and can provide better control of spasticity through the adjustment of the dose administered through the pump. However, in patients who develop tolerance to baclofen with the standard simple continuous mode, a sharp increase in dose becomes necessary, and spasticity can become harder to control. We investigated whether switching from the simple continuous mode to the bolus infusion mode was effective in controlling spasticity in patients with baclofen tolerance. We reported four patients undergoing ITB therapy at our facility who were considered to have developed baclofen tolerance. We observed the number of bolus infusions and total dose suitable for maintaining spasticity control after switching from the simple continuous mode to the bolus infusion mode. After switching to the bolus infusion mode, the total dose could be reduced in the short term; however, in the long term, the frequency of bolus infusions had to be increased to maintain spasticity control. Two years after changing to bolus infusion six times a day, the total dose was higher than that in the simple continuous mode for two of the four patients, and was the same level in the other two patients. Our four cases suggest that bolus infusion is effective in patients with baclofen tolerance during ITB therapy. Therefore, the conditions of bolus infusion should be further investigated.

  8. Enhanced method to reconstruct mode shapes of continuous scanning measurements using the Hilbert Huang transform and the modal analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongsuh; Hussain, Syed Hassaan; Wang, Semyung, E-mail: smwang@gist.ac.kr

    2014-09-15

    Generally, it is time consuming to experimentally identify the operating deflection shape or mode shape of a structure. To overcome this problem, the Hilbert Huang transform (HHT) technique has been recently proposed. This technique is used to extract the mode shape from measurements that continuously measure the vibration of a region of interest within a structure using a non-contact laser sensor. In previous research regarding the HHT, two technical processes were needed to obtain the mode shape for each mode. The purpose of this study is to improve and complement our previous research, and for this purpose, a modal analysismore » approach is adapted without using the two technical processes to obtain an accurate un-damped impulse response of each mode for continuous scanning measurements. In addition, frequency response functions for each type of beam are derived, making it possible to make continuously scanned measurements along a straight profile. In this paper, the technical limitations and drawbacks of the damping compensation technique used in previous research are identified. In addition, the separation of resonant frequency (the Doppler effect) that occurs in continuous scanning measurements and the separation of damping phenomenon are also observed. The proposed method is quantitatively verified by comparing it with the results obtained from a conventional approach to estimate the mode shape with an impulse response.« less

  9. One Continuous Auditing Practice in China: Data-oriented Online Auditing(DOOA)

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhang, Jin-Cheng; Jiang, Yu-Quan

    Application of information technologies (IT) in the field of audit is worth studying. Continuous auditing (CA) is an active research domain in computer-assisted audit field. In this paper, the concept of continuous auditing is analyzed firstly. Then, based on analysis on research literatures of continuous auditing, technique realization methods are classified into embedded mode and separate mode. According to the condition of implementing online auditing in China, data-oriented online auditing (DOOA) used in China is also one of separate mode of continuous auditing. And the principle of DOOA is analyzed. Furthermore, the advantages and disadvantages of DOOA are also discussed. Finally, advices to implement DOOA in China are given, and the future research topics related to continuous auditing are also discussed.

  10. Urban community perception towards intermittent water supply system.

    PubMed

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  11. A study on locating the sonic source of sinusoidal magneto-acoustic signals using a vector method.

    PubMed

    Zhang, Shunqi; Zhou, Xiaoqing; Ma, Ren; Yin, Tao; Liu, Zhipeng

    2015-01-01

    Methods based on the magnetic-acoustic effect are of great significance in studying the electrical imaging properties of biological tissues and currents. The continuous wave method, which is commonly used, can only detect the current amplitude without the sound source position. Although the pulse mode adopted in magneto-acoustic imaging can locate the sonic source, the low measuring accuracy and low SNR has limited its application. In this study, a vector method was used to solve and analyze the magnetic-acoustic signal based on the continuous sine wave mode. This study includes theory modeling of the vector method, simulations to the line model, and experiments with wire samples to analyze magneto-acoustic (MA) signal characteristics. The results showed that the amplitude and phase of the MA signal contained the location information of the sonic source. The amplitude and phase obeyed the vector theory in the complex plane. This study sets a foundation for a new technique to locate sonic sources for biomedical imaging of tissue conductivity. It also aids in studying biological current detecting and reconstruction based on the magneto-acoustic effect.

  12. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori

    2017-01-01

    A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.

  13. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  14. Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Abercromby, Andrew F. J.; Gernhardt, Michael L.

    2010-01-01

    Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes.

  15. Tearing relaxation and the globalization of transport in field-reversed configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinhauer, Loren; Barnes, D. C.

    2009-09-15

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  16. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    NASA Astrophysics Data System (ADS)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  17. Mosquito drinking with a burst in reserve: explaining behavior with a fluid mechanics model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-03-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through a long drinking channel, or proboscis. Experimental observations indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an isolated burst mode, in which the pharyngeal pump expansion is several orders of magnitude larger than in the continuous mode. We use a reduced order model of the fluid mechanics to hypothesize an explanation of this naturally occurring drinking behavior. Our model results show that the continuous mode is the more efficient mode in terms of energy expenditure, and the burst mode creates a large pressure difference across the proboscis. We speculate that the mosquito uses this pressure drop to clear blockages in the proboscis. We compared the two-pump system with one-pump configurations, as found in some other insects like butterflies, and show that the two pumps have unique roles in mosquito feeding.

  18. Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.

    PubMed

    Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M

    2010-05-01

    One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.

  19. Dissipation of hydrological tracers and the herbicide S-metolachlor in batch and continuous-flow wetlands.

    PubMed

    Maillard, Elodie; Lange, Jens; Schreiber, Steffi; Dollinger, Jeanne; Herbstritt, Barbara; Millet, Maurice; Imfeld, Gwenaël

    2016-02-01

    Pesticide dissipation in wetland systems with regard to hydrological conditions and operational modes is poorly known. Here, we investigated in artificial wetlands the impact of batch versus continuous-flow modes on the dissipation of the chiral herbicide S-metolachlor (S-MET) and hydrological tracers (bromide, uranine and sulforhodamine B). The wetlands received water contaminated with the commercial formulation Mercantor Gold(®) (960 g L(-1) of S-MET, 87% of the S-enantiomer). The tracer mass budget revealed that plant uptake, sorption, photo- and presumably biodegradation were prominent under batch mode (i.e. characterized by alternating oxic-anoxic conditions), in agreement with large dissipation of S-MET (90%) under batch mode. Degradation was the main dissipation pathway of S-MET in the wetlands. The degradate metolachlor oxanilic acid (MOXA) mainly formed under batch mode, whereas metolachlor ethanesulfonic acid (MESA) prevailed under continuous-flow mode, suggesting distinct degradation pathways in each wetland. R-enantiomer was preferentially degraded under batch mode, which indicated enantioselective biodegradation. The release of MESA and MOXA by the wetlands as well as the potential persistence of S-MET compared to R-MET under both oxic and anoxic conditions may be relevant for groundwater and ecotoxicological risk assessment. This study shows the effect of batch versus continuous modes on pollutant dissipation in wetlands, and that alternate biogeochemical conditions under batch mode enhance S-MET biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development of a skin for intuitive interaction with an assistive robot.

    PubMed

    Markham, Heather C; Brewer, Bambi R

    2009-01-01

    Assistive robots for persons with physical limitations need to interact with humans in a manner that is safe to the user and the environment. Early work in this field centered on task specific robots. Recent work has focused on the use of the MANUS ARM and the development of different interfaces. The most intuitive interaction with an object is through touch. By creating a skin for the robot arm which will directly control its movement compliance, we have developed a novel and intuitive method of interaction. This paper describes the development of a skin which acts as a switch. When activated through touch, the skin will put the arm into compliant mode allowing it to be moved to the desired location safely, and when released will put the robot into non-compliant mode thereby keeping it in place. We investigated four conductive materials and four insulators, selecting the best combination based on our design goals of the need for a continuous activation surface, the least amount of force required for skin activation, and the most consistent voltage change between the conductive surfaces measured during activation.

  1. A biomechanical comparison of three sternotomy closure techniques.

    PubMed

    Cohen, David J; Griffin, Lanny V

    2002-02-01

    A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.

  2. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    NASA Astrophysics Data System (ADS)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  3. The acoustic low-degree modes of the Sun measured with 14 years of continuous GOLF & VIRGO measurements

    NASA Astrophysics Data System (ADS)

    García, R. A.; Salabert, D.; Ballot, J.; Sato, K.; Mathur, S.; Jiménez, A.

    2011-01-01

    The helioseismic Global Oscillation at Low Frequency (GOLF) and the Variability of solar Irradiance and Gravity Oscillations (VIRGO) instruments onboard SoHO, have been observing the Sun continuously for the last 14 years. In this preliminary work, we characterize the acoustic modes over the entire p-mode range in both, Doppler velocity and luminosity, with a special care for the low-frequency modes taking advantage of the stability and the high duty cycle of space observations.

  4. AC motor controller with 180 degree conductive switches

    NASA Technical Reports Server (NTRS)

    Oximberg, Carol A. (Inventor)

    1995-01-01

    An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.

  5. Smart catheter flow sensor for real-time continuous regional cerebral blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A.; Wu, Zhizhen; Ahn, Chong H.; LeDoux, David; Shutter, Lori A.; Narayan, Raj K.

    2011-12-01

    We present a smart catheter flow sensor for real-time, continuous, and quantitative measurement of regional cerebral blood flow using in situ temperature and thermal conductivity compensation. The flow sensor operates in a constant-temperature mode and employs a periodic heating and cooling technique. This approach ensures zero drift and provides highly reliable data with microelectromechanical system-based thin film sensors. The developed flow sensor has a sensitivity of 0.973 mV/ml/100 g/min in the range from 0 to 160 ml/100 g/min with a linear correlation coefficient of R2 = 0.9953. It achieves a resolution of 0.25 ml/100 g/min and an accuracy better than 5 ml/100 g/min.

  6. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  7. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  8. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  9. Survival of Listeria monocytogenes and Salmonella spp. on catfish exposed to microwave heating in a continuous mode

    USDA-ARS?s Scientific Manuscript database

    Microwave (MW) heating using continuous output may provide better and consistent cooking for foods. Currently, household units with a build-in inverter device are available in which the output is continuous vs. the traditional on-off mode. With an inverter, these MW ovens may provide consistent he...

  10. Interface conductance modal analysis of lattice matched InGaAs/InP

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2016-05-01

    We studied the heat conduction at InGaAs/InP interfaces and found that the total value of interface conductance was quite high ˜830 MW m-2 K-1. The modal contributions to the thermal interface conductance (TIC) were then investigated to determine the mode responsible. Using the recently developed interface conductance modal analysis method, we showed that more than 70% of the TIC arises from extended modes in the system. The lattice dynamics calculations across the interface revealed that, unlike any other interfaces previously studied, the different classes of vibration around the interface of InGaAs/InP naturally segregate into distinct regions with respect to frequency. In addition, interestingly, the entire region of frequency overlap between the sides of the interface is occupied by extended modes, whereby the two materials vibrate together with a single frequency. We also mapped the correlations between modes, which showed that the contribution by extended modes to the TIC primarily arises from coupling to the modes that have the same frequencies of vibration (i.e., autocorrelations). Moreover, interfacial modes despite their low population still contribute more than 6% to interfacial thermal transport. The analysis sheds light on the nature of heat conduction by different classes of vibration that exist in interfacial systems, which has technological relevance to applications such as thermophotovoltaics and optoelectronics.

  11. Generation of sub-100-fs pulses from a CW mode-locked chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite laser is reported. The forsterite laser was actively mode locked by using an acoustooptic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intracavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses measured had a 60-fs pulse width.

  12. How to Conduct Store Observations of Tobacco Marketing and Products.

    PubMed

    Feld, Ashley L; Johnson, Trent O; Byerly, Katherine W; Ribisl, Kurt M

    2016-02-18

    As tobacco companies continue to heavily market their products at the point of sale, tobacco control groups seek strategies to combat the negative effects of this marketing. Store observations, which have been widely used by researchers and practitioners alike, are an excellent surveillance tool. This article provides a guide for public health practitioners interested in working in the tobacco retail environment by detailing the steps involved in conducting store observations of tobacco marketing and products including 1) obtaining tobacco product retailer lists, 2) creating measures, 3) selecting a mode of data collection, 4) training data collectors, and 5) analyzing data. We also highlight issues that may arise while in the field and provide information on disseminating results of store observations, including the potential policy implications.

  13. Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration

    PubMed Central

    Gordiz, Kiarash; Henry, Asegun

    2016-01-01

    We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12–13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization. PMID:26979787

  14. Tunable zero-line modes via magnetic field in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  15. Integrated versus fragmented implementation of complex innovations in acute health care.

    PubMed

    Woiceshyn, Jaana; Blades, Kenneth; Pendharkar, Sachin R

    Increased demand and escalating costs necessitate innovation in health care. The challenge is to implement complex innovations-those that require coordinated use across the adopting organization to have the intended benefits. We wanted to understand why and how two of five similar hospitals associated with the same health care authority made more progress with implementing a complex inpatient discharge innovation whereas the other three experienced more difficulties in doing so. We conducted a qualitative comparative case study of the implementation process at five comparable urban hospitals adopting the same inpatient discharge innovation mandated by their health care authority. We analyzed documents and conducted 39 interviews of the health care authority and hospital executives and frontline managers across the five sites over a 1-year period while the implementation was ongoing. In two and a half years, two of the participating hospitals had made significant progress with implementing the innovation and had begun to realize benefits; they exemplified an integrated implementation mode. Three sites had made minimal progress, following a fragmented implementation mode. In the former mode, a semiautonomous health care organization developed a clear overall purpose and chose one umbrella initiative to implement it. The integrative initiative subsumed the rest and guided resource allocation and the practices of hospital executives, frontline managers, and staff who had bought into it. In contrast, in the fragmented implementation mode, the health care authority had several overlapping, competing innovations that overwhelmed the sites and impeded their implementation. Implementing a complex innovation across hospital sites required (a) early prioritization of one initiative as integrative, (b) the commitment of additional (traded off or new) human resources, (c) deliberate upfront planning and continual support for and evaluation of implementation, and (d) allowance for local customization within the general principles of standardization.

  16. Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system.

    PubMed

    Ravishankar, Harish; Roddick, Felicity; Navaratna, Dimuth; Jegatheesan, Veeriah

    2018-05-01

    Microfiltration membranes having different blends of graphene-oxide (GO) (0-1 wt%) and Polysulfone (PSf) (15-20 wt%) were prepared using the classical non-solvent induced phase inversion process. The prepared membranes were characterised for their structural morphology, surface properties, mechanical strength, porosity and pure water flux. Based on the initial characterisation results, four membranes (15 wt% PSf, 15 wt% PSf + 0.25 wt% GO, 15 wt% PSf + 1 wt% GO and 20 wt% PSf + 1 wt% GO) were chosen for critical flux study, that was conducted using flux-step method in a lab scale MBR system. In order to study the application potential of GO blended membranes, the critical flux of each membrane was evaluated in two operational modes i.e., continuous and intermittent modes with backwash. The membranes with maximal GO concentration (15 wt% PSf + 1 wt% GO and 20 wt% PSf + 1 wt% GO) showed higher critical flux (16.5, 12.8 L/m 2 h and 19, 15 L/m 2 h for continuous and intermittent mode, respectively). It was observed that the operational modes did not have a significant effect on the critical flux of the membranes with low GO concentration (15 wt% PSf and 15 wt% PSf + 0.25 wt% GO), indicating a minimal of 1 wt% GO was required for an observable effect that favoured intermittent mode of operation. Through these results, ideal operating condition was arrived (i.e., flux maintained at 6.4 L/m 2 h operated under intermittent mode) and the membranes 15 wt% PSf and 15 wt% PSf + 1 wt% GO were studied for their long-term operation. The positive effect of GO on filtration time, cleaning frequency and against fouling was demonstrated through long term TMP profile of the membranes, indicating the suitability of GO blended membrane for real time wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Observation of conducting filament growth in nanoscale resistive memories

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Gao, Peng; Gaba, Siddharth; Chang, Ting; Pan, Xiaoqing; Lu, Wei

    2012-03-01

    Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex-situ and in-situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.

  18. Probabilistic Causal Analysis for System Safety Risk Assessments in Commercial Air Transport

    NASA Technical Reports Server (NTRS)

    Luxhoj, James T.

    2003-01-01

    Aviation is one of the critical modes of our national transportation system. As such, it is essential that new technologies be continually developed to ensure that a safe mode of transportation becomes even safer in the future. The NASA Aviation Safety Program (AvSP) is managing the development of new technologies and interventions aimed at reducing the fatal aviation accident rate by a factor of 5 by year 2007 and by a factor of 10 by year 2022. A portfolio assessment is currently being conducted to determine the projected impact that the new technologies and/or interventions may have on reducing aviation safety system risk. This paper reports on advanced risk analytics that combine the use of a human error taxonomy, probabilistic Bayesian Belief Networks, and case-based scenarios to assess a relative risk intensity metric. A sample case is used for illustrative purposes.

  19. Digital Audio Radio Field Tests

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1997-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).

  20. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)

    NASA Astrophysics Data System (ADS)

    Lim, Daniel J.; Ki, Hyungson; Mazumder, Jyoti

    2006-06-01

    A fundamental study on the Q-switched diode-pumped solid-state laser interaction with silicon was performed both experimentally and numerically. Single pulse drilling experiments were conducted on N-type silicon wafers by varying the laser intensity from 108-109 W cm-2 to investigate how the mass removal mechanism changes depending on the laser intensity. Hole width and depth were measured and surface morphology was studied using scanning electron microscopy. For the numerical model study, Ki et al's self-consistent continuous-wave laser drilling model (2001 J. Phys. D: Appl. Phys. 34 364-72) was modified to treat the solidification phenomenon between successive laser pulses. The model has the capabilities of simulating major interaction physics, such as melt flow, heat transfer, evaporation, homogeneous boiling, multiple reflections and surface evolution. This study presents some interesting results on how the mass removal mode changes as the laser intensity increases.

  1. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01.

    PubMed

    Potumarthi, Ravichandra; Mugeraya, Gopal; Jetty, Annapurna

    2008-12-01

    In the present studies, newly isolated Thiobacillus sp was used for the treatment of synthetic spent sulfide caustic in a laboratory-scale fluidized bed bioreactor. The sulfide oxidation was tested using Ca-alginate immobilized Thiobacillus sp. Initially, response surface methodology was applied for the optimization of four parameters to check the sulfide oxidation efficiency in batch mode. Further, reactor was operated in continuous mode for 51 days at different sulfide loading rates and retention times to test the sulfide oxidation and sulfate and thiosulfate formation. Sulfide conversions in the range of 90-98% were obtained at almost all sulfide loading rates and hydraulic retention times. However, increased loading rates resulted in lower sulfide oxidation capacity. All the experiments were conducted at constant pH of around 6 and temperature of 30 +/- 5 degrees C.

  2. Optical modulation of quantum cascade laser with optimized excitation wavelength.

    PubMed

    Yang, Tao; Chen, Gang; Tian, Chao; Martini, Rainer

    2013-04-15

    The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

  3. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  4. Acoustic testing of high temperature panels

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.

    1990-01-01

    Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.

  5. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake

    NASA Astrophysics Data System (ADS)

    Heidelberg, Laurence J.; Hall, David G.

    1993-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  6. Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator.

  7. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    PubMed

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  8. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-01

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  9. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    NASA Astrophysics Data System (ADS)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  10. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  11. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  12. Nonlinear absorption properties of ZnO and Al doped ZnO thin films under continuous and pulsed modes of operations

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-06-01

    In the present investigation, we present the variations in nonlinear optical (NLO) properties of undoped and Al doped ZnO (AZO) films under two different off-resonant regimes using continuous and pulsed mode lasers. Z-scan open aperture experiment is performed to quantify nonlinear absorption constant and imaginary component of third order susceptibility. Reverse saturable absorption (RSA) and saturable absorption (SA) behaviors are noticed in both undoped and AZO films under pulsed mode and continuous wavelength (CW) regime respectively. The RSA and SA behavior observed in the films are attributed to two photon absorption (TPA) and thermal lensing properties respectively. The thermal lensing is assisted by the thermo-optic effects within the films due to the continuous illumination of the laser.

  13. Continuous tuning of two-section, single-mode terahertz quantum-cascade lasers by fiber-coupled, near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Röben, Benjamin; Niehle, Michael; Schrottke, Lutz; Trampert, Achim; Grahn, Holger T.

    2017-05-01

    The dynamical tuning due to rear facet illumination of single-mode, terahertz (THz) quantum-cascade lasers (QCLs) which employ distributed feedback gratings are compared to the tuning of single-mode QCLs based on two-section cavities. The THz QCLs under investigation emit in the range of 3 to 4.7 THz. The tuning is achieved by illuminating the rear facet of the QCL with a fiber-coupled light source emitting at 777 nm. Tuning ranges of 5.0 and 11.9 GHz under continuous-wave and pulsed operation, respectively, are demonstrated for a single-mode, two-section cavity QCL emitting at about 3.1 THz, which exhibits a side-mode suppression ratio better than -25 dB.

  14. KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hui; Li, Bo; Chen, Shao-Xia

    2015-11-20

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupertuis, M.A.; Proctor, M.; Acklin, B.

    Energy balance and reciprocity relations are studied for harmonic inhomogeneous plane waves that are incident upon a stack of continuous absorbing dielectric media that are macroscopically characterized by their electric and magnetic permittivities and their conductivities. New cross terms between parallel electric and parallel magnetic modes are identified in the fully generalized Poynting vector. The symmetry and the relations between the general Fresnel coefficients are investigated in the context of energy balance at the interface. The contributions of the so-called mixed Poynting vector are discussed in detail. In particular a new transfer matrix is introduced for energy fluxes in thin-filmmore » optics based on the Poynting and mixed Poynting vectors. Finally, the study of reciprocity relations leads to a generalization of a theorem of reversibility for conducting and dielectric media. 16 refs.« less

  16. How to Conduct Store Observations of Tobacco Marketing and Products

    PubMed Central

    Feld, Ashley L.; Johnson, Trent O.; Byerly, Katherine W.

    2016-01-01

    As tobacco companies continue to heavily market their products at the point of sale, tobacco control groups seek strategies to combat the negative effects of this marketing. Store observations, which have been widely used by researchers and practitioners alike, are an excellent surveillance tool. This article provides a guide for public health practitioners interested in working in the tobacco retail environment by detailing the steps involved in conducting store observations of tobacco marketing and products including 1) obtaining tobacco product retailer lists, 2) creating measures, 3) selecting a mode of data collection, 4) training data collectors, and 5) analyzing data. We also highlight issues that may arise while in the field and provide information on disseminating results of store observations, including the potential policy implications. PMID:26890408

  17. High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuemin; Shen, Changle; Jiang, Tao

    2016-07-15

    Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.

  18. Continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; Dipartimento di Fisica, Universita degli Studi di Salerno, Via S. Allende, I-84081 Baronissi; CNR-INFM Coherentia, Napoli, Italy and CNISM Unita di Salerno and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi

    2007-08-15

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those thatmore » most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity.« less

  19. Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability.

    PubMed

    Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke

    2016-06-01

    We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.

  20. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slivken, S.; Sengupta, S.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu

    2015-12-21

    Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm{sup −1}) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm{sup −1}) and a maximum continuous power of 1.25 W. The output beam is shown tomore » be nearly diffraction-limited, even at high amplifier current.« less

  1. Comparative study of lesions created by high-intensity focused ultrasound using sequential discrete and continuous scanning strategies.

    PubMed

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong; Tang, Mengxing

    2013-03-01

    Lesion formation and temperature distribution induced by high-intensity focused ultrasound (HIFU) were investigated both numerically and experimentally via two energy-delivering strategies, i.e., sequential discrete and continuous scanning modes. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and bioheat equation. Measurements were performed on tissue-mimicking phantoms sonicated by a 1.12-MHz single-element focused transducer working at an acoustic power of 75 W. Both the simulated and experimental results show that, in the sequential discrete mode, obvious saw-tooth-like contours could be observed for the peak temperature distribution and the lesion boundaries, with the increasing interval space between two adjacent exposure points. In the continuous scanning mode, more uniform peak temperature distributions and lesion boundaries would be produced, and the peak temperature values would decrease significantly with the increasing scanning speed. In addition, compared to the sequential discrete mode, the continuous scanning mode could achieve higher treatment efficiency (lesion area generated per second) with a lower peak temperature. The present studies suggest that the peak temperature and tissue lesion resulting from the HIFU exposure could be controlled by adjusting the transducer scanning speed, which is important for improving the HIFU treatment efficiency.

  2. Teleportation of Two-Mode Quantum State of Continuous Variables

    NASA Astrophysics Data System (ADS)

    Song, Tong-Qiang

    2004-03-01

    Using two Einstein-Podolsky-Rosen pair eigenstates |η> as quantum channels, we study the teleportation of two-mode quantum state of continuous variables. The project supported by Natural Science Foundation of Zhejiang Province of China and Open Foundation of Laboratory of High-Intensity Optics, Shanghai Institute of Optics and Fine Mechanics

  3. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  4. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA; Serafini, Alessio

    2006-03-15

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequalitymore » constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.« less

  5. Performance of the Dual BAK-12 Aircraft Arresting System with Modular Hardware with Deadloads and Aircraft

    DTIC Science & Technology

    1976-04-15

    System, Dual-System, Single-Mode, and Dual-Mode configurations. Tests were conducted to determine the feasibility of incorporating modular hardware on a...and 11-1/2 feet OFF-CENTER with the BAK-12 configured in the Single and Dual Mode to determine the effect of engaging the aircraft arresting-hook...cable OFF-CENTER. 90,000- pound deadload arrestments were conducted ON-CENTER in the Dual Mode to determine system performance with high-energy

  6. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe4Sb12

    NASA Astrophysics Data System (ADS)

    Fu, Yuhao; He, Xin; Zhang, Lijun; Singh, David J.

    2018-01-01

    We demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe4Sb12 , we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potential energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.

  7. Ringing phenomenon based whispering-gallery-mode sensing

    PubMed Central

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-01

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift. PMID:26796871

  8. Prevalence of conduction delay of the right atrium in patients with SSS: implications for pacing site selection.

    PubMed

    Verlato, Roberto; Zanon, Francesco; Bertaglia, Emanuele; Turrini, Pietro; Baccillieri, Maria Stella; Baracca, Enrico; Bongiorni, Maria Grazia; Zampiero, Aldo; Zonzin, Pietro; Pascotto, Pietro; Venturini, Diego; Corbucci, Giorgio

    2007-09-01

    To evaluate the prevalence of severe right atrial conduction delay in patients with sinus node dysfunction (SND) and atrial fibrillation (AF) and the effects of pacing in the right atrial appendage (RAA) and in the inter-atrial septum (IAS). Forty-two patients (15 male, 72 +/- 7 years) underwent electrophysiologic study to measure the difference between the conduction time from RAA to coronary sinus ostium during stimulation at 600 ms and after extrastimulus (DeltaCTos). Patients were classified as group A if DeltaCTos > 60 ms and group B if < 60 ms. Each Group was randomized to RAA/IAS pacing and algorithms ON/OFF. Fifteen patients (36%, group A) had DeltaCTos = 76 +/- 11 ms and 27 patients (64%, group B) had DeltaCTos = 36 +/- 20 ms. Twenty-two patients were paced at the RAA and 20 at the IAS. During the study, no AF recurrences were reported in 11 of 42 (26%) patients, independently of RAA or IAS pacing. Patients from group A and RAA pacing had 0.79 +/- 0.81 episodes of AF/day during DDD, which increased to 1.52 +/- 1.41 episodes of AF/day during DDDR + Alg (P = 0.046). Those with IAS pacing had 0.5 +/- 0.24 episodes of AF/day during DDD, which decreased to 0.06 +/- 0.08 episodes of AF/day during DDDR + Alg (P = 0.06). In group B, no differences were reported between pacing sites and pacing modes. Severe right atrial conduction delay is present in one-third of patients with SND and AF: continuous pacing at the IAS is superior to RAA for AF recurrences. In patients without severe conduction delay, no differences between pacing site or mode were observed.

  9. An integrated parity-time symmetric wavelength-tunable single-mode microring laser

    PubMed Central

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping

    2017-01-01

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm. PMID:28497784

  10. An integrated parity-time symmetric wavelength-tunable single-mode microring laser.

    PubMed

    Liu, Weilin; Li, Ming; Guzzon, Robert S; Norberg, Erik J; Parker, John S; Lu, Mingzhi; Coldren, Larry A; Yao, Jianping

    2017-05-12

    Mode control in a laser cavity is critical for a stable single-mode operation of a ring laser. In this study we propose and experimentally demonstrate an electrically pumped parity-time (PT)-symmetric microring laser with precise mode control, to achieve wavelength-tunable single-mode lasing with an improved mode suppression ratio. The proposed PT-symmetric laser is implemented based on a photonic integrated circuit consisting of two mutually coupled active microring resonators. By incorporating multiple semiconductor optical amplifiers in the microring resonators, the PT-symmetry condition can be achieved by a precise manipulation of the interplay between the gain and loss in the two microring resonators, and the incorporation of phase modulators in the microring resonators enables continuous wavelength tuning. Single-mode lasing at 1,554.148 nm with a sidemode suppression ratio exceeding 36 dB is demonstrated and the lasing wavelength is continuously tunable from 1,553.800 to 1,554.020 nm.

  11. Numerical simulation of the optimal two-mode attacks for two-way continuous-variable quantum cryptography in reverse reconciliation

    NASA Astrophysics Data System (ADS)

    Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong

    2017-02-01

    We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.

  12. Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects

    DOE PAGES

    Liu, Ying; Hu, Chongze; Huang, Jingsong; ...

    2015-06-23

    Nanocomposites based on graphene dispersed in matrices of soft materials are promising thermal management materials. Their effective thermal conductivity depends on both the thermal conductivity of graphene and the conductance of the thermal transport across graphene-matrix interfaces. Here we report on molecular dynamics simulations of the thermal transport across the interfaces between defected graphene and soft materials in two different modes: in the across mode, heat enters graphene from one side of its basal plane and leaves through the other side; in the non-across mode, heat enters or leaves a graphene simultaneously from both sides of its basal plane. Wemore » show that, as the density of vacancy defects in graphene increases from 0 to 8%, the conductance of the interfacial thermal transport in the across mode increases from 160.4 16 to 207.8 11 MW/m2K, while that in the non-across mode increases from 7.2 0.1 to 17.8 0.6 MW/m2K. The molecular mechanisms for these variations of thermal conductance are clarified by using the phonon density of states and structural characteristics of defected graphenes. On the basis of these results and effective medium theory, we show that it is possible to enhance the effective thermal conductivity of thermal nanocomposites by tuning the density of vacancy defects in graphene despite the fact that graphene s thermal conductivity always decreases as vacancy defects are introduced.« less

  13. Magnetization dynamics of Ni80Fe20 nanowires with continuous width modulation

    NASA Astrophysics Data System (ADS)

    Xiong, L. L.; Kostylev, M.; Adeyeye, A. O.

    2017-06-01

    A systematic investigation of the magnetization reversal and the dynamic behaviors of uncoupled Ni80Fe20 nanowires (NWs) with artificial continuous width modulation is presented. In contrast with the single resonance mode observed in the homogeneous NWs from the broadband ferromagnetic resonance spectroscopy, the NWs with continuous width modulation display three to five distinct resonance modes with increasing wire thickness in the range from 5 to 70 nm due to the nonuniform demagnetizing field. The highest frequency mode and the frequency difference between the two distinct highest modes are shown to be markedly sensitive to the NW thickness. Interestingly, we found that these modes can be described in terms of the quantization of the standing spin waves due to confined varied width. In addition, the easy axis coercive field for the width modulated NWs is much higher than homogeneous NWs of the same thickness when less than 70 nm. Our experimental results are in good qualitative agreement with the micromagnetic simulations. The results may find potential applications in the design and optimization of tunable magnonic filters.

  14. Propagation characteristics of ultrasonic guided waves in continuously welded rail

    NASA Astrophysics Data System (ADS)

    Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan

    2017-07-01

    Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.

  15. Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses

    PubMed Central

    Marks, Randall; Mathine, David L.; Schwiegerling, Jim; Peyman, Gholam; Peyghambarian, Nasser

    2010-01-01

    Fluidic lenses have been developed for ophthalmic applications with continuously varying optical powers for second order Zernike modes. Continuously varying corrections for both myopic and hyperopic defocus have been demonstrated over a range of three diopters using a fluidic lens with a circular retaining aperture. Likewise, a six diopter range of astigmatism has been continuously corrected using fluidic lenses with rectangular apertures. Imaging results have been characterized using a model eye. PMID:19571912

  16. Pulmonary Drug Delivery Following Continuous Vibrating Mesh Nebulization and Inspiratory Synchronized Vibrating Mesh Nebulization During Noninvasive Ventilation in Healthy Volunteers.

    PubMed

    Michotte, Jean-Bernard; Staderini, Enrico; Aubriot, Anne-Sophie; Jossen, Emilie; Dugernier, Jonathan; Liistro, Giuseppe; Reychler, Gregory

    2018-02-01

    A breath-synchronized nebulization option that could potentially improve drug delivery during noninvasive positive pressure ventilation (NIPPV) is currently not available on single-limb circuit bilevel ventilators. The aim of this study was to compare urinary excretion of amikacin following aerosol delivery with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. A crossover clinical trial involving 6 noninvasive ventilated healthy volunteers (mean age of 32.3 ± 9.5 y) randomly assigned to both vibrating mesh nebulization modes was conducted: Inspi-Neb delivered aerosol during only the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. All subjects inhaled amikacin solution (500 mg/4 mL) during NIPPV using a single-limb bilevel ventilator (inspiratory positive airway pressure: 12 cm H 2 O, and expiratory positive airway pressure: 5 cm H 2 O). Pulmonary drug delivery of amikacin following both nebulization modes was compared by urinary excretion of drug for 24 hours post-inhalation. The total daily amount of amikacin excreted in the urine was significantly higher with Inspi-Neb (median: 44.72 mg; interquartile range [IQR]: 40.50-65.13) than with Conti-Neb (median: 40.07 mg; IQR: 31.00-43.73), (p = 0.02). The elimination rate constant of amikacin (indirect measure of the depth of drug penetration into the lungs) was significantly higher with Inspi-Neb (median: 0.137; IQR: 0.113-0.146) than with Conti-Neb (median: 0.116; IQR: 0.105-0.130), (p = 0.02). However, the mean pulmonary drug delivery rate, expressed as the ratio between total daily urinary amount of amikacin and nebulization time, was significantly higher with Conti-Neb (2.03 mg/min) than with Inspi-Neb (1.09 mg/min) (p < 0.01). During NIPPV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization may improve pulmonary drug delivery compared with conventional continuous vibrating mesh nebulization.

  17. The Influences of Presentation Modes and Conducting Gestures on the Perceptions of Expressive Choral Performance of High School Musicians Attending a Summer Choral Camp

    ERIC Educational Resources Information Center

    Napoles, Jessica

    2013-01-01

    The purpose of this study was to examine the influences of presentation modes (audio and visual) on perceptions of expressive choral performance. The stimulus recording included four choral selections, each conducted by a different conductor in two ways: using expressive conducting gestures and using strict conducting gestures. Three groups of…

  18. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  19. Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.

  20. 15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry

    NASA Astrophysics Data System (ADS)

    Jelínek, M., Jr.; Kubeček, V.

    2011-09-01

    A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.

  1. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    PubMed Central

    Xu, Jing; Wang, Zhongbin; Tan, Chao; Si, Lei; Liu, Xinhua

    2015-01-01

    In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD) and Probabilistic Neural Network (PNN) is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF) components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method. PMID:26528985

  2. Smart monolithic integration of inkjet printed thermal flow sensors with fast prototyping polymer microfluidics

    NASA Astrophysics Data System (ADS)

    Etxebarria, Ikerne; Elizalde, Jorge; Pacios, Roberto

    2016-08-01

    There is an increasing demand for built-in flow sensors in order to effectively control microfluidic processes due to the high number of available microfluidic applications. The possible solutions should be inexpensive and easy to connect to both, the microscale features and the macro setup. In this paper, we present a novel approach to integrate a printed thermal flow sensor with polymeric microfluidic channels. This approach is focused on merging two high throughput production processes, namely inkjet printing and fast prototyping technologies, in order to produce trustworthy and low cost devices. These two technologies are brought together to obtain a sensor located outside the microfluidic device. This avoids the critical contact between the sensor material and the fluids through the microchannels that can seriously damage the conducting paths under continuous working regimes. In this way, we ensure reliable and stable operation modes. For this application, a silver nanoparticle based ink and cyclic olefin polymer were used. This flow sensor operates linearly in the range of 0-10 μl min-1 for water and 0-20 μl min-1 for ethanol in calorimetric mode. Switching to anemometric mode, the range can be expanded up to 40 μl min-1.

  3. Robust partial integrated guidance and control for missiles via extended state observer.

    PubMed

    Wang, Qing; Ran, Maopeng; Dong, Chaoyang

    2016-11-01

    A novel extended state observer (ESO) based control is proposed for a class of nonlinear systems subject to multiple uncertainties, and then applied to partial integrated guidance and control (PIGC) design for a missile. The proposed control strategy incorporates both an ESO and an adaptive sliding mode control law. The multiple uncertainties are treated as an extended state of the plant, and then estimate them using the ESO and compensate for them in the control action, in real time. Based on the output of the ESO, the resulting adaptive sliding mode control law is inherently continuous and differentiable. Strict proof is given to show that the estimation error of the ESO can be arbitrarily small in a finite time. In addition, the adaptive sliding mode control law can achieve finite time convergence to a neighborhood of the origin, and the accurate expression of the convergent region is given. Finally, simulations are conducted on the planar missile-target engagement geometry. The effectiveness of the proposed control strategy in enhanced interception performance and improved robustness against multiple uncertainties are demonstrated. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. An Experimental Visualization and Image Analysis of Electrohydrodynamically Induced Vapor-Phase Silicon Oil Flow under DC Corona Discharge

    NASA Astrophysics Data System (ADS)

    Ohyama, Ryu-Ichiro; Fukumoto, Masaru

    A DC corona discharge induced electrohydrodynamic (EHD) flow phenomenon for a multi-phase fluid containing a vapor-phase dielectric liquid in the fresh air was investigated. The experimental electrode system was a simple arrangement of needle-plate electrodes for the corona discharges and high-resistivity silicon oil was used as the vapor-phase liquid enclosure. The qualitative observation of EHD flow patterns was conducted by an optical processing on computer tomography and the time-series of discharge current pulse generations at corona discharge electrode were measured simultaneously. These experimental results were analyzed in relationship between the EHD flow motions and the current pulse generations in synchronization. The current pulses and the EHD flow motions from the corona discharge electrode presented a continuous mode similar to the ionic wind in the fresh air and an intermittent mode. In the intermittent mode, the observed EHD flow motion was synchronized with the separated discharge pulse generations. From these experimental results, it was expected that the existence of silicon oil vapor trapped charges gave an occasion to the intermittent generations of the discharge pulses and the secondary EHD flow.

  5. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less

  6. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun

    2012-07-30

    A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.

  7. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  8. Theoretical and experimental analysis of amplitude control ablation and bipolar ablation in creating linear lesion and discrete lesions for treating atrial fibrillation.

    PubMed

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2017-09-01

    Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.

  9. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe 4 Sb 12

    DOE PAGES

    Fu, Yuhao; He, Xin; Zhang, Lijun; ...

    2018-01-03

    Here, we demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe 4Sb 12, we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potentialmore » energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.« less

  10. Collective-Goldstone-mode-induced ultralow lattice thermal conductivity in Sn-filled skutterudite SnFe 4 Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuhao; He, Xin; Zhang, Lijun

    Here, we demonstrate that the concept of Goldstone bosons can be exploited for phonon control and thermal conductivity reduction of materials. By studying lattice dynamics of the Sn filled skutterudite SnFe 4Sb 12, we find Sn off-centers in its coordination cage in contrast to the common rare earth fillers. This leads to low-frequency Goldstone-like modes below 1 THz associated mainly with Sn motions. Importantly, these involve collective motion of other atoms, especially Sb, in the host skutterudite lattice. The optical modes transversing to the Sn off-centering direction are identified as Goldstone type modes in association with a three-dimensional Mexican-hat-like potentialmore » energy surface. The interaction of these collective Goldstone modes with the host heat-carrying phonons is shown to lead to ultralow lattice thermal conductivity.« less

  11. Generalized classes of continuous symmetries in two-mode Dicke models

    NASA Astrophysics Data System (ADS)

    Moodie, Ryan I.; Ballantine, Kyle E.; Keeling, Jonathan

    2018-03-01

    As recently realized experimentally [Nature (London) 543, 87 (2017), 10.1038/nature21067], one can engineer models with continuous symmetries by coupling two cavity modes to trapped atoms via a Raman pumping geometry. Considering specifically cases where internal states of the atoms couple to the cavity, we show an extended range of parameters for which continuous symmetry breaking can occur, and we classify the distinct steady states and time-dependent states that arise for different points in this extended parameter regime.

  12. Multiwavelength self-pulsating fibre laser based on cascaded SPM spectral broadening and filtering

    NASA Astrophysics Data System (ADS)

    Rochette, Martin; Sun, Kai; Hernández-Cordero, Juan; Chen, Lawrence R.

    2008-06-01

    We experimentally demonstrate the operation of a laser based on self-phase modulation followed by offset spectral filtering. This laser has three operation modes: a continuous-wave mode, a self-pulsating mode where the laser self ignites and produces pulses, and a pulse-buffering mode where no new pulse is formed from spontaneous emission noise but only pulses already propagating or pulses injected in the laser cavity can be sustained. In the self-pulsating and pulse-buffering modes, the laser is multi-wavelength and continuously tunable over the entire gain band of the amplifiers. The output pulse width is quasi transform-limited with respect to the spectral-width of the filters used in the cavity. Overall, this device provides a simple alternative to pulsed laser source and also represents a promising approach for signal buffering.

  13. Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec

    NASA Astrophysics Data System (ADS)

    Lavigne, Sebastien

    The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the operation of a buck converter. In contrast to conventional SC converters, such hybrid converters can achieve lossless and continuous regulation of the output voltage. Compared to buck converters, the required inductor is greatly reduced, as well as the switch stress. A 80-170 V input, 12-24 V output prototype PWM Dickson converter is implemented using GaN switches. The measured peak efficiency is 97%, and high efficiency can be maintained over the entire input and output operating range. In addition, the similarity between multilevel converters (for example, flying capacitor multilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of converters can be seen as a hybrid converter which uses both capacitors and inductors for energy transfer. A general framework to compare these converters, along with conventional buck converters, is proposed. In this framework, the power losses (including conduction loss and switching loss) are kept constant, while the total passive component volume is used as the figure of merit. Based on the principle of maximizing energy utilization of passive components, a 7-level FCML converter and an active energy buffer are designed and implemented for single phase dc-ac applications. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency of 97.4%, and compares favorably against the state-of-the-art designs under the same specification. To further improve the efficiency and power density, soft-switching techniques are investigated and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging and soft-switching operation. Last but not the least, some of the practical issues associated with the hybrid converter are discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit implementation challenges. Future work based on these topics is given. In summary, these hybrid converters are suited for applications where extreme efficiency and power density are critical. Through efficient utilization of active and passive devices, the hybrid topologies can offer a greater optimization opportunity and ability to take advantage of technology improvement than is possible with conventional designs.

  14. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment

    NASA Astrophysics Data System (ADS)

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; Seker, Erkin; Biener, Monika M.; Matthews, Manyalibo J.

    2015-12-01

    Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships.Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Here, laser micro-processing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing. Based on these results we discuss the mechanisms by which the np-Au network is coarsened. Thermal transport simulations predict that continuous-wave mode laser irradiation of np-Au thin films on a silicon substrate supports the widest range of morphologies that can be created through photothermal annealing of np-Au. Using the guidance provided by simulations, we successfully fabricate an on-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in the parallel study of structure-property relationships. Electronic supplementary information (ESI) available: Details of sample preparation, fabrication of material libraries, as well as further analysis and supporting scanning electron micrographs can be found in ESI. See DOI: 10.1039/c5nr04580k

  15. Sliding Mode Control of the X-33 Vehicle in Launch Mode

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas

    1998-01-01

    The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.

  16. Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    NASA Astrophysics Data System (ADS)

    Chávez-Ángel, E.; Zarate, R. A.; Gomis-Bresco, J.; Alzina, F.; Sotomayor Torres, C. M.

    2014-12-01

    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons’ lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator.

  17. Refurbishment of Railroad Crossties : A Technical and Economic Analysis

    DOT National Transportation Integrated Search

    1977-12-01

    An analysis of the principal modes of failure for wooden railroad crossties was conducted and an evaluation of the technical and economic feasibility of refurbishing these ties was conducted. Among the principal modes of structural deterioration, onl...

  18. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    NASA Astrophysics Data System (ADS)

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.

  19. Changes over time in population level transport satisfaction and mode of travel: A 13 year repeat cross-sectional study, UK.

    PubMed

    Olsen, Jonathan R; Macdonald, Laura; Ellaway, Anne

    2017-09-01

    The aim of the study was to examine changes over time in satisfaction with usual transport mode, explore individual and area level characteristics as mediators in the likelihood of transport satisfaction, and whether any changes in transport satisfaction varied by these factors over time. Adults from West Central Scotland, United Kingdom, who participated at both waves of the repeat cross-sectional 'Transport, Health and Well-being Study' conducted in 1997 (n=2735) and 2010 (n=2024) were assessed. Individuals completed a detailed postal questionnaire at both time points including self-rated satisfaction with usual transport mode (using a seven point scale subsequently dichotomised to a binary outcome of satisfied (1-2) and other (3-7)). Participants reported usual transport mode for travel to various destinations. A multilevel logistic regression model was used and individuals were nested within areas (c. 4000 population). At the 2010 sweep, two thirds (n=1345) of individuals were satisfied with their transport choice. Those with fair/poor health were less satisfied with their usual transport compared to those in better health (Odds Ratio (OR) 0.49, p<0.001). Access to a car was associated with overall transport satisfaction (OR 2.63, p<0.001) and the effect of deprivation on transport satisfaction was mitigated when adjusted by household car access. Transport satisfaction increased more from 1997 to 2010 for retired individuals compared to those in employment (OR 1.40, p=0.032), and for those who travelled by public transport (OR 2.39, p=0.005) and using multiple modes (OR 2.19, p<0.001) compared to those who travelled by car. The proportion of those who travelled using public transport, active modes or by multiple mode increased journey satisfaction over time at a greater rate than those who travelled by car, highlighting that continued efforts should be made to promote these more active transport modes which have potential to impact on health.

  20. Time synchronization of new-generation BDS satellites using inter-satellite link measurements

    NASA Astrophysics Data System (ADS)

    Pan, Junyang; Hu, Xiaogong; Zhou, Shanshi; Tang, Chengpan; Guo, Rui; Zhu, Lingfeng; Tang, Guifeng; Hu, Guangming

    2018-01-01

    Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4 cm and 1 cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3 ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3 ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86 ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57 ns (RMS), which is a significant improvement by a factor of 3-4.

  1. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less

  2. A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data

    ERIC Educational Resources Information Center

    Vera, J. Fernando; Macias, Rodrigo; Heiser, Willem J.

    2009-01-01

    In this paper, we propose a cluster-MDS model for two-way one-mode continuous rating dissimilarity data. The model aims at partitioning the objects into classes and simultaneously representing the cluster centers in a low-dimensional space. Under the normal distribution assumption, a latent class model is developed in terms of the set of…

  3. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes

    PubMed Central

    Shafqat-Abbasi, Hamdah; Kowalewski, Jacob M; Kiss, Alexa; Gong, Xiaowei; Hernandez-Varas, Pablo; Berge, Ulrich; Jafari-Mamaghani, Mehrdad; Lock, John G; Strömblad, Staffan

    2016-01-01

    Mesenchymal (lamellipodial) migration is heterogeneous, although whether this reflects progressive variability or discrete, 'switchable' migration modalities, remains unclear. We present an analytical toolbox, based on quantitative single-cell imaging data, to interrogate this heterogeneity. Integrating supervised behavioral classification with multivariate analyses of cell motion, membrane dynamics, cell-matrix adhesion status and F-actin organization, this toolbox here enables the detection and characterization of two quantitatively distinct mesenchymal migration modes, termed 'Continuous' and 'Discontinuous'. Quantitative mode comparisons reveal differences in cell motion, spatiotemporal coordination of membrane protrusion/retraction, and how cells within each mode reorganize with changed cell speed. These modes thus represent distinctive migratory strategies. Additional analyses illuminate the macromolecular- and cellular-scale effects of molecular targeting (fibronectin, talin, ROCK), including 'adaptive switching' between Continuous (favored at high adhesion/full contraction) and Discontinuous (low adhesion/inhibited contraction) modes. Overall, this analytical toolbox now facilitates the exploration of both spontaneous and adaptive heterogeneity in mesenchymal migration. DOI: http://dx.doi.org/10.7554/eLife.11384.001 PMID:26821527

  4. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.

    PubMed

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2017-12-15

    Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature. We used a spectroscopic method to measure their frequencies, and we gave a tunable mass to the Goldstone mode by exploring the crossover between continuous and discrete symmetry. Our experiments link spectroscopic measurements to the theoretical concept of Higgs and Goldstone modes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    PubMed

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  6. On the r-mode spectrum of relativistic stars in the low-frequency approximation

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2001-12-01

    The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time-independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for l=2, it is nevertheless also possible to find discrete mode solutions (the r modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time-dependent equations. For stellar models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of l it seems that in certain cases there are no mode solutions at all.

  7. Experimental investigation of interfacial energy transport in an evaporating sessile droplet for evaporative cooling applications

    NASA Astrophysics Data System (ADS)

    Mahmud, Md. Almostasim; MacDonald, Brendan D.

    2017-01-01

    In this paper we experimentally examine evaporation flux distributions and modes of interfacial energy transport for continuously fed evaporating spherical sessile water droplets in a regime that is relevant for applications, particularly for evaporative cooling systems. The contribution of the thermal conduction through the vapor phase was found to be insignificant compared to the thermal conduction through the liquid phase for the conditions we investigated. The local evaporation flux distributions associated with thermal conduction were found to vary along the surface of the droplet. Thermal conduction provided a majority of the energy required for evaporation but did not account for all of the energy transport, contributing 64 ±3 % , 77 ±3 % , and 77 ±4 % of the energy required for the three cases we examined. Based on the temperature profiles measured along the interface we found that thermocapillary flow was predicted to occur in our experiments, and two convection cells were consistent with the temperature distributions for higher substrate temperatures while a single convection cell was consistent with the temperature distributions for a lower substrate temperature.

  8. Diode-pumped continuous-wave and femtosecond Cr:LiCAF lasers with high average power in the near infrared, visible and near ultraviolet.

    PubMed

    Demirbas, Umit; Baali, Ilyes; Acar, Durmus Alp Emre; Leitenstorfer, Alfred

    2015-04-06

    We demonstrate continuous-wave (cw), cw frequency-doubled, cw mode-locked and Q-switched mode-locked operation of multimode diode-pumped Cr:LiCAF lasers with record average powers. Up to 2.54 W of cw output is obtained around 805 nm at an absorbed pump power of 5.5 W. Using intracavity frequency doubling with a BBO crystal, 0.9 W are generated around 402 nm, corresponding to an optical-to-optical conversion efficiency of 12%. With an intracavity birefringent tuning plate, the fundamental and frequency-doubled laser output is tuned continuously in a broad wavelength range from 745 nm to 885 nm and from 375 to 440 nm, respectively. A saturable Bragg reflector is used to initiate and sustain mode locking. In the cw mode-locked regime, the Cr:LiCAF laser produces 105-fs long pulses near 810 nm with an average power of 0.75 W. The repetition rate is 96.4 MHz, resulting in pulse energies of 7.7 nJ and peak powers of 65 kW. In Q-switched mode-locked operation, pulses with energies above 150 nJ are generated.

  9. First Satellite Observations of Lower Tropospheric Ammonia and Methanol

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Shephard, Mark W.; Kulawik, Susan S.; Clough, Shepard A.; Eldering, Annmarie; Bowman, Kevin W.; Sander, Stanley P.; Fisher, Brendan M.; Payne, Vivienne H.; Luo, Mingzhao; hide

    2008-01-01

    The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A continuous-coverage mode (called ''transect'', about 460 km long) has now been used to detect additional molecules indicative of regional air pollution. On 10 July 2007 at about 05:37 UTC (13:24 LMST) TES conducted such a transect observation over the Beijing area in northeast China. Examination of the residual spectral radiances following the retrieval of the TES standard products revealed surprisingly strong features attributable to enhanced concentrations of ammonia (NH3) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have been detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.

  10. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  11. Orion Crew Exploration Vehicle Launch Abort System Guidance and Control Analysis Overview

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Kim, Sungwan; Raney, David L.; Aubuchon, Vanessa V.; Sparks, Dean W.; Busan, Ronald C.; Proud, Ryan W.; Merritt, Deborah S.

    2008-01-01

    Aborts during the critical ascent flight phase require the design and operation of Orion Crew Exploration Vehicle (CEV) systems to escape from the Crew Launch Vehicle (CLV) and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. Aborts from the launch pad to early in the flight of the CLV second stage are performed using the Launch Abort System (LAS). During this type of abort, the LAS Abort Motor is used to pull the Crew Module (CM) safely away from the CLV and Service Module (SM). LAS abort guidance and control studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the Orion CEV, an overview of the LAS ascent abort mode, and a summary of key LAS abort analysis methods and results.

  12. Co-digestion of solid waste: Towards a simple model to predict methane production.

    PubMed

    Kouas, Mokhles; Torrijos, Michel; Schmitz, Sabine; Sousbie, Philippe; Sayadi, Sami; Harmand, Jérôme

    2018-04-01

    Modeling methane production is a key issue for solid waste co-digestion. Here, the effect of a step-wise increase in the organic loading rate (OLR) on reactor performance was investigated, and four new models were evaluated to predict methane yields using data acquired in batch mode. Four co-digestion experiments of mixtures of 2 solid substrates were conducted in semi-continuous mode. Experimental methane yields were always higher than the BMP values of mixtures calculated from the BMP of each substrate, highlighting the importance of endogenous production (methane produced from auto-degradation of microbial community and generated solids). The experimental methane productions under increasing OLRs corresponded well to the modeled data using the model with constant endogenous production and kinetics identified at 80% from total batch time. This model provides a simple and useful tool for technical design consultancies and plant operators to optimize the co-digestion and the choice of the OLRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A new species of freshwater eel-tailed catfish of the genus Tandanus (Teleostei: Plotosidae) from coastal rivers of mid-northern New South Wales, Australia

    USGS Publications Warehouse

    Welsh, Stuart A.; Jerry, Dean R.; Burrows, Damien; Rourke, Meaghan L.

    2017-01-01

    Tandanus bellingerensis, new species, is described based on specimens from four river drainages (Bellinger, Macleay, Hastings, and Manning rivers) of the mid-northern coast of New South Wales, Australia. Previously, three species were recognized in the genus Tandanus: T. tropicanus of the wet tropics region of northeast Queensland, T. tandanus of the Murray-Darling drainage and coastal streams of central-southern Queensland and New South Wales, and T. bostocki of southwestern Western Australia. The new species is distinguished from all congeners by a combination of the following morphologic characters: a high count of rays in the continuous caudodorsal and anal fins (range 153–169, mode 159), a high count of gill rakers on the first arch (range 35–39, mode 36), and strongly recurved posterior serrae of the pectoral-fin spine. Additionally, results from previously conducted genetic studies corroborate morphologic and taxonomic distinctness of the new species.

  14. First satellite observations of lower tropospheric ammonia and methanol

    NASA Astrophysics Data System (ADS)

    Beer, Reinhard; Shephard, Mark W.; Kulawik, Susan S.; Clough, Shepard A.; Eldering, Annmarie; Bowman, Kevin W.; Sander, Stanley P.; Fisher, Brendan M.; Payne, Vivienne H.; Luo, Mingzhao; Osterman, Gregory B.; Worden, John R.

    2008-05-01

    The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A continuous-coverage mode (called ``transect'', about 460 km long) has now been used to detect additional molecules indicative of regional air pollution. On 10 July 2007 at about 05:37 UTC (13:24 LMST) TES conducted such a transect observation over the Beijing area in northeast China. Examination of the residual spectral radiances following the retrieval of the TES standard products revealed surprisingly strong features attributable to enhanced concentrations of ammonia (NH3) and methanol (CH3OH), well above the normal background levels. This is the first time that these molecules have been detected in space-based nadir viewing measurements that penetrate into the lower atmosphere.

  15. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie, B. X.; Huang, J. Y.; Fan, D.

    Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less

  16. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    PubMed

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  17. Impact of pacemaker mode in patients with atrioventricular conduction disturbance after trans-catheter aortic valve implantation.

    PubMed

    Takahashi, Masao; Badenco, Nicolas; Monteau, Jacques; Gandjbakhch, Estelle; Extramiana, Fabrice; Urena, Marina; Karam, Nicole; Marijon, Eloi; Algalarrondo, Vincent; Teiger, Emmanuel; Lellouche, Nicolas

    2018-03-14

    This study aimed to assess the impact of pacemaker mode programming on clinical outcomes in patients with high-degree atrioventricular conduction disturbance (AVCD) after transcatheter aortic valve implantation (TAVI). Although high-degree AVCD after TAVI can receive pacemaker, recovery of the AVCD is often observed. Specific pacemaker algorithms (AAI-DDD mode switch) are available which favor spontaneous atrioventricular conduction. Of 1,621 consecutive multi-center TAVI patients, 269 (16.4%) received pacemaker. We retrospectively included 91 patients with persistent high-degree AVCD at hospital discharge. Pacemaker dependency was defined as absence, inadequate intrinsic ventricular rhythm, or ventricular pacing time > 95% on pacemaker interrogation during follow-up. Comparison of heart failure hospitalization and death between conventional DDD (cDDD) and other modes was examined (AAI-DDD and VVI). During a mean follow-up duration of 13 months, the pacemaker dependency rate was 52.8%. Patients with cDDD mode (N = 36: 40.0%) had significantly more pacemaker dependency. Multivariate analysis showed that cDDD mode was independently associated with pacemaker dependency (odds ratio = 3.63, P = 0.03). Moreover, cDDD patients had a significant higher incidence of heart failure hospitalization (Hospitalization: cDDD vs. others = 45.4% vs. 18.2%, P = 0.03) and had a higher incidence of mortality (Death: cDDD vs. the others = 27.0% vs. 4.4%, P = 0.06). Up to half of patients implanted for high-degree AVCD after TAVI had conduction recovery. Patients with cDDD programming at hospital discharge had more pacemaker dependency and a worse cardiac prognosis. Thus, pacemaker mode should be systematically set to promote spontaneous atrioventricular conduction in patients with pacemaker implantation after TAVI. © 2018 Wiley Periodicals, Inc.

  18. Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Yuan, Chaochun; Cai, Yingfeng; Wang, Shaohua; Chen, Long

    2017-09-01

    This paper presents the hybrid modeling and the model predictive control of an air suspension system with damping multi-mode switching damper. Unlike traditional damper with continuously adjustable damping, in this study, a new damper with four discrete damping modes is applied to vehicle semi-active air suspension. The new damper can achieve different damping modes by just controlling the on-off statuses of two solenoid valves, which makes its damping adjustment more efficient and more reliable. However, since the damping mode switching induces different modes of operation, the air suspension system with the new damper poses challenging hybrid control problem. To model both the continuous/discrete dynamics and the switching between different damping modes, the framework of mixed logical dynamical (MLD) systems is used to establish the system hybrid model. Based on the resulting hybrid dynamical model, the system control problem is recast as a model predictive control (MPC) problem, which allows us to optimize the switching sequences of the damping modes by taking into account the suspension performance requirements. Numerical simulations results demonstrate the efficacy of the proposed control method finally.

  19. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  20. The second-order interference of two independent single-mode He-Ne lasers

    NASA Astrophysics Data System (ADS)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  1. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1992-01-01

    Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped forsterite (Cr(4+):Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power (with 1 percent output coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.

  2. Artifact mitigation of ptychography integrated with on-the-fly scanning probe microscopy

    DOE PAGES

    Huang, Xiaojing; Yan, Hanfei; Ge, Mingyuan; ...

    2017-07-11

    In this paper, we report our experiences with conducting ptychography simultaneously with the X-ray fluorescence measurement using the on-the-fly mode for efficient multi-modality imaging. We demonstrate that the periodic artifact inherent to the raster scan pattern can be mitigated using a sufficiently fine scan step size to provide an overlap ratio of >70%. This allows us to obtain transmitted phase contrast images with enhanced spatial resolution from ptychography while maintaining the fluorescence imaging with continuous-motion scans on pixelated grids. Lastly, this capability will greatly improve the competence and throughput of scanning probe X-ray microscopy.

  3. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  4. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  5. Assessing the future of air freight

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.

    1977-01-01

    The role of air cargo in the current transportation system in the United States is explored. Methods for assessing the future role of this mode of transportation include the use of continuous-time recursive systems modeling for the simulation of different components of the air freight system, as well as for the development of alternative future scenarios which may result from different policy actions. A basic conceptual framework for conducting such a dynamic simulation is presented within the context of the air freight industry. Some research needs are identified and recommended for further research. The benefits, limitations, pitfalls, and problems usually associated with large scale systems models are examined.

  6. Three dimensional fabric evolution of sheared sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Alsidqi; Alshibli, Khalid

    2012-10-24

    Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess themore » mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.« less

  7. Improvements in ion reflux: An electrodialytic eluent generation and suppression device for ion chromatography.

    PubMed

    Elkin, Kyle; Riviello, John; Small, Hamish

    2015-07-17

    This work describes a membrane based electrodialytic ion reflux device (IRD), which uses water as the pumped phase and integrates isocratic and gradient eluent generation and suppression. The current design incorporates several ion exchange membranes to create discrete chambers for suppression and eluent generation, while isolating the electrodes from the analytical stream. A small volume of recycled water can be used as the pumped phase while continuously refluxing the eluent ions. This current design permits electronically controlled eluent generation of at least 16.4μeq KOHmin(-1), while maintaining low suppressed background conductivity (<0.5μS/cm). The device was operated in gradient or isocratic mode continuously for up to 6 weeks. During this period, over 500 gradient and isocratic injections were performed, showing peak retention time precision below 1.5% RSD. Published by Elsevier B.V.

  8. A Practical English Teaching Mode of Vocational Education: Induction-Interaction Learning Community

    ERIC Educational Resources Information Center

    Zhang, Yonglong

    2008-01-01

    Secondary Vocational School Students are characterized by the awkward fact "congenital malnutrition" and "acquired development deficiency", continuously adopting of the current teaching methods and modes of General Education is completely impossible. In this report, a new English Teaching Mode of Induction-Interaction Learning…

  9. Integrated versus fragmented implementation of complex innovations in acute health care

    PubMed Central

    Woiceshyn, Jaana; Blades, Kenneth; Pendharkar, Sachin R.

    2017-01-01

    Background: Increased demand and escalating costs necessitate innovation in health care. The challenge is to implement complex innovations—those that require coordinated use across the adopting organization to have the intended benefits. Purpose: We wanted to understand why and how two of five similar hospitals associated with the same health care authority made more progress with implementing a complex inpatient discharge innovation whereas the other three experienced more difficulties in doing so. Methodology: We conducted a qualitative comparative case study of the implementation process at five comparable urban hospitals adopting the same inpatient discharge innovation mandated by their health care authority. We analyzed documents and conducted 39 interviews of the health care authority and hospital executives and frontline managers across the five sites over a 1-year period while the implementation was ongoing. Findings: In two and a half years, two of the participating hospitals had made significant progress with implementing the innovation and had begun to realize benefits; they exemplified an integrated implementation mode. Three sites had made minimal progress, following a fragmented implementation mode. In the former mode, a semiautonomous health care organization developed a clear overall purpose and chose one umbrella initiative to implement it. The integrative initiative subsumed the rest and guided resource allocation and the practices of hospital executives, frontline managers, and staff who had bought into it. In contrast, in the fragmented implementation mode, the health care authority had several overlapping, competing innovations that overwhelmed the sites and impeded their implementation. Practice Implications: Implementing a complex innovation across hospital sites required (a) early prioritization of one initiative as integrative, (b) the commitment of additional (traded off or new) human resources, (c) deliberate upfront planning and continual support for and evaluation of implementation, and (d) allowance for local customization within the general principles of standardization. PMID:26469705

  10. The effect of different operations modes on science capabilities during the 2010 Desert RATS test: Insights from the geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Bleacher, Jacob E.; Hurtado, José M.; Young, Kelsey E.; Rice, James W.; Garry, W. Brent

    2013-10-01

    The 2010 Desert RATS field test utilized two Space Exploration Vehicles (prototype planetary rovers) and four crewmembers (2 per rover) to conduct a geologic traverse across northern Arizona while testing continuous and twice-per-day communications paired with operation modes of separating and exploring individually (Divide & Conquer) and exploring together (Lead & Follow), respectively. This report provides qualitative conclusions from the geologist crewmembers involved in this test as to how these modes of communications and operations affected our ability to conduct field geology. Each mode of communication and operation provided beneficial capabilities that might be further explored for future Human Spaceflight Missions to other solar system objects. We find that more frequent interactions between crews and an Apollo-style Science Team on the Earth best enables scientific progress during human exploration. However, during multiple vehicle missions, this communication with an Earth-based team of scientists, who represent "more minds on the problem", should not come at the exclusion of (or significantly decrease) communication between the crewmembers in different vehicles who have the "eyes on the ground". Inter-crew communications improved when discussions with a backroom were infrequent. Both aspects are critical and cannot be mutually exclusive. Increased vehicle separation distances best enable encounters with multiple geologic units. However, seemingly redundant visits by multiple vehicles to the same feature can be utilized to provide improved process-related observations about the development and modification of the local terrain. We consider the value of data management, transfer, and accessibility to be the most important lesson learned. Crews and backrooms should have access to all data and related interpretations within the mission in as close to real-time conditions as possible. This ensures that while on another planetary surface, crewmembers are as educated as possible with respect to the observations and data they will need to collect at any moment.

  11. The Effect of Different Operations Modes on Science Capabilities During the 2010 Desert-RATS Test: Insights from the Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Hurtado, Jose M., Jr.; Young, Kelsey E.; Rice, James W., Jr.; Garry, W. Brent

    2011-01-01

    The 2010 Desert RATS field test utilized two Space Exploration Vehicles (prototype planetary rovers) and four crewmembers (2 per rover) to conduct a geologic traverse across northern Arizona while testing continuous and twice-per-day communications paired with operation modes of separating and exploring individually (Divide & Conquer) and exploring together (Lead & Follow), respectively. This report provides qualitative conclusions from the geologist crewmembers involved in this test as to how these modes of communications and operations affected our ability to conduct field geology. Each mode of communication and operation provided beneficial capabilities that might be further explored for future Human Spaceflight Missions to other solar system objects. We find that more frequent interactions between crews and an Apollo-style Science Team on the Earth best enables scientific progress during human exploration. However, during multiple vehicle missions, this communication with an Earth-based team of scientists, who represent "more minds on the problem", should not come at the exclusion of (or significantly decrease) communication between the crewmembers in different vehicles who have the "eyes on the ground". Inter-crew communications improved when discussions with a backroom were infrequent. Both aspects are critical and cannot be mutually exclusive. Increased vehicle separation distances best enable encounters with multiple geologic units. However, seemingly redundant visits by multiple vehicles to the same feature can be utilized to provide improved process-related observations about the development and modification of the local terrain. We consider the value of data management, transfer, and accessibility to be the most important lesson learned. Crews and backrooms should have access to all data and related interpretations within the mission in as close to real-time conditions as possible. This ensures that while on another planetary surface, crewmembers are as educated as possible with respect to the observations and data they will need to collect at any moment.

  12. Effects of a semi-infinite stratification on the Rayleigh-Taylor instability in an interface with surface tension

    NASA Astrophysics Data System (ADS)

    de Andrea González, Ángel; González-Gutiérrez, Leo M.

    2017-09-01

    The Rayleigh-Taylor instability (RTI) in an infinite slab where a constant density lower fluid is initially separated from an upper stratified fluid is discussed in linear regime. The upper fluid is of increasing exponential density and surface tension is considered between both of them. It was found useful to study stability by using the initial value problem approach (IVP), so that we ensure the inclusion of certain continuum modes, otherwise neglected. This methodology includes the branch cut in the complex plane, consequently, in addition to discrete modes (surface RTI modes), a set of continuum modes (internal RTI modes) also appears. As a result, the usual information given by the normal mode method is now complete. Furthermore, a new role is found for surface tension: to transform surface RTI modes (discrete spectrum) into internal RTI modes belonging to a continuous spectrum at a critical wavenumber. As a consequence, the cut-off wavenumber disappears: i.e. the growth rate of the RTI surface mode does not decay to zero at the cut-off wavenumber, as previous researchers used to believe. Finally, we found that, due to the continuum, the asymptotic behavior of the perturbation with respect to time is slower than the exponential when only the continuous spectrum exists.

  13. Fatigue study and improve reliability of cantilever type micro piezoelectric energy harvesters reinforced with flexible adhesive conductive tape

    NASA Astrophysics Data System (ADS)

    Lin, T. K.; Hsieh, Y. C.; Chen, C. T.; Chen, J. J.; Wu, W. J.

    2016-04-01

    Cantilever type piezoelectric energy harvester (PEH) is widely adopted in the design of vibration energy harvesters because of simple, effective and easy to fabricate. When the PEH is working under excitation of continuous vibration sources, like mounting on motors, reliability and durability is a major concern. The failure mode and fatigue issues will be important design considerations in field applications. Since the largest strain of a cantilever structure is located in the clamping position of fixed end, the location is therefore the weakest point of the structure and the hot zone of mechanical cracks. The failure mode due to fatigue under long time excitation of vibration sources is typically continuously developing small cracks on the piezoelectric PZT films till tearing the surface electrodes and caused open circuit to the output circuitry. Therefore, extending the lifetime with minimize the surface electrodes cracking becomes a key point for field applications. Previously, we focused on the output performance of PEH. At PowerMEMS 2014 [1], we presented a high performance PEH based on PZT thin films fabricated with a homemade PZT deposition equipment on stainless steel substrates. We confirmed that the stainless steel based PEH can generate better output power than silicon based devices under the same vibration excitation levels, and also the stainless based PEH can have longer lifetime when excited at higher vibration levels due to better mechanical strength. In this study, we tried to further reinforce the PEH with a conductive adhesive tape sticking on the surface electrode near the clamping position. We investigated the change of failure mode and mechanical behaviors, including the frequency bandwidth and non-linearity of the piezoelectric energy harvester. The PEH devices was mounted on a shaker for long time testing with vibration frequency set around 120Hz at 0.5g, 0.6g, and 0.7g acceleration vibration levels. The electrodes of the PEH device were cracked after 13 million cycles under 0.5g and 1 million cycles under 0.6g. The PEH has significant output power decreasing after the electrode is cracked and before being fully open circuit. The cracks of stainless steel substrate was also found after 1 million cycles under 0.7g vibration. For the device reinforced with conductive adhesive tape, we can see a steady output without degradation extended to more than 1.5 million cycles under 0.7g vibration. The other interesting finding in this study is with the added damping after adhering the conductive tape, the frequency bandwidth increased from 1.5Hz to 4Hz under 0.5g vibration level while the resonance frequency increased from 105Hz to 128Hz. Moreover, the reinforced devices have much better stability and linearity performance compared with the original devices. All the experimental details and discussion of the flexible conductive adhesive tape reinforced PEH will all be detailed in this paper.

  14. Continuous scanning mode for ptychography

    DOE PAGES

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  15. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2002-01-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  16. Feasibility of biodiesel production and CO2 emission reduction by Monoraphidium dybowskii LB50 under semi-continuous culture with open raceway ponds in the desert area.

    PubMed

    Yang, Haijian; He, Qiaoning; Hu, Chunxiang

    2018-01-01

    Compared with other general energy crops, microalgae are more compatible with desert conditions. In addition, microalgae cultivated in desert regions can be used to develop biodiesel. Therefore, screening oil-rich microalgae, and researching the algae growth, CO 2 fixation and oil yield in desert areas not only effectively utilize the idle desertification lands and other resources, but also reduce CO 2 emission. Monoraphidium dybowskii LB50 can be efficiently cultured in the desert area using light resources, and lipid yield can be effectively improved using two-stage induction and semi-continuous culture modes in open raceway ponds (ORPs). Lipid content (LC) and lipid productivity (LP) were increased by 20% under two-stage industrial salt induction, whereas biomass productivity (BP) increased by 80% to enhance LP under semi-continuous mode in 5 m 2 ORPs. After 3 years of operation, M. dybowskii LB50 was successfully and stably cultivated under semi-continuous mode for a month during five cycles of repeated culture in a 200 m 2 ORP in the desert area. This culture mode reduced the supply of the original species. The BP and CO 2 fixation rate were maintained at 18 and 33 g m -2  day -1 , respectively. Moreover, LC decreased only during the fifth cycle of repeated culture. Evaporation occurred at 0.9-1.8 L m -2  day -1 , which corresponded to 6.5-13% of evaporation loss rate. Semi-continuous and two-stage salt induction culture modes can reduce energy consumption and increase energy balance through the energy consumption analysis of life cycle. This study demonstrates the feasibility of combining biodiesel production and CO 2 fixation using microalgae grown as feedstock under culture modes with ORPs by using the resources in the desert area. The understanding of evaporation loss and the sustainability of semi-continuous culture render this approach practically viable. The novel strategy may be a promising alternative to existing technology for CO 2 emission reduction and biofuel production.

  17. Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films

    NASA Astrophysics Data System (ADS)

    Yeh, Tsung-Her; Lin, Ruei-De; Cherng, Bo-Ruei; Cherng, Jyh-Shiarn

    2018-05-01

    The microstructure and ionic conductivity of reactively sputtered yttria-stabilized zirconia (YSZ) films are systematically studied. Those films were reactively sputtered in various sputtering modes using a closed-loop controlled system with plasma emission monitoring. A transition-mode sputtering corresponding to 45% of target poisoning produces a microstructure with ultrafine crystallites embedded in an amorphous matrix, which undergoes an abnormal grain growth upon annealing at 800 °C. At 500 °C, the measured ionic conductivity of this annealed film is higher, by about a half order of magnitude, than those of its poisoned-mode counterparts, which are in turn significantly higher than that of the YSZ bulk by about two orders of magnitude. The abnormally-grown ultra-large grain size of the film deposited in the transition mode and then annealed is believed to be responsible for the former comparison due to the suppression of the grain boundary blocking effect, while the latter comparison can be attributed to the interface effect.

  18. B-Scan Based Acoustic Source Reconstruction for Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Mariappan, Leo; Li, Xu; He, Bin

    2011-01-01

    We present in this study an acoustic source reconstruction method using focused transducer with B mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for non-invasive conductivity imaging with high spatial resolution. In MAT-MI acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then usedto reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in previous MAT-MI systems to collect acoustic signals. In the present study we propose to use B mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that, as compared to the previous approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations which greatly increases the applicability of the MAT-MI approach especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method and the reconstructed image shows a good agreement with the target phantom. PMID:21097372

  19. Influence of curing mode with a LED unit on polymerization contraction kinetics and degree of conversion of dental resin-based materials.

    PubMed

    Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David

    2009-01-01

    The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.

  20. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    NASA Technical Reports Server (NTRS)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  1. Higher order mode couplers for normal conducting DORIS 5-cell cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewersteg, B.; Seesselberg, E.; Zolfaghari, A.

    1985-10-01

    The beam intensity of the DORIS e -e storage ring is limited to about 100 mA average circulation current as a result of instabilities driven by higher order rf cavity modes. Thus an investigation has been made of the higher order mode impedances of the DORIS rf accelerator cavities. These cavities are the same as the normally conducting inductively coupled 500 MHz 5-cell structures used in PETRA. The results of the investigation were applied for the construction of inductive and capacitive attenuation antennae corresponding to specific mode spectra and mode impedances. The antennae must fit into the existing 35 mmmore » pick up flanges of the cavities and in spite of these size and position limitations they must be efficient in reducing the shunt impedances of the dangerous modes.« less

  2. Modal Contributions to Heat Conduction across Crystalline and Amorphous Si/Ge Interfaces

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    Until now, our entire understanding of interfacial heat transfer has been based on the phonon gas model and Landauer formalism. Based on this framework, it is difficult to offer any intuition on heat transfer between two solid materials if one side of the interface is an amorphous structure. Here, using the interface conductance modal analysis (ICMA) method, we investigate the modal contributions to thermal interface conductance (TIC) through crystalline (c) and amorphous (a) Si/Ge interfaces. It is revealed that around 15% of the conductance through the cSi/cGe interface arises from less than 0.1% of the modes of vibration in the structure that exist between 12-13THz and because of their large eigenvectors around the interface are classified as interfacial modes. Correlation maps show that these interfacial modes exhibit strong correlations with all the other modes. The physics behind this strong coupling ability is studied by calculating the mode-level harmonic and anharmonic energy distribution among all the atoms in the system. It is found that these interfacial modes are enabled by the large degree of anharmonicity near the interface, which is higher than the bulk and ultimately allows this small group of modes to couple to other modes of vibration. In addition, unlike the cSi/cGe, correlation maps for aSi/cGe, cSi/aGe, and aSi/aGe interfaces show that the majority of contributions to TIC arise from auto-correlations instead of cross-correlations. The provided analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.

  3. Summary of Rocketdyne Engine A5 Rocket Based Combined Cycle Testing

    NASA Technical Reports Server (NTRS)

    Ketchum. A.; Emanuel, Mark; Cramer, John

    1998-01-01

    Rocketdyne Propulsion and Power (RPP) has completed a highly successful experimental test program of an advanced rocket based combined cycle (RBCC) propulsion system. The test program was conducted as part of the Advanced Reusable Technology program directed by NASA-MSFC to demonstrate technologies for low-cost access to space. Testing was conducted in the new GASL Flight Acceleration Simulation Test (FAST) facility at sea level (Mach 0), Mach 3.0 - 4.0, and vacuum flight conditions. Significant achievements obtained during the test program include 1) demonstration of engine operation in air-augmented rocket mode (AAR), ramjet mode and rocket mode and 2) smooth transition from AAR to ramjet mode operation. Testing in the fourth mode (scramjet) is scheduled for November 1998.

  4. Quantifying voids effecting delamination in carbon/epoxy composites: static and fatigue fracture behavior

    NASA Astrophysics Data System (ADS)

    Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.

    2016-04-01

    On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.

  5. Influence of heat transmission mode on heating rates and on the selection of patches for heating in a mediterranean lizard.

    PubMed

    Belliure, Josabel; Carrascal, Luis M

    2002-01-01

    Heliothermy (heat gain by radiation) has been given a prominent role in basking lizards. However, thigmothermy (heat gain by conduction) could be relevant for heating in small lizards. To ascertain the importance of the different heat transmission modes to the thermoregulatory processes, we conducted an experimental study where we analyzed the role of heat transmission modes on heating rates and on the selection of sites for heating in the Mediterranean lizard Acanthodactylus erythrurus (Lacertidae). The study was conducted under laboratory conditions, where two situations of different operative temperatures (38 degrees and 50 degrees C) were simulated in a terrarium. In a first experiment, individuals were allowed to heat up during 2 min at both temperatures and under both heat transmission modes. In a second experiment, individuals were allowed to select between patches differing in the main transmission mode, at both temperatures, to heat up. Experiences were conducted with live, nontethered lizards with a starting body temperature of 27 degrees C. Temperature had a significant effect on the heating rate, with heat gain per unit of time being faster at the higher operative temperature (50 degrees C). The effect of the mode of heat transmission on the heating rate was also significant: at 50 degrees C, heating rate was greater when the main heat transmission mode was conduction from the substrate (thigmothermy) than when heating was mainly due to heat gain by radiation (heliothermy); at 38 degrees C, heating rates did not significantly differ between transmission modes. At 38 degrees C, selection of the site for heating was not significantly different from that expected by chance. However, at 50 degrees C, the heating site offering the slowest heating rate (heliothermic patch) was selected. These results show that heating rates vary not only with environmental temperature but also with different predominant heat transmission modes. Lizards are able to identify and exploit this heterogeneity, selecting the source of heat gain (radiation) that minimizes the risk of overheating when temperature is high.

  6. Nursing essential principles: continuous renal replacement therapy.

    PubMed

    Richardson, Annette; Whatmore, Jayne

    2015-01-01

    This article aims to guide critical care nurses with the care and management of patients on continuous renal replacement therapy (CRRT). CRRT, a highly specialized therapy involving complex nursing care, is used widely in the intensive care unit to treat patients with acute kidney injury. A literature search was conducted using CINAHL, Medline from PubMed and BNI using the search terms CRRT or continuous veno-venous haemofiltration and nursing or nurses from 2000 onwards and limited to the English language. The appraised evidence and expert opinion is used in this article. Four essential nursing principles for CRRT are reviewed (1) the importance of continuous assessment of the indications to influence the appropriate mode; (2) ensuring good vascular access; (3) the avoidance of unnecessary interruptions and (4) the prevention of complications. The identified four essential nursing principles provide guidance on this complex aspects of nursing practice. Specific nursing research to guide the care and management of this therapy is limited so should be explored in the future. Critical care nurses caring for and managing patients on CRRT require an understanding of how to deliver safe CRRT. © 2014 British Association of Critical Care Nurses.

  7. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  8. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  9. Biogas Production from Rice Husk Waste by using Solid State Anaerobic Digestion (SSAD) Method

    NASA Astrophysics Data System (ADS)

    Matin, Hashfi Hawali Abdul; Hadiyanto

    2018-02-01

    An effort to obtain alternative energy is still interesting subject to be studied, especially production of biogas from agriculture waste. This paper was an overview of the latest development of biogas researches from rice husk waste by Solid State Anaerobic Digestion (SSAD). The main obstacle of biogas production from rice husk waste was the lignin content which is very difficult degraded by microbes. Various pretreatments have been conducted, either physically, chemically as well as biologically. The SSAD method was an attractive option because of the low water content of rice husk waste. The biogas yield by SSAD method gave more attractive result compared to Liquid Anaerobic Digestion (LAD) method. Various studies were still conducted in batch mode laboratory scale and also has not found optimum operating conditions. Research on a larger scale such as bench and pilot scale with continuous systems will be an increase trend in the future research.

  10. Size effects on the thermal conductivity of amorphous silicon thin films

    DOE PAGES

    Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; ...

    2016-04-01

    In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less

  11. Comparison of hardness variation of ion irradiated borosilicate glasses with different projected ranges

    NASA Astrophysics Data System (ADS)

    Sun, M. L.; Peng, H. B.; Duan, B. H.; Liu, F. F.; Du, X.; Yuan, W.; Zhang, B. T.; Zhang, X. Y.; Wang, T. S.

    2018-03-01

    Borosilicate glass has potential application for vitrification of high-level radioactive waste, which attracts extensive interest in studying its radiation durability. In this study, sodium borosilicate glass samples were irradiated with 4 MeV Kr17+ ion, 5 MeV Xe26+ ion and 0.3 MeV P+ ion, respectively. The hardness of irradiated borosilicate glass samples was measured with nanoindentation in continuous stiffness mode and quasi continuous stiffness mode, separately. Extrapolation method, mean value method, squared extrapolation method and selected point method are used to obtain hardness of irradiated glass and a comparison among these four methods is conducted. The extrapolation method is suggested to analyze the hardness of ion irradiated glass. With increasing irradiation dose, the values of hardness for samples irradiated with Kr, Xe and P ions dropped and then saturated at 0.02 dpa. Besides, both the maximum variations and decay constants for three kinds of ions with different energies are similar indicates the similarity behind the hardness variation in glasses after irradiation. Furthermore, the hardness variation of low energy P ion irradiated samples whose range is much smaller than those of high energy Kr and Xe ions, has the same trend as that of Kr and Xe ions. It suggested that electronic energy loss did not play a significant role in hardness decrease for irradiation of low energy ions.

  12. Low-Cost Production of Composite Bushings for Jet Engine Applications

    NASA Technical Reports Server (NTRS)

    Gray, Robert A.

    1998-01-01

    The objectives of this research program were to reduce the manufacturing costs of variable stator vane bushings by 1) eliminating the expensive carbon fiber braiding operation, 2) replacing the batch mode impregnation, B-stage, and cutting operations with a continuous process, and 3) reducing the molding cycle and machining operations with injection molding to achieve near-net shapes. Braided bushings were successfully fabricated with both AMB-17XLD and AMB-TPD resin systems. The composite bushings achieved high glass transition temperature after post-cure (+300 C) and comparable weight loss to the PNM-15 bushings. ANM-17XLD bushings made with "batch-mode" molding compound (at 0.5 in. fiber length) achieved a +300 lb-force flange break strength which was superior to the continuous braided-fiber reinforced bushing. The non-MDA resin technology developed in this contract appears attractive for bushing applications that do not exceed a 300 C use temperature. Two thermoplastic polyimide resins were synthesized in order to generate injection molding compound powders. Excellent processing results were obtained at injection temperatures in excess of 300 C. Micro-tensile specimens were produced from each resin type and the Tg measurements (by TMA) for these samples were equivalent to AURUM(R). Thermal Gravimetric Analysis (TGA) conducted at 10 C/min showed that the non-MDA AMB-type polyimide thermoplastics had comparable weight loss to PMR-15 up to 500 C.

  13. Simultaneous saccharification and fermentation and economic evaluation of ultrasonic and jet cooking pretreatment of corn slurry.

    PubMed

    Montalbo-Lomboy, Melissa; Khanal, Samir Kumar; van Leeuwen, Johannes Hans; Raman, David Raj; Grewell, David

    2011-01-01

    The potential of ultrasonics to replace hydrocooking in corn-to-ethanol plants was examined in this study. Batch and continuous experiments were conducted on corn slurry with sonication at a frequency of 20 kHz. Batch mode used a catenoidal horn operated at an amplitude of 144 μm peak-to-peak (p–p) for 90 s. Continuous experiments used a donut horn operating at inner radius amplitude of 12 μm p–p. Jet-cooked samples from the same ethanol plant were compared with ultrasonicated samples. The highest starch-to-ethanol conversion was obtained by the jet-cooked samples with a yield of 74% of the theoretical yield. Batch and continuous sonication achieved 71.2% and 68% conversion, respectively, however, statistical analysis showed no significant difference between the jet cooking and ultrasonication. On the basis of the similar performance, an economic analysis was conducted comparing jet cooking and ultrasonic pretreatment. The analysis showed that the capital cost for the ultrasonics system was ~10 times higher compared to the capital cost of a hydrocooker. However,due to the large energy requirements of hydrocookers, the analysis showed lower total overall costs for continuous ultrasonication than that for jet cooking, assuming the current energy prices. Because of the high utility cost calculated for jet cooking, it is concluded that ultrasonication poses as a more economical option than jet cooking. Overall, the study shows that ultrasonics is a technically and economically viable alternative to jet cooking in dry-grind corn ethanol plant. © 2011 American Institute of Chemical Engineers

  14. Ferromagnetic resonance in a topographically modulated permalloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control spin wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the magnon spectrum. To demonstrate this technique we have performed in-plane, broad-band, ferromagnetic res- onance studies on a 100 nm Permalloy film sputtered unto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were studied as a function ofmore » the in plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary spin wave modes; the ratio of the amplitude of these two modes exhibits a six-fold dependence. Modeling shows that both modes are fundamental modes that are nodeless in the unit cell but reside in different demagnetized regions of the unit cell. Additionally, modeling suggests the presence of new higher order topographically modified spin wave modes. Our results demonstrate that topographic modification of magnetic thin films opens new directions for manipulating spin wave modes.« less

  15. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  16. Andreev rectifier: A nonlocal conductance signature of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.

    2018-01-01

    The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.

  17. Soliton microdynamics and thermal conductivity of uranium nitride at high temperatures

    NASA Astrophysics Data System (ADS)

    Dubovsky, O. A.; Orlov, A. V.; Semenov, V. A.

    2011-09-01

    The microdynamics of soliton waves and localized modes of nonlinear vibrations of the acoustic and optical types in uranium nitride has been investigated. It has been shown that, with an increase in the excitation energy in the spectral gap between the bands of optical and acoustic phonons, the energies of solitons increase, whereas the energies of local modes decrease. The previously experimentally observed unidentified quasi-resonant features, which shift in the gap with variations in the temperature, can represent the revealed soliton waves and local modes. The microdynamics of heat conduction of uranium nitride has been studied for the stochastic generation of soliton waves and local modes in the case of spatially distant energy absorption. The thermal conductivity coefficient determined from the temperature gradient and the absorbed energy flux insignificantly exceeds the experimentally observed values, which are decreased because of the presence of structural defects of different types in the material.

  18. Stabilizing windings for tilting and shifting modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardin, S.C.; Christensen, U.R.

    1982-02-26

    This invention provides simple, inexpensive, independent and passive, conducting loops for stabilizing a plasma ring having externally produced equilibrium fields on opposite sides of the plasma ring and internal plasma currents that interact to tilt and/or shift the plasma ring relative to the externally produced equilibrium field so as to produce unstable tilting and/or shifting modes in the plasma ring. More particularly this invention provides first and second passive conducting loops for containing first and second induced currents in first and second directions corresponding to the amplitude and directions of the unstable tilting and/or shifting modes in the plasma ring.more » To this end, the induced currents provide additional magnetic fields for producing restoring forces and/or restoring torques for counteracting the tilting and/or shifting modes when the conducting loops are held fixed in stationary positions relative to the externally produced equilibrium fields on opposite sides of the plasma ring.« less

  19. A 2:1 AV rhythm: an adverse effect of a long AV delay during DDI pacing and its prevention by the ventricular intrinsic preference algorithm in DDD mode.

    PubMed

    Minamiguchi, Hitoshi; Oginosawa, Yasushi; Kohno, Ritsuko; Tamura, Masahito; Takeuchi, Masaaki; Otsuji, Yutaka; Abe, Haruhiko

    2012-07-01

    A 91-year-old woman received a dual-chamber pacemaker for sick sinus syndrome and intermittently abnormal atrioventricular (AV) conduction. The pacemaker was set in DDI mode with a 350-ms AV delay to preserve intrinsic ventricular activity. She complained of palpitation during AV sequential pacing. The electrocardiogram showed a 2:1 AV rhythm from 1:1 ventriculoatrial (VA) conduction during ventricular pacing in DDI mode with a long AV interval. After reprogramming of the pacemaker in DDD mode with a 250-ms AV interval and additional 100-ms prolongation of the AV interval by the ventricular intrinsic preference function, VA conduction disappeared and the patient's symptom were alleviated without increasing unnecessary right ventricular pacing. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  20. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  1. Engineering non-linear resonator mode interactions in circuit QED by continuous driving: Introduction

    NASA Astrophysics Data System (ADS)

    Pfaff, Wolfgang; Reagor, Matthew; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Krastanov, Stefan; Frunzio, Luigi; Devoret, Michel; Jiang, Liang; Schoelkopf, Robert

    2015-03-01

    High-Q microwave resonators show great promise for storing and manipulating quantum states in circuit QED. Using resonator modes as such a resource in quantum information processing applications requires the ability to manipulate the state of a resonator efficiently. Further, one must engineer appropriate coupling channels without spoiling the coherence properties of the resonator. We present an architecture that combines millisecond lifetimes for photonic quantum states stored in a linear resonator with fast measurement provided by a low-Q readout resonator. We demonstrate experimentally how a continuous drive on a transmon can be utilized to generate highly non-classical photonic states inside the high-Q resonator via effective nonlinear resonator mode interactions. Our approach opens new avenues for using modes of long-lived linear resonators in the circuit QED platform for quantum information processing tasks.

  2. Analysis of digital images into energy-angular momentum modes.

    PubMed

    Vicent, Luis Edgar; Wolf, Kurt Bernardo

    2011-05-01

    The measurement of continuous wave fields by a digital (pixellated) screen of sensors can be used to assess the quality of a beam by finding its formant modes. A generic continuous field F(x, y) sampled at an N × N Cartesian grid of point sensors on a plane yields a matrix of values F(q(x), q(y)), where (q(x), q(y)) are integer coordinates. When the approximate rotational symmetry of the input field is important, one may use the sampled Laguerre-Gauss functions, with radial and angular modes (n, m), to analyze them into their corresponding coefficients F(n, m) of energy and angular momentum (E-AM). The sampled E-AM modes span an N²-dimensional space, but are not orthogonal--except for parity. In this paper, we propose the properly orthonormal "Laguerre-Kravchuk" discrete functions Λ(n, m)(q(x), q(y)) as a convenient basis to analyze the sampled beams into their E-AM polar modes, and with them synthesize the input image exactly.

  3. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  4. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    NASA Astrophysics Data System (ADS)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  5. Smooth integral sliding mode controller for the position control of Stewart platform.

    PubMed

    Kumar P, Ramesh; Chalanga, Asif; Bandyopadhyay, B

    2015-09-01

    This paper proposes the application of a new algorithm for the position control of a Stewart platform. The conventional integral sliding mode controller is a combination of nominal control and discontinuous feedback control hence the overall control is discontinuous in nature. The discontinuity in the feedback control is undesirable for practical applications due to chattering which causes the wear and tear of the mechanical actuators. In this paper the existing integral sliding mode control law for systems with matched disturbances is modified by replacing the discontinuous part by a continuous modified twisting control. This proposed controller is continuous in nature due to the combinations of two continuous controls. The desired position of the platform has been achieved using the proposed controller even in the presence of matched disturbances. The effectiveness of the proposed controller has been proved with the simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Optimization of transonic wind tunnel data acquisition and control systems for providing continuous mode tests

    NASA Astrophysics Data System (ADS)

    Petronevich, V. V.

    2016-10-01

    The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.

  7. Evaluation of a Graduate Seminar Conducted by Listserv.

    ERIC Educational Resources Information Center

    Weiss, Renee E.; Morrison, Gary R.

    This study examined the efficacy of a class discussion conducted by listserv which was used instead of classroom meetings for a graduate seminar. Research focused on whether this mode of communication was successful for the purpose of the course, and how this mode of communication could be improved as a means for replacing or supplementing…

  8. The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer

    NASA Astrophysics Data System (ADS)

    Latyshev, A. V.; Gordeeva, N. M.

    2017-09-01

    We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.

  9. Analysis of non-contact and contact probe-to-sample thermal exchange for quantitative measurements of thin film and nanostructure thermal conductivity by the scanning hot probe method

    NASA Astrophysics Data System (ADS)

    Wilson, Adam A.

    The ability to measure thermal properties of thin films and nanostructured materials is an important aspect of many fields of academic study. A strategy especially well-suited for nanoscale investigations of these properties is the scanning hot probe technique, which is unique in its ability to non-destructively interrogate the thermal properties with high resolution, both laterally as well as through the thickness of the material. Strategies to quantitatively determine sample thermal conductivity depend on probe calibration. State of the art calibration strategies assume that the area of thermal exchange between probe and sample does not vary with sample thermal conductivity. However, little investigation has gone into determining whether or not that assumption is valid. This dissertation provides a rigorous study into the probe-to-sample heat transfer through the air gap at diffusive distances for a variety of values of sample thermal conductivity. It is demonstrated that the thermal exchange radius and gap/contact thermal resistance varies with sample thermal conductivity as well as tip-to-sample clearance in non-contact mode. In contact mode, it is demonstrated that higher thermal conductivity samples lead to a reduction in thermal exchange radius for Wollaston probe tips. Conversely, in non-contact mode and in contact mode for sharper probe tips where air contributes the most to probe-to-sample heat transfer, the opposite trend occurs. This may be attributed to the relatively strong solid-to-solid conduction occurring between probe and sample for the Wollaston probes. A three-dimensional finite element (3DFE) model was developed to investigate how the calibrated thermal exchange parameters vary with sample thermal conductivity when calibrating the probe via the intersection method in non-contact mode at diffusive distances. The 3DFE model was then used to explore the limits of sensitivity of the experiment for a range of simulated experimental conditions. It is determined that, when operating the scanning hot probe technique in air at standard temperature and pressure using Wollaston probes, the technique is capable of measuring, within 20% uncertainty, samples with values of thermal conductivity up to 10 Wm-1K-1 in contact mode and up to 2 Wm-1K-1 in non-contact mode. By increasing the thermal conductivity of the probe's surroundings (i.e. changing air to a more conductive gas), sensitivity in non-contact mode to sample thermal conductivity is improved, which suggests potential for future investigations using non-contact scanning hot probe to measure thermal conductivity of higher thermal conductivity samples. The ability of the technique to differentiate thin films from the substrate is investigated, and the sensitivity of the technique to thin films and samples with anisotropic properties is explored. The models (both analytical and finite element) developed and reported in this dissertation lead to the ability to measure samples which, by the standard procedure before this work, were unable to be accurately measured. While other techniques failed to be able to successfully interrogate the film thermal conductivity of a full set of double-wall carbon nanotubes infused into polymers, the methods developed in this work allowed non-contact scanning hot probe measurements to be successfully performed to obtain the film thermal conductivity for each sample. Finite element simulations accounting for the anisotropy of these thin film on sample materials show similar trends with independently measured in-plane thermal conductivity for the only two (of five) samples in the set which were successfully able to be measured by the independent technique. Investigations in contact mode with high resolution Pd probes, whose probe-to-sample clearance is difficult to control in a repeatable fashion, show that surface roughness affects the thermal contact resistance. This can lead to values of reported sample thermal conductivity which are misleading, when using the standard calibrated thermal exchange parameters on samples with significantly different surface roughness than the calibration samples. This affect was taken into account to report sample thermal conductivity of Bi2Te3 nanoflakes.

  10. Phonon thermal transport through tilt grain boundaries in strontium titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zexi; Chen, Xiang; Yang, Shengfeng

    2014-08-21

    In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance.more » To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.« less

  11. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS whilemore » blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.« less

  12. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg–Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  13. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    PubMed

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  14. Helmet-mounted display systems for flight simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loren A.; Bucher, Nancy M.

    1989-01-01

    Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.

  15. Operational summary of an electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G. E.; James, E. L.; Bechtel, R. T.

    1982-01-01

    An automated test facility capable of simultaneously operating three 2.5 kW, 30-cm mercury ion thrusters and their power processors is described, along with a test program conducted for the documentation of thruster characteristics as a function of time. Facility controls are analog, with full redundancy, so that in the event of malfunction the facility automaticcally activates a backup mode and notifies an operator. Test data are recorded by a central data collection system and processed as daily averages. The facility has operated continuously for a period of 37 months, over which nine mercury ion thrusters and four power processor units accumulated a total of over 14,500 hours of thruster operating time.

  16. Modelling, design and stability analysis of an improved SEPIC converter for renewable energy systems

    NASA Astrophysics Data System (ADS)

    G, Dileep; Singh, S. N.; Singh, G. K.

    2017-09-01

    In this paper, a detailed modelling and analysis of a switched inductor (SI)-based improved single-ended primary inductor converter (SEPIC) has been presented. To increase the gain of conventional SEPIC converter, input and output side inductors are replaced with SI structures. Design and stability analysis for continuous conduction mode operation of the proposed SI-SEPIC converter has also been presented in this paper. State space averaging technique is used to model the converter and carry out the stability analysis. Performance and stability analysis of closed loop configuration is predicted by observing the open loop behaviour using Nyquist diagram and Nichols chart. System was found to stable and critically damped.

  17. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  18. Quantum correlations for bipartite continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang

    2018-04-01

    Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.

  19. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    NASA Technical Reports Server (NTRS)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  20. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-09-21

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO 2 ) using micro-organisms as biocatalysts. MES from CO 2 comprises bioelectrochemical reduction of CO 2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO 2 as a feedstock for chemicals is gaining much attention, since CO 2 is abundantly available and its use is independent of the food supply chain. MES based on CO 2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO 2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO 2  : N 2 gas. The highest acetate production rate of 149 mg L -1 d -1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L -1 d -1 . In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO 2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO 2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO 2 as a next generation feedstock.

  1. Testing quantum contextuality of continuous-variable states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, Gerard; Paternostro, Mauro; Paris, Matteo G. A.

    2011-06-15

    We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for anymore » two-mode state by using pseudospin observables and a generalized quasiprobability function.« less

  2. Mixed-Mode Surveys: A Strategy to Reduce Costs and Enhance Response Rates

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; Radhakrishna, Rama; LaBorde, Luke

    2012-01-01

    Mixed-mode surveys present one opportunity for Extension to determine program outcomes at lower costs. In order to conduct a follow-up evaluation, we implemented a mixed-mode survey that relied on communication using the Web, postal mailings, and telephone calls. Using multiple modes conserved costs by reducing the number of postal mailings yet…

  3. Tissue lesion created by HIFU in continuous scanning mode

    NASA Astrophysics Data System (ADS)

    Fan, Tingbo; Liu, Zhenbo; Zhang, Dong

    2012-09-01

    The lesion formation was numerically and experimentally investigated by the continuous scanning mode. Simulations were presented based on the combination of Khokhlov-Zabolotskaya-Kuznetov (KZK) equation and bio-heat equation. Measurements were performed on porcine liver tissues using a 1.01 MHz single-element focused transducer at various acoustic powers, confirmed the predicted results. Controlling of the peak temperature and lesion by the scanning speed may be exploited for improvement of efficiency in HIFU therapy.

  4. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  5. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  6. Numerical study on a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier

    NASA Astrophysics Data System (ADS)

    Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng

    2018-03-01

    The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.

  7. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  8. Monolithic single mode interband cascade lasers with wide wavelength tunability

    NASA Astrophysics Data System (ADS)

    von Edlinger, M.; Weih, R.; Scheuermann, J.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-11-01

    Monolithic two-section interband cascade lasers offering a wide wavelength tunability in the wavelength range around 3.7 μm are presented. Stable single mode emission in several wavelength channels was realized using the concept of binary superimposed gratings and two-segment Vernier-tuning. The wavelength selective elements in the two segments were based on specially designed lateral metal grating structures defined by electron beam lithography. A dual-step dry etch process provided electrical separation between the segments. Individual current control of the segments allowed wavelength channel selection as well as continuous wavelength tuning within channels. A discontinuous tuning range extending over 158 nm in up to six discrete wavelength channels was achieved. Mode hop free wavelength tuning up to 14 nm was observed within one channel. The devices can be operated in continuous wave mode up to 30 °C with the output powers of 3.5 mW around room temperature.

  9. Large spot transpupillary thermotherapy: a quicker laser for treatment of high risk prethreshold retinopathy of prematurity - a randomized study.

    PubMed

    Shah, Parag K; Narendran, V; Kalpana, N

    2011-01-01

    To compare structural and functional outcome and time efficiency between standard spot sized conventional pulsed mode diode laser and continuous mode large spot transpupillary thermotherapy (LS TTT) for treatment of high risk prethreshold retinopathy of prematurity (ROP). Ten eyes of five preterm babies having bilateral symmetrical high risk prethreshold ROP were included in this study. One eye of each baby was randomized to get either standard spot sized conventional pulsed mode diode laser or continuous mode LS TTT. There was no significant difference between structural or functional outcome in either group. The mean time taken for conventional diode laser was 20.07 minutes, while that for LS TTT was 12.3 minutes. LS TTT was 40% more time efficient than the conventional laser. It may be better suited for the very small fragile premature infants as it is quicker than the conventional laser.

  10. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.

    PubMed

    Hu, Ming; Giapis, Konstantinos P; Goicochea, Javier V; Zhang, Xiaoliang; Poulikakos, Dimos

    2011-02-09

    We report on the effect of germanium (Ge) coatings on the thermal transport properties of silicon (Si) nanowires using nonequilibrium molecular dynamics simulations. Our results show that a simple deposition of a Ge shell of only 1 to 2 unit cells in thickness on a single crystalline Si nanowire can lead to a dramatic 75% decrease in thermal conductivity at room temperature compared to an uncoated Si nanowire. By analyzing the vibrational density states of phonons and the participation ratio of each specific mode, we demonstrate that the reduction in the thermal conductivity of Si/Ge core-shell nanowire stems from the depression and localization of long-wavelength phonon modes at the Si/Ge interface and of high frequency nonpropagating diffusive modes.

  11. Improving performance of MFC by design alteration and adding cathodic electrolytes.

    PubMed

    Jadhav, G S; Ghangrekar, M M

    2008-12-01

    Performance of two microbial fuel cells (MFCs) was investigated under batch and continuous mode of operation using different cathodic electrolyte. The wastewater was supplied from the bottom port provided to the anode chamber in both the MFCs and the effluent left the anode chamber from the top port in MFC-1, whereas in MFC-2, the effluent exit was provided close to membrane. Stainless steel (SS) mesh anode was used in both the MFCs with surface area of 167 and 100 cm(2) in MFC-1 and MFC-2, respectively. Under batch mode and continuous mode of operation, these MFCs gave chemical oxygen demand removal efficiency more than 85% and about 68%, respectively. Under batch mode of operation, maximum power density of 39.95 and 56.87 mW/m(2) and maximum current density of 180.83 and 295 mA/m(2) were obtained in MFC-1 and MFC-2, respectively. Under continuous mode of operation, a reduction in power and current density was observed. Even with less surface area of the anode, MFC-2 produced more current (1.77 mA) than MFC-1 (1.40 mA). Among the cathodic electrolyte tested, these can be listed in decreasing order of power density as aerated KMnO(4) solution > KMnO(4) solution without aeration > aerated tap water > aerated tap water with NaCl.

  12. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors.

    PubMed

    Ha, Keum-Won; Lee, Jeong-Yun; Kim, Jeong-Geun; Baek, Donghyun

    2018-04-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor.

  13. Design of Dual-Mode Local Oscillators Using CMOS Technology for Motion Detection Sensors

    PubMed Central

    Lee, Jeong-Yun; Kim, Jeong-Geun

    2018-01-01

    Recently, studies have been actively carried out to implement motion detecting sensors by applying radar techniques. Doppler radar or frequency-modulated continuous wave (FMCW) radar are mainly used, but each type has drawbacks. In Doppler radar, no signal is detected when the movement is stopped. Also, FMCW radar cannot function when the detection object is near the sensor. Therefore, by implementing a single continuous wave (CW) radar for operating in dual-mode, the disadvantages in each mode can be compensated for. In this paper, a dual mode local oscillator (LO) is proposed that makes a CW radar operate as a Doppler or FMCW radar. To make the dual-mode LO, a method that controls the division ratio of the phase locked loop (PLL) is used. To support both radar mode easily, the proposed LO is implemented by adding a frequency sweep generator (FSG) block to a fractional-N PLL. The operation mode of the LO is determined by according to whether this block is operating or not. Since most radar sensors are used in conjunction with microcontroller units (MCUs), the proposed architecture is capable of dual-mode operation by changing only the input control code. In addition, all components such as VCO, LDO, and loop filter are integrated into the chip, so complexity and interface issues can be solved when implementing radar sensors. Thus, the proposed dual-mode LO is suitable as a radar sensor. PMID:29614777

  14. Advances in heat conduction models and approaches for the prediction of lattice thermal conductivity of dielectric materials

    NASA Astrophysics Data System (ADS)

    Saikia, Banashree

    2017-03-01

    An overview of predominant theoretical models used for predicting the thermal conductivities of dielectric materials is given. The criteria used for different theoretical models are explained. This overview highlights a unified theory based on temperature-dependent thermal-conductivity theories, and a drifting of the equilibrium phonon distribution function due to normal three-phonon scattering processes causes transfer of phonon momentum to (a) the same phonon modes (KK-S model) and (b) across the phonon modes (KK-H model). Estimates of the lattice thermal conductivities of LiF and Mg2Sn for the KK-H model are presented graphically.

  15. Effect of 830 nm Diode Laser Irradiation of Root Canal on Bond Strength of Metal and Fiber Post.

    PubMed

    Strefezza, Claudia; Amaral, Marcello Magri; Quinto, José; Gouw-Soares, Sheila Cynthia; Zamataro, Claudia Bianchi; Zezell, Denise Maria

    2018-05-16

    The correct selections of the cementing agent, the endodontic post material and placement protocol are critical to provide an increased longevity of the teeth that went through endodontic treatment. The irradiation with diode laser before post cementation, can promote an antimicrobial effect. However, there is a lack of information about the effect of 830 nm diode laser on the post bond strength. This study analyzed the effect of dentin root canal irradiation with high-intensity diode laser, at 830 nm, operating in continuous or pulsed mode, on the retention of metal or fiber posts, cemented with self-etching resinous composite (Panavia F) and zinc phosphate cement (ZnPO 4 ). Human roots were irradiated with diode laser (continuous and pulsed mode). The fiber posts were luted with Panavia F and the metal posts with Panavia F or ZnPO 4 cement. Specimens were sectioned into three sections (cervical, middle, and apical). The bond strength was measured by a push-out mechanical analysis. For the statistical analysis, a three-way ANOVA test was applied following a Tukey's pairwise comparison with a significance level of p = 0.05. The irradiated groups presented higher bond strength compared with nonirradiated group (p < 0.05), and the cervical and middle thirds presented higher on bond strength than the apical. The association of metal post and Panavia F presented higher bond strength when irradiated on continuous mode (p < 0.05). Fiber post and Panavia F presented higher bond strength associated to pulsed mode. The mode seems not to make a significant difference. These results corroborate the importance of the post bond to dentin and root canal debris removal to increase the tooth longevity. It was shown that the dentin to post bond strength were enhanced by the diode laser irradiation either on continuous or pulsed modes.

  16. Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers

    NASA Astrophysics Data System (ADS)

    Kilen, Isak Ragnvald

    Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.

  17. Brewery and liquid manure wastewaters as potential feedstocks for microbial fuel cells: a performance study.

    PubMed

    Angosto, J M; Fernández-López, J A; Godínez, C

    2015-01-01

    This work aims at the comparison of the electrical and chemical performance of microbial fuel cells (MFCs) fed with several types of brewery and manure industrial wastewaters. Experiments were conducted in a single-cell MFC with the cathode exposed to air operated in batch and fed-batch modes. In fed-batch mode, after 4 days of operation, a standard MFC was refilled with crude wastewater to regenerate the biofilm and recreate initial feeding conditions. Brewery wastewater (CV1) mixed with pig-farm liquid manure (PU sample) gave the highest voltage (199.8 mV) and power density (340 mW/m3) outputs than non-mixed brewery waste water. Also, coulombic efficiency is much larger in the mixture (11%) than in the others (2-3%). However, in terms of chemical oxygen demand removal, the performance showed to be poorer (53%) for the mixed sample than in the pure brewery sample (93%). Fed-batch operation showed to be a good alternate for quasi-continuous operation, with equivalent electrical and chemical yields as compared with normal batchwise operation.

  18. Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers

    NASA Astrophysics Data System (ADS)

    Giannakis, Dimitrios

    2009-06-01

    Free-surface Hartmann flow is the parallel flow of a viscous, electrically conducting, capillary fluid on a planar surface, subject to gravity and a flow- normal magnetic field. This type of flow arises in a variety of industrial and astrophysical contexts, including liquid-metal walls in fusion devices, heavy- ion accelerator targets, and surface layers of white dwarfs and neutron stars. Typically, the Reynolds number, Re >10 4 , is high, and the background magnetic field is strong ( Ha >100, where the Hartmann number, Ha , measures the square root of the ratio of electromagnetic to viscous forces). On the other hand, the magnetic Prandtl number, Pm (the ratio of viscous to magnetic diffusivity), of laboratory fluids is small (e.g., Pm <10 -4 for liquid metals), as is the case in a number of astrophysical models. When the background magnetic field is zero, free-surface Hartmann flow exhibits the so-called soft and hard instability modes; the former being a surface wave destabilized by viscous stresses acting on the free surface, whereas the latter is a shear mode destabilized by positive Reynolds stress associated with an internal critical layer. We study in detail the influence of the external magnetic field on these two instabilities, working in the regime Pm <10^-4. We also consider flows in the inductionless limit, Pr [arrow right]0, where magnetic field perturbations diffuse infinitely fast, and the sole MHD effect is a Lorentz force arising from currents induced by the perturbed fluid motion within the background magnetic field. We have developed a spectral Galerkin method to solve the coupled Orr- Sommerfeld and induction equations, which, in conjunction with suitable stress conditions at the free surface and continuity conditions for the magnetic field, govern the linear stability of free-surface Hartmann flow. Our scheme's discrete bases for the velocity and magnetic fields consist of linear combinations of Legendre polynomials, chosen according to the order of the Sobolev spaces of the continuous problem. The orthogonality properties of the bases solve the matrix-coefficient growth problem of the discrete stability operators, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p =3000 with p -independent roundoff error. We find that, because it is a critical-layer instability (moderately modified by the presence of the free surface), the hard mode exhibits similar behavior to the even unstable mode in the corresponding closed-channel flow, in terms of both the weak influence of Pm on its neutral-stability curve and the monotonic increase of its critical Reynolds number, Re c , with the Hartmann number. In contrast, the soft mode's stability properties exhibit the novel behavior of differing markedly between problems with small, but nonzero, Pm and their counterparts in the inductionless limit. Notably, the critical Reynolds number of the soft mode grows exponentially with Ha in inductionless problems, but when Pm is nonzero that growth is suppressed to either a sublinearly increasing, or a decreasing function of Ha (respectively when the lower wall is an electrical insulator or a perfect conductor). In the insulating-wall case, we also observe pairs of counter-propagating Alfvén waves, the upstream- propagating wave undergoing an instability at high Alfvén numbers. We attribute the observed Pm -sensitivity of the soft instability to the strong-field behavior of the participating inductionless mode, which, even though stabilized by the magnetic field, approaches neutral stability as Ha grows. This near-equilibrium is consistent with a balance between Lorentz and gravitational forces, and renders the mode susceptible to effects associated with the dynamical response of the magnetic field to the flow (which vanishes in the inductionless limit), even when the magnetic diffusivity is large. The boundary conditions play a major role in the magnetic field response to the flow, since they determine (i) the properties of the steady-state induced current, which couples magnetic perturbations to the velocity field, and (ii) the presence or not of magnetic modes in the spectrum (these modes are not part of the spectrum of conducting-wall problems), which interact with the hydrodynamic ones, including the soft mode. In general, our analysis indicates that the inductionless approximation must be used with caution when dealing with free-surface MHD.

  19. Report on radio observation of meteors (Iža, Slovakia)

    NASA Astrophysics Data System (ADS)

    Dolinský, Peter; Dorotovič, Ivan; Vidovenec, Marian

    2014-02-01

    During the period from 1 to 17 August 2014 meteors were experimentally registered using radio waves. This experiment was conducted in the village of Iža, Slovakia. Its main objective was to test the technical equipment intended for continuous registration of meteor echoes, which will be located in the Slovak Central Observatory in Hurbanovo. These tests are an indirect continuation of previous experiments of observation of meteor showers using the technology available in Hurbanovo at the end of the 20th and the beginning of the 21st century. The device consists of two independent receiver systems. One recorded echoes of the transmitter Graves 143.050 MHz (N47.3480° E5.5151°, France) and the second one recorded echoes of the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine). The apparatus for tracking radio echoes of the transmitter Graves consists of a 9-element Yagi antenna with vertical polarization (oriented with an elevation of 0° at azimuth 270°), the receiver Yaesu VR-5000 in CW mode, and a computer with registration using the program HROFFT v1.0.0f. The second apparatus recording the echoes of the transmitter Lviv consists of a LP (log-periodic) antenna with horizontal polarization (elevation of 0° and azimuth of 90°), the receiver ICOM R-75 in the CW mode, and also a computer with registration using HROFFT v1.0.0f. A total of about 78000 echoes have been registered during around 700 hours of registration. Probably not all of them are caused by meteors. These data were statistically processed and compared with visual observations in the IMO database. Planned own visual observations could not be performed due to unfavourable weather conditions lasting from 4 to 13 August 2014. The registered data suggest that observations were performed in the back-scatter mode in this configuration and not in the planned forward-scatter mode. Deeper analysis and longer data sets are, however, necessary to calibrate the observation system and this will be subject of our future work. A realization of a custom radio system similar to the BRAMS system is also being considered.

  20. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  1. Quantification and scaling of multipartite entanglement in continuous variable systems.

    PubMed

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-11-26

    We present a theoretical method to determine the multipartite entanglement between different partitions of multimode, fully or partially symmetric Gaussian states of continuous variable systems. For such states, we determine the exact expression of the logarithmic negativity and show that it coincides with that of equivalent two-mode Gaussian states. Exploiting this reduction, we demonstrate the scaling of the multipartite entanglement with the number of modes and its reliable experimental estimate by direct measurements of the global and local purities.

  2. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  3. Stabilization of electrically conducting capillary bridges using feedback control of radial electrostatic stresses and the shapes of extended bridges

    NASA Astrophysics Data System (ADS)

    Marr-Lyon, Mark J.; Thiessen, David B.; Blonigen, Florian J.; Marston, Philip L.

    2000-05-01

    Electrically conducting, cylindrical liquid bridges in a density-matched, electrically insulating bath were stabilized beyond the Rayleigh-Plateau (RP) limit using electrostatic stresses applied by concentric ring electrodes. A circular liquid cylinder of length L and radius R in real or simulated zero gravity becomes unstable when the slenderness S=L/2R exceeds π. The initial instability involves the growth of the so-called (2, 0) mode of the bridge in which one side becomes thin and the other side rotund. A mode-sensing optical system detects the growth of the (2, 0) mode and an analog feedback system applies the appropriate voltages to a pair of concentric ring electrodes positioned near the ends of the bridge in order to counter the growth of the (2, 0) mode and prevent breakup of the bridge. The conducting bridge is formed between metal disks which are grounded. Three feedback algorithms were tested and each found capable of stabilizing a bridge well beyond the RP limit. All three algorithms stabilized bridges having S as great as 4.3 and the extended bridges broke immediately when feedback was terminated. One algorithm was suitable for stabilization approaching S=4.493… where the (3, 0) mode is predicted to become unstable for cylindrical bridges. For that algorithm the equilibrium shapes of bridges that were slightly under or over inflated corresponded to solutions of the Young-Laplace equation with negligible electrostatic stresses. The electrical conductivity of the bridge liquid need not be large. The conductivity was associated with salt added to the aqueous bridge liquid.

  4. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaokun; Yang, Ronggui, E-mail: Ronggui.Yang@Colorado.Edu

    2015-01-14

    There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicenemore » shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.« less

  5. The Importance of Phonons with Negative Phase Quotient in Disordered Solids.

    PubMed

    Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun

    2018-02-08

    Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.

  6. A continuous-discrete approach for evaluation of natural frequencies and mode shapes of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman

    2016-09-01

    In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.

  7. A Review and Empirical Comparison of Two Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy and Cognitive Behavior Therapy

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of two treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  8. Study on the continuing education innovative talents training mode of civil engineering major

    NASA Astrophysics Data System (ADS)

    Sun, Shengnan; Su, Zhibin; Cui, Shicai

    2017-12-01

    According to the characteristics of civil engineering professional continuing education, continuing education of innovative talents training mode suitable for the characteristics of our school is put forward in this paper. The characteristics of the model include: the education of professional basic courses and specialized courses should be paid attention to; engineering training should be strengthened and engineering quality should be trained; the concept of large civil engineering should be highlighted, the specialized areas should be broadened, and the curriculum system should be reconstructed; the mechanism of personnel training program should be constructed by the employers, the domestic highlevel institutions and our university. It is hoped that the new training model will promote the development of continuing education of civil engineering specialty in our university.

  9. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  10. A qualitative study of nulliparous women's decision making on mode of delivery under China's two-child policy.

    PubMed

    Gu, Chunyi; Zhu, Xinli; Ding, Yan; Setterberg Simone; Wang, Xiaojiao; Tao, Hua; Zhang, Yu

    2018-07-01

    To explore nulliparous women's perceptions of decision making regarding mode of delivery under China's two-child policy. Qualitative descriptive design with in-depth semi-structured interviews. Postnatal wards at a tertiary specialized women's hospital in Shanghai, China. 21 nulliparous women 2-3 days postpartum were purposively sampled until data saturation. In-depth semi-structured interviews were conducted between October 8th, 2015 and January 31st, 2016. Two overarching descriptive categories were identified: (1) women's decision-making process: stability versus variability, and (2) factors affecting decision making: variety versus interactivity. Four key themes emerged from each category: (1) initial decision making with certainty: anticipated trial of labour, failed trial of labour, 'shy away' and compromise, anticipated caesarean delivery; (2) initial decision making with uncertainty: anticipated trial of labour, failed trial of labour, 'shy away' and compromise; (3) internal factors affecting decision making: knowledge and attitude, and childbirth self-efficacy; and (4) external factors affecting decision making: social support, and the situational environment. At the initial period of China's two-child policy, nulliparous women have perceived their decision-making process regarding mode of delivery as one with complexity and uncertainty, influenced by both internal and external factors. This may have implications for the obstetric setting to develop a well-designed decision support system for pregnant women during the entire pregnancy periods. And it is recommended that care providers should assess women's preferences for mode of delivery from early pregnancy and provide adequate perinatal support and continuity of care for them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    NASA Astrophysics Data System (ADS)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures < 40-80% lithostatic in the Andersonian regime; and (2) sporadic hybrid extensional + shear (modes I + II/III) failure occurs at differential stresses < 20 MPa and anomalously high fluid pressures > 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses < 28 MPa and fluid pressures > 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  12. DSPI technique for nanometer vibration mode measurement

    NASA Astrophysics Data System (ADS)

    Yue, Kaiduan; Jia, Shuhai; Tan, Yushan

    2000-05-01

    A time-average DSPI method for nanometer vibration mode measurement is presented in this paper. The phase continuous scan technique is combined with the Bessel fringe-shifting technique to quantitatively analyze the vibration mode by time-average DSPI is used in measurement system. Through the phase continuous scan, the background and speckle items are completely eliminated, which improves the fringe quality and enhances the signal-to-noise ratio of interferogram. There is no need to calibrate the optical phase-shifter exactly in this method. The anti-disturbance capability of this method is higher than that of the phase-stepping technique, so it is robust and easy to be used. In the vibration measurement system, the speckle average technology is used, so the high quality measuring results are obtained.

  13. Continuous desalting of refolded protein solution improves capturing in ion exchange chromatography: A seamless process.

    PubMed

    Walch, Nicole; Jungbauer, Alois

    2017-06-01

    Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  15. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    DTIC Science & Technology

    2016-12-13

    plate and novel all-fiber fused coupler. Such work has laid the platform to demonstrate the mitigation of thermal mode instability through vortex beam...at IIT Madras to experimentally validate the above results as well as to explore the generation of vortex modes through a spiral phase plate and...modes through spiral phase plates and novel all-fiber fused couplers. We have demonstrated the excitation of a vortex mode with charge 1 through a

  16. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  17. Evaluating the effects of a 532-nm fiber-based KTP laser on transoral laser surgery supplies.

    PubMed

    Coughlan, Carolyn A; Verma, Sunil P

    2013-11-01

    The KTP laser has become commonplace in transoral head and neck surgery. The interactions of this laser with commonly used supplies in transoral surgery have not been formally examined. This study evaluates the effects of the KTP laser on surgical supplies. Experimental study. The study was conducted in an empty operating room at a university-affiliated medical center. An Aura XP 532-nm KTP laser with a 600-nm fiber was used in pulsed and continuous modes. The beam was focused at the shaft and balloon of 3 "laser-safe" endotracheal tubes (ETTs), a polyvinyl chloride (PVC) ETT, and a Codman surgical patty. Time to penetrate was recorded. Results The KTP laser beam was unable to penetrate any of the laser-resistant ETTs. It did react with the black number markings on the PVC ETT by producing sparks but was unable to penetrate the shaft of the ETT. The KTP laser was nonreactive with all ETT cuffs except in 1 of 3 trials with the outer balloon cuff of a Rusch Lasertubus ETT when the laser was used in a continuous mode. The KTP laser caused the production of a flame upon contact with the blue radiopaque strip of the surgical patty, even when the patty was wet. This study demonstrates that a number of safe ETT options may be used during transoral laser microsurgery with a KTP laser. In addition, Codman surgical patties are shown to be a significant fire risk in KTP laser surgery.

  18. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  19. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment [Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-ship Material Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  20. Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-chip Material Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, C. D.; Shen, N.; Rubenchik, A.

    2015-06-30

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  1. Understanding the Amazon Hydrology for Sustainable Hydropower Development

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Chaudhari, S. N.

    2017-12-01

    Construction of 147 new hydropower dams, many of which are large, has been proposed in the Amazon river basin, despite the continuous stacking of negative impacts from the existing ones. These dams are continued to be built in a way that disrupts river ecology, causes large-scale deforestation, and negatively affects both the food systems nearby and downstream communities. In this study, we explore the impacts of the existing and proposed hydropower dams on the hydrological fluxes across the Amazonian Basin by incorporating human impact modules in an extensively validated regional hydrological model called LEAF-Hydro-Flood (LHF). We conduct two simulations, one in offline mode, forced by observed meteorological data for the historical period of 2000-2016 and the other in a coupled mode using the Weather Research and Forecasting (WRF) regional climate model. We mainly analyze terrestrial water storage and streamflow changes during the period of dam operations with and without human impacts. It is certain that the Amazon will undergo some major hydrological changes such as decrease in streamflow downstream in the coming decades caused due to these proposed dams. This study helps us understand and represent processes in a predictable manner, and provides the ability to evaluate future scenarios with dams and other major human influences while considering climate change in the basin. It also provides important insights on how to redesign the hydropower systems to make them truly renewable in terms of energy production, hydrology and ecology.

  2. Engineering on-chip nanoporous gold material libraries via precision photothermal treatment [Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-ship Material Libraries

    DOE PAGES

    Chapman, Christopher A. R.; Wang, Ling; Biener, Juergen; ...

    2016-01-01

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problemmore » by providing a means to apply energy with high spatial and temporal resolution. In our present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.« less

  3. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less

  4. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  5. Conductance dips and spin precession in a nonuniform waveguide with spin–orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, A. I., E-mail: malyshev@phys.unn.ru; Kozulin, A. S.

    An infinite waveguide with a nonuniformity, a segment of finite length with spin–orbit coupling, is considered in the case when the Rashba and Dresselhaus parameters are identical. Analytical expressions have been derived in the single-mode approximation for the conductance of the system for an arbitrary initial spin state. Based on numerical calculations with several size quantization modes, we have detected and described the conductance dips arising when the waves are localized in the nonuniformity due to the formation of an effective potential well in it. We show that allowance for the evanescent modes under carrier spin precession in an effectivemore » magnetic field does not lead to a change in the direction of the average spin vector at the output of the system.« less

  6. Mode coupling in hybrid square-rectangular lasers for single mode operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practicalmore » applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.« less

  7. Parental preference and perspectives on continuous pulse oximetry in infants and children with bronchiolitis

    PubMed Central

    Hendaus, Mohamed A; Nassar, Suzan; Leghrouz, Bassil A; Alhammadi, Ahmed H; Alamri, Mohammed

    2018-01-01

    Objective The purpose of the study was to investigate parental preference of continuous pulse oximetry in infants and children with bronchiolitis. Materials and methods A cross-sectional prospective study was conducted at Hamad Medical Corporation in Qatar. Parents of infants and children <24 months old and hospitalized with bronchiolitis were offered an interview survey. Results A total of 132 questionnaires were completed (response rate 100%). Approximately 90% of participants were 20–40 years of age, and 85% were females. The mean age of children was 7.2±5.8 months. Approximately eight in ten parents supported the idea of continuous pulse oximetry in children with bronchiolitis. Almost 43% of parents believed that continuous pulse-oximetry monitoring would delay their children’s hospital discharge. Interestingly, approximately 85% of caregivers agreed that continuous pulse oximetry had a good impact on their children’s health. In addition, around one in two of the participants stated that good bedside examinations can obviate the need for continuous pulse oximetry. Furthermore, 80% of parents believed that continuous pulse-oximetry monitoring would give the health-care provider a good sense of security regarding the child’s health. Finally, being a male parent was associated with significantly increased risk of reporting unnecessary fatigue, attributed to the sound of continuous pulse oximetry (P=0.031). Conclusion Continuous pulse-oximetry monitoring in children with bronchiolitis was perceived as reassuring for parents. Involving parents in decision-making is considered essential in the better management of children with bronchiolitis or any other disease. The first step to decrease continuous pulse oximetry will require provider education and change as well. Furthermore, we recommend proper counseling for parents, emphasizing that medical technology is not always essential, but is a complementary mode of managing a disease. PMID:29662305

  8. An Investigation of CTOL Dual-Mode PAVE Concepts

    NASA Technical Reports Server (NTRS)

    Marchman, James F., III; Interatep, Nanyaporn; Skelton, Eugene; Mason, William H.

    2002-01-01

    A study was conducted to assess the feasibility of the dual-mode concept for a personal air vehicle, to determine how constraints differ between the dual-mode concept and a Conventional Takeoff and Landing (CTOL) general aviation aircraft, to recommend a dual-mode vehicle concept, and to recommend areas where further research can contribute to the successful development of a viable PAVE vehicle design.

  9. Oscillatory/Chaotic Thermocapillary Flow Induced by Radiant Heating

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth J.

    1998-01-01

    There is a continuing need to understand the fluid physics occurring under low gravity conditions in processes such as crystal growth, materials processing, and the movement of bubbles or droplets. The fluid flow in such situations is often caused by a gradient in interfacial tension. If a temperature gradient is created due to a heat source, the resulting flow is called thermocapillary flow, a special case of Marangoni Convection. In this study, an experimental investigation was conducted using silicone oil in cylindrical containers with a laser heat source at the free surface. It was desired to determine the conditions under which steady, axisymmetrical thermocapillary flow becomes unstable and oscillatory three-dimensional flow states develop. The critical Marangoni number for each observed oscillatory state was measured as a function of the container aspect ratio and the dynamic Bond number, a measure of buoyant force versus ii thermocapillary force. Various oscillatory modes were observed during three- dimensional convection, and chaotic flow was reached in one test condition. The critical Marangoni numbers are compared with those measured in previous studies, and the power spectra and phase trajectories of the instantaneous surface temperature distributions are used to characterize the routes of transitions to the chaotic flow state. Results show that only superharmonic modes appear in the routes to chaos while infinite number of subharmonic modes occur in flow transitions for pure Rayleigh convection.

  10. Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam

    NASA Astrophysics Data System (ADS)

    Mahmoudkhani, S.

    2018-07-01

    Auto-parametric pendulum absorbers perform well only in a very limited range of excitation amplitudes, above which their efficiency would be substantially degraded as a consequence of spillover effects or appearance of quasi-periodic and chaotic responses. For improving the performance against this drawback, the rigid pendulum is replaced in the present study with a low-stiffness viscoelastic beam. An additional one-to-three internal resonance between the almost non-flexural rotational and the first flexural modes of the beam is also introduced. With the aid of this internal resonance, the energy that has been transferred to the absorber due to the one-to-two internal resonance would be avoided from being transferred back to the primary system by faster dissipation of vibrations at a higher-frequency mode thereby leading to lower spillover effects. For modeling purpose, the tracking frame with the rigid-body constraint and also the third-order nonlinear beam theory are employed to account for arbitrarily large rotation angles coupled to moderately large elastic deformations. The assumed-mode method is also used to obtain discretized equations of motion. The numerical continuation of periodic solution is performed and the bifurcations with detrimental effects on the performance are determined. Various parametric studies are also conducted which show that by proper setting of the system parameters, higher efficiencies at much wider range of excitation amplitudes could be achieved.

  11. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.

    PubMed

    Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S

    2014-11-26

    Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.

  12. Innovation of University Teaching Faculty Management Mode

    ERIC Educational Resources Information Center

    Han, Yuzheng; Wang, Boyu

    2015-01-01

    With the deepening of university reform in China, the traditional teaching faculty management mode has been exposed more and more defects. To make innovation of the university teaching faculty management mode becomes the voice of the times. Universities should conduct careful research on this issue in the development. Starting from the…

  13. Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the world market.

  14. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    NASA Astrophysics Data System (ADS)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  15. Current Calibration Efforts and Performance of the HST Space Telescope Imaging Spectrograph: Echelle Flux Calibration, the BAR5 Occulter, and Lamp Lifetimes

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Aloisi, Alessandra; Debes, John H.; Jedrzejewski, Robert I.; Lockwood, Sean A.; Peeples, Molly S.; Proffitt, Charles R.; Riley, Allyssa; Walborn, Nolan R.

    2016-06-01

    The variety of operating modes of the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) continues to allow STIS users to obtain unique, high quality observations and cutting-edge results 19 years after its installation on HST. STIS is currently the only instrument available to the astronomy community that allows high spectral and spatial resolution spectroscopy in the FUV and NUV, including echelle modes. STIS also supports solar-blind imaging in the FUV. In the optical, STIS provides long-slit, first-order spectra that take advantage of HST's superb spatial resolution, as well as several unique unfiltered coronagraphic modes, which continue to benefit the exoplanet and debris-disk communities. The STIS instrument team monitors the instrument’s health and performance over time to characterize the effects of radiation damage and continued use of the detectors and optical elements. Additionally, the STIS team continues to improve the quality of data products for the user community. We present updates on efforts to improve the echelle flux calibration of overlapping spectral orders due to changes in the grating blaze function since HST Servicing Mission 4, and efforts to push the contrast limit and smallest inner working angle attainable with the coronagraphic BAR5 occulter. We also provide updates on the performance of the STIS calibration lamps, including work to maintain the accuracy of the wavelength calibration for all modes.

  16. Atmospheric Excitation of Planetary Normal Modes

    NASA Technical Reports Server (NTRS)

    Tanimoto, Toshiro

    2001-01-01

    The objectives of this study were to: (1) understand the phenomenon of continuous free oscillations of the Earth and (2) examine the idea of using this phenomenon for planetary seismology. We first describe the results on (1) and present our evaluations of the idea (2) in the final section. In 1997, after almost forty years since the initial attempt by Benioff et al, continuous free oscillations of the Earth were discovered. Spheroidal fundamental modes between 2 and 7 millihertz are excited continuously with acceleration amplitudes of about 0.3-0.5 nanogals. The signal is now commonly found in virtually all data recorded by STS-1 type broadband seismometers at quiet sites. Seasonal variation in amplitude and the existence of two coupled modes between the atmosphere and the solid Earth support that these oscillations are excited by the atmosphere. Stochastic excitation due to atmospheric turbulence is a favored mechanism, providing a good match between theory and data. The atmosphere has ample energy to support this theory because excitation of these modes require only 500-10000 W whereas the atmosphere contains about 117 W of kinetic energy. An application of this phenomenon includes planetary seismology, because other planets may be oscillating due to atmospheric excitation. The interior structure of planets could be learned by determining the eigenfrequencies in the continuous free oscillations. It is especially attractive to pursue this idea for tectonically quiet planets, since quakes may be too infrequent to be recorded by seismic instruments.

  17. Modelling of an advanced charging system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the maximum variation has been found 15%, this closed agreement between the advanced charger prototype, simulation model and conventional charger validate the prototype model. Furthermore, based on the result presented in this report, the battery to be charged up to 85% of its rated capacity by constant current mode only rather than continue with constant voltage, which could shorten the battery charging time by 16% and prolong the battery life by 10%.

  18. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  19. Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger-like states

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Xiang, Yu; He, Qiongyi; Gong, Qihuang

    2015-01-01

    The multipartite entangled state has drawn broad attention for both foundations of quantum mechanics and applications in quantum information processing. Here, we study the spatially separated N -partite continuous-variable Greenberger-Horne-Zeilinger-like states, which can be produced by a linear optical network with squeezed light and N -1 beamsplitters. We investigate the properties of multipartite Einstein-Podolsky-Rosen steering possessed by those states, and find that the steering of a given quantum mode is allowed when not less than half of the modes within the states take part in the steering group. This is certified by the detection of the correlation between position and momentum quadratures of the steered mode and a combination of quadratures of other modes inside the steering group. The steering is evidenced by the high correlation where the steering group can infer the quadratures of the steered mode to high precision, i.e., below the quantum limit for the position and momentum quadratures of the steered quantum mode. We also examine the influence of inefficiency on the multipartite steering, and derive the threshold of the loss tolerance. Furthermore, we discuss the collective N -partite steering induced by the asymmetric loss on beams, which exists when a given quantum mode can only be steered by all the remaining N -1 modes collaboratively. The present multipartite steering correlation may have potential applications in certain quantum information tasks where the issue of trust is important, such as one-sided device-independent quantum secret sharing.

  20. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  1. Unitarily localizable entanglement of Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-03-01

    We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose)more » condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.« less

  2. Rendezvous radar modification and evaluation. [for space shuttles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of this effort was to continue the implementation and evaluation of the changes necessary to add the non-cooperative mode capability with frequency diversity and a doppler filter bank to the Apollo Rendezvous Radar while retaining the cooperative mode capability.

  3. Phonon modes and thermal conductance in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomanek, David

    2001-03-01

    The unique electronic transport behavior of quasi-1D carbon nanotubes(Stefano Sanvito, Young-Kyun Kwon, David Tomanek, and Colin J. Lambert, Phys. Rev. Lett. 84), 1974 (2000). finds an unexpected counterpart in their unusually high thermal conductance.(Savas Berber, Young-Kyun Kwon, and David Tomanek, Phys. Rev. Lett. 84), 4613 (2000). The latter is a consequence of the structural rigidity of nanotubes, resulting in a large sound velocity, and their phonon structure. Soft phonon modes, primarily associated with tube bending and twisting, are essentially decoupled from the energy-carrying hard phonon modes which originate in the stretching and bending of interatomic bonds. The absence of an efficient coupling mechanism between these different phonon modes is responsible for their low damping and a long phonon mean free path. With a peak value λ=37,000W/m/K at 100K, the thermal conductance of an isolated (10,10) nanotube, predicted using non-equilibrium molecular dynamics simulations, is comparable to that of isotopically pure diamond. At room temperature, the predicted value λ=6,600W/m/K even exceeds that of this best thermal conductor. Unlike bulk graphite, where coupling between the flexible layers reduces the basal plane thermal conductance by one order of magnitude, we find that the inter-tube coupling in nanotube ropes does not reduce the single-tube conductance significantly.

  4. A Review and Empirical Comparison of Three Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy, Cognitive Behavior Therapy and Social Skills Training

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This research study compared the efficacy of three treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  5. Ground vibration test of the laminar flow control JStar airplane

    NASA Technical Reports Server (NTRS)

    Kehoe, M. W.; Cazier, F. W., Jr.; Ellison, J. F.

    1985-01-01

    A ground vibration test was conducted on a Lockheed JetStar airplane that had been modified for the purpose of conducting laminar flow control experiments. The test was performed prior to initial flight flutter tests. Both sine-dwell and single-point-random excitation methods were used. The data presented include frequency response functions and a comparison of mode frequencies and mode shapes from both methods.

  6. Efficacy of cellulose triacetate dialyzer and polysulfone synthetic hemofilter for continuous venovenous hemofiltration in acute renal failure.

    PubMed

    Pichaiwong, Warangkana; Leelahavanichkul, Asada; Eiam-ong, Somchai

    2006-08-01

    To compare the clearance performances and biocompatibility between the modified cellulose membrane and the standard synthetic membrane in continuous renal replacement therapy (CRRT). Seventeen patients with acute renal failure (ARF) were treated with separated continuous veno venous hemofiltration (CVVH) system conducted with the pre-dilution mode. The modified cellulose used was a Sureflux150E (cellulose triacetate) and the standard synthetic membranes used was an AV-400. Blood and replacement flow rate were kept at 100 and 20 mL/min, respectively. Ultrafiltraion rate was 1,200 mL/hr. Samplings of blood and ultrafiltrate were collected at baseline, 2, 8, 16, and 24 hr. Patients in both methods could similarly tolerate CRRT with only minor complications. Sureflux 150E and AV-400 provided comparable values of sieving coefficients and clearances of small solutes. The albumin loss in ultrafiltrate by Sureflux 150E was greater than AV-400. The values of life span and biocompatability of both hemofilters were not different. Because of the excellent efficacy and the much cheaper cost, the modified cellulose membrane could be an appropriate alternative to standard synthetic membrane in CRRT.

  7. Evaluation of tactual displays for flight control

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.; Triggs, T. J.

    1973-01-01

    Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.

  8. Description of a Portable Wireless Device for High-Frequency Body Temperature Acquisition and Analysis

    PubMed Central

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility. PMID:22408473

  9. Description of a portable wireless device for high-frequency body temperature acquisition and analysis.

    PubMed

    Cuesta-Frau, David; Varela, Manuel; Aboy, Mateo; Miró-Martínez, Pau

    2009-01-01

    We describe a device for dual channel body temperature monitoring. The device can operate as a real time monitor or as a data logger, and has Bluetooth capabilities to enable for wireless data download to the computer used for data analysis. The proposed device is capable of sampling temperature at a rate of 1 sample per minute with a resolution of 0.01 °C . The internal memory allows for stand-alone data logging of up to 10 days. The device has a battery life of 50 hours in continuous real-time mode. In addition to describing the proposed device in detail, we report the results of a statistical analysis conducted to assess its accuracy and reproducibility.

  10. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  11. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs

    NASA Astrophysics Data System (ADS)

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna

    2018-02-01

    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  12. Evolution of volume fractions and droplet sizes by analysis of electrical conductance curves during destabilization of oil-in-water emulsions.

    PubMed

    Kostoglou, M; Varka, E-M; Kalogianni, E P; Karapantsios, T D

    2010-09-01

    Destabilization of hexane-in-water emulsions is studied by a continuous, non-intrusive, multi-probe, electrical conductance technique. Emulsions made of different oil fractions and surfactant (C(10)E(5)) concentrations are prepared in a stirred vessel using a Rushton turbine to break and agitate droplets. During the separation of phases, electrical signals from pairs of ring electrodes mounted at different heights onto the vessel wall, are recorded. The evolution of the local water volume fractions at the locations of the electrodes is estimated from these signals. It is found that in the absence of coalescence, the water fraction evolution curve from the bottom pair of electrodes is compatible with a bidisperse oil droplet size distribution. The sizes and volume fractions of the two droplet modes are estimated using theoretical arguments. The electrically determined droplet sizes are compared to data from microscopy image analysis. Results are discussed in detail. Copyright 2010 Elsevier Inc. All rights reserved.

  13. User's manual for the NASA Lewis ice accretion/heat transfer prediction code with electrothermal deicer input

    NASA Technical Reports Server (NTRS)

    Masiulaniec, Konstanty C.; Wright, William B.

    1994-01-01

    A version of LEWICE has been developed that incorporates a recently developed electrothermal deicer code, developed at the University of Toledo by William B. Wright. This was accomplished, in essence, by replacing a subroutine in LEWICE, called EBAL, which balanced the energies at the ice surface, with a subroutine called UTICE. UTICE performs this same energy balance, as well as handles all the time-timperature transients below the ice surface, for all of the layers of a composite blade as well as the ice layer itself. This new addition is set up in such a fashion that a user may specify any number of heaters, any heater chordwise length, and any heater gap desired. The heaters may be fired in unison, or they may be cycled with periods independent of each other. The heater intensity may also be varied. In addition, the user may specify any number of layers and thicknesses depthwise into the blade. Thus, the new addition has maximum flexibility in modeling virtually any electrothermal deicer installed into any airfoil. It should be noted that the model simulates both shedding and runback. With the runback capability, it can simulate the anti-icing mode of heater performance, as well as detect icing downstream of the heaters due to runback in unprotected portions of the airfoil. This version of LEWICE can be run in three modes. In mode 1, no conduction heat transfer is modeled (which would be equivalent to the original version of LEWICE). In mode 2, all heat transfer is considered due to conduction but no heaters are firing. In mode 3, conduction heat transfer where the heaters are engaged is modeled, with subsequent ice shedding. When run in the first mode, there is virtually identical agreement with the original version of LEWICE in the prediction of accreted ice shapes. The code may be run in the second mode to determine the effects of conduction on the ice accretion process.

  14. Quest for Casimir repulsion between Chern-Simons surfaces

    NASA Astrophysics Data System (ADS)

    Fialkovsky, Ignat; Khusnutdinov, Nail; Vassilevich, Dmitri

    2018-04-01

    In this paper we critically reconsider the Casimir repulsion between surfaces that carry the Chern-Simons interaction (corresponding to the Hall-type conductivity). We present a derivation of the Lifshitz formula valid for arbitrary planar geometries and discuss its properties. This analysis allows us to resolve some contradictions in the previous literature. We compute the Casimir energy for two surfaces that have constant longitudinal and Hall conductivities. The repulsion is possible only if both surfaces have Hall conductivities of the same sign. However, there is a critical value of the longitudinal conductivity above which the repulsion disappears. We also consider a model where both parity odd and parity even terms in the conductivity are produced by the polarization tensor of surface modes. In contrast to the previous publications [L. Chen and S.-L. Wan, Phys. Rev. B 84, 075149 (2011), 10.1103/PhysRevB.84.075149; Phys. Rev. B 85, 115102 (2012), 10.1103/PhysRevB.85.115102], we include the parity anomaly term. This term ensures that the conductivities vanish for infinitely massive surface modes. We find that at least for a single mode, regardless of the sign and value of its mass, there is no Casimir repulsion.

  15. Analysis of Fin-Line at Millimeter Wavelengths.

    DTIC Science & Technology

    1982-07-01

    8217.gation Constants, Field Calculation. 20, AaSTRAC ’Continue on reverse side If necessary and identify by bt~ck number; --- An analysis of fin-line is...presented along with numerical and experimental results. Dispersion characteristics and field distributions are given for a number of single-mode and...characteristics and field distri- butions are given for a number of single-mode and multi-mode configurations. Agreement between theory and experiment is shown

  16. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    PubMed

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  17. Cardiac Arrhythmia and Injury Induced in Rats by Burst and Pulsed Mode Ultrasound with Gas Body Contrast Agent

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Lucchesi, Benedict R.

    2009-01-01

    Objective Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agent at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine if cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. Methods Anesthetized rats were exposed to focused 1.5 MHz ultrasound in a water bath. Evans blue dye was injected IP to stain injured cardiomyocytes and Definity ultrasound contrast agent was infused IV. Continuous burst mode simulated physical therapy ultrasound. Intermittent 2 ms bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. PCs were observed on ECG recordings and stained cardiomyocytes were counted in frozen sections. Results The continuous burst mode produced variable PCs and stained cells above 0.3 MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P<0.01) PCs and stained cardiomyocytes. Conclusion Irreversible cardiomyocyte injury was associated with the development of PCs for burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound. PMID:19854967

  18. Experimental evidence on microwave induced electron losses from ECRIS plasma

    NASA Astrophysics Data System (ADS)

    Sakildien, M.; Tarvainen, O.; Kronholm, R.; Izotov, I.; Skalyga, V.; Kalvas, T.; Jones, P.; Koivisto, H.

    2018-06-01

    The balance between warm and hot (>1 keV) electron density and their losses from the magnetic confinement system of an Electron Cyclotron Resonance Ion Source (ECRIS) plasma is considered to be one of the main factors determining the rate of the high charge state ion production. One of the key loss channels for heated electrons is thought to be induced by the injected microwaves. While this loss mechanism, referred to as rf-induced pitch angle scattering, has been studied theoretically and with computational tools, direct experimental evidence of its significance in minimum-B ECRIS plasmas remains limited. In this work, experimental evidence of microwave induced electron losses in the axial direction is presented in both continuous wave (CW) and pulsed operation of a 14 GHz ECRIS. In the CW mode, the experiment was carried out by comparing the characteristic X-ray emission from the plasma volume and from the surface of the biased disc located in the flux of the escaping electron at the axial magnetic mirror. Parametric sweeps of magnetic field, neutral gas pressure, and microwave power were conducted to determine their effect on electron losses. In the pulsed mode, the experiment was conducted by measuring the flux of escaping electrons through aluminum foils of different thicknesses providing some energy resolution. Both diagnostics support the view that rf-induced losses account for up to 70% of total hot electron losses and their importance depends on the source parameters, especially power and neutral gas pressure.

  19. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  20. New PbSnTe heterojunction laser diode structures with improved performance

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Kasemset, D.; Hsieh, H. H.; Rotter, S.

    1980-01-01

    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved.

  1. A modal approach based on perfectly matched layers for the forced response of elastic open waveguides

    NASA Astrophysics Data System (ADS)

    Gallezot, M.; Treyssède, F.; Laguerre, L.

    2018-03-01

    This paper investigates the computation of the forced response of elastic open waveguides with a numerical modal approach based on perfectly matched layers (PML). With a PML of infinite thickness, the solution can theoretically be expanded as a discrete sum of trapped modes, a discrete sum of leaky modes and a continuous sum of radiation modes related to the PML branch cuts. Yet with numerical methods (e.g. finite elements), the waveguide cross-section is discretized and the PML must be truncated to a finite thickness. This truncation transforms the continuous sum into a discrete set of PML modes. To guarantee the uniqueness of the numerical solution of the forced response problem, an orthogonality relationship is proposed. This relationship is applicable to any type of modes (trapped, leaky and PML modes) and hence allows the numerical solution to be expanded on a discrete sum in a convenient manner. This also leads to an expression for the modal excitability valid for leaky modes. The physical relevance of each type of mode for the solution is clarified through two numerical test cases, a homogeneous medium and a circular bar waveguide example, excited by a point source. The former is favourably compared to a transient analytical solution, showing that PML modes reassemble the bulk wave contribution in a homogeneous medium. The latter shows that the PML mode contribution yields the long-term diffraction phenomenon whereas the leaky mode contribution prevails closer to the source. The leaky mode contribution is shown to remain accurate even with a relatively small PML thickness, hence reducing the computational cost. This is of particular interest for solving three-dimensional waveguide problems, involving two-dimensional cross-sections of arbitrary shapes. Such a problem is handled in a third numerical example by considering a buried square bar.

  2. 75 FR 62476 - Ultra-Wideband Transmission Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... would be obtained from measurements taken with the system operating in its normal operating mode. At the... with the transmitter operating continuously at a fundamental transmission frequency. 9. Subsequent to... systems, measured in their normal operating modes, is less than that of a UWB transmitter employing...

  3. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  4. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  5. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  6. A symmetry measure for damage detection with mode shapes

    NASA Astrophysics Data System (ADS)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  7. Liquid-phase epitaxy grown PbSnTe distributed feedback laser diodes with broad continuous single-mode tuning range

    NASA Technical Reports Server (NTRS)

    Hsieh, H.-H.; Fonstad, C. G.

    1980-01-01

    Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.

  8. Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei

    2017-03-01

    An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.

  9. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2... to be conducted on an engine dynamometer. The exhaust gases generated during engine operation are... determination of the concentration of each pollutant, the fuel flow and the power output during each mode. The...

  10. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    PubMed

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  11. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

    PubMed Central

    Durfee, Charles G.; Storz, Tristan; Garlick, Jonathan; Hill, Steven; Squier, Jeff A.; Kirchner, Matthew; Taft, Greg; Shea, Kevin; Kapteyn, Henry; Murnane, Margaret; Backus, Sterling

    2012-01-01

    We describe a Ti:sapphire laser pumped directly with a pair of 1.2W 445nm laser diodes. With over 30mW average power at 800 nm and a measured pulsewidth of 15fs, Kerr-lens-modelocked pulses are available with dramatically decreased pump cost. We propose a simple model to explain the observed highly stable Kerr-lens modelocking in spite of the fact that both the mode-locked and continuous-wave modes are smaller than the pump mode in the crystal. PMID:22714433

  12. Quantized edge modes in atomic-scale point contacts in graphene

    NASA Astrophysics Data System (ADS)

    Kinikar, Amogh; Phanindra Sai, T.; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K.; Krishnamurthy, H. R.; Jain, Manish; Shenoy, Vijay B.; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G0 = 2e2/h. At the same time, conductance plateaux at G0/2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulueta, Y.A., E-mail: yohandysalexis.zuluetaleyva@student.kuleuven.be; Department of Chemistry, KU Leuven, B-3001 Leuven; Dawson, J.A.

    In combination with the dielectric modulus formalism and theoretical calculations, a newly developed defect incorporation mode, which is a combination of the standard A- and B-site doping mechanisms, is used to explain the conducting properties in 5 mol% Ca-doped BaTiO{sub 3}. Simulation results for Ca solution energies in the BaTiO{sub 3} lattice show that the new oxygen vacancy inducing mixed mode exhibits low defect energies. A reduction in dc conductivity compared with undoped BaTiO{sub 3} is witnessed for the incorporation of Ca. The conducting properties of 5 mol% Ca-doped BaTiO{sub 3} are analyzed using molecular dynamics and impedance spectroscopy. Themore » ionic conductivity activation energies for each incorporation mode are calculated and good agreement with experimental data for oxygen migration is observed. The likely existence of the proposed defect configuration is also analyzed on the basis of these methods. - Graphical abstract: Oxygen vacancy formation as a result of self-compensation in Ca-doped BaTiO{sub 3}.« less

  14. Quantized edge modes in atomic-scale point contacts in graphene.

    PubMed

    Kinikar, Amogh; Phanindra Sai, T; Bhattacharyya, Semonti; Agarwala, Adhip; Biswas, Tathagata; Sarker, Sanjoy K; Krishnamurthy, H R; Jain, Manish; Shenoy, Vijay B; Ghosh, Arindam

    2017-07-01

    The zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder. Here, we report the experimental detection of edge-mode electrical transport in suspended atomic-scale constrictions of single and multilayer graphene created during nanomechanical exfoliation of highly oriented pyrolytic graphite. The edge-mode transport leads to the observed quantization of conductance close to multiples of G 0  = 2e 2 /h. At the same time, conductance plateaux at G 0 /2 and a split zero-bias anomaly in non-equilibrium transport suggest conduction via spin-polarized states in the presence of an electron-electron interaction.

  15. Evaluation of MARC for the analysis of rotating composite blades

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-01-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  16. Evaluation of MARC for the analysis of rotating composite blades

    NASA Astrophysics Data System (ADS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-03-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  17. Metastable states and energy flow pathway in square graphene resonators

    NASA Astrophysics Data System (ADS)

    Wang, Yisen; Zhu, Zhigang; Zhang, Yong; Huang, Liang

    2018-01-01

    Nonlinear interaction between flexural modes is critical to heat conductivity and mechanical vibration of two-dimensional materials such as graphene. Much effort has been devoted to understand the underlying mechanism. In this paper, we examine solely the out-of-plane flexural modes and identify their energy flow pathway during thermalization process. The key is the development of a universal scheme that numerically characterizes the strength of nonlinear interactions between normal modes. In particular, for our square graphene system, the modes are grouped into four classes by their distinct symmetries. The couplings are significantly larger within a class than between classes. As a result, the equations for the normal modes in the same class as the initially excited one can be approximated by driven harmonic oscillators, therefore, they get energy almost instantaneously. Because of the hierarchical organization of the mode coupling, the energy distribution among the modes will arrive at a stable profile, where most of the energy is localized on a few modes, leading to the formation of "natural package" and metastable states. The dynamics for modes in other symmetry classes follows a Mathieu type of equation, thus, interclass energy flow, when the initial excitation energy is small, starts typically when there is a mode that lies in the unstable region in the parameter space of Mathieu equation. Due to strong coupling of the modes inside the class, the whole class will get energy and be lifted up by the unstable mode. This characterizes the energy flow pathway of the system. These results bring fundamental understandings to the Fermi-Pasta-Ulam problem in two-dimensional systems with complex potentials, and reveal clearly the physical picture of dynamical interactions between the flexural modes, which will be crucial to the understanding of their abnormal contribution to heat conduction and nonlinear mechanical vibrations.

  18. Spin wave spectra in perpendicularly magnetized permalloy rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Ding, J.; Adeyeye, A. O., E-mail: eleaao@nus.edu.sg

    2015-03-16

    The dynamic behavior of perpendicularly magnetized permalloy circular rings is systematically investigated as a function of film thickness using broadband field modulated ferromagnetic resonance spectroscopy. We observed the splitting of one spin wave mode into a family of dense resonance peaks for the rings, which is markedly different from the single mode observed for continuous films of the same thickness. As the excitation frequency is increased, the mode family observed for the rings gradually converges into one mode. With the increase in the film thickness, a sparser spectrum of modes is observed. Our experimental results are in qualitative agreement withmore » the dynamic micromagnetic simulations.« less

  19. Mode evolution in polarization maintain few mode fibers and applications in mode-division-multiplexing systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    In few-mode polarization-maintaining-fiber (FM-PMF), the effective-index splitting exists not only between orthogonally polarization state but also between degenerated modes within a high-order mode group. Hence besides the polarization state evolution, the mode patterns in each LP set are need to be analyzed. In this letter, the completed firstorder mode (LP11 mode) evolution in PM-FMF is analyzed and represented by analogous Jones vector and Poincarésphere respectively. Furthermore, with Jones matrix analysis, the modal dynamics in FM-PMFs is conveniently analyzed. The conclusions are used to propose a PM-FMF based LP11 mode rotator and an PM-FMF based OAM generator. Both simulation and experiments are conducted to investigate performance of the two devices.

  20. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.

  1. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  2. Effect of sonic application mode on the resin-dentin bond strength and dentin permeability of self-etching systems.

    PubMed

    Mena-Serrano, Alexandra; Costa, Thays Regina Ferreira da; Patzlaff, Rafael Tiago; Loguercio, Alessandro Dourado; Reis, Alessandra

    2014-10-01

    To compare manual and sonic adhesive application modes in terms of the permeability and microtensile bond strength of a self-etching adhesive applied in the one-step or two-step protocol. Self-etching All Bond SE (Bisco) was applied as a one- or a two-step adhesive under manual or sonic vibration modes on flat occlusal dentin surfaces of 64 human molars. Half of the teeth were used to measure the hydraulic conductance of dentin at 200 cm H₂O hydrostatic pressure for 5 min immediately after the adhesive application. In the other half, composite buildups (Opallis) were constructed incrementally to create resin-dentin sticks with a cross-sectional area of 0.8 mm² to be tested in tension (0.5 mm/min) immediately after restoration placement. Data were analyzed using a two-way ANOVA and Tukey's test (α = 0.05). The fluid conductance of dentin was significantly reduced by the sonic vibration mode for both adhesives, but no effect on the bond strength values was observed for either adhesive. The sonic application mode at an oscillating frequency of 170 Hz can reduce the fluid conductance of the one- and two-step All Bond SE adhesive when applied on dentin.

  3. Programming Cardiac Resynchronization Therapy for Electrical Synchrony: Reaching Beyond Left Bundle Branch Block and Left Ventricular Activation Delay.

    PubMed

    Varma, Niraj; O'Donnell, David; Bassiouny, Mohammed; Ritter, Philippe; Pappone, Carlo; Mangual, Jan; Cantillon, Daniel; Badie, Nima; Thibault, Bernard; Wisnoskey, Brian

    2018-02-06

    QRS narrowing following cardiac resynchronization therapy with biventricular (BiV) or left ventricular (LV) pacing is likely affected by patient-specific conduction characteristics (PR, qLV, LV-paced propagation interval), making a universal programming strategy likely ineffective. We tested these factors using a novel, device-based algorithm (SyncAV) that automatically adjusts paced atrioventricular delay (default or programmable offset) according to intrinsic atrioventricular conduction. Seventy-five patients undergoing cardiac resynchronization therapy (age 66±11 years; 65% male; 32% with ischemic cardiomyopathy; LV ejection fraction 28±8%; QRS duration 162±16 ms) with intact atrioventricular conduction (PR interval 194±34, range 128-300 ms), left bundle branch block, and optimized LV lead position were studied at implant. QRS duration (QRSd) reduction was compared for the following pacing configurations: nominal simultaneous BiV (Mode I: paced/sensed atrioventricular delay=140/110 ms), BiV+SyncAV with 50 ms offset (Mode II), BiV+SyncAV with offset that minimized QRSd (Mode III), or LV-only pacing+SyncAV with 50 ms offset (Mode IV). The intrinsic QRSd (162±16 ms) was reduced to 142±17 ms (-11.8%) by Mode I, 136±14 ms (-15.6%) by Mode IV, and 132±13 ms (-17.8%) by Mode II. Mode III yielded the shortest overall QRSd (123±12 ms, -23.9% [ P <0.001 versus all modes]) and was the only configuration without QRSd prolongation in any patient. QRS narrowing occurred regardless of QRSd, PR, or LV-paced intervals, or underlying ischemic disease. Post-implant electrical optimization in already well-selected patients with left bundle branch block and optimized LV lead position is facilitated by patient-tailored BiV pacing adjusted to intrinsic atrioventricular timing using an automatic device-based algorithm. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1988-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  5. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1990-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  6. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing...

  7. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call processing...

  8. 40 CFR 1033.115 - Other requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mode and non-hotel mode. (g) Idle controls. All new locomotives must be equipped with automatic engine... that will achieve equivalent idle control. (4) See § 1033.201 for provisions that allow you to obtain a... 1033.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...

  9. 40 CFR 1033.115 - Other requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mode and non-hotel mode. (g) Idle controls. All new locomotives must be equipped with automatic engine... that will achieve equivalent idle control. (4) See § 1033.201 for provisions that allow you to obtain a... 1033.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...

  10. 40 CFR 1033.115 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mode and non-hotel mode. (g) Idle controls. All new locomotives must be equipped with automatic engine... that will achieve equivalent idle control. (4) See § 1033.201 for provisions that allow you to obtain a... 1033.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...

  11. 40 CFR 1033.115 - Other requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mode and non-hotel mode. (g) Idle controls. All new locomotives must be equipped with automatic engine... that will achieve equivalent idle control. (4) See § 1033.201 for provisions that allow you to obtain a... 1033.115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS...

  12. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  13. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  14. Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber.

    PubMed

    Ahn, Tae-Jung; Jung, Yongmin; Oh, Kyunghwan; Kim, Dug Young

    2005-12-12

    We propose a new chromatic dispersion measurement method for the higher-order modes of an optical fiber using optical frequency modulated continuous-wave (FMCW) interferometry. An optical fiber which supports few excited modes was prepared for our experiments. Three different guiding modes of the fiber were identified by using far-field spatial beam profile measurements and confirmed with numerical mode analysis. By using the principle of a conventional FMWC interferometry with a tunable external cavity laser, we have demonstrated that the chromatic dispersion of a few-mode optical fiber can be obtained directly and quantitatively as well as qualitatively. We have also compared our measurement results with those of conventional modulation phase-shift method.

  15. Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Peterson, Randall

    1994-01-01

    A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.

  16. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    PubMed Central

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials. PMID:27767082

  17. Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser

    PubMed Central

    Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi

    2017-01-01

    A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148

  18. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE PAGES

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick; ...

    2018-03-20

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  19. 100-mW high-power three-section tunable distributed Bragg reflector laser diodes with a real refractive-index-guided self-aligned structure

    NASA Astrophysics Data System (ADS)

    Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu

    2002-05-01

    High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.

  20. Burst mode pumping: A new mechanism of drinking in mosquitoes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kenji; Stremler, Mark A.; Chatterjee, Souvick

    Mosquitoes transport liquid foods into the body using two muscular pumps in the head. In normal drinking, these pumps reciprocate in a stereotyped pattern of oscillation, with a high frequency but small stroke volume. Do mosquitoes modulate their neuromotor programs for pumping to produce different drinking modes? More broadly, what are the mechanical consequences of a two-pump system in insects? To address these questions, we used synchrotron x-ray imaging and fluid mechanical modeling to investigate drinking performance in mosquitoes. X-ray imaging of the pumps during drinking revealed two modes of pumping: continuous reciprocation with multiple small strokes, and a newlymore » discovered ‘burst mode’ involving a single, large-volume stroke. Results from modeling demonstrate that burst mode pumping creates a very large pressure drop and high volume flow rate, but requires a massive increase in power, suggesting that continuous pumping is more economical for drinking. Modeling also demonstrates that, from one mode of pumping to the other, the mechanical role of the individual pumps changes. Furthermore, these results suggest that the advantage of a two-pump system in insects lies in its flexibility, enabling the animal to pump efficiently or powerfully as demanded by environmental considerations.« less

  1. Tunable continuous-wave terahertz generation/detection with compact 1.55 μm detuned dual-mode laser diode and InGaAs based photomixer.

    PubMed

    Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun

    2011-08-01

    We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.

  2. Orodispersible films: Product transfer from lab-scale to continuous manufacturing.

    PubMed

    Thabet, Yasmin; Breitkreutz, Joerg

    2018-01-15

    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Mode of Professional Teaching Practice of FCS Teacher-Leaders and Non-Teacher-Leaders.

    ERIC Educational Resources Information Center

    Fox, Candace K.; Laster, Janet F.

    A study was conducted to determine which of the following modes of professional practice is the dominant mode used by Ohio family and consumer science (FCS) teachers when implementing a refined critical science based curriculum: technical-rational; reflective-ethical; and process-oriented. The target population consisted of 1,013 secondary…

  4. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity.

    PubMed

    Mezheritsky, Alex A; Mezheritsky, Alex V

    2007-12-01

    A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh resonances reveal some simple representations related to the respective elementary admittance and showing the connection between the propagation and excitation problems in a continuous piezoactive medium.

  5. To flap or not to flap: continued discussion with particle image velocimetry of the near wake

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Roh, Chris; Idrees, Suhail; Gharib, Morteza

    2017-11-01

    We continue the discussion of which underwater propulsion mechanism is more effective: flapping used by fish or periodic contractions used by jellyfish. The two propulsion mechanisms are simplified into flapping and clapping plate motions, respectively, to allow for a direct comparison. A device is designed to operate in either mode of propulsion between Reynolds numbers 1,880 and 11,260, based on the average tip velocity and the span of the plate. The stroke angle, stroke time, flexibility, and duty cycle are varied to determine their impact on the generated thrust and the required torque. Overall, the clapping mode tends to require significantly more power to generate a similar thrust compared to that from the flapping mode. The performance of the clapping mode is increased by modifying the duty cycle such that the closing motion is faster than the opening motion causing a greater thrust and a similar efficiency to that from the flapping mode. Interestingly, when using rigid plates, the average thrust generated per cycle is similar between the two modes when the overall kinematics are equivalent. Investigation of the near wake of both modes through digital particle image velocimetry provides insight into the cause of this similar thrust. This work was supported by the Charyk Bio-inspired Laboratory at the California Institute of Technology, the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469, and the Summer Undergraduate Research Fellowships program.

  6. Preferred Exertion across Three Common Modes of Exercise Training.

    ERIC Educational Resources Information Center

    Glass, Stephen C.; Chvala, Angela M.

    2001-01-01

    Examined the influence of exercise mode on self-selected exercise intensities. Participants performed three types of intensity tests. Researchers collected data on VO2 values continuously and recorded 1-minute averages several times for each submaximal test. Participants allowed to self-select exercise intensity chose work rates within the…

  7. Quasinormal modes of Reissner-Nordstrom black holes

    NASA Technical Reports Server (NTRS)

    Leaver, Edward W.

    1990-01-01

    A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.

  8. 40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the minimum... mode-average values instead of continuous measurements for discrete mode steady-state duty cycles... molar flow data. This involves determination of at least two of the following three quantities: Raw...

  9. Conductance signatures of electron confinement induced by strained nanobubbles in graphene

    NASA Astrophysics Data System (ADS)

    Bahamon, Dario A.; Qi, Zenan; Park, Harold S.; Pereira, Vitor M.; Campbell, David K.

    2015-09-01

    We investigate the impact of strained nanobubbles on the conductance characteristics of graphene nanoribbons using a combined molecular dynamics - tight-binding simulation scheme. We describe in detail how the conductance, density of states, and current density of zigzag or armchair graphene nanoribbons are modified by the presence of a nanobubble. In particular, we establish that low-energy electrons can be confined in the vicinity of or within the nanobubbles by the delicate interplay among the pseudomagnetic field pattern created by the shape of the bubble, mode mixing, and substrate interaction. The coupling between confined evanescent states and propagating modes can be enhanced under different clamping conditions, which translates into Fano resonances in the conductance traces.

  10. Comparison of ultrasonic energy expenditures and corneal endothelial cell density reductions during modulated and non-modulated phacoemulsification.

    PubMed

    Davison, James A

    2007-01-01

    To compare the Legacy 20000 Advantec continuous and Infiniti hyperpulse modes (Alcon Laboratories, Fort Worth, TX) with respect to average power, machine-measured phacoemulsification time, total stopwatch real time spent within the phacoemulsification process, balanced salt solution (BSS) volume, and corneal endothelial cell density losses. A background study was done of consecutive patients operated on with the Legacy (n = 60) and Infiniti (n = 40) machines programmed with identical parameters and using the continuous mode only. A primary study of another set of consecutive cases was operated on using the Legacy (n = 87) and Infiniti (n = 94) with the same parameters, but using the hyperpulse mode during quadrant removal with the Infiniti. Measurements for each set included average power and phacoemulsification time with corneal endothelial cell densities, BSS volume, and time spent in the phacoemulsification process. Similarities were found in the background study for average power percent and average minutes of phacoemulsification time. In the primary study, similarities were found for total minutes in the phacoemulsification process, BSS usage, and ECD losses, and differences were found for average power percent (P< .001) and machine-measured phacoemulsification minutes (P< .001). The Legacy and Infiniti performed similarly in continuous mode. With the Infiniti hyperpulse mode, a total ultrasonic energy reduction of 66% was noted. The machines required the same amount of total stopwatch measured time to accomplish phacoemulsification and produced the same 5% corneal endothelial cell loss. Therefore, clinically, these two machines behave in a comparable manner relative to safety and effectiveness.

  11. The use of failure mode and effects analysis to construct an effective disposal and prevention mechanism for infectious hospital waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Chao Chung, E-mail: ho919@pchome.com.tw; Liao, Ching-Jong

    Highlights: > This study is based on a real case in a regional teaching hospital in Taiwan. > We use Failure mode and effects analysis (FMEA) as the evaluation method. > We successfully identify the risk factors of infectious waste disposal. > We propose plans for the detection of exceptional cases of infectious waste. - Abstract: In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total qualitymore » management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.« less

  12. Mini-interfacial fracture toughness as a new validated enamel-bonding effectiveness test.

    PubMed

    Pongprueksa, Pong; De Munck, Jan; Barreto, Bruno C; Karunratanakul, Kavin; Van Meerbeek, Bart

    2016-09-01

    Today׳s most commonly applied bonding effectiveness tests are criticized for their high variability and low reliability, the latter in particular with regard to measuring the actual strength of the adhesive interface. in continuation of previous research conducted at dentin, we hereby aimed to validate the novel mini-interfacial fracture toughness (mini-iFT) test on its applicability to assess bonding effectiveness of contemporary adhesives when bonded to enamel. The 3-step etch&rinse (E&R) adhesive OptiBond FL (Kerr), the 2-step self-etch (SE) adhesive Clearfil SE Bond (Kuraray Noritake) and the two multi-mode adhesives Clearfil S(3) Bond Plus (Kuraray Noritake) and Scotchbond Universal (3M ESPE), both used following a 2-step E&R and 1-step SE mode, were applied to clinically relevant, flattened enamel surfaces. A composite (Filtek Z100; 3M ESPE) build-up was made in layers. After 1-week water storage at 37°C, all specimens were sectioned perpendicular to the interface to obtain rectangular sticks. A mini-iFT notch was prepared at the adhesive-enamel interface using a thin diamond blade under water cooling. Finally, the specimens were loaded in a 4-point bending test until failure. the mini-iFT onto human enamel was significantly higher for the adhesives applied in E&R mode versus those applied in SE mode. The lowest mini-iFT was found for the adhesives applied following a 1-step SE approach. SEM fracture analysis revealed that all fractures originated at the adhesive-enamel interface and that the induced crack propagated preferentially along this interface. mini-iFT appeared a valid alternative method to assess the mechanical properties of adhesive-enamel interfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Using failure mode and effects analysis to plan implementation of smart i.v. pump technology.

    PubMed

    Wetterneck, Tosha B; Skibinski, Kathleen A; Roberts, Tanita L; Kleppin, Susan M; Schroeder, Mark E; Enloe, Myra; Rough, Steven S; Hundt, Ann Schoofs; Carayon, Pascale

    2006-08-15

    Failure mode and effects analysis (FMEA) was used to evaluate a smart i.v. pump as it was implemented into a redesigned medication-use process. A multidisciplinary team conducted a FMEA to guide the implementation of a smart i.v. pump that was designed to prevent pump programming errors. The smart i.v. pump was equipped with a dose-error reduction system that included a pre-defined drug library in which dosage limits were set for each medication. Monitoring for potential failures and errors occurred for three months postimplementation of FMEA. Specific measures were used to determine the success of the actions that were implemented as a result of the FMEA. The FMEA process at the hospital identified key failure modes in the medication process with the use of the old and new pumps, and actions were taken to avoid errors and adverse events. I.V. pump software and hardware design changes were also recommended. Thirteen of the 18 failure modes reported in practice after pump implementation had been identified by the team. A beneficial outcome of FMEA was the development of a multidisciplinary team that provided the infrastructure for safe technology implementation and effective event investigation after implementation. With the continual updating of i.v. pump software and hardware after implementation, FMEA can be an important starting place for safe technology choice and implementation and can produce site experts to follow technology and process changes over time. FMEA was useful in identifying potential problems in the medication-use process with the implementation of new smart i.v. pumps. Monitoring for system failures and errors after implementation remains necessary.

  14. Socio-economic determinants of HIV testing and counselling: a comparative study in four African countries.

    PubMed

    Obermeyer, Carla Makhlouf; Neuman, Melissa; Hardon, Anita; Desclaux, Alice; Wanyenze, Rhoda; Ky-Zerbo, Odette; Cherutich, Peter; Namakhoma, Ireen

    2013-09-01

    Research indicates that individuals tested for HIV have higher socio-economic status than those not tested, but less is known about how socio-economic status is associated with modes of testing. We compared individuals tested through provider-initiated testing and counselling (PITC), those tested through voluntary counselling and testing (VCT) and those never tested. Cross-sectional surveys were conducted at health facilities in Burkina Faso, Kenya, Malawi and Uganda, as part of the Multi-country African Testing and Counselling for HIV (MATCH) study. A total of 3659 clients were asked about testing status, type of facility of most recent test and socio-economic status. Two outcome measures were analysed: ever tested for HIV and mode of testing. We compared VCT at stand-alone facilities and PITC, which includes integrated facilities where testing is provided with medical care, and prevention of mother-to-child transmission (PMTCT) facilities. The determinants of ever testing and of using a particular mode of testing were analysed using modified Poisson regression and multinomial logistic analyses. Higher socio-economic status was associated with the likelihood of testing at VCT rather than other facilities or not testing. There were no significant differences in socio-economic characteristics between those tested through PITC (integrated and PMTCT facilities) and those not tested. Provider-initiated modes of testing make testing accessible to individuals from lower socio-economic groups to a greater extent than traditional VCT. Expanding testing through PMTCT reduces socio-economic obstacles, especially for women. Continued efforts are needed to encourage testing and counselling among men and the less affluent. © 2013 John Wiley & Sons Ltd.

  15. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence of Apparent Soil Electrical Conductivity and Selected Soil Properties

    PubMed Central

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; Silva, Ênio Farias França e

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging. PMID:25614893

  16. Using multivariate geostatistics to assess patterns of spatial dependence of apparent soil electrical conductivity and selected soil properties.

    PubMed

    Siqueira, Glécio Machado; Dafonte, Jorge Dafonte; Valcárcel Armesto, Montserrat; França e Silva, Ênio Farias

    2014-01-01

    The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECa data sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0-0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECa and gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECa and clay content (ranging from 0.197 to 0.495, when different ECa recording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECa data sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECa as secondary variable with respect to the use of ordinary kriging.

  17. Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Cheng, Guoguang

    2017-10-01

    The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.

  18. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  19. Low threshold diode-pumped picosecond mode-locked Nd:YAG laser with a semiconductor saturable absorber mirror

    NASA Astrophysics Data System (ADS)

    Eshghi, M. J.; Majdabadi, A.; Koohian, A.

    2017-01-01

    In this paper, a low threshold diode pumped passively mode-locked Nd:YAG laser has been demonstrated by using a semiconductor saturable absorber mirror. The threshold power for continuous-wave mode-locking is relatively low, about 3.2 W. The resonator stability across the pump power has been analytically examined. Moreover, the mode overlap between the pump beam and the laser fundamental mode has been simulated by MATLAB software. Adopting Z-shaped resonator configuration and suitable design of the resonator’s arm lengths, has enabled the author to prepare mode-locking conditions, and obtain 40 ps pulses with 112 MHz pulse repetition rate. The laser output was stable without any Q switched instability. To the best of our knowledge, this is the lowest threshold for CW mode-locking operation of a Nd:YAG laser.

  20. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  1. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    NASA Astrophysics Data System (ADS)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  2. Airborne Laser CO2 Column Measurements: Evaluation of Precision and Accuracy Under a Wide Range of Surface and Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S. A.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.

    2011-12-01

    This paper discusses the latest flight test results of a multi-frequency intensity-modulated (IM) continuous-wave (CW) laser absorption spectrometer (LAS) that operates near 1.57 μm for remote CO2 column measurements. This IM-LAS system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of the ASCENDS system, called the Multi-frequency Fiber Laser Lidar (MFLL), has been flight tested in eleven airborne campaigns since May 2005. This paper compares the most recent results obtained during the 2010 and 2011 UC-12 and DC-8 flight tests, where MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. The major change to the MFLL system in 2011 was the implementation of several different IM modes, which could be quickly changed in flight, to directly compare the precision and accuracy of MFLL CO2 measurements in each mode. The different IM modes that were evaluated included "fixed" IM frequencies near 50, 200, and 500 kHz; frequencies changed in short time steps (Stepped); continuously swept frequencies (Swept); and a pseudo noise (PN) code. The Stepped, Swept, and PN modes were generated to evaluate the ability of these IM modes to desensitize MFLL CO2 column measurements to intervening optically thin aerosols/clouds. MFLL was flown on the NASA Langley UC-12 aircraft in May 2011 to evaluate the newly implemented IM modes and their impact on CO2 measurement precision and accuracy, and to determine which IM mode provided the greatest thin cloud rejection (TCR) for the CO2 column measurements. Within the current hardware limitations of the MFLL system, the "fixed" 50 kHz results produced similar SNR values to those found previously. The SNR decreased as expected with increasing IM frequency with the SNR(500 kHz) equal to 31% of SNR(50 kHz). The absolute accuracy of the 50 kHz CO2 measurement showed a previously observed altitude-dependent trend that was greatly reduced at 200 kHz. Laboratory experiments have duplicated this effect which results mainly from IM frequency cross talk between LAS wavelengths in the erbium-doped fiber amplifier (EDFA) and which is reduced when operating at higher IM frequencies. Performance of the Stepped, Swept, and PN modes were evaluated in close time proximity to each other, and these results will be discussed in this paper. A second series of ASCENDS flight tests were conducted on the NASA DC-8 from 25 July to 12 August 2011 over similar local land and ocean targets as in 2010 and with additional long-range flights planned over the corn fields of Iowa, forests in northern Wisconsin, and ice fields of southeastern Alaska. MFLL CO2 measurement results from this field campaign will also be presented.

  3. Using Dentistry as a Case Study to Examine Continuing Education and Its Impact on Practice

    ERIC Educational Resources Information Center

    Bullock, Alison; Firmstone, Vickie; Frame, John; Thomas, Hywel

    2010-01-01

    Continuing education is a defining characteristic of work in the professions. Yet the approach various professional groups take to continuing professional development (CPD) differs widely in terms of regulatory frameworks and requirements, modes of delivery and funding. Importantly, little is understood about how CPD impacts on practice. This…

  4. Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration

    NASA Astrophysics Data System (ADS)

    Abercromby, Andrew F. J.; Gernhardt, Michael L.; Jadwick, Jennifer

    2013-10-01

    IntroductionA pair of small pressurized rovers (multi-mission space exploration vehicles, or MMSEVs) is at the center of the Global Point-of-Departure architecture for future human lunar exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. MethodsA 14-day mission simulation was conducted in the Arizona desert as part of NASA's 2010 Desert Research and Technology Studies (DRATS) field test. The simulation involved two MMSEV earth-gravity prototypes performing geological exploration under varied operational modes affecting both the extent to which the MMSEVs must maintain real-time communications with the mission control center (Continuous [CC] versus Twice-a-Day [2/D]) and their proximity to each other (Lead-and-Follow [L&F] versus Divide-and-Conquer [D&C]). As part of a minimalist lunar architecture, no communication relay satellites were assumed. Two-person crews (an astronaut and a field geologist) operated each MMSEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Metrics and qualitative observations enabled evaluation of the extent to which the operating modes affected productivity and scientific data quality (SDQ). Results and discussionSDQ was greater during CC mode than during 2/D mode; metrics showed a marginal increase while qualitative assessments suggested a practically significant difference. For the communications architecture evaluated, significantly more crew time (14% per day) was required to maintain communications during D&C than during L&F (5%) or 2/D (2%), increasing the time required to complete all traverse objectives. Situational awareness of the other vehicle's location, activities, and contingency return constraints were qualitatively enhanced during L&F and 2/D modes due to line-of-sight and direct MMSEV-to-MMSEV communication. Future testing will evaluate approaches to operating without real-time space-to-earth communications and will include quantitative evaluation and comparison of the efficacy of mission operations, science operations, and public outreach operations.

  5. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  6. Lattice thermal conductivity of borophene from first principle calculation

    NASA Astrophysics Data System (ADS)

    Xiao, Huaping; Cao, Wei; Ouyang, Tao; Guo, Sumei; He, Chaoyu; Zhong, Jianxin

    2017-04-01

    The phonon transport property is a foundation of understanding a material and predicting the potential application in mirco/nano devices. In this paper, the thermal transport property of borophene is investigated by combining first-principle calculations and phonon Boltzmann transport equation. At room temperature, the lattice thermal conductivity of borophene is found to be about 14.34 W/mK (error is about 3%), which is much smaller than that of graphene (about 3500 W/mK). The contributions from different phonon modes are qualified, and some phonon modes with high frequency abnormally play critical role on the thermal transport of borophene. This is quite different from the traditional understanding that thermal transport is usually largely contributed by the low frequency acoustic phonon modes for most of suspended 2D materials. Detailed analysis further reveals that the scattering between the out-of-plane flexural acoustic mode (FA) and other modes likes FA + FA/TA/LA/OP ↔ TA/LA/OP is the predominant phonon process channel. Finally the vibrational characteristic of some typical phonon modes and mean free path distribution of different phonon modes are also presented in this work. Our results shed light on the fundamental phonon transport properties of borophene, and foreshow the potential application for thermal management community.

  7. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy.

    PubMed

    Zhang, Zhongheng; Hongying, Ni

    2012-01-01

    Regional citrate anticoagulation (RCA) is an attractive anticoagulation mode in continuous renal replacement therapy (CRRT) because it restricts the anticoagulatory effect to the extracorporeal circuit. In recent years, several randomized controlled trials have been conducted to investigate its superiority over other anticoagulation modes. Thus, we performed a systematic review of available evidence on the efficacy and safety of RCA. A systematic review of randomized controlled trials investigating the efficacy and safety of RCA was performed. PubMed, Current Contents, CINAHL, and EMBASE databases were searched to identify relevance articles. Data on circuit life span, bleeding events, metabolic derangement, and mortality were abstracted. Mean difference was used for continuous variables, and risk ratio was used for binomial variables. The random effects or fixed effect model was used to combine these data according to heterogeneity. The software Review Manager 5.1 was used for the meta-analysis. Six studies met our inclusion criteria, which involved a total of 658 circuits. In these six studies patients with liver failure or a high risk of bleeding were excluded. The circuit life span in the RCA group was significantly longer than that in the control group, with a mean difference of 23.03 h (95% CI 0.45-45.61 h). RCA was able to reduce the risk of bleeding, with a risk ratio of 0.28 (95% CI 0.15-0.50). Metabolic stability (electrolyte and acid-base stabilities) in performing RCA was comparable to that in other anticoagulation modes, and metabolic derangements (hypernatremia, metabolic alkalosis, and hypocalcemia) could be easily controlled without significant clinical consequences. Two studies compared mortality rate between RCA and control groups, with one reported similar mortality rate and the other reported superiority of RCA over the control group (hazards ratio 0.7). RCA is effective in maintaining circuit patency and reducing the risk of bleeding, and thus can be recommended for CRRT if and when metabolic monitoring is adequate and the protocol is followed. However, the safety of citrate in patients with liver failure cannot be concluded from current analysis. The metabolic stability can be easily controlled during RCA. Survival benefit from RCA is still controversial due to limited evidence.

  8. Fracture under combined modes in 4340 steel

    NASA Technical Reports Server (NTRS)

    Shah, R. C.

    1974-01-01

    An experimental investigation was conducted to study the interaction of combined modes of loading on crack instability in the presence of the opening and sliding modes of stress intensity factors, the opening and tearing modes of stress intensity factors, and all three modes of stress intensity factors. Through-cracked and surface-cracked flat and round specimens, and round notched bar specimens fabricated from high strength 4340 steel were used for the investigation. The results are evaluated to determine fracture criteria under the combined modes of stress intensity factors for the 4340 steel. These results are compared with the results of other investigators obtained for different materials.

  9. The Atacama B-mode Search: Status and Prospect

    NASA Astrophysics Data System (ADS)

    Kusaka, Akito

    2013-04-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at degre angular scales. In January 2012, ABS has deployed 240 polarimeters employing transition-edge sensor (TES) bolometers. ABS has unique advantages for the measurement of B modes. This includes a continuously rotating half-wave plate that provides fast and clean modulation, as well as systematically clean optics that consist of a cryogenic side-fed Dragone telescope and feedhorn coupled TES polarimeters. In this talk, we will present the status and prospect of ABS.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubov, F. I.; Kryzhanovskaya, N. V.; Moiseev, E. I.

    The spectral, threshold, and power characteristics of a microdisk laser 31 μm in diameter with an active region based on InAs/InGaAs quantum dots, operating in the continuous-wave (cw) mode at room temperature are studied. The minimum threshold current density is 0.58 kA/cm{sup 2}, the subthreshold linewidth of the whispering-gallery mode is 50 pm at a wavelength lying in the range of 1.26–1.27 μm. The total power emitted into free space reaches ~0.1 mW in the cw mode, whereas the radiation power of the whispering-gallery modes is ~2.8%.

  11. Response of a grounded dielectric slab to an impulse line source using leaky modes

    NASA Technical Reports Server (NTRS)

    Duffy, Dean G.

    1994-01-01

    This paper describes how expansions in leaky (or improper) modes may be used to represent the continuous spectrum in an open radiating waveguide. The technique requires a thorough knowledge of the life history of the improper modes as they migrate from improper to proper Riemann surfaces. The method is illustrated by finding the electric field resulting from an impulsively forced current located in the free space above a grounded dielectric slab.

  12. Longitudinal mode selection in a delay-line homogeneously broadened oscillator with a fast saturable amplifier.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2017-05-01

    Homogeneously broadened delay-line oscillators such as lasers or optoelectronic oscillators (OEOs) can potentially oscillate in a large number of cavity modes that are supported by their amplifier bandwidth. In a continuous wave operating mode, the oscillating mode is selected between one or few cavity modes that experience the highest small-signal gain. In this manuscript, we show that the oscillation mode of a homogeneously broadened oscillator can be selected from a large number of modes in a frequency region that can be broader than the full width at half maximum of the effective cavity filter. The mode is selected by a short-time injection of an external signal into the oscillator. After the external signal is turned off, the oscillation is maintained in the selected mode even if this mode has a significantly lower small-signal gain than that of other cavity modes. The stability of the oscillation is obtained due to nonlinear saturation effect in the oscillator amplifier. We demonstrate, experimentally and theoretically, mode selection in a long cavity OEO. We could select any desired mode between 400 cavity modes while maintaining ultra-low phase noise in the selected mode and in the non-oscillating modes. No mode-hopping was observed during our maximum measurement duration of about 24 hours.

  13. A minimalist operating mode for UKIRT

    NASA Astrophysics Data System (ADS)

    Kerr, Tom; Davis, Gary R.; Craig, Simon C.; Walther, Craig; Chuter, Tim

    2012-09-01

    In late 2010, driven by funding pressure from its governing body, the United Kingdom Infrared Telescope (UKIRT) underwent the most significant operational change in its history culminating in a new "minimalist mode" operation. Since 13th December 2010 this telescope, situated at the summit of Mauna Kea, Hawaii, has been operated remotely from the Joint Astronomy Centre in Hilo, with a priority on completing the UKIRT Infrared Deep Sky Survey (UKIDSS) but also continued support of other international programmes. In mid-2012, while remaining in minimalist mode, the observatory plans to start a new and ambitious near-infrared survey of the northern sky called the UKIRT Hemisphere Survey. The change to minimalist mode has resulted in the following: the cost of running the observatory has been reduced from 3.9M to 2.0M yet despite the changes, which included a reduction in staff and support, the UKIRT continues to operate at 90% efficiency, a level it has operated at for the last several years. The fault rate remains extremely low (approximately 3%) and has not been affected by remote operations and up until February 2012 no time-losing faults were attributed to operating remotely. This paper discusses the motivations behind the change to minimalist mode, the new mode of operation itself, the effect, if any, of the change on operational efficiency and the challenges facing a remotely operated telescope at a remote mountain site.

  14. Development of automotive battery systems capable of surviving modern underhood environments

    NASA Astrophysics Data System (ADS)

    Pierson, John R.; Johnson, Richard T.

    The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.

  15. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays.

    PubMed

    Marín, A García; Núñez, C García; Rodríguez, P; Shen, G; Kim, S M; Kung, P; Piqueras, J; Pau, J L

    2015-03-20

    Although nanowires (NWs) may improve the performance of many optoelectronic devices such as light emitters and photodetectors, the mass commercialization of these devices is limited by the difficult task of finding reliable and reproducible methods to integrate the NWs on foreign substrates. This work shows the fabrication of zinc oxide NWs photodetectors on conventional glass using transparent conductive electrodes to effectively integrate the NWs at specific locations by dielectrophoresis (DEP). The paper describes the careful preparation of NW dispersions by sedimentation and the dielectrophoretic alignment of NWs in a home-made system. This system includes an impedance technique for the assessment of the alignment quality in real time. Following this procedure, ultraviolet photodetectors based on the electrical contacts formed by the DEP process on the transparent electrodes are fabricated. This cost-effective mean of contacting NWs enables front-and back-illumination operation modes, the latter eliminating shadowing effects caused by the deposition of metals. The electro-optical characterization of the devices shows uniform responsivities in the order of 106 A W(-1) below 390 nm under both modes, as well as, time responses of a few seconds.

  16. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays

    NASA Astrophysics Data System (ADS)

    García Marín, A.; García Núñez, C.; Rodríguez, P.; Shen, G.; Kim, S. M.; Kung, P.; Piqueras, J.; Pau, J. L.

    2015-03-01

    Although nanowires (NWs) may improve the performance of many optoelectronic devices such as light emitters and photodetectors, the mass commercialization of these devices is limited by the difficult task of finding reliable and reproducible methods to integrate the NWs on foreign substrates. This work shows the fabrication of zinc oxide NWs photodetectors on conventional glass using transparent conductive electrodes to effectively integrate the NWs at specific locations by dielectrophoresis (DEP). The paper describes the careful preparation of NW dispersions by sedimentation and the dielectrophoretic alignment of NWs in a home-made system. This system includes an impedance technique for the assessment of the alignment quality in real time. Following this procedure, ultraviolet photodetectors based on the electrical contacts formed by the DEP process on the transparent electrodes are fabricated. This cost-effective mean of contacting NWs enables front-and back-illumination operation modes, the latter eliminating shadowing effects caused by the deposition of metals. The electro-optical characterization of the devices shows uniform responsivities in the order of 106 A W-1 below 390 nm under both modes, as well as, time responses of a few seconds.

  17. Renal Replacement Therapy in Severe Burns: A Multicenter Observational Study.

    PubMed

    Chung, Kevin K; Coates, Elsa C; Hickerson, William L; Arnold-Ross, Angela L; Caruso, Daniel M; Albrecht, Marlene; Arnoldo, Brett D; Howard, Christina; Johnson, Laura S; McLawhorn, Melissa M; Friedman, Bruce; Sprague, Amy M; Mosier, Michael J; Conrad, Peggie F; Smith, David J; Karlnoski, Rachel A; Aden, James K; Mann-Salinas, Elizabeth A; Wolf, Steven E

    2018-06-20

    Acute kidney injury (AKI) after severe burns is historically associated with a high mortality. Over the past two decades, various modes of renal replacement therapy (RRT) have been utilized in this population. The purpose of this multicenter study was to evaluate demographic, treatment and outcomes data among severe burn patients treated with RRT collectively at various burn centers around the United States. After institutional review board approval, a multicenter observational study was conducted. All adult patients 18 or older, admitted with severe burns who were placed on RRT for acute indications but not randomized into a concurrently enrolling interventional trial were included. Across 8 participating burn centers, 171 subjects were enrolled during a 4 year period. Complete data was available in 170 subjects with a mean age of 51±17, percent total body surface area (TBSA) burn of 38±26% and Injury Severity Score of 27±21. 80% of subjects were male and 34% were diagnosed with smoke inhalation injury. The preferred mode of therapy was continuous venovenous hemofiltration at a mean delivered dose of 37±19 (mL/kg/hr) and a treatment duration of 13±24 days. Overall, in hospital mortality was 50%. Among survivors, 21% required RRT upon discharge from the hospital while 9% continued to require RRT 6 months after discharge. This is the first multi-center cohort of burn patients who underwent RRT reported to date. Overall mortality is comparable to other critically ill populations who undergo RRT. Most patients who survive to discharge eventually recover renal function.

  18. Identification of nonlinear normal modes of engineering structures under broadband forcing

    NASA Astrophysics Data System (ADS)

    Noël, Jean-Philippe; Renson, L.; Grappasonni, C.; Kerschen, G.

    2016-06-01

    The objective of the present paper is to develop a two-step methodology integrating system identification and numerical continuation for the experimental extraction of nonlinear normal modes (NNMs) under broadband forcing. The first step processes acquired input and output data to derive an experimental state-space model of the structure. The second step converts this state-space model into a model in modal space from which NNMs are computed using shooting and pseudo-arclength continuation. The method is demonstrated using noisy synthetic data simulated on a cantilever beam with a hardening-softening nonlinearity at its free end.

  19. KSC-08pd1343

    NASA Image and Video Library

    2008-05-12

    CAPE CANAVERAL, Fla. -- A representative of the 301st Rescue Squadron familiarizes participants in the Mode VIII exercise with the HH-60G helicopter that will play a part. The Mode VIII is being conducted at Patrick Air Force Base, Fla. In support of, and with logistical support from, NASA, USSTRATCOM is hosting a major exercise involving Department of Defense, Department of Homeland Security, search and rescue (SAR) forces, including the 45th Space Wing at Patrick Air Force Base, which support space shuttle astronaut bailout contingency operations, known as Mode VIII. This exercise tests SAR capabilities to locate, recover and provide medical treatment for astronauts following a space shuttle launch phase open-ocean bailout. Participants include members of the U.S. Navy, U.S. Coast Guard, U.S. Air Force, and NASA's Kennedy Space Center and Johnson Space Center. This will be the 15th Mode VIII exercise conducted in the past 20 years. Photo credit: NASA/Kim Shiflett

  20. Fragmentation of Red Blood Cells Caused Pseudothrombocytosis in a Patient.

    PubMed

    Tang, Wenjun; Tang, Chunhua; Zheng, Jianfeng; He, Yongling; Lu, Fangfang

    2018-06-01

    Pseudothrombocytopenia, caused by platelet (PLT) clumping, is often found in clinical studies [1]. However, pseudothrombocytosis resulting from the fragmentation of red blood cells (RBCs) is a very rare phenomenon. EDTA-K2 anticoagulation was used on a sample of venous blood extracted from the patient. A Symex XN9000 automatic blood analyzer was used to conduct CBC + DIFF mode and CBC + DIFF + RET mode tests, stained smear microscopy. The Symex XN9000 automatic blood analyzer was used to conduct CBC + DIFF mode test; PLTs were measured at 570 x 109/L. Stained smear microscopy revealed the number of PLTs did not conform to the instrument measured 570 x 109/L. "RET" alarm instrument, switch to CBC + DIFF + RET mode for testing. The second test result showed PLTs at 128 x 109/L, which accords with artificial microscopy. This was a case of a very rare phenomenon: the fragmentation of RBCs caused pseudothrombocytosis.

  1. Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang; Lesselier, Dominique

    2009-11-01

    We propose a non-iterative MUSIC (MUltiple SIgnal Classification)-type algorithm for the time-harmonic electromagnetic imaging of one or more perfectly conducting, arc-like cracks found within a homogeneous space R2. The algorithm is based on a factorization of the Multi-Static Response (MSR) matrix collected in the far-field at a single, nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition), followed by the calculation of a MUSIC cost functional expected to exhibit peaks along the crack curves each half a wavelength. Numerical experimentation from exact, noiseless and noisy data shows that this is indeed the case and that the proposed algorithm behaves in robust manner, with better results in the TM mode than in the TE mode for which one would have to estimate the normal to the crack to get the most optimal results.

  2. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  3. Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Lv, Wei; Henry, Asegun

    We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.

  4. Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct.

    PubMed

    Lee, Howard; Lee, Heechan; Baik, Jungmi; Kim, Hyunjung; Kim, Rachel

    2017-01-01

    Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. A total of 114 failure modes were identified with an RPN score ranging 3-378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes.

  5. Survey of current practice in clinical transvaginal ultrasound scanning in the UK

    PubMed Central

    Shaw, Adam; Lees, Christoph

    2015-01-01

    During transvaginal ultrasound scanning, the fetus and other sensitive tissues are placed close to the transducer. Heating of these tissues occurs by direct conduction from the transducer and by absorption of ultrasound in the tissue. The extent of any heating will depend on the equipment and settings used, the duration of the scan, imaging modes and other aspects of scanning practice. To ensure that scans are performed with minimum risk, staff should have an appropriate knowledge of safety and follow guidelines issued by professional bodies. An online survey aiming to document current practice in transvaginal ultrasound in the UK was created and distributed to individuals performing this type of scanning. The survey posed questions about the respondents, the departments where scans were performed, the equipment used, knowledge of ultrasound safety, scanning practice and the frequency, duration and mode of transvaginal ultrasound scans for gynaecology, obstetrics and fertility applications. In all, 294 responses were obtained, mostly from sonographers (94%). From the analysis of the responses, it was clear that there was a good understanding of the general meaning of thermal and mechanical index and high awareness of guidelines issued by professional bodies. However, 40% of respondents stated that they rarely or never monitor Thermal or Mechanical indices during scanning. Scanning practice was consistent in terms of the duration of scans, scan protocols followed and use of imaging modes. The results highlight the importance of continued ultrasound safety training and promotion of safety guidelines to users. PMID:27433250

  6. Fixed bed column study for Cu (II) removal from aqueous solution using water hyacinth (Eichornia crassipes) biomass.

    PubMed

    Gandhimathi, R; Ramesh, S T; Yadu, Anubhav; Bharathi, K S

    2013-07-01

    This paper reports the results of the study on the performance of low-cost biosorbent water hyacinth (WH) in removing Cu (II) from aqueous solution. The adsorbent material adopted was found to be an efficient media for the removal of Cu (II) in continuous mode using fixed bed column. The column studies were conducted with 10 mg/L metal solution with a flow rate of 10 mL/min with different bed depths such as 10, 20 and 30 cm. The column design parameters like adsorption rate constant, adsorption capacity and minimum bed depth were calculated. It was found that, the adsorption capacity of copper ions by water hyacinth increased by increasing the bed depth and the contact time.

  7. An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive

    NASA Astrophysics Data System (ADS)

    Singh, Bhim; Bist, Vashist

    2015-12-01

    This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.

  8. A compact Dopplergraph/magnetograph suitable for space-based measurements of solar oscillations and magnetic fields

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.; Blamont, J.; Howard, R. F.; Dumont, P.; Smith, E. J.

    1984-01-01

    A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-omega power spectra which show clear- the solar nonradial p-mode oscilations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.

  9. Results of test 0A82 in the NASA/LRC 31 inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction and to investigate RT real gas effects

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1975-01-01

    Tests were conducted in the NASA Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel to determine RCS jet interaction effects on hypersonic aerodynamic characteristics and to investigate RT (gas constant times temperature) scaling effects on the RCS similitude. The model was an 0.010-scale replica of the Space Shuttle Orbiter Configuration 3. Hypersonic aerodynamic data were obtained from tests at Mach 10.3 and dynamic pressures of 200, 150, 125, and 100 psf. The RCS modes of pitch, yaw, and roll at free flight dynamic pressure simulation of 20 psf were investigated.

  10. Microwave response of hole and patch arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Melita C.; Edmunds, James D.; Hendry, Euan; Hibbins, Alastair P.; Sambles, J. Roy

    2010-10-01

    The electromagnetic response of two-dimensional square arrays of perfectly conducting square patches, and their complementary structures, is modeled utilizing a modal matching technique and employing Babinet’s principle. This method allows for the introduction of progressively higher diffracted orders and waveguide modes to be included in the calculation, hence aiding understanding of the underlying causal mechanism for the observed response. At frequencies close to, but below, the onset of diffraction, a near-complete reflection condition is predicted, even for low filling fractions: conversely, for high filling fractions a near-complete transmission condition results. These resonance phenomena are associated with evanescent diffraction, which is sufficiently strong to reverse the step change in transmission upon establishment of electrical continuity; i.e., the connected structure demonstrates increased transmission with increasing filling fraction.

  11. Design, analyses, fabrication and characterization of Nb3Sn coil in 1 W pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Kundu, Ananya; Das, Subrat Kumar; Bano, Anees; Kumar, Nitish; Pradhan, Subrata

    2017-02-01

    A laboratory scale Nb3Sn coil is designed, analysed, fabricated and characterized in 1 W pulse tube cryocooler in solid nitrogen cooling mode and in conduction cooling mode. The magnetic field profile in axial and radial direction, Lorentz force component across the winding volume in operational condition are estimated in COMSOL. The coil is designed for 1.5 T at 100 A. It is fabricated in wind and react method. Before winding, the insulated Nb3Sn strand is wound on a copper mandrel which is thermally anchored with the 2nd stage of the cold head unit via a 10 mm thick copper ‘Z’ shaped plate The temperature distribution in 2nd cold stage, copper z plate and coil is monitored in both solid nitrogen cooling and conduction cooling mode. In solid nitrogen cooling mode, the quench of the coil occurs at 150 A for 0.01 A/s current ramp rate. The magnetic field at the centre of the coil bore is measured using transverse Hall sensor. The measured magnetic field value is compared with the analytical field value and they are found to be deviating ∼5% in magnitude. Again the coil is tested in conduction cooling mode maintaining the same current ramp rate and it is observed that the coil gets quenched at 70 A at temperature ∼ 10K.

  12. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  13. Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-12-01

    Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.

  14. Plasmon Excitations of Multi-layer Graphene on a Conducting Substrate

    PubMed Central

    Gumbs, Godfrey; Iurov, Andrii; Wu, Jhao-Ying; Lin, M. F.; Fekete, Paula

    2016-01-01

    We predict the existence of low-frequency nonlocal plasmons at the vacuum-surface interface of a superlattice of N graphene layers interacting with conducting substrate. We derive a dispersion function that incorporates the polarization function of both the graphene monolayers and the semi-infinite electron liquid at whose surface the electrons scatter specularly. We find a surface plasmon-polariton that is not damped by particle-hole excitations or the bulk modes and which separates below the continuum mini-band of bulk plasmon modes. The surface plasmon frequency of the hybrid structure always lies below , the surface plasmon frequency of the conducting substrate. The intensity of this mode depends on the distance of the graphene layers from the conductor’s surface, the energy band gap between valence and conduction bands of graphene monolayer and, most importantly, on the number of two-dimensional layers. For a sufficiently large number of layers the hybrid structure has no surface plasmon. The existence of plasmons with different dispersion relations indicates that quasiparticles with different group velocity may coexist for various ranges of wavelengths determined by the number of layers in the superlattice. PMID:26883086

  15. Experimental and Numerical Investigation of Fiber Reinforced Laminated Composites Subject to Low-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Thorsson, Solver I.

    Foreign object impact on composite materials continues to be an active field due to its importance in the design of load bearing composite aerostructures. The problem has been studied by many through the decades. Extensive experimental studies have been performed to characterize the impact damage and failure mechanisms. Leaders in aerospace industry are pushing for reliable, robust and efficient computational methods for predicting impact response of composite structures. Experimental and numerical investigations on the impact response of fiber reinforced polymer matrix composite (FRPC) laminates are presented. A detailed face-on and edge-on impact experimental study is presented. A novel method for conducting coupon-level edge-on impact experiments is introduced. The research is focused on impact energy levels that are in the vicinity of the barely visible impact damage (BVID) limit of the material system. A detailed post-impact damage study is presented where non-destructive inspection (NDI) methods such as ultrasound scanning and computed tomography (CT) are used. Detailed fractography studies are presented for further investigation of the through-the-thickness damage due to the impact event. Following the impact study, specimens are subjected to compression after impact (CAI) to establish the effect of BVID on the compressive strength after impact (CSAI). A modified combined loading compression (CLC) test method is proposed for compression testing following an edge-on impact. Experimental work on the rate sensitivity of the mode I and mode II inter-laminar fracture toughness is also investigated. An improved wedge-insert fracture (WIF) method for conducting mode I inter-laminar fracture at elevated loading rates is introduced. Based on the experimental results, a computational modeling approach for capturing face-on impact and CAI is developed. The model is then extended to edge-on impact and CAI. Enhanced Schapery Theory (EST) is utilized for modeling the full field damage and failure present in a unidirectional (UD) lamina within a laminate. Schapery Theory (ST) is a thermodynamically based work potential material model which captures the pre-peak softening due to matrix micro-cracking such as hackling, micro fissures, etc. The Crack Band (CB) method is utilized to capture macroscopic matrix and fiber failure modes such as ply splitting and fiber rupture. Discrete Cohesive Zone Method (DCZM) elements are implemented for capturing inter-laminar delaminations, using discrete nodal traction-separation governed interactions. The model is verified against the impact experimental results and the associated CAI procedures. The model results are in good agreement with experimental findings. The model proved capable of predicting the representative experimental failure modes.

  16. Experimental study of a 1 MW, 170 GHz gyrotron oscillator

    NASA Astrophysics Data System (ADS)

    Kimura, Takuji

    A detailed experimental study is presented of a 1 MW, 170 GHz gyrotron oscillator whose design is consistent with the ECH requirements of the International Thermonuclear Experimental Reactor (ITER) for bulk heating and current drive. This work is the first to demonstrate that megawatt power level at 170 GHz can be achieved in a gyrotron with high efficiency for plasma heating applications. Maximum output power of 1.5 MW is obtained at 170.1 GHz in 85 kV, 50A operation for an efficiency of 35%. Although the experiment at MIT is conducted with short pulses (3 μs), the gyrotron is designed to be suitable for development by industry for continuous wave operation. The peak ohmic loss on the cavity wall for 1 MW of output power is calculated to be 2.3 kW/cm2, which can be handled using present cooling technology. Mode competition problems in a highly over-moded cavity are studied to maximize the efficiency. Various aspects of electron gun design are examined to obtain high quality electron beams with very low velocity spread. A triode magnetron injection gun is designed using the EGUN simulation code. A total perpendicular velocity spread of less than 8% is realized by designing a low- sensitivity, non-adiabatic gun. The RF power is generated in a short tapered cavity with an iris step. The operating mode is the TE28,8,1 mode. A mode converter is designed to convert the RF output to a Gaussian beam. Power and efficiency are measured in the design TE28,8,1 mode at 170.1 GHz as well as the TE27,8,1 mode at 166.6 GHz and TE29,8,1 mode at 173.5 GHz. Efficiencies between 34%-36% are consistently obtained over a wide range of operating parameters. These efficiencies agree with the highest values predicted by the multimode simulations. The startup scenario is investigated and observed to agree with the linear theory. The measured beam velocity ratio is consistent with EGUN simulation. Interception of reflected beam by the mod-anode is measured as a function of velocity ratio, from which the beam velocity spreads are estimated. A preliminary test of the mode converter shows that the radiation from the dimpled wall launcher is a Gaussian-like beam. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139- 4307. Ph. 617-253-5668; Fax 617-253-1690.)

  17. 12 CFR 229.58 - Mode of delivery of information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Mode of delivery of information. 229.58 Section 229.58 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... bank instead may provide an electronic image of the original check or sufficient copy if the recipient...

  18. 76 FR 971 - Energy Conservation Program for Consumer Products: Test Procedures for Clothes Dryers and Room...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... clarify application of these provisions for measuring standby mode and off mode power consumption in.... Measures of Energy Consumption a. Clothes Dryers b. Room Air Conditioners C. Clothes Dryer and Room Air... the Per-Cycle Gas Dryer Continuously Burning Pilot Light Gas Energy Consumption 9. Clarification of...

  19. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  20. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  1. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  2. 40 CFR 1051.505 - What special provisions apply for testing snowmobiles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Test... for all testing you perform for that engine family. If we test your engines to confirm that they meet... cycle using the weighting factors specified for each mode. In each mode, operate the engine for at least...

  3. The Changing Nature of Parent-Teacher Communication: Mode Selection in the Smartphone Era

    ERIC Educational Resources Information Center

    Thompson, Blair Christopher; Mazer, Joseph P.; Flood Grady, Elizabeth

    2015-01-01

    Parent-teacher communication continues to evolve due to smartphones and other new communication technologies. In all, 1,349 parents completed the Parental Academic Support Scale to assess the frequency and importance of communication across modes. Confirmatory analysis revealed a good model fit. Media richness theory was applied to parents'…

  4. An Intelligent Mobile Location-Aware Book Recommendation System that Enhances Problem-Based Learning in Libraries

    ERIC Educational Resources Information Center

    Chen, Chih-Ming

    2013-01-01

    Despite rapid and continued adoption of mobile devices, few learning modes integrate with mobile technologies and libraries' environments as innovative learning modes that emphasize the key roles of libraries in facilitating learning. In addition, some education experts have claimed that transmitting knowledge to learners is not the only…

  5. Low threshold interband cascade lasers operating above room temperature

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, B.; Yang, R. Q.

    2003-01-01

    Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.

  6. Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator

    PubMed Central

    Hornstein, Melissa K.; Bajaj, Vikram S.; Griffin, Robert G.; Temkin, Richard J.

    2007-01-01

    We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE0,6,1 mode near 460 GHz. The gyrotron also operates in the second harmonic TE2,6,1 mode at 456 GHz and in the TE2,3,1 fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE0,6,1 mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T. PMID:17710187

  7. Flight Control Design for an Autonomous Rotorcraft Using Pseudo-Sliding Mode Control and Waypoint Navigation

    NASA Astrophysics Data System (ADS)

    Mallory, Nicolas Joseph

    The design of robust automated flight control systems for aircraft of varying size and complexity is a topic of continuing interest for both military and civilian industries. By merging the benefits of robustness from sliding mode control (SMC) with the familiarity and transparency of design tradeoff offered by frequency domain approaches, this thesis presents pseudo-sliding mode control as a viable option for designing automated flight control systems for complex six degree-of-freedom aircraft. The infinite frequency control switching of SMC is replaced, by necessity, with control inputs that are continuous in nature. An introduction to SMC theory is presented, followed by a detailed design of a pseudo-sliding mode control and automated flight control system for a six degree-of-freedom model of a Hughes OH6 helicopter. This model is then controlled through three different waypoint missions that demonstrate the stability of the system and the aircraft's ability to follow certain maneuvers despite time delays, large changes in model parameters and vehicle dynamics, actuator dynamics, sensor noise, and atmospheric disturbances.

  8. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  9. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  10. Ferromagnetic resonance in a topographically modulated permalloy film

    NASA Astrophysics Data System (ADS)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.; Tice, D.; Chang, R. P. H.; Lee, S. J.; Nevirkovets, I. P.; Heinonen, O.; Ketterson, J. B.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.

  11. Continuous-wave optical stimulation of the rat prostate nerves using an all-single-mode 1455 nm diode laser and fiber system

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.

  12. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  13. Tetravalent chromium (Cr(4+)) as laser-active ion for tunable solid-state lasers

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, Robert R.

    1993-01-01

    Major accomplishments under NASA grant NAG-1-1346 are summarized. (1) numerical modeling of the four mirror astigmatically compensated, Z-fold cavity was performed and several design parameters to be used for the construction of a femtosecond forsterite laser were revealed by simulation. (2) femtosecond pulses from a continuous wave mode-locked chromium doped forsterite laser were generated. The forsterite laser was actively mode-locked using an acousto-optic modulator operating at 78 MHz with two Brewster high dispersion glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were routinely generated in the TEM(sub 00) mode with 85 mW of continuous power tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured. (3) Self-mode-locked operation of the Cr:forsterite laser was achieved. Synchronous pumping was used to mode lock the forsterite laser resulting in picosecond pulses, which in turn provided the starting mechanism for self-mode-locking. The pulses generated had an FWHM of 105 fs and were tunable between 1230-1270 nm. (4) Numerical calculations indicated that the pair of SF 14 prisms used in the cavity compensated for quadratic phase but introduced a large cubic phase term. Further calculations of other optical glasses indicated that a pair of SFN 64 prisms can introduce the same amount of quadratic phase as SF 14 prisms but introduce a smaller cubic phase. When the SF 14 prisms were replaced by SFN 64 prisms the pulsewidth was reduced to 50 fs. Great improvement was observed in the stability of the self mode-locked forsterite laser and in the ease of achieving mode locking. Using the same experimental arrangement and a new forsterite crystal with improved FOM the pulse width was reduced to 36 fs.

  14. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  15. A Comparative Study on the Practice of Continuous Assessment between Addis Ababa and Unity Universities

    ERIC Educational Resources Information Center

    Zeleke, Aytaged Sisay

    2013-01-01

    This paper aims to explore the practice of continuous assessment at Unity University College and Addis Ababa University. It has also investigated constraints instructors say they have been facing in implementing continuous assessment. Students' attitudes about the practice of this assessment mode towards their course achievements were explored.…

  16. Conductivity of an atomically defined metallic interface

    PubMed Central

    Oliver, David J.; Maassen, Jesse; El Ouali, Mehdi; Paul, William; Hagedorn, Till; Miyahara, Yoichi; Qi, Yue; Guo, Hong; Grütter, Peter

    2012-01-01

    A mechanically formed electrical nanocontact between gold and tungsten is a prototypical junction between metals with dissimilar electronic structure. Through atomically characterized nanoindentation experiments and first-principles quantum transport calculations, we find that the ballistic conduction across this intermetallic interface is drastically reduced because of the fundamental mismatch between s wave-like modes of electron conduction in the gold and d wave-like modes in the tungsten. The mechanical formation of the junction introduces defects and disorder, which act as an additional source of conduction losses and increase junction resistance by up to an order of magnitude. These findings apply to nanoelectronics and semiconductor device design. The technique that we use is very broadly applicable to molecular electronics, nanoscale contact mechanics, and scanning tunneling microscopy. PMID:23129661

  17. Continuous performance task in ADHD: Is reaction time variability a key measure?

    PubMed

    Levy, Florence; Pipingas, Andrew; Harris, Elizabeth V; Farrow, Maree; Silberstein, Richard B

    2018-01-01

    To compare the use of the Continuous Performance Task (CPT) reaction time variability (intraindividual variability or standard deviation of reaction time), as a measure of vigilance in attention-deficit hyperactivity disorder (ADHD), and stimulant medication response, utilizing a simple CPT X-task vs an A-X-task. Comparative analyses of two separate X-task vs A-X-task data sets, and subgroup analyses of performance on and off medication were conducted. The CPT X-task reaction time variability had a direct relationship to ADHD clinician severity ratings, unlike the CPT A-X-task. Variability in X-task performance was reduced by medication compared with the children's unmedicated performance, but this effect did not reach significance. When the coefficient of variation was applied, severity measures and medication response were significant for the X-task, but not for the A-X-task. The CPT-X-task is a useful clinical screening test for ADHD and medication response. In particular, reaction time variability is related to default mode interference. The A-X-task is less useful in this regard.

  18. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  19. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  20. Correlation between ambient air and continuous bending stress for the electrical reliability of flexible pentacene-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Wei-Chun; Peng, Han-Hsing; Lin, Yu-Zuo; Huang, Bohr-Ran

    2015-01-01

    This study investigated how continuous bending stress affects the electrical characteristics of pentacene-based organic thin-film transistors (OTFTs) with poly(4-vinylphenol) (PVP) gate insulator in a vacuum and in ambient air. In tension mode, the strain direction of the fabricated devices was perpendicular to the device channel length. The OTFT devices that were bent in a vacuum exhibited a decreased on current because of cracking in the pentacene channel layer, which can obstruct the transport of charge carriers and deteriorate the on current of the OTFTs. The OTFT devices that were bent in ambient air exhibited a slightly decreased on current and considerably increased off current and subthreshold swing (SS). It was assumed that air moisture passed through the pentacene cracks into the interface between the PVP and pentacene layer, thereby yielding an increase in polar moisture traps, and leading to an increase in the conductivity of the pentacene, thus yielding a slightly decreased on current and considerably increased off current and SS.

  1. Derivation of linearized transfer functions for switching-mode regulations. Phase A: Current step-up and voltage step-up converters

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.

    1981-01-01

    Small-signal models are derived for the power stage of the voltage step-up (boost) and the current step-up (buck) converters. The modeling covers operation in both the continuous-mmf mode and the discontinuous-mmf mode. The power stage in the regulated current step-up converter on board the Dynamics Explorer Satellite is used as an example to illustrate the procedures in obtaining the small-signal functions characterizing a regulated converter.

  2. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  3. Entanglement and purity of two-mode Gaussian states in noisy channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio

    2004-02-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.

  4. Incubator temperature control: effects on the very low birthweight infant.

    PubMed Central

    Ducker, D A; Lyon, A J; Ross Russell, R; Bass, C A; McIntosh, N

    1985-01-01

    We studied temperature stability in 22 infants of birthweight less than 1500 g in the first four days of life. Infants were nursed in incubators using either air mode control or skin temperature servo control. Data were collected continuously using a computer linked monitoring system. Skin temperature control resulted in a less stable thermal environment than air mode control. Increased thermal stability in the incubator on air mode control may well be beneficial, particularly to sick, very low birthweight infants. PMID:4062342

  5. Radiationless Transitions and Excited-State Absorption of Low-Field Chromium Complexes in Solids

    DTIC Science & Technology

    1989-07-20

    host-lattice modes and, in the case of the scandium compound with 5 % chromium concentration, of the a and tIg 2g localized modes. The local-mode...Radiationless transitions and excited-state Final report I/I/86-5/31/89 absorption of low-field chromium complexes 6. PERFORMING ORG. REPORT NUMBER ( 1 in...complexes, chromium ; tunable lasers, high pressure,-photoluminescence 4. 26, AMTVrAC? (Cbm e @CAP N Igemem’ a IdoMit’ by block nambew) The continuation of a

  6. Noise characterization of a pulse train generated by actively mode-locked lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Salvatore, R.A.; Yariv, A.

    1996-07-01

    We analyze the entire power spectrum of pulse trains generated by a continuously operating actively mode-locked laser in the presence of noise. We consider the effect of amplitude, pulse-shape, and timing-jitter fluctuations that are characterized by stationary processes. Effects of correlations between different parameters of these fluctuations are studied also. The nonstationary timing-jitter fluctuations of passively mode-locked lasers and their influence on the power spectrum is discussed as well. {copyright} {ital 1996 Optical Society of America.}

  7. Magnetorotational instability in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2005-07-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified accretion discs. The magnetic field is initially vertical and dust grains are assumed to have settled towards the mid-plane, so charges are carried by electrons and ions only. Solutions are obtained at representative radial locations from the central protostar for different choices of the initial magnetic field strength, sources of ionization, disc structure and configuration of the conductivity tensor. The MRI is active over a wide range of magnetic field strengths and fluid conditions in low-conductivity discs. Moreover, no evidence was found of a low-limit field strength below which unstable modes do not exist. For the minimum-mass solar nebula model, incorporating cosmic ray ionization, perturbations grow at 1 au for B<~ 8 G. For a significant subset of these strengths (200mG <~B<~ 5G), the maximum growth rate is of the order of the ideal magnetohydrodynamic (MHD) rate (0.75Ω). Hall conductivity modifies the structure and growth rate of global unstable modes at 1 au for all magnetic field strengths that support MRI. As a result, at this radius, modes obtained with a full conductivity tensor grow faster and are active over a more extended cross-section of the disc than perturbations in the ambipolar diffusion limit. For relatively strong fields (e.g. B>~ 200 mG), ambipolar diffusion alters the envelope shapes of the unstable modes, which peak at an intermediate height, instead of being mostly flat as modes in the Hall limit are in this region of parameter space. Similarly, when cosmic rays are assumed to be excluded from the disc by the winds emitted by the magnetically active protostar, unstable modes grow at this radius for B<~ 2 G. For strong fields, perturbations exhibit a kink at the height where X-ray ionization becomes active. Finally, for R= 5 au (10 au), unstable modes exist for B<~ 800 mG (B<~ 250 mG) and the maximum growth rate is close to the ideal-MHD rate for 20 <~B<~ 500 mG (2 <~B<~ 50 mG). Similarly, perturbations incorporating Hall conductivity have a higher wavenumber and grow faster than solutions in the ambipolar diffusion limit for B<~ 100 mG (B<~ 10 mG). Unstable modes grow even at the mid-plane for B>~ 100 mG (B~ 1 mG), but for weaker fields, a small dead region exists. This study shows that, despite the low magnetic coupling, the magnetic field is dynamically important for a large range of fluid conditions and field strengths in protostellar discs. An example of such magnetic activity is the generation of MRI unstable modes, which are supported at 1 au for field strengths up to a few gauss. Hall diffusion largely determines the structure and growth rate of these perturbations for all studied radii. At radii of order 1 au, in particular, it is crucial to incorporate the full conductivity tensor in the analysis of this instability and more generally in studies of the dynamics of astrophysical discs.

  8. Continuous recovery of valine in a model mixture of amino acids and salt from Corynebacterium bacteria fermentation using a simulated moving bed chromatography.

    PubMed

    Park, Chanhun; Nam, Hee-Geun; Jo, Se-Hee; Wang, Nien-Hwa Linda; Mun, Sungyong

    2016-02-26

    The economical efficiency of valine production in related industries is largely affected by the performance of a valine separation process, in which valine is to be separated from leucine, alanine, and ammonium sulfate. Such separation is currently handled by a batch-mode hybrid process based on ion-exchange and crystallization schemes. To make a substantial improvement in the economical efficiency of an industrial valine production, such a batch-mode process based on two different separation schemes needs to be converted into a continuous-mode separation process based on a single separation scheme. To address this issue, a simulated moving bed (SMB) technology was applied in this study to the development of a continuous-mode valine-separation chromatographic process with uniformity in adsorbent and liquid phases. It was first found that a Chromalite-PCG600C resin could be eligible for the adsorbent of such process, particularly in an industrial scale. The intrinsic parameters of each component on the Chromalite-PCG600C adsorbent were determined and then utilized in selecting a proper set of configurations for SMB units, columns, and ports, under which the SMB operating parameters were optimized with a genetic algorithm. Finally, the optimized SMB based on the selected configurations was tested experimentally, which confirmed its effectiveness in continuous separation of valine from leucine, alanine, ammonium sulfate with high purity, high yield, high throughput, and high valine product concentration. It is thus expected that the developed SMB process in this study will be able to serve as one of the trustworthy ways of improving the economical efficiency of an industrial valine production process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Lorente, Nicolás; Paulsson, Magnus; Brandbyge, Mads

    2007-06-01

    The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due to the excitation of vibrations. As found in previous studies [Paulsson , Phys. Rev. B 72, 201101(R) (2005)], the change in conductance due to inelastic effects permits us to characterize the crossover from tunneling to contact. The most notorious effect is the crossover from an increase in conductance in the tunneling regime to a decrease in conductance in the contact regime when the bias voltage matches a vibrational threshold. Our DFT-based calculations actually show that the effect of vibrational modes in electron conductance is rather complex, in particular, when modes localized in the contact region are permitted to extend into the electrodes. As an example, we find that certain modes can give rise to decreases in conductance when in the tunneling regime, opposite to the above-mentioned result. Whereas details in the inelastic spectrum depend on the size of the vibrational region, we show that the overall change in conductance is quantitatively well approximated by the simplest calculation where only the apex atoms are allowed to vibrate. Our study is completed by the application of a simplified model where the relevant parameters are obtained from the above DFT-based calculations.

  10. Results from a Test Fixture for button BPM Trapped Mode Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron,P.; Bacha, B.; Blednykh, A.

    2009-05-04

    A variety of measures have been suggested to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. A brief history of the trapped mode button heating problem and a set of design rules for BPM button optimization are presented elsewhere in these proceedings. Here we present measurements on a test fixture that was assembled to confirm, if possible, a subset of those rules: (1)more » Minimize the trapped mode impedance and the resulting power deposited in this mode by the beam. (2) Maximize the power re-radiated back into the beampipe. (3) Maximize electrical conductivity of the outer circumference of the button and minimize conductivity of the inner circumference of the shell, to shift power deposition from the button to the shell. The problem is then how to extract useful and relevant information from S-parameter measurements of the test fixture.« less

  11. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  12. Discrete model of gas-free spin combustion of a powder mixture

    NASA Astrophysics Data System (ADS)

    Klimenok, Kirill L.; Rashkovskiy, Sergey A.

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  13. Discrete model of gas-free spin combustion of a powder mixture.

    PubMed

    Klimenok, Kirill L; Rashkovskiy, Sergey A

    2015-01-01

    We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.

  14. Modulated and continuous-wave operations of low-power thulium (Tm:YAP) laser in tissue welding

    NASA Astrophysics Data System (ADS)

    Bilici, Temel; Tabakoğlu, Haşim Özgür; Topaloğlu, Nermin; Kalaycıoğlu, Hamit; Kurt, Adnan; Sennaroglu, Alphan; Gülsoy, Murat

    2010-05-01

    Our aim is to explore the welding capabilities of a thulium (Tm:YAP) laser in modulated and continuous-wave (CW) modes of operation. The Tm:YAP laser system developed for this study includes a Tm:YAP laser resonator, diode laser driver, water chiller, modulation controller unit, and acquisition/control software. Full-thickness incisions on Wistar rat skin were welded by the Tm:YAP laser system at 100 mW and 5 s in both modulated and CW modes of operation (34.66 W/cm2). The skin samples were examined during a 21-day healing period by histology and tensile tests. The results were compared with the samples closed by conventional suture technique. For the laser groups, immediate closure at the surface layers of the incisions was observed. Full closures were observed for both modulated and CW modes of operation at day 4. The tensile forces for both modulated and CW modes of operation were found to be significantly higher than the values found by conventional suture technique. The 1980-nm Tm:YAP laser system operating in both modulated and CW modes maximizes the therapeutic effect while minimizing undesired side effects of laser tissue welding. Hence, it is a potentially important alternative tool to the conventional suturing technique.

  15. 940  mW 1564  nm multi-longitudinal-mode and 440  mW 1537  nm single-longitudinal-mode continuous-wave Er:Yb:Lu2Si2O7 microchip lasers.

    PubMed

    Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-15

    An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.

  16. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R.; Gonder, J.

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30%more » to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.« less

  17. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  18. Nonperturbative Treatment of non-Markovian Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tamascelli, D.; Smirne, A.; Huelga, S. F.; Plenio, M. B.

    2018-01-01

    We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments—one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.

  19. Telephone-quality pathological speech classification using empirical mode decomposition.

    PubMed

    Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S

    2011-01-01

    This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.

  20. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    PubMed

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  1. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    NASA Astrophysics Data System (ADS)

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.

  2. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin

    2010-10-01

    In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.

  3. Evidence for Paper and Online ACT® Comparability: Spring 2014 and 2015 Mode Comparability Studies. ACT Research Report Series 2017-1

    ERIC Educational Resources Information Center

    Li, Dongmei; Yi, Qing; Harris, Deborah

    2017-01-01

    In preparation for online administration of the ACT® test, ACT conducted studies to examine the comparability of scores between online and paper administrations, including a timing study in fall 2013, a mode comparability study in spring 2014, and a second mode comparability study in spring 2015. This report presents major findings from these…

  4. Learning about Modes in Atomic Force Microscopy by Means of Hands-On Activities Based on a Simple Apparatus

    ERIC Educational Resources Information Center

    Phuapaiboon, Unchada; Panijpan, Bhinyo; Osotchan, Tanakorn

    2009-01-01

    This study was conducted to examine the results of using a low-cost hands-on setup in combination with accompanying activities to promote understanding of the contact mode of atomic force microscopy (AFM). This contact mode setup enabled learners to study how AFM works by hand scanning using probing cantilevers with different characteristics on…

  5. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  6. Active mode locking of lasers by piezoelectrically induced diffraction modulation

    NASA Astrophysics Data System (ADS)

    Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.

    1990-04-01

    A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.

  7. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  8. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode.

    PubMed

    Timoumi, Asma; Cléret, Mégane; Bideaux, Carine; Guillouet, Stéphane E; Allouche, Yohan; Molina-Jouve, Carole; Fillaudeau, Luc; Gorret, Nathalie

    2017-01-01

    Yarrowia lipolytica, a non-conventional yeast with a promising biotechnological potential, is able to undergo metabolic and morphological changes in response to environmental conditions. The effect of pH perturbations of different types (pulses, Heaviside) on the dynamic behavior of Y. lipolytica W29 strain was characterized under two modes of culture: batch and continuous. In batch cultures, different pH (4.5, 5.6 (optimal condition), and 7) were investigated in order to identify the pH inducing a stress response (metabolic and/or morphologic) in Y. lipolytica. Macroscopic behavior (kinetic parameters, yields, viability) of the yeast was slightly affected by pH. However, contrary to the culture at pH 5.6, a filamentous growth was induced in batch experiments at pH 4.5 and 7. Proportions of the filamentous subpopulation reached 84 and 93 % (v/v) under acidic and neutral conditions, respectively. Given the significant impact of neutral pH on morphology, pH perturbations from 5.6 to 7 were subsequently assayed in batch and continuous bioreactors. For both process modes, the growth dynamics remained fundamentally unaltered during exposure to stress. Nevertheless, morphological behavior of the yeast was dependent on the culture mode. Specifically, in batch bioreactors where cells proliferated at their maximum growth rate, mycelia were mainly formed. Whereas, in continuous cultures at controlled growth rates (from 0.03 to 0.20 h -1 ) even closed to the maximum growth rate of the stain (0.24 h -1 ), yeast-like forms predominated. This pointed out differences in the kinetic behavior of filamentous and yeast subpopulations, cell age distribution, and pH adaptive mechanisms between both modes of culture.

  9. A general solution strategy of modified power method for higher mode solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung, E-mail: deokjung@unist.ac.kr

    2016-01-15

    A general solution strategy of the modified power iteration method for calculating higher eigenmodes has been developed and applied in continuous energy Monte Carlo simulation. The new approach adopts four features: 1) the eigen decomposition of transfer matrix, 2) weight cancellation for higher modes, 3) population control with higher mode weights, and 4) stabilization technique of statistical fluctuations using multi-cycle accumulations. The numerical tests of neutron transport eigenvalue problems successfully demonstrate that the new strategy can significantly accelerate the fission source convergence with stable convergence behavior while obtaining multiple higher eigenmodes at the same time. The advantages of the newmore » strategy can be summarized as 1) the replacement of the cumbersome solution step of high order polynomial equations required by Booth's original method with the simple matrix eigen decomposition, 2) faster fission source convergence in inactive cycles, 3) more stable behaviors in both inactive and active cycles, and 4) smaller variances in active cycles. Advantages 3 and 4 can be attributed to the lower sensitivity of the new strategy to statistical fluctuations due to the multi-cycle accumulations. The application of the modified power method to continuous energy Monte Carlo simulation and the higher eigenmodes up to 4th order are reported for the first time in this paper. -- Graphical abstract: -- Highlights: •Modified power method is applied to continuous energy Monte Carlo simulation. •Transfer matrix is introduced to generalize the modified power method. •All mode based population control is applied to get the higher eigenmodes. •Statistic fluctuation can be greatly reduced using accumulated tally results. •Fission source convergence is accelerated with higher mode solutions.« less

  10. Mode Transitions in Magnetically Shielded Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.

    2014-01-01

    A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.

  11. Goldstone-like phonon modes in a (111)-strained perovskite

    NASA Astrophysics Data System (ADS)

    Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.

    2018-01-01

    Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.

  12. Coupling of damped and growing modes in unstable shear flow

    DOE PAGES

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.; ...

    2017-06-14

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  13. Coupling of damped and growing modes in unstable shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, A. E.; Terry, P. W.; Zweibel, E. G.

    Analysis of the saturation of the Kelvin-Helmholtz instability is undertaken to determine the extent to which the conjugate linearly stable mode plays a role. For a piecewise-continuous mean flow profile with constant shear in a fixed layer, it is shown that the stable mode is nonlinearly excited, providing an injection-scale sink of the fluctuation energy similar to what has been found for gyroradius-scale drift-wave turbulence. Quantitative evaluation of the contribution of the stable mode to the energy balance at the onset of saturation shows that nonlinear energy transfer to the stable mode is as significant as energy transfer to smallmore » scales in balancing energy injected into the spectrum by the instability. The effect of the stable mode on momentum transport is quantified by expressing the Reynolds stress in terms of stable and unstable mode amplitudes at saturation, from which it is found that the stable mode can produce a sizable reduction in the momentum flux.« less

  14. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    NASA Astrophysics Data System (ADS)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  15. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  16. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  17. Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering

    NASA Astrophysics Data System (ADS)

    Hlinka, J.; Pokorny, J.; Karimi, S.; Reaney, I. M.

    2011-01-01

    The angular dispersion of oblique phonon modes in a multiferroic BiFeO3 has been obtained from a micro-Raman spectroscopic investigation of a coarse grain ceramic sample. Continuity of the measured angular dispersion curves allows conclusive identification of all pure zone-center polar modes. The method employed here to reconstruct the anisotropic crystal property from a large set of independent local measurements on a macroscopically isotropic ceramic sample profits from the considerable dispersion of the oblique modes in ferroelectric perovskites and it can be in principle conveniently applied to any other optically uniaxial ferroelectric material.

  18. Wide single-mode tuning in quantum cascade lasers with asymmetric Mach-Zehnder interferometer type cavities with separately biased arms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Mei C., E-mail: meizheng@princeton.edu; Gmachl, Claire F.; Liu, Peter Q.

    2013-11-18

    We report on the experimental demonstration of a widely tunable single mode quantum cascade laser with Asymmetric Mach-Zehnder (AMZ) interferometer type cavities with separately biased arms. Current and, consequently, temperature tuning of the two arms of the AMZ type cavity resulted in a single mode tuning range of 20 cm{sup −1} at 80 K in continuous-wave mode operation, a ten-fold improvement from the lasers under a single bias current. In addition, we also observed a five fold increase in the tuning rate as compared to the AMZ cavities controlled by one bias current.

  19. Helioseismic observations at Stanford, 1977-1986

    NASA Technical Reports Server (NTRS)

    Henning, H. M.; Scherrer, P. H.

    1986-01-01

    Observations of low degree modes of solar oscillations were made at the Wilcox Solar Observatory for more than a decade. The set of observations from 1977 through 1986 are reexamined. The stability of the p-mode frequencies for modes of degree l=2-5 in each year is tested. A marginally significant trend of a decrease in p-mode frequencies of 0.06 microHz per year is found. The continuity of the observed signal at 160.01 minutes are also examined. It was found that the previously reported phase stability is no longer present. However, due to uncertainties in calibration, the reality of the reported signal can not be excluded.

  20. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  1. Duct Mode Measurements on the TFE731-60 Full Scale Engine

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Konno, Kevin E.; Heidelberg, Laurence J.

    2002-01-01

    A continuously rotating rake with radial microphones was developed to measure the inlet and exhaust duct modes on a TFE731-60 turbofan engine. This was the first time the rotating rake technology was used on a production engine. The modal signature for the first three fan harmonics was obtained in the inlet and exhaust. Rotor-stator and rotor-strut interaction modes were measured. Total harmonic power was calculated over a range of fan speeds. Above sonic tip speed, the rotor locked mode was not strong enough to be identified, but the 'buzz-saw' noise at fan sub-harmonics was identified.

  2. Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System

    NASA Astrophysics Data System (ADS)

    Brazis, V.; Latkovskis, L.; Grigans, L.

    2010-01-01

    The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.

  3. Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes.

    PubMed

    Long, R; Lowe, M; Cawley, P

    2003-09-01

    The attenuation of the fundamental non-torsional modes that propagate down buried iron water pipes has been studied. The mode shapes, mode attenuation due to leakage into the surrounding medium and the scattering of the modes as they interact with pipe joints and fittings have been investigated. In the low frequency region the mode predicted to dominate over significant propagation distances approximates a plane wave in the water within the pipe. The established acoustic technique used to locate leaks in buried iron water pipes assumes that leak noise propagates as a single non-dispersive mode at a velocity related to the low frequency asymptote of this water borne mode. Experiments have been conducted on buried water mains at test sites in the UK to verify the attenuation and velocity dispersion predictions.

  4. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mardechay

    1992-01-01

    The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.

  5. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  6. Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.

    2016-05-01

    Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.

  7. Thermal Conductivity of Twisted Bilayer Graphene Nanoribbons from Non-equilibrium Molecular Dynamics Study.

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Su, Shanshan; Ge, Supeng; Lake, Roger

    Misorientation of the two layers of bilayer graphene affects both the electronic properties and the vibrational modes or phonons. The phonon density of modes is little affected by misorientation, however, zone-folding can allow new Umklapp scattering processes that could affect the phonon transport and thermal conductivity. To investigate this, we use NEMD molecular dynamics simulations as implemented in LAMMPS to study the thermal conductivity of the misoriented graphene bilayers. Seven commensurate misorientation angles varying from 6.01º to 48.36º have modeled and analyzed to understand how the misorientation angle affects the thermal conductivity of relatively wide ( 10 nm) misoriented bilayer graphene nanoribbons (m-BLGNRs). Within numerical accuracy, we find that the thermal conductivity of the m-BLGNRs for all of the simulated commensurate angles have the same thermal conductivity with AB stacked and AA stacked BLGNRs. These results indicate that neither the misorientation angle nor the stacking order affect the thermal conductivity of BLGNRs. This work was supported as part by the NSF #1307671.

  8. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  9. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  10. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test engines using discrete-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  11. 75 FR 37593 - Energy Conservation Program for Consumer Products: Test Procedures for Clothes Dryers and Room...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... consumption in clothes dryers and room air conditioners. In addition, DOE is proposing to adopt definitions of... Modes and Off Mode a. Clothes Dryers b. Room Air Conditioners 5. Measures of Energy Consumption a... Gas Dryer Continuously Burning Pilot Light Gas Energy Consumption 9. Clarification of the Gas Supply...

  12. Resonance-Based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sushruth, Manu; Ding, Junjia; Duczynski, Jeremy; Woodward, Robert C.; Begley, Ryan A.; Fangohr, Hans; Fuller, Rebecca O.; Adeyeye, Adekunle O.; Kostylev, Mikhail; Metaxas, Peter J.

    2016-10-01

    Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to a device's (quasi-)static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency resonant magnetization dynamics for magnetic particle detection. Here, we demonstrate the use of nanoconfined ferromagnetic resonances in periodically nanopatterned magnetic films for the detection of adsorbed magnetic particles having diameters ranging from 6 nm to 4 μ m . The nanopatterned films contain arrays of holes which appear to act as preferential adsorption sites for small particles. Hole-localized particles act in unison to shift the frequencies of the patterned layer's ferromagnetic-resonance modes, with shift polarities determined by the localization of each mode within the nanopattern's repeating unit cell. The same polarity shifts are observed for a large range of coverages, even when quasicontinuous particle sheets form above the hole-localized particles. For large particles, preferential adsorption no longer occurs, leading to resonance shifts with polarities that are independent of the mode localization, and amplitudes that are comparable to those seen in continuous layers. Indeed, for nanoparticles adsorbed onto a continuous layer, the particle-induced shift of the layer's fundamental mode is up to 10 times less than that observed for nanoconfined modes in the nanopatterned systems, the low shift being induced by relatively weak fields emanating beyond the particle in the direction of the static applied field. This result highlights the importance of having particles consistently positioned in the close vicinity of confined modes.

  13. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  14. Comb-Resolved Dual-Comb Spectroscopy Stabilized by Free-Running Continuous-Wave Lasers

    NASA Astrophysics Data System (ADS)

    Kuse, Naoya; Ozawa, Akira; Kobayashi, Yohei

    2012-11-01

    We demonstrate dual-comb spectroscopy with relatively phase-locked two frequency combs, instead of frequency combs firmly fixed to the absolute frequency references. By stabilizing two beat frequencies between two mode-locked lasers at different wavelengths observed via free-running continuous-wave (CW) lasers, two combs are tightly phase locked to each other. The frequency noise of the CW lasers barely affects the performance of dual-comb spectroscopy because of the extremely fast common-mode noise rejection. Transform-limited comb-resolved dual-comb spectroscopy with a 6 Hz radio frequency linewidth is demonstrated by the use of Yb-fiber oscillators.

  15. A novel continuous fractional sliding mode control

    NASA Astrophysics Data System (ADS)

    Muñoz-Vázquez, A. J.; Parra-Vega, V.; Sánchez-Orta, A.

    2017-10-01

    A new fractional-order controller is proposed, whose novelty is twofold: (i) it withstands a class of continuous but not necessarily differentiable disturbances as well as uncertainties and unmodelled dynamics, and (ii) based on a principle of dynamic memory resetting of the differintegral operator, it is enforced an invariant sliding mode in finite time. Both (i) and (ii) account for exponential convergence of tracking errors, where such principle is instrumental to demonstrate the closed-loop stability, robustness and a sustained sliding motion, as well as that high frequencies are filtered out from the control signal. The proposed methodology is illustrated with a representative simulation study.

  16. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator.

    PubMed

    Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui

    2016-11-15

    Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.

  17. Universal quantum computation with temporal-mode bilayer square lattices

    NASA Astrophysics Data System (ADS)

    Alexander, Rafael N.; Yokoyama, Shota; Furusawa, Akira; Menicucci, Nicolas C.

    2018-03-01

    We propose an experimental design for universal continuous-variable quantum computation that incorporates recent innovations in linear-optics-based continuous-variable cluster state generation and cubic-phase gate teleportation. The first ingredient is a protocol for generating the bilayer-square-lattice cluster state (a universal resource state) with temporal modes of light. With this state, measurement-based implementation of Gaussian unitary gates requires only homodyne detection. Second, we describe a measurement device that implements an adaptive cubic-phase gate, up to a random phase-space displacement. It requires a two-step sequence of homodyne measurements and consumes a (non-Gaussian) cubic-phase state.

  18. Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability

    NASA Astrophysics Data System (ADS)

    Li, Jian; Long, Yifei; Xu, Changcheng; Tian, Haifeng; Wu, Yanxia; Zha, Fei

    2018-03-01

    To resolve the drawbacks that single-mesh involved for oil/water separation, such as batch processing mode, only one phase was purified and the quick decrease in flux et al., herein, a two-way separation T-tube device was designed by integrating a pair of meshes with opposite wettability, i.e., underwater superoleophobic and superhydrophobic/superoleophilic properties. Such integrated system can continuously separate both oil and water phase from the oil/water mixtures simultaneously through one-step procedure with high flux (above 3.675 L m-2 s-1) and high separation efficiency larger than 99.8% regardless of the heavy oil or light oil involved in the mixture. Moreover, the as-prepared two meshes still maintained high separation efficiency larger than above 98.9% even after 50 cycle-usages. It worthy mentioned that this two-way separation mode essentially solves the oil liquid accumulation problem that is the single separation membrane needs to tolerate a large hydrostatic pressure caused by the accumulated liquid. We deeply believe this two-way separation system would provide a new strategy for realizing practical applications in oil spill clean-up via a continuous mode.

  19. Pathological speech signal analysis and classification using empirical mode decomposition.

    PubMed

    Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar

    2013-07-01

    Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.

  20. Quantized Majorana conductance.

    PubMed

    Zhang, Hao; Liu, Chun-Xiao; Gazibegovic, Sasa; Xu, Di; Logan, John A; Wang, Guanzhong; van Loo, Nick; Bommer, Jouri D S; de Moor, Michiel W A; Car, Diana; Op Het Veld, Roy L M; van Veldhoven, Petrus J; Koelling, Sebastian; Verheijen, Marcel A; Pendharkar, Mihir; Pennachio, Daniel J; Shojaei, Borzoyeh; Lee, Joon Sue; Palmstrøm, Chris J; Bakkers, Erik P A M; Sarma, S Das; Kouwenhoven, Leo P

    2018-04-05

    Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e 2 /h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e 2 /h, with a recent observation of a peak height close to 2e 2 /h. Here we report a quantized conductance plateau at 2e 2 /h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.

Top