Sample records for continuous cooling transformations

  1. Determination of the continuous cooling transformation diagram of a high strength low alloyed steel

    NASA Astrophysics Data System (ADS)

    Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong

    2016-11-01

    The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.

  2. Continuous Cooling Transformation in Cast Duplex Stainless Steels CD3MN and CD3MWCuN

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Chumbley, L. Scott; Gleeson, Brian

    2008-04-01

    The kinetics of brittle phase transformation in cast duplex stainless steels CD3MN and CD3MWCuN was investigated under continuous cooling conditions. Cooling rates slower than 5 °C/min. were obtained using a conventional tube furnace with a programable controller. In order to obtain controlled high cooling rates, a furnace equipped to grow crystals by means of the Bridgman method was used. Samples were soaked at 1100 °C for 30 min and cooled at different rates by changing the furnace position at various velocities. The velocity of the furnace movement was correlated to a continuous-cooling-temperature profile for the samples. Continuous-cooling-transformation (CCT) diagrams were constructed based on experimental observations through metallographic sample preparations and optical microscopy. These are compared to calculated diagrams derived from previously determined isothermal transformation diagrams. The theoretical calculations employed a modified Johnson-Mehl-Avrami (JMA) equation (or Avrami equation) under assumption of the additivity rule. Rockwell hardness tests were made to present the correlation between hardness change and the amount of brittle phases (determined by tint-etching to most likely be a combination of sigma + chi) after cooling.

  3. Kinetics of austenite-pearlite transformation in eutectoid carbon steel

    NASA Astrophysics Data System (ADS)

    Hawbolt, E. B.; Chau, B.; Brimacombe, J. K.

    1983-09-01

    The kinetics of the austenite-to-pearlite transformation have been measured under isothermal and continuous-cooling conditions on a eutectoid carbon (1080) steel using a diametral dilatometric technique. The isothermal transformation kinetics have been analyzed in terms of the Avrami Equation containing the two parameters n and b; the initiation of transformation was characterized by an empirically determined transformation-start time (tAv). The parameter n was found to be nearly constant; and neither n nor b was dependent on the cooling rate between T A1 and the test temperature. Continuous-cooling tests were performed with cooling rates ranging from 7.5 to 108 °C per second, and the initiation of transformation was determined. Comparison of this transformation-start time for different cooling rates with the measured slow cooling of a test coupon immersed in a salt bath indicates that, particularly at lower temperatures, the transformation in the traditional T-T-T test specimen may not be isothermal. The additivity rule was found to predict accurately the time taken, relative to tAv, to reach a given fraction of austenite transformed, even though there is some question that the isokinetic condition was met above 660 °C. However, the additivity rule does not hold for the pretransformation or incubation period, as originally proposed by Scheil, and seriously overestimates the incubation time. Application of the additivity rule to the prediction of transformation-finish time, based on transformation start at TA1, also leads to overestimates, but these are less serious. The isothermal parameters— n ( T), b ( T), and tAv ( T)—have been used to predict continuous-cooling transformation kinetics which are in close agreement with measurements at four cooling rates ranging from 7.5 to 64 °C per second.

  4. Effects of N and B on continuous cooling transformation diagrams of Mo-V-Ti micro-alloyed steels

    NASA Astrophysics Data System (ADS)

    Yuhui, Wang; Bo, Liao; Ligang, Liu; Xianfeng, Li; Hang, Su; Caifu, Yang; Qingfeng, Wang

    2012-05-01

    Effects of the single addition of nitrogen (N) and boron (B) and the combined addition of N and B on continuous cooling transformation (CCT) diagrams and properties of the three Mo-V-Ti micro-alloyed steels were investigated by means of a combined method of dilatometry and metallography. Microstructures observed in continuous cooled specimens were composed of pearlite (P), quasi-polygonal ferrite (QPF), granular bainite (GB), acicular ferrite (AF), lath-like bainite (LB) and martensite (M) depending on the cooling rates and transformation temperatures. Single addition of 12 ppm B effectively reduced the formation of QPF and broadened the cooling rate region for LB and M. Added N makes the action of B invalid and the QPF region was prominently broadened, and even though the cooling rate is higher than 50°C s-1, it cannot obtain full bainite.

  5. Transformations of Supercooled Austenite in a Promising High-Strength Steel Grade Under Continuous Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Maisuradze, M. V.; Ryzhkov, M. A.; Yudin, Yu. V.; Kuklina, A. A.

    2017-11-01

    Special features of the transformations of supercooled austenite occurring under continuous cooling of a promising high-strength steel grade not standardized in the Russian Federation are determined. A method for evaluating the volume fractions of structure constituents formed in the steel as a result of cooling from 925°C at various constant rates within 0.025 - 75 K/sec is proposed and tested. The results are generalized in the form of a thermokinetic diagram of transformations of supercooled austenite.

  6. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation.

    PubMed

    Blaabjerg, Lasse I; Lindenberg, Eleanor; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas

    2016-09-06

    The aim of this study was to investigate the glass forming ability of 12 different drugs by the determination of continuous cooling and isothermal transformation diagrams in order to elucidate if an inherent differentiation between the drugs with respect to their the glass forming ability can be made. Continuous-cooling-transformation (CCT) and time-temperature-transformation (TTT) diagrams of the drugs were developed in order to predict the critical cooling rate necessary to convert the drug from the melt into an amorphous form. While TTT diagrams overestimated the actual critical cooling rate, they allowed an inherent differentiation of glass forming ability for the investigated drugs into drugs that are extremely difficult to amorphize (>750 °C/min), drugs that require modest cooling rates (>10 °C/min), and drugs that can be made amorphous even at very slow cooling rates (>2 °C/min). Thus, the glass forming ability can be predicted by the use of TTT diagrams. In contrast to TTT diagrams, CCT diagrams may not be suitable for small organic molecules due to poor separation of exothermic events, which makes it difficult to determine the zone of recrystallization. In conclusion, this study shows that glass forming ability of drugs can be predicted by TTT diagrams.

  7. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  8. Continuous cooling transformation behavior and impact toughness in heat-affected zone of Nb-containing fire-resistant steel

    NASA Astrophysics Data System (ADS)

    Wang, Hong Hong; Qin, Zhan Peng; Wan, Xiang Liang; Wei, Ran; Wu, Kai Ming; Misra, Devesh

    2017-09-01

    Simulated heat-affected zone continuous cooling transformation diagram was developed for advanced fireresistant steel. Over a wide range of cooling rates, corresponding to t8/5 from 6 s to 150 s, granular bainite was the dominant transformation constituent, while the morphology of less dominant martensite-austenite (M-A) constituent changed from film-like to block-type constituent; but the hardness remained similar to the average value of 190-205 HV (0.2). The start and finish transformation temperature was high at 700 °C and 500 °C, and is different from the conventional high strength low alloy steels. It is believed that the high-content (0.09 wt%) of Nb may promote bainite transformation at relatively high temperatures. Martenistic matrix was not observed at high cooling rate and the film-like M-A constituent and blocky M-A constituent with thin film of retained austenite and lath martensite were observed on slow cooling. Excellent impact toughness was obtained in the heat-affected zone with 15-75 kJ/cm welding heat input.

  9. Differential scanning calorimetry study and computer modeling of β ⇒ α phase transformation in a Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Malinov, S.; Guo, Z.; Sha, W.; Wilson, A.

    2001-04-01

    The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the β ⇒ α transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the β ⇒ α transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

  10. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-05-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  11. Simulation Kinetics of Austenitic Phase Transformation in Ti+Nb Stabilized IF and Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit; Dasharath, S. M.; Mula, Suhrit

    2018-04-01

    In the present study, the influence of cooling rates (low to ultrafast) on diffusion controlled and displacive transformation of Ti-Nb IF and microalloyed steels has been thoroughly investigated. Mechanisms of nucleation and formation of non-equiaxed ferrite morphologies (i.e., acicular ferrite and bainitic ferrite) have been analyzed in details. The continuous cooling transformation behavior has been studied in a thermomechanical simulator (Gleeble 3800) using the cooling rates of 1-150 °C/s. On the basis of the dilatometric analysis of each cooling rate, continuous cooling transformation (CCT) diagrams have been constructed for both the steels to correlate the microstructural features at each cooling rate in different critical zones. In the case of the IF steel, massive ferrite grains along with granular bainite structures have been developed at cooling rates > 120 °C/s. On the other hand, a mixture of lath bainitic and lath martensite structures has been formed at a cooling rate of 80 °C/s in the microalloyed steel. A strong dependence of the cooling rates and C content on the microstructures and mechanical properties has been established. The steel samples that were fast cooled to a mixture of bainite ferrite and martensite showed a significant improvement of impact toughness and hardness (157 J, for IF steel and 174 J for microalloyed steel) as compared to that of the as-received specimens (133 J for IF steel and 116 J for microalloyed steel). Thus, it can be concluded that the hardness and impact toughness properties are correlated well with the microstructural constituents as indicated by the CCT diagram. Transformation mechanisms and kinetics of austenitic transformation to different phase morphologies at various cooling rates have been discussed in details to correlate microstructural evolution and mechanical properties.

  12. Microstructures and Continuous Cooling Transformation of CGHAZ in E36 Class V-N-Ti, V-Ti and Nb-Ti Shipbuilding Steels

    NASA Astrophysics Data System (ADS)

    Shi, Zhongran; Wang, Ruizhen; Wang, Qingfeng; Su, Hang; Chai, Feng; Yang, Caifu

    For the purpose of obtaining the optimal microstructures and mechanical properties of the CGHAZ under high input welding, continuous cooling transformation diagrams of the coarse grain heat-affected zone (CGHAZ) and the corresponding microstructures were investigated for a E36 class V-N-Ti, V-Ti, and Nb-Ti shipbuilding steels. The results indicated that the CGHAZ continuous transformation behaviors of Nb-Ti and V-Ti steel were similar, but the V-retard phenomenon was not as apparent as that of Nb. In addition, the cooling rate of ferrite transformation of V-Ti steel was higher than that of Nb-Ti steel. The nitrogen addition in the V-Ti steel enhanced the ferrite transformation, since that increasing the nitrogen could obtain fine (Ti, V)(C, N) particles and refine the original austenite size, which can promote the ferrite nucleation. The bainite transformation range of V-N-Ti steel was obviously lower than that of Nb-Ti, V-Ti steel at the t8/5≥100s.

  13. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel

    NASA Astrophysics Data System (ADS)

    Thompson, S. W.; Vin, D. J., Col; Krauss, G.

    1990-06-01

    A continuous-cooling-transformation (CCT) diagram was determined for a high-strength low-alloy plate steel containing (in weight percent) 0.06 C, 1.45 Mn, 1.25 Cu, 0.97 Ni, 0.72 Cr, and 0.42 Mo. Dilatometric measurements were supplemented by microhardness testing, light microscopy, and transmission electron microscopy. The CCT diagram showed significant suppression of polygonal ferrite formation and a prominent transformation region, normally attributed to bainite formation, at temperatures intermediate to those of polygonal ferrite and martensite formation. In the intermediate region, ferrite formation in groups of similarly oriented crystals about 1 μm in size and containing a high density of dislocations dominated the transformation of austenite during continuous cooling. The ferrite grains assumed two morphologies, elongated or acicular and equiaxed or granular, leading to the terms “acicular ferrite” and “granular ferrite,” respectively, to describe these structures. Austenite regions, some transformed to martensite, were enriched in carbon and retained at interfaces between ferrite grains. Coarse interfacial ledges and the nonacicular morphology of the granular ferrite grains provided evidence for a phase transformation mechanism involving reconstructive diffusion of substitutional atoms. At slow cooling rates, polygonal ferrite and Widmanstätten ferrite formed. These latter structures contained low dislocation densities and e-copper precipitates formed by an interphase transformation mechanism.

  14. Effects of Rolling and Cooling Conditions on Microstructure of Umbrella-Bone Steel

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Xin; Fu, Jian-Xun; Zhang, Hua; Xu, Jie; Zhai, Qi-Jie

    2017-10-01

    The effects of deformation temperature and cooling rate on the micro-structure evolution of umbrella-bone steel was investigated using a Gleeble thermal-mechanical testing machine and dynamic continuous cooling transformation (CCT) curves. The results show that fast cooling which lowers the starting temperature of ferrite transformation leads to finer ferrite grains and more pearlite. Low temperature deformation enhances the hardening effect of austenite and reduces hardenability, allowing a wider range of cooling rates and thus avoiding martensite transformation after deformation. According to the phase transformation rules, the ultimate tensile strength and reduction in area of the wire rod formed in the optimized industrial trial are 636 MPa and 73.6 %, respectively, showing excellent strength and plasticity.

  15. Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling

    NASA Astrophysics Data System (ADS)

    Pohjonen, Aarne; Paananen, Joni; Mourujärvi, Juho; Manninen, Timo; Larkiola, Jari; Porter, David

    2018-05-01

    We present computer simulations of austenite decomposition to ferrite and bainite during cooling. The phase transformation model is based on Johnson-Mehl-Avrami-Kolmogorov type equations. The model is parameterized by numerical fitting to continuous cooling data obtained with Gleeble thermo-mechanical simulator and it can be used for calculation of the transformation behavior occurring during cooling along any cooling path. The phase transformation model has been coupled with heat conduction simulations. The model includes separate parameters to account for the incubation stage and for the kinetics after the transformation has started. The incubation time is calculated with inversion of the CCT transformation start time. For heat conduction simulations we employed our own parallelized 2-dimensional finite difference code. In addition, the transformation model was also implemented as a subroutine in commercial finite-element software Abaqus which allows for the use of the model in various engineering applications.

  16. Method of Estimating Continuous Cooling Transformation Curves of Glasses

    NASA Technical Reports Server (NTRS)

    Zhu, Dongmei; Zhou, Wancheng; Ray, Chandra S.; Day, Delbert E.

    2006-01-01

    A method is proposed for estimating the critical cooling rate and continuous cooling transformation (CCT) curve from isothermal TTT data of glasses. The critical cooling rates and CCT curves for a group of lithium disilicate glasses containing different amounts of Pt as nucleating agent estimated through this method are compared with the experimentally measured values. By analysis of the experimental and calculated data of the lithium disilicate glasses, a simple relationship between the crystallized amount in the glasses during continuous cooling, X, and the temperature of undercooling, (Delta)T, was found to be X = AR(sup-4)exp(B (Delta)T), where (Delta)T is the temperature difference between the theoretical melting point of the glass composition and the temperature in discussion, R is the cooling rate, and A and B are constants. The relation between the amount of crystallisation during continuous cooling and isothermal hold can be expressed as (X(sub cT)/X(sub iT) = (4/B)(sup 4) (Delta)T(sup -4), where X(sub cT) stands for the crystallised amount in a glass during continuous cooling for a time t when the temperature comes to T, and X(sub iT) is the crystallised amount during isothermal hold at temperature T for a time t.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Samuel, E-mail: S.J.Clark@warwick.ac.uk; Janik, Vit, E-mail: V.Janik@warwick.ac.uk; Rijkenberg, Arjan, E-mail: arjan.rijkenberg@tatasteel.com

    In-situ characterization techniques have been applied to elucidate the influence of γ/α transformation upon the extent of interphase precipitation in a low-carbon, vanadium-HSLA steel. Electron Back-scattered diffraction analyses of the γ/α orientation relationship with continuous cooling at 2 and 10 K/s suggest that the proportion of ferrite likely to hold interphase precipitation varies little with cooling rate. However, TEM analyses show that the interphase precipitation refines with increasing cooling rate in this cooling range. With cooling rates in excess of 20 K/s, interphase precipitation is increasingly suppressed due to the increasingly diffusional-displacive nature of the Widmanstätten γ/α transformation that ismore » activated. The present study illustrates that the extent and dimensions of interphase precipitation can be controlled through controlled cooling. - Highlights: • In-situ characterization of γ/α transformation • EBSD characterization of γ/α transformation orientation relationship • Extent of interphase precipitation can be controlled through controlled cooling.« less

  18. Microstructural evolution in ultra-low-carbon steel weldments—Part I: Controlled thermal cycling and continuous cooling transformation diagram of the weld metal

    NASA Astrophysics Data System (ADS)

    Fonda, R. W.; Spanos, G.

    2000-09-01

    The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.

  19. Construction of continuous cooling transformation (CCT) diagram using Gleeble for coarse grained heat affected zone of SA106 grade B steel

    NASA Astrophysics Data System (ADS)

    Vimalan, G.; Muthupandi, V.; Ravichandran, G.

    2018-05-01

    A continuous cooling transformation diagram is constructed for simulated coarse grain heat affected zone (CGHAZ) of SA106 grade B carbon steel. Samples are heated to a peak temperature of 1200°C in the Gleeble thermo mechanical simulator and then cooled at different cooling rates varying from 0.1°C/s to 100°C/s. Microstructure of the specimens simulated at different cooling rates were characterised by optical microscopy and hardness was assessed by Vicker's hardness test and micro-hardness test. Transformation temperatures and the corresponding phase fields were identified from dilatometric curves and the same could be confirmed by correlating with the microstructures at room temperature. These data were used to construct the CCT diagram. Phase fields were found to have ferrite, pearlite, bainite and martensite or their combinations. With the help of this CCT diagram it is possible to predict the microstructure and hardness of coarse grain HAZ experiencing different cooling rates. The constructed CCT diagram becomes an important tool in evaluating the weldability of SA106 grade B carbon steel.

  20. Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel

    NASA Astrophysics Data System (ADS)

    Barcellona, A.; Palmeri, D.

    2009-05-01

    The strains, transformation temperatures, microstructure, and microhardness of a microalloyed boron and aluminum precoated steel, which has been isothermally deformed under uniaxial tensile tests, have been investigated at temperatures between 873 and 1223 K, using a fixed strain rate value of 0.08 s-1. The effect of each factor, such as temperature and strain value, has been later valued considering the shift generated on the continuous cooling transformation (CCT) diagram. The experimental results consist of the starting temperatures that occur for each transformation, the microhardness values, and the obtained microstructure at the end of each thermomechanical treatment. All the thermomechanical treatments were performed using the thermomechanical simulator Gleeble 1500. The results showed that increasing hot prestrain (HPS) values generate, at the same cooling rate, lower hardness values; this means that the increasing of HPS generates a shift of the CCT diagram toward a lower starting time for each transformation. Therefore, high values of hot deformations during the hot stamping process require a strict control of the cooling process in order to ensure cooling rate values that allow maintaining good mechanical component characteristics. This phenomenon is amplified when the prestrain occurs at lower temperatures, and thus, it is very sensitive to the temperature level.

  1. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  2. A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel

    NASA Astrophysics Data System (ADS)

    Briki, Jalel; Ben Slima, Souad

    2008-12-01

    The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.

  3. Mold Flux Crystallization and Mold Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  4. Simulated HAZ continuous cooling transformation diagram of a bogie steel of high-speed railway

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Chen, Hui; Liu, Yan; Hang, Zongqiu

    2017-07-01

    Simulated HAZ continuous cooling transformation (SH-CCT) diagram presents the start and end points of phase transformation and the relationships of the microstructures of HAZ, temperature and cooling rates. It is often used to assess the weldability of materials. In this paper, a weathering steel Q345C which is widely used in the bogies manufacturing was studied. The cooling times from 800∘C to 500∘C (t8/5) were from 3 s to 6000 s, aiming to study the microstructures under different cooling rates. Different methods such as color metallography were used to obtain the metallography images. The results show that ferrite nucleates preferentially at the prior austenite grain boundaries and grows along the grain boundaries with a lath-like distribution when t8/5 is 300 s. Austenite transforms into ferrite, pearlite and bainite with decreasing t8/5. Pearlite disappears completely when t8/5 = 150 s. Martensite gradually appears when t8/5 decreases to 30 s. The hardness increases with decreasing t8/5. The SH-CCT diagram indicates that the welding input and t8/5 should be taken into consideration when welding. This work provides the relationships of welding parameters and microstructures.

  5. Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Baochun; Zhao, Tan; Li, Guiyan; Lu, Qiang

    Multi-pass deformation simulation tests were performed on V-N microalloyed steels with different nitrogen addition by using a Gleeble-3800 thermo-mechanical simulator and the corresponding continuous cooling transformation (CCT) diagrams were determined by thermal dilation method and metallographic method. The deformed austenite transformation behavior and resultant microstructure of the tested steels were studied. Furthermore, the effect of nitrogen addition on the transformation behavior and microstructure evolution was analyzed. The results show that the transformed microstructures in the three tested steels are ferrite, pearlite and bainite respectively while the transformation temperatures are not the same. For the two tested steel with higher nitrogen additions, higher ferrite start temperature and critical cooling rates are observed. Furthermore, an increase in nitrogen addition leads to increasing quantities of ferrite and the transformed ferrite is smaller in size. The hardness test results reveal that the hardness number increases with increasing nitrogen addition at low cooling rate while the value tends to be smaller due to increasing nitrogen addition at high cooling rate. Therefore, the hardness number of the steel with high nitrogen addition is not so sensitive to cooling rate as that of the steel with low nitrogen addition.

  6. Comparison of Austenite Decomposition Models During Finite Element Simulation of Water Quenching and Air Cooling of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Babu, K.; Prasanna Kumar, T. S.

    2014-08-01

    An indigenous, non-linear, and coupled finite element (FE) program has been developed to predict the temperature field and phase evolution during heat treatment of steels. The diffusional transformations during continuous cooling of steels were modeled using Johnson-Mehl-Avrami-Komogorov equation, and the non-diffusion transformation was modeled using Koistinen-Marburger equation. Cylindrical quench probes made of AISI 4140 steel of 20-mm diameter and 50-mm long were heated to 1123 K (850 °C), quenched in water, and cooled in air. The temperature history during continuous cooling was recorded at the selected interior locations of the quench probes. The probes were then sectioned at the mid plane and resultant microstructures were observed. The process of water quenching and air cooling of AISI 4140 steel probes was simulated with the heat flux boundary condition in the FE program. The heat flux for air cooling process was calculated through the inverse heat conduction method using the cooling curve measured during air cooling of a stainless steel 304L probe as an input. The heat flux for the water quenching process was calculated from a surface heat flux model proposed for quenching simulations. The isothermal transformation start and finish times of different phases were taken from the published TTT data and were also calculated using Kirkaldy model and Li model and used in the FE program. The simulated cooling curves and phases using the published TTT data had a good agreement with the experimentally measured values. The computation results revealed that the use of published TTT data was more reliable in predicting the phase transformation during heat treatment of low alloy steels than the use of the Kirkaldy or Li model.

  7. Transformation behavior of the γU(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the γU(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the γU(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the γU(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the γU(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  8. Phase Transformations During Cooling of Automotive Steels

    NASA Astrophysics Data System (ADS)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  9. The Origin of Acicular Ferrite in Gas Metal Arc and Submerged ARC Welds

    DTIC Science & Technology

    1994-03-01

    Ratio vs Acicular Ferrite 45 Figure 2.10 Crack Propagati6n Schematic . . ........... 46 Figure 2.11 CCT Diagram ... .......... ............ 47 Figure 3.1...10𔃾 TIME (S) Figure 2. 11 Continuous cooling transformation ( CCT ) diagram showing the effects of alloying elements, inclusion formers and cooling rate

  10. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  11. The Effect of Simulated Thermomechanical Processing on the Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe Steel

    NASA Astrophysics Data System (ADS)

    Cizek, P.; Wynne, B. P.; Davies, C. H. J.; Hodgson, P. D.

    2015-01-01

    The present work investigates the transformation behavior of a low-carbon Mo-Nb linepipe steel and the corresponding transformation product microstructures using deformation dilatometry. The continuous cooling transformation (CCT) diagrams have been constructed for both the fully recrystallized austenite and that deformed in uniaxial compression at 1148 K (875 °C) to a strain of 0.5 for cooling rates ranging from 0.1 to about 100 K/s. The obtained microstructures have been studied in detail using electron backscattered diffraction complemented by transmission electron microscopy. Heavy deformation of the parent austenite has caused a significant expansion of the polygonal ferrite transformation field in the CCT diagram, as well as a shift in the non-equilibrium ferrite transformation fields toward higher cooling rates. Furthermore, the austenite deformation has resulted in a pronounced refinement in both the effective grain (sheaf/packet) size and substructure unit size of the non-equilibrium ferrite microstructures. The optimum microstructure expected to display an excellent balance between strength and toughness is a mix of quasi-polygonal ferrite and granular bainite (often termed "acicular ferrite") produced from the heavily deformed austenite within a processing window covering the cooling rates from about 10 to about 100 K/s.

  12. Effects of titanium on ferrite continuous cooling transformation curves of high-thickness Cr-Mo steels

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun

    2013-09-01

    The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.

  13. Transformation-Induced Diffraction Peak Broadening During Bainitic and Martensitic Transformations Under Small External Loads in a Quenched and Tempered High Strength Steel

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Amirthalingam, M.; Hermans, M. J. M.; King, A.; Richardson, I. M.

    2013-09-01

    In situ phase transformation behavior of a high strength S690QL1 steel during continuous cooling under different mechanical loading conditions has been used to investigate the effect of small external loads on the transformation-induced plasticity during bainitic and martensitic transformations. The results show that during phase transformations, the untransformed austenite undergoes plastic deformation, thereby retarding further transformation to bainite/martensite. This occurs independent of external load.

  14. Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Isasti, N.; Jorge-Badiola, D.; Taheri, M. L.; López, B.; Uranga, P.

    2011-12-01

    Thermomechanical processing of microalloyed steels containing niobium can be performed to obtain deformed austenite prior to transformation. Accelerated cooling can be employed to refine the final microstructure and, consequently, to improve both strength and toughness. This general rule is fulfilled if the transformation occurs on a quite homogeneous austenite microstructure. Nevertheless, the presence of coarse austenite grains before transformation in different industrial processes is a usual source of concern, and regarding toughness, the coarsest high-angle boundary units would determine its final value. Sets of deformation dilatometry tests were carried out using three 0.06 pct Nb microalloyed steels to evaluate the effect of Mo alloying additions (0, 0.16, and 0.31 pct Mo) on final transformation from both recrystallized and unrecrystallized coarse-grained austenite. Continuous cooling transformation (CCT) diagrams were created, and detailed microstructural characterization was achieved through the use of optical microscopy (OM), field emission gun scanning electron microscopy (FEGSEM), and electron backscattered diffraction (EBSD). The resultant microstructures ranged from polygonal ferrite (PF) and pearlite (P) at slow cooling ranges to bainitic ferrite (BF) accompanied by martensite (M) for fast cooling rates. Plastic deformation of the parent austenite accelerated both ferrite and bainite transformation, moving the CCT curves to higher temperatures and shorter times. However, an increase in the final heterogeneity was observed when BF packets were formed, creating coarse high-angle grain boundary units.

  15. Flow directing means for air-cooled transformers

    DOEpatents

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  16. A molecular dynamics study of cooling rate during solidification of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Suzuki, Toshio

    2011-01-01

    The effect of the cooling rate on the solidification behavior of metal nanoparticles is investigated by molecular dynamics simulation. The structure of molybdenum nanoparticles varies with the cooling rate. That is, single-crystalline, polycrystalline then glassy nanoparticles are obtained as the cooling rate is increased from 2.0 × 10 10 to 1.0 × 10 13 K/s. The solidification point decreases with increasing cooling rate then drops rapidly at a cooling rate on the order of 10 12 K/s. These results are summarized in a continuous cooling transformation (CCT) diagram, in which regions corresponding the liquid, single-crystalline, polycrystalline and glassy structures appear.

  17. The Influence of Mo, Cr and B Alloying on Phase Transformation and Mechanical Properties in Nb Added High Strength Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.

    The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.

  18. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  19. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    NASA Astrophysics Data System (ADS)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  20. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

    NASA Astrophysics Data System (ADS)

    Sourmail, T.; Garcia-Mateo, C.; Caballero, F. G.; Cazottes, S.; Epicier, T.; Danoix, F.; Milbourn, D.

    2017-09-01

    The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

  1. Absence of External Electric-Field Effects on Transformations in Steels

    DTIC Science & Technology

    1991-10-01

    12 2. Approximate CCT diagram for the high nickel composition used in the present measurements ...................................... 13 3...Main features of CCT diagram for 02 tool steel ........................ 14 4. DTA and THA data for the 3569C isothermal bainite transformation with...on the continuous-cooling-transformation ( CCT ) diagram obtained by examining transfor- mations in a 3.0 weight percent (wt.%) nickel specimen at

  2. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    NASA Astrophysics Data System (ADS)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  3. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    NASA Astrophysics Data System (ADS)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  4. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-06-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  5. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  6. Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Sohn, Il

    2012-12-01

    The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.

  7. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd 2Fe 14B system

    NASA Astrophysics Data System (ADS)

    Branagan, D. J.; McCallum, R. W.

    In order to evaluate the effects of additions on the solidification behavior of Nd 2Fe 14B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BHmax versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling.

  8. In- Situ Synchrotron Diffraction Studies on Transformation Strain Development in a High-Strength Quenched and Tempered Structural Steel—Part II. Martensitic Transformation

    NASA Astrophysics Data System (ADS)

    Dutta, R. K.; Huizenga, R. M.; Petrov, R. H.; Amirthalingam, M.; King, A.; Gao, H.; Hermans, M. J. M.; Richardson, I. M.

    2014-01-01

    In-situ synchrotron diffraction studies on the kinetics of phase transformation and transformation strain development during bainitic transformation were presented in part I of the current article. In the current article, in-situ phase transformation behavior of a high-strength (830 MPa yield stress) quenched and tempered S690QL1 [Fe-0.16C-0.2Si-0.87Mn-0.33Cr-0.21Mo (wt. pct)] structural steel, during continuous cooling and under different mechanical loading conditions to promote martensitic transformation, has been studied. Time-temperature-load resolved 2D synchrotron diffraction patterns were recorded and used to calculate the phase fractions and lattice parameters of the phases during heating and cooling cycles under different loading conditions. In addition to the thermal expansion behavior, the effects of the applied stress on the elastic strains during the martensitic transformation were calculated. The results show that small tensile stresses applied at the transformation temperature do not change the kinetics of the phase transformation. The start temperature for the martensitic transformation increases with the increasing applied tensile stress. The elastic strains are not affected significantly with the increasing tensile stress. The variant selection during martensitic transformation under small applied loads (in the elastic region) is weak.

  9. Thermal Behavior of an HSLA Steel and the Impact in Phase Transformation: Submerged Arc Welding (SAW) Process Approach to Pipelines

    NASA Astrophysics Data System (ADS)

    Costa, P. S.; Reyes-Valdés, F. A.; Saldaña-Garcés, R.; Delgado, E. R.; Salinas-Rodríguez, A.

    Heat input during welding metal fusion generates different transformations, such as grain growth, hydrogen cracking, and the formation of brittle structures, generally associated with the heat-affected zone (HAZ). For this reason, it is very important to know the behavior of this area before welding. This paper presents a study of the thermal behavior and its effect on phase transformations in the HAZ, depending on cooling rates (0.1-200 °C/s) to obtain continuous cooling transformation (CCT) curves for an high-strength low-alloy (HSLA) steel. In order to determine the formed phases, optical microscopy and Vickers microhardness measurement were used. The experimental CCT curve was obtained from an HSLA steel, and the results showed that, with the used cooling conditions, the steel did not provide formation of brittle structures. Therefore, it is unlikely that welds made by submerged arc welding (SAW) may lead to hydrogen embrittlement in the HAZ, which is one of the biggest problems of cracking in gas conduction pipelines. In addition, with these results, it will be possible to control the microstructure to optimize the pipe fabrication with SAW process in industrial plants.

  10. Crystallization of Synthetic Blast Furnace Slags Pertaining to Heat Recovery

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh

    Heat recovery from blast furnace slags is often contradicted by another requirement, to generate amorphous slag for its use in cement production. As both the rate and extent of heat recovery and slag structure are determined by its cooling rate, a relation between the crystallization kinetics and the cooling conditions is highly desired. In this study, CaO-SiO2-Al2O3-MgO (CSAM) slags with different basicities were studied by Single Hot Thermocouple Technique (SHTT) during isothermal treatment and non-isothermal cooling. Their time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams were plotted and compared with each other. Furthermore, kinetic parameters such as the Avrami exponent (n), rate coefficient (K) and effective activation energy of crystallization (EA) were found by analysis of data obtained from in-situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In addition to the experimental work, a mathematical model was developed and validated that predicts the amount of crystallization during cooling. A second mathematical model that calculates temperature history of slag during its cooling was coupled with the above model, to allow studying the effect of parameters such as the slag/air ratio and granule size on the heat recovery and glass content of slag.

  11. System design package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  12. High-Efficiency, Low-Weight Power Transformer

    NASA Technical Reports Server (NTRS)

    Welsh, J. P.

    1986-01-01

    Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.

  13. Continuous Cooling Transformations in Nuclear Pressure Vessel Steels

    NASA Astrophysics Data System (ADS)

    Pous-Romero, Hector; Bhadeshia, Harry K. D. H.

    2014-10-01

    A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.

  14. A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin; Ma, Fanjun; Li, Jin; Wei, Juan; Matsuura, Hiroyuki; Tsukihashi, Fumitaka

    2012-04-01

    The effect of basicity on the mold fluxes crystallization was investigated in this article. The time-temperature-transformation (TTT) diagrams and continuous-cooling-transformation (CCT) diagrams of mold fluxes with different basicity were constructed by using single, hot thermocouple technology (SHTT). The results showed that with the increase of basicity, the incubation time of isothermal crystallization became shorter, the crystallization temperature was getting higher, and the critical cooling rate of continuous cooling crystallization became faster. The X-ray diffraction analysis suggested that calcium silicate (CaO·SiO2) was precipitated at the upper part of the TTT diagram and cuspidine (Ca4Si2O7F2) was formed at the lower part, when the basicity of mold fluxes was within 1.0 to 1.2. However, when basicity was 0.8, only the cuspidine phase was formed. A kinetic study of isothermal crystallization process indicated that the increase of the basicity tended to enhance the mold flux crystallization, and the crystallization activation energy became smaller. The crystallization mechanism of cupsidine was changing from one-dimensional growth to three-dimensional growth with a constant number of nuclei, when the basicity of mold fluxes varied from 0.8 to 1.2.

  15. Modification of the Stress-Strain Curve for High-Strength Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Jonsson, Katherine

    2013-01-01

    This thesis presents work performed to improve the work hardening behaviour of an X80 microalloyed steel through various Interrupted Thermal Treatments (ITT). The aim of this work was to determine the relationships between thermal history, microstructure and mechanical properties through both qualitative and quantitative measures. Prior to the ITT experiments, a continuous cooling transformation (CCT) diagram was constructed under no-strain conditions to identify the transformation temperatures and products that are achievable in X80 steel. The thermal treatments were applied using a Gleeble thermal-mechanical simulator to generate a variety of microstructures in various fractions and morphologies. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate and quantify the microstructures in terms of phase fraction and grain size. The ITT experiments successfully generated microstructures comprised of ferrite, bainitic ferrite, martensite and martensite-austenite (M-A) without the addition of strain. The effect of cooling rates, interrupt temperature, re-heat temperature and hold times were investigated and the mechanical performance was correlated with the quantified microstructures. Although the ITT experiments did not improve the strength relative to a continuously cooled sample, the work hardening coefficient was increased as a result of the interrupted thermal treatments.

  16. Physical metallurgy and mechanical behaviour of FeCrWTaV low activation martensitic steels: Effects of chemical composition

    NASA Astrophysics Data System (ADS)

    Alamo, A.; Brachet, J. C.; Castaing, A.; Lepoittevin, C.; Barcelo, F.

    1998-10-01

    This paper essentially deals with chemical composition effects on metallurgical and mechanical behaviour of Fe-7.5/11CrWVTa low activation martensitic steels. Materials investigated are experimental alloys as well as large-scale heats having different contents of Cr (7.5-11%), Ta (0-0.1%), W (0.8-3%) and interstitial elements, like carbon (0.09-0.17%) and nitrogen (0.004-0.045%). For this purpose, phase transformation during heating and cooling have been investigated in anisothermal and isothermal conditions to establish the corresponding Continuous Cooling Transformation (CCT) and Time-Temperature-Transformation (TTT) diagrams. Austenitisation (normalisation) and tempering treatments were performed in a wide range of temperatures. Tensile and impact properties as a function of composition and metallurgical conditions have been determined and compared to 9Cr-1Mo conventional martensitic steels.

  17. Study of Ferrite During Refinement of Prior Austenite Grains in Microalloyed Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Wen, Guanghua; Tang, Ping

    2017-12-01

    The formation of coarse prior austenite grain is a key factor to promote transverse crack, and the susceptibility to the transverse crack can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate two types of double phase-transformation technologies. The distribution and morphology of ferrites under different cooling conditions were analyzed, and the effects of ferrite distribution and morphology on the double phase-transformation technologies were explored to obtain the suitable double phase-change technology for the continuous casting process. The results indicate that, under the thermal cycle TH0 [the specimens were cooled down to 913 K (640 °C) at a cooling rate of 5.0 K/s (5.0 °C/s)], the width of prior austenite grain boundaries was thick, and the dislocation density at grain boundaries was high. It had strong inhibition effect on crack propagation; under the thermal cycle TH1 [the specimens were cooled down to 1073 K (800 °C) at a cooling rate of 5.0 K/s (5.0 °C/s) and then to 913 K (640 °C) at a cooling rate of 1.0 K/s (1.0 °C/s)], the width of prior austenite grain boundary was thin, and the dislocation density at grain boundaries was low. It was beneficial to crack propagation. After the first phase change, the developed film-like ferrite along the austenite grain boundaries improved the nucleation conditions of new austenitic grains and removed the inhibition effect of the prior austenite grain boundaries on the austenite grain size.

  18. The Effect of Heat Input and Composition on Weld Metal Microstructures in Thin Section HY-130 GMAW(Gas Metal Are Welding) Weldments

    DTIC Science & Technology

    1988-12-01

    weldments, Glover et al. [Ref. Ej show, via a schematic CCT diagram , that austenite should transform to coarse polygonal ferrite with regions of pearlite...are essentially subjected to continuous cooling during solidification, so the resultant microstructures should be predictable from CCT diagrams . Unfortunately...cooling rate variaticn just within a single weld pass. Although individual CCT diagrams for weld metals are generally not available, the influence of

  19. Transformation Characteristics of Ferrite/Carbide Aggregate in Continuously Cooled, Low Carbon-Manganese Steels

    NASA Astrophysics Data System (ADS)

    Di Martino, S. F.; Thewlis, G.

    2014-02-01

    Transformation characteristics and morphological features of ferrite/carbide aggregate (FCA) in low carbon-manganese steels have been investigated. Work shows that FCA has neither the lamellae structure of pearlite nor the lath structure of bainite and martensite. It consists of a fine dispersion of cementite particles in a smooth ferrite matrix. Carbide morphologies range from arrays of globular particles or short fibers to extended, branched, and densely interconnected fibers. Work demonstrates that FCA forms over similar cooling rate ranges to Widmanstätten ferrite. Rapid transformation of both phases occurs at temperatures between 798 K and 973 K (525 °C and 700 °C). FCA reaction is not simultaneous with Widmanstätten ferrite but occurs at temperatures intermediate between Widmanstätten ferrite and bainite. Austenite carbon content calculations verify that cementite precipitation is thermodynamically possible at FCA reaction temperatures without bainite formation. The pattern of precipitation is confirmed to be discontinuous. CCT diagrams have been constructed that incorporate FCA. At low steel manganese content, Widmanstätten ferrite and bainite bay sizes are significantly reduced so that large amounts of FCA are formed over a wide range of cooling rates.

  20. Numerical sensitivity analysis of welding-induced residual stress depending on variations in continuous cooling transformation behavior

    NASA Astrophysics Data System (ADS)

    Heinze, C.; Schwenk, C.; Rethmeier, M.; Caron, J.

    2011-06-01

    The usage of continuous cooling transformation (CCT) diagrams in numerical welding simulations is state of the art. Nevertheless, specifications provide limits in chemical composition of materials which result in different CCT behavior and CCT diagrams, respectively. Therefore, it is necessary to analyze the influence of variations in CCT diagrams on the developing residual stresses. In the present paper, four CCT diagrams and their effect on numerical calculation of residual stresses are investigated for the widely used structural steel S355J2 + N welded by the gas metal arc welding (GMAW) process. Rather than performing an arbitrary adjustment of CCT behavior, four justifiable data sets were used as input to the numerical calculation: data available in the Sysweld database, experimental data acquired through Gleeble dilatometry tests, and TTT/CCT predictions calculated from the JMatPro and Edison Welding Institute (EWI) Virtual Joining Portal software. The performed numerical analyses resulted in noticeable deviations in residual stresses considering the different CCT diagrams. Furthermore, possibilities to improve the prediction of distortions and residual stress based on CCT behavior are discussed.

  1. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.

  2. Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mirakhorli, F.; Malek Ghaini, F.; Torkamany, M. J.

    2012-10-01

    The microstructure of the weld metal of a duplex stainless steel made with Nd:YAG pulsed laser is investigated at different travel speeds and pulse frequencies. In terms of the solidification pattern, the weld microstructure is shown to be composed of two distinct zones. The presence of two competing heat transfer channels to the relatively cooler base metal and the relatively hotter previous weld spot is proposed to develop two zones. At high overlapping factors, an array of continuous axial grains at the weld centerline is formed. At low overlapping factors, in the zone of higher cooling rate, a higher percentage of ferrite is transformed to austenite. This is shown to be because with extreme cooling rates involved in pulsed laser welding with low overlapping, the ferrite-to-austenite transformation can be limited only to the grain boundaries.

  3. Phase transformations in steel studied by 3DXRD microscopy

    NASA Astrophysics Data System (ADS)

    Offerman, S. E.; van Dijk, N. H.; Sietsma, J.; Lauridsen, E. M.; Margulies, L.; Grigull, S.; Poulsen, H. F.; van der Zwaag, S.

    2006-05-01

    The ferrite grain nucleation mechanism during the austenite/ferrite phase transformation is studied in situ in the bulk of three different steel grades by three-dimensional X-ray diffraction (3DXRD) microscopy. The main difference between the three steel grades is the carbon concentration. For each steel grade the ferrite fraction, nucleus density and nucleation rate are measured simultaneously during continuous cooling. By comparing the measured nucleation rate to the classical nucleation theory it is concluded that the activation energy for ferrite nucleation is about two orders of magnitude smaller than the current models predict for the three steel grades. During slow cooling the same nucleation behaviour is found for the three steel grades concerning the balance between the energy that is released by the elimination of interfaces and the energy that is required for the formation new interfaces during ferrite nucleation.

  4. Description of a 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  5. Solid-state transformations in the β-form of chlorpropamide on cooling to 100 K.

    PubMed

    Drebushchak, Tatiana N; Drebushchak, Valeri A; Boldyreva, Elena V

    2011-04-01

    A single-crystal X-ray diffraction study of the effect of cooling down to 100 K on the β-form of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, has revealed reversible phase transitions at ∼257 K and between 150 and 125 K: β (Pbcn, Z' = 1) ⇔ β(II) (P2/c, Z' = 2) ⇔ β(III) (P2/n, a' = 2a, Z' = 4); the sequence corresponds to cooling. Despite changes in the space group and number of symmetry-independent molecules, the volume per molecule changes continuously in the temperature range 100-300 K. The phase transition at ∼257 K is accompanied by non-merohedral twinning, which is preserved on further cooling and through the second phase transition, but the original single crystal does not crack. DSC (differential scanning calorimetry) and X-ray powder diffraction investigations confirm the phase transitions. Twinning disappears on heating as the reverse transformations take place. The second phase transition is related to a change in conformation of the alkyl tail from trans to gauche in 1/4 of the molecules, regularly distributed in the space. Possible reasons for the increase in Z' upon cooling are discussed in comparison to other reported examples of processes (crystallization, phase transitions) in which organic crystals with Z' > 1 have been formed. Implications for pharmaceutical applications are discussed. © 2011 International Union of Crystallography

  6. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels

    NASA Astrophysics Data System (ADS)

    Cizek, P.; Wynne, B. P.; Davies, C. H. J.; Muddle, B. C.; Hodgson, P. D.

    2002-05-01

    Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

  7. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  8. Effect of lattice-mismatch-induced strains on coupled diffusive and displacive phase transformations

    NASA Astrophysics Data System (ADS)

    Bouville, Mathieu; Ahluwalia, Rajeev

    2007-02-01

    Materials which can undergo slow diffusive transformations as well as fast displacive transformations are studied using the phase-field method. The model captures the essential features of the time-temperature-transformation (TTT) diagrams, continuous cooling transformation (CCT) diagrams, and microstructure formation of these alloys. In some material systems there can exist an intrinsic volume change associated with these transformations. We show that these coherency strains can stabilize mixed microstructures (such as retained austenite-martensite and pearlite-martensite mixtures) by an interplay between diffusive and displacive mechanisms, which can alter TTT and CCT diagrams. Depending on the conditions there can be competitive or cooperative nucleation of the two kinds of phases. The model also shows that small differences in volume changes can have noticeable effects on the early stages of martensite formation and on the resulting microstructures.

  9. Fundamental Studies of Phase Transformations and Mechanical Properties in the Heat Affected Zone of 10 wt% Nickel Steel

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.

    United States naval applications require the use of steels with high strength and resistance to fracture at low temperatures to provide good ballistic properties. In recent years, 10 wt% Ni steel has been developed with strength and toughness values exceeding those of steels currently used, and is now being considered as a candidate material to replace existing high-strength, low alloy steels. This steel has excellent toughness from the mechanically induced transformation of interlath austenite films to martensite. These austenite films are formed via a carefully developed quenching, lamellarizing, and tempering heat treatment. However, before 10 wt% Ni steel can be implemented for full-scale applications, the effects of the rapid heating and cooling rates associated with welding thermal cycles on phase transformations and mechanical properties must be understood. In this research, a fundamental understanding of phase transformations and mechanical properties in the heat-affected zone of fusion welds in 10 wt% Ni steel was developed through heating and cooling rate dilatometry experiments, gas tungsten arc welding, and simulation of gas metal arc welding. First, an investigation into the effects of heating and cooling rate on the phase transformations in 10 wt% Ni steel was performed. The Ac1 and Ac3 temperatures during heating were determined as a function of heating rate, and sluggish transformation during fast heating rates manifested itself as a high Ac3 temperature of 1050°C as opposed to a temperature of 850°C at slow heating rates. A continuous cooling transformation diagram produced for 10 wt% Ni steel reveals that martensite will form over a very wide range of cooling rates, which reflects a very high hardenability of this alloy. This is significant because the range of cooling rates for which the diagram was constructed over easily covers the range associated with fusion welding, so there would not be the need for precise control over the weld processing conditions. The microstructures observed in a single pass gas tungsten arc weld were rationalized with the observations from the heating and cooling rate experiments. The microhardness of gas tungsten arc weld is highest in the intercritical heat affected zone, which is unexpected based on the usual behavior of quench and tempered steels. The hardness of the heat affected zone is always higher than the base metal which is a promising outcome. Having understood the overall effects of heating and cooling on the phase transformations in 10 wt% Ni steel, the microstructure and mechanical property evolution through the heat affected zone was investigated. A Gleeble 3500 thermo-mechanical simulator was used to replicate microstructures observed in the gas-tungsten arc weld, and the microstructural factors influencing the strength and toughness in the simulated heat affected zone samples were correlated to mechanical property results. The strength is the highest in the intercritical heat-affected zone, mostly attributed to microstructural refinement. With increasing peak temperature of the thermal cycle, the volume fraction of retained austenite decreases. The local atom probe tomography results suggest this is due to the destabilization of the austenite brought on by the diffusion of Ni out of the austenite. There is a local low toughness region in the intercritical heat-affected zone, corresponding to a low retained austenite content. However, the retained austenite is similarly low in higher peak temperature regions but the toughness is high. This suggests that while 10 wt% Ni steel is a TRIP-assisted steel and thus obtains high toughness from the plasticity-induced martensite to austenite transformation, the toughness of the steel is also based on other microstructural factors. Overall, the results presented in this work have established, for the first time, the effects of rapid heating and cooling on the phase transformations and mechanical properties in 10 wt% Ni steel, and have started to identify the microstructural features influencing the strength and toughness of this alloy.

  10. Induction Hardening of External Gear

    NASA Astrophysics Data System (ADS)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  11. Phase transformations in cast duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local composition fluctuations in the cast alloy. This may cause discrepancy between thermodynamic prediction and experimental observation.

  12. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  13. Discontinuous and continuous hardening processes in calcium and calcium—tin micro-alloyed lead: influence of 'secondary-lead' impurities

    NASA Astrophysics Data System (ADS)

    Bouirden, L.; Hilger, J. P.; Hertz, J.

    Different transformations in leadcalcium and leadcaciumtin alloys are observed with various complementary techniques such as anisothermal microcalorimetry, optical and electronic microscopy, hardness measurements. Three alloy states are studied: as-cast, rehomogenised/water-quenched, rehomogenised/air-cooled. With binary leadcalcium alloys, three successive discontinuous transformations are observed, namely: an initial and complete discontinuous transformation with regular moving of the front of reaction; a second and incomplete discontinuous transformation (puzzle-shaped); a third and incomplete discontinuous transformation with precipitation of Pb 3Ca. The role of secondary-lead impurities is complex: Ag reduces and Bi accelerates the rate of the discontinuous reaction, while Al refines the grain size. Leadcalciumtin are characterized by the Sn/Ca ratio. For very small values of this ratio, the hardening is similar to that of leadcalcium alloys. For high ratio values, the hardening takes place after an incubation period and proceeds via a continuous micro-precipitation of the (PbSn) 3Ca Compound. For intermediate ratios, the different processes are able to operate separately in sequence. Ag increases the rate of the continuous precipitation and reduces the incubation time. No significant effects are observed with Bi or Al. The kinetic laws of the different transformations are presented and values for the energy of activation are determined.

  14. A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ferro, P.; Bonollo, F.

    2012-04-01

    Sigma phase is known to reduce the mechanical properties and corrosion resistance of duplex and superduplex stainless steels. Therefore, heat treatments and welding must be carefully performed so as to avoid the appearance of such a detrimental phase, and clearly, models suitable to faithfully predict σ-phase precipitation are very useful tools. Most fully analytical models are based on thermodynamic calculations whose agreement with experimental results is not always good, so that such models should be used for qualitative purposes only. Alternatively, it is possible to exploit semiempirical models, where time-temperature-transformation (TTT) diagrams are empirically determined for a given alloy and the continuous-cooling-transformation (CCT) diagram is calculated from the TTT diagram. In this work, a semiempirical model for σ-phase precipitation in duplex and superduplex stainless steels, under both isothermal and unisothermal conditions, is proposed. Model parameters are calculated from empirical data and CCT diagrams are obtained by means of the additivity rule, whereas experimental measurements for model validation are taken from the literature. This model gives a satisfactory estimation of σ-phase precipitates during both isothermal aging and the continuous cooling process.

  15. Effect of Forced Convection Heat Transfer on Weld Pools.

    DTIC Science & Technology

    1986-01-01

    Cooling Curves for GTAW Welds Superimposed on CCT Diagram ............. 26 11 - Photomacrographs Showing Weld Macrostructure (TS Plane...decomposition kinetics. Superposition of the weld metal cooling rates measured in this study on the CCT diagram shows that the time for nucleation and growth...m - TABLE 2 - TRANSFORMATION AND COOLING TIMES FROM CCT DIAGRAM *II I I. I I I Cooling Rate I Transformation I Time to Cool tL-I- I Heat Input I

  16. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  17. Determination analaysis of the power losses of transformers with continuously transpored conductors (CTC) based fuzzy logic

    NASA Astrophysics Data System (ADS)

    Kaloko, Bambang Sri; Atsari, Erinna Dyah

    2017-03-01

    Electric motive force which flows into the iron core continuously on a plate - plate iron isolated may cause heat posed by current eddy (eddy current). No water loss occurs due to detainees on the circuit at the the flow of current load because this loss happened on the entanglement of the transformer is made of copper. Continuously Transposed Conductors (CTC) consist of a number of enameled rectangular wires (5-84 strands) made into an assembly. Each strand is transposed in turn to each position in the cable and is then covered with layers of insulation paper. Continuously Transposed Conductors are used in winding wires for medium and ultra high power transformers. CTC is manufactured by OFHC copper and indeed, is able to supply polyester roped. CTC which has been designed to reduce production cost, oil pocket and improve cooling efficiency. Hardened type CTC (CPR1, CPR2, and CPR3: BS1432) and Self-bonding CTC which can be used to improve mechanical and electrical strength are also available. This analysis is performed using the methods of fuzzy logic in taking account of the resources.

  18. Photothermal heating and cooling of nanostructures.

    PubMed

    Crane, Matthew Joseph; Zhou, Xuezhe; Davis, E James; Pauzauskie, Peter

    2018-06-11

    A vast range of insulating, semiconducting, and metallic nanomaterials have been studied over the past several decades with the aim of understanding how continuous-wave or pulsed laser radiation can influence their chemical functionality and local environment. Many fascinating observations have been made during laser irradiation including, but not limited to, the superheating of solvents, mass-transport-mediated morphology evolution, photodynamic therapy, morphology dependent resonances, and a range of phase transformations. In addition to laser heating, recent experiments have demonstrated the laser cooling of nanoscale materials through the emission of upconverted, anti-Stokes photons by trivalent rare-earth ions. This focus review outlines the analytical modeling of photothermal heat transport with an emphasis on the experimental validation of anti-Stokes laser cooling. This general methodology can be applied to a wide range of photothermal applications, including nanomedicine, photocatalysis, and the synthesis of new materials. The review concludes with an overview of recent advances and future directions for anti-Stokes cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition

    NASA Astrophysics Data System (ADS)

    Mu, Wangzhong; Shibata, Hiroyuki; Hedström, Peter; Jönsson, Pär Göran; Nakajima, Keiji

    2016-08-01

    The dynamics of intragranular ferrite (IGF) formation in inclusion engineered steels with either Ti2O3 or TiN addition were investigated using in situ high temperature confocal laser scanning microscopy. Furthermore, the chemical composition of the inclusions and the final microstructure after continuous cooling transformation was investigated using electron probe microanalysis and electron backscatter diffraction, respectively. It was found that there is a significant effect of the chemical composition of the inclusions, the cooling rate, and the prior austenite grain size on the phase fractions and the starting temperatures of IGF and grain boundary ferrite (GBF). The fraction of IGF is larger in the steel with Ti2O3 addition compared to the steel with TiN addition after the same thermal cycle has been imposed. The reason for this difference is the higher potency of the TiO x phase as nucleation sites for IGF formation compared to the TiN phase, which was supported by calculations using classical nucleation theory. The IGF fraction increases with increasing prior austenite grain size, while the fraction of IGF in both steels was the highest for the intermediate cooling rate of 70 °C/min, since competing phase transformations were avoided, the structure of the IGF was though refined with increasing cooling rate. Finally, regarding the starting temperatures of IGF and GBF, they decrease with increasing cooling rate and the starting temperature of GBF decreases with increasing grain size, while the starting temperature of IGF remains constant irrespective of grain size.

  20. Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Kim, Gi Hyun; Kim, Jong Bae; Park, Sewoong; Sohn, Il

    2016-08-01

    The effect of B2O3 on the thermo-physical properties of commercial mold fluxes, including the viscosity, crystallization behavior, and wettability, was investigated. Viscosity was measured using the rotating spindle method, and CCT (continuous cooling transformation) diagrams were obtained to investigate the crystallization behavior at various cooling rates using CLSM (confocal laser scanning microscope). The wettability of the fluxes was determined by measuring the contact angles at 1573 K (1300 °C) using the digital images generated by the sessile drop method and were used to calculate the surface tension, interfacial tension, and work of adhesion for Flux A (existing flux) and B (modified flux). These thermo-physical properties were correlated with the structural analysis obtained using FT-IR (Fourier transform-infrared), Raman and MAS-NMR (magic angle spin-nuclear magnetic resonance) spectroscopy. In addition, DTA (differential thermal analysis) was performed on the samples to measure the liquidus temperatures. Higher B2O3 concentrations resulted in lower liquidus temperatures, consequently decreasing the viscosity, the break temperature, and the crystallization temperature. However, B2O3 addition accelerated crystal growth owing to the higher diffusion kinetics of the cations, which also reduced the size of the liquid/solid co-existing region.

  1. Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Coldren, A. Phillip; Eldis, George T.

    1980-03-01

    A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.

  2. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  3. In-situ Crystallization of Highly Volatile Commercial Mold Flux Using an Isolated Observation System in the Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il

    2014-08-01

    The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.

  4. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

  5. Magnetic and spontaneous Barkhausen noise techniques used in investigation of a martensitic transformation

    NASA Astrophysics Data System (ADS)

    Capò Sànchez, J.; Huallpa, E.; Farina, P.; Padovese, L. R.; Goldenstein, H.

    2011-10-01

    Magnetic Barkhausen noise (MBN) was used to characterize the progress of austenite to martensite phase transformation while cooling steel specimens, using a conventional Barkhausen noise emission setup stimulated by an alternating magnetic field. The phase transformation was also followed by electrical resistivity measurements and by optical and scanning electron microscopy. MBN measurements on a AISI D2 tool steel austenitized at 1473 K and cooled to liquid nitrogen temperature presented a clear change near 225 K during cooling, corresponding to the MS (martensite start) temperature, as confirmed by resistivity measurements. Analysis of the resulting signals suggested a novel experimental technique that measures spontaneous magnetic emission during transformation, in the absence of any external field. Spontaneous magnetic noise emission measurements were registered in situ while cooling an initially austenitic sample in liquid nitrogen, showing that local microstructural changes, corresponding to an avalanche or "burst" phenomena, could be detected. This spontaneous magnetic emission (SME) can thus be considered a new experimental tool for the study of martensite transformations in ferrous alloys, at the same level as acoustic emission.

  6. Prediction of Microstructure in HAZ of Welds

    NASA Astrophysics Data System (ADS)

    Khurana, S. P.; Yancey, R.; Jung, G.

    2004-06-01

    A modeling technique for predicting microstructure in the heat-affected zone (HAZ) of the hypoeutectoid steels is presented. This technique aims at predicting the phase fractions of ferrite, pearlite, bainite and martensite present in the HAZ after the cool down of a weld. The austenite formation kinetics and austenite decomposition kinetics are calculated using the transient temperature profile. The thermal profile in the weld and the HAZ is calculated by finite-element analysis (FEA). Two kinds of austenite decomposition models are included. The final phase fractions are predicted with the help of a continuous cooling transformation (CCT) diagram of the material. In the calculation of phase fractions either the experimental CCT diagram or the mathematically calculated CCT diagram can be used.

  7. Development of a High Temperature Sensor Based on Transformation-Induced Resistivity

    DTIC Science & Technology

    2010-02-01

    qu ilib riu m T , C Ni-15.75Al Figure 2. Kinetics of γ´ Precipitation During Continuous Cooling of Ni-Al Alloys as a Function of Cooling Rate [7...2.5 at.%) γ’ solvus, T °C HT1 Time @ 1220°C HT2 Time @ 1220°C wt.% at.% wt.% at.% wt.% wt.% Hrs Hrs A1 89.58 83.5 5.67 11.5 4.75...mm] 9.69 9.58 9.49 9.75 9.49 10.30 10.39 10.56 Thickness, t [mm] 2.53 2.55 2.63 2.57 2.34 3.18 3.05 2.38 Aspect ratio, c 1.04 1.03 1.16 1.03 1.04

  8. Integrals for IBS and beam cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.; /Fermilab

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  9. Integrals for IBS and Beam Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burov, A.

    Simulation of beam cooling usually requires performing certain integral transformations every time step or so, which is a significant burden on the CPU. Examples are the dispersion integrals (Hilbert transforms) in the stochastic cooling, wake fields and IBS integrals. An original method is suggested for fast and sufficiently accurate computation of the integrals. This method is applied for the dispersion integral. Some methodical aspects of the IBS analysis are discussed.

  10. Thermomechanical processing of microalloyed powder forged steels and a cast vanadium steel

    NASA Astrophysics Data System (ADS)

    Dogan, B.; Davies, T. J.

    1985-09-01

    The effects of controlled rolling on transformation behavior of two powder forged (P/F) microalloyed vanadium steels and a cast microalloyed vanadium steel were investigated. Rolling was carried out in the austenitic range below the recrystallization temperature. Equiaxed grain structures were produced in specimens subjected to different reductions and different cooling rates. The ferrite grain size decreased with increasing deformation and cooling rate. Ferrite nucleated on second phase particles, deformation bands, and on elongated prior austenite grain boundaries; consequently a high fractional ferrite refinement was achieved. Deformation raised the ferrite transformation start temperature while the time to transformation from the roll finish temperature decreased. Cooling rates in the cast steel were higher than in P/F steels for all four cooling media used, and the transformation start temperatures of cast steels were lower than that of P/F steel. Intragranular ferrite nucleation, which played a vital role in grain refinement, increased with cooling rate. Fully bainitic microstructures were formed at higher cooling rates in the cast steel. In the P/F steels inclusions and incompletely closed pores served as sites for ferrite nucleation, often forming a ‘secondary’ ferrite. The rolling schedule reduced the size of large pores and particle surface inclusions and removed interconnected porosity in the P/F steels.

  11. The Nature of Metallurgical Reactions in Underwater Welding,

    DTIC Science & Technology

    1987-04-01

    Christensen continuous cooling transformation ( CCT ) diagram , as et. al. (7-10r)have introduced basic concepts for an instructional procedure to understand...experienced a 0.3 wt. pct. the final shape and position of nucleation curves on decrease from the surface composition at 30 bars the CCT diagram . Olson and...desired weld metal composition to form acicular ferrite and side plate ferrite S-XH20 P (eq. 7) resulted. Figure 7 is a schematic CCT diagram H20

  12. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, Gary R.; Merritt, Bernard T.

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  13. High voltage power supply with modular series resonant inverters

    DOEpatents

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  14. Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less

  15. Optimizing the multicycle subrotational internal cooling of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Aroch, A.; Kallush, S.; Kosloff, R.

    2018-05-01

    Subrotational cooling of the AlH+ ion to the miliKelvin regime, using optimally shaped pulses, is computed. The coherent electromagnetic fields induce purity-conserved transformations and do not change the sample temperature. A decrease in a sample temperature, manifested by an increase of purity, is achieved by the complementary uncontrolled spontaneous emission which changes the entropy of the system. We employ optimal control theory to find a pulse that stirs the system into a population configuration that will result in cooling, upon multicycle excitation-emission steps. The obtained optimal transformation was shown capable to cool molecular ions to the subkelvins regime.

  16. Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification

    NASA Astrophysics Data System (ADS)

    Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello

    2013-08-01

    A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.

  17. Correlation of Microstructure and Mechanical Properties of Thermomechanically Processed Low-Carbon Steels Containing Boron and Copper

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Chang Gil; Lee, Tae-Ho

    2010-01-01

    The correlation of the microstructure and mechanical properties of thermomechanically processed low-carbon steels containing B and Cu was investigated in this study. Eighteen kinds of steel specimens were fabricated by varying B and Cu contents and finish cooling temperatures (FCTs) after controlled rolling, and then tensile and Charpy impact tests were conducted on them. Continuous cooling transformation (CCT) diagrams of the B-free and B-added steel specimens under nondeformed and deformed conditions were constructed by a combination of deformation dilatometry and metallographic methods. The addition of a very small amount of B remarkably decreased the transformation start temperatures near a bainite start temperature (Bs) and thus expanded the formation region of low-temperature transformation phases such as degenerate upper bainite (DUB) and lower bainite (LB) to slower cooling rates. On the other hand, a deformation in the austenite region promoted the formation of quasipolygonal ferrite (QPF) and granular bainite (GB) with an increase in transformation start temperatures. The tensile test results indicated that tensile strength primarily increased with decreasing FCT, while the yield strength did not vary much, except in some specimens. The addition of B and Cu, however, increased the tensile and yield strengths simultaneously because of the significant microstructural change occasionally affected by the FCT. The Charpy impact test results indicated that the steel specimens predominantly composed of LB and lath martensite (LM) had lower upper-shelf energy (USE) than those consisting of GB or DUB, but had nearly equivalent or rather lower ductile-to-brittle transition temperature (DBTT) in spite of the increased strength. According to the electron backscatter diffraction (EBSD) analysis data, it was confirmed that LB and LM microstructures had a relatively smaller effective grain size than GB or DUB microstructures, which enhanced the tortuosity of cleavage crack propagation, thereby resulting in a decrease in DBTT.

  18. Simulation of the hot rolling and accelerated cooling of a C-Mn ferrite-bainite strip steel

    NASA Astrophysics Data System (ADS)

    Debray, B.; Teracher, P.; Jonas, J. J.

    1995-01-01

    By means of torsion testing, the microstructures and mechanical properties produced in a 0.14 Pct C-1.18 Pct Mn steel were investigated over a wide range of hot-rolling conditions, cooling rates, and simulated coiling temperatures. The austenite grain size present before accelerated cooling was varied from 10 to 150 μm by applying strains of 0 to 0.8 at temperatures of 850 °C to 1050 °C. Two cooling rates, 55 °C/s and 90 °C/s, were used. Cooling was interrupted at temperatures ranging from 550 °C to 300 °C. Optical microscopy and transmission electron microscopy (TEM) were employed to investigate the microstructures. The mechanical properties were studied by means of tensile testing. When a fine austenite grain size was present before cooling and a high cooling rate (90 °C/s) was used, the microstructure was composed of ferrite plus bainite and a mixture of ferrite and cementite, which may have formed by an interphase mechanism. The use of a lower cooling rate (55 °C/s) led to the presence of ferrite and fine pearlite. In both cases, the cooling interruption temperature and the amount of prior strain had little influence on the mechanical properties. Reheating at 1050 °C, which led to the presence of very coarse austenite, resulted in a stronger influence of the interruption temperature. A method developed at Institut de Recherche Sidérurgique (IRSID, St. Germain-en-Laye, France) for deducing the Continuous-Cooling-Transformation (CCT) diagrams from the cooling data was adapted to the present apparatus and used successfully to interpret the observed influence of the process parameters.

  19. Effects of thermomechanical processing on the microstructure and mechanical properties of a Ti-V-N steel

    NASA Astrophysics Data System (ADS)

    Dogan, B.; Collins, L. E.; Boyd, J. D.

    1988-05-01

    Based on studies of austenite deformation behavior and continuous-cooling-transformation behavior of a Ti-V microalloyed steel by cam plastometer and quench-deformation dilatometer, respectively, plate rolling schedules were designed to produce (i) recrystallized austenite, (ii) unrecrystallized austenite, (iii) deformed ferrite + unrecrystallized austenite. The effects of austenite condition and cooling rate on the final microstructure and mechanical properties were investigated. To rationalize the variation in final ferrite grain size with different thermomechanical processing schedules, it is necessary to consider the kinetics of ferrite grain growth in addition to the density of ferrite nucleation sites. The benefit of dilatometer studies in determining the optimum deformation schedule and cooling rate for a given steel is domonstrated. A wide range of tensile and impact properties results from the different microstructures studied. Yield strength is increased by increasing the amount of deformed ferrite, bainite, or martensite, and by decreasing the ferrite grain size. Impact toughness is most strongly influenced by ferrite grain size and occurrence of rolling plane delaminations.

  20. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  1. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    DTIC Science & Technology

    1992-06-01

    2. HSLA-100 Steel Continuous Cooling Transformation Diagram [Ref. 13:p. 262] One of the most desirable characteristics of the low -carbon, copper ...none V mild v.strong v. strong V. strong moderate The use of copper as an alloying element in low carbon HSLA steel has resulted in the following...HY-130 steel . In research presently being done, it has been determined that the high copper alloy has a highly dislocated martensitic /bainitic

  2. Cooling Concepts for High Power Density Magnetic Devices

    NASA Astrophysics Data System (ADS)

    Biela, Juergen; Kolar, Johann W.

    In the area or power electronics there is a general trend to higher power densities. In order to increase the power density the systems must be designed optimally concerning topology, semiconductor selection, etc. and the volume of the components must be decreased. The decreasing volume comes along with a reduced surface for cooling. Consequently, new cooling methods are required. In the paper an indirect air cooling system for magnetic devices which combines the transformer with a heat sink and a heat transfer component is presented. Moreover, an analytic approach for calculating the temperature distribution is derived and validated by measurements. Based on these equations a transformer with an indirect air cooling system is designed for a 10kW telecom power supply.

  3. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; Hasan, Naila Al; Qian, Suxin; Ott, Ryan; Cui, Jun; Takeuchi, Ichiro

    2017-10-01

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. Here we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g-1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as  -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress-strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti2Ni precipitates typically one micron in size with a large aspect ratio enclosing the TiNi matrix. A stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti2Ni precipitates is believed to be the origin of the unique superelasticity behavior.

  4. Effect of Slag Composition on the Crystallization Kinetics of Synthetic CaO-SiO2-Al2O3-MgO Slags

    NASA Astrophysics Data System (ADS)

    Esfahani, Shaghayegh; Barati, Mansoor

    2018-04-01

    The crystallization kinetics of CaO-SiO2-Al2O3-MgO (CSAM) slags was studied with the aid of single hot thermocouple technique (SHTT). Kinetic parameters such as the Avrami exponent ( n), rate coefficient ( K), and effective activation energy of crystallization ( E A ) were obtained by kinetic analysis of data obtained from in situ observation of glassy to crystalline transformation and image analysis. Also, the dependence of nucleation and growth rates of crystalline phases were quantified as a function of time, temperature, and slag basicity. Together with the observations of crystallization front, they facilitated establishing the dominant mechanisms of crystallization. In an attempt to predict crystallization rate under non-isothermal conditions, a mathematical model was developed that employs the rate data of isothermal transformation. The model was validated by reproducing an experimental continuous cooling transformation diagram purely from isothermal data.

  5. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  6. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meiser, Jerome; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de

    Using classical molecular dynamics simulations and the Meyer-Entel interaction potential, we study the martensitic transformation pathway in a pure iron bi-crystal containing a symmetric tilt grain boundary. Upon cooling the system from the austenitic phase, the transformation starts with the nucleation of the martensitic phase near the grain boundary in a plate-like arrangement. The Kurdjumov-Sachs orientation relations are fulfilled at the plates. During further cooling, the plates expand and merge. In contrast to the orientation relation in the plate structure, the complete transformation proceeds via the Pitsch pathway.

  8. Effect of Na2O on Crystallisation Behaviour and Heat Transfer of Fluorine-Free Mould Fluxes

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    Most of the commercial mould fluxes contain fluorides which bring about serious environmental problems. The major challenge in the application of fluorine-free mould fluxes is to control the heat transfer from the strand to copper mould which is closely related to crystallisation behaviour. In this study, the effects of Na2O on the crystallisation behaviour and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O mould fluxes were investigated using single /double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that the increase of Na2O concentration led to higher critical cooling rate and shorter incubation time. The crystallisation behaviour in a thermal gradient was examined using DHTT. The heat flux measured by IET showed that the increase of Na2O concentration decreased the heat flux when Na2O was lower than 9 mass% but the further increase of Na2O raised the heat flux. The relationship between flux crystallisation and heat transfer was also discussed.

  9. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox

    2012-04-01

    The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.

  10. Research and Development of Ultra-High Strength X100 Welded Pipe

    NASA Astrophysics Data System (ADS)

    Chuanguo, Zhang; Lei, Zheng; Ping, Hu; Bei, Zhang; Kougen, Wu; Weifeng, Huang

    Ultra-high strength X100 welded pipe can be used in the construction of long distance oil and gas pipeline to improve transmission capacity and reduce operation cost. By using the way of thermo-simulation and pilot rolling, the CCT (Continuous Cooling Transformation) diagram and the relationship between ACC (Accelerated Cooling) parameters, microstructure and mechanical properties were studied for the designed X100 pipeline steel with low carbon, high manganese and niobium micro-alloyed composition in lab. The analysis of CCT diagram indicates that the suitable hardness and microstructure can be obtained in the cooling rate of 20 80°C/sec. The pilot rolling results show that the ACC cooling start temperature below Ar3 phase transformation point is beneficial to increase uniform elongation, and the cooling stop temperature of 150 350°C is helpful to obtain high strength and toughness combination. Based on the research conclusions, the X100 plate and UOE pipe with dimension in O.D.1219×W.T.14.8mm, O.D.1219×W.T.17.8mm, designed for the natural gas transmission pipeline, were trial produced. The manufactured pipe body impact absorbed energy at -10°C is over 250J. The DWTT shear area ratio at 0°C is over 85%. The transverse strength meets the X100 grade requirement, and uniform elongation is over 4%. The X100 plate and UOE pipe with dimension in O.D.711×W.T.20.0mm, O.D.711×W.T.12.5mm, designed for an offshore engineering, were also trial produced. The average impact absorbed energy of pipe body at -30°C is over 200J. The average impact absorbed energy of HAZ (Heat-affected zone) and WM (Welded Seam) at -30°C is over 100J. And the good pipe shapes were obtained

  11. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn; State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819; Kong, Xiangwei

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grainsmore » changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.« less

  12. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  13. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat

    DOE PAGES

    Hou, Huilong; Simsek, Emrah; Stasak, Drew; ...

    2017-08-11

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less

  14. Macrosegregation and Microstructural Evolution in a Pressure-Vessel Steel

    NASA Astrophysics Data System (ADS)

    Pickering, E. J.; Bhadeshia, H. K. D. H.

    2014-06-01

    This work assesses the consequences of macrosegregation on microstructural evolution during solid-state transformations in a continuously cooled pressure-vessel steel (SA508 Grade 3). Stark spatial variations in microstructure are observed following a simulated quench from the austenitization temperature, which are found to deliver significant variations in hardness. Partial-transformation experiments are used to show the development of microstructure in segregated material. Evidence is presented which indicates the bulk microstructure is not one of upper bainite, as it has been described in the past, but one comprised of Widmanstätten ferrite and pockets of lower bainite. Segregation is observed on three different length scales, and the origins of each type are proposed. Suggestions are put forward for how the segregation might be minimized, and its detrimental effects suppressed by heat treatments.

  15. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    NASA Astrophysics Data System (ADS)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  16. A lightweight ambient air-cooling unit for use in hazardous environments.

    PubMed

    Chen, Y T; Constable, S H; Bomalaski, S H

    1997-01-01

    Recent research demonstrated (a) the effectiveness of intermittent conditioned air cooling during rest breaks to significantly reduce cumulative heat storage and (b) that longer work sessions were possible for individuals wearing chemical defense ensembles. To further advance this concept, a strategy for implementing continuous air cooling was conceived; ambient air cooling was added during work cycles and conditioned air cooling was delivered during rest periods. A compact battery-powered beltpack cooling unit (3.9 kg) designed and made at the U.S. Air Force Armstrong Laboratory was used to deliver 5.7 L/sec filtered ambient air during work cycles: 4.7 L/sec to the body and 1 L/sec to the face. Five experimental cycles were conducted in a thermally controlled chamber under warm conditions (32 degrees C, 40% relative humidity) with (1) no cooling-intermittent work, (2) intermittent cooling, (3) continuous cooling during intermittent exercise, and (4) no cooling-continuous work and (5) ambient air cooling during continuous exercise. Intermittent, conditioned, and continuous air cooling resulted in significant reductions in rectal temperature, mean skin temperature, and heart rate as compared with the no-cooling trials. The continuous air-cooling trial significantly improved thermal comfort and sweat evaporation. Results suggest that ambient air delivered during work cycles by a lightweight portable unit (in conjunction with conditioned air delivered during rest periods), can definitely improve personal comfort, reduce skin temperature, and decrease the cumulative fatigue common to repeated work/rest cycles in selected military and industrial applications in which individuals work in chemical defense ensembles.

  17. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    DOEpatents

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  18. On importance assessment of aging multi-state system

    NASA Astrophysics Data System (ADS)

    Frenkel, Ilia; Khvatskin, Lev; Lisnianski, Anatoly

    2017-01-01

    Modern high-tech equipment requires precise temperature control and effective cooling below the ambient temperature. Greater cooling efficiencies will allow equipment to be operated for longer periods without overheating, providing a greater return on investment and increased in availability of the equipment. This paper presents application of the Lz-transform method to importance assessment of aging multi-state water-cooling system used in one of Israeli hospitals. The water cooling system consists of 3 principal sub-systems: chillers, heat exchanger and pumps. The performance of the system and the sub-systems is measured by their produced cooling capacity. Heat exchanger is an aging component. Straightforward Markov method applied to solve this problem will require building of a system model with numerous numbers of states and solving a corresponding system of multiple differential equations. Lz-transform method, which is used for calculation of the system elements importance, drastically simplified the solution. Numerical example is presented to illustrate the described approach.

  19. Effect of heat treatment on the microstructure of a 2CrMoNiWV rotor steel

    NASA Astrophysics Data System (ADS)

    Li, Cheng

    A wide range of experiments have been carried out on a 2CrMoNiWV low alloy steel to investigate the effect of various heat treatment conditions on microstructural change, alloy carbide transformation mechanism and mechanical properties.Two complete continuous cooling transformation (CCT) diagrams were constructed for this steel on the basis of experimental dilatometry thermal analysis, metallographic examination and current phase transformation theory. The significance of these two diagrams is in that they can be directly utilised in industrial practice as a reference during heat treatment for this material. Meanwhile it was confirmed that this 2CrMoNiWV steel can be transformed to a fully bainitic microstructure over a wide range of cooling rates and this feature proved this steel suitable for large diameter steam turbine rotor application.An innovative carbide extraction technique for the XRD identification of carbide phase has been developed. The detailed description of this new technique and its advantages are discussed in this thesis. The extensive work using TEM/EDX has set up essential "finger prints" for the quick examination of large amounts of individual carbide existing at various heat treated conditions. Simultaneous measurements and determinations were made on particle composition, morphological change, the type, amount and distribution of these carbide phases. Thus the sequence of carbide transformation for this 2CrMoNiWV steel during tempering has been established.The characteristic microstructures of various heat treated specimens were carefully examined and discussed. Theoretical thermodynamic equilibria predictions were calculated using MTDATA. A very good agreement was found between experimental results and theoretical predictions on those critical transformation temperatures and a good correlation of carbide evolution sequences was obtained. Based on experimental results and theoretical predictions, the role of tungsten in promoting creep resistance to the material is elucidated.The usefulness of equilibrium thermodynamic calculations using MTDATA in predicting the microstructural changes and carbide evolution has been demonstrated in this work, particularly the separate effect of composition on the stable carbide dispersion where a thermodynamic approach offers great benefits.A possibly optimised heat treatment route is suggested for the large diameter rotor forgings which involves austenitising at 980°C for 10 hours following by oil quenching and then tempering at 675°C for 20 hours following by air cooling.Some general conclusions are drawn from this study, especially with regard to the effect of heat treatment on the microstructure of this 2CrMoNiWV steel and suggestions for further work are made.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huilong; Simsek, Emrah; Stasak, Drew

    The stress-induced martensitic phase transformation of shape memory alloys (SMAs) is the basis for elastocaloric cooling. In this paper, we employ additive manufacturing to fabricate TiNi SMAs, and demonstrate compressive elastocaloric cooling in the TiNi rods with transformation latent heat as large as 20 J g -1. Adiabatic compression on as-fabricated TiNi displays cooling ΔT as high as -7.5 °C with recoverable superelastic strain up to 5%. Unlike conventional SMAs, additive manufactured TiNi SMAs exhibit linear superelasticity with narrow hysteresis in stress–strain curves under both adiabatic and isothermal conditions. Microstructurally, we find that there are Ti 2Ni precipitates typically onemore » micron in size with a large aspect ratio enclosing the TiNi matrix. Finally, a stress transfer mechanism between reversible phase transformation in the TiNi matrix and mechanical deformation in Ti 2Ni precipitates is believed to be the origin of the unique superelasticity behavior.« less

  1. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e2S b2T e5 : An ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.

    2018-04-01

    The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.

  2. Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.

    PubMed

    Jung, Sung Suk; Sohn, Il

    2014-01-01

    In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement.

  3. Partial differential equations constrained combinatorial optimization on an adiabatic quantum computer

    NASA Astrophysics Data System (ADS)

    Chandra, Rishabh

    Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.

  4. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  5. Monoclinic MB phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Yao, Jianjun; Cao, Hu; Ge, Wenwei; Li, Jiefang; Viehland, D.

    2009-08-01

    We report the finding of a monoclinic MB phase in Pb(Zn1/3Nb2/3)O3-4.5%PbTiO3 single crystals. High precision x-ray diffraction investigations of [110] field cooled crystals have shown a transformation sequence of cubic(C)→tetragonal(T)→orthorhombic(O)→monoclinic(MB), which is different from that previously reported [A.-E. Renault et al., J. Appl. Phys. 97, 044105 (2005)]. Beginning in the zero-field-cooled condition at 383 K, a rhombohedral (R)→MB→O sequence was observed with increasing field. Coexisting MB and O phases were then found upon removal of field, which fully transformed to MB on cooling to room temperature.

  6. In-Situ Phase Mapping and Direct Observations of Phase Transformations During Arc Welding of 1045 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmer, J; Palmer, T

    2005-09-13

    In-situ Spatially Resolved X-Ray Diffraction (SRXRD) experiments were performed during gas tungsten arc (GTA) welding of AISI 1045 C-Mn steel. Ferrite ({alpha}) and austenite ({gamma}) phases were identified and quantified in the weld heat-affected zone (HAZ) from the real time x-ray diffraction data. The results were compiled along with weld temperatures calculated using a coupled thermal fluids weld model to create a phase map of the HAZ. This map shows the {alpha} {yields} {gamma} transformation taking place during weld heating and the reverse {gamma} {yields} {alpha} transformation taking place during weld cooling. Superheating is required to complete the {alpha} {yields}more » {gamma} phase transformation, and the amount of superheat above the A3 temperature was shown to vary with distance from the centerline of the weld. Superheat values as high as 250 C above the A3 temperature were observed at heating rates of 80 C/s. The SRXRD experiments also revealed details about the {gamma} phase not observable by conventional techniques, showing that {gamma} is present with two distinct lattice parameters as a result of inhomogeneous distribution of carbon and manganese in the starting pearlitic/ferritic microstructure. During cooling, the reverse {gamma} {yields} {alpha} phase transformation was shown to depend on the HAZ location. In the fine grained region of the HAZ, at distances greater than 2 mm from the fusion line, the {gamma} {yields} {alpha} transformation begins near the A3 temperature and ends near the A1 temperature. In this region of the HAZ where the cooling rates are below 40 C/s, the transformation occurs by nucleation and growth of pearlite. For HAZ locations closer to the fusion line, undercoolings of 200 C or more below the A1 temperature are required to complete the {gamma} {yields} {alpha} transformation. In this region of the HAZ, grain growth coupled with cooling rates in excess of 50 C/s causes the transformation to occur by a bainitic mechanism.« less

  7. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  8. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  9. Shape Memory Characteristics of Rapidly Solidified Ti-37.8Cu-18.7Ni Alloy Ribbons

    NASA Astrophysics Data System (ADS)

    Ramos, Alana Pereira; de Castro, Walman Benicio

    Amorphization and martensitic transformation (Ms) characteristics of Ti-Ni-Cu alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change the wheel linear velocity from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate and alloy composition on martensitic transformation behavior is discussed.

  10. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    PubMed

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  11. INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING SOUTHEAST, SHOWING BACK OF CONTROL PANEL AND TRANSFORMER (GE, 3000 KUA water cooled, 60 cycles, U.S. patent 1900585. Transformer dates from 1937, control panel GE resistors) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  12. Effect of Austenite Deformation on the Microstructure Evolution and Grain Refinement Under Accelerated Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Palmiere, E. J.

    2017-07-01

    Although there has been much research regarding the effect of austenite deformation on accelerated cooled microstructures in microalloyed steels, there is still a lack of accurate data on boundary densities and effective grain sizes. Previous results observed from optical micrographs are not accurate enough, because, for displacive transformation products, a substantial part of the boundaries have disorientation angles below 15 deg. Therefore, in this research, a niobium microalloyed steel was used and electron backscattering diffraction mappings were performed on all of the transformed microstructures to obtain accurate results on boundary densities and grain refinement. It was found that with strain rising from 0 to 0.5, a transition from bainitic ferrite to acicular ferrite occurs and the effective grain size reduces from 5.7 to 3.1 μm. When further increasing strain from 0.5 to 0.7, dynamic recrystallization was triggered and postdynamic softening occurred during the accelerated cooling, leading to an inhomogeneous and coarse transformed microstructure. In the entire strain range, the density changes of boundaries with different disorientation angles are distinct, due to different boundary formation mechanisms. Finally, the controversial influence of austenite deformation on effective grain size of low-temperature transformation products was argued to be related to the differences in transformation conditions and final microstructures.

  13. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  14. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  15. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  16. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  17. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    PubMed

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  18. Crystallization and transformation of polymorphic forms of trioleoyl glycerol and 1,2-dioleoyl-3-rac-linoleoyl glycerol.

    PubMed

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2013-08-08

    This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.

  19. Effect of different annealing condition on the structural and magnetic properties of Mn2NiGa Heusler alloys

    NASA Astrophysics Data System (ADS)

    Vagadia, Megha; Hester, James; Nigam, A. K.

    2018-04-01

    We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.

  20. Cooling arrangement for a gas turbine component

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E

    2015-02-10

    A cooling arrangement (82) for a gas turbine engine component, the cooling arrangement (82) having a plurality of rows (92, 94, 96) of airfoils (98), wherein adjacent airfoils (98) within a row (92, 94, 96) define segments (110, 130, 140) of cooling channels (90), and wherein outlets (114, 134) of the segments (110, 130) in one row (92, 94) align aerodynamically with inlets (132, 142) of segments (130, 140) in an adjacent row (94, 96) to define continuous cooling channels (90) with non continuous walls (116, 120), each cooling channel (90) comprising a serpentine shape.

  1. The influence of tempering process for DP lateritic steel in hardness and microstructure behavior

    NASA Astrophysics Data System (ADS)

    Hasbi, Muhammad Yunan; Saefudin, Romijarso, Toni Bambang

    2018-05-01

    In this study, the influence of tempering temperature on dual phase (DP) steel lateritic has been examined. Lateritic is chosen because of its excellence as austenite stabilizer in the formation of martensite and also increase the weldability due to nickel content. The hardness and microstructure behavior of steels were the main focus of this research. One of the goals was to obtain the combination of high strength and ductile materials for automotive application. The specimens used in this study were low carbon steel made by the hot-rolled process and followed by the initial heating process with various temperature (760 °C, 800 °C, 840 °C) continued with rapid cooling. The specimens also conducted by secondary heating with tempering process at 450 °C in an hour with very slow cooling. The experimental results showed that correlation between temperatures with hardness properties of materials. The hardness of the specimens increases as temperature increases. It was because austenite phase has a sufficient time and temperature to form, therefore the amount of transformed austenite becomes martensite was greater. The highest hardness reached by T = 840 °C was 46.98 HRC, it was about 153% from as cast (18.54 HRC). Decreasing in hardness value when the specimen was tempering at 450 °C indicated that martensite phase has been transformed into tempered martensite.

  2. -Based Slag System

    NASA Astrophysics Data System (ADS)

    Jiang, Binbin; Wang, Wanlin; Sohn, Il; Wei, Juan; Zhou, Lejun; Lu, Boxun

    2014-06-01

    The crystallization behavior of a CaO-Al2O3-based slag system with various ZrO2 content (from 1 to 5 wt pct) and CaO/Al2O3 (C/A) ratio (from 0.8 to 1.2) has been studied by using single hot thermocouple technology (SHTT) in this article. The continuous-cooling-transformation (CCT) diagrams and time-temperature-transformation (TTT) diagrams of the above slag system were constructed for the analysis of the varying crystallization behaviors. The results suggested that Al2O3 tended to enhance the slag samples crystallization when the C/A ratio ranged from 0.8 to 1.2, and the critical cooling rate and crystallization temperature increased with the decrease of C/A ratio; meanwhile, the incubation time was also getting shorter with the reduction of C/A ratio. The addition of ZrO2 would enhance the crystallization of slag samples because of the induced heterogeneous nucleation of molten slag. However, the general crystallization was determined by the balance between molten slag viscosity and heterogeneous nucleation, such that Sample 3 (C/A = 1.0, ZrO2 = 3 pct, B2O3 = 10 pct, Li2O = 3 pct [in wt pct]) would demonstrate the strongest crystallization kinetics in a high-temperature zone. The different crystals formed during the tests were also analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

  3. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  4. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  5. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  6. Morphology and properties of low-carbon bainite

    NASA Astrophysics Data System (ADS)

    Ohtani, H.; Okaguchi, S.; Fujishiro, Y.; Ohmori, Y.

    1990-03-01

    Morphology of low-carbon bainite in commercial-grade high-tensile-strength steels in both isothermal transformation and continuous cooling transformation is lathlike ferrite elongated in the <11l>b direction. Based on carbide distribution, three types of bainites are classified: Type I, is carbide-free, Type II has fine carbide platelets lying between laths, and Type III has carbides parallel to a specific ferrite plane. At the initial stage of transformation, upper bainitic ferrite forms a subunit elongated in the [-101]f which is nearly parallel to the [lll]b direction with the cross section a parallelogram shape. Coalescence of the subunit yields the lathlike bainite with the [-101]f growth direction and the habit plane between (232)f and (lll)f. Cementite particles precipitate on the sidewise growth tips of the Type II bainitic ferrite subunit. This results in the cementite platelet aligning parallel to a specific ferrite plane in the laths after coalescence. These morphologies of bainites are the same in various kinds of low-carbon high-strength steels. The lowest brittle-ductile transition temperature and the highest strength were obtained either by Type III bainite or bainite/martensite duplex structure because of the crack path limited by fine unit microstructure. It should also be noted that the tempered duplex structure has higher strength than the tempered martensite in the tempering temperature range between 200 °C and 500 °C. In the case of controlled rolling, the accelerated cooling afterward produces a complex structure comprised of ferrite, cementite, and martensite as well as BI-type bainite. Type I bainite in this structure is refined by controlled rolling and plays a very important role in improving the strength and toughness of low-carbon steels.

  7. First signal from a broadband cryogenic preamplifier cooled by circulating liquid nitrogen in a 7 T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Choi, Myoung Choul; Lee, Jeong Min; Lee, Se Gyu; Choi, Sang Hwan; Choi, Yeon Suk; Lee, Kyung Jae; Kim, SeungYong; Kim, Hyun Sik; Stahl, Stefan

    2012-12-18

    Despite the outstanding performance of Fourier transform ion cyclotron/mass spectrometry (FTICR/MS), the complexity of the cellular proteome or natural compounds presents considerable challenges. Sensitivity is a key performance parameter of a FTICR mass spectrometer. By improving this parameter, the dynamic range of the instrument can be increased to improve the detection signal of low-abundance compounds or fragment ion peaks. In order to improve sensitivity, a cryogenic detection system was developed by the KBSI (Korean Basic Science Institute) in collaboration with Stahl-Electronics (Mettenheim, Germany). A simple, efficient liquid circulation cooling system was designed and a cryogenic preamplifier implemented inside a FTICR mass spectrometer. This cooling system circulates a cryoliquid from a Dewar to the "liquid circulation unit" through a CF flange to cool a copper block and a cryopreamplifier; the cooling medium is subsequently exhausted into the air. The cryopreamplifier can be operated over a very wide temperature range, from room temperature to low temperature environments (4.2 K). First, ion signals detected by the cryopreamplifier using a circulating liquid nitrogen cooling system were observed and showed a signal-to-noise ratio (S/N) about 130% better than that obtained at room temperature.

  8. Transformation and precipitation in vanadium treated steels

    NASA Astrophysics Data System (ADS)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature tempering and at higher tempering temperature introduced secondary hardening. The intensity of secondary hardening increased with increasing vanadium, whereas austenitising temperature had little or no effect. The softening after the secondary hardening was faster after austenitising at the higher temperature and when recrystallisation occurred at the highest tempering temperatures, the hardness was lower due to coarse recrystallised ferrite.Isothermal transformation studies showed that vanadium additions raised the Ar3 temperature and accelerated ferrite nucleation, whilst the growth of ferrite was delayed due to the formation of V(CN) interphase and general precipitation pinning, of the transformation front. Increasing nitrogen content in the V-steel increased the incubation period for ferrite nucleation and increasingly reduced the ferrite growth by increasing V(CN) precipitation pinning of the transformation front.Transformation during continuous cooling was examined in relation to the effect of vanadium, carbon and nitrogen together with the effect of austenitising temperature. Increasing austenitising temperature increased the austenite grain size, and it then became apparent that increasing vanadium, carbon and nitrogen increased the hardenability and raised the hardness level of the jominy curve for the non-martensitic products. (Abstract shortened by ProQuest.).

  9. Air cooled turbine component having an internal filtration system

    DOEpatents

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  10. Development of a Space-Flight ADR Providing Continuous Cooling at 50 Mk with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Canavan, Edgar; DeLee, Hudson; DiPirro, Michael; Jahromi, Amir; James, Byron; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  11. Development of a Space-Flight ADR Providing Continuous Cooling at 50 mK with Heat Rejection at 10 K

    NASA Technical Reports Server (NTRS)

    Tuttle, Jim; Canavan, Ed; DeLee, Hudson; Dipirro, Michael; Jahromi, Amir; Kimball, Mark; Shirron, Peter; Sullivan, Dan; Switzer, Eric

    2017-01-01

    Future astronomical instruments will require sub-Kelvin detector temperatures to obtain high sensitivity. In many cases large arrays of detectors will be used, and the associated cooling systems will need performance surpassing the limits of present technologies. NASA is developing a compact cooling system that will lift heat continuously at temperatures below 50 mK and reject it at over 10 K. Based on Adiabatic Demagnetization Refrigerators (ADRs), it will have high thermodynamic efficiency and vibration-free operation with no moving parts. It will provide more than 10 times the current flight ADR cooling power at 50 mK and will also continuously cool a 4 K stage for instruments and optics. In addition, it will include an advanced magnetic shield resulting in external field variations below 5 T. We describe the cooling system here and report on the progress in its development.

  12. Final cooling for a high-energy high-luminosity lepton collider

    NASA Astrophysics Data System (ADS)

    Neuffer, D.; Sayed, H.; Acosta, J.; Hart, T.; Summers, D.

    2017-07-01

    A high-energy muon collider requires a "final cooling" system that reduces transverse emittance by a factor of ~ 10, while allowing the longitudinal emittance to increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches, which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  13. Experimental study on the cool storage performance of super absorbent polymers for cool storage clothes

    NASA Astrophysics Data System (ADS)

    Li, Shidong; Mo, Caisong; Wang, Junze; Zheng, Jingfu; Tian, Ruhong

    2017-11-01

    In this paper, a kind of cool storage clothes which can cool the human body in high temperature condition is put forward. super absorbent polymers was selected as a cold storage material, through at the normal and extreme environment simulation, the cold storage materials were prepared with different composition, and their performance was tested. Test results show that:under normal temperature conditions, the 1:50 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 43 minutes by about 30%; under the condition of 37°C, the 1:100 concentration of super absorbent polymers continued to release the longest cooling time, compared with pure water, cooling time extended 105 minutes by about 50%.

  14. Phase transformations of siderite ore by the thermomagnetic analysis data

    NASA Astrophysics Data System (ADS)

    Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.

  15. On-Orbit Performance of the TES Pulse Tube Cryocooler System and the Instrument - Six Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. I.; Na-Nakornpanom, A.

    2011-01-01

    The Tropospheric Emission Spectrometer (TES) instrument pulse tube cryocoolers began operation 36 days after launch of the NASA Earth Observing System (EOS) Aura spacecraft on July 15, 2004. TES is designed with four infrared Mercury Cadmium Telluride focal plane arrays in two separate housings cooled by a pair of Northrup Grumman Aerospace Systems (NGAS) single-stage pulse tube cryocoolers. The instrument also makes use of a two-stage passive cooler to cool the optical bench. The instrument is a high-resolution infrared imaging Fourier transform spectrometer with 3.3-15.4 micron spectral coverage. After four weeks of outgassing, the instrument optical bench and focal planes were cooled to their operating temperatures to begin science operations. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. After a highly successful 5 years of continuous in-space operations, TES was granted a 2 year extension. This paper reports on the TES cryogenic system performance including the two-stage passive cooler. After a brief overview of the cryogenic design, the paper presents detailed data on the highly successful space operation of the pulse tube cryocoolers and instrument thermal design over the past six years since the original turn-on in 2004. The data shows the cryogenic contamination decreased substantially to where decontamination cycles are now performed every six months. The cooler stroke required for constant-temperature operation has not increased indicating near-constant cooler efficiency and the instrument's thermal design has also provided a nearly constant heat rejection sink. At this time TES continues to operate in space providing important Earth science data.

  16. 130. View, looking northeast, into transformer bay no. 2 showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. View, looking northeast, into transformer bay no. 2 showing three ca. 1920s General Electric transformers; each is rated at 55,000-6,600 volts, 9,000 kva, and each is oil cooled. These transformers were no longer in operation and in the process of being removed. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  17. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    PubMed

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Investigation of Thermo-Magnetic Processing in Application to Heavy Duty Truck Suspension Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makiewicz, Kurt; Yurek, Theodore; Farrell, Brian

    2016-04-19

    Thermomagnetic processing (TMP) was examined as a methodology for increasing transformation rate during heat treatment in steel tubes. Two potential benefits were investigated, reduced energy consumption and improved mechanical properties. It is possible to reduce energy consumption with TMP by allowing tempering at lower temperatures and shorter times. Improved mechanical properties are possible by allowing a more copious distribution of fine carbides during tempering of martensite. Improved mechanical properties are also possible by quenching under a magnetic field after austenitization by formation of martensitic twins. The experiments in this work allowed for the following conclusions: the samples could not bemore » quenched fast enough to transform the entire wall thickness to martensite; the knee of the Continuous Cooling Curve (CCT) curve was shifted to the left when quenching following austenitizing in a magnetic field. The magnetic field during tempering did enhance the kinetics and allowed fine carbides to form. Since the through wall thickness was not hardened, the bulk mechanical properties were unaffected by the magnetic field. Hardness measurements after hardening showed that hardening in a magnetic field >0.5T resulted in a significant reduction in hardness. Combined with the inadequate cooling rate it was not possible to properly harden the samples. Tempering at 600 C without a magnetic field resulted in no formation of carbides, but tempering at 600 C and 450 C with a 1-2T field resulted in carbide formation in all samples.« less

  19. Perceived Cooling Using Asymmetrically-Applied Hot and Cold Stimuli.

    PubMed

    Manasrah, Ahmad; Crane, Nathan; Guldiken, Rasim; Reed, Kyle B

    2017-01-01

    Temperature perception is a highly nonlinear phenomenon with faster rates of change being perceived at much lower thresholds than slower rates. This paper presents a method that takes advantage of this nonlinear characteristic to generate a perception of continuous cooling even though the average temperature is not changing. The method uses multiple thermal actuators so that a few are cooling quickly while the rest of the actuators are heating slowly. The slowly-heating actuators are below the perceptual threshold temperature change and hence are not perceived, while the quickly-cooling actuators are above the perceptual temperature change, hence are perceived. As a result, a feeling of decreasing temperature was elicited, when in fact, there was no net change in the temperature of the skin. Three sets of judiciously designed experiments were conducted in this study, investigating the effects of actuator sizes, forearm measurement locations, patterns of actuator layout, and various heating/cooling time cycles. Our results showed that 19 out 21 participants perceived the continuous cooling effect as hypothesized. Our research indicates that the measurement location, heating/cooling cycle times, and arrangement of the actuators affect the perception of continuous cooling.

  20. Analysis of the Effect of Cooling Intensity Under Volume-Surface Hardening on Formation of Hardened Structures in Steel 20GL

    NASA Astrophysics Data System (ADS)

    Evseev, D. G.; Savrukhin, A. V.; Neklyudov, A. N.

    2018-01-01

    Computer simulation of the kinetics of thermal processes and structural and phase transformations in the wall of a bogie side frame produced from steel 20GL is performed with allowance for the differences in the cooling intensity under volume-surface hardening. The simulation is based on the developed method employing the diagram of decomposition of austenite at different cooling rates. The data obtained are used to make conclusion on the effect of the cooling intensity on propagation of martensite structure over the wall section.

  1. Cool Girls, Inc.: Promoting the Positive Development of Urban Preadolescent and Early Adolescent Girls

    ERIC Educational Resources Information Center

    Kuperminc, Gabriel P.; Thomason, Jessica; DiMeo, Michelle; Broomfield-Massey, Kimberley

    2011-01-01

    The past two decades have seen a transformation in youth programming toward a comprehensive positive youth development (YD) framework. Cool Girls, Inc., a YD program, focuses on improving girls' life chances by promoting positive behaviors and attitudes in multiple domains. These include self-concept, academic orientation, future orientation, and…

  2. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    NASA Astrophysics Data System (ADS)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  3. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    NASA Astrophysics Data System (ADS)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  4. Thermochemical Sulfate Reduction (TSR) by Methane - in Situ Observation and Raman Characterization in Fused Silica Capsules at Temperatures up to 450°C

    NASA Astrophysics Data System (ADS)

    Chou, I.; Shang, L.; Burruss, R. C.

    2008-12-01

    An experimental technique using optically transparent fused silica capsules has been developed for TSR studies. Reactions between sulfuric acid (5 m) and methane (~30 MPa) were observed and characterized by Raman spectroscopy at temperatures (T) up to 450°C. In situ Raman signals showed the transformation from sulfate (S6+) to sulfite (S4+), elemental sulfur (S0), and finally to sulfide (S2-) with the generation of CO2. The durations for each transformation range from a few minutes to a few tens of minutes depending on the T. The sample capsules were prepared by first loading sulfuric acid in a fused silica tube (0.3 mm OD, 0.1 mm ID, and ~6 cm long), which had one end sealed. The tube was attached to a vacuum line, methane was loaded cryogenically and the tube sealed with a hydrogen flame. (Chou et al., Geochim. Cosmochim. Acta, 2008, doi:10.1016/j.gca.2008.07.030). The sample was placed in a USGS-type heating-cooling stage and in situ Raman spectra were collected continuously during heating and cooling. In the aqueous phase (L), SO42- disappears at ~80°C and the transformation of HSO4- to SO2 in both aqueous and vapor (V) phases begins at ~350°C. Soon after L-V homogenization at ~410°C, CO2 was produced while HSO4- disappeared. Finally, SO2 transformed to S0, which was then reduced to H2S within 10 minutes. During cooling, L-V phase separation occurred at ~300°C (L-V homogenization T = 310°C), and only CO2, CH4, and H2S were detected in both L and V phases at room T. High concentrations of H2S in a number of deeply buried petroleum reservoirs (e.g., Orr, 1994, AAPG Bull., v. 50, p. 2295; Worden et al., 1995, AAPG Bull., v. 79, p. 854) are thought to be the product of TSR. However, reliable reaction kinetics as well as documented reaction mechanisms for TSR are still lacking. Our technique has great potential in examining TSR and also in the studies of ore forming processes in magmatic/hydrothermal (Rye, 2005, Chem. Geol., v. 215, p. 5) as well as Mississippi Valley type environments (Anderson, 1991, Econ. Geol., v. 86, p. 909).

  5. Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content

    NASA Astrophysics Data System (ADS)

    Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.

    2016-03-01

    Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.

  6. A simplified model for glass formation

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.; Onorato, P. I. K.; Scherer, G. W.

    1979-01-01

    A simplified model of glass formation based on the formal theory of transformation kinetics is presented, which describes the critical cooling rates implied by the occurrence of glassy or partly crystalline bodies. In addition, an approach based on the nose of the time-temperature-transformation (TTT) curve as an extremum in temperature and time has provided a relatively simple relation between the activation energy for viscous flow in the undercooled region and the temperature of the nose of the TTT curve. Using this relation together with the simplified model, it now seems possible to predict cooling rates using only the liquidus temperature, glass transition temperature, and heat of fusion.

  7. Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators

    NASA Astrophysics Data System (ADS)

    Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.

    2009-03-01

    The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented for full actuation of the SMA actuators and are given in terms of applied stress, accumulated plastic strain and number of cycles to failure. In addition, the assessment of the influence of the surface quality is supported by fatigue tests results and post-failure microstructure analysis.

  8. New Approaches to Final Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    2014-11-10

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittances by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.

  9. Systems and methods for controlling energy use in a building management system using energy budgets

    DOEpatents

    Wenzel, Michael J.

    2012-06-17

    Systems and methods for limiting power consumption by a heating, ventilation, and air conditioning (HVAC) subsystem of a building are shown and described. A mathematical linear operator is found that transforms the unused or deferred cooling power usage of the HVAC system based on pre-determined temperature settings to a target cooling power usage. The mathematical operator is applied to the temperature settings to create a temperature setpoint trajectory expected to provide the target cooling power usage.

  10. Fuzzy control strategy for secondary cooling of continuous steel casting

    NASA Astrophysics Data System (ADS)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Rob, R.

    2017-05-01

    The purpose of this paper is to create an original fuzzy solution on the existing structure of the control system of continuous casting that eliminates fissures in the poured material from the secondary cooling of steel. For this purpose a system was conceived with three fuzzy database decision rules, which by analyzing a series of measurements taken from the process produces adjustments in the rate of flow of the cooling water and the speed of casting and determine the degree of risk of the wire. In the specialized literature on the national plan and the world, there is no intelligent correction in the rate of flow of the cooling water and the speed of casting in the secondary cooling of steel. The database of rules was made using information collected directly from the installation process of continuous casting of the Arcelor Mittal Hunedoara.

  11. A 1.8K refrigeration cryostat with 100 hours continuous cooling

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Li, Jian; Huang, Rongjin; Li, Laifeng

    2017-02-01

    A refrigeration cryostat has been developed to produce continuous cooling to a sample below 1.8 K over 100 hours by using a cryocooler. A two-stage 4K G-M cryocooler is used to liquefy helium gas from evacuated vapor and cylinder helium bottle which can be replaced during the cooling process. The liquid helium transfer into superfluid helium in a Joule-Thomson valve in connection with a 1000 m3/h pumping unit. The pressure of evacuated helium vapor is controlled by air bag and valves. A copper decompression chamber, which is designed as a cooling station to control the superfluid helium, is used to cool the sample attached on it uniformly. The sample connects to the copper chamber in cryostat with screw thread. The cryostat can reach the temperature of 1.7 K without load and the continuous working time is more than 100 hours.

  12. Theory of Ostwald ripening in a two-component system

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Lee, L. K.; Frazier, D. O.; Naumann, R. J.

    1986-01-01

    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method.

  13. Research on Nondestructive Testing.

    DTIC Science & Technology

    1981-11-01

    account of two phase materials and has been used to describe results ootained in carbon steels . 2. Acoustic Attenuation in Steels with Mixed Ferrite ...to 13000C where the austenite phase is stable. During cooling to room temperature, the austenite transforms to pearlite and ferrite (slow cooling...20 1. Introduction ..... .................................. 20 2. Acoustic Attenuation in Steels with Mixed Ferrite -Pearlite

  14. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    NASA Astrophysics Data System (ADS)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  15. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  16. Progress in the Development of a Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 micro W of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 micro K rms or better over the entire cycle, and the cooling power is 2.5 micro W at 60 mK rising to 10 micro W at 100 mK.

  17. A Continuous Adiabatic Demagnetization Refrigerator for Far-IR/Sub-mm Astronomy

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Tuttle, James

    2004-01-01

    We report on recent progress in the development of a continuous adiabatic demagnetization refrigerator (CADR). Continuous operation avoids the constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, allowing us to achieve an order of magnitude larger cooling power per unit mass. Our current design goal is 10 microW of cooling at 50 mK using a 6-10 K heat sink. The estimated mass is less than 10 kg, including magnetic shielding of each stage. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. We have assembled a three-stage CADR and have demonstrated continuous cooling using a superfluid helium bath as the heat sink. The temperature stability is 8 microK rms or better over the entire cycle, and the cooling power is 2.5 microW at 60 mK rising to 10 microW at 100 mK.

  18. Simulation of Cooling Rate Effects on Ti-48Al-2Cr-2Nb Crack Formation in Direct Laser Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Li, Wei; Chen, Xueyang; Zhang, Yunlu; Newkirk, Joe; Liou, Frank; Dietrich, David

    2017-03-01

    Transient temperature history is vital in direct laser deposition (DLD) as it reveals the cooling rate at specific temperatures. Cooling rate directly relates to phase transformation and types of microstructure formed in deposits. In this paper, finite element analysis simulation was employed to study the transient temperature history and cooling rate at different experimental setups in the Ti-48Al-2Cr-2Nb DLD process. An innovative prediction strategy was developed to model with a moving Gaussian distribution heat source and element birth and death technology in ANSYS®, and fabricate crack-free deposits. This approach helps to understand and analyze the impact of cooling rate and also explain phase information gathered from x-ray diffraction.

  19. Fusible heat sink materials - Evaluation of alternate candidates. [for PLSS cooling systems

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna S.; Lomax, W. C.

    1992-01-01

    Fusible heat sinks are a possible source for thermal regulation of space suited astronauts. Materials with greater thermal storage capability than water could enable both an extension of time between recharging and/or a reduction in size and/or mass. An extensive literature search identified 1,215 candidates with a solid-liquid transformation within the temperature range of -13 C to 5 C. Based on data available in the literature, several candidates with a cooling capacity significantly greater than water were identified. Measurements of the transformation temperature and enthalpy of transformation were then undertaken with a differential scanning calorimeter in order to confirm the accuracy of the literature. Laboratory measurements have thus far not been able to corroborate the extremely high values found from the literature. This paper presents the approach for materials selection utilized in this study, the experimental procedure, and the results of the measurements thus far undertaken.

  20. The Kinetics of Bainitic Transformation of Roll Steel 75Kh3MF

    NASA Astrophysics Data System (ADS)

    Kletsova, O. A.; Krylova, S. E.; Priymak, E. Yu.; Gryzunov, V. I.; Kamantsev, S. V.

    2018-01-01

    The critical points of steel 75Kh3MF and the temperature of the start of martensitic transformation are determined by a dilatometric method. The thermokinetic and isothermal diagrams of decomposition of supercooled austenite are plotted. The microstructure and microhardness of steel specimens cooled at different rates are studied. The kinetics of the occurrence of bainitic transformation in the steel is calculated using the Austin-Ricket equation.

  1. The Microstructural and Property Changes of Laser Treated Electrodeposits

    DTIC Science & Technology

    1981-01-01

    corresponds to the center of the LASER beam path. Examination of the underlying steel reveals a transformation which appears to be untempered martensite ...specimen after LASER interaction time of 50 ms. Phase transformations have advanced through the complete thickness of the specimen. ii. Hardness plot through...cooling. 13 This technique of achieving homogeneous phase transformations in the surface with sufficient control of surface depth has formed the basis

  2. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  3. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  4. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  5. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  6. 40 CFR 1065.122 - Engine cooling and lubrication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....122 Section 1065.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.122 Engine cooling and lubrication. (a) Engine cooling. Cool the engine during testing so its intake-air, oil, coolant, block, and...

  7. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    NASA Astrophysics Data System (ADS)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  8. Dielectric supported radio-frequency cavities

    DOEpatents

    Yu, David U. L.; Lee, Terry G.

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  9. 7 CFR 58.637 - Cooling the mix.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  10. 7 CFR 58.637 - Cooling the mix.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  11. Effect of Deformation Parameters on Microstructure and Properties During DIFT of X70HD Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue

    2018-02-01

    Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.

  12. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, Robert; Sumpman, Wayne C.; Baker, Robert J.; Williams, Robert S.

    1988-01-01

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles 19 against the inner surface of rim 13 at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers 30 through return pipes 25 distributed interstitially among the nozzles.

  13. Cooling system for continuous metal casting machines

    DOEpatents

    Draper, R.; Sumpman, W.C.; Baker, R.J.; Williams, R.S.

    1988-06-07

    A continuous metal caster cooling system is provided in which water is supplied in jets from a large number of small nozzles against the inner surface of rim at a temperature and with sufficient pressure that the velocity of the jets is sufficiently high that the mode of heat transfer is substantially by forced convection, the liquid being returned from the cooling chambers through return pipes distributed interstitially among the nozzles. 9 figs.

  14. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  15. 77 FR 9204 - Large Power Transformers From the Republic of Korea: Preliminary Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...; (12) low voltage winding basic insulation level; (13) load loss at maximum MVA rating; (14) no-load loss; (15) cooling class designation; (16) overload requirement; (17) decibel rating; and (18... Transformers from Korea: Investigation No. 731-TA-1189 (Preliminary).'' On September 16, 2011, we selected...

  16. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    NASA Astrophysics Data System (ADS)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  17. An Investigation into the Polymorphism and Crystallization of Levetiracetam and the Stability of its Solid Form.

    PubMed

    Xu, Kailin; Xiong, Xinnuo; Guo, Liuqi; Wang, Lili; Li, Shanshan; Tang, Peixiao; Yan, Jin; Wu, Di; Li, Hui

    2015-12-01

    Levetiracetam (LEV) crystals were prepared using different solvents at different temperatures. The LEV crystals were systematically characterized by X-ray powder diffraction (XRPD) and morphological analysis. The results indicated that many kinds of crystal habits exist in a solid form of LEV. To investigate the effects of LEV concentration, crystallization temperature, and crystallization type on crystallization and solid phase transformation of LEV, multiple methods were performed for LEV aqueous solution to determine if a new solid form exists in solid-state LEV. However, XRPD data demonstrate that the LEV solid forms possess same spatial arrangements that are similar to the original solid form. This result indicates that the LEV concentration, crystallization temperature, and crystallization type in aqueous solution have no influence on the crystallization and solid phase transformation of LEV. Moreover, crystallization by sublimation, melt cooling, and quench cooling, as well as mechanical effect, did not result in the formation of new LEV solid state. During melt cooling, the transformation of solid form LEV is a direct process from melting amorphous phase to the original LEV crystal phase, and the conversion rate is very quick. In addition, stability investigation manifested that LEV solid state is very stable under various conditions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Unfolding/Refolding Study on Collagen from Sea Cucumber Based on 2D Fourier Transform Infrared Spectroscopy.

    PubMed

    Qin, Lei; Bi, Jing-Ran; Li, Dong-Mei; Dong, Meng; Zhao, Zi-Yuan; Dong, Xiu-Ping; Zhou, Da-Yong; Zhu, Bei-Wei

    2016-11-16

    We aimed to explore the differences of thermal behaviors between insoluble collagen fibrils (ICFs) and pepsin-solubilized collagens (PSCs) from sea cucumber Stichopus japonicus . The unfolding/refolding sequences of secondary structures of ICFs and PSCs during the heating and cooling cycle (5 → 70 → 5 °C) were identified by Fourier transform infrared spectrometry combined with curve-fitting and 2D correlation techniques. ICFs showed a higher proportion of α-helical structures and higher thermostability than PSCs, and thus had more-stable triple helical structures. The sequences of changes affecting the secondary structures during heating were essentially the same between ICFs and PSCs. In all cases, α-helix structure was the most important conformation and it disappeared to form a β-sheet structure. In the cooling cycle, ICFs showed a partially refolding ability, and the proportion of β-sheet structure rose before the increasing proportion of α-helix structure. PSCs did not obviously refold during the cooling stage.

  19. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  20. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  1. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  2. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  3. 7 CFR 58.637 - Cooling the mix.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.637 Cooling the mix. The mix shall be immediately cooled to a temperature of 45 °F. or lower...

  4. 7 CFR 58.637 - Cooling the mix.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.637 Cooling the mix. The mix shall be immediately cooled to a temperature of 45 °F. or lower...

  5. 7 CFR 58.637 - Cooling the mix.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cooling the mix. 58.637 Section 58.637 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.637 Cooling the mix. The mix shall be immediately cooled to a temperature of 45 °F. or lower...

  6. 46 CFR 111.59-3 - No mechanical cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false No mechanical cooling. 111.59-3 Section 111.59-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-3 No mechanical cooling. A busway must not need mechanical cooling...

  7. 40 CFR 401.14 - Cooling water intake structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Cooling water intake structures. 401.14 Section 401.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PROVISIONS § 401.14 Cooling water intake structures. The location, design, construction and capacity of cooling water...

  8. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part II: Phase behavior and transformation paths of SSS, PSS and PPS saturated triacylglycerols--effect of chain length mismatch.

    PubMed

    Bouzidi, Laziz; Narine, Suresh S

    2012-01-01

    The kinetic phase behavior and phase transformation paths of purified tristearoylglycerol (SSS), 3-palmitoyl-1,2-distearoyl-sn-glycerol (PSS) and 1,2-dipalmitoyl-3-stearoyl-sn-glycerol (PPS) were investigated in terms of polymorphism, crystallization and melting. The details of the phase transformation paths were obtained using the heating cycles of two sets of experiments: (a) cooling rate was varied and heating rate fixed and (b) cooling rate was fixed and heating rate varied. Kinetic effects were manifest in all measured properties, underscoring the complexity of the phase transformation paths for each TAG, and the intricate thermodynamics-molecular relationships. For the first time, XRD data obtained for SSS, PSS and PPS TAGs, cooled at rates higher than 0.5°C/min, suggested the formation of a transient structure similar to the so-called α(2)-phase which has been observed in mixed saturated-unsaturated TAGs quenched from the melt. The more stable phases (β' in PSS and PPS, and β in SSS) were only observed for cooling rates lower than 1.0°C/min. The kinetic and thermodynamic differences observed in the crystallization, structure and melting of SSS, PSS and PPS are proposed to be mainly due to the disturbances introduced at the "terrace" level via methyl-end group interactions, i.e., the missing of two or four CH(2) groups compared to SSS. The symmetrical SSS with a relatively flat "terrace" crystallizes preferably in the most stable β-form. Two missing CH(2) groups at the sn-1 position (PSS) introduces enough structural disturbances to promote the relative prevalence and persistence of the β'-phase, and four missing CH(2) groups at the sn-1 and sn-2 positions (PPS) is relatively too large of a disturbance and therefore favors the α-form. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Thermal regulation in multiple-source arc welding involving material transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doumanidis, C.C.

    1995-06-01

    This article addresses regulation of the thermal field generated during arc welding, as the cause of solidification, heat-affected zone and cooling rate related metallurgical transformations affecting the final microstructure and mechanical properties of various welded materials. This temperature field is described by a dynamic real-time process model, consisting of an analytical composite conduction expression for the solid region, and a lumped-state, double-stream circulation model in the weld pool, integrated with a Gaussian heat input and calibrated experimentally through butt joint GMAW tests on plain steel plates. This model serves as the basis of an in-process thermal control system employing feedbackmore » of part surface temperatures measured by infrared pyrometry; and real-time identification of the model parameters with a multivariable adaptive control strategy. Multiple heat inputs and continuous power distributions are implemented by a single time-multiplexed torch, scanning the weld surface to ensure independent, decoupled control of several thermal characteristics. Their regulation is experimentally obtained in longitudinal GTAW of stainless steel pipes, despite the presence of several geometrical, thermal and process condition disturbances of arc welding.« less

  10. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  11. NASA Tech Briefs, May 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics include: Embedded Heaters for Joining or Separating Plastic Parts; Curing Composite Materials Using Lower-Energy Electron Beams; Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites; Fibrous-Ceramic/Aerogel Composite Insulating Tiles; Urethane/Silicone Adhesives for Bonding Flexing Metal Parts; Scalable Architecture for Multihop Wireless ad Hoc Networks; Improved Thermoplastic/Iron-Particle Transformer Cores; Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration Dual-Frequency Airborne Scanning Rain Radar Antenna System Eight-Channel Continuous Timer Reduction of Phase Ambiguity in an Offset-QPSK Receiver Ambient-Light-Canceling Camera Using Subtraction of Frames Lightweight, Flexible, Thin, Integrated Solar-Power Packs Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior Software for Analyzing Sequences of Flow-Related Images Improved Ball-and-Socket Docking Mechanism Two-Stage Solenoid Ordered Nanostructures Made Using Chaperonin Polypeptides Low-Temperature Plasma Functionalization of Carbon Nanotubes Improved Cryostat for Cooling a Wide Panel Current Pulses Momentarily Enhance Thermoelectric Cooling Hand-Held Color Meters Based on Interference Filters Calculating Mass Diffusion in High-Pressure Binary Fluids Fresnel Lenses for Wide-Aperture Optical Receivers Increasing Accuracy in Computed Inviscid Boundary Conditions Higher-Order Finite Elements for Computing Thermal Radiation Radar for Monitoring Hurricanes from Geostationary Orbit Time-Transfer System for Two Orbiting Spacecraft

  12. Investigations on Heat Treatment of a High-Speed Steel Roll

    NASA Astrophysics Data System (ADS)

    Fu, Hanguang; Qu, Yinhu; Xing, Jiandong; Zhi, Xiaohui; Jiang, Zhiqiang; Li, Mingwei; Zhang, Yi

    2008-08-01

    High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.

  13. Long-term stability of crystal-stabilized water-in-oil emulsions.

    PubMed

    Ghosh, Supratim; Pradhan, Mamata; Patel, Tejas; Haj-Shafiei, Samira; Rousseau, Dérick

    2015-12-15

    The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45°C to either 25°C or 4°C with/without stirring and two cooling rates - slow (1°C/min) and fast (5°C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4°C compared to 25°C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Genotypic variability and persistence of Legionella pulsed-field gel electrophoresis patterns in 16 cooling towers in Shanghai, China].

    PubMed

    Chen, Ming-liang; Wang, Gang-yi; Chen, Min; Zhou, Hai-jian; Shao, Zhu-jun; Zhang, Xi; Wu, Fan

    2010-07-01

    To investigate the genotypic characteristics and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns in 16 air-conditioner cooling towers in six different public sites of Shanghai. From May to October, continuous sampling was operated once per month in 2007. Legionella strains isolated from the 16 cooling towers were confirmed by serological and latex agglutination. PFGE was applied for the fingerprinting of the isolates, while the cluster results of PFGE were analyzed by BioNumerics software. 131 strains of Legionella were isolated, including L. pneumophila, L. bozemanae, L. micdadei and L. anisa. 52 distinguishable PFGE patterns were differentiated among the 16 cooling towers, with 37 patterns were owned by just one cooling tower, which was not shared with other cooling towers, while 15 patterns were shared by more than 2 cooling towers. All the cooling towers had ≥ 2 PFGE patterns, while in 13 cooling towers the same PFGE patterns were recovered during the six months. From June to October of 2007, 18 strains of Legionella belonging to the PFGE pattern of LPAs.SH0078 were isolated continuously from 6 cooling towers. This study demonstrated great genotypic diversity and complexity of Legionella in cooling towers. Persistence of the PFGE patterns was observed in 81.25% of the cooling towers. The PFGE pattern of LPAs. SH0078 was distributed widely, suggesting it might be the dominate strain in Shanghai.

  15. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  16. 40 CFR 463.10 - Applicability; description of the contact cooling and heating water subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) PLASTICS MOLDING AND... cooling and heating water subcategory are processes where process water comes in contact with plastic materials or plastic products for the purpose of heat transfer during plastics molding and forming. ...

  17. Role of valence electrons in phase transformation kinetics of thallium and its dilute alloys

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Ahmed, S.

    1991-01-01

    The kinetics of the phase transformation of thallium and its dilute alloys were investigated using XRD and calorimetry. Pure thallium exhibits a beta(bcc) to alpha(hcp) phase transformation on cooling at 508 K. With alloying additions, the crystal structure for each phase does not change, although the size of the unit cell increases. The enthalpy and the temperature of phase transformation of each alloy have been determined. The chemical free energy change associated with the phase transformation of each alloy was calculated. The valence electrons make an outstanding contribution to the chemical free energy change required for the phase change.

  18. Lamination cooling system formation method

    DOEpatents

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2012-06-19

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  19. Lamination cooling system formation method

    DOEpatents

    Rippel, Wally E [Altadena, CA; Kobayashi, Daryl M [Monrovia, CA

    2009-05-12

    An electric motor, transformer or inductor having a cooling system. A stack of laminations have apertures at least partially coincident with apertures of adjacent laminations. The apertures define straight or angled cooling-fluid passageways through the lamination stack. Gaps between the adjacent laminations are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  20. Reducing the nucleation barrier in magnetocaloric Heusler alloys by nanoindentation

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Hahn, S.; Diestel, A.; Backen, A.; Schultz, L.; Nielsch, K.; Wagner, M. F.-X.; Fähler, S.

    2016-06-01

    Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memory alloy that exhibits a martensitic transformation. Epitaxial films serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Bunn, Jeffrey R; Tzelepis, Demetrios A

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stressesmore » in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.« less

  2. A miniature continuous adiabatic demagnetization refrigerator with compact shielded superconducting magnets

    NASA Astrophysics Data System (ADS)

    Duval, Jean-Marc; Cain, Benjamin M.; Timbie, Peter T.

    2004-10-01

    Cryogenic detectors for astrophysics depend on cryocoolers capable of achieving temperatures below ~ 100 mK. In order to provide continuous cooling at 50 mK for space or laboratory applications, we are designing a miniature adiabatic demagnetization refrigerator (MADR) anchored at a reservoir at 5 K. Continuous cooling is obtained by the use of several paramagnetic pills placed in series with heat switches. All operations are fully electronic and this technology can be adapted fairly easily for a wide range of temperatures and cooling powers. We are focusing on reducing the size and mass of the cooler. For that purpose we have developed and tested magnetoresistive heat switches based on single crystals of tungsten. Several superconducting magnets are required for this cooler and we have designed and manufactured compact magnets. A special focus has been put on the reduction of parasitic magnetic fields in the cold stage, while minimizing the mass of the shields. A prototype continuous MADR, using magnetoresistive heat switches, small paramagnetic pills and compact magnets has been tested. A design of MADR that will provide ~ 5 uW of continuous cooling down to 50 mK is described.

  3. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra

    2018-07-01

    The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

  4. Effects of Cooling Rate on Precipitate Evolution and Residual Stresses in Al-Si-Mn-Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Eunkyung; Walde, Caitlin; Mishra, Brajendra

    2018-03-01

    The residual stresses with different heat treatment conditions have been measured and correlated with the microstructural behavior of AA365. 30 and 100 K/min cooling of AA365 inhibited the transformation of precipitates under 773 K, respectively. The alloy cooled at 30 and 100 K/min exhibited tensile residual stresses of 6.2 and 5.4 MPa, respectively, while the alloy cooled at 1 and 10 K/min showed compressive stresses of - 12.8 and - 10.3 MPa, respectively. The formation β', β″, and other intermetallic compounds affected the compressive residual stresses, and that the fracture of the brittle intermetallic phases could reduce the extent of residual stresses in the lattice through plastic deformation.

  5. Modelling of phase transformations occurring in low activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Brachet, J.-C.; Gavard, L.; Boussidan, C.; Lepoittevin, C.; Denis, S.; Servant, C.

    1998-10-01

    The main objective of this paper is to summarize modelling of on-heating and on-cooling phase transformations occurring in Low Activation Martensitic (LAM) steels. Calculations of thermodynamic equilibrium phase fractions and kinetic aspects of phase transformations have been performed by using different approaches from experimental data (CCT and TTT diagrams obtained by dilatometry). All the calculated data have been compared to an important and systematic set of experimental data obtained on different LAM steels of the 7.5-11% CrWVT a type.

  6. The effect of starting or stopping skin cooling on the thermoregulatory responses during leg exercise in humans.

    PubMed

    Demachi, K; Yoshida, T; Kume, M; Tsuneoka, H

    2012-07-01

    To assess the effects of starting or stopping leg cooling on the thermoregulatory responses during exercise, 60 min of cycling exercise at 30% of maximal oxygen uptake was performed under 4 conditions using tube trouser perfused with water at 10 °C; no leg cooling (NC), starting of leg cooling after 30 min of exercise (delayed cooling, DC), continuous leg cooling (CC), and stopping of continuous leg cooling after 30 min of exercise (SC) at an environmental temperature of 28.5 °C. During exercise under the DC conditions, an instantaneous increase in the esophageal temperature (Tes), a suppression of the cutaneous vascular conductance at the forearm (%CVC), and a decrease in the mean skin temperature (Tsk) were observed after leg cooling. The total sweat loss (Δm sw,tot) was lower under the DC than the NC condition. In the SC study, however, the Tes remained constant, while the %CVC increased gradually after leg cooling was stopped, and the Δm sw,tot was greater than that under the CC condition. These results suggest that during exercise, rapid skin cooling of the leg may cause an increase in core temperature, while also enhancing thermal stress. However, stopping skin cooling did not significantly affect the core temperature long-term, because the skin blood flow and sweat rate subsequently increased. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.

    2017-03-01

    Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

  8. Investigation of a continuous heating/cooling technique for cardiac output measurement.

    PubMed

    Ehlers, K C; Mylrea, K C; Calkins, J M

    1987-01-01

    Cardiac output is frequently measured to assess patient hemodynamic status in the operating room and intensive care unit. Current research for measuring cardiac output includes continuous sinusoidal heating and synchronous detection of thermal signals. This technique is limited by maximum heating element temperatures and background thermal noise. A continuous heating and cooling technique was investigated in vitro to determine if greater thermal signal magnitudes could be obtained. A fast responding thermistor was employed to measure consecutive ejected temperature plateaus in the thermal signal. A flow bath and mechanical ventricle were used to simulate the cardiovascular system. A thermoelectric module was used to apply heating and cooling energy to the flow stream. Trials encompassing a range of input power, input frequency, and flow rate were conducted. By alternating heating and cooling, thermal signal magnitude can be increased when compared to continuous heating alone. However, the increase was not sufficient to allow for recording in all patients over the expected normal range of cardiac output. Consecutive ejected temperature plateaus were also measured on the thermal signal and ejection fraction calculations were made.

  9. Cooled radiofrequency ablation for bilateral greater occipital neuralgia.

    PubMed

    Vu, Tiffany; Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy.

  10. Cooled Radiofrequency Ablation for Bilateral Greater Occipital Neuralgia

    PubMed Central

    Chhatre, Akhil

    2014-01-01

    This report describes a case of bilateral greater occipital neuralgia treated with cooled radiofrequency ablation. The case is considered in relation to a review of greater occipital neuralgia, continuous thermal and pulsed radiofrequency ablation, and current medical literature on cooled radiofrequency ablation. In this case, a 35-year-old female with a 2.5-year history of chronic suboccipital bilateral headaches, described as constant, burning, and pulsating pain that started at the suboccipital region and radiated into her vertex. She was diagnosed with bilateral greater occipital neuralgia. She underwent cooled radiofrequency ablation of bilateral greater occipital nerves with minimal side effects and 75% pain reduction. Cooled radiofrequency ablation of the greater occipital nerve in challenging cases is an alternative to pulsed and continuous RFA to alleviate pain with less side effects and potential for long-term efficacy. PMID:24716017

  11. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    PubMed

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  12. Research: Testing of a Novel Portable Body Temperature Conditioner Using a Thermal Manikin.

    PubMed

    Heller, Daniel; Heller, Alex; Moujaes, Samir; Williams, Shelley J; Hoffmann, Ryan; Sarkisian, Paul; Khalili, Kaveh; Rockenfeller, Uwe; Browder, Timothy D; Kuhls, Deborah A; Fildes, John J

    2016-01-01

    A battery-operated active cooling/heating device was developed to maintain thermoregulation of trauma victims in austere environments while awaiting evacuation to a hospital for further treatment. The use of a thermal manikin was adopted for this study in order to simulate load testing and evaluate the performance of this novel portable active cooling/heating device for both continuous (external power source) and battery power. The performance of the portable body temperature conditioner (PBTC) was evaluated through cooling/heating fraction tests to analyze the heat transfer between a thermal manikin and circulating water blanket to show consistent performance while operating under battery power. For the cooling/heating fraction tests, the ambient temperature was set to 15°C ± 1°C (heating) and 30°C ± 1°C (cooling). The PBTC water temperature was set to 37°C for the heating mode tests and 15°C for the cooling mode tests. The results showed consistent performance of the PBTC in terms of cooling/heating capacity while operating under both continuous and battery power. The PBTC functioned as intended and shows promise as a portable warming/cooling device for operation in the field.

  13. Improving prediction accuracy of cooling load using EMD, PSR and RBFNN

    NASA Astrophysics Data System (ADS)

    Shen, Limin; Wen, Yuanmei; Li, Xiaohong

    2017-08-01

    To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.

  14. Effect of Cooling Rate on the Microstructure and Mechanical Properties of C-Mn-Al-Si-Nb Hot-Rolled TRIP Steels

    NASA Astrophysics Data System (ADS)

    Fu, B.; Y Lu, M.; Y Yang, W.; Li, L. F.; Y Zhao, Z.

    2017-12-01

    A novel thermomechanical process to manufacture hot-rolled TRIP steels has been proposed based on dynamic transformation of undercooled austenite (DTUA). The cooling rate between DTUA and isothermal bainitic treatment in the novel process is important. In the present study, effect of this cooling rate on the final microstructures and mechanical properties of a C-Mn-Al-Si-Nb TRIP steel was investigated. The results showed that the volume fractions of acicular ferrite and retained austenite were increased with the increment of cooling rate. As a consequence, higher yield strength and larger total elongation were obtained for the investigated steel with higher cooling rate. In addition, a value of 30.24 GPa% for the product of tensile strength and total elongation was acquired when the cooling rate was 25 K/s. This value has met the standard of the “Third Generation” of advanced high strength sheet steels.

  15. 15 CFR 922.82 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cooling water, clean vessel generator cooling water, clean bilge water, or anchor wash; or (iv) Vessel... generator cooling water, clean bilge water, or anchor wash. (4) Discharging or depositing, from beyond the... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  16. 15 CFR 922.112 - Prohibited or otherwise regulated activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... generator cooling water, clean bilge water, or anchor wash; or (D) Vessel engine or generator exhaust. (ii... except clean vessel engine cooling water, clean vessel generator cooling water, clean bilge water, or... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  17. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement.

    PubMed

    Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias

    2013-04-12

    An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Preliminary design review package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Central Data Processing System (CDPS) is designed to transform the raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems. Software requirements for the CDPS are described. The programming standards to be used in development, documentation, and maintenance of the software are discussed along with the CDPS operations approach in support of daily data collection and processing.

  19. Production and Physical Metallurgy of Pure Metals - Part V

    DTIC Science & Technology

    1960-07-25

    crucible . The essence of arc melting consists in the ignit- ion of an arc between the specimen placed in an intensively cooled copper crucible , and...water-cooled, and the cooling can be regulated by valves. -14- Universal laboratory arc furnace with cooled copper crucible : LOsend continued on next pag...furnaces by ordinary methods is very difficult and re- quires a fundamentally new method of melting. Such a method is arc melting in a water-cooled copper

  20. A compact cryogen-free platform operating at 1 K or 50 mK

    NASA Astrophysics Data System (ADS)

    Matthews, A. J.; Patton, M.; Marsh, T.; van der Vliet, H.

    2018-03-01

    We report the design and performance characteristics of a compact cryogen-free platform. The system is based around a continuous 1 K pot which operates using a small (10 m3 h‑1) room temperature circulation pump. The pot cools an experimental plate to ≈ 1.2 K, and has a cooling capacity of 100 mW at a temperature ≈ 1.9 K. Cooling the pot from room temperature to < 2 K takes around 12 hours. The temperature range of the platform can be lowered to < 50 mK with the addition of a small dilution refrigerator, using the 1 K pot as a pre-cooling stage for the circulating 3He. The dilution stage has a typical (continuous) cooling capacity of 30 µW at 100 mK (300 µW at 250 mK) and is designed to operate with just 3 litres of (NTP) 3He.

  1. Glass polymorphism in glycerol–water mixtures: II. Experimental studies

    PubMed Central

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas

    2016-01-01

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 < χ g ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ g ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ g ≈ 0.38. Accordingly, in the range 0.32 < χ g < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ g ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex “phase” behavior of glassy binary mixtures due to phase-separation (ice formation) and polyamorphism, and the relevance of sample preparation, concentration as well as cooling rates. The presence of the distorted ice (called “interphase” by us) also explains the debated “drift anomaly” upon melting. These results are compatible with the high-pressure study by Suzuki and Mishima indicating disappearance of polyamorphism at P ≈ 0.03–0.05 GPa at χ g ≈ 0.12–0.15 [J. Chem. Phys., 2014, 141, 094505]. PMID:27044677

  2. Phase transformation upon cooling path in Ca2SiO4: Possible geological implication

    NASA Astrophysics Data System (ADS)

    Chang, Yun-Ting; Kung, Jennifer; Hsu, Han

    2016-04-01

    At the contact metamorphism zone two different Ca2SiO4 phases can be found; calcio-olivine (γ phase) and larnite (β phase). In-situ experiments illustrated the existence of five various polymorphs in Ca2SiO4, i.e., α, α'H, α'L, β and γ. The path of phase transformation and the transformation temperatures are shown as follows. γ → α'L(700° C) → α'H(1100° C) → α (1450° C) α'L → β (680° C) → γ (500° C) Experiments showed that the phase transitions at lower temperature is not reversible and seemed to be complicated; β phase is only stable from 500° C to 680° C upon cooling. To understand the possible mechanism of the β phase being metastable at room temperature, atmosphere condition, we were motivated to investigate the route of phase transition in Ca2SiO4 in different thermal process. Powder samples were synthesized by the solid-state reaction. Pure reagent oxides CaCO3 and SiO2 were mixed in 2:1 stoichiometric mole. Two control factors were designated in the experiments; the sintering temperature of starting materials and the cooling path. The sintering temperature was set within the range of stable phase field of α'L phase (˜900° C) and α'H phase (1300° C). The cooling process was designed in three different routes: 1) the quenched procedure from sintering temperature with rate of 900° C/min and 1300° C/min, 2) the furnace cooling procedure, 3) set a slow cooling rate (0.265 ° C/min). The products were examined for the crystal structure by X-ray powder diffraction. First-principle calculation was also applied to investigate the thermodynamic properties of α'H, β and γ phases. A major finding in this study showed that the γ phase presented in the final product when the sintering temperature was set at the stable field of α'H phase; on the other hand, the β phase would present when the sintering temperature was set within the field of α'L phase. It was noted that the existing phase in the product would be modified by the cooling procedures. Our calculation indicates the enthalpy of beta phase was slightly higher than that of the gamma phase at zero pressure, verifying the metastable β phase observed in the natural. In this meeting we present the detailed experimental results and discuss the potential implication for the thermal history of geological setting using the phase transition path upon cooling of Ca2SiO4.

  3. A Continuous Adiabatic Demagnetization Refrigerator for Use with Mechanical Coolers

    NASA Technical Reports Server (NTRS)

    Shirron, P.; Abbondante, N.; Canavan, E.; DiPirro, M.; Grabowski, M.; Hirsch, M.; Jackson, M.; Tuttle, J.

    2000-01-01

    We have begun developing an adiabatic demagnetization refrigerator (ADR) which can produce continuous cooling at temperatures of 50 mK or lower, with high cooling power (goal of 10 PW). The design uses multiple stages to cascade heat from a continuously-cooled stage up to a heat sink. The serial arrangement makes it possible to add stages to extend the operating range to lower temperature, or to raise the heat rejection temperature. Compared to conventional single-shot ADRS, this system achieves higher cooling power per unit mass and is able to reject its heat at a more uniform rate. For operation with a mechanical cryocooler, this latter feature stabilizes the heat sink temperature and allows both the ADR and cryocooler to operate more efficiently. The ADR is being designed to operate with a heat sink as warm as 10-12 K to make it compatible with a wide variety of mechanical coolers as part of a versatile, cryogen-free low temperature cooling system. A two-stage system has been constructed and a proof-of-principle demonstration was conducted at 100 mK. Details of the design and test results, as well as the direction of future work, are discussed.

  4. Description of A 2.3 kW power transformer for space applications

    NASA Technical Reports Server (NTRS)

    Hansen, I.

    1979-01-01

    The paper describes the principal features and special testing of a high-frequency high-power low-specific-weight (0.57 kg/kW) 2.3-kW electronic power transformer developed for space applications. The transformer is operated in a series resonant inverter supplying beam power to a 30-cm mercury ion thruster. High efficiency (above 98.5%) is obtained through careful detailed design. A number of unique heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.

  5. A high-temperature superconducting transformer with localized magnetic field

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2013-12-01

    This paper describes a high-temperature superconducting transformer with a bar-type magnetic core and concentric windings with alternating layers, with single-channel and multi-channel arrangements. There is given the design concept of high-temperature superconducting windings of the transformer, made in the form of newly developed first-generation high-temperature superconducting ribbon wires, with localized magnetic field intended for producing maximum transport currents in the windings, as well as for reducing the consumption of a high-temperature superconducting material, cooling agent, and energy losses in these windings.

  6. Phase Space Exchange in Thick Wedge Absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  7. Applications of the Magnetocaloric Effect in Single-Stage, Multi-Stage and Continuous Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic demagnetization refrigerators (ADR), based on the magnetocaloric effect, are solid-state coolers that were the first to achieve cooling well into the sub-kelvin regime. Although supplanted by more powerful dilution refrigerators in the 1960s, ADRs have experienced a revival due to the needs of the space community for cooling astronomical instruments and detectors to temperatures below 100 mK. The earliest of these were single-stage refrigerators using superfluid helium as a heat sink. Their modest cooling power (<1 µW at 60 mK[1]) was sufficient for the small (6x6) detector arrays[2], but recent advances in arraying and multiplexing technologies[3] are generating a need for higher cooling power (5-10 µW), and lower temperature (<30 mK). Single-stage ADRs have both practical and fundamental limits to their operating range, as mass grows very rapidly as the operating range is expanded. This has led to the development of new architectures that introduce multi-staging as a way to improve operating range, efficiency and cooling power. Multi-staging also enables ADRs to be configured for continuous operation, which greatly improves cooling power per unit mass. This paper reviews the current field of adiabatic demagnetization refrigeration, beginning with a description of the magnetocaloric effect and its application in single-stage systems, and then describing the challenges and capabilities of multi-stage and continuous ADRs.

  8. The influence of cooling parameters on the speed of continuous steel casting

    NASA Astrophysics Data System (ADS)

    Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Chioncel, C. P.

    2018-01-01

    This paper analyzes the cooling parameters of the continuous casting speed. In the researches carried out we aimed to establish some correlation equations between the parameters characterizing the continuous casting process, the temperature of the steel at the entrance to the crystallizer, the superheating of the steel and the flow of the cooling water in the crystallizer and different zones of the secondary cooling. Parallel to these parameters were also the values for the casting speed. The research was made for the casting of round ϕ270mm semi-finished steel products. The steel was developed in an electric EBT furnace with a capacity of 100t, treated in L.F. (Ladle - Furnace) and VD (Vacuum-Degassing) and poured in a 5-wire continuous casting plant. The obtained data was processed in MATLAB using three types of correlation equations. The obtained results are presented both in the analytical and graphical form, each correlation being analyzed from the technological point of view, indicating the optimal values for the independent parameters monitored. In the analysis we present a comparison between the results obtained after the three types of equations for each correlation.

  9. Fire protection system HMI in power plant

    NASA Astrophysics Data System (ADS)

    Zainal, Yuda Bakti

    2015-05-01

    The central power station, a place where there are machines that generate power, equipped with substation where the voltage is produced by the generator and increased to a certain voltage with a step up voltage transformer. Effect on transformer oil is very important, transformer may malfunction if the oil that serves as a coolant and insulator gradually decreased its ability, over time their use. Power transformer on usability is vital, so it needs to be maintained so that the temperature rise must be overcome by applying a temperature control that can inform and control the control valve to open the hydrant tap transformer cooling. HMI implemented to facilitate the operators cope with excess heat in the transformer using thermocouple censor. Test results show that the control transformer and monitored using PLC and HMI. Transformer can maintain the condition of a maximum of 80 degrees Celsius heat.

  10. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  11. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  12. Stability of phase transformation models for Ti-6Al-4V under cyclic thermal loading imposed during laser metal deposition

    NASA Astrophysics Data System (ADS)

    Klusemann, Benjamin; Bambach, Markus

    2018-05-01

    Processing conditions play a crucial role for the resulting microstructure and properties of the material. In particular, processing materials under non-equilibrium conditions can lead to a remarkable improvement of the final properties [1]. Additive manufacturing represents a specific process example considered in this study. Models for the prediction of residual stresses and microstructure in additive manufacturing processes, such as laser metal deposition, are being developed with huge efforts to support the development of materials and processes as well as to support process design [2-4]. Since the microstructure predicted after each heating and cooling cycle induced by the moving laser source enters the phase transformation kinetics and microstucture evolution of the subsequent heating and cooling cycle, a feed-back loop for the microstructure calculation is created. This calculation loop may become unstable so that the computed microstructure and related properties become very sensitive to small variations in the input parameters, e.g. thermal conductivity. In this paper, a model for phase transformation in Ti-6Al-4V, originally proposed by Charles Murgau et al. [5], is adopted and minimal adjusted concerning the decomposition of the martensite phase are made. This model is subsequently used to study the changes in the predictions of the different phase volume fractions during heating and cooling under the conditions of laser metal deposition with respect to slight variations in the thermal process history.

  13. Activated Carbon-hydrogen based Continuous Sorption Cooling in Single Adsorbent Bed with LN2 Heat Sink

    NASA Astrophysics Data System (ADS)

    Koley, Susmita; Ghosh, Indranil

    Quick and periodic inflow-outflow of adsorbate in an adsorbent column createsa differential temperature between the two ends of it, allowing for the generation of continuous sorption cooling in a single adsorbent tube. The concept has been proven experimentally and theoretically for near room temperature applications using activated carbon-nitrogen. The feasibility of generating continuous solid sorption cooling in a single adsorbent tube in the cryogenic domainhas been studied theoretically with a different adsorbent-adsorbate pair, namely, activated carbon-hydrogen. Precooling of gaseous hydrogen (before it enters the adsorbent column) and removal of the heat of adsorption has been achieved using liquid nitrogen. Theoretical estimation shows nearly 20 K temperature difference between the two ends under no load condition. Finally, parametric variations have been performed.

  14. Analysis of the cooling of continuous flow helium cryostats

    NASA Astrophysics Data System (ADS)

    Pust, L.

    A mathematical model of the cooling of a continuous-flow cryostat which takes into account real values of the specific and latent heat of the cryogenic fluid and of the specific heat of the cryostat material is presented. The amount of liquid in the cooling fluid and four parasitic heat flows, caused by radiation and heat conduction in the construction materials and in the rest gas in the vacuum insulation, are also taken into account. The influence of different model parameters on performance, particularly in the non-stationary regime, is demonstrated by means of numerical solutions of the modelling equations. A quantitative criterion which assesses the properties of the planned cryostat, is formulated. The theoretical conclusions are compared with measurements performed on a continuous flow helium cryostat.

  15. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw

    Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less

  16. Factors Affecting the Strength and Toughness of Ultra-Low Carbon Steel Weld Metal

    DTIC Science & Technology

    1999-12-01

    ferrite or martensite due to its strength and toughness, respectively. Ferrite with non-aligned second phase is associated with ferrite completely...with interphase carbides and pearlite. It forms at high temperatures and slow cooling rates than ferrite with secondary phase or martensite . It is...therefore termed a diffusionless transformation . In low carbon steels, the transformation occurs from fccy (austenite) to beta’ ( martensite ),

  17. Effect of heat treatment on the microstructure of Co-Cr-W alloy fabricated by laser additive manufacturing

    NASA Astrophysics Data System (ADS)

    Ren, Bo; Chen, Changjun; Zhang, Min

    2018-04-01

    Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.

  18. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished...

  19. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished...

  20. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished...

  1. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished...

  2. 46 CFR 56.85-5 - Heating and cooling method.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Heating and cooling method. 56.85-5 Section 56.85-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Heat Treatment of Welds § 56.85-5 Heating and cooling method. Heat treatment may be accomplished...

  3. 21 CFR 878.4340 - Contact cooling system for aesthetic use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Contact cooling system for aesthetic use. 878.4340 Section 878.4340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4340 Contact cooling...

  4. 21 CFR 878.4340 - Contact cooling system for aesthetic use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Contact cooling system for aesthetic use. 878.4340 Section 878.4340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4340 Contact cooling...

  5. 21 CFR 878.4340 - Contact cooling system for aesthetic use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Contact cooling system for aesthetic use. 878.4340 Section 878.4340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4340 Contact cooling...

  6. 21 CFR 878.4340 - Contact cooling system for aesthetic use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Contact cooling system for aesthetic use. 878.4340 Section 878.4340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4340 Contact cooling...

  7. Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    DTIC Science & Technology

    2014-02-03

    SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled

  8. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-07-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  9. Effect of Cooling Rate on Microstructure of Two Kinds of High Nb Containing Tial Alloys

    NASA Astrophysics Data System (ADS)

    Chai, L. H.; Feng, Z. Y.; Xiang, Z. L.; Cui, Y. S.; Zhou, F.; Chen, Z. Y.

    2017-09-01

    In this paper, high Nb-TiAl alloys with Cr and W additions were prepared by Vacuum induction melting method, and then were heat treated under three different cooling rates of slow cooling, furnace cooling and air cooling. The phase composition of the alloy was analyzed by X ray diffraction, and the microstructure of the alloy was observed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive analyzer. The results show that the microstructure of Ti45Al8Nb0.2Cr and Ti45Al8Nb0.2W are fully lamellar structure with the main phase composition of α+γ after 3 different heat treatment conditions. The grain size of the two alloys decreases with decreasing of cooling rate, and the grain size of the alloyed with Cr alloy is smaller than that of the alloyed with W alloy. Most of the original massive β phase at grain boundaries and lamellar interfaces dissolved after heat treatment, and the transformation of β phase is easier for Ti45Al8Nb0.2Cr.

  10. Microstructural and Textural Differences Induced by Water and Furnace Cooling in Commercially Pure Zr Annealed in the α + β Region

    NASA Astrophysics Data System (ADS)

    Chai, Linjiang; Wang, Tingting; Ren, Yi; Song, Bo; Guo, Ning; Chen, Liangyu

    2018-03-01

    In this work, a commercially pure Zr sheet with a typical bimodal basal texture was annealed in an α + β region and then subjected to different coolings (in water and furnace). Microstructures and textures of both the as-received and the heat-treated specimens were investigated by electron channeling contrast imaging and electron backscatter diffraction techniques. Results show that a duplex microstructure consisting of untransformed bulk α grains and twinned martensitic plates is produced in the water-cooled specimen, which possesses a weakened texture compared to the initial one. For the specimen cooled in furnace, however, a uniform microstructure fully comprised of coarser equiaxed grains with a strengthened texture is obtained. Analyses reveal that the rapid cooling in water could suppress variant selection behaviors during β → α transformation and allow α plates with scattered orientations to be nucleated inside β phases, contributing to the weakened texture. In contrast, during slow cooling in furnace, β boundaries would act as preferred nucleation sites of α embryos, resulting in a strong variant selection that accounts for the intensified texture.

  11. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  12. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M. S.

    1979-01-01

    A heat pipe cooled transformer and input filter were developed for the 2.4 kW beam supply of a 30 cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. The design details are presented along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  13. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  14. The Effect of Chilling and Ce Addition on the Microstructure and Mechanical Properties of Al-23Si Alloy

    NASA Astrophysics Data System (ADS)

    Vijeesh, V.; Narayan Prabhu, K.

    2017-01-01

    The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.

  15. Continuous parametric feedback cooling of a single atom in an optical cavity

    NASA Astrophysics Data System (ADS)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  16. Cryogen-Free Ultra-Low Temperature Cooling using a Continuous ADR

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; DiPirro, Michael; Jirmanus, Munir; Zhao, Zu-Yu; Shields, Bill

    2003-01-01

    The development of a continuous adiabatic demagnetization refrigerator (CADR) has progressed to the point where we have demonstrated a 4-stage system that provides continuous cooling at 50 mK and below, while rejecting heat to a 4.2 K helium bath. Since temperature control and cycling of the ADR is fully automated, the system is simple to operate and stable. Temperature fluctuations of the cold tip are typically less than 10 microKelvin rms (at 100 mK). The ADR s cooling power of 2 1 microwatts at 100 mK is comparable to that of small dilution refrigerators, but because its efficiency is so much higher (50% of Carnot), the peak heat rejection rate is less than 10 mW. This is significant in allowing the ADR to be cooled by relatively low-power cryocoolers. In addition to commercial pulse-tube and Gifford McMahon (GM) coolers, this potentially includes small GM systems that run on 120 V power and do not need water cooling. The present focus is to design and fabricate a small dewar to house the CADR and a cryocooler, in anticipation of making a cryogen-free, low cost CADR commercially available. Performance of the prototype CADR and the complete system will be discussed.

  17. Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Xue, Hongpeng; Fu, Wantang

    2018-03-01

    18Mn18Cr0.6N steel was tension tested at 0.001 s-1 to fracture from 1473 K to 1363 K (1200 °C to 1090 °C, fracture temperature) at a cooling rate of 0.4 Ks-1. For comparison, specimens were tension tested at temperatures of 1473 K and 1363 K (1200 °C and 1090 °C). The microstructure near the fracture surface was examined using electron backscatter diffraction analysis. The lowest hot ductility was observed under continuous cooling and was attributed to the suppression of dynamic recrystallization nucleation.

  18. Kinetic boundaries and phase transformations of ice i at high pressure.

    PubMed

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F

    2018-01-28

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H 2 O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  19. Kinetic boundaries and phase transformations of ice i at high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhang, Huichao; Yang, Xue; Jiang, Shuqing; Goncharov, Alexander F.

    2018-01-01

    Raman spectroscopy in diamond anvil cells has been employed to study phase boundaries and transformation kinetics of H2O ice at high pressures up to 16 GPa and temperatures down to 15 K. Ice i formed at nearly isobaric cooling of liquid water transforms on compression to high-density amorphous (HDA) ice at 1.1-3 GPa at 15-100 K and then crystallizes in ice vii with the frozen-in disorder (ice vii') which remains stable up to 14.1 GPa at 80 K and 15.9 GPa at 100 K. Unexpectedly, on decompression of ice vii', it transforms to ice viii in its domain of metastability, and then it relaxes into low-density amorphous (LDA) ice on a subsequent pressure release and warming up. On compression of ice i at 150-170 K, ice ix is crystallized and no HDA ice is found; further compression of ice ix results in the sequential phase transitions to stable ices vi and viii. Cooling ice i to 210 K at 0.3 GPa transforms it to a stable ice ii. Our extensive investigations provide previously missing information on the phase diagram of water, especially on the kinetic paths that result in formation of phases which otherwise are not accessible; these results are keys for understanding the phase relations including the formation of metastable phases. Our observations inform on the ice modifications that can occur naturally in planetary environments and are not accessible for direct observations.

  20. USAF Physiological Studies of Personal Microclimate Cooling: A Review

    DTIC Science & Technology

    1993-05-01

    53 vi 11h. Thermal comfort ratings during continuous work. AC = Ambient Air Cooling; NC = No Cooling...43 10b Thermal Comfort (TC) and Rating of Perceived Exertion (RPE) at the End of 45-Min Work Cycles in...47 10d Thermal Comfort (TC) and Ratings of Perceived Exertion (RPE) at the End o! 30

  1. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  2. Cooling rates and the depth of detachment faulting at oceanic core complexes: Evidence from zircon Pb/U and (U-Th)/He ages

    USGS Publications Warehouse

    Grimes, Craig B.; Cheadle, Michael J.; John, Barbara E.; Reiners, P.W.; Wooden, J.L.

    2011-01-01

    Oceanic detachment faulting represents a distinct mode of seafloor spreading at slow spreading mid-ocean ridges, but many questions persist about the thermal evolution and depth of faulting. We present new Pb/U and (U-Th)/He zircon ages and combine them with magnetic anomaly ages to define the cooling histories of gabbroic crust exposed by oceanic detachment faults at three sites along the Mid-Atlantic Ridge (Ocean Drilling Program (ODP) holes 1270D and 1275D near the 15??20???N Transform, and Atlantis Massif at 30??N). Closure temperatures for the Pb/U (???800??C-850??C) and (U-Th)/He (???210??C) isotopic systems in zircon bracket acquisition of magnetic remanence, collectively providing a temperature-time history during faulting. Results indicate cooling to ???200??C in 0.3-0.5 Myr after zircon crystallization, recording time-averaged cooling rates of ???1000??C- 2000??C/Myr. Assuming the footwalls were denuded along single continuous faults, differences in Pb/U and (U-Th)/He zircon ages together with independently determined slip rates allow the distance between the ???850??C and ???200??C isotherms along the fault plane to be estimated. Calculated distances are 8.4 ?? 4.2 km and 5.0 2.1 km from holes 1275D and 1270D and 8.4 ?? 1.4 km at Atlantis Massif. Estimating an initial subsurface fault dip of 50 and a depth of 1.5 km to the 200??C isotherm leads to the prediction that the ???850??C isotherm lies ???5-7 km below seafloor at the time of faulting. These depth estimates for active fault systems are consistent with depths of microseismicity observed beneath the hypothesized detachment fault at the TAG hydrothermal field and high-temperature fault rocks recovered from many oceanic detachment faults. Copyright 2011 by the American Geophysical Union.

  3. Automated software to determine thermal diffusivity of oilgas mixture

    NASA Astrophysics Data System (ADS)

    Khismatullin, A. S.

    2018-05-01

    The paper presents automated software to determine thermal diffusivity of oil-gas mixture. A series of laboratory testscovering transformer oil cooling in a power transformer tank was conducted. The paper also describes diagrams of temperature-timedependence of bubbling. Thermal diffusivity coefficients are experimentally defined. The paper considers a mathematical task of heat flowdistribution in a rectangular parallelepiped, alongside with the solution of heat a conduction equation in a power transformer tank, which represents a rectangular parallelepiped. A device for temperature monitoring in the tank is described in detail. The relay control diagram, which ensures temperature monitoring againsttransformer overheating is described.

  4. Transpulmonary hypothermia: a novel method of rapid brain cooling through augmented heat extraction from the lungs.

    PubMed

    Kumar, Matthew M; Goldberg, Andrew D; Kashiouris, Markos; Keenan, Lawrence R; Rabinstein, Alejandro A; Afessa, Bekele; Johnson, Larry D; Atkinson, John L D; Nayagam, Vedha

    2014-10-01

    Delay in instituting neuroprotective measures after cardiac arrest increases death and decreases neuronal recovery. Current hypothermia methods are slow, ineffective, unreliable, or highly invasive. We report the feasibility of rapid hypothermia induction in swine through augmented heat extraction from the lungs. Twenty-four domestic crossbred pigs (weight, 50-55kg) were ventilated with room air. Intraparenchymal brain temperature and core temperatures from pulmonary artery, lower esophagus, bladder, rectum, nasopharynx, and tympanum were recorded. In eight animals, ventilation was switched to cooled helium-oxygen mixture (heliox) and perfluorocarbon (PFC) aerosol and continued for 90min or until target brain temperature of 32°C was reached. Eight animals received body-surface cooling with water-circulating blankets; eight control animals continued to be ventilated with room air. Brain and core temperatures declined rapidly with cooled heliox-PFC ventilation. The brain reached target temperature within the study period (mean [SD], 66 [7.6]min) in only the transpulmonary cooling group. Cardiopulmonary functions and poststudy histopathological examination of the lungs were normal. Transpulmonary cooling is novel, rapid, minimally invasive, and an effective technique to induce therapeutic hypothermia. High thermal conductivity of helium and vaporization of PFC produces rapid cooling of alveolar gases. The thinness and large surface area of alveolar membrane facilitate rapid cooling of the pulmonary circulation. Because of differences in thermogenesis, blood flow, insulation, and exposure to the external environment, the brain cools at a different rate than other organs. Transpulmonary hypothermia was significantly faster than body surface cooling in reaching target brain temperature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. A Compact, High-Performance Continuous Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Jackson, Michael; King, Todd; Panek, John; Tuttle, James; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    We present test results of the first adiabatic demagnetization refrigerator (ADR) that can produce continuous cooling at sub-kelvin temperatures. This system uses multiple stages that operate in sequence to cascade heat from a continuous stage up to a heat sink. Continuous operation aids the usual constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, and allows us to achieve much higher cooling power per unit mass. Our design goal is 10 microW of cooling at 50 mK while rejecting heat to a 6-10 K heat sink. The total cold mass is estimated to be less than 10 kg, including magnetic shielding of each stage. These parameters envelop the requirements for currently planned astronomy missions. The relatively high heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long, mission life and reduced complexity and cost. At present, we have assembled a three-stage ADR that operates with a superfluid helium bath. Additional work is underway to develop magnetocaloric materials that can extend its heat rejection capability up to 10 K. This paper discusses the design and operation of the ADR, as well as interface requirements for cryocooler-based operation.

  6. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    NASA Technical Reports Server (NTRS)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  7. Safety of LigaSure in recurrent laryngeal nerve dissection-porcine model using continuous monitoring.

    PubMed

    Dionigi, Gianlorenzo; Chiang, Feng-Yu; Kim, Hoon Yub; Randolph, Gregory W; Mangano, Alberto; Chang, Pi-Ying; Lu, I-Cheng; Lin, Yi-Chu; Chen, Hui-Chun; Wu, Che-Wei

    2017-07-01

    This study investigated recurrent laryngeal nerve (RLN) real-time electromyography (EMG) data to define optimal safety parameters of the LigaSure Small Jaw (LSJ) instrument during thyroidectomy. Prospective animal model. Dynamic EMG tracings were recorded from 32 RLNs (16 piglets) during various applications of LSJ around using continuous electrophysiologic monitoring. At varying distances from the RLN, the LSJ was activated (activation study). The LSJ was also applied to the RLN at timed intervals after activation and after a cooling maneuver through placement on the sternocleidomastoid muscle (cooling study). In the activation study, there was no adverse EMG event at 2 to 5 mm distance (16 RLNs, 96 tests). In the cooling study, there was no adverse EMG event after 2-second cooling time (16 RLNs, 96 tests) or after the LSJ cooling maneuver on the surrounding muscle before reaching the RLNs (8 RLNs, 24 tests). Based on EMG functional assessment, the safe distance for LSJ activation was 2 mm. Further LSJ-RLN contact was safe if the LSJ was cooled for more than 2 seconds or cooled by touch muscle maneuver. The LSJ should be used with these distance and time parameters in mind to avoid RLN injury. N/A. Laryngoscope, 127:1724-1729, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Intra-Abdominal Cooling System Limits Ischemia-Reperfusion Injury During Robot-Assisted Renal Transplantation.

    PubMed

    Meier, R P H; Piller, V; Hagen, M E; Joliat, C; Buchs, J-B; Nastasi, A; Ruttimann, R; Buchs, N C; Moll, S; Vallée, J-P; Lazeyras, F; Morel, P; Bühler, L

    2018-01-01

    Robot-assisted kidney transplantation is feasible; however, concerns have been raised about possible increases in warm ischemia times. We describe a novel intra-abdominal cooling system to continuously cool the kidney during the procedure. Porcine kidneys were procured by standard open technique. Groups were as follows: Robotic renal transplantation with (n = 11) and without (n = 6) continuous intra-abdominal cooling and conventional open technique with intermittent 4°C saline cooling (n = 6). Renal cortex temperature, magnetic resonance imaging, and histology were analyzed. Robotic renal transplantation required a longer anastomosis time, either with or without the cooling system, compared to the open approach (70.4 ± 17.7 min and 74.0 ± 21.5 min vs. 48.7 ± 11.2 min, p-values < 0.05). The temperature was lower in the robotic group with cooling system compared to the open approach group (6.5 ± 3.1°C vs. 22.5 ± 6.5°C; p = 0.001) or compared to the robotic group without the cooling system (28.7 ± 3.3°C; p < 0.001). Magnetic resonance imaging parenchymal heterogeneities and histologic ischemia-reperfusion lesions were more severe in the robotic group without cooling than in the cooled (open and robotic) groups. Robot-assisted kidney transplantation prolongs the warm ischemia time of the donor kidney. We developed a novel intra-abdominal cooling system that suppresses the noncontrolled rewarming of donor kidneys during the transplant procedure and prevents ischemia-reperfusion injuries. © 2017 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.

  9. Revealing on metallurgical behavior of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets

    NASA Astrophysics Data System (ADS)

    Song, Kuikui; Sun, Wei; Chen, Hongsheng; Yu, Nengjun; Fang, Yikun; Zhu, Minggang; Li, Wei

    2017-05-01

    The sintered magnets with the nominal composition of Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 were prepared by standard metallurgical method. The evolution of phase transformation of the specimens during heat treatments was investigated in detail. After isothermal aging at 1103 K for 20 hrs and step cooling to 673 K and keeping for 10hrs, the remanence Br of the specimens almost keeps constant (˜11.5 kGs), while the intrinsic coercivity Hcj increases from 7.9 to 31.5 kOe. The maximum energy product of the final magnet is close to 32 MGOe. The phase is single phase with 1:7H structure in the specimen A only annealed at 1453 K for 4hrs. It is found that a cellular microstructure with a platelet Z-phase have appeared in the sample after the isothermal aging in 1103 K for 20h, which contain 2:17R, 2:7R and 5:19H phases. Furthermore, the 1:5H phase has appeared after the step cooling to 873 K, together with some 2:17R, 2:7R and 5:19H phases. Interestingly, it is found that the phase transformation has completed after the step cooling to 773 K. And the phase constitution in specimens is stable during the step cooling to 673 K.

  10. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  11. Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches.

    PubMed

    Kong, Xiangli; Zhou, Xin; Sui, Zhongquan; Bao, Jinsong

    2016-10-01

    Effects of gamma irradiation on the physicochemical and crystalline properties of the native and acetylated wheat starches were investigated. Peak, hot paste, cool paste and setback viscosities of both native and acetylated wheat starches decreased continuously and significantly with the increase of the irradiation dose, whereas breakdown viscosity increased after irradiation. However, gamma irradiation only exerted slight effects on thermal and retrogradation properties of both native and acetylated wheat starches. X-ray diffraction and fourier transform infrared spectroscopy revealed that acetylation modification had considerable effects on the molecular structure of wheat starch, and the crystallinity of both untreated and acetylated starches increased slightly with the increase of irradiation dose. However, the V-type crystallinity of amylose-lipid complex was not affected by gamma irradiation treatments with doses up to 9kGy. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Johnson, N. J. E.

    1980-01-01

    Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.

  13. Effect of Cooling Mode on Microstructure and Mechanical Properties of Pipeline Steel for Strain Based Design and Research on its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Hesong, Zhang; Yonglin, Kang

    With the rapid development of oil and gas industry long distance pipelines inevitably pass through regions with complex geological activities. In order to avoid large deformation the pipelines must be designed based on strain criteria. In this paper the alloy system of X80 high deformability pipeline steel was designed which was 0.25%Mo-0.05%C-1.75%Mn. The effect of controlled cooling process on microstructure and mechanical properties of X80 high deformability pipeline steel were systematically investigated. Through the two-stage controlled cooling process the microstructure of the X80 high deformability pipeline steel were ferrite, bainite and M/A island. There were two kinds of ferrite which were polygonal ferrite (PF) and quasi-polygonal ferrite (QF). The bainite was granular bainite ferrite (GF). Along with the decrease of the start cooling temperature, the volume fraction of ferrite and M/A both increased, the yield ratio (Y/T) decreased, the uniform elongation (uEl) increased firstly with the content of ferrite increased but then decreased with the content and size of M/A increased. When the finish cooling temperature decreasing, the size of M/A became finer. As the start cooling temperature was 690 °C and the finish cooling temperature was 450 °C the volume fraction of ferrite was 23%, the size of ferrite grain was 5μm, the size of M/A island was below 1μm and the structure uniformity was the best. The deformation mechanism of X80 high deformability pipeline steel was analyzed. The best way to improve the work hardening rate was reducing the size of M/A islands on the premise of a certain volume fraction. The decreasing path of instantaneous strain hardening index (n*-value) showed three stages in the deformation process. The n*-value kept stable in the second stage, the reason was that the retained austenite transformed into martensite and the phase transition improved the strain hardening ability of the microstructure. This phenomenon was called transformation induced plasticity effect (TRIP).

  14. Theory and operational rules for the discrete Hankel transform.

    PubMed

    Baddour, Natalie; Chouinard, Ugo

    2015-04-01

    Previous definitions of a discrete Hankel transform (DHT) have focused on methods to approximate the continuous Hankel integral transform. In this paper, we propose and evaluate the theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The proposed transform also possesses requisite orthogonality properties which lead to invertibility of the transform. The standard set of shift, modulation, multiplication, and convolution rules are derived. In addition to the theory of the actual manipulated quantities which stand in their own right, this DHT can be used to approximate the continuous forward and inverse Hankel transform in the same manner that the discrete Fourier transform is known to be able to approximate the continuous Fourier transform.

  15. Microstructural evolution during the homogenization heat treatment of 6XXX and 7XXX aluminum alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee

    Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy and also hamper the age-hardenability and are hence dissolved during solution heat treatment. Microstructural development during homogenization and subsequent cooling occurs both at the length scale of the Secondary Dendrite Arm Spacing (SDAS) in micrometers and dispersoids in nanometers. Numerical tools to simulate microstructural development at both the length scales have been developed and validated against experiments. These tools provide easy and convenient means to study the process. A Cellular Automaton-Finite Volume-based model for evolution of interdendritic phases is coupled with a Particle Size Distribution-based model for precipitation of dispersoids across the grain. This comprehensive model has been used to study the effect of temperature, composition, as-cast microstructure, and cooling rates during post-homogenization quenching on microstructural evolution. The numerical study has been complimented with experiments involving Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction and Differential Scanning Calorimetry and a good agreement has with numerical results has been found. The current work aims to study the microstructural evolution during homogenization heat treatment at both length scales which include the (i) dissolution and transformation of the as-cast secondary phases; (ii) precipitation of dispersoids; and (iii) reprecipitation of some of the secondary phases during post-homogenization cooling. The kinetics of the phase transformations are mostly diffusion controlled except for the eta to S phase transformation in 7XXX alloys which is interface reaction rate controlled which has been implemented using a novel approach. Recommendations for homogenization temperature, time, cooling rates and compositions are made for Al-Si-Mg-Fe-Mn and Al-Zn-Cu-Mg-Zr alloys. The numerical model developed has been applied for a through process solidification-homogenization modeling of a Direct-Chill cast AA7050 cylindrical billet to study the radial variation of microstructure after solidification, homogenization and post-homogenization cooling.

  16. Exoplanet Community Report on Direct Infrared Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Danchi, William C.; Lawson, Peter R.

    2009-01-01

    Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (<1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.

  17. Tape-Drop Transient Model for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Marchello, Joseph M.

    1998-01-01

    Composite parts of nonuniform thickness can be fabricated by in-situ automated tape placement (ATP) if the tape can be started and stopped at interior points of the part instead of always at its edges. This technique is termed start/stop-on-the-part, or, alternatively, tape-add/tape-drop. The resulting thermal transients need to be managed in order to achieve net shape and maintain uniform interlaminar weld strength and crystallinity. Starting-on-the-part has been treated previously. This paper continues the study with a thermal analysis of stopping-on-the-part. The thermal source is switched off when the trailing end of the tape enters the nip region of the laydown/consolidation head. The thermal transient is determined by a Fourier-Laplace transform solution of the two-dimensional, time-dependent thermal transport equation. This solution requires that the Peclet number Pe (the dimensionless ratio of inertial to diffusive heat transport) be independent of time and much greater than 1. Plotted isotherms show that the trailing tape-end cools more rapidly than the downstream portions of tape. This cooling can weaken the bond near the tape end; however the length of the affected region is found to be less than 2 mm. To achieve net shape, the consolidation head must continue to move after cut-off until the temperature on the weld interface decreases to the glass transition temperature. The time and elapsed distance for this condition to occur are computed for the Langley ATP robot applying PEEK/carbon fiber composite tape and for two upgrades in robot performance. The elapsed distance after cut-off ranges from about 1 mm for the present robot to about 1 cm for the second upgrade.

  18. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  19. Continuous All-Optical Deceleration and Single-Photon Cooling of Molecular Beams

    DTIC Science & Technology

    2014-02-21

    PHYSICAL REVIEW A 89 , 023425 (2014) Continuous all-optical deceleration and single-photon cooling of molecular beams A. M. Jayich,1 A. C. Vutha,2 M...details including multilevel numerical simulations of strontium monohydride. These techniques are applicable to a large number of molecular species and...molecules that are considered difficult to directly laser cool—a class that includes many 1050-2947/2014/ 89 (2)/023425(8) 023425-1 ©2014 American

  20. Pressures of Partial Crystallization of Magmas Along Transforms: Implications for Crustal Accretion

    NASA Astrophysics Data System (ADS)

    Scott, J. L.; Zerda, C.; Brown, D.; Ciaramitaro, S. C.; Barton, M.

    2016-12-01

    Plate spreading at mid-ocean ridges is responsible for the creation of most of the crust on earth. The ridge system is very complex and many questions remain unresolved. Among these is the nature of magma plumbing systems beneath transform faults. Pervious workers have suggested that increased conductive cooling along transforms promotes higher pressures of partial crystallization, and that this explains the higher partial pressures of crystallization inferred for magmas erupted along slow spreading ridges compared to magmas erupted along faster spreading ridges. To test this hypothesis, we undertook a detailed analysis of pressures of partial crystallization for magmas erupted at 3 transforms along the fast to intermediate spreading East Pacific Rise(Blanco, Clipperton, and Siqueiros) and 3 transforms along the slow spreading Mid Atlantic Ridge(Famous Transform B, Kane, and 15°20'N). Pressures of partial crystallization were calculated from the compositions of glasses (quenched liquids) lying along the P (and T) dependent olivine, plagioclase, and augite cotectic using the method described by Kelley and Barton (2008). Published analyses of mid-ocean ridge basalt glasses sampled from these transforms and surrounding ridge segments were used as input data. Samples with anomalous chemical compositions and samples that yielded pressures associated with unrealistically large uncertainties were filtered out of the database. The pressures of partial crystallization for the remaining 916 samples ranged from 0 to 520 MPa with the great majority ( 95%) of sample returning pressures of less than 300 MPa. Pressures of < 300 MPa are within error of the pressure range associated with partial crystallization within oceanic crust with a thickness of 7 km. Higher (sub-crustal) pressures (>300 MPa) are associated with a small number of samples from the Pacific segments. Except for the Blanco, pressures of partial crystallization do not increase as transforms are approached. These observations contrast with those of previous workers, who reported anomalously high pressures (up to 1000 MPa) for a large number of samples erupted near both Atlantic and Pacific Transforms. We conclude that higher rates of cooling along transform does not have a major effect on the onset of partial crystallization along the mid-ocean ridges

  1. The Effect of Welding Process on the Microstructure of HY-130 Steel Weldments

    DTIC Science & Technology

    1988-12-01

    low -carbon, high-strength, low - alloy (HSLA) steels (C below 0.07 per- cent), the weld metal changed from coarse polygonal ferrite to...17. Ricks. R. A., Barritte, G. S., and Howell, P. R., "The Influence of Second Phase Particles on Diffusional Phase Transformations in Steels ... phase , austenite, may transform to mar- tensite on rapid cooling. The martensite has the exact same composi- tion as the austenite (up to two

  2. Nucleation and Growth of Tetrataenite (FeNi) in Meteorites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.

    1992-07-01

    The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite should also be given by the alpha/alpha + gamma" and gamma"/alpha + gamma" boundaries of the Fe-Ni phase diagram (Figure 1). However, the Ni content of kamacite and tetrataenite in black plessite, which forms below 400 degrees C, is ~10 wt% in kamacite and ~57 to 60 wt% in tetrataenite, much higher than the values given by the equilibrium phase diagram (3). It has been observed experimentally (4) that the Ni composition of the gamma phase formed by martensite decomposition below 400 degrees C lies along a metastable extension of the high temperature gamma/alpha + gamma phase boundary, Figure 2. Therefore, the FeNi phase formed by alpha(sub)2 decomposition below 400 degrees C has a non-equilibrium Ni content, >50 to 56 wt%. The growth or thickening of the FeNi phase occurs by some combination of interface and diffusion control (3). References: (1) Clarke R. S. and Scott E. R. D. (1980) Amer. Mineral. 65, 624-630. (2) Reuter K. B., Williams D. B., and Goldstein J. I. (1989) Met. Trans. 20A, 719-725. (3) Zhang J., Williams D. B. and Goldstein J. I. (1992) Submitted to Geochim. Cosmochim. Acta. (4) Zhang J., Williams L). B. and Goldstein J. I. (1992) Submitted to Met. Trans. Figure 1, which in the hard copy appears here, is an Fe-Ni phase diagram (2). Figure 2, which in the hard copy appears here, shows measured FeNi composition from heat-treated alloys (4).

  3. The Primordial Inflation Polarization ExploreR Continuous Adiabatic Demagnetization Refrigerator

    NASA Astrophysics Data System (ADS)

    Pawlyk, Samuel; Ade, Peter; Benford, Dominic; Bennett, Charles; Chuss, David; Datta, Rahul; Dotson, Jessie; Essinger-Hileman, Thomas; Fixsen, Dale; Halpern, Mark; Hilton, Gene; Hinshaw, Gary; Irwin, Kent; Jhabvala, Christine; Kimball, Mark; Kogut, Al; Lowe, Luke; McMahon, Jeff; Miller, Timothy; Mirel, Paul; Moseley, Samuel Harvey; Rodriguez, Samelys; Sharp, Elmer; Shirron, Peter; Staguhn, Johannes G.; Sullivan, Dan; Switzer, Eric; Taraschi, Peter; Tucker, Carole; Wollack, Edward; Walts, Alexander

    2018-01-01

    The Primordial Inflation Polarization ExploreR (PIPER) uses a Continuous Adiabatic Demagnetization Refrigerator (CADR) to cool its detectors. The CADR consists of four independent stages with adjacent stages connected by gas gap (GG) or superconducting (SC) heat switches. The three warm stages cycle to transfer heat from the 100 mK detector package to the 1.5 K liquid helium bath. The coldest stage maintains a continuous temperature of 100 mK for the detector package with 10 uW cooling power. We describe the mechanical, electrical, and software design of the CADR and present recent results.

  4. First demonstration of an all-solid-state optical cryocooler

    DOE PAGES

    Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.; ...

    2018-06-06

    Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less

  5. First demonstration of an all-solid-state optical cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus P.; Meng, Junwei; Albrecht, Alexander R.

    Solid-state optical refrigeration uses anti-Stokes fluorescence to cool macroscopic objects to cryogenic temperatures without vibrations. Crystals such as Yb 3+-doped YLiF 4 (YLF:Yb) have previously been laser-cooled to 91 K. In this study, we show for the first time laser cooling of a payload connected to a cooling crystal. A YLF:Yb crystal was placed inside a Herriott cell and pumped with a 1020-nm laser (47 W) to cool a HgCdTe sensor that is part of a working Fourier Transform Infrared (FTIR) spectrometer to 135 K. This first demonstration of an all-solid-state optical cryocooler was enabled by careful control of themore » various desired and undesired heat flows. Fluorescence heating of the payload was minimized by using a single-kink YLF thermal link between the YLF:Yb cooling crystal and the copper coldfinger that held the HgCdTe sensor. The adhesive-free bond between YLF and YLF:Yb showed excellent thermal reliability. This laser-cooled assembly was then supported by silica aerogel cylinders inside a vacuum clamshell to minimize undesired conductive and radiative heat loads from the warm surroundings. Our structure can serve as a baseline for future optical cryocooler devices.« less

  6. Physiological and Thermal Responses of MS Patients to Head and Vest Cooling: A Case Study

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Webbon, Bruce W.; Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis (MS) and to prevent increased core temperature during daily activities. The objective of this study was to determine the operating characteristics and the physiologic changes produced by short term application of the stationary thermal control system used by most clinical institutions. The Life Enhancement Tech (LET) Mark VII portable cooling system and a lightweight Head-vest active cooling garment were used to cool the head and chest regions of 4 male and 3 female MS patients (30 to 66 yrs. old) in this study. The subjects, seated in an upright position at normal room temperature (approx. 24 C), were tested for 60 min. with the liquid cooling garment (LCG) operated at 50 F. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures, heart rate, respiration, and an activity index were recorded continuously on a U.F.I., Inc., Biolog ambulatory monitor. All temperature responses showed extreme variation among subjects. The cold-sensitive subject's rectal temperature increased initially in response to cooling; the heat sensitive subject's rectal temperature decreased. After 40 min. of cooling and during recovery, all subjects'rectal temperatures decreased. Oral temperatures began to decrease after 30 min. of cooling. After 60 min. of cooling, temperature drops ranged from approx. 0.3 - 0.8 C. Oral temperatures continued to decrease during recovery (approx. 0.2 C). The car temperature of the heat sensitive subject was increased after cooling, other subjects exhibited an ear temperature decrease (0.0 - 0.5 C). These data indicate that head and vest cooling may be used to reduce the oral temperatures of MS patients by the approximate amount needed for symptomatic relief as shown by other researchers. The combination of a small subject population and a large subject variance does not permit us to draw statistical conclusions about the temperature response of MS patients. An individual's heat or cold sensitivity may influence their thermal response to cooling. This factor should be considered in the prescribed use of liquid cooling garments in the therapeutic management of MS.

  7. Operational Characteristics of Two Commercially Available Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Luna, Bernadette (Technical Monitor)

    1996-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive cooling vests, and to measure the body temperature and circulatory changes produced by each cooling vest configuration. A Life Enhancement Technologies, (LET) ice vest garment and a Steele, Inc. vest were used to cool the chest region of 11 male subjects (25 to 55 yr) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approximately 21 C) were tested for 60 min. with the cooling system operating at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. No significant differences were found in either the oral or ear temperature responses to the two vests. However, the rectal and mean skin temperatures at the end of the cooling period were both significantly lower (P less than 0.05), approximately 0.2 and 1.9 C, respectively for the LET vest than for the Steele garment. These data show that different vest configurations may produce different thermal responses in healthy male subjects which should be considered in the use of these cooling garments.

  8. Electrical insulating liquid: A review

    NASA Astrophysics Data System (ADS)

    Mahanta, Deba Kumar; Laskar, Shakuntala

    Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  9. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  10. Solar cooling - comparative study between thermal and electrical use in industrial buildings

    NASA Astrophysics Data System (ADS)

    Badea, N.; Badea, G. V.; Epureanu, A.; Frumuşanu, G.

    2016-08-01

    The increase in the share of renewable energy sources together with the emphasis on the need for energy security bring to a spotlight the field of trigeneration autonomous microsystems, as a solution to cover the energy consumptions, not only for isolated industrial buildings, but also for industrial buildings located in urban areas. The use of solar energy for cooling has been taken into account to offer a cooling comfort in the building. Cooling and air- conditioned production are current applications promoting the use of solar energy technologies. Solar cooling systems can be classified, depending on the used energy, in electrical systems using mechanical compression chillers and systems using thermal compression by absorption or adsorption. This comparative study presents the main strengths and weaknesses of solar cooling obtained: i) through the transformation of heat resulted from thermal solar panels combined with adsorption chillers, and ii) through the multiple conversion of electricity - photovoltaic panels - battery - inverter - combined with mechanical compression chillers. Both solutions are analyzed from the standpoints of energy efficiency, dynamic performances (demand response), and costs sizes. At the end of the paper, experimental results obtained in the climatic condition of Galafi city, Romania, are presented.

  11. Hot and Cool Executive Function and Its Relation to Theory of Mind in Children with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Kouklari, Evangelia-Chrysanthi; Thompson, Trevor; Monks, Claire P.; Tsermentseli, Stella

    2017-01-01

    Previous research has clearly demonstrated that autism spectrum disorder (ASD) involves deficits in multiple neuropsychological functions, such as executive function (EF) and theory of mind (ToM). A conceptual distinction is commonly made between cool and hot EF. In ASD, continued attention has been paid to the cool areas of executive dysfunction.…

  12. Low-noise magnetoencephalography system cooled by a continuously operating reliquefier

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Kwon, H.; Yu, K. K.; Kim, J. M.; Lee, S. K.; Kim, M.-Y.; Kim, K.

    2017-08-01

    We fabricated a low-noise magnetoencephalography (MEG) system based on a continuously operating reliquefier for cooling of low-temperature superconducting quantum interference device gradiometers. In order to reduce the vibration transmission, the gradiometers are mounted in the vacuum space of the helmet dewar with direct thermal contact with the liquid helium helmet. The reliquefier uses a 1.4 W pulse tube cryocooler with a remote motor, and a horizontal transfer tube with a downslope angle of 1°. The white noise of the system is 3.5 fTrms/√Hz (at 100 Hz). The vibration-induced peak at 1.4 Hz is 18 fTrms/√Hz averaged over the whole helmet array of 150 channels, which is the lowest among the reported values using reliquefier cooling and comparable to the noise peak cooled by conventional direct liquid helium cooling with axial gradiometers of the same baseline. The spontaneous brain activity signal showed nearly identical signal quality with the reliquefier turned on and off, and the reliquefier-based MEG system noise is well below the brain noise level.

  13. EMISSIONS OF POLYCHLORINATED BIPHENYLS AS PRODUCTS OF INCOMPLETE COMBUSTION FROM INCINERATORS

    EPA Science Inventory

    The paper discusses emissions of polychlorinated biphenyls (PCBs) as products of incomplete combustion from incinerators. PCBs were used widely as industrial chemicals, particularly as additives in electrical transformer cooling oil. Growing evidence of PCBs' role as a persistent...

  14. Process for stabilizing dimensions of duplex stainless steels for service at elevated temperatures

    DOEpatents

    Hull, Frederick C.; Tobin, John C.

    1981-01-01

    Duplex stainless steel materials containing austenite plus delta ferrite, are dimensionally stabilized by heating the material to a reaction temperature between about 1050.degree.-1450.degree. F. (566.degree.-788.degree. C.), holding it at this temperature during transformation of delta ferrite to austenite plus sigma phase, and subsequently heating to a reversion temperature between about 1625.degree.-1750.degree. F. (885.degree.-954.degree. C.), whereby the sigma phase transforms back to ferrite, but the austenite remains dispersed in the ferrite phase. Final controlled cooling permits transformation of ferrite to austenite plus sigma and, later, precipitation of carbides.

  15. Effect of Proeutectoid Ferrite Morphology on the Microstructure and Mechanical Properties of Hot Rolled 60Si2MnA Spring Steel

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Wei-qing, Chen; Huai-bin, Han; Rui-juan, Bai

    2017-02-01

    The hot rolled 60Si2MnA spring steel was transformed to obtain different proeutectoid ferrite morphologies by different cooling rates after finish rolling through dynamic thermal simulation test. The coexistence relationship between proeutectoid ferrite and pearlite, and the effect of proeutectoid ferrite morphology on mechanical properties were systematically investigated. Results showed that the reticular proeutectoid ferrite could be formed by the cooling rates of 0.5-2 °C/s; the small, dispersed and blocky proeutectoid ferrite could be formed by the increased cooling rates of 3-5 °C/s; and the bulk content of proeutectoid ferrite decreased. The pearlitic colony and interlamellar spacing also decreased, the reciprocal of them both followed a linear relationship with the reciprocal of proeutectoid ferrite bulk content. Besides, the tensile strength, percentage of area reduction, impact energy and microhardness increased, which all follow a Hall-Petch-type relationship with the inverse of square root of proeutectoid ferrite bulk content. The fracture morphologies of tensile and impact tests transformed from intergranular fracture to cleavage and dimple fracture, and the strength and plasticity of spring steel were both improved. The results have been explained on the basis of proeutectoid ferrite morphologies-microstructures-mechanical properties relationship effectively.

  16. Research on gas within transformer oil based on photo-spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Zhang, Qi; Shi, Wen-zong

    2011-08-01

    Insulating oil is widely used in transformer and other large high-voltage electrical equipment.Its main functions are insulation, cooling and arc extinction. When the transformer runs, it may emit heat or discharge, which generate gas, micro water and trace metals in transformer oil. This will not only reduce the insulation capacity of insulating oil,and will greatly reduce the ability of its extinction, causing the transformers or other oil-filled electrical equipment appearing Internal latent malfunction, which would affect the operation of equipment. In this Paper, we simulate the transformer discharge effect to discharge in transformer oil. Then we use spectral theory and photo-spectroscopy technology to measure and analyse the oil sample, combining with IR absorption peaks of main fault characteristic gases, and qualitatively analyse CO, CO2, CH4, C2H6, C2H4, C2H2, H2 in gas mixture. The results show that the Fourier transform infrared spectroscopy can be very effective for analysing gases in transformer oil, which can quickly detect possible problems in the equipment.

  17. Heterogeneous-nucleation and glass-formation studies of 56Ga2O3-44CaO

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Curreri, Peter A.; Pline, David

    1987-01-01

    Glass formation and heterogeneous crystallization are described for the reluctant-glass-forming 56Ga2O3-44CaO eutectic composition. The times and temperatures for nucleation at various cooling rates and experimental conditions were measured and empirical continuous-cooling-crystallization boundaries were constructed for various heterogeneous nucleation processes. A definition for an empirical critical cooling rate to form a glass from reluctant borderline glass formers is proposed, i.e., the cooling rate that results in glass formation in 95 percent of the quenching experiments.

  18. Real-time SEM studies in controlled reactive atmospheres

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.; Garcia, A., III; Alonzo, J. R.

    1985-01-01

    A unique scanning electron accessory has been developed that allows the observation of specimens under partial pressures of any gas. The sample is placed in a metal support boat inside a special sample holder. The sample in the boat is imaged on a CRT and is simultaneously recorded on a videotape, allowing the reaction between the sample and the gas to be observed in real time. Sample changes can be seen continuously as the sample is being heated or cooled. This process allows the observation of material transformations such as phase changes as they happen. Temperatures as high as 1000 C have been used and are continuously monitored using a thermocouple with a digital display on the CRT and videotape. X-ray analyses can also be run before and after any reactions. In the study described here, thick-film screen-printing inks using molybdenum/tin compositions as a replacement for silver were developed to be used on terrestrial photovoltaic cells. Pieces were placed on the sample stage and heated in both O2 and H2 atmospheres. The results were used to determine the most effective frits to be used in the thick-film inks.

  19. Quantum heat engines and refrigerators: continuous devices.

    PubMed

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  20. The influence of visco-elastic processes on the generation of thermal stresses in quenched low alloy steel plates

    NASA Astrophysics Data System (ADS)

    Abbasi, F.

    The visco-elastic effect in quenched specimens of 835M30 steel was described quantitatively by the use of the standard linear solid, which allowed the calculation of the thermal stress and strain during quenching in water, oil and in a martempering situation. The introduction of viscous flow into the calculation produced a marked improvement in the degree of agreement between the calculated and experimental residual stresses after an oil quench, although this was accompanied by a small reduction in the corresponding agreement in the case of water quench. The use of isothermal stress relaxation data in a continuous cooling situation was dealt with by the use of several models that cover a range of situations that varied from progressive hardening during the quench to one where recovery was predominant at all times. The use of martempering was of limited value, although an air cool following an intermediate salt bath treatment above the Ms temperature prevented the generation of thermal stresses during the formation of martensite. The use of an oil quench following the salt bath treatment was of no value, and none of the combinations of heat treatment possible during martempering significantly reduced the distortions to a lower level than was obtained by a conventional oil quench from 850°C. The mathematical model was also extended to include the effect of transformation plasticity, viz. the effect of an applied stress on the volume change that accompanied a phase transformation, as a consequence of heterogeneous plastic flow. This led to an excellent level of agreement between calculation and experiment in the case of residual stresses: it also produced adeterioration in the case of residual strains. Although some further work is required, the mathematical model has been developed sufficiently for it to be of practical value.

  1. Seizures are common in term infants undergoing head cooling.

    PubMed

    Yap, Vivien; Engel, Murray; Takenouchi, Toshiki; Perlman, Jeffrey M

    2009-11-01

    Selective head cooling was used to treat infants at risk of developing encephalopathy within 6 hours as part of a practice plan. Amplitude-integrated electroencephalography and raw, single-channel electroencephalography tracings were performed continuously during cooling. Routine electroencephalography was performed intermittently during, and video electroencephalography immediately after, selective head cooling. Magnetic resonance imaging was performed at the end of week 1. We sought a better delineation of the occurrence and timing of clinical and electrographic seizures during selective head cooling. Twenty term infants are described. Eleven received chest compressions, all at pH <7. Upon admission, encephalopathy was characterized clinically as moderate (n = 13) or severe (n = 7), and by amplitude-integrated electroencephalography as moderate (n = 8), severe (n = 6), or indeterminate (n = 6). Clinical seizures (n = 18) were most prominent on day 1. Amplitude-integrated electroencephalography seizures (n = 9) were evident upon admission and on day 1 (n = 19), and were continuous between 24-36 hours (n = 9). Amplitude-integrated electroencephalography seizures were confirmed by routine electroencephalography. Magnetic resonance imaging was abnormal in nine infants, with predominantly bilateral involvement of the basal ganglia (n = 8). Magnesium was at

  2. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuss, M.; Markel, T.; Kramer, W.

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly,more » some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.« less

  3. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  4. 46 CFR 169.605 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false General. 169.605 Section 169.605 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical... engine cooling water temperature, exhaust cooling water temperature and engine lubricating oil pressure...

  5. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    PubMed Central

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with varying age, sex, body composition, and cold sensitivity characteristics. PMID:29593558

  6. Extension of fourier transform vibrational circular dichroism into the near-infrared region: continuous spectral coverage from 800 to 10 000 cm(-1).

    PubMed

    Cao, Xiaolin; Shah, Rekha D; Dukor, Rina K; Guo, Changning; Freedman, Teresa B; Nafie, Laurence A

    2004-09-01

    We report the first vibrational circular dichroism (VCD) spectra with continuous coverage from 800 cm(-1) in the mid-infrared (MIR) region to 10 000 cm(-1) in the near-infrared (NIR) region. This coverage is illustrated with MIR and NIR absorbance and VCD spectra of 2,2-dimethyl-dioxolane-4-methanol (DDM), alpha-pinene, and camphor that serve as calibration samples over this entire region. Commercially available, dual-source Fourier transform (FT) MIR and NIR VCD spectrometers were equipped with appropriate light sources, optics, and detectors, and were modified for dual-polarization-modulation (DPM) operation. The combination of liquid-nitrogen- and thermoelectric-cooled HgCdTe (MCT) detectors, as well as InGaAs and Germanium (Ge) detectors operating at room temperature, permitted collection of the desired absorbance and VCD spectra across the range of vibrational fundamental, combination band, and overtone frequencies. The spectra of DDM and alpha-pinene were measured as neat liquids and recorded for both enantiomers in the various spectral regions. Spectra for camphor were all measured in CCl(4) solution at a concentration of 0.6 M, except for the carbonyl-stretching region, where a more dilute concentration was used. The typical anisotropy ratios (g) of the three molecules were estimated with respect to their strongest VCD bands in each spectral region. It was found that for all three molecules in the spectral regions above 2000 cm(-1), anisotropy ratios are approximately the same order (10(-5)) of magnitude. However, in the MIR region, the typical anisotropy ratios are significantly different for the three molecules. This study demonstrates that with modern FT-VCD spectrometers modified for DPM operation, VCD spectra can be measured continuously across a wide spectral range from the MIR to nearly the visible region with an unsurpassed combination of signal-to-noise ratio and spectral resolution.

  7. Design of an Electric Propulsion System for SCEPTOR

    NASA Technical Reports Server (NTRS)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  8. Lamination cooling system

    DOEpatents

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  9. Heat pipe cooling of power processing magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I. G.; Chester, M.

    1979-01-01

    The constant demand for increased power and reduced mass has raised the internal temperature of conventionally cooled power magnetics toward the upper limit of acceptability. The conflicting demands of electrical isolation, mechanical integrity, and thermal conductivity preclude significant further advancements using conventional approaches. However, the size and mass of multikilowatt power processing systems may be further reduced by the incorporation of heat pipe cooling directly into the power magnetics. Additionally, by maintaining lower more constant temperatures, the life and reliability of the magnetic devices will be improved. A heat pipe cooled transformer and input filter have been developed for the 2.4 kW beam supply of a 30-cm ion thruster system. This development yielded a mass reduction of 40% (1.76 kg) and lower mean winding temperature (20 C lower). While these improvements are significant, preliminary designs predict even greater benefits to be realized at higher power. This paper presents the design details along with the results of thermal vacuum operation and the component performance in a 3 kW breadboard power processor.

  10. In-situ X-ray diffraction studies of the phase transformations and structural states of B2, R and B19′ phases in Ti{sub 49.5}Ni{sub 50.5} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostapenko, Marina G., E-mail: artifakt@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050; Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru

    2015-10-27

    The martensitic transformation, Debye–Waller factor, mean-square atomic displacements and the coefficient of thermal expansion on cooling of the Ti{sub 49.5}Ni{sub 50.5} shape memory alloy were examined using in-situ X-ray diffraction. It was revealed B2→R (T{sub R} ≡ T = 273 ± 10 K) along with B2→B19’ (M{sub s} ≡ T = 273 ± 10 K) transitions occur. It was found that Debye–Waller factor and mean-square displacement of B2 phase undergo significant increase as functions of temperature when phase transition B2→R and B2→B19’ take place. The analysis of the thermal expansion coefficient of the B2 phase indicates that the value of a increasesmore » almost linearly while cooling.« less

  11. Microdomain Formation, Oxidation, and Cation Ordering in LaCa 2Fe 3O 8+y

    DOE PAGES

    Price, Patrick M.; Browning, Nigel D.; Butt, Darryl P.

    2015-03-23

    The compound LaCa 2Fe 3O 8+y, also known as the Grenier phase, is known to undergo an order-disorder transformation (ODT) at high temperatures. Oxidation has been observed when the compound is cooled in air after the ODT. In this study, we have synthesized the Grenier compound in air using traditional solid state reactions and investigated the structure and composition before and after the ODT. Thermal analysis showed that the material undergoes an order-disorder transformation in both oxygen and argon atmospheres with dynamic, temperature dependent, oxidation upon cooling. Results from scanning transmission electron microscopy (STEM) suggest that the Grenier phase hasmore » preferential segregation of Ca and La on the two crystallographic A-sites before the ODT, but a random distribution above the ODT temperature. Furthermore, STEM images suggest the possibility that oxygen excess may exist in La-rich regions within microdomains rather than at microdomain boundaries.« less

  12. Near-wall serpentine cooled turbine airfoil

    DOEpatents

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  13. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

    PubMed Central

    Pei, Zhipu; Ju, Dongying

    2017-01-01

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779

  14. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  15. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses.

    PubMed

    Pei, Zhipu; Ju, Dongying

    2017-04-17

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.

  16. Further insights into the kinetics of thermal decomposition during continuous cooling.

    PubMed

    Liavitskaya, Tatsiana; Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2017-07-26

    Following the previous work (Phys. Chem. Chem. Phys., 2016, 18, 32021), this study continues to investigate the intriguing phenomenon of thermal decomposition during continuous cooling. The phenomenon can be detected and its kinetics can be measured by means of thermogravimetric analysis (TGA). The kinetics of the thermal decomposition of ammonium nitrate (NH 4 NO 3 ), nickel oxalate (NiC 2 O 4 ), and lithium sulfate monohydrate (Li 2 SO 4 ·H 2 O) have been measured upon heating and cooling and analyzed by means of the isoconversional methodology. The results have confirmed the hypothesis that the respective kinetics should be similar for single-step processes (NH 4 NO 3 decomposition) but different for multi-step ones (NiC 2 O 4 decomposition and Li 2 SO 4 ·H 2 O dehydration). It has been discovered that the differences in the kinetics can be either quantitative or qualitative. Physical insights into the nature of the differences have been proposed.

  17. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christien, F., E-mail: frederic.christien@univ-nantes.fr; Telling, M.T.F.; Department of Materials, University of Oxford, Parks Road, Oxford

    2013-08-15

    Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction datamore » has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)« less

  18. Physiologic and thermal responses of male and female patients with multiple sclerosis to head and neck cooling

    NASA Technical Reports Server (NTRS)

    Ku, Y. T.; Montgomery, L. D.; Wenzel, K. C.; Webbon, B. W.; Burks, J. S.

    1999-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. The objective of this study was to determine the thermal and physiologic responses of patients with multiple sclerosis to short-term maximal head and neck cooling. A Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used to cool the head and neck regions of 24 female and 26 male patients with multiple sclerosis in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 degrees C), were cooled for 30 min by the liquid cooling garment, which was operated at its maximum cooling capacity. Oral, right, and left ear temperatures and cooling system parameters were logged manually every 5 min. Forearm, calf, chest, and rectal temperatures, heart rate, and respiration rate were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. This protocol was performed during the winter and summer to investigate the seasonal differences in the way patients with multiple sclerosis respond to head and neck cooling. No significant differences were found between the male and female subject group's mean rectal or oral temperature responses during any phase of the experiment. The mean oral temperature decreased significantly (P < 0.05) for both groups approximately 0.3 degrees C after 30 min of cooling and continued to decrease further (approximately 0.1-0.2 degrees C) for a period of approximately 15 min after removal of the cooling helmet. The mean rectal temperatures decreased significantly (P < 0.05) in both male and female subjects in the winter studies (approximately 0.2-0.3 degrees C) and for the male subjects during the summer test (approximately 0.2 degrees C). However, the rectal temperature of the female subjects did not change significantly during any phase of the summer test. These data indicate that head and neck cooling may, in general, be used to reduce the oral and body temperatures of both male and female patients with multiple sclerosis by the approximate amount needed for symptomatic relief as shown by other researchers. However, thermal response of patients with multiple sclerosis may be affected by gender and seasonal factors, which should be considered in the use of liquid cooling therapy.

  19. Does the Chemothermal Instability Have Any Role in the Fragmentation of Primordial Gas

    NASA Astrophysics Data System (ADS)

    Dutta, Jayanta

    2015-10-01

    The collapse of the primordial gas in the density regime ˜108-1010 cm-3 is controlled by the three-body H2 formation process, in which the gas can cool faster than free-fall time—a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.

  20. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process

    NASA Astrophysics Data System (ADS)

    Sudha, C.; Srinivasan, K.

    2014-09-01

    Polymorphic nucleation behavior of pharmaceutical solid paracetamol has been investigated by performing swift cooling crystallization process. Saturated aqueous solution prepared at 318 K was swiftly cooled to 274 K in steps of every 1 K in the temperature range from 274 K to 313 K with uniform stirring of 100 rpm. The resultant supersaturation generated in the mother solution favours the nucleation of three different polymorphs of paracetamol. Lower supersaturation region σ=0.10-0.83 favours stable mono form I; the intermediate supersaturation region σ=0.92-1.28 favours metastable ortho form II and the higher supersaturation region σ=1.33-1.58 favours unstable form III polymorphic nucleation. Depending upon the level of supersaturation generated during swift cooling process and the corresponding solubility limit and metastable zone width (MSZW) of each polymorph, the nucleation of a particular polymorph occurs in the system. The type of polymorphs was identified by in-situ optical microscopy and the internal structure was confirmed by Powder X-ray diffraction (PXRD) study. By this novel approach, the preferred nucleation regions of all the three polymorphs of paracetamol are optimized in terms of different cooling ranges employed during the swift cooling process. Also solution mediated polymorphic transformations from unstable to mono and ortho to mono polymorphs have been studied by in-situ.

  1. Characterization of the kinetic arrest of martensitic transformation in Ni45Co5Mn36.8In13.2 melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Lino-Zapata, F. M.; Yan, H. L.; Ríos-Jara, D.; Sánchez Llamazares, J. L.; Zhang, Y. D.; Zhao, X.; Zuo, L.

    2018-01-01

    The kinetic arrest (KA) of martensitic transformation (MT) observed in Ni45Co5Mn36.8In13.2 melt-spun ribbons has been studied. These alloy ribbons show an ordered columnar-like grain microstructure with the longer grain axis growing perpendicular to ribbon plane and transform martensitically from a single austenitic (AST) parent phase with the L21-type crystal structure to a monoclinic incommensurate 6 M modulated martensite (MST). Results show that the volume fraction of austenite frozen into the martensitic matrix is proportional to the applied magnetic field. A fully arrest of the structural transition is found for a magnetic field of 7 T. The metastable character of the non-equilibrium field-cooled glassy state was characterized by introducing thermal and magnetic field fluctuations or measuring the relaxation of magnetization. The relaxation of magnetization from a field-cooled kinetically arrested state at 5 and 7 T follows the Kohlrausch-Williams-Watts (KWW) stretched exponential function with a β exponent around 0.95 indicating the weak metastable nature of the system under the strong magnetic fields. The relationship between the occurrence of exchange bias and the frozen fraction of AST into the MST matrix was studied.

  2. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5 C below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100 C above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  3. Effect of microalloying elements on microstructure and properties of quenched and tempered constructional steel

    NASA Astrophysics Data System (ADS)

    Ma, Qingshen; Huang, Leqing; Di, Guobiao; Wang, Yanfeng; Yang, Yongda; Ma, Changwen

    2017-09-01

    The effects of microalloying elements Nb, V and Ti on microstructure and properties of quenched and tempered steel were studied. Results showed that the addition of microalloying elements led to the formation of bainite and increased strength, while the austenization and ferrite transformation temperature was barely affected, i.e. 10°C. Microalloying elements shortened the incubation time for bainite transformation by refinement of austenite grain, and decreased the hardenability by forming carbides and therefore reducing the carbon content of super-cooled austenite. Either of them promoted the bainite transformation. The better tempering stability was ascribed to the as hot-rolled bainite microstructure and secondary carbide precipitation during tempering.

  4. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOEpatents

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  5. Real-time atomistic observation of structural phase transformations in individual hafnia nanorods

    DOE PAGES

    Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...

    2017-05-12

    High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less

  6. Modelling of Strains During SAW Surfacing Taking into Heat of the Weld in Temperature Field Description and Phase Transformations

    NASA Astrophysics Data System (ADS)

    Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.

    2017-08-01

    In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.

  7. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  8. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  9. 40 CFR 463.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact Cooling and... one plastics molding and forming process that uses contact cooling and heating water is the sum of the... heating water process and comes in contact with the plastic product over a period of one year. ...

  10. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  11. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  12. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  13. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tower used to remove heat from industrial processes, chemical reactions, or plants producing electrical... treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and...

  14. 40 CFR 463.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Contact Cooling and... one plastics molding and forming process that uses contact cooling and heating water is the sum of the... heating water process and comes in contact with the plastic product over a period of one year. ...

  15. Study on sampling of continuous linear system based on generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  16. 40 CFR 423.16 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used for transformer fluid. (b) The pollutants discharged in chemical metal cleaning wastes shall not... 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance... priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which...

  17. 40 CFR 423.16 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used for transformer fluid. (b) The pollutants discharged in chemical metal cleaning wastes shall not... 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance... priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which...

  18. 40 CFR 423.16 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used for transformer fluid. (b) The pollutants discharged in chemical metal cleaning wastes shall not... 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance... priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which...

  19. 40 CFR 423.16 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used for transformer fluid. (b) The pollutants discharged in chemical metal cleaning wastes shall not... 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance... priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which...

  20. 40 CFR 423.16 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... used for transformer fluid. (b) The pollutants discharged in chemical metal cleaning wastes shall not... 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance... priority pollutants in paragraph (d)(1) of this section may be determined by engineering calculations which...

  1. Biomedical Application of Aerospace Personal Cooling Systems

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and recovery periods.

  2. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EMmore » radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.« less

  3. Wavelet transforms as solutions of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweig, G.

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuousmore » wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.« less

  4. Mechanisms of Precipitation of Different Generations of Gamma-Prime Precipitates During Continuous Cooling of a Nickel Base Superalloy (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    processed through the powder metallurgy route and develops a polycrystalline microstructure consisting of γ grains with nanoscale γ’ precipitates...on the cooling rate employed. Faster cooling rates, such as those encountered during water quenching the alloy from the high temperature single γ...and the first generation γ’ precipitates. Subsequently on quenching to a lower temperature a second generation of γ’ precipitates are formed that are

  5. Effects of a Novel Cooling Shirt on Various Physical Performance Parameters in Elite Athletes

    DTIC Science & Technology

    2015-06-03

    operations and sport matches. The primary purpose of this short-term field observation was to determine the effects of a technical cooling shirt and...limit these individuals’ ability to sustain and satisfactorily continue a high level of performance required during intense ground operations and sport ...specially cut-to-size cryotherapy material in place. The subjects were then counter-balanced, with half of the subjects “loaded” with the cooling material

  6. A Study of the Influence of Thermomechanical Controlled Processing on the Microstructure of Bainite in High Strength Plate Steel

    NASA Astrophysics Data System (ADS)

    Liang, Xiaojun; DeArdo, Anthony J.

    2014-10-01

    Steels with compositions that are hot rolled and cooled to exhibit high strength and good toughness often require a bainitic microstructure. This is especially true for plate steels for linepipe applications where strengths in excess of 690 MPa (100 ksi) are needed in thicknesses between approximately 6 and 30 mm. To ensure adequate strength and toughness, the steels should have adequate hardenability (C. E. >0.50 and Pcm >0.20), and are thermomechanically controlled processed, i.e., controlled rolled, followed by interrupted direct quenching to below the Bs temperature of the pancaked austenite. Bainite formed in this way can be defined as a polyphase mixture comprised a matrix phase of bainitic ferrite plus a higher carbon second phase or micro-constituent which can be martensite, retained austenite, or cementite, depending on circumstances. This second feature is predominately martensite in IDQ steels. Unlike pearlite, where the ferrite and cementite form cooperatively at the same moving interface, the bainitic ferrite and MA form in sequence with falling temperature below the Bs temperature or with increasing isothermal holding time. Several studies have found that the mechanical properties may vary strongly for different types of bainite, i.e., different forms of bainitic ferrite and/or MA. Thermomechanical controlled processing (TMCP) has been shown to be an important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes its control through disciplined processing especially important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the effects of austenite conditioning and cooling rates on the bainitic phase transformation, i.e., the formation of bainitic ferrite plus MA. Specimens were compared after transformation from recrystallized, equiaxed austenite to deformed, pancaked austenite, which were followed by seven different cooling rates ranging between 0.5 K/s (0.5 °C/s) and 40 K/s (40 °C/s). The CCT curves showed that the transformation behaviors and temperatures varied with starting austenite microstructure and cooling rate, resulting in different final microstructures. The EBSD results and the thermodynamics and kinetics analyses show that in low carbon bainite, the nucleation rate is the key factor that affects the bainitic ferrite morphology, size, and orientation. However, the growth of bainite is also quite important since the bainitic ferrite laths apparently can coalesce or coarsen into larger units with slower cooling rates or longer isothermal holding time, causing a deterioration in toughness. This paper reviews the formation of bainite in this steel and describes and rationalizes the final microstructures observed, both in terms of not only formation but also for the expected influence on mechanical properties.

  7. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, C.D Jr.

    1983-08-08

    The invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  8. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, Jr., Carl D.

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  9. Effect of Thermocycling on the Structure of Martensite and Kinetics of Martensitic Transformation in Alloy Fe - 30% Ni - 3% Pd

    NASA Astrophysics Data System (ADS)

    Yildiz, Yasin Gokturk; Yildiz, Gokcen Dikici

    2017-11-01

    The methods of scanning electron microscopy, differential scanning calorimetry and x-ray diffraction are used to study the morphological and thermal characteristics of cooling-induced martensite in alloy Fe - 30% Ni - 3% Pd. It is shown that the kinetics of the martensitic transformation is athermal and the morphology is lamellar. The mean values of the parameters of the austenite and martensite lattices are 0.35704 and 0.28614 nm respectively. The thermocycling leaves the points A s and A f invariable.

  10. Effect of Cooling Rate on Microstructure and Centerline Segregation of a High-Strength Steel for Shipbuilding

    NASA Astrophysics Data System (ADS)

    Ye, Qibin; Liu, Zhenyu; Wang, Guodong

    Ultra-fast cooling (UFC) has been increasingly applied in industry, but accompanying with great changes of rolling strategy. It is therefore of importance to evaluate the characteristics of steels produced by UFC as compared to those processed by conventional accelerated cooling (ACQ. The present study examines the microstructure through thickness and centerline segregation of solute elements between UFC and ACC steels, both of which were rolled at a final rolling temperature at around non-recrystallized temperature. UFC steel showed the pronounced microstructural transition from lath-type bainite with Widmanstätten ferrite at subsurface to acicular ferrite in an average size of 5 µm dispersed with degenerate pearlite in the interior. In contrast, ACC steel had the homogeneous microstructure through the thickness, which was distinguished with coarser polygonal ferrite grains and pearlite nodules. Moreover, the centerline segregation was significantly suppressed by applying UFC at a higher cooling rate of 40 K/s compared to 17K/s for ACC steel. The significant differences in the microstructure and centerline segregation caused by various cooling rate is discussed from the view of γ→α transformation.

  11. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS...

  12. The 1- to 4-K refrigeration techniques for cooling masers on a beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1986-01-01

    The status of technology is reported for various 1- to 4-K commercially available refrigeration systems capable of producing 1.5-K refrigeration to cool masers and superconducting cavity oscillators on the proposed beam waveguide antenna. The design requirements for the refrigeration system and the cryostat are presented. A continuously operating evaporation refrigerator that uses capillary tubing to provide a continuous, self-regulating flow of helium at approximately 1.5 K has been selected as the first refrigerator design for the beam waveguide antenna.

  13. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.

    PubMed

    Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.

  14. Effects of milrinone on left ventricular cardiac function during cooling in an intact animal model.

    PubMed

    Tveita, Torkjel; Sieck, Gary C

    2012-08-01

    Due to adverse effects of β-receptor agonists reported when applied during hypothermia, left ventricular (LV) cardiac effects of milrinone, a PDE3 inhibitor which mode of action is deprived the sarcolemmal β-receptor-G protein-PKA system, was tested during cooling to 15 °C. Sprague Dawley rats were instrumented to measure left ventricular (LV) pressure-volume changes using a Millar pressure-volume conductance catheter. Core temperature was reduced from 37 to 15 °C (60 min) using internal and external heat exchangers. Milrinone, or saline placebo, was given as continuous i.v. infusions for 30 min at 37 °C and during cooling. In normothermic controls continuous milrinone infusion for 90 min elevated cardiac output (CO) and stroke volume (SV) significantly. Significant differences in cardiac functional variables between the milrinone group and the saline control group during cooling to 15 °C were found: Compared to saline treated animals throughout cooling from 33 to 15 °CSV was significantly elevated in milrinone animals, the index of LV isovolumic relaxation, Tau, was significantly better preserved, and both HR and CO were significantly higher from 33 to 24 °C. Likewise, during cooling between 33 and 28 °C also LVdP/dt(max) was significantly higher in the milrinone group. Milrinone preserved LV systolic and diastolic function at a significantly higher level than in saline controls during cooling to 15 °C. In essential contrast to our previous results when using β-receptor agonists during hypothermia, the present experiment demonstrates the positive inotropic effects of milrinone on LV cardiac function during cooling to 15 °C. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Why magnetite is not the only indicator of past rainfall in the Chinese loess plateau?

    NASA Astrophysics Data System (ADS)

    Guo, Xuelian; Banerjee, Subir K.; Wang, Ronghua; Zhao, Guoyong; Song, Hong; Lü, Bin; Li, Qian; Liu, Xiuming

    2018-03-01

    The study investigates the magnetic mineralogy of paleosol S5 from Xifeng (XF), Linyou (LY) and Baoji (BJ) sections with increasing annual precipitation from north to the south on the Chinese Loess Plateau. Paleosol S5 samples from these three localities are further prepared as magnetic extracts and separation residues. Low temperature magnetic measurements including field cooled and zero field cooled (FC/ZFC) remanence, in-phase magnetic susceptibility, thermal remanent magnetization and room temperature saturation isothermal remanence magnetization (RTSIRM), with X-ray diffraction measurements are carried out for all magnetic extracts and separation residues samples. The asymmetric rounded `hump' in cooling curves on RTSIRM and the `tilted' Verwey transition on ZFC/FC curves suggest that partially oxidized magnetite is the dominant magnetic contributor, not pure maghemite or magnetite. Furthermore, The Verwey transitions on cooling curves slightly decrease and the increased slope of `tilted' Verwey transition on ZFC remanence curves show that the degree of oxidation of magnetite between localities increases in the order XF-LY-BJ. Hard isothermal remanent magnetization, X-ray diffraction data and the difference of magnetization in warming curves of RTSIRM suggest that both hematite concentration in magnetic extracts and goethite concentration in separation residues increase from XF to BJ. Frequency dependent susceptibility and ZFC/FC curves show that BJS5 layer formed under high paleoprecipitation has less superparamagnetic (SP) but more single domain to pseudo-single domain particles, because SP maghemite was dissolved and transformed into goethite by temporary water-logging. The increase in hematite concentration is interpreted as due to SP maghemite oxidation or original goethite dehydration within dry soil environment. Therefore, transformation of maghemite to goethite in waterlogged phases of the S5 paleosol led to the loss of magnetization.

  16. The mechanism of ΔT variation in coupled heat transfer and phase transformation for elastocaloric materials and its application in materials characterization

    NASA Astrophysics Data System (ADS)

    Qian, Suxin; Yuan, Lifen; Yu, Jianlin; Yan, Gang

    2017-11-01

    Elastocaloric cooling serves as a promising environmental friendly candidate with substantial energy saving potential as the next generation cooling technology for air-conditioning, refrigeration, and electronic cooling applications. The temperature change (ΔT) of elastocaloric materials is a direct measure of their elastocaloric effect, which scales proportionally with the device cooling performance based on this phenomenon. Here, the underlying physics between the measured ΔT and the adiabatic temperature span ΔTad is revealed by theoretical investigation of the simplified energy equation describing the coupled simultaneous heat transfer and phase transformation processes. The revealed relation of ΔT depends on a simple and symmetric non-linear function, which requires the introduction of an important dimensionless number Φ, defined as the ratio between convective heat transfer energy and variation of internal energy of the material. The theory was supported by more than 100 data points from the open literature for four different material compositions. Based on the theory, a data sampling and reduction technique was proposed to assist future material characterization studies. Instead of approaching ΔTad by applying an ultrafast strain rate in the old way, the proposed prediction of ΔTad is based on the non-linear least squares fitting method with the measured ΔT dataset at different strain rates within the moderate range. Numerical case studies indicated that the uncertainty associated with the proposed method is within ±1 K if the sampled data satisfied two conditions. In addition, the heat transfer coefficient can be estimated as a by-product of the least squares fitting method proposed in this study.

  17. Why magnetite is not the only indicator of past rainfall in the Chinese Loess Plateau?

    NASA Astrophysics Data System (ADS)

    Guo, Xuelian; Banerjee, Subir K.; Wang, Ronghua; Zhao, Guoyong; Song, Hong; Lü, Bin; Li, Qian; Liu, Xiuming

    2018-06-01

    This study investigates the magnetic mineralogy of palaeosol S5 from Xifeng (XF), Linyou (LY) and Baoji (BJ) sections with increasing annual precipitation from north to the south on the Chinese Loess Plateau. Palaeosol S5 samples from these three localities are further prepared as magnetic extracts and separation residues. Low-temperature magnetic measurements including field cooled and zero field cooled (FC/ZFC) remanence, in-phase magnetic susceptibility, thermal remanent magnetization and room temperature saturation isothermal remanence magnetization (RTSIRM), with X-ray diffraction measurements are carried out for all magnetic extracts and separation residues samples. The asymmetric rounded `hump' in cooling curves on RTSIRM and the `tilted' Verwey transition on ZFC/FC curves suggest that partially oxidized magnetite is the dominant magnetic contributor, not pure maghemite or magnetite. Furthermore, The Verwey transitions on cooling curves slightly decrease and the increased slope of `tilted' Verwey transition on ZFC remanence curves show that the degree of oxidation of magnetite between localities increases in the order XF-LY-BJ. Hard isothermal remanent magnetization, X-ray diffraction data and the difference of magnetization in warming curves of RTSIRM suggest that both hematite concentration in magnetic extracts and goethite concentration in separation residues increase from XF to BJ. Frequency-dependent susceptibility and ZFC/FC curves show that BJS5 layer formed under high palaeoprecipitation has less superparamagnetic (SP) but more single domain to pseudo-single domain particles, because SP maghemite was dissolved and transformed into goethite by temporary waterlogging. The increase in hematite concentration is interpreted as due to SP maghemite oxidation or original goethite dehydration within dry soil environment. Therefore, transformation of maghemite to goethite in waterlogged phases of the S5 palaeosol led to the loss of magnetization.

  18. Analysis of thermomechanical states in single-pass GMAW surfaced steel element

    NASA Astrophysics Data System (ADS)

    Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof

    2017-03-01

    In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.

  19. High Energy 2-Micron Laser Developments

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    A master oscillator power amplifier, high energy Q-switched 2-micron laser system has been recently demonstrated. The laser and amplifiers are all designed in side-pumped rod configuration, pumped by back-cooled conductive packaged GaAlAs diode laser arrays. This 2-micron laser system provides nearly transform limited beam quality.

  20. Monsoonal upwelling in the western Arabian Sea since the middle Miocene

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Zhang, Y.

    2017-12-01

    The Asian monsoon has long been argued to be a product of the Himalaya-Tibetan Plateau, and simulation experiments have confirmed the key role of the Himalaya-Tibetan Plateau in transforming regional atmospheric and oceanic circulations. However, temporal constraints on the strengthening of the Asian monsoon inferred from foraminifer isotopic and faunal data and terrestrial climatic and ecological records are inconsistent with each other, which has obscured the tectonic-climatic linkage. In particular, discriminating the post-middle Miocene global cooling from the monsoon upwelling cooling is critical, but poorly understood due to the lack of adequate constraints for monsoonal upwelling. Here we present new middle to late Miocene biomarker-based reconstructions of sea-surface temperature (SST) for the western Arabian Sea. Our new SSTs capture a long-term ocean cooling since ca. 14.8 Ma and a major drop in SST in the period 11-10 Ma after which the SSTs reached similar values as the Holocene. The new SST record is consistent with planktonic foraminifer, siliceous biota, and geochemical tracer studies, suggestive of ocean cooling and high productivity associated with monsoonal upwelling. The 11-10 Ma ocean cooling is not clearly expressed in other tropical oceans, indicating that the ocean cooling in the western Arabian Sea is not a simple reflection of global cooling. We interpret the 11-10 Ma ocean cooling as representing the establishment of monsoonal upwelling in the western Arabian Sea, triggered by strong cyclonic activities as a result of the Neogene outward expansion of the Himalaya-Tibetan Plateau.

  1. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost formore » maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.« less

  2. Local climate on and around a glacier - a case study of Storglaciären

    NASA Astrophysics Data System (ADS)

    Konya, K.; Hock, R.

    2004-12-01

    It is sometimes necessary to transform the climate data from a station to another station on a glacier. However, it is generally not so easy to do so since a glacier has its own specific microclimate. At Storglaciären in the summer 2003, air temperature and wind speed were measured at two weather stations set up near the center of the glacier and at the ridge of the bordering valley wall 300 m above the glacier surface. Additional continuous measurements are made at a weather station at Tarfala Research Station, which is located 1 km down glacier (1135 m a.s.l.). The result show a slight temperature difference between ridge and glacier stations because of the cooling effect by the glacier. Thus, temperature lapse rate is different. Wind speed on the ridge was higher than the other two in most cases, and the difference was largest during periods of high wind speed. The correlation between wind speed at the ridge and the other sites is weak.

  3. Mechanisms Related to Different Generations of gamma’ Precipitation During Continuous Cooling of a Nickel Base Superalloy

    DTIC Science & Technology

    2012-04-01

    strongly depen- dent on the cooling rate employed. Faster cooling rates, such as those encountered during water quenching the alloy from the high temperature...precipitates. Subsequently on quenching to a lower temperature a second generation of c0 precipitates are formed that are considerably smaller in size and...annealing after rapid quenching of the alloy from the high temperature single c phase field. Therefore, typically these studies have focused on amonomodal

  4. Operational Characteristics of Four Commercially Available Personal Cooling Vests

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests, and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 11 male and 10 female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.21 C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a URI Inc. Biolog ambulatory monitor. In general, the male and female subjects' rectal and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx.0.2 - 0.5 C, for both men and women wearing any of the four different garments. The corresponding car temperatures were significantly (P<0.05) decreased approx.0.2 - 0.3 C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and recovery periods. These results show that all vest configurations elicit a similar thermal response in both male and female subject groups. However, subject population variance was rather large and may have masked differences between the vests. One vest may prove more effective than another for a given individual, and experience is the only means of determining this.

  5. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  6. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1996-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5.degree. C. below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100.degree. C. above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  7. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  8. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  9. Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Young; Fridman, Alexander

    2012-06-30

    The overall objective of the present work was to develop a new scale-prevention technology by continuously precipitating and removing dissolved mineral ions (such as calcium and magnesium) in cooling water while the COC could be doubled from the present standard value of 3.5. The hypothesis of the present study was that if we could successfully precipitate and remove the excess calcium ions in cooling water, we could prevent condenser-tube fouling and at the same time double the COC. The approach in the study was to utilize pulse spark discharges directly in water to precipitate dissolved mineral ions in recirculating coolingmore » water into relatively large suspended particles, which could be removed by a self-cleaning filter. The present study began with a basic scientific research to better understand the mechanism of pulse spark discharges in water and conducted a series of validation experiments using hard water in a laboratory cooling tower. Task 1 of the present work was to demonstrate if the spark discharge could precipitate the mineral ions in water. Task 2 was to demonstrate if the selfcleaning filter could continuously remove these precipitated calcium particles such that the blowdown could be eliminated or significantly reduced. Task 3 was to demonstrate if the scale could be prevented or minimized at condenser tubes with a COC of 8 or (almost) zero blowdown. In Task 1, we successfully completed the validation study that confirmed the precipitation of dissolved calcium ions in cooling water with the supporting data of calcium hardness over time as measured by a calcium ion probe. In Task 2, we confirmed through experimental tests that the self-cleaning filter could continuously remove precipitated calcium particles in a simulated laboratory cooling tower such that the blowdown could be eliminated or significantly reduced. In addition, chemical water analysis data were obtained which were used to confirm the COC calculation. In Task 3, we conducted a series of heat transfer fouling tests using a condenser heat exchanger in the laboratory cooling tower, from which we confirmed that the plasma water treatment technology could prevent or significantly mitigate mineral foulings in condenser tubes when compared with the no-treatment case. With the completion of the present work, a cooling water treatment technology using pulse spark discharges is currently ready for field-validation tests. The plasma water treatment technology is a true mechanical water softener with almost no maintenance, which continuously converts hard water to soft water spending a relatively small amount of energy. Such a mechanical water softener could find wide-spread applications to solve hard water problems both in industry and at home.« less

  10. Experimental heat treatment of silcrete implies analogical reasoning in the Middle Stone Age.

    PubMed

    Wadley, Lyn; Prinsloo, Linda C

    2014-05-01

    Siliceous rocks that were not heated to high temperatures during their geological formation display improved knapping qualities when they are subjected to controlled heating. Experimental heat treatment of South African silcrete, using open fires of the kind used during the Middle Stone Age, shows that the process needed careful management, notwithstanding recent arguments to the contrary. Silcrete blocks fractured when heated on the surface of open fires or on coal beds, but were heated without mishap when buried in sand below a fire. Three silcrete samples, a control, a block heated underground with maximum temperature between 400 and 500 °C and a block heated in an open fire with maximum temperature between 700 and 800 °C, were analysed with X-ray powder diffraction (XRD), X-ray fluorescence (XRF), optical microscopy, and both Fourier transform infrared (FTIR) and Raman spectroscopy. The results show that the volume expansion during the thermally induced α- to β-quartz phase transformation and the volume contraction during cooling play a major role in the heat treatment of silcrete. Rapid heating or cooling through the phase transformation at 573 °C will cause fracture of the silcrete. Successful heat treatment requires controlling surface fire temperatures in order to obtain the appropriate underground temperatures to stay below the quartz inversion temperature. Heat treatment of rocks is a transformative technology that requires skilled use of fire. This process involves analogical reasoning, which is an attribute of complex cognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 40 CFR 125.89 - As the Director, what must I do to comply with the requirements of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities... requirements must be included in each permit: (1) Cooling water intake structure requirements. At a minimum...

  12. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Daisuke; R and D Center, Taiheiyo Cement Corporation, Chiba 285-8655; Takeda, Seiya

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model wasmore » derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split-atom model. • The MPF method is used to confirm the validity of the model. • The phase transition is accompanied by orientational disordering of SO{sub 4} tetrahedra.« less

  13. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  14. Experimental und numerical investigations on cooling efficiency of Air-Mist nozzles on steel during continuous casting

    NASA Astrophysics Data System (ADS)

    Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.

    2016-07-01

    Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.

  15. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, E.F.; You, Y.; Roesler, D.J.

    This paper proposes a new model for three-phase transformers with three legs with and without tank under DC bias based on electric and magnetic circuit theory. For the calculation of the nonsinusoidal no-load currents, a combination of time and frequency domains is used. The analysis shows that (1) asymmetric three-phase transformers with three legs generate magnetizing currents with triplen harmonics not being of the zero-sequence type. (2) The wave shapes of the three magnetizing currents of (asymmetric) transformers are dependent on the phase sequence. (3) The magnetic history of transformer magnetization -- due to residual magnetization and hysteresis of themore » tank -- cannot be ignored if a DC bias is present and the magnetic influence of the tank is relatively strong, e.g., for oil-cooled transformers. (4) Symmetric three-phase transformers with three legs generate no-load currents without triplen harmonics. (5) The effects of DC bias currents (e.g., reactive power demand, harmonic distortion) can be suppressed employing symmetric three-phase transformers with three legs including tank. Measurements corroborate computational results; thus this nonlinear model is valid and accurate.« less

  16. Synthesis of a control model for a liquid nitrogen cooled, closed circuit, cryogenic nitrogen wind tunnel and its validation

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Goglia, G. L.

    1979-01-01

    The details of the efforts to synthesize a control-compatible multivariable model of a liquid nitrogen cooled, gaseous nitrogen operated, closed circuit, cryogenic pressure tunnel are presented. The synthesized model was transformed into a real-time cryogenic tunnel simulator, and this model is validated by comparing the model responses to the actual tunnel responses of the 0.3 m transonic cryogenic tunnel, using the quasi-steady-state and the transient responses of the model and the tunnel. The global nature of the simple, explicit, lumped multivariable model of a closed circuit cryogenic tunnel is demonstrated.

  17. Ultralow-fatigue shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  18. Crystallization Behavior and Heat Transfer of Fluorine-Free Mold Fluxes with Different Na2O Concentration

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    2016-08-01

    In this study, the crystallization behavior and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O fluorine-free mold fluxes with different Na2O contents (5 to 11 mass pct) were studied using single/double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that crystallization temperature increased and incubation time shortened with the increase of Na2O concentration, indicating an enhanced crystallization tendency. The crystallization process of mold fluxes in the temperature field simulating the casting condition was also investigated using DHTT. X-ray diffraction (XRD) analysis of the quenched mold fluxes showed that the dominant phase changed from CaSiO3 to Ca11Si4B2O22 with the increasing concentration of Na2O. The heat transfer examined by IET showed that the increase of Na2O concentration reduced the responding heat flux when Na2O was lower than 9 mass pct but the further increase of Na2O to 11 mass pct enhanced the heat flux. The correlation between crystallinity and heat transfer was discussed in terms of crystallization tendency and crystal morphology.

  19. Nozzle cooling of hot surfaces with various orientations

    NASA Astrophysics Data System (ADS)

    Ondrouskova, Jana; Luks, Tomas; Horsky, Jaroslav

    2012-04-01

    The aim of this research is an investigation of hot surface orientation influence on heat transfer during cooling by a nozzle. Two types of nozzles were used for the experiments (air-mist nozzle and hydraulic nozzle). A test plate was cooled in three positions - top, side and bottom position. The aim was to simulate a cooling situation in the secondary zone of a continuous casting machine. Temperature was measured in seven locations under the cooled surface by thermocouples. These data were used for an inverse heat conduction problem and then boundary conditions were computed. These boundary conditions are represented by surface temperature, heat transfer coefficient and heat flux. Results from an inverse calculation were compared in each position of thermocouples separately. The total cooling intensity was specified for all configurations of nozzles and test plate orientation. Results are summarised in a graphical and numerical format.

  20. Thermographic venous blood flow characterization with external cooling stimulation

    NASA Astrophysics Data System (ADS)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  1. A stress-induced phase transition model for semi-crystallize shape memory polymer

    NASA Astrophysics Data System (ADS)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  2. Structural transition in sputter-deposited amorphous germanium films by aging at ambient temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okugawa, M.; Nakamura, R., E-mail: nakamura@mtr.osakafu-u.ac.jp; Numakura, H.

    The structure of amorphous Ge (a-Ge) films prepared by sputter-deposition and the effects of aging at ambient temperature and pressure were studied by pair-distribution-function (PDF) analysis from electron scattering and molecular dynamics simulations. The PDFs of the as-deposited and aged samples for 3–13 months showed that the major peaks for Ge-Ge bonds decrease in intensity and broaden with aging for up to 7 months. In the PDFs of a-Ge of molecular dynamics simulation obtained by quenching liquid at different rates, the major peak intensities of a slowly cooled model are higher than those of a rapidly cooled model. Analyses onmore » short- and medium-range configurations show that the slowly cooled model includes a certain amount of medium-range ordered (MRO) clusters, while the rapidly cooled model includes liquid-like configurations rather than MRO clusters. The similarity between experimental and computational PDFs implies that as-deposited films are similar in structure to the slowly cooled model, whereas the fully aged films are similar to the rapidly cooled model. It is assumed that as they undergo room-temperature aging, the MRO clusters disintegrate and transform into liquid-like regions in the same matrix. This transition in local configurations is discussed in terms of instability and the non-equilibrium of nanoclusters produced by a vapor-deposition process.« less

  3. Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Sudeep Kumar; Ghosh, Parthasarathi

    2017-02-01

    The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.

  4. PIPER Continuous Adiabatic Demagnetization Refrigerator

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  5. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  6. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered to participating and non-active teachers this fall. This paper will report the results of all these evaluation methods and will draw conclusions about the success of the S'COOL project.

  7. Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming

    NASA Astrophysics Data System (ADS)

    Kugele, Daniel; Dörr, Dominik; Wittemann, Florian; Hangs, Benjamin; Rausch, Julius; Kärger, Luise; Henning, Frank

    2017-10-01

    The combination of thermoforming processes of continuous-fiber reinforced thermoplastics and injection molding offers a high potential for cost-effective use in automobile mass production. During manufacturing, the thermoplastic laminates are initially heated up to a temperature above the melting point. This is followed by continuous cooling of the material during the forming process, which leads to crystallization under non-isothermal conditions. To account for phase change effects in thermoforming simulation, an accurate modeling of the crystallization kinetics is required. In this context, it is important to consider the wide range of cooling rates, which are observed during processing. Consequently, this paper deals with the experimental investigation of the crystallization at cooling rates varying from 0.16 K/s to 100 K/s using standard differential scanning calorimetry (DSC) and fast scanning calorimetry (Flash DSC). Two different modeling approaches (Nakamura model, modified Nakamura-Ziabicki model) for predicting crystallization kinetics are parameterized according to DSC measurements. It turns out that only the modified Nakamura-Ziabicki model is capable of predicting crystallization kinetics for all investigated cooling rates. Finally, the modified Nakamura-Ziabicki model is validated by cooling experiments using PA6-CF laminates with embedded temperature sensors. It is shown that the modified Nakamura-Ziabicki model predicts crystallization at non-isothermal conditions and varying cooling rates with a good accuracy. Thus, the study contributes to a deeper understanding of the non-isothermal crystallization and presents an overall method for modeling crystallization under process conditions.

  8. BRST-BV approach to continuous-spin field

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2018-06-01

    Using BRST-BV approach, massless and massive continuous-spin fields propagating in the flat space are studied. For such fields, BRST-BV gauge invariant Lagrangian is obtained. The Lagrangian and gauge transformations are constructed out of traceless gauge fields and traceless gauge transformation parameters. Interrelation between the BRST-BV Lagrangian and the Lagrangian for the continuous-spin fields in metric-like approach is demonstrated. Considering the BRST-BV Lagrangian in the Siegel gauge, we get gauge-fixed Lagrangian which is invariant under global BRST and antiBRST transformations.

  9. Prediction of Temperatures of Austenite Equilibrium Transformations in Steels During Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Ahmadabadi, M. Nili; Mirzadeh, Hamed

    2014-10-01

    Knowledge about the transformation temperatures is crucial in processing of steels especially in thermomechanical processes because microstructures and mechanical properties after processing are closely related to the extent and type of transformations. The experimental determination of critical temperatures is costly, and therefore, it is preferred to predict them by mathematical methods. In the current work, new thermodynamically based models were developed for computing the Ae3 and Acm temperatures in the equilibrium cooling conditions when austenite is deformed at elevated temperatures. The main advantage of the proposed models is their capability to predict the temperatures of austenite equilibrium transformations in steels with total alloying elements (Mn + Si + Ni + Cr + Mo + Cu) less than 5 wt.% and Si less than 1 wt.% under the deformation conditions just by using the chemical potential of constituents, without the need for determining the total Gibbs free energy of steel which requires many experiments and computations.

  10. Thermal and structural alternations in CuAlMnNi shape memory alloy by the effect of different pressure applications

    NASA Astrophysics Data System (ADS)

    Canbay, Canan Aksu; Polat, Tercan

    2017-09-01

    In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.

  11. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window.

    PubMed

    Liu, Jun; Gong, Yuanyuan; Xu, Guizhou; Peng, Guo; Shah, Ishfaq Ahmad; Ul Hassan, Najam; Xu, Feng

    2016-03-16

    The magnetostructural coupling between structural and magnetic transitions leads to magneto-multifunctionalities of phase-transition alloys. Due to the increasing demands of multifunctional applications, to search for the new materials with tunable magnetostructural transformations in a large operating temperature range is important. In this work, we demonstrate that by chemically alloying MnNiSi with CoNiGe, the structural transformation temperature of MnNiSi (1200 K) is remarkably decreased by almost 1000 K. A tunable magnetostructural transformation between the paramagnetic hexagonal and ferromagnetic orthorhombic phase over a wide temperature window from 425 to 125 K is realized in (MnNiSi)1-x(CoNiGe)x system. The magnetic-field-induced magnetostructural transformation is accompanied by the high-performance magnetocaloric effect, proving that MnNiSi-CoNiGe system is a promising candidate for magnetic cooling refrigerant.

  12. Design of the PIXIE Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark Oliver; Fixsen, Dale J.; Kogut, Alan J.; Li, Xiaoyi; DiPirro, Michael

    2012-01-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope.

  13. Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses

    USDA-ARS?s Scientific Manuscript database

    This study investigated the fate and uptake of [14C]-TNT from soil into orchardgrass (Dactylis glomerata), perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) over a one year period in a greenhouse-controlled environment. Pots (n=4 for each grass, containing 10 mg cold TNT/kg s...

  14. Large Signal Time Dependent Quantum Mechanical Transport in Quantum Phase Based Devices

    DTIC Science & Technology

    1994-06-10

    tansport ths spatial dependence suggests equilibrium electron temperature values that difer fr•m the ambient. The prospect of quantum heMing and cooling...the factor 21 is a consequence of the defintion of the nionlocal coordinate (wen eqn (7)]. In this transformation it APPENDIX C is asserted that the

  15. Comparing Energy Use and Efficiency in Central Iowa Agroecosystems

    ERIC Educational Resources Information Center

    Cox, Rachael; Wiedenhoeft, Mary

    2009-01-01

    Energy is relevant to all areas of human life; energy sustains us through food, drives our transportation, warms and cools our buildings, and powers our electrical gadgets. In nature, ecosystems function by capturing and transforming energy. Agroecosystems are formed when humans manipulate the capture and flow of energy for food, fiber, and fuel…

  16. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  17. Elucidation of structure and nature of the PdO-Pd transformation using in situ PDF and XAS techniques.

    PubMed

    Keating, Jonathan; Sankar, Gopinathan; Hyde, Timothy I; Kohara, Shinji; Ohara, Koji

    2013-06-14

    The PdO-Pd phase transformation in a 4 wt% Pd/Al2O3 catalyst has been investigated using in situ X-ray absorption spectroscopy (XAS) and in situ X-ray total scattering (also known as high-energy X-ray diffraction) techniques. Both the partial and total pair distribution functions (PDF) from these respective techniques have been analysed in depth. New information from PDF analysis of total scattering data has been garnered using the differential PDF (d-PDF) approach where only correlations orginating from PdO and metallic Pd are extracted. This method circumvents problems encountered in characerising the catalytically active components due to the diffuse scattering from the disordered γ-Al2O3 support phase. Quantitative analysis of the palladium components within the catalyst allowed for the phase composition to be established at various temperatures. Above 850 °C it was found that PdO had converted to metallic Pd, however, the extent of reduction was of the order ca. 70% Pd metal and 30% PdO. Complementary in situ XANES and EXAFS were performed, with heating to high temperature and subsequent cooling in air, and the results of the analyses support the observations, that residual PdO is detected at elevated temperatures. Hysteresis in the transformation upon cooling is confirmed from XAS studies where reoxidation occurs below 680 °C.

  18. Analysis of different adsorption heat transformation applications and working pairs for climatic regions of Russia

    NASA Astrophysics Data System (ADS)

    Grekova, A. D.; Gordeeva, L. G.

    2018-04-01

    Adsorption heat transformation is an energy and environment saving technology for cooling/heating driven by renewable energy sources. Each specific cycle of adsorption heat transformer (AHT) makes particular requirements to the properties of the sorption material, depending on the climatic zone in which the AHT is used, the type of application (cooling, heating and heat storage), and energy source used for regenerating the sorbent. Therefore, the effective operation of AHT can be realized only if the working pair "adsorbent-adsorbate" is intelligently selected in accordance with the requirements of a particular working cycle. One of the most important factors influencing the choice of a working pair is the climatic conditions in which the AHT will operate. In this paper, the climatic conditions of various regions of Russian Federation (RF) were analyzed. For each considered zone, the boundary potentials of Polanyi corresponding to different AHT cycles are calculated. The sorption equilibrium data of various sorbents with water and methanol presented in the literature are summarized, and characteristic sorption curves are plotted in coordinates "sorption - the Polanyi potential". The characteristic adsorption curves found are approximated by analytic expressions, which allow the analysis of working pairs applicability for different AHT cycles. The recommendations of using the discussed sorption pairs under conditions of determined climatic zones are given for the AHT applications.

  19. Mechanical Properties and Microstructure of High-Strength Steel Controlled by Hot Stamping Process

    NASA Astrophysics Data System (ADS)

    Ou, Hang; Zhang, Xu; Xu, Junrui; Li, Guangyao; Cui, Junjia

    2018-03-01

    A novel design and manufacturing method, dubbed "precast," of the cooling system and tools for a hot forming process was proposed in this paper. The integrated structures of the punch and blank holder were determined by analyzing the bending and reverse-bending deformation of the forming parts. The desired crashworthiness performance of an automotive front bumper constructed with this process was obtained by a tailored phase transformation, which generated martensite-bainite in the middle and full martensite transformation in the corner areas. Varying cooling effects in the formed parts caused the highest temperature to be located in the bottom and the lowest on the end of the formed parts. Moreover, the microstructural distributions demonstrated that the bottom possessed a relatively lower content of martensite, while, conversely, the end possessed a higher content. This was precisely the most desired phase distributions for the hot formed parts. For the six-process cycle stamping, the temperatures reached a stable status after an initial rapid increase in the first three process cycles. The microstructural results verified the feasibility of the hot forming tools under multiprocess cycles.

  20. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  1. In-situ laser ultrasonic measurement of the hcp to bcc transformation in commercially pure titanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinbine, A., E-mail: alyssa.shinbine@gmail.com; Garcin, T.; Sinclair, C.

    2016-07-15

    Using a novel in-situ laser ultrasonic technique, the evolution of longitudinal velocity was used to measure the α − β transformation during cyclic heating and cooling in commercially pure titanium. In order to quantify the transformation kinetics, it is shown that changes in texture can not be ignored. This is particularly important in the case of titanium where significant grain growth occurs in the β-phase leading to the ultrasonic wave sampling a decreasing number of grains on each thermal treatment cycle. Electron backscatter diffraction measurements made postmortem in the region where the ultrasonic pulse traveled were used to obtain anmore » estimate of such local texture and grain size changes. An analysis technique for including the anisotropy of wave velocity depending on local texture is presented and shown to give self consistent results for the transformation kinetics. - Highlights: • Laser ultrasound and EBSD interpret the hcp/bcc phase transformation in cp-Ti. • Grain growth and texture produced variation in velocity during similar treatments. • Texture was deconvoluted from phase addition to obtain transformation kinetics.« less

  2. Local body cooling to improve sleep quality and thermal comfort in a hot environment.

    PubMed

    Lan, L; Qian, X L; Lian, Z W; Lin, Y B

    2018-01-01

    The effects of local body cooling on thermal comfort and sleep quality in a hot environment were investigated in an experiment with 16 male subjects. Sleep quality was evaluated subjectively, using questionnaires completed in the morning, and objectively, by analysis of electroencephalogram (EEG) signals that were continuously monitored during the sleeping period. Compared with no cooling, the largest improvement in thermal comfort and sleep quality was observed when the back and head (neck) were both cooled at a room temperature of 32°C. Back cooling alone also improved thermal comfort and sleep quality, although the effects were less than when cooling both back and head (neck). Mean sleep efficiency was improved from 84.6% in the no cooling condition to 95.3% and 92.8%, respectively, in these conditions, indicating good sleep quality. Head (neck) cooling alone slightly improved thermal comfort and subjective sleep quality and increased Stage N3 sleep, but did not otherwise improve sleep quality. The results show that local cooling applied to large body sections (back and head) could effectively maintain good sleep and improve thermal comfort in a hot environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  4. Heating and cooling system for an on-board gas adsorbent storage vessel

    DOEpatents

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  5. Bispectral Inversion: The Construction of a Time Series from Its Bispectrum

    DTIC Science & Technology

    1988-04-13

    take the inverse transform . Since the goal is to compute a time series given its bispectrum, it would also be nice to stay entirely in the frequency...domain and be able to go directly from the bispectrum to the Fourier transform of the time series without the need to inverse transform continuous...the picture. The approximations arise from representing the bicovariance, which is the inverse transform of a continuous function, by the inverse disrte

  6. Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in Ni52Mn25In16Co7 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Madiligama, A. S. B.; Ari-Gur, P.; Ren, Y.; Koledov, V. V.; Dilmieva, E. T.; Kamantsev, A. P.; Mashirov, A. V.; Shavrov, V. G.; Gonzalez-Legarreta, L.; Grande, B. H.

    2017-11-01

    Ni-Mn-In-Co Heusler alloys demonstrate promising magnetocaloric performance for use as refrigerants in magnetic cooling systems with the goal of replacing the lower efficiency, eco-adverse fluid-compression technology. The largest change in entropy occurs when the applied magnetic field causes a merged structural and magnetic transformation and the associated entropy changes of the two transformations works constructively. In this study, magnetic and crystalline phase transformations were each treated separately and the effects of the application of magnetic field on thermal hystereses associated with both structural and magnetic transformations of the Ni52Mn25In16Co7 were studied. From the analysis of synchrotron diffraction data and thermomagnetic measurements, it was revealed that the alloy undergoes both structural (from cubic austenite to a mixture of 7M &5M modulated martensite) and magnetic (ferromagnetic to a low-magnetization phase) phase transformations. Thermal hysteresis is associated with both transformations, and the variation of the thermal hystereses of the magnetic and structural transformations with applied magnetic field is significantly different. Because of the differences between the hystereses loops of the two transformations, they merge only upon heating under a certain magnetic field.

  7. Secondary Heating Under Quenching Cooling of Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Tsukrov, S. L.; Ber, L. B.

    2017-07-01

    Variants of secondary heating of aluminum alloys are considered, i.e., under quenching of plates in a water tank or on a horizontal quenching unit with water jet cooling, under continuous quenching of strips, and under quenching of tubes in vertical furnaces. Recommendation are given for removal or substantial reduction of the intensity of secondary heating under industrial conditions.

  8. 40 CFR 125.134 - As an owner or operator of a new offshore oil and gas extraction facility, what must I do to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water... oil and gas extraction facilities that do not employ sea chests as cooling water intake structures and...

  9. 40 CFR 125.136 - As an owner or operator of a new offshore oil and gas extraction facility, what must I collect...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... stresses on the source waterbody. (B) Evaluation of potential cooling water intake structure effects. This... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Offshore Oil and Gas Extraction Facilities...

  10. 40 CFR 125.134 - As an owner or operator of a new offshore oil and gas extraction facility, what must I do to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....134 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water... oil and gas extraction facilities that do not employ sea chests as cooling water intake structures and...

  11. 40 CFR 125.84 - As an owner or operator of a new facility, what must I do to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities... that which can be attained by a closed-cycle recirculating cooling water system; (2) You must design...

  12. 40 CFR 125.136 - As an owner or operator of a new offshore oil and gas extraction facility, what must I collect...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stresses on the source waterbody. (B) Evaluation of potential cooling water intake structure effects. This... (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Offshore Oil and Gas Extraction Facilities...

  13. 40 CFR 125.88 - As an owner or operator of a new facility, must I keep records and report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities Under Section... monitoring records for each cooling water intake structure as required by § 125.87(a); (2) Velocity and head...

  14. 40 CFR 125.88 - As an owner or operator of a new facility, must I keep records and report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities Under Section... monitoring records for each cooling water intake structure as required by § 125.87(a); (2) Velocity and head...

  15. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    NASA Astrophysics Data System (ADS)

    Moya Riffo, A.; Vicente Alvarez, M. A.; Santisteban, J. R.; Vizcaino, P.; Limandri, S.; Daymond, M. R.; Kerr, D.; Okasinski, J.; Almer, J.; Vogel, S. C.

    2017-05-01

    This work presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory. In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α(hcp) to β(bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β->α transformation, while slow cooling rates and fine β grains result in strong variant selection.

  16. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    DOE PAGES

    Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.; ...

    2017-02-08

    This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less

  17. Crystallographic texture and microstructural changes in fusion welds of recrystallized Zry-4 rolled plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riffo, A. Moya; Vicente Alvarez, M. A.; Santisteban, J. R.

    This study presents a detailed characterization of the microstructural and crystallographic texture changes observed in the transition region in a weld between two Zircaloy-4 cold rolled and recrystallized plates. The microstructural study was performed by optical microscopy under polarized light and scanning electron microscopy (SEM). Texture changes were characterized at different lengthscales: in the micrometric size, orientation imaging maps (OIM) were constructed by electron backscatter diffraction (EBSD), in the millimetre scale, high energy XRD experiments were done at the Advanced Photon Source (USA) and compared to neutron diffraction texture determinations performed in the HIPPO instrument at Los Alamos National Laboratory.more » In the heat affected zone (HAZ) we observed the development of Widmanstätten microstructures, typical of the α( hcp) to β( bcc) phase transformation. Associated with these changes a rotation of the c-poles is found in the HAZ and fusion zone. While the base material shows the typical texture of a cold rolled plate, with their c-poles pointing 35° apart from the normal direction of the plate in the normal-transversal line, in the HAZ, c-poles align along the transversal direction of the plate and then re-orient along different directions, all of these changes occurring within a lengthscale in the order of mm. The evolution of texture in this narrow region was captured by both OIM and XRD, and is consistent with previous measurements done by Neutron Diffraction in the HIPPO diffractometer at Los Alamos National Laboratory, USA. The microstructural and texture changes along the HAZ were interpreted as arising due to the effect of differences in the cooling rate and β grain size on the progress of the different α variants during transformation. Fast cooling rates and large β grains are associated to weak variant selection during the β–>α transformation, while slow cooling rates and fine β grains result in strong variant selection.« less

  18. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  19. Effects of high pressure on microstructure evolution and crystallization mechanisms during solidification of nickel

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping

    2018-03-01

    To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.

  20. Fourier transform spectroscopy of the Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the jet-cooled C2 molecule

    NASA Technical Reports Server (NTRS)

    Prasad, C. V. V.; Bernath, P. F.

    1994-01-01

    The Swan (d(sup 3)pi(sub g) - a(sup 3)pi(sub u)) system of the C2 molecule was produced in a jet-cooled corona excited supersonic expansion of helium using diazoacetonitrile as a percursor molecule. This spectrum was recorded using the McMath Fourier transform spectrometer of the National Solar Observatory at Kitt Peak. A total of nine bands with v prime = 0 to 3 and v prime prime = 0 to 4 in the range 16,570-22,760/cm were observed and rotationally analyzed. The C2 molecules in this source had a rotational temperature of only 90 K so that only the low-J lines were present in the spectrum. In some sense the low temperatures in the jet source simulate conditions in the interstellar medium. The Swan system of C2 was also produced in a composite wall hollow cathode made Al4C3/Cu, and the rotational structure of the 1-0, 2-1, 3-2, 0-0, and 1-1 bands were analyzed. The data obtained from both these spectra were fitted together along with some recently published line positions. The rotational constants, lambda doubling parameters and the vibrational constants were estimated from this global fit. Our work on jet-cooled C2 follows similar work on the violet and red systems of CN. A summary of this CN work is also presented. also presented.

  1. Application of Finite Element Modeling Methods in Magnetic Resonance Imaging-Based Research and Clinical Management

    NASA Astrophysics Data System (ADS)

    Fwu, Peter Tramyeon

    The medical image is very complex by its nature. Modeling built upon the medical image is challenging due to the lack of analytical solution. Finite element method (FEM) is a numerical technique which can be used to solve the partial differential equations. It utilized the transformation from a continuous domain into solvable discrete sub-domains. In three-dimensional space, FEM has the capability dealing with complicated structure and heterogeneous interior. That makes FEM an ideal tool to approach the medical-image based modeling problems. In this study, I will address the three modeling in (1) photon transport inside the human breast by implanting the radiative transfer equation to simulate the diffuse optical spectroscopy imaging (DOSI) in order to measurement the percent density (PD), which has been proven as a cancer risk factor in mammography. Our goal is to use MRI as the ground truth to optimize the DOSI scanning protocol to get a consistent measurement of PD. Our result shows DOSI measurement is position and depth dependent and proper scanning scheme and body configuration are needed; (2) heat flow in the prostate by implementing the Penne's bioheat equation to evaluate the cooling performance of regional hypothermia during the robot assisted radical prostatectomy for the individual patient in order to achieve the optimal cooling setting. Four factors are taken into account during the simulation: blood abundance, artery perfusion, cooling balloon temperature, and the anatomical distance. The result shows that blood abundance, prostate size, and anatomical distance are significant factors to the equilibrium temperature of neurovascular bundle; (3) shape analysis in hippocampus by using the radial distance mapping, and two registration methods to find the correlation between sub-regional change to the age and cognition performance, which might not reveal in the volumetric analysis. The result gives a fundamental knowledge of normal distribution in young preadolescent children who may be compared to children with, or at risk of, neurological diseases for early diagnosis.

  2. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE PAGES

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush; ...

    2016-01-20

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  3. Texture Evolution During Laser Direct Metal Deposition of Ti-6Al-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Chaudhary, Anil; Nandwana, Peeyush

    Titanium alloys are used in a wide variety of high performance applications and hence the processing of the titanium and the resulting microstructures after additive manufacturing has received significant attention. During additive manufacturing the processing route involves the transition from a liquid to solid state. The addition of successive layers results in a complex microstructure due to solid-state transformations. The current study focuses on understanding the phase transformations and relate it to the transformation texture in Ti-6Al-4V to identify conditions leading to a strong alpha transformation texture. The as deposited builds were characterized using optical microscopy and electron backscattered diffraction.more » The results showed columnar prior β grains with a martensitic structure after the deposition of a single layer. On subsequent depositions the martensitic microstructure decomposes to a colony and basketweave microstructure with a stronger transformation texture. The alpha texture with a colony and basketweave microstructure shows a stronger transformation texture as a result of variant selection. Thus by controlling the cooling rate of the build from the β transus it is possible to control the alpha transformation texture.« less

  4. Microstructural characterization and mechanical properties of Excel alloy pressure tube material

    NASA Astrophysics Data System (ADS)

    Sattari, Mohammad

    Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared to typical pressure tube texture. Variant selection was observed upon water quenching while partial memory effect and some transformation texture with variant selection was observed in the air-cooled sample. The results of creep-rupture tests suggest that fully martensitic and aged microstructure has better creep properties at high stress levels (>700 MPa) while the microstructure from air cooling from high in the alphaZr+betaZr region is less sensitive to stress and shows better creep properties compared to the as-received annealed microstructure at lower stresses (<560 MPa).

  5. Nonlinear dynamic range transformation in visual communication channels.

    PubMed

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  6. How the Army Should Use Lean Six Sigma as a Transformation Strategy for Logistics in the 21st Century

    DTIC Science & Technology

    2006-02-13

    business transformation is cautiously mechanistic or not much different than earlier versions of process improvement systems. This strategic research...tool for business transformation meet future needs of the Army and what changes to current systems are required. The Army should not present L6s as a...continually adapt how we approach and confront challenges, conduct business , and work with others.”3 The Secretary’s purpose for continuous transformation is

  7. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    NASA Astrophysics Data System (ADS)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  8. 40 CFR 420.60 - Applicability; description of the continuous casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... owned treatment works resulting from the continous casting of molten steel into intermediate or semi-finished steel products through water cooled molds. ...

  9. Phase Transformation Temperatures and Solute Redistribution in a Quaternary Zirconium Alloy

    NASA Astrophysics Data System (ADS)

    Cochrane, C.; Daymond, M. R.

    2018-05-01

    This study investigates the phase stability and redistribution of solute during heating and cooling of a quaternary zirconium alloy, Excel (Zr-3.2Sn-0.8Mo-0.8Nb). Time-of-flight neutron diffraction data are analyzed using a novel Vegard's law-based approach to determine the phase fractions and location of substitutional solute atoms in situ during heating from room temperature up to 1050 °C. It is seen that this alloy exhibits direct nucleation of the β Zr phase from martensite during tempering, and stable retention of the β Zr phase to high temperatures, unlike other two-phase zirconium alloys. The transformation strains resulting from the α \\leftrightarrow β transformation are shown to have a direct impact on the development of microstructure and crystallographic texture.

  10. Damping behavior of polymer composites with high volume fraction of NiMnGa powders

    NASA Astrophysics Data System (ADS)

    Sun, Xiaogang; Song, Jie; Jiang, Hong; Zhang, Xiaoning; Xie, Chaoying

    2011-03-01

    Polymer composites inserted with high volume fraction (up to 70 Vol%) of NiMnGa powders were fabricated and their damping behavior was investigated by dynamic mechanical analysis. It is found that the polymer matrix has little influence on the transformation temperatures of NiMnGa powders. A damping peak appears for NiMnGa/epoxy resin (EP) composites accompanying with the martensitic transformation or reverse martensitic transformation of NiMnGa powders during cooling or heating. The damping capacity for NiMnGa/EP composites increases linearly with the increase of volume fraction of NiMnGa powders and, decreases dramatically as the test frequency increases. The fracture strain of NiMnGa/EP composites decrease with the increase of NiMnGa powders.

  11. Feasibility of a Miniature Esophageal Heat Exchange Device for Rapid Therapeutic Cooling in Newborns: Preliminary Investigations in a Piglet Model.

    PubMed

    Dingley, John; Okano, Satomi; Planas, Silvia; Chakkarapani, Elavazhagan

    2018-03-01

    Therapeutic hypothermia (TH) after neonatal encephalopathy, commonly provided by 72 hours of whole-body cooling using a wrap, limits parents' physical contact with their infants affecting bonding and may not be suitable for encephalopathic preterm infants with fragile skin. Alternative cooling methods are unavailable for this population. We investigated in a neonatal pig model the feasibility of achieving a 3.5°C reduction in rectal temperature (T rectal ) similar to clinical TH protocols from 38.5°C (normothermia for pigs) to a target of 35°C ± 0.2°C, using a novel neonatal esophageal heat exchanger (NEHE), compared its efficacy to passive cooling, and investigated its ability to maintain target T rectal . Ventilated and anesthetized Landrace/Large white newborn pigs had the NEHE inserted. Water at adjustable temperatures and rates flowed down a central tube, returning up a surrounding distensible blind ending latex tube in a continuous loop. An initial experiment guided four subsequent cycles of passive cooling (30 minutes), rewarming to 38.5°C, active esophageal cooling to 35°C ± 0.2°C, active maintenance of target T rectal (30 minutes), and rewarming. We compared surface, rectal temperature, and hemodynamic changes among passive, active, and maintenance phases, and esophageal histopathology against control. Compared with passive cooling, esophageal cooling achieved target T rectal significantly earlier (71.3 minutes vs. 17.25 minutes, p = 0.003) with significantly greater rates of reduction in rectal (p = 0.0002) and surface (p = 0.005) temperatures and heart rate (p = 0.04). A water temperature of 39.1°C-40.2°C at a flow of 108-120 mL/min maintained T rectal around 35°C ± 0.2°C. The higher peak heart rate and blood pressure within 8 minutes of the maintenance phase (p = 0.04) subsequently stabilized. Histopathology showed congestion, edema, and neutrophil infiltration with increasing cycles. Esophageal cooling is feasible and effective in achieving rapid cooling in newborns. Subsequent maintenance at this temperature required continued circulation of warm water. Esophageal histopathology needs further evaluation after 72 hours servo-control cooling with a narrower range of water temperatures in a larger group of animals.

  12. 40 CFR Appendix B to Subpart Hhhh... - Method for the Determination of Loss-on-Ignition

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Wet-Formed Fiberglass Mat...). 4.2Remove the test sample from the furnace and cool in the desiccator for 30 minutes in the standard...

  13. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  14. Garnet zoning and metamorphism of the Barrovian type area, Scotland

    NASA Astrophysics Data System (ADS)

    Dempster, T. J.

    1985-03-01

    A microprobe investigation of the high grade metamorphic zones from the Barrovian type area in Angus, Scotland, shows the importance of local zones of retrograde cation exchange between garnet, staurolite and biotite. The interpretation of this zoning, established during a slow cooling history, is critical to any study of metamorphic reactions or conditions. The extent and intensity of these diffusion effects are dependent on a number of parameters including grainsize, fabric orientation, heating and cooling history, and the modal abundance of the phases. Increasing diffusion within garnets with metamorphic grade, and the subsequent retrograde effects are modelled using Temperature-Time-Transformation diagrams and provide information on the activation energy for Fe-Mg diffusion in garnet.

  15. Advances in measuring techniques for turbine cooling test rigs - Status report

    NASA Technical Reports Server (NTRS)

    Pollack, F. G.

    1974-01-01

    Instrumentation development pertaining to turbine cooling research has resulted in the design and testing of several new systems. Pressure measurements on rotating components are being made with a rotating system incorporating ten miniature transducers and a slip-ring assembly. The system has been tested successfully up to speeds of 9000 rpm. An advanced system development combining pressure transducer and thermocouple signals is also underway. Thermocouple measurements on rotating components are transferred off the shaft by a 72-channel rotating data system. Thermocouple data channels are electronically processed on board and then removed from the shaft in the form of a digital serial train by one winding of a rotary transformer.

  16. ARPA-E: Transforming Our Energy Future

    ScienceCinema

    Williams, Ellen; Raman, Aaswath

    2018-06-22

    ARPA-E helps to translate cutting-edge inventions into technological innovations that could change how we use, generate and store energy. In just seven years, ARPA-E technologies are demonstrating technical and commercial progress, surpassing $1.25 billion in private sector follow on funding. In this video, ARPA-E Director Dr. Ellen D. Williams highlights an exciting project from Stanford University that is developing a radiative cooling technology that could enable buildings, power plants, solar cells and even clothing to cool without using electric power or loss of water. This project is just one example among ARPA-E’s 400+ innovative technologies that are reimagining energy and helping to create a more secure, affordable and sustainable American energy future.

  17. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    PubMed

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  18. Temperature monitoring during cardiopulmonary bypass--do we undercool or overheat the brain?

    PubMed

    Kaukuntla, Hemanth; Harrington, Deborah; Bilkoo, Inderaj; Clutton-Brock, Tom; Jones, Timothy; Bonser, Robert S

    2004-09-01

    Brain cooling is an essential component of aortic surgery requiring circulatory arrest and inadequate cooling may lead to brain injury. Similarly, brain hyperthermia during the rewarming phase of cardiopulmonary bypass may also lead to neurological injury. Conventional temperature monitoring sites may not reflect the core brain temperature (Tdegrees). We compared jugular bulb venous temperatures (JB) during deep hypothermic circulatory arrest and normothermic bypass with Nasopharyngeal (NP), Arterial inflow (AI), Oesophageal (O), Venous return (VR), Bladder (B) and Orbital skin (OS) temperatures. 18 patients undergoing deep hypothermia (DH) and 8 patients undergoing normothermic bypass (mean bladder Tdegrees-36.29 degreesC) were studied. For DH, cooling was continued to 15 degreesC NP (mean cooling time-66 min). At pre-determined arterial inflow Tdegrees, NP, JB and O Tdegree's were measured. A 6-channel recorder continuously recorded all Tdegree's using calibrated thermocouples. During the cooling phase of DH, NP lagged behind AI and JB Tdegree's. All these equilibrated at 15 degreesC. During rewarming, JB and NP lagged behind AI and JB was higher than NP at any time point. During normothermic bypass, although NP was reflective of the AI and JB Tdegrees trends, it underestimated peak JB Tdegrees (P=0.001). Towards the end of bypass, peak JB was greater than the arterial inflow Tdegrees (P=0.023). If brain venous outflow Tdegrees (JB) accurately reflects brain Tdegrees, NP Tdegrees is a safe surrogate indicator of cooling. During rewarming, all peripheral sites underestimate brain temperature and caution is required to avoid hyperthermic arterial inflow, which may inadvertently, result in brain hyperthermia.

  19. Martensitic transformations, structure, and strengthness of processed high-nitrogen and high-carbon ferrous alloys

    NASA Astrophysics Data System (ADS)

    Kaputkina, L. M.; Prokoshkina, V. G.

    2003-10-01

    Structures and properties of metastable austenitic alloys Fe-18Cr-16Ni-I2Mn-(0.17 to 0. 50)N, Fe-18Cr-12Mn-(0.48 to 1.12)N, Fe-18Cr-(0.1 to 1.18)N, and Fe-(12 to 20)Ni-(0.6 to 1.3)C, Fe-(6 to 8)Mn-(0.6 to 1.0)C, Fe-(5 to 6)Cr-(4 to 5)Mn-(0.6 to 0.8)C, Fe-6Cr-(1.0 to 1.3)C resulting from martensitic transformations under cooling and cold deformation (CD), as well as following tempering processes, were studied by magnetometry, X-ray and electron microscopy analyses, hardness measurements and mechanical properties tests. Martensite with a b.c.t. lattice was formed in all alloys with M_s{>}-196^circC during cooling. Under CD transformations of γ{to}α, γ{to}\\varepsilon{to}α, or γ{to}\\varepsilon types were realized depending on the alloy composition. Carbon increased but nitrogen decreased stacking fault energy. Thus carbon assists α-martensite formation but nitrogen promotese. As CD level and/or concentration of carbon and nitrogen increase residual stresses resulting from the CD also increase. The martensitic transformation during CD can decrease the residual stresses. Kinetic of tempering of b.c.t. thermal martensite differs from those of CD-induced martensite. In the second case, deformation aging, texture, and residual stresses are more visible. The maximal strengthening under CD takes place in (Mn+N)-steels. (Cr+N) and (Cr+Mn+N)-steels are high-strength, non-magnetic and corrosion resistant and are easily hardened by a low level of plastic deformation.

  20. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni 50–xCo xMn₄₀Sn₁₀ alloys

    DOE PAGES

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; ...

    2012-04-27

    The Heusler-derived multiferroic alloy Ni 50–xCo xMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390more » K. The static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  1. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojack, A., E-mail: a.bojack@tudelft.nl; Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft; Zhao, L.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolutionmore » of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.« less

  2. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    ERIC Educational Resources Information Center

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  3. Advancing Grassroots Climate Change Awareness in Botswana: BCA Campus Greenhouse Gas Baseline Inventory

    ERIC Educational Resources Information Center

    Batisani, Nnyaladzi; Ndiane, Abijah

    2014-01-01

    Purpose: This paper aims to report on the results of a case study in Botswana, aimed at raising awareness on climate issues. Higher-education institutions play a leading role in sustainability efforts, as their research role often lays the groundwork for social transformation. Design/methodology/approach: The Clean Air-Cool Planet (CACP) campus…

  4. Robotics Competition Expands--FIRST Vex Challenge Inspires Creativity, Ingenuity and Innovation

    ERIC Educational Resources Information Center

    Morrison, Amanda

    2006-01-01

    FIRST (For Inspiration and Recognition of Science and Technology) is a multinational, not-for-profit organization that aspires to transform culture-making science, math, engineering, and technology as cool for kids as sports are today. FIRST has an exciting new program in the works--the VEX Challenge, which the author describes in this article.…

  5. Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices

    DTIC Science & Technology

    2015-05-12

    method. AAMU would like to continue, given future research funding, with our new design for the thermoelectric and photovoltaic systems and hybrid...nanofabrication to develop nanostructured thermoelectric (TE) materials for application in high-efficiency thermoelectric power generators and solid...Distribution Unlimited Final Report: Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric

  6. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  7. Thermal Isolation and Differential Cooling of Heterogeneously Integrated Devices

    DTIC Science & Technology

    2016-07-01

    materials with co-continuous phases , "Int. J. Heat Mass Transfer , vol. 51, pp. 2389-2397, 2008. [27] Y. Yamaji, T. Ando, T. Morifuji, M. Tomisaka...for Semi-infinite Heat Flux Tubes , "Journal of Heat Transfer , vol. 111, pp. 804-807, August 1, 1989. [34] S. Song, S. Lee and V. Au, "Closed-form...Underside Cooling Heat Transfer Coefficient

  8. A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Miller, Franklin K.

    2012-01-01

    A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.

  9. A continuous dry 300 mK cooler for THz sensing applications.

    PubMed

    Klemencic, G M; Ade, P A R; Chase, S; Sudiwala, R; Woodcraft, A L

    2016-04-01

    We describe and demonstrate the automated operation of a novel cryostat design that is capable of maintaining an unloaded base temperature of less than 300 mK continuously, without the need to recycle the gases within the final cold head, as is the case for conventional single shot sorption pumped (3)He cooling systems. This closed dry system uses only 5 l of (3)He gas, making this an economical alternative to traditional systems where a long hold time is required. During testing, a temperature of 365 mK was maintained with a constant 20 μW load, simulating the cooling requirement of a far infrared camera.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, B.

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heatingmore » Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.« less

  11. Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg’s microscope

    NASA Astrophysics Data System (ADS)

    Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens

    2016-08-01

    We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.

  12. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  13. Evaluation of distributed gas cooling of pressurized PAFC for utility power generation

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Maru, H.; Skok, A.

    1981-01-01

    Two short stacks were pressure tested at 446 kPa (4.4 atm.) and the pressure gains were more than the theoretically predicted gains. Temperature profiles were observed to be independent of operating pressure. The pressure drop was found to be inversely proportional to operating pressure as expected. Continuous pressurized operation of a stack for 1000 hours verified the compatability of the fuel cell component design. A simple pressurization procedure was also developed. Six separate designs, covering two gas cooling schemes (DIGAS and separated) and two cooling channel geometries (straight through and treed), were analysed on the net voltage output basis. Separated cooling with 5 cells per cooler was recognized to be the best among the designs considered.

  14. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  15. Hemodynamic Responses to Head and Neck Cooling

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Carbo, Jorge E.; Montgomery, Leslie D.; Webbon, Bruce W.

    1994-01-01

    Personal thermoregulatory systems which provide head and neck cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objective of this study was to measure the scalp temperature and circulatory responses during use of one commercially available thermal control system. The Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used in this study. Two EEG electrodes and one skin temperature transducer were placed on the anterior midline of the scalp to measure the scalp blood and temperature. Blood flow was measured using a bipolar impedance rheograph. Ten subjects, seated in an upright position at normal room temperature, were tested at high, medium, moderate, moderate-low and low coolant temperatures. Scalp blood flow was recorded continuously using a computer data acquisition system with a sampling frequency of 200 Hz. Scalp temperature and cooling helmet Inlet temperature was logged periodically during the test period. This study quantifies the effect of head cooling upon scalp temperature and blood flow. These data may also be used to select operational specifications of the head cooling system for biomedical applications such as the treatment of migraine headaches, scalp cooling during chemotherapy, and cooling of multiple sclerosis patients.

  16. Heat Deposition and Heat Removal in the UCLA Continuous Current Tokamak

    NASA Astrophysics Data System (ADS)

    Brown, Michael Lee

    1990-01-01

    Energy transfer processes in a steady-state tokamak are examined both theoretically and experimentally in order to determine the patterns of plasma heat deposition to material surfaces and the methods of heat removal. Heat transfer experiments involving actively cooled limiters and heat flux probes were performed in the UCLA Continuous Current Tokamak (CCT). The simple exponential model of plasma power deposition was extended to describe the global heat deposition to the first wall of a steady-state tokamak. The heat flux distribution in CCT was determined from measurements of heat flow to 32 large-area water-cooled Faraday shield panels. Significant toroidal and poloidal asymmetries were observed, with the maximum heat fluxes tending to fall on the lower outside panels. Heat deposition to the water-cooled guard limiters of an ion Bernstein wave antenna in CCT was measured during steady-state operation. Very strong asymmetries were observed. The heat distribution varied greatly with magnetic field. Copper heat flux sensors incorporating internal thermocouples were developed to measure plasma power deposition to exterior probe surfaces and heat removal from water -cooled interior surfaces. The resulting inverse heat conduction problem was solved using the function specification method. Cooling by an impinging liquid jet was investigated. One end of a cylindrical copper heat flux sensor was heated by a DC electrical arc and the other end was cooled by a low velocity water jet at 1 atm. Critical heat flux (CHF) values for the 55-80 ^circC sub-cooled free jets were typically 2.5 times published values for saturated free jets. For constrained jets, CHF values were about 20% lower. Heat deposition and heat removal in thick (3/4 inch diameter) cylindrical metal probes (SS304 or copper) inserted into a steady-state tokamak plasma were measured for a broad range of heat loads. The probes were cooled internally by a constrained jet of either air or water. Steady -state heat removal rates of up to 400 W/cm^2 were attained at the water cooled surface, and conditions of CHF were experimentally identified. Heat transfer in a hemispherical limiter is discussed.

  17. High temperature co-axial winding transformers

    NASA Technical Reports Server (NTRS)

    Divan, Deepakraj M.; Novotny, Donald W.

    1993-01-01

    The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.

  18. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas

    2015-08-01

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K and γ = 2.2.

  19. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model.

    PubMed

    Wong, Jessina; Jahn, David A; Giovambattista, Nicolas

    2015-08-21

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.

  20. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  1. Ultra-cool dwarfs viewed equator-on: surveying the best host stars for biosignature detection in transiting exoplanets

    NASA Astrophysics Data System (ADS)

    Miles-Paez, Paulo; Metchev, Stanimir; Burgasser, Adam; Apai, Daniel; Palle, Enric; Zapatero Osorio, Maria Rosa; Artigau, Etienne; Mace, Greg; Tannock, Megan; Triaud, Amaury

    2018-05-01

    There are about 150 known planets around M dwarfs, but only one system around an ultra-cool (>M7) dwarf: Trappist-1. Ultra-cool dwarfs are arguably the most promising hosts for atmospheric and biosignature detection in transiting planets because of the enhanced feature contrast in transit and eclipse spectroscopy. We propose a Spitzer survey to continuously monitor 15 of the brightest ultra-cool dwarfs over 3 days. To maximize the probability of detecting transiting planets, we have selected only targets seen close to equator-on. Spin-orbit alignment expectations dictate that the planetary systems around these ultra-cool dwarfs should also be oriented nearly edge-on. Any planet detections from this survey will immediately become top priority targets for JWST transit spectroscopy. No other telescope, present or within the foreseeable future, will be able to conduct a similarly sensitive and dedicated survey for characterizeable Earth analogs.

  2. Thermodynamic Performance of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; Kimball, Mark O.; James, Bryan L.; Muench, Theodore; DiPirro, Michael J.; Bialas, Thomas G.; Sneiderman, Gary A.; Porter, Frederick S.; Kelley, Richard L.

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument[1] on Astro-H[2] will use a 3-stage ADR[3] to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at =1.20 K as the heat sink[4]. In the secondary mode, which is activated when the liquid helium is depleted, the ADR uses a 4.5 K Joule-Thomson cooler as its heat sink. In this mode, all three stages operate together to continuously cool the (empty) helium tank and singleshot cool the detectors. The flight instrument - dewar, ADR, detectors and electronics - were integrated in 2014 and have since undergone extensive performance testing. This paper presents a thermodynamic analysis of the ADR's operation, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  3. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  4. Cooling assembly for fuel cells

    DOEpatents

    Kaufman, Arthur; Werth, John

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  5. Hydrophobic surface modification of TiO2 nanoparticles for production of acrylonitrile-styrene-acrylate terpolymer/TiO2 composited cool materials

    NASA Astrophysics Data System (ADS)

    Qi, Yanli; Xiang, Bo; Tan, Wubin; Zhang, Jun

    2017-10-01

    Hydrophobic surface modification of TiO2 was conducted for production of acrylonitrile-styrene-acrylate (ASA) terpolymer/titanium dioxide (TiO2) composited cool materials. Different amount of 3-methacryloxypropyl-trimethoxysilane (MPS) was employed to change hydrophilic surface of TiO2 into hydrophobic surface. The hydrophobic organosilane chains were successfully grafted onto TiO2 through Sisbnd Osbnd Ti bonds, which were verified by Fourier transformed infrared spectra and X-ray photoelectron spectroscopy. The water contact angle of the sample added with TiO2 modified by 5 wt% MPS increased from 86° to 113°. Besides, all the ASA/TiO2 composites showed significant improvement in both solar reflectance and cooling property. The reflectance of the composites throughout the near infrared (NIR) region and the whole solar wavelength is increased by 113.92% and 43.35% compared with pristine ASA resin. Simultaneously, significant drop in temperature demonstrates excellent cooling property. A maximum decrease approach to 27 °C was observed in indoor temperature test, while a decrease around 9 °C tested outdoors is achieved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lin, E-mail: zhanglincsu@163.com; Liu Hengsan, E-mail: lhsj63@sohu.com; He Xinbo, E-mail: xb_he@163.com

    The characteristics of rapidly solidified FGH96 superalloy powder and the thermal evolution behavior of carbides and {gamma} Prime precipitates within powder particles were investigated. It was observed that the reduction of powder size and the increase of cooling rate had transformed the solidification morphologies of atomized powder from dendrite in major to cellular structure. The secondary dendritic spacing was measured to be 1.02-2.55 {mu}m and the corresponding cooling rates were estimated to be in the range of 1.4 Multiplication-Sign 10{sup 4}-4.7 Multiplication-Sign 10{sup 5} K{center_dot}s{sup -1}. An increase in the annealing temperature had rendered the phase transformation of carbides evolvingmore » from non-equilibrium MC Prime carbides to intermediate transition stage of M{sub 23}C{sub 6} carbides, and finally to thermodynamically stable MC carbides. The superfine {gamma} Prime precipitates were formed at the dendritic boundaries of rapidly solidified superalloy powder. The coalescence, growth, and homogenization of {gamma}' precipitates occurred with increasing annealing temperature. With decreasing cooling rate from 650 Degree-Sign C{center_dot}K{sup -1} to 5 Degree-Sign C{center_dot}K{sup -1}, the morphological development of {gamma} Prime precipitates had been shown to proceed from spheroidal to cuboidal and finally to solid state dendrites. Meanwhile, a shift had been observed from dendritic morphology to recrystallized structure between 900 Degree-Sign C and 1050 Degree-Sign C. Moreover, accelerated evolution of carbides and {gamma}' precipitates had been facilitated by the formation of new grain boundaries which provide fast diffusion path for atomic elements. - Highlights: Black-Right-Pointing-Pointer Microstructural characteristic of FGH96 superalloy powder was investigated. Black-Right-Pointing-Pointer The relation between microstructure, particle size, and cooling rate was studied. Black-Right-Pointing-Pointer Thermal evolution behavior of {gamma} Prime and carbides in loose FGH96 powder was studied.« less

  7. 40 CFR 94.211 - Emission-related maintenance instructions for purchasers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter change, fuel filter change, air filter change, cooling system maintenance, adjustment of idle... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES... at 1,500-hour intervals thereafter. (i) Exhaust gas recirculation system-related filters and coolers...

  8. 40 CFR 61.181 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...

  9. 40 CFR 61.181 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...

  10. 40 CFR 61.181 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...

  11. 40 CFR 61.181 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...

  12. 40 CFR 61.181 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cooled, condensed, and removed in a solid form. Control device means the air pollution control equipment... failure of air pollution control equipment or process equipment or of a process to operate in a normal or... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL...

  13. Optical fiber dispersion characterization study

    NASA Technical Reports Server (NTRS)

    Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.

    1979-01-01

    The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.

  14. The Modeling of Vibration Damping in SMA Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, D R; Kloucek, P; Seidman, T I

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memorymore » alloy wire.« less

  15. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Ganio, Matthew S; Lopez, Rebecca M; Yeargin, Susan W; Armstrong, Lawrence E; Maresh, Carl M

    2009-01-01

    To assess existing original research addressing the efficiency of whole-body cooling modalities in the treatment of exertional hyperthermia. During April 2007, we searched MEDLINE, EMBASE, Scopus, SportDiscus, CINAHL, and Cochrane Reviews databases as well as ProQuest for theses and dissertations to identify research studies evaluating whole-body cooling treatments without limits. Key words were cooling, cryotherapy, water immersion, cold-water immersion, ice-water immersion, icing, fanning, bath, baths, cooling modality, heat illness, heat illnesses, exertional heatstroke, exertional heat stroke, heat exhaustion, hyperthermia, hyperthermic, hyperpyrexia, exercise, exertion, running, football, military, runners, marathoner, physical activity, marathoning, soccer, and tennis. Two independent reviewers graded each study on the Physiotherapy Evidence Database (PEDro) scale. Seven of 89 research articles met all inclusion criteria and a minimum score of 4 out of 10 on the PEDro scale. After an extensive and critical review of the available research on whole-body cooling for the treatment of exertional hyperthermia, we concluded that ice-water immersion provides the most efficient cooling. Further research comparing whole-body cooling modalities is needed to identify other acceptable means. When ice-water immersion is not possible, continual dousing with water combined with fanning the patient is an alternative method until more advanced cooling means can be used. Until future investigators identify other acceptable whole-body cooling modalities for exercise-induced hyperthermia, ice-water immersion and cold-water immersion are the methods proven to have the fastest cooling rates.

  16. Forced convective head cooling device reduces human cross-sectional brain temperature measured by magnetic resonance: a non-randomized healthy volunteer pilot study.

    PubMed

    Harris, B A; Andrews, P J D; Marshall, I; Robinson, T M; Murray, G D

    2008-03-01

    This pilot study in five healthy adult humans forms the pre-clinical assessment of the effect of a forced convective head cooling device on intracranial temperature, measured non-invasively by magnetic resonance spectroscopy (MRS). After a 10 min baseline with no cooling, subjects received 30 min of head cooling followed by 30 min of head and neck cooling via a hood and neck collar delivering 14.5 degrees C air at 42.5 litre s(-1). Over baseline and at the end of both cooling periods, MRS was performed, using chemical shift imaging, to measure brain temperature simultaneously across a single slice of brain at the level of the basal ganglia. Oesophageal temperature was measured continuously using a fluoroptic thermometer. MRS brain temperature was calculated for baseline and the last 10 min of each cooling period. The net brain temperature reduction with head cooling was 0.45 degrees C (SD 0.23 degrees C, P=0.01, 95% CI 0.17-0.74 degrees C) and with head and neck cooling was 0.37 degrees C (SD 0.30 degrees C, P=0.049, 95% CI 0.00-0.74 degrees C). The equivalent net reductions in oesophageal temperature were 0.16 degrees C (SD 0.04 degrees C) and 0.36 degrees C (SD 0.12 degrees C). Baseline-corrected brain temperature gradients from outer through intermediate to core voxels were not significant for either head cooling (P=0.43) or head and neck cooling (P=0.07), indicating that there was not a significant reduction in cooling with progressive depth into the brain. Convective head cooling reduced MRS brain temperature and core brain was cooled.

  17. Twinning induced by the rhombohedral to orthorhombic phase transition in lanthanum gallate (LaGaO3)

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Lu, H. Y.

    2006-10-01

    Phase-transformation-induced twins in pressureless-sintered lanthanum gallate (LaGaO3) ceramics have been analysed using the transmission electron microscopy (TEM). Twins are induced by solid state phase transformation upon cooling from the rhombohedral (r, Rbar{3}c) to orthorhombic ( o, Pnma) symmetry at ˜145°C. Three types of transformation twins {101} o , {121} o , and {123} o were found in grains containing multiple domains that represent orientation variants. Three orthorhombic orientation variants were distinguished from the transformation domains converged into a triple junction. These twins are the reflection type as confirmed by tilting experiment in the microscope. Although not related by group-subgroup relation, the transformation twins generated by phase transition from rhombohedral to orthorhombic are consistent with those derived from taking cubic Pm {bar {3}}m aristotype of the lowest common supergroup symmetry as an intermediate metastable structure. The r→ o phase transition of first order in nature may have occurred by a diffusionless, martensitic-type or discontinuous nucleation and growth mechanism.

  18. iMAST Quarterly, Number 3, 2000

    DTIC Science & Technology

    2000-01-01

    components which depend on evaporating unit capabilities. There are three components (EB-gun, water cooled copper crucible and vacuum chamber) in the EB-PVD...Ion Implantation and Ion Plating electromagnetic deflected through 180 or 2700. Similarly, evaporant material is placed in a water-cooled copper ... crucible , which could be either pocket type for small quantity evaporation application or continuous ingot feeding through the crucible for larger quantity

  19. Apparatus for the production of boron nitride nanotubes

    DOEpatents

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  20. Evaluation of Three Commercial Microclimate Cooling Systems

    DTIC Science & Technology

    1988-11-01

    easily counteracted because of the difficulty of drinking inside protective clothing . Dehydration combined with warm skin and exercise can easily result in...Stress; Exercise ; Thermoregulation 9. ABSTRACT (Continue on reverse if necessary and identify by block number) (OThree commercially available microclimate...cooling systems were evaluated for their abil- ity to reduce heat stress in men exercising in a hot environment while wearing high insula- tive, low

Top