NASA Astrophysics Data System (ADS)
Rahmanta
2018-02-01
Corn is one of the staple food crops. Corn can also be processed into various foods and also as animal feed. The need for corn will continue to increase from year to year so it is necessary to increase production. The government has targeted corn crop self-sufficiency to achieve the corn production standards required by the animal feed industry. The purpose of this study is to analyze the effect of land area and capital strengthening funds to rural economic enterprises on corn production. This study uses secondary data obtained from the Central Statistical Agency of North Sumatra Province. The research method used is panel regression method. The result shows that the area of land has a significant effect on corn production and the capital strengthening fund to the rural economy institution has an insignificant effect on corn production in North Sumatera Province.
Contamination issues in a continuous ethanol production corn wet milling facility
USDA-ARS?s Scientific Manuscript database
Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) residue, or stover, can be used as a dry forage replacement in beef cattle diets and is being considered as a feedstock for cellulosic biofuel production. The soil quality and crop productivity ramifications of removing stover, however, likely will depend on stover removal rate an...
USDA-ARS?s Scientific Manuscript database
Corn stover is used widely for livestock co-feed and is targeted as a near-term feedstock for the developing cellulosic ethanol industry. High biomass production in intensely managed systems, such as irrigated continuous corn, may have a greater potential to provide stover for either livestock or bi...
Continuous high-solids corn liquefaction and fermentation with stripping of ethanol.
Taylor, Frank; Marquez, Marco A; Johnston, David B; Goldberg, Neil M; Hicks, Kevin B
2010-06-01
Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous research showed that this approach is feasible. Savings of $0.03 per gallon were predicted at 34% corn dry solids. Greater savings were predicted at higher concentration. Now the feasibility has been demonstrated at over 40% corn dry solids, using a continuous corn liquefaction system. A pilot plant, that continuously fed corn meal at more than one bushel (25 kg) per day, was operated for 60 consecutive days, continuously converting 95% of starch and producing 88% of the maximum theoretical yield of ethanol. A computer simulation was used to analyze the results. The fermentation and stripping systems were not significantly affected when the CO(2) stripping gas was partially replaced by nitrogen or air, potentially lowering costs associated with the gas recycle loop. It was concluded that previous estimates of potential cost savings are still valid. (c) 2010. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, S. E.
2005-05-01
Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.
USDA-ARS?s Scientific Manuscript database
Demand for corn (Zea mays L.) stover either for livestock or cellulosic ethanol production have increased the importance of determining stover removal effects on biomass production. The objectives of this study was to evaluate yield response and N use from continuous stover removal under two irriga...
Fortification of corn masa flour with folic acid in the United States: an overview of the evidence
Hamner, Heather C.; Tinker, Sarah C.
2015-01-01
Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect–affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as “enriched.” Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. PMID:24494975
Fortification of corn masa flour with folic acid in the United States: an overview of the evidence.
Hamner, Heather C; Tinker, Sarah C
2014-04-01
Corn masa flour, used to make products such as corn tortillas, is a staple food for Hispanic populations residing in the United States, particularly among Mexican Americans and Central Americans. Research has indicated that Hispanic women in the United States continue to be at a higher risk of having a neural tube defect-affected pregnancy than women of other races/ethnicities, even after the introduction of folic acid fortification of cereal grain products labeled as "enriched." Corn masa flour has, therefore, been suggested as a potential food vehicle for folic acid in the United States. This paper explores the potential impact that folic acid fortification of corn masa flour could have on the Hispanic population in the United States. © 2014 New York Academy of Sciences.
Troubleshooting fermentation in corn wet milling ethanol production
USDA-ARS?s Scientific Manuscript database
To convert starch to ethanol, continuous fermentation processes are employed by corn wet milling plants all over world. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields (Abbott and Ingledew 2005, Skinner an...
21 CFR 573.530 - Hydrogenated corn syrup.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...
21 CFR 573.530 - Hydrogenated corn syrup.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...
21 CFR 573.530 - Hydrogenated corn syrup.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...
21 CFR 573.530 - Hydrogenated corn syrup.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...
21 CFR 573.530 - Hydrogenated corn syrup.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...
Limited irrigation of corn-based no-till crop rotations in west central Great Plains.
USDA-ARS?s Scientific Manuscript database
Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...
Tillage and residue management effects on soil carbon and nitrogen under irrigated continuous corn
USDA-ARS?s Scientific Manuscript database
Demand for corn (Zea mays L.) stover as forage or as a cellulosic biofuel has increased the importance of determining the effects of residue removal on biomass production and the soil resource. Objectives were to evaluate grain yield, soil organic carbon (SOC), and total soil N (0 to 150 cm) in a t...
Ghebremichael, L T; Veith, T L; Cerosaletti, P E; Dewing, D E; Rotz, C A
2009-08-01
In 2008, corn grain prices rose $115/t of DM above the 2005 average. Such an increase creates tight marginal profits for small (<100) and medium-sized (100 to 199) dairy farms in the northeastern United States importing corn grain as animal feed supplement. Particularly in New York State, dairy farmers are attempting to avoid or minimize profit losses by growing more corn silage and reducing corn grain purchases. This study applies the Integrated Farm Systems Model to 1 small and 1 medium-sized New York State dairy farm to predict 1) sediment and P loss impacts from expanding corn fields, 2) benefits of no-till or cover cropping on corn fields, and 3) alternatives to the economic challenge of the current farming system as the price ratio of milk to corn grain continues to decline. Based on the simulation results, expanding corn silage production by 3% of the cultivated farm area increased sediment and sediment-bound P losses by 41 and 18%, respectively. Implementing no-till controlled about 84% of the erosion and about 75% of the sediment-bound P that would have occurred from the conventionally tilled, expanded corn production scenario. Implementing a conventionally tilled cover crop with the conventionally tilled, expanded corn production scenario controlled both erosion and sediment-bound P, but to a lesser extent than no-till corn with no cover crop. However, annual farm net return using cover crops was slightly less than when using no-till. Increasing on-farm grass productivity while feeding cows a high-quality, high-forage diet and precise dietary P levels offered dual benefits: 1) improved farm profitability from reduced purchases of dietary protein and P supplements, and 2) decreased runoff P losses from reduced P-levels in applied manure. Moreover, alternatives such as growing additional small grains on marginal lands and increasing milk production levels demonstrated great potential in increasing farm profitability. Overall, it is crucial that conservation measures such as no-till and cover cropping be implemented on new or existing corn lands as these areas often pose the highest threat for P losses through runoff. Although alternatives that would likely provide the largest net profit were evaluated one at a time to better quantify their individual impacts, combinations of these strategies, such as no-till corn plus a minimum-till cover crop, are recommended whenever feasible.
NASA Astrophysics Data System (ADS)
Montalbo-Lomboy, Melissa T.
The 21st Century human lifestyle has become heavily dependent on hydrocarbon inputs. Energy demand and the global warming effects due to the burning of fossil fuels have continued to increase. Rising awareness of the negative environmental and economic impacts of hydrocarbon dependence has led to a resurgence of interest in renewable energy sources such as ethanol. Fuel ethanol is known to be a cleaner and renewable source of energy relative to gasoline. Many studies have agreed that fuel ethanol has reduced greenhouse gas (GHG) emissions and has larger overall energy benefits compared to gasoline. Currently, the majority of the fuel ethanol in the United States is produced from corn using dry-grind milling process. The typical dry-grind ethanol plant incorporates jet cooking using steam to cook the corn slurry as pretreatment for saccharification; an energy intensive step. In aiming to reduce energy usage, this study evaluated the use of ultrasonics as an alternative to jet cooking. Ultrasonic batch experiments were conducted using a Branson 2000 Series bench-scale ultrasonic unit operating at a frequency of 20 kHz and a maximum output of 2.2 kW. Corn slurry was sonicated at varying amplitudes from 192 to 320 mumpeak-to-peak(p-p) for 0-40 seconds. Enzyme stability was investigated by adding enzyme (STARGEN(TM)001) before and after sonication. Scanning electron micrograph (SEM) images and particle size distribution analysis showed a nearly 20-fold size reduction by disintegration of corn particles due to ultrasonication. The results also showed a 30% improvement in sugar release of sonicated samples relative to the control group (untreated). The efficiency exceeded 100% in terms of relative energy gain from the additional sugar released due to ultrasonication compared to the ultrasonic energy applied. Interestingly, enzymatic activity was enhanced when sonicated at low and medium power. This result suggested that ultrasonic energy did not denature the enzymes during pretreatment. Ultrasonication of sugary-2 corn was also investigated in the study. Results similar to those for commodity corn (dent corn) were found, in terms of glucose yield and starch conversion. SEM and polarized-light microscope pictures showed the partial gelatinization of corn slurry due to ultrasound. In the 96-h saccharification time, a model was formulated to fit the sugar release curve. The results have shown 17-21% increase in the extent of sugar production from sonicated samples relative to the control group. Additionally, the reaction rates of the sonicated samples were 2- to 10-fold higher than the reaction rates for the control group. In comparing sugary-2 corn with commodity corn, it was found that sonicated sugary-2 corn saccharified faster than sonicated commodity corn. It is important to note, without ultrasonic treatment, sugary-2 corn released more reducing sugar than commodity corn during saccharification. To further investigate the potential of ultrasonics for scale-up, a continuous flow system was studied. An ultrasonic continuous flow system was tested using Branson's flow-through "donut" horn. The donut horn, which vibrates radially, was placed inside a 5.5 L stainless steel reactor. The amplitude was maintained at 12 mumpp and the feed flow rate was varied from 8-27 L/min (2-7 gal/min) with reactor retention times varying from 12-40 seconds. Samples sonicated in continuous flow system showed lower reducing sugar yield than batch ultrasonication. However, considering the ultrasonic energy density of batch and continuous systems, the continuous systems proved to be more energy efficient in terms of glucose production compared with the batch system. It was also seen that particle size disintegration was proportional to energy density regardless of the type of ultrasonic system used. To compare ultrasonics with jet cooking, fermentation experiments were conducted. There were only marginal differences between jet cooked samples and the sonicated samples in terms of ethanol conversion based on theoretical yield. Furthermore, statistical analysis confirmed that there was no significant difference (p<0.05) in the ethanol yields of the two pretreatment methods. Economic analysis indicated that the capital cost of installing ultrasonics was higher compared to jet cooker equipment. However, due to the energy needs of jet cooking, a typical 189 million liters (50 million gallon) per year ethanol plant ethanol plant would save about 16% in pretreatment cost by using ultrasonics. Based on these results, ultrasonication is a promising pretreatment method in corn ethanol production, as an alternative to jet cooking.
Utilisation of corn (Zea mays) bran and corn fiber in the production of food components.
Rose, Devin J; Inglett, George E; Liu, Sean X
2010-04-30
The milling of corn for the production of food constituents results in a number of low-value co-products. Two of the major co-products produced by this operation are corn bran and corn fiber, which currently have low commercial value. This review focuses on current and prospective research surrounding the utilization of corn fiber and corn bran in the production of potentially higher-value food components. Corn bran and corn fiber contain potentially useful components that may be harvested through physical, chemical or enzymatic means for the production of food ingredients or additives, including corn fiber oil, corn fiber gum, cellulosic fiber gels, xylo-oligosaccharides and ferulic acid. Components of corn bran and corn fiber may also be converted to food chemicals such as vanillin and xylitol. Commercialization of processes for the isolation or production of food products from corn bran or corn fiber has been met with numerous technical challenges, therefore further research that improves the production of these components from corn bran or corn fiber is needed.
Ma, Kedong; Hu, Guoquan; Pan, Liwei; Wang, Zichao; Zhou, Yi; Wang, Yanwei; Ruan, Zhiyong; He, Mingxiong
2016-11-01
A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contamination issues in continuous fermentation for ethanol production
USDA-ARS?s Scientific Manuscript database
Continuous fermentation processes are employed by corn wet milling plants all over world to convert starch to ethanol. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields. Contaminants compete with inoculate...
NASA Astrophysics Data System (ADS)
N'guessan, Yapo Genevier
2007-12-01
The production of corn-based ethanol in the U.S. has increased from 1,630 million gallons in 2000 to 4,855 million gallons in 2006, representing a 198% growth over the period considered. This growth is favored by the availability of more efficient technologies in the production process of ethanol and is sustained by the high prices of ethanol in the market. The industry is also supported by a favorable public policy, expressed in the form of laws, mandating an increase in the use of ethanol, and also in the form of tax incentives. The tremendous increase in the use of corn for the ethanol industry is made at the expense of the livestock industry that was the traditional destination for much of the U.S. corn grain. As the ethanol industry continues to expand, concerns are raised in regard to its impact as more and more corn is diverted from the livestock sector. This study investigates the economic impact of the ethanol industry on the U.S. livestock sector. Specifically, a shipping cost model is developed to simulate the impact of the ethanol industry on the shipping cost of corn at the national and individual state levels. The dynamics for major livestock producing states are also analyzed at the crop reporting district level. Different scenarios based on assumptions on the availability of corn and the production capacities of the ethanol industry are displayed. Results from the model indicate that nationwide there is a 5 to 22% increase in the shipping cost of corn for the livestock industry due to the ethanol industry, depending on the scenario involved. At the state level, there is an increase in the transportation cost for most of the states, with shipping cost doubling in some cases. Nevertheless, some states benefit from the dynamics created by the development of ethanol plants and are experiencing a reduction in their livestock industry corn transportation cost.
A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas L. Karlen; Stuart J. Birell; J. Richard Hess
Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubblemore » height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.« less
A Remote Sensing-Derived Corn Yield Assessment Model
NASA Astrophysics Data System (ADS)
Shrestha, Ranjay Man
Agricultural studies and food security have become critical research topics due to continuous growth in human population and simultaneous shrinkage in agricultural land. In spite of modern technological advancements to improve agricultural productivity, more studies on crop yield assessments and food productivities are still necessary to fulfill the constantly increasing food demands. Besides human activities, natural disasters such as flood and drought, along with rapid climate changes, also inflect an adverse effect on food productivities. Understanding the impact of these disasters on crop yield and making early impact estimations could help planning for any national or international food crisis. Similarly, the United States Department of Agriculture (USDA) Risk Management Agency (RMA) insurance management utilizes appropriately estimated crop yield and damage assessment information to sustain farmers' practice through timely and proper compensations. Through County Agricultural Production Survey (CAPS), the USDA National Agricultural Statistical Service (NASS) uses traditional methods of field interviews and farmer-reported survey data to perform annual crop condition monitoring and production estimations at the regional and state levels. As these manual approaches of yield estimations are highly inefficient and produce very limited samples to represent the entire area, NASS requires supplemental spatial data that provides continuous and timely information on crop production and annual yield. Compared to traditional methods, remote sensing data and products offer wider spatial extent, more accurate location information, higher temporal resolution and data distribution, and lower data cost--thus providing a complementary option for estimation of crop yield information. Remote sensing derived vegetation indices such as Normalized Difference Vegetation Index (NDVI) provide measurable statistics of potential crop growth based on the spectral reflectance and could be further associated with the actual yield. Utilizing satellite remote sensing products, such as daily NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS) at 250 m pixel size, the crop yield estimation can be performed at a very fine spatial resolution. Therefore, this study examined the potential of these daily NDVI products within agricultural studies and crop yield assessments. In this study, a regression-based approach was proposed to estimate the annual corn yield through changes in MODIS daily NDVI time series. The relationship between daily NDVI and corn yield was well defined and established, and as changes in corn phenology and yield were directly reflected by the changes in NDVI within the growing season, these two entities were combined to develop a relational model. The model was trained using 15 years (2000-2014) of historical NDVI and county-level corn yield data for four major corn producing states: Kansas, Nebraska, Iowa, and Indiana, representing four climatic regions as South, West North Central, East North Central, and Central, respectively, within the U.S. Corn Belt area. The model's goodness of fit was well defined with a high coefficient of determination (R2>0.81). Similarly, using 2015 yield data for validation, 92% of average accuracy signified the performance of the model in estimating corn yield at county level. Besides providing the county-level corn yield estimations, the derived model was also accurate enough to estimate the yield at finer spatial resolution (field level). The model's assessment accuracy was evaluated using the randomly selected field level corn yield within the study area for 2014, 2015, and 2016. A total of over 120 plot level corn yield were used for validation, and the overall average accuracy was 87%, which statistically justified the model's capability to estimate plot-level corn yield. Additionally, the proposed model was applied to the impact estimation by examining the changes in corn yield due to flood events during the growing season. Using a 2011 Missouri River flood event as a case study, field-level flood impact map on corn yield throughout the flooded regions was produced and an overall agreement of over 82.2% was achieved when compared with the reference impact map. The future research direction of this dissertation research would be to examine other major crops outside the Corn Belt region of the U.S.
Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.
Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K; Robertson, G Philip
2011-08-16
Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn-soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO(2) equivalents (CO(2)e)·ha(-1) that included agronomic inputs, changes in C stocks, altered N(2)O and CH(4) fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO(2)e·ha(-1) if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO(2)e·ha(-1) on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn-soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion.
Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model
NASA Astrophysics Data System (ADS)
Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.
2017-12-01
Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.
Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover
NASA Astrophysics Data System (ADS)
Ochsner, T.; Venterea, R. T.
2009-12-01
Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.
Wang, Xuemei; Li, Zifu; Bai, Xue; Zhou, Xiaoqin; Cheng, Sikun; Gao, Ruiling; Sun, Jiachen
2018-02-01
Based on continuous anaerobic co-digestion of cow manure with available carbon slowly released corn straw, the effect of adding available carbon quickly released fruit and vegetable waste (FVW) was explored, meanwhile microbial community variation was studied in this study. When the FVW added was 5% and 1%, the methane production of the cow manure and corn straw was improved, and the start-up process was shortened. With higher proportion of FVW to 5%, the performance was superior with a mean methane yield increase of 22.4%, and a greater variation of bacterial communities was observed. FVW enhanced the variation of the bacterial communities. The microbial community structure changed during fermentation and showed a trend toward a diverse and balance system. Therefore, the available carbon quickly released FVW was helpful to improve the anaerobic co-digestion of the cow manure and available carbon slowly released corn straw. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Glaser, John A.; Copenhaver, Kenneth L.; May, George
2009-01-01
In recent years, the use of Plant Incorporated Protectant (PIP) corn by American producers has been increasing dramatically. PIP corn contains genetically inserted traits that produce toxins in the plant that provide narrowly targeted protection against specific insect pests. The plant producing t oxms can offer significant reductions in the application of broad -spectrum pesticides that have ecological and human health consequences. PIP corn as a percentage of total corn acreage planted in the US is expected to continue to increase as these protective traits are "stacked" with other desirable traits by seed companies, and producers are seeing considerable increases in corn yield as a result. The introduction of corn as a bio-fuel source for ethanol has increased production by over 6 million hectares in 2007. The United States Environmental Protection Agency (USEPA), which is responsible for the registration of PIP crops under the Federal Insecticide, Fungicide and Rodenticide Act, views the use of PIP corn as positive. Broad spectrum pesticide use has declined since the PIP traits have been introduced. As the agricultural landscape sees a higher percentage of corn acres using the PIP technology, the risk of the targeted insect pest populations developing resistance to the toxins, thereby rendering the in will increase as well. This result would negate the effectiveness of the PIP corn traits and could reduce production of a US field corn crop valued at $33 billion dollars in 2006 and place US food and now energy security at risk. Concerns over insect pest resistance development to PIP traits have led the USEPA to team with NASA and the Institute for Technology Development (ITD) to develop geo-spatial technologies designed to proactively monitor the corn production landscape for insect pest infestation and possible resistance development. USEPA resistance management simulation models are combined with NASA remote sensi ng products to monitor the corn landscape for resistance development. The two agencies have entered into an agreement which could potentially lead to the development of next generation NASA sensors that will more specifically address the requirements of the USEPA's resistance development strategy and offer opportunities to study the ever changing ecosystem complexities. The USEPA/NASA/ITD team has developed a broad research project entitled CERES (Crop Evaluation Research for Environmental Strategies). CERES is a research effort leading to decision support system tools that are designed to integrate multi-resolution NASA remote sensing data products and USEPA geo -spatial models to monitor the potential for insect pest resistance development from the regional to the landscape and then to the field level.
Chakraborty, Panchali; Muthukumarappan, Kasiviswanathan; Gibbons, William R.
2012-01-01
The research described in this present study was part of a larger effort focused on developing a dual substrate, dual fermentation process to produce Polyhydroxyalkanoate (PHA). The focus of this study was developing and optimizing a strategy for feeding a mixture of SCFAs (simulated ARF) and maximizing PHA production in a cost-effective way. Three different feeding strategies were examined in this study. The substrate evaluated in this study for the growth phase of R. eutropha was condensed corn solubles, a low-value byproduct of the dry-mill, corn ethanol industry. The culture was grown to high cell densities in nitrogen-supplemented condensed corn solubles media in 5 L bioreactors. The overall growth rate of R. eutropha was 0.2 h−1. The 20 mL ARF feeding every 3 h from 48 to 109 h strategy gave the best results in terms of PHA production. PHA productivity (0.0697 g L−1 h−1), PHA concentration (8.37 g L−1), and PHA content (39.52%) were the highest when ARF was fed every 3 h for 61 h. This study proved that condensed corn solubles can be potentially used as a growth medium to boost PHA production by R. eutropha thus reducing the overall cost of biopolymer production. PMID:23118512
Latin America and the Caribbean: Issues for the 109th Congress
2005-05-26
Dominican tax on drinks containing high fructose corn syrup , a major U.S. product, that had threatened the country’s chances of being included in the U.S...has complained about Mexico’s 20% tax on soft drinks made with high fructose corn syrup (HFCS), with devastating impact on HFCS sales. Under...unstable political environment. In Peru, President Alejandro Toledo remains extremely unpopular, but the economy has continued to grow at high levels
WSR-88D doppler radar detection of corn earworm moth migration.
Westbrook, J K; Eyster, R S; Wolf, W W
2014-07-01
Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r2=0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r2=0.56) and wind direction (r2=0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.
WSR-88D doppler radar detection of corn earworm moth migration
NASA Astrophysics Data System (ADS)
Westbrook, J. K.; Eyster, R. S.; Wolf, W. W.
2014-07-01
Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated ( r 2 = 0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed ( r 2 = 0.56) and wind direction ( r 2 = 0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.
USDA-ARS?s Scientific Manuscript database
Biofuel production in the Midwestern United States has largely focused on corn (Zea mays L.) grain for ethanol production and more recently, corn stover for lignocellulosic ethanol. As an alternative to conventional corn, tropical corn populations have been evaluated. Tropical corn is the term used ...
Continuous High-solids corn liquefaction and fermentation with stripping of ethanol
USDA-ARS?s Scientific Manuscript database
Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous resear...
Understanding the reductions in US corn ethanol production costs: an experience curve approach
USDA-ARS?s Scientific Manuscript database
The US is currently the world's largest ethanol producer. An increasing percentage is used as transportation fuel, but debates continue on its cost competitiveness and energy balance. In this study, technological development of ethanol production and resulting cost reductions are investigated by usi...
Potential Harvestable Corn Cob Biomass in Several Production Systems in the Western Corn Belt
USDA-ARS?s Scientific Manuscript database
The proposed use of corn residues for biofuel production has increased interest in how much and what components of residue should/can be removed. One component of corn residue that is already being handled (corn cobs) might be an easily harvestable product that could be used for biofuel production. ...
Chang, Zhen; Cai, Di; Wang, Yong; Chen, Changjing; Fu, Chaohui; Wang, Guoqing; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-04-01
In order to make full use of the fresh corn stalk, the sugar containing juice was used as the sole substrate for acetone-butanol-ethanol production without any nutrients supplement, and the bagasse after squeezing the juice was used as the immobilized carrier. A total 21.34g/L of ABE was produced in batch cells immobilization system with ABE yield of 0.35g/g. A continuous fermentation containing three stages with immobilized cells was conducted and the effect of dilution rate on fermentation was investigated. As a result, the productivity and ABE solvents concentration reached 0.80g/Lh and 19.93g/L, respectively, when the dilution rate in each stage was 0.12/h (corresponding to a dilution rate of 0.04/h in the whole system). And the long-term operation indicated the continuous multiple stages ABE fermentation process had good stability and showed the great potential in future industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, C.; Yu, Z.; Cao, P.; Tian, H.
2017-12-01
The Corn Belt of the Midwestern U.S. is one of the most productive systems in the world during the growing season, with gross primary production exceeding even that of the Amazon forests. Fueled by increased commodity prices in the late 2000s, the area in corn and soybean in the U.S. has reached record highs with most of the newly added cropland converted from grasslands, wetland, and Conservation Reserve Program land. Intensive management practices, such as fertilizer use, irrigation, tillage, residue removal etc., have been implemented following cropland expansion to maximize crop yield from converted marginal land or from more monoculture production. The Corn Belt has been recognized as one of the major contributors to carbon sinks in the U.S., partially because crop harvest and residue removal reduced soil respiration. In the meanwhile, 75% of the total N2O emission in the U.S. comes from agriculture, among which the Corn Belt is the major source due to nitrogen management, and has large potential of climate mitigation. However, it remains far from certain how intensive cropland expansion and management practices in this region have affected soil carbon accumulation and non-CO2 GHG emissions. In this study, by using a process-based land ecosystem model, Dynamic Land Ecosystem Model (DLEM), we investigated the impacts of nitrogen fertilizer use on soil carbon accumulation and direct N2O emissions across the U.S. Corn Belt. Surprisingly, we found N fertilizer-induced SOC storage continued shrinking after the 1980s while N2O emissions remains relatively constant. The N fertilizer use led to a net greenhouse gas release since 2000 in both the western and eastern Corn Belt, contributing to climate warming. This study implies an increasing importance of nitrogen management for both agricultural production and climate mitigation.
Utilisation of Corn (Zea mays) Bran and Corn Fiber in the Production of Food Components
USDA-ARS?s Scientific Manuscript database
Over the past decade, the demand for ethanol has increased dramatically. Demand for other products of corn milling, such as starches and sweeteners, is also expected to increase. With the increase in demand for industrial and food use of corn, the production of byproducts, such as corn fiber, corn...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pordesimo, Lester O.; Tumuluru, Jaya Shankar
2015-10-01
There has been continuing interest and support in using herbaceous biomass, mostly agricultural crop residues, in the U.S. as feedstocks for producing bioenergy, liquid transportation fuels, and industrial chemicals/materials. With the potential of greater collection of agricultural crop residues for the foregoing industrial applications there will be a commensurate greater availability of crop residues for utilization in agricultural production. Agricultural crop residues are typically used in agricultural production as roughage or bedding for cattle. Use of herbaceous biomass, corn stover of greatest interest at the present time, and processing coproducts thereof, as a feed ingredient presents an opportunity to reducemore » ration costs and improve livestock enterprise profitability by replacing an amount of corn and other feed grains in livestock diets with proper formulation. The obvious advantage of utilizing corn stover is its wide availability and low cost.« less
Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.
2014-01-01
Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783
Code of Federal Regulations, 2013 CFR
2013-01-01
... cooked beef, roast beef, and cooked corned beef products. 318.17 Section 318.17 Animals and Animal... production of cooked beef, roast beef, and cooked corned beef products. (a) Cooked beef, roast beef, and cooked corned beef products must be produced using processes ensuring that the products meet the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... cooked beef, roast beef, and cooked corned beef products. 318.17 Section 318.17 Animals and Animal... production of cooked beef, roast beef, and cooked corned beef products. (a) Cooked beef, roast beef, and cooked corned beef products must be produced using processes ensuring that the products meet the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... cooked beef, roast beef, and cooked corned beef products. 318.17 Section 318.17 Animals and Animal... production of cooked beef, roast beef, and cooked corned beef products. (a) Cooked beef, roast beef, and cooked corned beef products must be produced using processes ensuring that the products meet the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... cooked beef, roast beef, and cooked corned beef products. 318.17 Section 318.17 Animals and Animal... production of cooked beef, roast beef, and cooked corned beef products. (a) Cooked beef, roast beef, and cooked corned beef products must be produced using processes ensuring that the products meet the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... cooked beef, roast beef, and cooked corned beef products. 318.17 Section 318.17 Animals and Animal... production of cooked beef, roast beef, and cooked corned beef products. (a) Cooked beef, roast beef, and cooked corned beef products must be produced using processes ensuring that the products meet the...
Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin
Demissie, Yonas; Yan, Eugene; Wu, May
2017-07-10
Our study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was then used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in themore » region were considered, including a feedstock projection from the DOE Billion-Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business-as-usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub-basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.« less
Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demissie, Yonas; Yan, Eugene; Wu, May
Our study addresses the uncertainties related to potential changes in land use and management and associated impacts on hydrology and water quality resulting from increased production of biofuel from the conventional and cellulosic feedstock. The Soil Water Assessment Tool (SWAT) was then used to assess the impacts on regional and field scale evapotranspiration, soil moisture content, stream flow, sediment, and nutrient loadings in the Ohio River Basin. The model incorporates spatially and temporally detailed hydrologic, climate and agricultural practice data that are pertinent to simulate biofuel feedstock production, watershed hydrology and water quality. Three future biofuel production scenarios in themore » region were considered, including a feedstock projection from the DOE Billion-Ton (BT2) Study, a change in corn rotations to continuous corn, and harvest of 50% corn stover. The impacts were evaluated on the basis of relative changes in hydrology and water quality from historical baseline and future business-as-usual conditions of the basin. The overall impact on water quality is an order of magnitude higher than the impact on hydrology. For all the three future scenarios, the sub-basin results indicated an overall increase in annual evapotranspiration of up to 6%, a decrease in runoff up to 10% and minimal change in soil moisture. The sediment and phosphorous loading at both regional and field levels increased considerably (up to 40–90%) for all the biofuel feedstock scenario considered, while the nitrogen loading increased up to 45% in some regions under the BT2 Study scenario, decreased up to 10% when corn are grown continuously instead of in rotations, and changed minimally when 50% of the stover are harvested. Field level analyses revealed significant variability in hydrology and water quality impacts that can further be used to identify suitable locations for the feedstock productions without causing major impacts on water quantity and quality.« less
Topographic and soil influences on root productivity of three bioenergy cropping systems
Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka
2013-01-01
Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...
Zhong, Weizhang; Chi, Lina; Luo, Yijing; Zhang, Zhongzhi; Zhang, Zhenjia; Wu, Wei-Min
2013-04-01
Anaerobic digestion of Taihu blue algae was tested in laboratory scale, continuous feed digesters (hydraulic retention time 10 days) at 35°C and various organic loading rates (OLR). The methane production and biomass digestion performed well at OLR below 4.00 gVSL(-1)d(-1) but deteriorated as OLR increased due to the increased ammonia concentration, causing inhibition mainly to acetate and propionate degradation. Supplementing corn straw as co-feedstock significantly improved the digestion performance. The optimal C/N ratio for the co-digestion was 20:1 at OLR of 6.00 gVSL(-1) d(-1). Methane yield of 234 mL CH4 gVS(-1) and methane productivity of 1404 mL CH4 L(-1) d(-1) were achieved with solid removal of 63%. Compared with the algae alone, the methane productivity was increased by 46% with less accumulation of ammonia and fatty acids. The reactor rate-limiting step was acetate and propionate degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H
2014-01-01
Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.
2014-01-01
Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Conclusions Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses. PMID:24725504
Pilot process for decolorizing/deodorizing commercial corn zein products
USDA-ARS?s Scientific Manuscript database
Corn zein is the major protein component of ground corn, and co-products of the corn ethanol industry which includes distiller’s dried grains and corn gluten meal. Zein products generated from those materials all possess some degree of yellow color and off-odor that deters their usage in food syste...
9 CFR 319.102 - Corned beef round and other corned beef cuts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...
9 CFR 319.102 - Corned beef round and other corned beef cuts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...
9 CFR 319.102 - Corned beef round and other corned beef cuts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...
9 CFR 319.102 - Corned beef round and other corned beef cuts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...
9 CFR 319.102 - Corned beef round and other corned beef cuts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef round and other corned beef cuts. 319.102 Section 319.102 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Meats, Unsmoked and Smoked § 319.102 Corned beef round and other corned beef cuts. In preparing “Corned...
Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; ...
2015-11-04
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less
Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q
2015-01-01
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less
76 FR 64839 - Sugar Program; Feedstock Flexibility Program for Bioenergy Producers
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... increase and that high fructose corn syrup (HFCS) use in Mexico continues to be strong (but not as strong..., in- process sugar products such as beet thick juice or cane syrup are eligible. Since the program...
USDA-ARS?s Scientific Manuscript database
A 4-yr field study was conducted from 2007 to 2010 at Stoneville, MS to examine the effects of rotating corn and soybean under reduced tillage conditions on soil properties, yields, and net return. The six rotation systems were continuous corn (CCCC), continuous soybean (SSSS), corn-soybean (CSCS),...
USDA-ARS?s Scientific Manuscript database
Corn earworm is a major pest of sweet corn, especially when grown organically. Aerial application of insecticides is important for both conventionally- and organically-grown sweet corn production as sweet corn is frequently irrigated to assure return on investment given the high production costs. ...
Compositional variability of nutrients and phytochemicals in corn after processing.
Prasanthi, P S; Naveena, N; Vishnuvardhana Rao, M; Bhaskarachary, K
2017-04-01
The result of various process strategies on the nutrient and phytochemical composition of corn samples were studied. Fresh and cooked baby corn, sweet corn, dent corn and industrially processed and cooked popcorn, corn grits, corn flour and corn flakes were analysed for the determination of proximate, minerals, xanthophylls and phenolic acids content. This study revealed that the proximate composition of popcorn is high compared to the other corn products analyzed while the mineral composition of these maize products showed higher concentration of magnesium, phosphorus, potassium and low concentration of calcium, manganese, zinc, iron, copper, and sodium. Popcorn was high in iron, zinc, copper, manganese, sodium, magnesium and phosphorus. The xanthophylls lutein and zeaxanthin were predominant in the dent corn and the total polyphenolic content was highest in dent corn while the phenolic acids distribution was variable in different corn products. This study showed preparation and processing brought significant reduction of xanthophylls and polyphenols.
Utilization of corn fiber for production of schizophyllan
USDA-ARS?s Scientific Manuscript database
Corn fiber is an abundant lignocellulosic biomass resource produced during the wet milling of corn. Although corn fiber is recalcitrant to enzymatic digestion, the fungus Schizophyllum commune was able to directly utilize corn fiber for production of the valuable bioproduct, schizophyllan. Schizophy...
Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie
2014-02-01
The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
9 CFR 319.303 - Corned beef hash.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef hash. 319.303 Section 319.303 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Products § 319.303 Corned beef hash. (a) “Corned Beef Hash” is the semi-solid food product in the form of a...
Vincent, Micky; Pometto, Anthony L; van Leeuwen, J Hans
2011-07-01
Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Aerial spray deposition on corn silks applied at high and low spray rates
USDA-ARS?s Scientific Manuscript database
Corn earworm is a major pest of sweet corn, especially when grown organically. Aerial application of insecticides is important for both conventionally- and organically-grown sweet corn production as sweet corn is frequently irrigated to assure return on investment given the high production costs. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashide, Wendy; Rohlin, Lars
Easel Biotechnologies, LLC’s Bio-Oxo process has demonstrated that isobutyraldehyde can be biologically produced from corn stover hydrolysate up to 56 g/L in a 14L fermentor. This was accomplished by metabolically engineering bacterial strains to not only produce isobutyraldehyde, but to do so by co-utilizing corn stover hydrolysate sugars, glucose and xylose. Also essential to the success of the Bio-Oxo process was that it utilized gas stripping as a means of product separation, allowing for the continuous removal of isobutyraldehyde. This aided in not only reducing energy costs associated with separation, but also alleviating product toxicity, resulting in higher production. Althoughmore » we were not able to complete our economic analysis based on pilot scale fermentations, the improvements we have made from strain engineering to product separation, should result in the reduced cost of isobutyraldehyde. Still, as the project has ended prematurely, there is room for additional optimization. Improvements in productivity and sugar utilization would result in a further reduction in capital and recovery costs. As a biological-based process, the utilization of corn stover results in reduced greenhouse gas emissions as compared to petroleum-based chemical synthesis. In addition, as a true replacement chemical “drop in” system, no downstream production units need to be changed. Jobs can also be created as farm waste needs to be collected and transported to the new production facility.« less
Variation of biometric parameters in corn cobs under the influence of nitrogen fertilization
NASA Astrophysics Data System (ADS)
Gigel, Prisecaru; Florin, Sala
2017-07-01
Biometric parameters as elements of productivity on corn cobs, along with plant density per unit area (ha) are essential in achieving production. The influence of differentiated fertilization with nitrogen was evaluated at the level of productivity elements on corn cobs, Andreea hybrid. Biometric parameters of the corn cobs (total length - L; usable length - l; uncoated length with corn kernels - lu; diameter at the base - Db, middle - Dm, and top of the corn cobs - Dt; corn cob weight - Cw, grain weight - Gw) were directly influenced by the doses of nitrogen. Regression analysis has facilitated the prediction of grain weight as the main element of productivity under different statistical certainty based on nitrogen doses (R2 = 0.962, p<0.01), on the total length of corn cobs (R2 = 0.985, p<0.01), on the usable length of corn cobs (R2 = 0.996, p<<0.001), on the diameter at the base of corn cobs (R2 = 0.824, p<0.01), on the diameter at the middle of corn cobs (R2 = 0.807, p<0.01), on uncoated length with corn kernels (R2 = 0.624, p<0.01) and on the diameter at the top of the corn cobs (R2 = 0.384, p=0.015).
Inhibitory effect of corn silk on skin pigmentation.
Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk
2014-03-03
In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.
A "green process" for producing highly purified zein from commercial zein
USDA-ARS?s Scientific Manuscript database
Corn zein is the major protein component of ground corn, and co-products of the corn ethanol industry which includes corn gluten meal and distillers’ dried grains. Zein products generated from those co-products all possess yellow coloration and off-odor. Removal of yellow color and off-odor is essen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Dunn, Jennifer B.; Wang, Michael Q.
Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanolmore » plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.« less
High-conversion hydrolysates and corn sweetener production in dry-grind corn process.
USDA-ARS?s Scientific Manuscript database
Most corn is processed to fuel ethanol and distillers’ grain animal feed using the dry grind process. However, wet milling is needed to refine corn starch. Corn starch is in turn processed to numerous products, including glucose and syrup. However, wet milling is a capital, labor, and energy intensi...
Devadason, I Prince; Anjaneyulu, A S R; Babji, Y
2010-01-01
The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.
Growing ethanol sector drives corn supply chain shift for the last decade
NASA Astrophysics Data System (ADS)
Kim, T.; Schmitt, J.; Brauman, K. A.; Smith, T. M.; Suh, K.
2017-12-01
The US is the largest producer in the world, 89% of corn production uses in domestic demands in 2012. Carbon emission and irrigated water usage in the corn farming stage are hot-spot in the meat production sectors, comprise 37% of all US corn demand. The annual capacity of the ethanol sector increases from 6.5 billion gallons to 15.3 billion gallons for the last decade. The growth of corn demand in ethanol sector makes corn supply chain shift. Most of the ethanol plants located in the Mid-west where is the top 12 corn producing states. Therefore animal feeds take more supply from the other states. The purpose of this study is to estimate environmental impacts and water scarcity associated embedded corn by the temporal and spatial corn supply chain model based on a cost minimization. We use publicly available county-level data on corn production, feed demands, aggregative carbon emission and irrigated water usage in farming state, and a water depletion index as a metric for determining water scarcity. The water stressed counties produce 23.3% of US total corn production in 2012, and the irrigated corn is 14.2%. We simulated the corn supply chain using linear programming and developed the web-based visualization tools called FoodS3 (Food Systems Supply-chain Sustainability tool, http://foods3.org).
USDA-ARS?s Scientific Manuscript database
Highly specialized cash-grain production systems based upon corn-soybean rotations under tilled soil management are common in the northwestern U.S. Corn Belt. This study, initiated in 1997, was conducted to determine if diversification of this ubiquitous corn-soybean rotation would affect soil char...
Impact of alcohol fuel production on agricultural markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.H.
1986-01-01
Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed withmore » the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.« less
The effects of physical and chemical preprocessing on the flowability of corn stover
Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; ...
2015-12-20
Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less
The effects of physical and chemical preprocessing on the flowability of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Nathan C.; Nagle, Nick; Sievers, David A.
Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less
Rats' preferences for corn versus wood-based bedding and nesting materials.
Ras, T; van de Ven, M; Patterson-Kane, E G; Nelson, K
2002-10-01
Corn by-products can be used as bedding and nesting products. Corn-cob bedding resists ammonia build-up and corn-husk nesting material resists dampness. It is not clear whether these advantages are at the expense of animal comfort. Corn cob was compared to aspen chip bedding, and corn husk to paper strip nesting material. Data from 20 rats with differential early bedding experience suggested that they prefer aspen chip, but are also biased towards the bedding they were raised on. Data from 10 rats with no prior nesting material experience suggested that paper strip was preferred over cornhusk. Thus, corn-cob products are not recommended except in situations where air quality and/or flooding are significant problems.
Selbmann, L; Crognale, S; Petruccioli, M
2002-01-01
Evaluation of fermentative usage of raw starchy materials for exopolysaccharide (EPS) production by Sclerotium glucanicum NRRL 3006 and Botryosphaeria rhodina DABAC-P82. Non-hydrolysed corn starch, soft wheat flour, potato flour, cassava flour, sweet and industrial potato flours, and corn starch hydrolysed to different dextrose equivalent (DE) were tested in shaken culture for EPS production. Both fungal strains produced EPS on all tested materials but the production was maximum on hydrolysed corn starch (30.5 and 19.8 g l(-1) by B. rhodina and S. glucanicum on corn starch at 100 and 62 DE, respectively). Raw starchy materials as such and, in particular, partially or totally hydrolysed corn starch could be used profitably for EPS production by S. glucanicum and B. rhodina. The excellent EPS production, productivity and yield of B. rhodina DABAC-P82 when grown on 60 g l(-1) of totally hydrolysed corn starch.
Baral, Nawa R; Slutzky, Lauren; Shah, Ajay; Ezeji, Thaddeus C; Cornish, Katrina; Christy, Ann
2016-03-01
Biobutanol is a next-generation liquid biofuel with properties akin to those of gasoline. There is a widespread effort to commercialize biobutanol production from agricultural residues, such as corn stover, which do not compete with human and animal foods. This pursuit is backed by extensive government mandates to expand alternative energy sources. This review provides an overview of research on biobutanol production using corn stover feedstock. Structural composition, pretreatment, sugar yield (following pretreatment and hydrolysis) and generation of lignocellulose-derived microbial inhibitory compounds (LDMICs) from corn stover are discussed. The review also discusses different Clostridium species and strains employed for biobutanol production from corn stover-derived sugars with respect to solvent yields, tolerance to LDMICs and in situ solvent recovery (integrated fermentation). Further, the economics of cellulosic biobutanol production are highlighted and compared to corn starch-derived ethanol and gasoline. As discussed herein, the economic competitiveness of biobutanol production from corn stover largely depends on feedstock processing and fermentation process design. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Prueger, J. H.; Hatfield, J. L.
2015-09-01
Remotely sensed reflectance parameters from corn and soybean surfaces can be correlated to crop production. Surface reflectance of a typical Upper Midwest corn /soybean region in central Iowa across multiple years reveal subtle dynamics in vegetative surface response to a continually varying climate. From 2006 through 2014 remotely sensed data have been acquired over production fields of corn and soybeans in central IA, U.S.A. with the fields alternating between corn and soybeans. The data have been acquired using ground-based radiometers with 16 wavebands covering the visible, near infrared, shortwave infrared wavebands and combined into a series of vegetative indices. These data were collected on clear days with the goal of collecting data at a minimum of once per week from prior to planting until after fall tillage operations. Within each field, five sites were established and sampled during the year to reduce spatial variation and allow for an assessment of changes in the vegetative indices throughout the growing season. Ancillary data collected for each crop included the phenological stage at each sampling date along with biomass sampled at the onset of the reproductive stage and at physiological maturity. Evaluation of the vegetative indices for the different years revealed that patterns were related to weather effects on corn and soybean growth. Remote sensing provides a method to evaluate changes within and among growing seasons to assess crop growth and development as affected by differences in weather variability.
Production of ethanol and furfural from corn stover
USDA-ARS?s Scientific Manuscript database
Corn stover has potential for economical production of biofuels and value-added chemicals. The conversion of corn stover to sugars involves pretreatment and enzymatic hydrolysis. We have optimized hydrothermal, dilute H2SO4 and dilute H3PO4 pretreatments of corn stover for enzymatic saccharificati...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef. 319.100 Section 319.100 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Corned beef. “Corned Beef” shall be prepared from beef briskets, navels, clods, middle ribs, rounds...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef. 319.100 Section 319.100 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Corned beef. “Corned Beef” shall be prepared from beef briskets, navels, clods, middle ribs, rounds...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef. 319.100 Section 319.100 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Corned beef. “Corned Beef” shall be prepared from beef briskets, navels, clods, middle ribs, rounds...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef. 319.100 Section 319.100 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Corned beef. “Corned Beef” shall be prepared from beef briskets, navels, clods, middle ribs, rounds...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corned beef. 319.100 Section 319.100 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Corned beef. “Corned Beef” shall be prepared from beef briskets, navels, clods, middle ribs, rounds...
Quality Assessment of Physical and Organoleptic Instant Corn Rice on Scale-Up Process
NASA Astrophysics Data System (ADS)
Kumalasari, R.; Ekafitri, R.; Indrianti, N.
2017-12-01
Development of instant corn rice product has been successfully conducted on a laboratory scale. Corn has high carbohydrate content but low in fiber. The addition of fiber in instant corn rice, intended to improve the functioning of the product, and replace fiber loss during the process. Scale up process of Instant corn rice required to increase the production capacity. Scale up was the process to get identic output on a larger scale based on predetermined production scale. This study aimed to assess the changes and differences in the quality of instant corn rice during scale up. Instant corn rice scale up was done on production capacity 3 kg, 4 kg and 5 kg. Results showed that scale up of instant corn rice producing products with rehydration ratio ranges between 514% - 570%, the absorption rate ranged between 414% - 470%, swelling rate ranging between 119% - 134%, bulk density ranged from 0.3661 to 0.4745 (g/ml) and porosity ranging between 30-37%. The physical quality of instant corn rice on scale up were stable from the ones at laboratory scale on swelling rate, rehydration ratio, and absorption rate but not stable on bulk density and porosity. Organoleptic qualities were stable at increased scale compared on a laboratory scale. Bulk density was higher than those at laboratory scale, and the porosity was lower than those at laboratory scale.
Long-term cropping systems study
USDA-ARS?s Scientific Manuscript database
This long-term study has been conducted on the Agronomy Farm at ARDC since the early 1970’s. In the beginning, the objectives were mainly related to crop production as affected by different cropping systems. The cropping systems included in the study are Continuous Corn, Soybean, and Sorghum; 2-year...
Changes in soil carbon in a continuous corn-soybean rotation in the Midwest, 2005–2016
USDA-ARS?s Scientific Manuscript database
Comprehensive carbon budgets are essential to improve understanding of the changes in carbon pools and fluxes in agricultural soils, and to assess the sustainability of agricultural production with respect to carbon sequestration. However, this requires long-term experimental setups, due to the slow...
21 CFR 137.260 - Enriched corn meals.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched corn meals. 137.260 Section 137.260 Food...
21 CFR 137.260 - Enriched corn meals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Enriched corn meals. 137.260 Section 137.260 Food...
21 CFR 137.260 - Enriched corn meals.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Enriched corn meals. 137.260 Section 137.260 Food...
21 CFR 137.260 - Enriched corn meals.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Enriched corn meals. 137.260 Section 137.260 Food...
21 CFR 137.260 - Enriched corn meals.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.260 Enriched corn meals. (a) Enriched corn meals are the foods, each of... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Enriched corn meals. 137.260 Section 137.260 Food...
9 CFR 319.101 - Corned beef brisket.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Corned beef brisket. 319.101 Section 319.101 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Smoked § 319.101 Corned beef brisket. In preparing “Corned Beef Brisket,” the application of curing...
9 CFR 319.101 - Corned beef brisket.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Corned beef brisket. 319.101 Section 319.101 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Smoked § 319.101 Corned beef brisket. In preparing “Corned Beef Brisket,” the application of curing...
9 CFR 319.101 - Corned beef brisket.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Corned beef brisket. 319.101 Section 319.101 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Smoked § 319.101 Corned beef brisket. In preparing “Corned Beef Brisket,” the application of curing...
9 CFR 319.101 - Corned beef brisket.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Corned beef brisket. 319.101 Section 319.101 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Smoked § 319.101 Corned beef brisket. In preparing “Corned Beef Brisket,” the application of curing...
9 CFR 319.101 - Corned beef brisket.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Corned beef brisket. 319.101 Section 319.101 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Smoked § 319.101 Corned beef brisket. In preparing “Corned Beef Brisket,” the application of curing...
Griffing, Evan Michael; Schauer, Richard Lynn; Rice, Charles W
2014-03-01
Life cycle assessment is the predominant method to compare energy and environmental impacts of agricultural production systems. In this life cycle study, we focused on the comparison of swine manure to synthetic fertilizer as nutrients for corn production in Iowa. Deep pit (DP) and anaerobic lagoon (AL) treatment systems were compared separately, and urea ammonium nitrate (UAN) was chosen as the representative synthetic fertilizer. The two functional units used were fertilization of 1000 kg of corn in a continuous corn system and fertilization of a crop yielding 1000 kg of corn and a crop yielding 298 kg of soybean in a 2-yr corn-soybean rotation. Iowa-specific versions of emission factors and energy use were used when available and compared with Intergovernmental Panel on Climate Change values. Manure was lower than synthetic fertilizer for abiotic depletion and about equal with respect to eutrophication. Synthetic fertilizer was lower than manure for global warming potential (GWP) and acidification. The choice of allocation method and life cycle boundary were important in understanding the context of these results. In the DP system, methane (CH) from housing was the largest contributor to the GWP, accounting for 60% of the total impact. When storage systems were compared, the DP system had 50% less GWP than the AL system. This comparison was due to reduction in CH emissions from the storage system and conservation of nitrogen. Nitrous oxide emissions were the biggest contributor to the GWP of UAN fertilization and the second biggest contributor to the GWP of manure. Monte Carlo and scenario analyses were used to test the robustness of the results and sensitivity to methodology and important impact factors. The available crop-land and associated plant nutrient needs in Iowa was compared with manure production for the current hog population. On a state- or county-wide level, there was generally an excess of available land. On a farm level, there is often an excess of manure, which necessitates long-distance transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.
Erosion analysis related to corn-based ethanol production in the US
Since the Renewable Fuel Standard has encouraged the development of biofuels, the US has seen an increase in corn production for conversion to ethanol. In many of these agricultural regions, increased corn production is accompanied with increased erosion. An erosion analysis w...
Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents
2004-08-01
high - fructose corn syrup - xi - 022/738863/28.doc...systems Dissolved in water Continuous to monthly Molasses, High Fructose Corn Syrup Injection wells Dissolved in water Continuous to monthly Viscous...7 to 90 days Suthersan et al., 2002; Appendices E.2 and E.11 High Fructose Corn Syrup Diluted to 1 to 10 percent by weight. 50 to 500 mg/L
USDA-ARS?s Scientific Manuscript database
Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...
21 CFR 358.510 - Corn and callus remover active ingredients.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Corn and callus remover active ingredients. 358... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The product consists of any of the following active ingredients within the specified concentrations and in the...
21 CFR 358.510 - Corn and callus remover active ingredients.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Corn and callus remover active ingredients. 358... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The product consists of any of the following active ingredients within the specified concentrations and in the...
21 CFR 358.510 - Corn and callus remover active ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Corn and callus remover active ingredients. 358... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The product consists of any of the following active ingredients within the specified concentrations and in the...
21 CFR 358.510 - Corn and callus remover active ingredients.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Corn and callus remover active ingredients. 358... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The product consists of any of the following active ingredients within the specified concentrations and in the...
Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover
USDA-ARS?s Scientific Manuscript database
Corn stover, as an agricultural waste, has little economic value. The value-added product cellulose was prepared from corn stover by a relatively simple two-stage process - alkali treatment and bleaching resulting in a >93% purity. The particle size of the corn stover cellulose was reduced by mechan...
Li, Fenghua; Jiang, Dafeng; Zheng, Fengjia; Chen, Jindong; Li, Wei
2015-01-01
In this study a total of 522 samples were collected from Shandong province of China in 2014 and analysed for the occurrence of fumonisin B1 (FB1), FB2 and FB3 by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry. Fumonisins were detected in 98.1% of the corn products, with the average total level of 369.2 μg kg(-1). The individual average values of FB1, FB2 and FB3 in corn products were 268.3, 53.7 and 47.2 μg kg(-1), respectively. The simultaneous occurrence of FB1, FB2 and FB3 was observed in 76.7% of the corn products. Especially, the results demonstrated that the difference in the contamination levels for fumonisins in these three types of corn products was apparent. In addition, 6.2% of the wheat flour samples were contaminated with FB1, with concentrations ranging from 0.3 to 34.6 µg kg(-1). No FB2 or FB3 was detected in wheat flour. In corn oil samples no fumonisins were detected.
Lundry, Denise R; Burns, J Austin; Nemeth, Margaret A; Riordan, Susan G
2013-02-27
Monsanto Company and Dow AgroSciences LLC have developed the combined-trait corn product MON 89034 × TC1507 × MON 88017 × DAS-59122-7 (SmartStax, a registered trademark of Monsanto Technology LLC). The combination of four biotechnology-derived events into a single corn product (stacking) through conventional breeding provides broad protection against lepidopteran and corn rootworm insect pests as well as tolerance to the glyphosate and glufosinate-ammonium herbicide families. The purpose of the work described here was to assess whether the nutrient, antinutrient, and secondary metabolite levels in grain and forage tissues of the combined-trait product are comparable to those in conventional corn. Compositional analyses were conducted on grain and forage from SmartStax, a near-isogenic conventional corn hybrid (XE6001), and 14 conventional reference hybrids, grown at multiple locations across the United States. No statistically significant differences between SmartStax and conventional corn were observed for the 8 components analyzed in forage and for 46 of the 52 components analyzed in grain. The six significant differences observed in grain components (p < 0.05) were assessed in context of the natural variability for that component. These results demonstrate that the stacked product, SmartStax, produced through conventional breeding of four single-event products containing eight proteins, is compositionally equivalent to conventional corn, as previously demonstrated for the single-event products.
Physiochemical Properties and Probiotic Survivability of Symbiotic Corn-Based Yogurt-Like Product.
Wang, Cuina; Zheng, Huajie; Liu, Tingting; Wang, Dawei; Guo, Mingruo
2017-09-01
Corn is a major grain produced in northern China. Corn-based functional food products are very limited. In this study, a symbiotic corn-based yogurt-like product was developed. Corn milk was prepared through grinding, extrusion and milling, and hydration processes. Corn extrudate was prepared under the optimized conditions of corn flour particle size <180 μm, moisture content of 15% and extrusion temperature at 130 °C. The corn milk was prepared from 8% corn extrudate suspension and then milled twice with 0.1% glyceryl monostearate and 0.1% sucrose ester as emulsifiers. The corn milk was mixed with sugar (5%), glucose (2%), soy protein isolate (0.75%), inulin (1%), polymerized whey protein (0.3%) and xanthan gum (0.09%) as thickening agents. The mixture was fermented at 35 °C for 6 h using a probiotic starter culture containing L. plantarum. Chemical composition (%) of the symbiotic corn-based yogurt-like product was: total solids (17.13 ± 0.31), protein (1.12 ± 0.03), fat (0.30 ± 0.05), carbohydrates (15.14 ± 0.19), and ash (0.16 ± 0.02), respectively. pH value of this symbiotic product decreased from 4.50 ± 0.03 to 3.88 ± 0.13 and the population of L. plantarum declined from 7.8 ± 0.09 to 7.1 ± 0.14 log CFU/mL during storage at 4 °C. SDS-PAGE analysis showed that there were no changes in protein profile during storage. Texture and consistency were also stable during the period of this study. It can be concluded that a set-type corn-based symbiotic yogurt-like product with good texture and stability was successfully developed that would be a good alternative to the dairy yogurt. © 2017 Institute of Food Technologists®.
Greenhouse-gas Consequences of US Corn-based Ethanol in a Flat World
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Coe, M. T.; Nepstad, D. C.; Donner, S. D.; Bustamante, M. M.; Neill, C.
2008-12-01
Competition for arable land is now occurring among food, fiber, and fuel production sectors. In the USA, increased corn production for ethanol has come primarily at the expense of reduced soybean production. Only a few countries, mainly Brazil, have appropriate soils, climate, and infrastructure needed for large absolute increases in cropped area in the next decade that could make up the lost US soybean production. Our objective is to improve estimates of the potential net greenhouse gas (GHG) consequences, both domestically and in Brazil, of meeting the new goals established by the US Congress for expansion of corn- based ethanol in the USA. To meet this goal of 57 billion liters per year of corn-based ethanol production, an additional 1-7 million hectares will need to be planted in corn, depending upon assumptions regarding future increases in corn yield. Net GHG emissions saved in the USA by substituting ethanol for gasoline are estimated at 14 Tg CO2-equivalents once the production goal of 57 million L/yr is reached. If reduced US soybean production caused by this increase in US corn planting results in a compensatory increase in Brazilian production of soybeans in the Cerrado and Amazon regions, we estimate a potential net release of 1800 to 9100 Tg CO2-equivalents of GHG emissions due to land-use change. Many opportunities exist for agricultural intensification that would minimize new land clearing and its environmental impacts, but if Brazilian deforestation is held to only 15% of the area estimated here to compensate lost US soybean production, the GHG mitigation of US corn-based ethanol production during the next 15 years would be more than offset by emissions from Brazilian land-use change. Other motivations for advancing corn-based ethanol production in the USA, such as reduced reliance on foreign oil and increased prosperity for farming communities, must be considered separately, but the greenhouse-gas-mitigation rationale is clearly unsupportable.
Savi, Geovana D; Piacentini, Karim C; Marchi, Djeini; Scussel, Vildes M
2016-01-01
The distribution of fumonisins (FBs: FB1 and FB2) in the corn-milling process and in corn-based products, as well as daily intake estimates for the Brazilian population were evaluated. Among corn fractions samples, corn meal had the highest mean concentration of FB1 (1305 µg kg(-1)) and FB2 (651 µg kg(-1)) and a distribution factors of 452% and 256% in relation to corn grain, respectively. On the other hand, the distribution factor of FB1 and FB2 in corn flour was found to be 144% and 88% respectively, which demonstrates that fumonisins in this fraction were reduced compared with corn grain. As a result, almost half the corn meal samples (47%) would be non-compliant with future Brazilian regulation (2017) for fumonisins. However, corn-based products, such as corn flakes and popcorn, were in compliance with the regulation. The average probable daily intake and maximum probable daily intake of fumonisins estimated for the Santa Catarina state (Brazil) population were below the provisional maximum tolerable daily intake of 2 µg kg(-1) body weight day(-1) for all corn samples. Despite this, the adoption of practices to control the occurrence of fumonisins should be applied to the corn-milling fractions that may contain a higher concentration of this toxin, such as corn meal, often used for animal feed in Brazil.
Corn grain yield and soil properties after 10 years of broiler litter amendment
USDA-ARS?s Scientific Manuscript database
Use of broiler litter nutrients for crop production benefits crops, soils, and aids in disposing manure. Understanding corn (Zea mays L.) grain production and soil properties resulting from long-term poultry litter amendment helps establish a sustainable animal manure based corn production with low ...
Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...
NASA Astrophysics Data System (ADS)
Latief, R.; Dirpan, A.; Tahir, M. M.; Albanjar, F. V.
2018-05-01
Good Food Production Method (GFPM) requires several requirements that must be fulfilled by all industries involved in the whole production chain from raw materials to the fonal product. This study aims to identify the application of GFPM in the production of corn chips, and assess the status of GFPM implementation which was conducted through observations, interwiews, and documentation of all activities related to the production process. The assessment used a reference adapted from the Decree of Indonesian Minister of Industry Affairs (Permenperin) number 75/M-Ind/Per/7/2010 and the regulation of Head of National Drug and Food Control Agency (KBPOM) number HK.03.1.23.04.12.22007 in 2012. The result showed several inappropriate conditios including: (1) absence of continuing maintanace of the wall and ceiling of the production room: (2) unstandardized ventilation in the production room; (3) absence of net weight and production labels on the packages; and (4) the absence of health label informing health claims and nutrition claims. The status of GFPM implementation in UKM Mawar Merah is at D (poor) level with a rate of IV.
Corn ethanol production, food exports, and indirect land use change.
Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J
2012-06-05
The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.
Wall-Martínez, H A; Ramírez-Martínez, A; Wesolek, N; Brabet, C; Rodríguez-Jimenes, G C; García-Alvarado, M A; Salgado-Cervantes, M A; Robles-Olvera, V J; Roudot, A C
2017-05-01
Corn consumption was evaluated in the population of Veracruz City, Mexico, through two different dietary intake questionnaires. The selection of 300 sampling locations was completely random. The population was segregated into gender and age categories. A daily consumption questionnaire was used to determine the consumption of corn tortillas and a frequency questionnaire to determine the consumption of other corn products. A book of photographs was used to adjust criteria on the size of the portions of corn products and a probability distribution was built of the weight and content of corn for tortillas. Probability density functions (PDFs) were used to describe the consumption of each corn product. Men and those between 14 and 65 years old have the highest consumption of tortillas. Tortillas, antojitos, tacos and chilaquiles are the products that provide the largest amount of corn to the Veracruz people's diet. Even though these products are nixtamalisated, there is evidence that after a thermo-alkaline process some contaminants such as mycotoxins (like aflatoxin, which is a mutagenic, teratogenic and carcinogenic toxin) could be present in high concentrations. These results highlight the need to characterise the consumption of one of the main foods included in dietary staple in Mexico as a first step for a probabilistic risk assessment.
You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong
2017-01-01
Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of 1000 kg of dried corn straw. In this study, biogas slurry replaced process water and nitrogen sources during cellulosic ethanol production. The results suggest that biogas slurry is a potential alternative to water when pretreating corn straw and, thus, has important potential applications in cellulosic ethanol production from corn straw. This study not only provides a novel method for utilizing biogas slurry, but also demonstrates a means of reducing the overall cost of cellulosic ethanol.
Product evaluation : Dow Corning 888
DOT National Transportation Integrated Search
1986-07-10
This report contains a product evaluation of Dow Corning 888 joint sealant. Dow Corning 888 is a one-part silicone material that cures to a low modulus silicone rubber upon exposure to atmospheric moisture. Its uses include transverse and longitudina...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, M.C.; Venkatesh, K.V.; Choi, H.
The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less
Mercury from chlor-alkali plants: measured concentrations in food product sugar.
Dufault, Renee; LeBlanc, Blaise; Schnoll, Roseanne; Cornett, Charles; Schweitzer, Laura; Wallinga, David; Hightower, Jane; Patrick, Lyn; Lukiw, Walter J
2009-01-26
Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.
40 CFR 406.20 - Applicability; description of the corn dry milling subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the corn... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling Subcategory § 406.20 Applicability; description of the corn dry milling subcategory. (a) The provisions of...
40 CFR 406.10 - Applicability; description of the corn wet milling subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the corn... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling Subcategory § 406.10 Applicability; description of the corn wet milling subcategory. The provisions of this...
Khiyami, Mohammad A; Pometto Iii, Anthony L; Brown, Robert C
2005-04-20
Plant biomass can be liquefied into fermentable sugars (levoglucosan then to glucose) for the production of ethanol, lactic acid, enzymes, and more by a process called pyrolysis. During the process microbial inhibitors are also generated. Pseudomonas putida (ATCC 17484) and Streptomyces setonii75Vi2 (ATCC 39116) were employed to degrade microbial inhibitors in diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors. The detoxification process evaluation included measuring total phenols and changes in UV spectra, a GC-MS analysis, and a bioassay, which employed Lactobacillus casei subsp. rhamosus (ATCC 11443) growth as an indicator of detoxification. Suspended-cell cultures illustrated limited detoxification ability of Dcs and Dst. P. putida and S. setoniiplastic compost support (PCS) biofilm continuous-stirred-tank-reactor pure cultures detoxified 10 and 25% (v/v) Dcs and Dst, whereas PCS biofilm mixed culture also partially detoxified 50% (v/v) Dcs and Dst in repeated batch culture. Therefore, PCS biofilm mixed culture is the process of choice to detoxify diluted pyrolysis liquors.
Climate change impacts on corn phenology and productivity
USDA-ARS?s Scientific Manuscript database
Climate is changing around the world and will impact future production of all food and feed crops. Corn is no exception to these impacts and to ensure a future supply of this vital crop we must begin to understand how climate impacts both the phenological development of corn and the productivity. Te...
ERIC Educational Resources Information Center
Grace, Clyde, Jr.
Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains nine lessons based upon competencies needed to maximize profits in corn production. The lessons cover opportunities for growing corn; seed selection; seedbed preparation; planting methods and practices; fertilizer rates and application;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
Themore » $$\\underline{C}$$arbon $$\\underline{C}$$alculator for $$\\underline{L}$$and $$\\underline{U}$$se Change from $$\\underline{B}$$iofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.« less
How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.
Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios
2016-02-01
Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and environmental performance of cropping systems. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Guzman, Jose German
The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.
Production of methanol from heat-stressed pepper and corn leaf disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.A.
Early Calwonder'' pepper (Capsicum annuum L.) and Jubilee'' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantlymore » greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.« less
Health Impacts from Corn Production Pre-and Post-NAFTA Trade Agreement (1986-2013).
Mendoza-Cano, Oliver; Sánchez-Piña, Ramón Alberto; González-Ibarra, Álvaro Jesús; Murillo-Zamora, Efrén; Nava-Garibaldi, Cynthia Monique
2016-07-13
Life cycle assessment (LCA) is a powerful methodology for the study of health impacts and public policies. We performed this study to quantitatively explain the potential health impacts on disability-adjusted life years (DALYs) of corn produced in Mexico and imported from the United States of America (U.S.) from 1984 until 2014. The processes are hybrid and organic corn production. The functional unit was defined as 1 ton of corn production. Results indicate a total value of 178,431, 244,175, and 283,426 DALYs of three decades: 1984-1993, 1994-2003, and 2004-2013, of Mexican production; the U.S. production and transport were also calculated, showing values of 29,815, 65,837, and 107,729 for the same three decades. Additionally, DALYs were obtained for the category of human health and climate change by functional unit: 802.31 (1984-1993), 802.67 (1994-2003), and 803.92 (2004-2013), and for imported corn transported to Mexico from the U.S., 859.12 (1984-2013). DALYs on human toxicity were obtained: 99.05 (1984-1993), 99.05 (1994-2003), and 99.04 (2004-2013), and for the corn imported and transported to Mexico from the U.S., 116.25 (1984-2013). Environmental and health impacts in terms of DALYs are higher when corn is imported versus the corn produced in Mexico. Environmental health and nominal corn cultivation and transport impacts have increased as a result of the North American Free Trade Agreement (NAFTA). Mexico needs to redefine its public policies to suffer less of an environmental burden from corn to ensure global environmental health and food security.
Health Impacts from Corn Production Pre-and Post-NAFTA Trade Agreement (1986–2013)
Mendoza-Cano, Oliver; Sánchez-Piña, Ramón Alberto; González-Ibarra, Álvaro Jesús; Murillo-Zamora, Efrén; Nava-Garibaldi, Cynthia Monique
2016-01-01
Life cycle assessment (LCA) is a powerful methodology for the study of health impacts and public policies. We performed this study to quantitatively explain the potential health impacts on disability-adjusted life years (DALYs) of corn produced in Mexico and imported from the United States of America (U.S.) from 1984 until 2014. The processes are hybrid and organic corn production. The functional unit was defined as 1 ton of corn production. Results indicate a total value of 178,431, 244,175, and 283,426 DALYs of three decades: 1984–1993, 1994–2003, and 2004–2013, of Mexican production; the U.S. production and transport were also calculated, showing values of 29,815, 65,837, and 107,729 for the same three decades. Additionally, DALYs were obtained for the category of human health and climate change by functional unit: 802.31 (1984–1993), 802.67 (1994–2003), and 803.92 (2004–2013), and for imported corn transported to Mexico from the U.S., 859.12 (1984–2013). DALYs on human toxicity were obtained: 99.05 (1984–1993), 99.05 (1994–2003), and 99.04 (2004–2013), and for the corn imported and transported to Mexico from the U.S., 116.25 (1984–2013). Conclusions: Environmental and health impacts in terms of DALYs are higher when corn is imported versus the corn produced in Mexico. Environmental health and nominal corn cultivation and transport impacts have increased as a result of the North American Free Trade Agreement (NAFTA). Mexico needs to redefine its public policies to suffer less of an environmental burden from corn to ensure global environmental health and food security. PMID:27420088
DOE Office of Scientific and Technical Information (OSTI.GOV)
House, R.; Peters, M.; Baumes, H.
1993-05-01
Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.
2007-01-01
corn supply has been used as animal feed and to produce high fructose corn syrup . In 2007, 25% of the US corn harvest is expected to be... high fructose corn syrup for existing corn . Thus, higher prices for corn caused by the ethanol demand is causing a rise in cost for high fructose ... corn syrup and animal feed, driving up consumer prices for chicken, pork, beef, and products, such as soft drinks, made
Production of astaxanthin from corn fiber as a value-added co-product of fuel ethanol fermentation
USDA-ARS?s Scientific Manuscript database
Five strains of the yeast Phaffia rhodozyma, NRRL Y-17268, NRRL Y-17270, ATCC 96594 (CBS 6938), ATCC 24202 (UCD 67-210), and ATCC 74219 (UBV-AX2) were tested for astaxanthin production using the major sugars derived from corn fiber, a byproduct from the wet milling of corn kernels that contains prim...
USDA-ARS?s Scientific Manuscript database
A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for production of acetone butanol ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 gL^-1^ corn stover, over 97% of the sugars were r...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corn sugar. 184.1857 Section 184.1857 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Corn sugar. 184.1857 Section 184.1857 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Corn sugar. 184.1857 Section 184.1857 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Corn sugar. 184.1857 Section 184.1857 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly called D-glucose or dextrose...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Corn sugar. 184.1857 Section 184.1857 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1857 Corn sugar. (a) Corn sugar (C6H12O6, CAS Reg. No. 50-99-7), commonly...
Doubly Curved Composite Sandwich Panels for Hybrid Composite/Metal Ship Structures
2009-08-15
twill with a surface weight of 298 g/m2, Owens Corning Knytex WR24-5x4 woven roving at 815 g/m , and Owens Corning M-8610 continuous filament mat at...Kilburn. 24. Thermoforming Technical Bulletin, Diab website. 42 25. Owens Corning . Kyntex Woven Rovings Technical Data Sheet. One Owens Corning Parkway
Zhu, Yongming; Kim, Tae Hyun; Lee, Y Y; Chen, Rongfu; Elander, Richard T
2006-01-01
A novel method of producing food-grade xylooligosaccharides from corn stover and corn cobs was investigated. The process starts with pretreatment of feedstock in aqueous ammonia, which results delignified and xylan-rich substrate. The pretreated substrates are subjected to enzymatic hydrolysis of xylan using endoxylanase for production of xylooligosaccharides. The conventional enzyme-based method involves extraction of xylan with a strong alkaline solution to form a liquid intermediate containing soluble xylan. This intermediate is heavily contaminated with various extraneous components. A costly purification step is therefore required before enzymatic hydrolysis. In the present method, xylan is obtained in solid form after pretreatment. Water-washing is all that is required for enzymatic hydrolysis of this material. The complex step of purifying soluble xylan from contaminant is essentially eliminated. Refining of xylooligosaccharides to food-grade is accomplished by charcoal adsorption followed by ethanol elution. Xylanlytic hydrolysis of the pretreated corn stover yielded glucan-rich residue that is easily digestible by cellulase enzyme. The digestibility of the residue reached 86% with enzyme loading of 10 filter paper units/g-glucan. As a feedstock for xylooligosaccharides production, corn cobs are superior to corn stover because of high xylan content and high packing density. The high packing density of corn cobs reduces water input and eventually raises the product concentration.
Fang, Hsun-Lang; Lin, Wen-Chuan
2008-06-01
Lipid peroxidation (LPO) is known to be associated with liver fibrosis in chronic liver injury. However, direct effects of the products of LPO on liver fibrogenesis have not been demonstrated. In this study, we examined the LPO products of carbon tetrachloride (CCl4)+corn oil to evaluate the effect of LPO products on liver fibrosis. CCl4 was given twice a week for 8 weeks. Corn oil was given daily to rats at a dose of 2 or 10ml/kg via gastrogavage throughout the whole experiment period. CCl4 induced both cyclooxygenase (COX)-2 independent and COX-2 dependent LPO. COX-2 independent LPO was enhanced by corn oil treatment while no effect was reflected on COX-2 dependent LPO. CCl4-induced liver fibrosis in rats was not aggravated by corn oil treatment. In addition, the amount of fatty liver induced by CCl4 was increased by corn oil treatment. Though the inflammation-related UCP-2 mRNA expression was induced by CCl4, it was not aggravated by the enhancement of corn oil. corn oil enriches polyunsaturated fatty acids through COX-2 independent pathways to increase LPO products that do not enhance liver fibrosis induced by CCl4.
Identifying drivers for consumer acceptance and purchase intent of corn tortilla.
Herrera-Corredor, J A; Saidu, J E P; Khachatryan, A; Prinyawiwatkul, W; Carballo-Carballo, A; Zepeda-Bautista, R
2007-11-01
The traditional production of corn tortilla has been modified by new processing technologies to make possible a commercial-scale production; this practice has resulted in products having sensory properties different from those produced by the traditional method. There is no published information on sensory attributes driving acceptance and purchase intent of corn tortillas. Identifying sensory drivers for acceptance and purchase intent of corn tortillas will help commercially produce products that satisfy consumers' expectations. A consumer study was conducted to evaluate acceptance and purchase intent of corn tortillas and determine drivers of acceptance and purchase intent of the products. Ten samples of corn tortillas were selected to represent a variety of corn tortillas available in the Mexican market. Three hundred Mexican consumers evaluated acceptability of appearance, color, thickness, rollability, resistance to tearing, aroma, chewiness, taste and aftertaste, and overall liking using a 9-point hedonic scale. Overall acceptance and purchase intent were determined with a yes/no scale. Analysis of variance and multivariate analysis of variance revealed that consumers were able to differentiate differences in sensory acceptability among 10 samples. For example, 2 homemade and 1 small commercial-scale samples, with an overall liking score of 6.6 to 6.7, were more acceptable than others. Rollability, resistance to tearing, and chewiness were attributes underlying overall differences among 10 samples. Attributes determining overall acceptance of corn tortillas were chewiness and overall liking. Purchase intent was influenced by overall appearance, rollability, chewiness, taste, and overall liking. This study revealed critical sensory attributes and their weights given by Mexican consumers when making decisions for acceptance and purchase intent of corn tortilla.
21 CFR 137.215 - Yellow corn flour.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...
21 CFR 137.275 - Yellow corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...
21 CFR 137.215 - Yellow corn flour.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...
21 CFR 137.275 - Yellow corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead of...
78 FR 12591 - Amendment to the Standards of Identity for Distilled Spirits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... ``Cacha[ccedil]a'' any spirits that use corn or corn syrup in the fermentation process. Some product... have been manufactured using a small quantity of corn or corn syrup in the fermentation process. Since... standard for Cacha[ccedil]a would not allow for the use of corn or corn syrup in the fermentation process...
Mayhew, Emily; Schmidt, Shelly; Lee, Soo-Yeun
2016-07-01
In a novel approach to formulation, the flash descriptive profiling technique Napping-Ultra Flash Profile (Napping-UFP) was used to characterize a wide range of commercial caramel corn products. The objectives were to identify product categories, develop model systems based on product categories, and correlate analytical parameters with sensory terms generated through the Napping-UFP exercise. In one 2 h session, 12 panelists participated in 4 Napping-UFP exercises, describing and grouping, on a 43×56 cm paper sheet, 12 commercial caramel corn samples by degree of similarity, globally and in terms of aroma-by-mouth, texture, and taste. The coordinates of each sample's placement on the paper sheet and descriptive terms generated by the panelists were used to conduct Multiple Factor Analysis (MFA) and hierarchical clustering of the samples. Strong trends in the clustering of samples across the 4 Napping-UFP exercises resulted in the determination of 3 overarching types of commercial caramel corn: "small-scale dark" (typified by burnt, rich caramel corn), "large-scale light" (typified by light and buttery caramel corn), and "large-scale dark" (typified by sweet and molasses-like caramel corn). Representative samples that best exemplified the properties of each category were used as guides in the formulation of 3 model systems that represent the spread of commercial caramel corn products. Analytical testing of the commercial products, including aw measurement, moisture content determination, and thermal characterization via differential scanning calorimetry, were conducted and results related to sensory descriptors using Spearman's correlation. © 2016 Institute of Food Technologists®
Impact of abiotic stress on corn yield and quality: A Review
USDA-ARS?s Scientific Manuscript database
Corn production is an essential part of the world’s grain supply, and supports the exponentially growing human population either directly through consumption or indirectly through livestock feed. As an additional demand, there is increasing use of corn for the production of ethanol as a renewable en...
Irrigated Corn Cob Production and Quality: Potential Cellulosic Feedstock
USDA-ARS?s Scientific Manuscript database
Escalating fossil fuel cost and concern over global climate change have accelerated interest in cellulosic feedstocks, such as corn cobs, for liquid fuel production. Little information is available about corn cob yield and its N and C content. Available cob data was compiled and summarized from seve...
Quantifying and mitigating the environmental impacts of using corn stover as a biofuel feedstock
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Corn stover has been suggested as a viable biomass feedstock for bioenergy production. However, unharvested corn stover provides two important ecosystem services: it reduces soil erosion and replenishes soil carbon, both of which help maintain soil productivity. There are...
Soil carbon and nitrogen dynamic after corn stover harvest
USDA-ARS?s Scientific Manuscript database
Biofuel production from plant biomass seems to be a suitable solution to mitigate fossil fuel use and reduce greenhouse gas emissions. Corn (Zea mays) is a highly promising crop for biomass production. However, stover harvest could negatively impact soil properties. Changes in the quantity of corn r...
77 FR 25382 - Proposed Amendment to the Standards of Identity for Distilled Spirits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... manufactured using a small quantity of corn or corn syrup in the fermentation process. Since these products do... include as ``Cacha[ccedil]a'' any spirits that use corn or corn syrup in the fermentation process. TTB has... the use of corn or corn syrup in the fermentation process. As such, under the terms of the proposed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwardson, J.R.
1973-01-01
Cytoplasmic male sterile accessions, other than T-type, are being backcrossed to adapted maintainer and restorer inbred corn lines. Fertile selections from gamma -irradiated T-type corn continue to exhibit resistance to infection by race-T of Helminthosporium maydis in field and greenhouse tests. Cytological comparisons of these fertile selections and T-sterile, maintainer, and restorer lines are continuing. Dominant male sterility and its suppression in S-cytoplasm corn is being investigated. lnduction of cytoplasmic male sterility in normal cytoplasm corn and suppression of susceptibility to Helminthosporium maydis infection in T cytoplasm corn is being attempted with chemical mutagens. Consistent differences in cytoplasmic inclusions inmore » sterile and maintainer Vicia faba were observed. Consistent differences in mitochondria were observed in cytological comparisons of normal and sterile corn. These abnormal mitochondria and non-Mendelian plastid abnormalities in corn, sorghum, tobacco, and petunia will be used in studying the fertilization process. Investigations of the properties of Datura Q-virus are near completion. Cytological and serological studies indicate the Q-virus is a strain of tobacco streak virus. Graft-transmission of cytoplasmic male sterility is being attempted in sunflower. (auth)« less
Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; ...
2015-08-18
Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO 2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo
Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO 2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less
Microbial xylitol production from corn cobs using Candida magnoliae.
Tada, Kiyoshi; Horiuchi, Jun-Ichi; Kanno, Tohru; Kobayashi, Masayoshi
2004-01-01
Microbial production of xylitol from corn cobs using Candida magnoliae was experimentally investigated. Approximately 25 g-xylose/l solution was obtained from 100 g-corn cobs/l solution by hydrolysis using 1.0% sulfuric acid at 121 degrees C for 60 min. To remove inhibitors from the hydrolysates, charcoal pellets were found to be effective in selectively removing the inhibitors from the hydrolysates without affecting xylose concentration. C. magnoliae was successfully cultivated using the treated corn cob hydrolysate, resulting in the production of 18.7 g-xylitol/l from 25 g-xylose/l within 36 h.
Flores, Alina L; Cordero, Amy M; Dunn, Michael; Sniezek, Joseph E; Arce, Miguel A; Crider, Krista S; Tinker, Sarah; Pellegrini, Cynthia; Carreón, Rita; Estrada, Jose; Struwe, Sara; Boyle, Coleen
2018-01-01
Although strides have been made in preventing neural tube defects (NTDs), Hispanic women remain more likely to have a baby born with an NTD and less likely to know the benefits of, or consume, folic acid than women of other race/ethnic groups. In 1998, the U.S. Food and Drug Administration (FDA) mandated that all enriched cereal grain products be fortified with folic acid; however, corn masa flour (CMF), used to make many corn products that are a diet staple of many Hispanic groups, was not included under this regulation. In 2006, a Working Group began a collaboration to address this disparity by pursuing a petition to FDA to allow folic acid to be added voluntarily to CMF. The petition process was a monumental effort that required collaboration and commitment by partners representing the affected population, manufacturers, scientists, and others. The petition was approved in 2016 and folic acid is now added to CMF products, with expected results of more women achieving the recommended daily folic acid intake, more infants born per year without an NTD, and millions of dollars in direct medical expenditures averted. This 10-year public-private partnership brought together diverse groups that traditionally have different goals. The Working Group continues to work toward ensuring that fortified CMF products are available to the consumer, with the end goal of achieving a reduction in NTD-affected pregnancies. Published by Elsevier Inc.
Flores, Alina L.; Cordero, Amy M.; Dunn, Michael; Sniezek, Joseph E.; Arce, Miguel A.; Crider, Krista S.; Tinker, Sarah; Pellegrini, Cynthia; Carreón, Rita; Estrada, Jose; Struwe, Sara; Boyle, Coleen
2018-01-01
Although strides have been made in preventing neural tube defects (NTDs), Hispanic women remain more likely to have a baby born with an NTD and less likely to know the benefits of, or consume, folic acid than women of other race/ethnic groups. In 1998, the U.S. Food and Drug Administration (FDA) mandated that all enriched cereal grain products be fortified with folic acid; however, corn masa flour (CMF), used to make many corn products that are a diet staple of many Hispanic groups, was not included under this regulation. In 2006, a Working Group began a collaboration to address this disparity by pursuing a petition to FDA to allow folic acid to be added voluntarily to CMF. The petition process was a monumental effort that required collaboration and commitment by partners representing the affected population, manufacturers, scientists, and others. The petition was approved in 2016 and folic acid is now added to CMF products, with expected results of more women achieving the recommended daily folic acid intake, more infants born per year without an NTD, and millions of dollars in direct medical expenditures averted. This 10-year public-private partnership brought together diverse groups that traditionally have different goals. The Working Group continues to work toward ensuring that fortified CMF products are available to the consumer, with the end goal of achieving a reduction in NTD-affected pregnancies. PMID:29128408
NASA Astrophysics Data System (ADS)
Schau, Dustin
This thesis investigates the impacts of corn stover harvest in Central Iowa with regards to nutrient removal, grain yield impacts and soil tilth. Focusing on phosphorus and potassium removal due to production of large, square bales of corn stover, 3.7 lb P2O5 and 18.7 lb K 2O per ton of corn stover were removed in 2011. P2O 5 removal remained statistically the same in 2012, but K2O decreased to 15.1 lb per ton of corn stover. Grain cart data showed no statistical difference in grain yield between harvest treatments, but yield monitor data showed a 3 - 17 bu/ac increase in 2012 and hand samples showed a 4 - 21 bu/ac increase in 2013. Corn stover residue levels decreased below 30% coverage when corn stover was harvested the previous fall and conventional tillage methods were used, but incorporating reduced tillage practices following corn stover harvest increased residue levels back up to 30% coverage. Corn emergence rates increased by at least 2,470 more plants per acre within the first three days of spiking, but final populations between harvest and nonharvest corn stover treatments were the same. Inorganic soil nitrogen in the form of ammonium and nitrate were not directly impacted by corn stover harvest, but it is hypothesized that weather patterns had a greater impact on nitrogen availability. Lastly, soil organic matter did not statistically change from 2011 to 2013 due to corn stover removal, even when analyzed within single soil types.
Production of gluten and germ by ethanol fermentation of raw corn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The Illinois ethanol fuel industry has grown to be an important part of our state's economy over the past 10 years. It provides an additional market for Illinois' abundant corn production, provides many industrial jobs, and substitutes a home-grown renewable energy resource for imported oil. More than 30 percent of all gasoline sold in Illinois contains 10 percent ethanol. The economics of producing ethanol from corn is strongly affected by the byproduct value and by the energy required in the production process. This document reports on efforts to research a new microbial process that would improve the ethanol fermentation processmore » in both these areas. The new process allows direct fermentation of corn starch to ethanol without the usual requirement of cooking the corn. This reduces the amount of energy needed for production and recovers the protein-containing gluten and oil-containing germ with all of the original food value intact.« less
Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M
2016-12-01
Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.
JPRS Report, Science & Technology, Europe
1992-02-06
also sunflower and corn oil); bioethanol is produced by fermenting sugars extracted from sugar beets and grains. Regulations limit its share of...Metal Complexes"] [Text] Frankfurt, 16 Oct—The fermentation technology research team of the University of Bielefeld’s School of Engineering is...Frequency of Continuous Operation in Fermentation and Product Recovery" first two para- graphs are VDI NACHRICHTEN introduction] [Text
Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai
2014-01-01
Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.
2010-09-10
This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to highermore » demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.« less
Isolation, purification and identification of protein associated with corn fiber gum
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of corn kernel milling by-product “corn fiber” is a proteinaceous arabinoxylan with a protein content ranging from ca. 2 to 9% by weight for the CFG samples isolated from different corn milling fiber sources. Several studies have suggested...
21 CFR 137.285 - Degerminated yellow corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...
21 CFR 137.285 - Degerminated yellow corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...
Extraction and characterization of non-zein proteins in corn germ from wet-milling
USDA-ARS?s Scientific Manuscript database
The current fuel energy situation involving escalating gasoline prices and greater demand for biofuels like ethanol are expected to add more co-products from corn processing to an already-saturated market. There is greater urgency to identify and develop novel uses for corn co-products to increase ...
The Energy Relationships of Corn Production and Alcohol Fermentation.
ERIC Educational Resources Information Center
Van Koevering, Thomas E.; And Others
1987-01-01
Proposes that the production of alcohol from corn be used as a practical application of scientific principles that deal with energy transformations. Discusses the solar energy available for growth, examining the utilization of solar energy by plants. Describes the conversion of corn to alcohol, with suggestions for classroom and laboratory study.…
Moreau, Robert A; Hicks, Kevin B
2006-10-18
We previously reported that heat pretreatment of corn fiber (150 degrees C, 1 h) caused a tenfold increase in the levels of extractable gamma-tocopherol. The current study was a reinvestigation of the previous effect, using improved methods (HPLC with fluorescence detection, diode-array UV detection, and mass spectrometry) for tocol analysis. Heat pretreatment did not cause an increase in the levels of any of the tocopherols or tocotrienols in corn fiber oil, but lowered the levels of three of the tocols and had no effect on the levels of the other two tocols. Heat pretreatment of corn germ had a similar effect. UV and mass spectra indicated that the peak that we had identified as gamma-tocopherol in our previous report was probably a mixture of oxidation products of triacylglycerols. Thus, heat treatment of corn germ or other corn-oil containing fractions at high temperatures leads to decreases in gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol and to the production of triacylglycerol oxidation products.
2011-01-01
Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF) of lignocellulosic residues from commercial furfural production (furfural residue, FR) and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration. PMID:21801455
Code of Federal Regulations, 2011 CFR
2011-04-01
... MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Corn and Callus Remover Drug Products § 358.501 Scope. (a) An over-the-counter corn and callus remover drug product in a form suitable for topical...
Code of Federal Regulations, 2010 CFR
2010-04-01
... MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Corn and Callus Remover Drug Products § 358.501 Scope. (a) An over-the-counter corn and callus remover drug product in a form suitable for topical...
2005-04-01
Approximately 20 percent of the corn kernel is not utilized in the production of ethanol and other starch based products, such as sweeteners and high - fructose ...under high yields. The amount of corn and soybeans available for ethanol, biodiesel or other bioproducts was calculated by first subtracting amounts...because of increasing demand for animal feed. This evaluation assumes that corn exports rise by another 10 percent in the high corn yield scenarios
21 CFR 137.290 - Self-rising yellow corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...
21 CFR 137.270 - Self-rising white corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Self-rising white corn meal. 137.270 Section 137... Cereal Flours and Related Products § 137.270 Self-rising white corn meal. (a) Self-rising white corn meal is an intimate mixture of white corn meal, sodium bicarbonate, and one or both of the acid-reacting...
21 CFR 137.270 - Self-rising white corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Self-rising white corn meal. 137.270 Section 137... Cereal Flours and Related Products § 137.270 Self-rising white corn meal. (a) Self-rising white corn meal is an intimate mixture of white corn meal, sodium bicarbonate, and one or both of the acid-reacting...
21 CFR 137.280 - Bolted yellow corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...
21 CFR 137.211 - White corn flour.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false White corn flour. 137.211 Section 137.211 Food and... Related Products § 137.211 White corn flour. (a) White corn flour is the food prepared by so grinding and bolting cleaned white corn that when tested by the method prescribed in paragraph (b)(2) of this section...
21 CFR 137.211 - White corn flour.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false White corn flour. 137.211 Section 137.211 Food and... Related Products § 137.211 White corn flour. (a) White corn flour is the food prepared by so grinding and bolting cleaned white corn that when tested by the method prescribed in paragraph (b)(2) of this section...
21 CFR 137.211 - White corn flour.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false White corn flour. 137.211 Section 137.211 Food and... Related Products § 137.211 White corn flour. (a) White corn flour is the food prepared by so grinding and bolting cleaned white corn that when tested by the method prescribed in paragraph (b)(2) of this section...
21 CFR 137.211 - White corn flour.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false White corn flour. 137.211 Section 137.211 Food and... Related Products § 137.211 White corn flour. (a) White corn flour is the food prepared by so grinding and bolting cleaned white corn that when tested by the method prescribed in paragraph (b)(2) of this section...
21 CFR 137.211 - White corn flour.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false White corn flour. 137.211 Section 137.211 Food and... Related Products § 137.211 White corn flour. (a) White corn flour is the food prepared by so grinding and bolting cleaned white corn that when tested by the method prescribed in paragraph (b)(2) of this section...
21 CFR 137.290 - Self-rising yellow corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Self-rising yellow corn meal. 137.290 Section 137... Cereal Flours and Related Products § 137.290 Self-rising yellow corn meal. Self-rising yellow corn meal conforms to the definition and standard of identity prescribed by § 137.270 for self-rising white corn meal...
21 CFR 137.280 - Bolted yellow corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...
Soil profile organic carbon as affected by tillage and cropping systems
USDA-ARS?s Scientific Manuscript database
Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...
Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars
2016-01-01
One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui
Complete conversion of the major sugars of biomass including both the C 5 and C 6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results aremore » the following: A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved performance. In conclusion, we have adapted/evolved Z. mobilis strain 8b for enhanced tolerance to the toxic compounds present in corn stover hydrolysates. The adapted strain SS3 has higher xylose utilization rate and produce more ethanol than the parent strain. We have identified transcriptional changes which may be responsible for these phenotypes, providing foundations for future research directions in improving Z. mobilis as biocatalysts for the production of ethanol or other fuel precursors.« less
Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui; ...
2015-03-31
Complete conversion of the major sugars of biomass including both the C 5 and C 6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results aremore » the following: A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved performance. In conclusion, we have adapted/evolved Z. mobilis strain 8b for enhanced tolerance to the toxic compounds present in corn stover hydrolysates. The adapted strain SS3 has higher xylose utilization rate and produce more ethanol than the parent strain. We have identified transcriptional changes which may be responsible for these phenotypes, providing foundations for future research directions in improving Z. mobilis as biocatalysts for the production of ethanol or other fuel precursors.« less
Value of Neonicotinoid Insecticide Seed Treatments in Mid-South Corn (Zea mays) Production Systems.
North, J H; Gore, J; Catchot, A L; Stewart, S D; Lorenz, G M; Musser, F R; Cook, D R; Kerns, D L; Leonard, B R; Dodds, D M
2018-02-09
Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Traineau, M; Bouvarel, I; Mulsant, C; Roffidal, L; Launay, C; Lescoat, P
2013-09-01
Sequential feeding (SF) is an innovative system for laying hens consisting of nutrients separating energy, protein, and calcium supplies to fulfill nutrient requirements at the relevant time of day. In previous studies, hens received whole wheat in the morning and a balancer diet (rich in protein and calcium) in the afternoon. To improve SF utilization, the aim was to substitute whole wheat in the morning by an alternative energy supply: ground wheat and ground corn, with or without a proportion of whole wheat and insoluble fiber. The goal was to obtain the advantages observed in previous experiments with whole wheat [bigger gizzard, thinner hens, reduced feed conversion ratio (FCR)]. Four hundred thirty-two ISA Brown hens were housed in collective cages from 20 to 35 wk of age divided into 8 different treatments: a continuous control diet, a sequential diet with whole wheat in the morning, 3 wheat-based diets (ground wheat, ground wheat and 20% whole wheat, and ground wheat with 5% insoluble fiber) and 3 ground corn-based (ground corn, ground corn and 20% whole wheat, and ground corn with 5% insoluble fiber) provided in the morning. All sequential regimens received the same balancer diet rich in protein and calcium in the afternoon. Whole wheat SF gave the best results with an improved FCR compared with continuous control and all other SF diets. Wheat- and corn-based diets showed intermediate results between whole wheat SF and continuous feeding. Gizzard weight was higher and hens were lighter than with conventional continuous feeding, leading to an average FCR improvement of 3.2% compared with a continuous control. Thus, it is possible in SF diets to substitute, at least partially, whole wheat by ground wheat or ground corn with added insoluble fiber or some whole wheat, allowing more flexibility and economic optimization.
USDA-ARS?s Scientific Manuscript database
Conversion of corn fiber (CF), a by-product from the corn-to-ethanol conversion process, into fermentable sugar and succinic acid was investigated using soaking in aqueous ammonia (SAA) pretreatment followed by biological conversions including enzymatic hydrolysis and fermentation using genetically ...
FORAGES AND PASTURES SYMPOSIUM: Optimizing the use of fibrous residues in beef and dairy diets.
Watson, A K; MacDonald, J C; Erickson, G E; Kononoff, P J; Klopfenstein, T J
2015-06-01
Increased corn prices over the past decade have altered land use away from traditional forage in favor of corn. Accordingly, beef and dairy producers have had to adopt nontraditional forage resources into their production systems, many of which have become available as a result of increased corn production. Corn residues have become more available due to increases in corn hectares and yield. The individual plant components (i.e., husk, leaf, and stem) vary in fiber digestibility (NDF digestibility estimates = 40.5, 31.4, and 0.6% ± 0.8 for husk, leaf, and stalk, respectively). Stocking cattle to consume 3.6 kg forage/25.5 kg of grain allows cattle to graze selectively; selection of husks and leaves improves cattle performance. Byproducts of the wet and dry milling industries can be supplemented to calves grazing corn residues to provide protein and energy. Optimal gains were observed when these byproducts were supplemented at approximately 2.5 kg/d to 250-kg growing calves. Gestating beef cows do not require supplemental inputs when grazing corn residue, if stocked appropriately. Alkaline treatment of crop residues improves their feeding value. Concentrations of up to 20% harvested corn residue treated with calcium oxide can be included in finishing diets with an average of 1.3% reduction in G:F when diets contain 40% wet or modified distillers grains. Conversely, when untreated corn residues are included in similar finishing diets, G:F is reduced by 13.4%. Calcium oxide-treated residues included in beef growing diets increases DMI and ADG without significant improvements in G:F. Calcium oxide treatment of corn residues has been evaluated in dairy diets by replacing corn or corn silage with variable results. Efficient use of nontraditional fiber sources, such as corn milling byproducts and corn residue, are critical to the future viability of ruminant animal production.
NASA Astrophysics Data System (ADS)
Fu, A.; Xue, Y.
2017-12-01
Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.
Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes.
Chen, Kequan; Jiang, Min; Wei, Ping; Yao, Jiaming; Wu, Hao
2010-01-01
Dilute acid hydrolysate of corn fiber was used as carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. The optimized hydrolysis conditions were obtained by orthogonal experiments. When corn fiber particles were of 20 mesh in size and treated with 1.0% sulfuric acid at 121 degrees C for 2 h, the total sugar yield could reach 63.3%. It was found that CaCO(3) neutralization combined with activated carbon adsorption was an effective method to remove fermentation inhibitors especially furfural that presented in the acid hydrolysate of corn fiber. Only 5.2% of the total sugar was lost, while 91.9% of furfural was removed. The yield of succinic acid was higher than 72.0% with the detoxified corn fiber hydrolysate as the carbon source in anaerobic bottles or 7.5 L fermentor cultures. It was proved that the corn fiber hydrolysate could be an alternative to glucose for the production of succinic acid by A. succinogenes NJ113.
A practical method for extending the biuret assay to protein determination of corn-based products.
Liu, Zelong; Pan, Junhui
2017-06-01
A modified biuret method suitable for protein determination of corn-based products was developed by introducing a combination of an alkaline reagent with sodium dodecyl sulfate (reagent A) and heat treatments. The method was tested on seven corn-based samples. The results showed mostly good agreement (P>0.05) as compared to the Kjeldahl values. The proposed method was found to enhance the accuracy of prediction on zein content using bovine serum albumin as standard. Reagent A and sample treatment were proved to effectively improve protein solubilization for the thermally-dried corn-based products, e.g. corn gluten meal. The absorbance was stable for at least 1-h. Moreover, the whole measurement of protein content only needs 15-20min more than the traditional biuret assay, and can be performed in batches. The findings suggest that the proposed method could be a timesaving alternative for routine protein analyses in corn processing factories. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual responses of corn silk flies (Diptera: Ulidiidae)
USDA-ARS?s Scientific Manuscript database
Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...
Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis
2009-01-01
The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.
Processing maize flour and corn meal food products
Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves
2014-01-01
Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576
Casperson, Brittany A; Wertz-Lutz, Aimee E; Dunn, Jim L; Donkin, Shawn S
2018-03-01
Chemical treatment may improve the nutritional value of corn crop residues, commonly referred to as corn stover, and the potential use of this feed resource for ruminants, including lactating dairy cows. The objective of this study was to determine the effect of prestorage chopping, hydration, and treatment of corn stover with Ca(OH) 2 on the feeding value for milk production, milk composition, and dry matter intake (DMI). Multiparous mid-lactation Holstein cows (n = 30) were stratified by parity and milk production and randomly assigned to 1 of 3 diets. Corn stover was chopped, hydrated, and treated with 6% Ca(OH) 2 (as-fed basis) and stored in horizontal silo bags. Cows received a control (CON) total mixed ration (TMR) or a TMR in which a mixture of treated corn stover and distillers grains replaced either alfalfa haylage (AHsub) or alfalfa haylage and an additional portion of corn silage (AH+CSsub). Treated corn stover was fed in a TMR at 0, 15, and 30% of the diet DM for the CON, AHsub, and AH+CSsub diets, respectively. Cows were individually fed in tiestalls for 10 wk. Milk production was not altered by treatment. Compared with the CON diet, DMI was reduced when the AHsub diet was fed and tended to be reduced when cows were fed the AH+CSsub diet (25.9, 22.7, and 23.1 ± 0.88 kg/d for CON, AHsub, and AH+CSsub diets, respectively). Energy-corrected milk production per unit of DMI (kg/kg) tended to increase with treated corn stover feeding. Milk composition, energy-corrected milk production, and energy-corrected milk per unit of DMI (kg/kg) were not different among treatments for the 10-wk feeding period. Cows fed the AHsub and AH+CSsub diets had consistent DMI over the 10-wk treatment period, whereas DMI for cows fed the CON diet increased slightly over time. Milk production was not affected by the duration of feeding. These data indicate that corn stover processing, prestorage hydration, and treatment with calcium hydroxide can serve as an alternative to traditional haycrop and corn silage in diets fed to mid-lactation dairy cows. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
40 CFR 406.20 - Applicability; description of the corn dry milling subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn dry milling subcategory. 406.20 Section 406.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling...
40 CFR 406.10 - Applicability; description of the corn wet milling subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the corn wet milling subcategory. 406.10 Section 406.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Wet Milling...
Stover removal effects on continuous corn yield and nitrogen use efficiency under irrigation
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) residue or stover is harvested as supplemental feed for livestock and is a primary feedstock for cellulosic biofuels. Limited information is available on corn residue removal effects on grain yield under different nitrogen (N) fertilizer rates, irrigation rates and amelioration pr...
Wu, Jianguo; Zhang, Xin; Wan, Jilin; Ma, Fuying; Tang, Yong; Zhang, Xiaoyu
2011-12-01
Corn stalk pretreated with white-rot fungus Trametes hirsute was used to produce fiberboard by hot pressing without adhesive. The moduli of rupture and elasticity of the corn-stalk-based fiberboard were increased 3.40- and 8.87-fold when bio-pretreated rather than untreated corn stalk was used. Fourier transform infra-red spectroscopy, X-ray diffraction, and chemical analysis showed that bio-pretreated corn stalk increased the mechanical properties of the fiberboard because it had more than twice the number of hydroxyl group, an 18% higher crystallinity, and twice the polysaccharide content of untreated corn stalk. Its laccase content was 4.65 ± 0.38 U/g. Corn stalk-based fiberboard production did not require adhesives, thus eliminating a potential source of toxic emissions such as formaldehyde gas. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fang, Zhen-Hong; Zhang, Jian; Lu, Qi-Ming; Bao, Jie
2014-09-01
Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The present study provided an important prototype for polyols production from lignocellulose to replace the petroleum- or corn-based polyols for future industrial applications.
Mejia, L; Meyer, E T; Utterback, P L; Utterback, C W; Parsons, C M; Koelkebeck, K W
2010-03-01
An experiment was conducted using 504 Hy-Line W-36 Single Comb White Leghorn hens (69 wk of age) randomly assigned to 1 of 7 treatments. These treatments consisted of a 47% corn:47% soy hulls diet (C:SH) fed ad libitum; a 94% corn diet fed at a rate of 36.3, 45.4, or 54.5 g/hen per day (CORN 36, CORN 45, and CORN 54, respectively); and a 94% corn distillers dried grains with solubles (DDGS) diet fed at the same rates as the previous corn diets (DDGS 36, DDGS 45, and DDGS 54, respectively) during the molt period of 28 d. The intent was to feed the DDGS diets for 28 d; however, all hens on these diets had very low feed intakes and greater than anticipated BW loss. Thus, they were switched to a 16% CP corn-soybean meal layer diet on d 19 of the molt period. At d 28, hens on all treatments were fed the same corn-soybean meal layer diet for 39 wk (73 to 112 wk of age). All DDGS diets and the CORN 36 diet resulted in total cessation of egg production during the molt period and egg production of hens fed the CORN 45, CORN 54, and C:SH diets had decreased to 3 and 4%, respectively, by d 28. Body weight loss during the 28-d molt period ranged from 14% for the CORN 54 diet to approximately 23% for the 3 DDGS diets. Postmolt egg production (5 to 43 wk) was higher for hens fed the DDGS molt diets than those fed the corn diets. There were no consistent differences in egg mass, egg-specific gravity, feed efficiency, or layer feed consumption among molt treatments for the postmolt period. These results indicate that limit feeding corn diet and DDGS diet in non-feed-withdrawal molt programs will yield long-term postmolt performance that is comparable to that observed by ad libitum feeding a C:SH diet.
21 CFR 137.250 - White corn meal.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false White corn meal. 137.250 Section 137.250 Food and... Related Products § 137.250 White corn meal. (a) White corn meal is the food prepared by so grinding... fiber content of the finished corn meal is not less than 1.2 percent and not more than that of the...
21 CFR 137.250 - White corn meal.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false White corn meal. 137.250 Section 137.250 Food and... Related Products § 137.250 White corn meal. (a) White corn meal is the food prepared by so grinding... fiber content of the finished corn meal is not less than 1.2 percent and not more than that of the...
Modeling the effects of pelleting on the logistics of distillers grains shipping.
Rosentrater, Kurt A; Kongar, Elif
2009-12-01
The energy security needs of energy importing nations continue to escalate. It is clear that biofuels can help meet some of the increasing need for energy. Theoretically, these can be produced from a variety of biological materials, including agricultural residues (such as corn stover and wheat straw), perennial grasses, legumes, algae, and other biological materials. Currently, however, the most heavily utilized material is corn starch. Industrial fuel ethanol production in the US primarily uses corn, because it is readily converted into fuel at a relatively low cost compared to other biomass sources. The production of corn-based ethanol in the US is dramatically increasing. As the industry continues to grow, the amount of byproducts and coproducts also increases. At the moment, the nonfermentable residues (which are dried and sold as distillers dried grains with solubles--DDGS) are utilized only as livestock feed. The sale of coproducts provides ethanol processors with a substantial revenue source and significantly increases the profitability of the production process. Even though these materials are used to feed animals in local markets, as the size and scope of the industry continues to grow, the need to ship large quantities of coproducts grows as well. This includes both domestic as well as international transportation. Value-added processing options offer the potential to increase the sustainability of each ethanol plant, and thus the industry overall. However, implementation of new technologies will be dependent upon how their costs interact with current processing costs and the logistics of coproduct deliveries. The objective of this study was to examine some of these issues by developing a computer model to determine potential cost ramifications of using various alternative technologies during ethanol processing. This paper focuses specifically on adding a densification unit operation (i.e., pelleting) to produce value-added DDGS at a fuel ethanol manufacturing plant. We have examined the economic implications of pelleting DDGS for varying DDGS production rates (100-1000 tons/d) and pelleting rates (0-100%), for a series of DDGS sales prices ($50-$200/ton). As the proportion of pelleting increases, the cost of transporting DDGS to distant markets drastically declines, because the rail cars can be filled to capacity. For example, at a DDGS sales price of $50/ton, 100% pelleting will reduce shipping costs (both direct and indirect) by 89% compared to shipping the DDGS in bulk form (i.e., no pelleting), whereas at a DDGS sales price of $200/ton, it will reduce costs by over 96%. It is clear that the sustainability of the ethanol industry can be improved by implementing pelleting technology for the coproducts, especially at those plants that ship their DDGS via rail.
76 FR 41048 - Agricultural Commodity Definition
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... becomes fiber. Category two would include high fructose corn syrup, but not corn- based products such as... the CEA, including such things as wheat, cotton, corn, the soybean complex, livestock, etc.; 2. A... MGEX's various wheat, corn, and soybean cash-bid indexes) should remain outside of the definition of...
Life-cycle analysis of bio-based aviation fuels.
Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q
2013-12-01
Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Fuel ethanol co-products known as distillers’ dried grains with solubles (DDGS) are a significant source of energy, protein, and phosphorous in animal feed. Fuel ethanol production may concentrate mycotoxins present in corn into DDGS. One hundred and forty one corn DDGS lots collected in 2011 from 7...
Corn fiber gum and milk protein conjugates with improved emulsion stability
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG), an alkaline hydrogen peroxide extract of the corn kernel milling by-product “corn fiber” was covalently conjugated with Beta-lactoglobulin (Beta-LG) and whey protein isolate (WPI). Covalent coupling of CFG to protein was achieved by dry heating reaction (Maillard-type) of CFG ...
Yield response to landscape position under variable N for irrigated corn
USDA-ARS?s Scientific Manuscript database
Variable nutrient and water supply can result in spatial and temporal variation in crop yield within a given agricultural field. For the western Corn Belt, irrigated corn accounts for 58% of total annual corn production with the majority grown in Nebraska. Although irrigation decreases temporal yi...
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River.
Donner, Simon D; Kucharik, Christopher J
2008-03-18
Corn cultivation in the United States is expected to increase to meet demand for ethanol. Nitrogen leaching from fertilized corn fields to the Mississippi-Atchafalaya River system is a primary cause of the bottom-water hypoxia that develops on the continental shelf of the northern Gulf of Mexico each summer. In this study, we combine agricultural land use scenarios with physically based models of terrestrial and aquatic nitrogen to examine the effect of present and future expansion of corn-based ethanol production on nitrogen export by the Mississippi and Atchafalaya Rivers to the Gulf of Mexico. The results show that the increase in corn cultivation required to meet the goal of 15-36 billion gallons of renewable fuels by the year 2022 suggested by a recent U.S. Senate energy policy would increase the annual average flux of dissolved inorganic nitrogen (DIN) export by the Mississippi and Atchafalaya Rivers by 10-34%. Generating 15 billion gallons of corn-based ethanol by the year 2022 will increase the odds that annual DIN export exceeds the target set for reducing hypoxia in the Gulf of Mexico to >95%. Examination of extreme mitigation options shows that expanding corn-based ethanol production would make the already difficult challenges of reducing nitrogen export to the Gulf of Mexico and the extent of hypoxia practically impossible without large shifts in food production and agricultural management.
NASA Astrophysics Data System (ADS)
Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.
2016-12-01
Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.
Mathew, Anil Kuruvilla; Parameshwaran, Binod; Sukumaran, Rajeev Kumar; Pandey, Ashok
2016-01-01
The challenge associated with cellulosic ethanol production is maximizing sugar yield at low cost. Current research is being focused to develop a pretreatment method to overcome biomass recalcitrance in an efficient way. This review is focused on two major pretreatments: dilute acid (DA) and ammonia fiber explosion (AFEX) pretreatment of corn stover and how these pretreatment cause morphological and chemical changes to corn stover in order to overcome the biomass recalcitrance. This review highlights the key differences of these two pretreatments based on compositional analysis, cellulose and its crystallinity, morphological changes, structural changes to lignin, enzymatic reactivity and enzyme adsorption onto pretreated solids and finally cellulosic ethanol production from the hydrolysate of DA and AFEX treated corn stover. Each stage of the process, AFEX pretreated corn stover was superior to DA treated corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The contribution of genetic selection of corn to quantity and quality of stover is still poor-known. The aim of the study was to evaluate production, C and N in fractions of corn stover in response to the cultivar development. Two field experiments were conducted in the city of Rolândia (Paraná - Br...
Lopez de Onate, R; Giammanco, S; Carollo, F; Ernandes, M; Paderni, M A
1989-03-01
The aim of this research is to study the effects of a diet almost devoid of tryptophan, which is given by a feeding with precooked yellow corn meal (corn mush), on the alterations of the estrous cycle of animals in several conditions of environmental lighting. Indeed, it is known that cerebral serotonin influences the releasing of LH and consequently the ovulation. The different types of environmental lighting are: 1) Natural (alternating Day-Night = L/D). 2) Continuous dark (D/D). 3) Continuous light by sodium steams (L/L sodium). 4) Continuous light by fluorescent neon tubes (L/L neon). The muricide behaviour is studied by comparison rat-mouse. The feeding with precooked yellow corn meal (diet lacking of tryptophan) unchains in the 100% of the observations the CEA (Constant Estrous Anovulatory), and significantly shrinks the estral cycle in the female Wistar Rat in several conditions of environmental lighting.
Impact of applying edible oils to silk channels on ear pests of sweet corn
USDA-ARS?s Scientific Manuscript database
The impact of applying vegetable oils to corn silks on ear-feeding insects in sweet corn production was evaluated in 2006 and 2007. Six vegetable oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix' neem oil and Sun...
21 CFR 358.510 - Corn and callus remover active ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Corn and callus remover active ingredients. 358.510 Section 358.510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The...
Corn stover harvest: Likely effects on soil productivity
USDA-ARS?s Scientific Manuscript database
Demand for corn stover for cattle feeding is likely to be especially high this year because of poor rainfed corn performance and because drought stressed pastures and rangeland are likely to be slow to recover in 2013 and stover will be needed to feed cows. Corn stover harvest is addressed in more d...
Recently, corn grown for grain in the United States has increased from 28 million ha in 2006 to more than 35 million ha in 2007 with a production value of over $52 billion dollars. Transgenic corn expressing the plant incorporated protectant Bacillus thuringiensis toxin represen...
Analysis of flour and food samples for cry9C from bioengineered corn.
Orlandi, Palmer A; Lampel, Keith A; South, Paul K; Assar, Samir K; Carter, Laurenda; Levy, Dan D
2002-02-01
StarLink corn is a variety of yellow corn that has been genetically modified by the insertion of an altered cry9C gene into the plant genome. resulting in expression of the insecticidal Cry9C protein. The U.S. Environmental Protection Agency has approved StarLink corn for use in animal feed but not in food intended for human consumption. Therefore, under the U.S. Food, Drug, and Cosmetic Act, any food intended for human consumption in which the presence of StarLink corn is indicated by the presence of either the Cry9C protein or the cry9C gene would be considered adulterated. Extraction and PCR-based methods were used to detect the presence of the cry9C DNA initially in corn flour and corn meal, and then these methods were extended to the analysis of processed corn products, including taco shells, cereals, baby foods, party snacks, and chips, for the presence of this modified genetic material. In a survey of 63 products, the cry9C transgene was detected in 4 taco shells.
NASA Astrophysics Data System (ADS)
1982-05-01
An executive summary is given of a detailed feasibility study for a 100 million gallon per year power alcohol plant using corn as feedstock. The proposed plant will ultimately have the capability to produce 100 million gallons per year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motor fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO2, 237,600 tons of protein meal mixture (40.2% protein), or 124,000 tons of gluten meal (41% protein), 20,000 tons of yeast, 68,400 tons of corn bran, 89,600 tons of corn germ cake and 4,584,000 gallons of corn oil (food grade).
Kim, Seungdo; Dale, Bruce E
2008-10-15
Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%.
Fields of dreams: negotiating an ethanol agenda in the Midwest United States.
Gillon, Sean
2010-01-01
Corn ethanol production is central in the United States' agrofuels initiatives. In this paper I discuss corn ethanol production in Iowa, USA and examine several dynamics: farmers' positions in agrofuel supply chains; struggles around the construction and operation of agrofuel refineries; the politics of ethanol production and regulation; and the ecological consequences of increased corn production. I argue that current US agrofuels production and politics reinforce longstanding and unequal political economic relationships in industrial agriculture. I also argue that the politics of US agrofuels, focused on carbon accounting for greenhouse gas reduction and energy security, privilege urban and other actors' social and ecological interests over those of rural places of production.
Simulation of corn yields and parameters uncertainties analysis in Hebei and Sichuang, China
NASA Astrophysics Data System (ADS)
Fu, A.; Xue, Y.; Hartman, M. D.; Chandran, A.; Qiu, B.; Liu, Y.
2016-12-01
Corn is one of most important agricultural production in China. Research on the impacts of climate change and human activities on corn yields is important in understanding and mitigating the negative effects of environmental factors on corn yields and maintaining the stable corn production. Using climatic data, including daily temperature, precipitation, and solar radiation from 1948 to 2010, soil properties, observed corn yields, and farmland management information, corn yields in Sichuang and Hebei Provinces of China in the past 63 years were simulated using the Daycent model, and the results was evaluated using Root mean square errors, bias, simulation efficiency, and standard deviation. The primary climatic factors influencing corn yields were examined, the uncertainties of climatic factors was analyzed, and the uncertainties of human activity parameters were also studied by changing fertilization levels and cultivated ways. The results showed that: (1) Daycent model is capable to simulate corn yields in Sichuang and Hebei provinces of China. Observed and simulated corn yields have the similar increasing trend with time. (2) The minimum daily temperature is the primary factor influencing corn yields in Sichuang. In Hebei Province, daily temperature, precipitation and wind speed significantly affect corn yields.(3) When the global warming trend of original data was removed, simulated corn yields were lower than before, decreased by about 687 kg/hm2 from 1992 to 2010; When the fertilization levels, cultivated ways were increased and decreased by 50% and 75%, respectively in the Schedule file in Daycent model, the simulated corn yields increased by 1206 kg/hm2 and 776 kg/hm2, respectively, with the enhancement of fertilization level and the improvement of cultivated way. This study provides a scientific base for selecting a suitable fertilization level and cultivated way in corn fields in China.
Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata
2014-03-05
The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.
Aspergillus flavus Infection and Aflatoxin Production in Corn: Influence of Trace Elements
Lillehoj, E. B.; Garcia, W. J.; Lambrow, M.
1974-01-01
Distribution of trace element levels in corn germ fractions from kernels naturally infected with Aspergillus flavus and from kernels free of the fungus demonstrated an association between the presence of A. flavus and higher levels of metals. A. flavus production of aflatoxin on various autoclaved corn media showed that ground, whole corn was an excellent substrate; similar high levels of toxin were observed on full-fat corn germ but endosperm and defatted corn germ supported reduced yields. The influence of trace elements and their availability in defatted corn germ to A. flavus-mediated aflatoxin biosynthesis were measured. Enrichment of the substrate with 5 to 10 μg of manganese, copper, cadmium, or chromium per g of germ increased toxin yields. Addition of lead or zinc (50 to 250 μg/g) also enhanced toxin accumulation. Aflatoxin elaboration was reduced by the addition of 25 μg of cadmium per g or 500 μg of copper per g of germ. PMID:4216287
USDA-ARS?s Scientific Manuscript database
Improving the water quantity and water quality impacts of corn (Zea mays L.)- and soybean (Glycine max L.)-based cropping systems is a key challenge for agriculture in the US Midwest and similar regions around the world. Long-term field experiments are important for documenting those effects and exp...
USDA-ARS?s Scientific Manuscript database
Switchgrass and corn are sometimes used as a resource for biofuel production. The effect of production management systems on water infiltration is very critical in claypan landscape to increase production as well as minimize economic and environmental risks. The objective of this study was to evalua...
Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici
Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta; ...
2017-08-17
The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less
Propionic acid production from corn stover hydrolysate by Propionibacterium acidipropionici
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoqing; Salvachua, Davinia; Sanchez i Nogue, Violeta
The production of value-added chemicals alongside biofuels from lignocellulosic hydrolysates is critical for developing economically viable biorefineries. Here, the production of propionic acid (PA), a potential building block for C3-based chemicals, from corn stover hydrolysate is investigated using the native PA-producing bacterium Propionibacterium acidipropionici. A wide range of culture conditions and process parameters were examined and experimentally optimized to maximize titer, rate, and yield of PA. The effect of gas sparging during fermentation was first examined, and N 2 was found to exhibit improved performance over CO 2. Subsequently, the effects of different hydrolysate concentrations, nitrogen sources, and neutralization agentsmore » were investigated. One of the best combinations found during batch experiments used yeast extract (YE) as the primary nitrogen source and NH 4OH for pH control. This combination enabled PA titers of 30.8 g/L with a productivity of 0.40 g/L h from 76.8 g/L biomass sugars, while successfully minimizing lactic acid production. Due to the economic significance of downstream separations, increasing titers using fed-batch fermentation was examined by changing both feeding media and strategy. Continuous feeding of hydrolysate was found to be superior to pulsed feeding and combined with high YE concentrations increased PA titers to 62.7 g/L and improved the simultaneous utilization of different biomass sugars. Additionally, applying high YE supplementation maintains the lactic acid concentration below 4 g/L for the duration of the fermentation. Finally, with the aim of increasing productivity, high cell density fed-batch fermentations were conducted. PA titers increased to 64.7 g/L with a productivity of 2.35 g/L h for the batch stage and 0.77 g/L h for the overall process. These results highlight the importance of media and fermentation strategy to improve PA production. Altogether, this work demonstrates the feasibility of producing PA from corn stover hydrolysate.« less
Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy
NASA Astrophysics Data System (ADS)
Campiche, Jody L.; Bryant, Henry L.; Richardson, James W.
2010-01-01
Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. In the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.
Hu, Jiawei; Wang, Caixia; Tian, Li; Wang, Minjuan; Guo, Rong; Qiao, Haiou
2017-07-01
To investigate the contamination of zearalenone in food in Shaanxi Province, and to assess the dietary zearalenone exposure and the health risk of intaking zearalenone from corn products for Shaanxi residents. In 2013-2016, samples of five kinds of food including grains, vegetable oil, liquor and infants' food were collected randomly from ten cities, and determined with ultra-performance liquid chromatography. Dietary intake assessment of human exposure to zearalenone was carried out in combination of food consumption data with concentration of zearalenone. 1193 samples were detected zearalenone and the total detection rate was 17. 27%, with the mean value of 13. 5 μg/kg. Among all food samples, oil products were more seriously polluted than other kinds of foods, its detection rate was 79. 37%. And 12 samples of grain products exceed the standard, the exceeding standard rate was 1. 64%, which were all corn products. The level of zearalenone detected in wheat flour, rice, millet, beer and bakery products was low. The overall level of zearalenone contamination inmarket food is common, but corn products may be the severely contaminated foods with zearalenone in Shaanxi Province. The risk assessmentresult suggests that the current dietary intake of zearalenone from corn products in Shaanxi Province has no appreciable effect on health, however, the concentrations of zearalenone in corn products are relatively high, and need to be monitored in the future.
NASA Astrophysics Data System (ADS)
Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.
2016-06-01
Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.
Production of ethanol and xylitol from corn cobs by yeasts.
Latif, F; Rajoka, M I
2001-03-01
Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).
Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie
2015-12-01
Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger
2016-03-01
This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saliu, Bolanle Kudirat; Sani, Alhassan
2012-01-01
Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml(-1) and 0.0461 FPU ml(-1)) compared to that produced by P. decumbens (0.1111 IU ml(-1) and 0.153 FPU ml(-1)). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml(-1) sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.
Recently, corn grown for grain in the United States has increased from 28 million ha in 2006 to more than 35 million ha in 2007 with a production value of over $52 billion dollars. Transgenic corn expressing the plant incorporated protectant Bacillus thuringiensis toxin represen...
"King Corn": Teaching the Food Crisis
ERIC Educational Resources Information Center
Swinehart, Tim
2012-01-01
"King Corn" is in so many ways the story of how government food policy has entirely remade the food landscape in the United States over the last 40 years. From the massive expansion of the number of acres of corn grown across the country, to the ever-increasing ways that corn is incorporated into the food production process, to the…
USDA-ARS?s Scientific Manuscript database
Widespread epidemics of Stenocarpella ear rot (formerly Diplodia ear rot) have occurred throughout the central U.S. Corn Belt in recent years, but the influence of S. maydis infected grain on corn ethanol production is unknown. In this study, S. maydis infected ears of variety 'Heritage 4646' were h...
USDA-ARS?s Scientific Manuscript database
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is one of the most economically important insect pests threatening the production of corn, Zea mays (L.), in the United States. Throughout its history, this insect has displayed considerable adaptability by overcoming a variety of pe...
Cliff, Margaret A; Law, Jessica R; Lücker, Joost; Scaman, Christine H; Kermode, Allison R
2016-01-15
Seedling roots of anthocyanin-rich corn (Zea mays) cultivars contain high levels of phenylalanine ammonia lyase (PAL) activity. The development of a natural dietary supplement containing corn roots could provide the means to improve the restrictive diet of phenylketonuria (PKU) patients by increasing their tolerance to dietary phenylalanine (Phe). Therefore this research was undertaken to explore the sensory characteristics of roots of four corn cultivars as well as to develop and evaluate food products (cereal bar, beverage, jam-like spread) to which roots had been added. Sensory profiles of corn roots were investigated using ten trained judges. Roots of Japanese Striped corn seedlings were more bitter, pungent and astringent than those of white and yellow cultivars, while roots from the Blue Jade cultivar had a more pronounced earthy/mushroom aroma. Consumer research using 24 untrained panelists provided hedonic (degree-of-liking) assessments for products with and without roots (controls). The former had lower mean scores than the controls; however, the cereal bar had scores above 5 on the nine-point scale for all hedonic assessments compared with the other treated products. By evaluating low-Phe food products containing corn roots, this research ascertained that the root-containing low-Phe cereal bar was an acceptable 'natural' dietary supplement for PKU-affected individuals. © 2015 Her Majesty the Queen in Right of Canada. Journal of the Science of Food and Agriculture © 2015 Society of Chemical Industry.
Water table management reduces tile nitrate loss in continuous corn and in a soybean-corn rotation.
Drury, C F; Tan, C S; Gaynor, J D; Reynolds, W D; Welacky, T W; Oloya, T O
2001-10-25
Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l(-1)) under DR (11.4 mg N l(-1)), but not under CDS (7.0 mg N l(-1)). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l(-1)) and CDS (4.0 mg N l(-1)). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Worrell, Ernst; Ruth, Michael
2003-07-01
Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It beginsmore » with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.« less
Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.
Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet
2013-02-19
There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result of using corn stover to satisfy the RFS.
Brouk, M J; Cvetkovic, B; Rice, D W; Smith, B L; Hinds, M A; Owens, F N; Iiams, C; Sauber, T E
2011-04-01
The nutritional equivalency of grain plus whole plant silage from genetically modified corn plants containing the DAS-59122-7 (59122) event expressing the Cry34Ab1 and Cry35Ab1 proteins to grain and silage from a near-isogenic corn hybrid without this trait (control) was assessed using lactating dairy cows. Corn plants with event 59122 are resistant to western corn rootworm and tolerant to the herbicide active ingredient glufosinate-ammonium. Effects on feed intake, milk production, and milk composition were determined. The 59122 grain and the control grain were produced in 2005 from isolated plots in Richland, Iowa. Whole plant corn silage for the 59122 and control treatments were grown in isolated plots at the Kansas State University Dairy Center and ensiled in Ag-Bags. Thirty lactating Holstein cows blocked by lactation number, day of lactation, and previous energy-corrected milk production were used in a switchback design. All cows were fed diets that contained 22.7% grain plus 21.3% whole plant silage from either the 59122 or the control hybrid, in addition to 21% wet corn gluten feed, 12.3% protein mix, 8.0% whole cottonseed, and 14.7% alfalfa hay. Each period of the switchback trial included 2 wk for diet adjustment followed by 4 wk for data and sample collection. Milk samples (a.m. and p.m.) collected from 2 consecutive milkings of each collection wk were analyzed for fat, protein, lactose, solids-not-fat, milk urea nitrogen, and somatic cell count. Percentages of milk fat, protein, lactose, and solids-not-fat were not affected by dietary treatment. Yields of milk, 4% fat-corrected milk, energy-corrected milk, solids-corrected milk, and the concentrations and yields of milk fat, milk protein, milk solids, and milk lactose were not significantly different between treatments. Efficiencies of milk, fat-corrected milk, energy-corrected milk, and solids-corrected milk production also were not different when cows were fed crops from 59122 than when they were fed the control hybrid. Milk production efficiency averaged 1.48 and 1.50 kg/kg of dry matter intake for cows fed diets containing the control and 59122 corn, respectively. These data indicate that the nutritional value for milk production was not different between a diet containing grain plus whole plant corn silage produced from a 59122 corn hybrid versus a diet containing grain and corn silage from its near-isogenic control corn hybrid. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Behle, Robert W; Isbell, Terry A
2005-12-01
The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.
Does Integration Help Adapt to Climate Change? Case of Increased US Corn Yield Volatility
NASA Astrophysics Data System (ADS)
Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.
2012-12-01
In absence of of new crop varieties or significant shifts in the geography of corn production, US national corn yields variation could double by the year 2040 as a result of climate change and without adaptation this could lead the variability in US corn prices to quadruple (Diffenbaugh et al. 2012). In addition to climate induced price changes, analysis of recent commodity price spikes suggests that interventionist trade policies are partly to blame. Assuming we cannot much influence the future climate outcome, what policies can we undertake to adapt better? Can we use markets to blunt this edge? Diffenbaugh et al. find that sale of corn- ethanol for use in liquid fuel, when governed by quotas such as US Renewable Fuel Standard (RFS), could make US corn prices even more variable; in contrast the same food-fuel market link (we refer to it as intersectoral link) may well dampen price volatility when the sale of corn to ethanol industry is driven by higher future oil prices. The latter however comes at the cost of exposing corn prices to the greater volatility in oil markets. Similarly intervention in corn trade can make US corn prices less or more volatile by distorting international corn price transmission. A negative US corn yield shock shows that domestic corn supply falls and domestic prices to go up irrespective of whether or not markets are integrated. How much the prices go up depends on how much demand adjusts to accommodate the supply shock. Based on the forgoing analysis, one should expect that demand would adjust more readily when markets are integrated and therefore reduce the resulting price fluctuation. Simulation results confirm this response of corn markets. In terms of relative comparisons however a policy driven intersectoral integration is least effective and prices rise much more. Similarly, a positive world oil price shock makes the US oil imports expensive and with oil being used to produce gasoline blends, it increases the price of gasoline and reduces its demand. In the presence of domestic integration, ethanol production rises to substitute oil in the gasoline blend and thereby increases the corn demand and prices. However if one takes into account increase in corn price due to increased production costs (increase in oil price increases fertilizer prices - a major input into corn production) and reduced corn prices due to reduced fuel demand and therefore reduced ethanol additive demand; the prices can go either way. Our initial simulations show that they do in fact go down with mandate driven integration. This raises some more general questions: Whether integration (intersectoral and international) can be an effective strategy for adapting to climate change? And which of the four adaptation options - RFS or oil price driven domestic integration, full corn tariff liberalization or restricting tariff manipulation by partners - would be more effective in comparison to other adaptation (including no adaptation) scenarios? We implement the alternative adaptation strategies, while sampling from the same corn yield and oil price distributions and compare the resulting corn price variations to the base case where no such adaptation has been undertaken. Our initial results suggest that intersectoral integration is more effective form of adaptation than international one, but only if driven by market forces and not mandates.
Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production
USDA-ARS?s Scientific Manuscript database
To improve the economic viability of the biofuel production from biomass resource, a value-added lignin byproduct from this process is increasingly interested. Antioxidant and antimicrobial activities of lignin extracted from residue of corn stover to ethanol production were investigated. The lignin...
Enhancement of silage sorghum and corn production using best management practices
USDA-ARS?s Scientific Manuscript database
Sorghum (Sorghum bicolor), and Silage Corn (Zea mays) production is not sufficient in irrigated eastern areas of Jordan and so families cannot afford sufficient animal feeds. This is due to two main reasons: the first is lower crop productivity related to poor agricultural practices including no use...
Energy analysis and agriculture: an application to US Corn Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smil, V.; Nachman, P.; Long, T.V. II
1983-01-01
Changes in farming technology have increased the amount and cost of energy used in crop production, raising the question of whether energy efficiency in agriculture has remained constant, decreased, or increased. Despite some studies to the contrary, the authors assert that all essential energy used, both directly and indirectly, in US corn farming has remained constant in relation to crop production during the past two decades. Using a detailed process of energy analysis that takes into account various management and technological changes, they trace and quantify the energy cost of corn production from 1945-1947 and forecast its changes through 1984.more » They conclude that the energy efficiency of corn farming has not declined, and find that future technological and process improvements, led by conservation measures, will likely increase its energy efficiency in the 1980s. 39 references, 33 figures, 88 tables.« less
Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast
NASA Astrophysics Data System (ADS)
Mardawati, Efri; Andoyo, R.; Syukra, K. A.; Kresnowati, MTAP; Bindar, Y.
2018-03-01
The abundance of corn production in Indonesia offers the potential for its application as the raw material for biorefinery process. The hemicellulose content in corn cobs can be considered to be used as a raw material for xylitol production. The purpose of this research was to study the effect of hydrolysis methods for xylitol production and the effect of the hydrolyzed corn cobs to produce xylitol through fermentation. Hydrolysis methods that would be evaluated were acid and enzymatic hydrolysis. The result showed that the xylitol yield of fermented solution using enzymatic hydrolysates was 0.216 g-xylitol/g-xylose, which was higher than the one that used acid hydrolysates, which was 0.100 g-xylitol/g-xylose. Moreover, the specific growth rate of biomass in fermentation using enzymatic hydrolysates was also higher than the one that used acid hydrolysates, 0.039/h compared to 0.0056/h.
Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents
2004-09-01
high - fructose corn syrup (HFCS), whey, bark mulch and compost, chitin, and gaseous hydrogen. Table 1.2...Benzoate Injection wells or circulation systems Dissolved in water Continuous to monthly Molasses, High Fructose Corn Syrup Injection wells...to 0.35 High (> 100) Refined Sugars ( high fructose corn syrup ) 0.25 to 0.30 Moderate (> 20) Soluble substrates may be used for source
The Results of a Laboratory Feasibility Study for the Biological Treatment of Umatilla Groundwater
2012-01-01
high fructose corn syrup Kroger brand lactose Columbia River Processors, Boardman, OR cheese whey Columbia River Processors, Boardman, OR lactate...Processing Roy Dugan 541·481-3771 79588 Rippee Road 55 High Fructose Corn Syrup Malt Products Corp. Joanne McGuire 530-677-8282 #677 Blackstrap...communication with experts) tested in Run 1 were: • high - fructose corn sugar (based on promising results obtained using soft drink by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Wang, M.; Liu, J.
2008-01-01
Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describesmore » grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.« less
Wu, May; Wang, Michael; Liu, Jiahong; Huo, Hong
2008-01-01
Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(R) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.
In vitro digestibility of banana starch cookies.
Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino
2004-01-01
Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.
Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie
2014-09-01
Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lian, Bin; Souleimanov, Alfred; Zhou, Xiaomin; Smith, Donald L
2002-01-01
Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.
Kumar, Deepak; Singh, Vijay
2016-01-01
Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry can reduce the total external enzyme usage by more than 80 %, and combining their use with in situ removal of ethanol during fermentation allows efficient high-solid fermentation.
Trends in the consumption of low-calorie sweeteners.
Sylvetsky, Allison C; Rother, Kristina I
2016-10-01
Low-calorie sweeteners (LCS) offer a palatable alternative to caloric sugars such as sucrose (table sugar) and high fructose corn syrup and are commonly found in soft drinks, sweetener packets, grains, snack foods, dairy products, hygiene products, and medications. Consumption of LCS has increased significantly in recent years and while this trend is expected to continue, controversy exists surrounding their use. The purpose of this article is to review trends in the consumption of LCS, to summarize differences in LCS consumption across socio-demographic subgroups and subtypes of LCS-containing products, and to highlight important challenges in the accurate assessment of LCS consumption. Copyright © 2016 Elsevier Inc. All rights reserved.
Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan
2007-01-01
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, Susan E.
2005-05-01
Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.
Coble, Kyle F; DeRouchey, Joel M; Tokach, Mike D; Dritz, Steve S; Goodband, Robert D; Woodworth, Jason C
2018-02-15
Two experiments were conducted to determine the duration of high-fiber ingredient removal from finishing pig diets before marketing to restore carcass yield and carcass fat iodine value (IV), similar to pigs continuously fed a corn-soybean meal diet. In experiment 1, 288 pigs (initially 38.4 ± 0.3 kg body weight [BW]) were used in an 88-d study and fed either a low-fiber corn-soybean meal diet from day 0 to 88 or a high-fiber diet containing 30% corn distillers dried grains with solubles and 19% wheat middlings until day 20, 15, 10, 5, or 0 before slaughter and switched to the low-fiber corn-soybean meal diet thereafter. Diets were not balanced for net energy. From day 0 to 88, pigs continuously fed the high-fiber diet tended to have increased average daily feed intake (P = 0.072) and decreased G:F and carcass yield (P = 0.001) compared with pigs fed the low-fiber corn-soybean meal diet. Pigs continuously fed the high-fiber diet had greater (P < 0.010) IV of jowl, backfat, belly, and ham collar fat than those fed the low-fiber corn-soybean meal diet throughout. As days of withdrawal increased, pigs previously fed the high-fiber diet had increased carcass yield (quadratic; P = 0.039). Pigs continuously fed the high-fiber diet had heavier (percentage of hot carcass weight [HCW]) full large intestines (P = 0.003) than pigs fed the corn-soybean meal diet. Full large intestine weight decreased (linear; P = 0.018) as withdrawal time increased. Belly fat IV tended (linear; P = 0.080) to improve as withdrawal time increased. In experiment 2, a total of 1,089 pigs (initially 44.5 ± 0.1 kg BW) were used in a 96-d study with the same dietary treatments as in experiment 1, except pigs were fed the high-fiber diet until day 24, 19, 14, 9, or 0 before slaughter and then switched to the corn-soybean meal diet. Pigs fed the high-fiber diet throughout had decreased average daily gain and G:F (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet. For pigs initially fed the high-fiber diet and then switched to the low-fiber corn-soybean meal diet, G:F tended to improve (linear; P = 0.070) as withdrawal period increased. Pigs fed the high-fiber diet throughout had decreased HCW (P = 0.001) compared with those fed the low-fiber corn-soybean meal diet and HCW marginally increased (quadratic; P = 0.077) as withdrawal period increased. In summary, switching pigs from a high-fiber diet to a corn-soybean meal diet for up to 24 d before market increased carcass yield (experiment 1) or HCW (experiment 2) with the improvement most prominent during the first 5 to 9 d after withdrawal.
Russell, J R; Sexten, W J; Kerley, M S
2016-07-01
Two experiments were conducted using soybean hull (SH) diets with increasing corn proportions to determine increasing corn inclusion effects on fermentation characteristics, diet digestibility, and feedlot performance. The hypothesis was that fiber digestibility would quadratically respond to starch proportion in the diet with a break point where starch inclusion improved fiber digestion and feedlot performance. Proportionately, the diets contained 100:0 (SH100), 90:10 (SH90), 80:20 (SH80), 60:40 (SH60), or 20:80 SH:corn (SH20). In Exp. 1, diets were randomly distributed over 24 continuous culture fermenters and fed for 7 d. In Exp. 2, forty steers (347 ± 29 kg BW) and 50 heifers (374 ± 24 kg BW) were blocked by gender, stratified by BW, and distributed across diets. Cattle were fed for 70 d with titanium dioxide included in the diet for the final 14 d and fecal samples collected to measure digestibility. Individual DMI was measured using GrowSafe Feed Intake system. Data were analyzed using the MIXED procedure of SAS with diet evaluated as the fixed effect. In Exp. 1, NDF digestibility (NDFd) linearly decreased ( = 0.04) and ADF digestibility (ADFd) tended to linearly decrease ( = 0.09) as corn increased. Dry matter digestibility (DMd) was cubic ( = 0.01) and OM digestibility (OMd) was quadratic ( = 0.03), and among the 4 SH-based diets, DMd and OMd were greatest for SH90. Acetate:propionate ratio and pH were quadratic ( < 0.01) and greatest for SH80. In Exp. 2, ADG and G:F linearly increased ( < 0.01) as corn inclusion increased. Among the 4 SH-based diets, ADG was numerically greatest for SH80. There was no DMI difference ( ≥ 0.4) due to diet. As corn inclusion increased, DMd tended to linearly increase (P = 0.06), as did OMd ( = 0.05). Both NDFd and ADFd were quadratic ( = 0.04) and greatest for SH80. Overall, feedlot performance increased and fiber digestibility decreased as corn inclusion increased. However, based on continuous culture digestibility and VFA values as well as feedlot digestibility and performance, optimal corn inclusion for growth and diet utilization in the 4 SH-based diets fell between SH80 and SH90, or 0.4 and 0.2% BW corn supplementation. In this study, providing 0.4% BW corn supplementation in fiber-based diets (SH80) provided greater improvement in performance compared with 0.2% BW corn supplementation (SH90).
Rayan, Ahmed M; Abbott, Louise C
2015-06-01
Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sayer, K M; Buckner, C D; Erickson, G E; Klopfenstein, T J; Macken, C N; Loy, T W
2013-08-01
One metabolism trial and 2 finishing trials were conducted to evaluate the effects of adding corn bran and steep liquor (steep) in replacement of dry-rolled corn (DRC) on diet digestibility, cattle performance, and nutrient mass balance in open feedlot pens. The metabolism trial (Exp. 1) used 8 ruminally cannulated heifers in a 4 × 4 Latin square design and the 2 finishing trials used 128 steer calves fed for 167 d (Exp. 2) and 256 yearling steers fed for 126 d (Exp. 3). Dietary treatments for all trials included a DRC-based control (CON), 30% corn bran (30/0), 30% corn bran plus 15% steep (30/15), and 45% corn bran plus 15% steep (45/15), in which by-products replaced DRC and molasses in the diet (DM basis). Diets were not isonitrogenous or isoenergetic. In the metabolism trial, feeding the by-product diets produced greater rumen pH (5.95) than CON (5.76; P < 0.01). Total tract DM and OM digestibility were greater for heifers fed CON than the by-product diets (P < 0.01). Dry matter and NDF ruminal disappearance (%/h) of corn bran were numerically less for cattle fed the CON diet than the by-product diets (2.36 vs. 2.84 and 0.72 vs. 1.66, respectively). In the performance trials, steers fed the by-product diets consumed more DM (P = 0.06) and G:F was either similar for all diets in Exp. 2 (P = 0.56) or less for cattle fed 30/0 than the other diets in Exp. 3 (P = 0.05). Percent N loss was reduced in Exp. 2 by including corn bran in diets compared with CON (P < 0.01). However, in Exp. 3, no differences in percent N loss were detected among treatments (P = 0.16), but more N was removed in the manure from pens where steers were fed by-products (P = 0.01). Although steep did not improve diet digestibility, it was beneficial in maintaining cattle performance in the feedlot studies. Feeding corn bran in combination with steep increased manure N removed and N in compost, but decreased percent N lost during the winter months only.
NASA Astrophysics Data System (ADS)
Venterea, R. T.; Baker, J. M.
2009-12-01
Cropped fields in the upper Midwest have the potential to emit relatively large quantities of N2O and NO resulting from soil transformation of N fertilizers applied to crops such as corn and potatoes. The mitigation of N2O emissions may be an effective strategy for offsetting greenhouse gas emissions. While the rate of N fertilizer application exerts some control over N trace gas emission rates, a variety of other management practices and environmental factors interact to regulate these emissions. Observation-based studies are essential for improving models, developing accurate inventories, and documenting offsets. Since 2003, we have been examining the effects of management factors including: tillage, crop rotation, irrigation, and fertilizer chemical form and application method on N2O and NO emissions from corn and potato production systems using chamber-based measurement techniques. A summary of our findings will be presented, including: Application of anhydrous ammonia resulted in twice the N2O emissions compared to urea fertilizer, and twice the NO emissions compared to liquid urea ammonium nitrate (UAN) fertilizer. Growing corn continuously compared to in rotation with soybeans did not alter the amount of N2O emitted during the corn growing season. Reduced tillage (RT), often promoted as a means of reducing carbon losses to the atmosphere, also altered soil N2O emissions. However, the impact of RT on N2O emissions was found to vary, in both magnitude and direction, as a function of N fertilizer management. In addition to these studies, our efforts to overcome some of the inherent limitations of chamber-based flux measurement techniques will be discussed.
Climate forecasts for corn producer decision making
USDA-ARS?s Scientific Manuscript database
Corn is the most widely grown crop in the Americas, with annual production in the United States of approximately 332 million metric tons. Improved climate forecasts, together with climate-related decision tools for corn producers based on these improved forecasts, could substantially reduce uncertai...
Veum, T L; Serrano, X; Hsieh, F H
2017-03-01
Two 28-d experiments were conducted to evaluate the effects of extrusion of ground yellow corn, solvent-extracted soybean meal (SBM), and cracked whole soybeans (CWS) individually or as corn-soybean product blends on growth performance of weanling pigs. For Exp. 1, ground corn, SBM, and the corn-SBM blend were extruded at 137.5°C, 131.5°C, and 135.0°C, respectively, in a twin-screw extruder. Transit time was 60 s. Water was injected at 125 gmin during extrusion. The 5 treatments were the corn-SBM control diet and the diets with extruded (EX) corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, and the EX-blend of corn-SBM. Ninety crossbred pigs with an initial average BW of 5.98 kg were allotted to 9 treatment replications with a barrow and gilt per pen. For Exp. 2, ground corn was preconditioned with water (10.0% of corn weight), and SBM was preconditioned with water and soybean oil (each at 20.0% of SBM weight) before extrusion. Raw CWS were not preconditioned. The corn, SBM, CWS, corn-SBM blend, and corn-CWS blend were extruded at 113.0°C, 132.0°C, 132.0°C, 88.0°C, and 102°C, respectively, with a single-screw extruder. Transit time was 30 s. The 8 isocaloric treatments were the corn-SBM control diet and the diets with EX-corn + SBM, EX-SBM + corn, EX-corn + EX-SBM, the EX-blend of corn-SBM, EX-CWS + corn, EX-CWS + EX-corn, and the EX-blend of corn-CWS. A total of 296 crossbred pigs with an initial average BW of 6.56 kg were allotted to 10 treatment replications. Sex and pigs per pen (3 or 4) were equalized within replication. Results for both experiments indicate that single- or twin-screw extrusion of ground corn or SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve 28-d growth performance. However, for Exp. 2 weanling pigs fed the diets with EX-CWS + corn and EX-CWS + EX-corn had greater ( < 0.01) ADG and G:F, respectively, than pigs fed the corn-SBM control diet. The extrusion temperature of 102°C for the corn-CWS blend did not inactivate adequate protease inhibitors in CWS, and pigs fed that diet had poor growth performance. In conclusion, single-screw extrusion of CWS (132°C for 30 s) in diets for weanling pigs improved growth performance compared with pigs fed the corn-SBM control diet. However, twin- or single-screw extrusion of ground yellow corn or solvent-extracted SBM as individual ingredients or as corn-SBM blends in diets for weanling pigs did not improve growth performance compared with pigs fed the corn-SBM control diets.
Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy
Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.
2010-03-09
Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less
USDA-ARS?s Scientific Manuscript database
Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...
Biomass production and composition of temperate and tropical maize in central Iowa
USDA-ARS?s Scientific Manuscript database
Bioethanol production in the Midwestern U.S. has largely focused on corn (Zea mays L.) grain for starch-based ethanol production. There has been growing interest in lignocellulosic biomass as a feedstock for biofuels. Because corn adapted to the tropics does not initiate senescence as early as ada...
Four-year surveillance for ochratoxin a and fumonisins in retail foods in Japan.
Aoyama, Koji; Nakajima, Masahiro; Tabata, Setsuko; Ishikuro, Eiichi; Tanaka, Toshitsugu; Norizuki, Hiroko; Itoh, Yoshinori; Fujita, Kazuhiro; Kai, Shigemi; Tsutsumi, Toru; Takahashi, Masanori; Tanaka, Hiroki; Iizuka, Seiichiro; Ogiso, Motoki; Maeda, Mamoru; Yamaguchi, Shigeaki; Sugiyama, Kei-Ichi; Sugita-Konishi, Yoshiko; Kumagai, Susumu
2010-02-01
Between 2004 and 2007 we examined foods from Japanese retail shops for contamination with ochratoxin A (OTA) and fumonisins B(1), B(2), and B(3). A total of 1,358 samples of 27 different products were examined for OTA, and 831 samples of 16 different products were examined for fumonisins. The limits of quantification ranged from 0.01 to 0.5 microg/kg for OTA and 2 to 10 microg/kg for the fumonisins. OTA was detected in amounts higher than limits of quantification in wheat flour, pasta, oatmeal, rye, buckwheat flour and dried buckwheat noodles, raisins, wine, beer, coffee beans and coffee products, chocolate, cocoa, and coriander. OTA was found in more than 90% of the samples of instant coffee and cocoa, and the highest concentration of OTA, 12.5 microg/kg, was detected in raisins. The concentration of OTA in oatmeal, rye, raisins, wine, and roasted coffee beans varied remarkably from year to year. Fumonisins were detected in frozen and canned corn, popcorn grain, corn grits, cornflakes, corn soups, corn snacks, beer, soybeans, millet, and asparagus. The highest concentrations of fumonisins B(1), B(2), and B(3) were detected in corn grits (1,670, 597, and 281 microg/kg, respectively). All of the samples of corn grits were contaminated with fumonisins, and more than 80% of the samples of popcorn grain and corn snacks contained fumonisins. OTA and fumonisins were detected in several food products in Japan; however, although Japan has not set regulatory levels for these mycotoxins, their concentrations were relatively low.
On the occurrence of aflatoxin M1 in milk and dairy products.
Prandini, A; Tansini, G; Sigolo, S; Filippi, L; Laporta, M; Piva, G
2009-05-01
Aflatoxins are toxic fungal metabolites found in foods and feeds. When ruminants eat AFB(1)-feedstuffs, they metabolise the toxin and excrete AFM(1) in milk. To control AFM(1) in foods it is necessary to reduce AFB(1) contamination of feeds for dairy cattle by preventing fungal growth and AFB(1) formation in agricultural commodities intended for animal use. Corn and corn-based products are one of the most contaminated feedstuffs; therefore risk factor analysis of AFB(1) contamination in corn is necessary to evaluate risk of AFM(1) contamination in milk and milk products. During the corn silage production, the aflatoxins production is mostly influenced by: harvest time; fertilization; irrigation; pest control; silage moisture; and storage practices. Due to the lower moisture at harvest and to the conservation methods, the corn grain is mostly exposed to the contamination by Aspergillus species. Therefore, it is necessary to reduce the probability of this contaminant through choice of: hybrids; seeding time and density; suitable ploughing and fertirrigation; and chemical or biological control. Grains harvested with the lowest possible moisture and conservation moisture close to or less than 14% are necessary to reduce contamination risks, as is maintaining mass to homogeneous moisture. Kernel mechanical damage, grain cleaning practices and conservation temperature are also factors which need to be carefully controlled.
Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review.
Brown, Robert L; Menkir, Abebe; Chen, Zhi-Yuan; Bhatnagar, Deepak; Yu, Jiujiang; Yao, Haibo; Cleveland, Thomas E
2013-01-01
Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.
Having it both ways? Land use change in a U.S. midwestern agricultural ecoregion
Auch, Roger F.; Laingen, Chris R.
2015-01-01
Urbanization has been directly linked to decreases in area of agricultural lands and, as such, has been considered a threat to food security. Although the area of land used to produce food has diminished, often overlooked have been changes in agricultural output. The Eastern Corn Belt Plains (ECBP) is an important agricultural region in the U.S. Midwest. It has both gained a significant amount of urban land, primarily from the conversion of agricultural land between 1973 and 2000, and at the same time continued to produce ever-increasing quantities of agricultural products. By 2002, more corn, soybeans, and hogs were produced on a smaller agricultural land base than in 1974. In the last quarter of the twentieth century, ECBP ecoregion society appeared to have “had it both ways”: more urbanization along with increased agricultural output.
Improving hybrid seed production in corn with glyphosate-mediated male sterility.
Feng, Paul C C; Qi, Youlin; Chiu, Tommy; Stoecker, Martin A; Schuster, Christopher L; Johnson, Scott C; Fonseca, Augustine E; Huang, Jintai
2014-02-01
Hybrid corn varieties exhibit benefits associated with heterosis and account for most of the corn acreage in the USA. Hybrid seed corn is produced by crossing a female parent which is male-sterile and therefore incapable of self-pollination with a male parent as the pollen donor. The majority of hybrid seed corn is produced by mechanical detasseling which involves physically removing the tassel, a process that is laborious and costly. Glyphosate-resistant corn was developed via expression of a glyphosate insensitive 5-enolpyruvyl-shikimate 3-phosphate synthase enzyme (CP4-EPSPS). Experimentation with molecular expression elements resulted in selective reduction of CP4-EPSPS expression in male reproductive tissues. The resulting plant demonstrated sterile tassel following glyphosate application with little to no injury to the rest of the plant. Using (14)C-glyphosate as a marker, we also examined the translocation of glyphosate to the tassel via spray application in a track sprayer to simulate field application. The results allowed optimization of spray parameters such as dose, spray timing and target to maximize tassel delivery of glyphosate for efficient sterilization. The Roundup hybridization system (RHS) is a novel process for hybrid seed production based on glyphosate-mediated male sterility. RHS replaces mechanical detasseling with glyphosate spray and greatly simplifies the process of hybrid seed corn production. © 2013 Society of Chemical Industry.
Miller, D N; Berry, E D; Wells, J E; Ferrell, C L; Archibeque, S L; Freetly, H C
2006-09-01
Three beef cattle diets were assessed for their potential to produce odorous compounds from cattle feces excreted during the growing and finishing periods. Eight pens containing 51 steers of varying proportions of Brahman and MARC III genotypes were fed either a chopped bromegrass hay diet or a corn silage diet for a 119-d growing period. After the growing period, all steers were switched to the same high-corn finishing diet (high corn) and fed to a target weight of 560 kg (finishing period). Fecal slurries were prepared from a composite of fresh fecal pats collected in each pen during both periods and incubated anaerobically. In additional flasks, starch, protein, or cellulose was added to the composite fecal subsamples to determine the preferred substrates for fermentation and odorous compound production. The content and composition of the fermentation products varied both initially and during the incubation, depending on the diet fed to the steers. The corn silage and high corn feces had the greater initial content of VFA (381.0 and 524.4 micromol/g of DM, respectively) compared with the bromegrass feces (139.3 micromol/g of DM) and accumulated more VFA than the bromegrass feces during the incubation. l-Lactic acid and VFA accumulation in the high corn and corn silage feces was at the expense of starch, based on starch loss and the production of straight-chain VFA. In the bromegrass feces, accumulation of branched-chain VFA and aromatic compounds and the low starch availability indicated that the protein in the feces was the primary source for odorous compound production. Substrate additions confirmed these conclusions. We conclude that starch availability was the primary factor determining accumulation and composition of malodorous fermentation products, and when starch was unavailable, fecal microorganisms utilized protein.
Bio-oil and biochar production from corn cobs and stover by fast pyrolysis
USDA-ARS?s Scientific Manuscript database
Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ~20,000 kJ/kg, and densities > 1.0 g/mL) were realized from both corn cobs and from co...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine the effect of substituting corn bran (CB) for dried ground corn grain (CG) in the supplement portion of high-forage (HF) and low-forage (LF) diets. Twelve multiparous and 12 primiparous Holsteins were assigned to 4 diets using six 4 x 4 Latin squares with...
IMPACT OF OZONE ON FIELD-CORN YIELD
Field corn(Zea mays L.) is the most important agricultural crop in the U.S. and the major production areas are subjected to potentially damaging concentrations of ozone (O3). Since no information was available regarding the sensitivity of field-corn hybrids grown in the Midwest, ...
Zhao, Shengguo; Li, Guodong; Zheng, Nan; Wang, Jiaqi; Yu, Zhongtang
2018-04-01
The purpose of this study was to evaluate steam explosion as a pretreatment to enhance degradation of corn stover by ruminal microbiome. The steam explosion conditions were first optimized, and then the efficacy of steam explosion was evaluated both in vitro and in vivo. Steam explosion altered the physical and chemical structure of corn stover as revealed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, respectively, and increased its cellulose content while decreasing hemicellulose content. Steam-exploded corn stover also increased release of reducing sugars, rate of fermentation, and production of volatile fatty acids (VFAs) in vitro. The steam explosion treatment increased microbial colonization and in situ degradation of cellulose and hemicellulose of corn stover in the rumen of dairy cows. Steam explosion may be a useful pretreatment of corn stover to improve its nutritional value as forage for cattle, or as feedstock for biofuel production. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Qingwen; Wang, Huixin; Bai, Chunming; Wu, Di; Song, Qiaobo; Gao, Depeng; Dong, Zengqi; Cheng, Xin; Dong, Qiping; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori
2017-05-01
Experiments for mechanized soil fertilization for corns were conducted in Faku demonstration zone. On this basis, we studied effects on corn soil fertility under continuous cropping due to different mechanized soil fertilization methods. Our study would serve as a theoretical basis further for mechanized soil fertilization improvement and soil quality improvement in brown soil area. Based on the survey of soil physical characteristics during different corn growth periods, we collected soil samples from different corn growth periods to determine and make statistical analysis accordingly. Stalk returning to field with deep tillage proved to be the most effective on available nutrient improvement for arable soil in the demonstration zone. Different mechanized soil fertilization methods were remarkably effective on total phosphorus improvement for arable soil in the demonstration zone, while less effective on total nitrogen or total potassium, and not so effective on C/N ratio in soil. Stalk returning with deep tillage was more favorable to improve content of organic matter in soil, when compared with surface application, and organic granular fertilizer more favorable when compared with decomposed cow dung for such a purpose, too.
Liu, Sheng-Rong; Wu, Qing-Ping; Zhang, Ju-Mei; Mo, Shu-Ping
2015-03-01
ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the ε amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...
Environmental Releases in the Fuel Ethanol Industry
Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...
Utilization of corn residues for production of the polysaccharide schizophyllan
USDA-ARS?s Scientific Manuscript database
Abundant corn residues include fiber from wet milling operations and distillers' dried grains from dry grind ethanol plants. Biorefineries of the future will utilize such residues for the production of valuable bioproducts, particularly those traditionally produced from fossil fuels. Schizophyllan...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonserm, P.
1985-01-01
On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy cropsmore » need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.« less
Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura
2016-01-01
We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Coll. of Agriculture.
RESOURCE MATERIAL ON CORN PRODUCTION FOR HIGH SCHOOL VOCATIONAL AGRICULTURE AND ADULT FARMER CLASSES WAS DESIGNED BY A STATE LEVEL GROUP OF SUBJECT MATTER SPECIALISTS, TEACHER EDUCATORS, SUPERVISORS, AND TEACHERS TO HELP SOLVE PROBLEMS THAT CONFRONT CORN PRODUCERS AT PLANTING TIME. THE SUBJECT MATTER CONCERNS PLANTING TIME, DEPTH, ROW WIDTH,…
USDA-ARS?s Scientific Manuscript database
Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...
Comparing corn stover and switchgrass biochar: characterization and sorption properties
USDA-ARS?s Scientific Manuscript database
A switchgrass biochar (SB) produced by fast pyrolysis and a corn stover biochar (CSB) from a slow pyrolysis process were mechanically milled and characterized. Both of these biochars are very cost-effective and originate as residues from bioenergy production and the corn industry, respectively. Thes...
Improving nitrogen management for corn in southern Idaho and southwest Oregon
USDA-ARS?s Scientific Manuscript database
Funding is being sought from multiple sources to update nitrogen fertilizer recommendations for irrigated corn in southern Idaho and southwest Oregon. This paper summarizes the justifications and main objectives of this proposed research. Nitrogen needs to be correctly managed in corn production sys...
Liu, Dewen; Jaworski, Neil William; Zhang, Guifeng; Li, Zhongchao; Li, Defa; Wang, Fenglai
2014-01-01
The aim of the three experiments was to evaluated methods to predict fasting heat production (FHP) and to compare methods to determine the net energy (NE) of corn and soybean meal (SBM) fed to growing pigs. To estimate heat production (HP), pigs were housed in respiratory chambers for all experiments. In Experiment 1, six barrows (43.0 ± 1.4 kg body weight [BW]) were fed a Corn-SBM diet for 20 d. The experimental design consisted of following periods: 7 d adaptation, 5 d ad libitum feeding, 3 d feeding at 2 × metabolisable energy (ME) for maintenance (MEm), 3 d feeding at 1 × MEm and 2 d fasting. The FHP was calculated by extrapolating HP measured at the different feeding levels to zero ME intake. The daily FHP [per kg BW(0)(.6)] determined directly after fasting for 24 h and using the regression method was 774 kJ and 694 kJ, respectively. In Experiment 2, 18 barrows (34.3 ± 1.1 kg BW) were randomly allotted to three diets: Diet 1 contained 97.5% corn (direct NE determination of corn); diets 2 and 3 contained 25 % and 15% SBM at the expense of corn, respectively, and were used to calculate the NE of corn by difference. The NE of corn determined directly (13.21 MJ/kg DM) and by difference (13.69 MJ/kg DM) was not different. In Experiment 3, 24 barrows (36.2 ± 1.4 kg BW) were randomly allotted to four diets to determine the effects of different basal diets on the NE content of SBM. The diets were: Basal diet 1 (97.5% corn), Test diet 1 (15% SBM at the expense of corn), Basal diet 2 (contained 72.5% corn and 25% SBM) and Test diet 2 (58% corn and 39.5% SBM). These diets were used to determine the NE of SBM using the Corn-basal diet or the Corn-SBM-basal diet, respectively. It was shown that the estimated NE of SBM did not depend on the used diet (10.04 MJ/kg and 10.62 MJ/kg DM for Basal diet 1 and 2, respectively). In summary, using the regression method to determine FHP results in lower FHP than the fasting method. There was no difference observed in the NE of corn determined directly or by difference, and different basal diets did not affect the NE of SBM.
NASA Astrophysics Data System (ADS)
Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.
2017-11-01
To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.
USDA-ARS?s Scientific Manuscript database
Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. The dry grind method has been the major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. This presentation reports our study to monitor ...
USDA-ARS?s Scientific Manuscript database
Distillers dried grains with soluble (DDGS) are one of the main coproducts of ethanol production from using the dry-grinding process. The lipids from corn or sorghum are not utilized in ethanol production, and are thus concentrated in DDGS. The main lipid components in corn and sorghum DDGS are tr...
Liu, Gang; Bao, Jie
2017-12-01
Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi
2018-01-01
Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1 h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-05-31
This Executive Summary is Volume I of 7 volumes of a detailed feasibility study for a 100 million gallon/year Power Alcohol plant using corn as feedstock to be constructed in the vicinity of Belle Chaise, Louisiana, adjacent to an existing grain elevator complex. The proposed plant will ultimately have the capability to produce 100 million gallons/year of anhydrous alcohol from an estimated 40 million bushels of corn and will be designed so as to allow construction in modules of 25 million gallons each. Alcohol produced at this plant is intended essentially for use as a gasoline octane booster, a motormore » fuel in gasoline/alcohol blends and as a chemical feedstock. In addition, the plant will produce a number of by-products, each of which has existing commercial markets; namely, 236,400 tons of CO/sub 2/ 237,600 tons of Protein Meal Mixture (40.2% Protein) or 124,000 tons of Gluten Meal (41% Protein), 20,000 tons of yeast, 68,400 tons of Corn Bran, 89,600 tons of Corn Germ Cake and 4,584,000 gallons of Corn Oil (food grade).« less
Nitrogen and tillage management affect corn cellulosic yield, composition, and ethanol potential
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) stover and cobs remaining after grain harvest can serve as a feedstock for cellulosic ethanol production. Field trials were conducted at two locations in Minnesota over three years to determine how corn cellulosic yield composition and ethanol yield are influenced by tillage syste...
Fusing corn nitrogen recommendation tools for an improved canopy reflectance sensor performance
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) rate recommendation tools are utilized to help producers maximize corn grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. Canopy reflectance sensors are capable of capturing within-fi...
Response of corn to organic matter quantity and distribution in soil
USDA-ARS?s Scientific Manuscript database
The objectives of this experiment were to: 1. Quantify the agronomic response of corn to tillage and cover crop management, 2. Determine soil quality changes following cropping of previous land in pasture, and 3. Estimate economics of corn production in response to tillage and cover crop management....
Production of corn fiber gum under conditions that retain its functional components
USDA-ARS?s Scientific Manuscript database
Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We ha...
Corn fiber utilization for production of Schizophyllan
USDA-ARS?s Scientific Manuscript database
Corn fiber is an abundant coproduct of the corn wet milling process, primarily composed of the seed pericarp and adherent starch. Schizophyllan is a biopolymer composed entirely of glucose, with a ß-1,3-linked backbone and single ß-1,6-linked glucose side chains at every third residue, produced by t...
Meiotic drive-based strategy to minimize mycotoxins in corn
USDA-ARS?s Scientific Manuscript database
Some fungi pose a dual threat to corn production by causing disease (seedling, root, stalk or ear rots) and by producing mycotoxins that pose health risks to humans and domestic animals. For example, the fungus Fusarium verticillioides can cause stalk and ear rot of corn and produce fumonisins, a fa...
Accounting for alfalfa N credits increases returns to corn production
USDA-ARS?s Scientific Manuscript database
Guidelines are relatively consistent across the Upper Midwest regarding the N benefit of alfalfa to the following grain crops. With higher corn yields and prices, however, some growers have questioned these guidelines and whether more N fertilizer is needed for first-year corn following a good stand...
40 CFR 63.2872 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... vegetable oil and crude meal products, such as animal feed. Corn germ dry milling means a source that processes corn germ that has been separated from the other corn components using a “dry” process of... to solvent recovery equipment such as extractors, desolventizer-toasters/dryer-coolers, flash...
40 CFR 63.2872 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... vegetable oil and crude meal products, such as animal feed. Corn germ dry milling means a source that processes corn germ that has been separated from the other corn components using a “dry” process of... to solvent recovery equipment such as extractors, desolventizer-toasters/dryer-coolers, flash...
40 CFR 63.2872 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... vegetable oil and crude meal products, such as animal feed. Corn germ dry milling means a source that processes corn germ that has been separated from the other corn components using a “dry” process of... to solvent recovery equipment such as extractors, desolventizer-toasters/dryer-coolers, flash...
Crop response of drought tolerant and conventional maize hybrids in a semi-arid environment
USDA-ARS?s Scientific Manuscript database
In the Central and Southern High Plains Regions, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions can hinder corn production. Drought tolerant (DT) corn hybrids could help stabilize yields under water-limited conditions, though ...
Enhanced efficiency fertilizers: Effects on agronomic performance of corn in Iowa
USDA-ARS?s Scientific Manuscript database
Management of N in corn (Zea mays L.) production systems attempts to increase crop yields and minimize environment impact. This study evaluated enhanced efficiency fertilizers (EEFs) compared to their non-EEF forms on grain yield and corn biomass at the beginning of the grain-filling period, leaf ch...
Corn stover harvest and tillage impacts on near-surface soil physical quality
USDA-ARS?s Scientific Manuscript database
Excessive harvest of corn (Zea mays L.) stover for ethanol production has raised concerns regarding negative consequences on soil physical quality. Our objective was to quantify the impact of two tillage practices and three levels of corn stover harvest on near-surface soil physical quality through ...
Prohexadione-calcium improves stand density and yield of alfalfa interseeded into silage corn
USDA-ARS?s Scientific Manuscript database
Interseeded alfalfa (Medicago sativa L.) could serve as a dual-purpose crop to provide groundcover for silage corn (Zea mays L.) and forage during subsequent years of production, but interspecific competition often leads to poor stands of alfalfa and unsatisfactory yields of corn. Four experiments e...
Biological control of aflatoxin is effective and economical in Mississippi field trials
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of corn is a major grain quality issue and can be a major economic limiting factor to Mississippi corn farmers. Biological control products based on aflatoxin non-producing strains of Aspergillus flavus are commercially available to prevent the contamination of corn with afl...
Xylo-oligosaccharides production by autohydrolysis of corn fiber separated from DDGS
USDA-ARS?s Scientific Manuscript database
Xylo-oligosaccharides (XOS) are reported to have beneficial health properties, and are considered to be functional food ingredients. XOS was produced using corn fiber separated from distillers dried grains with solubles (DDGS). Corn fiber was treated with deionized water in a Parr-reactor, at temper...
Intensifying production in the northern Corn Belt by incorporating cash cover crops
USDA-ARS?s Scientific Manuscript database
Relay cropping soybean with winter camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) in corn and soybean rotations in the northern Corn Belt, USA provides ecosystem services and is economically viable. However, questions remain regarding the optimum time to interseed these cov...
Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.
Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J
2007-03-01
Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of hybrid poplar plants were not affected by scrubber by-product applications of up to 5% w:w.
Zampa, Andrea; Silvi, Stefania; Fabiani, Roberto; Morozzi, Guido; Orpianesi, Carla; Cresci, Alberto
2004-02-01
The main source of carbon in the human large intestine comes from carbohydrates like starches and oligosaccharides which remain unchanged by gastric digestion. These polysaccharides are metabolised in the colon by saccharolytic bacteria whose composition is dependent upon the substrate availability. Among the metabolites produced, the short-chain fatty acids (SCFA) are important for colon function and to prevent diseases. In particular, butyrate affects several cellular functions (proliferation, membrane synthesis, sodium absorption), and it has been shown to be protective against colorectal cancer. In addition, faecal bacteria are responsible for the conversion of primary bile acids (BA) to secondary BA, which are considered tumor promoters. In this study we investigated the in vitro effect of different substrates (CrystaLean starch, xylo-oligosaccharides, corn starch) supplied to human faecal micro-flora, on the SCFA production, on the bowel micro-flora composition and on the primary BA conversion rate. In addition, with corn starch as substrate, we considered the effect of enriching normal human faecal micro-flora with lactobacilli and bifidobacteria, on the above reported parameters.
Monascus pigment production by solid-state fermentation with corn cob substrate.
Velmurugan, Palanivel; Hur, Hyun; Balachandar, Vellingiri; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Lee, Sang-Myung; Chae, Jong-Chan; Shea, Patrick J; Oh, Byung-Taek
2011-12-01
Natural pigments are an important alternative to potentially harmful synthetic dyes. We investigated the feasibility of corn cob powder as a substrate for production of pigments by Monascus purpureus KACC 42430 in solid-state fermentation. A pigment yield of 25.42 OD Units/gram of dry fermented substrate was achieved with corn cob powder and optimized process parameters, including 60% (w/w) initial moisture content, incubation at 30°C, inoculation with 4mL of spores/gram of dry substrate, and an incubation period of 7 days. Pigment yield using corn cobs greatly exceeded those of most other agricultural waste substrates. The pigments were stable at acidic pH, high temperatures, and in salt solutions; all important considerations for industrial applications. Our results indicate the viability of corn cob substrate in combination with M. purpureus for industrial applications. Copyright © 2011 The Society for Biotechnology, Japan. All rights reserved.
Rasmussen, M L; Shrestha, P; Khanal, S K; Pometto, A L; Hans van Leeuwen, J
2010-05-01
Degradation of lignocellulosic biomass to sugars through a purely biological process is a key to sustainable biofuel production. Hydrolysis of the corn wet-milling co-product-corn fiber-to simple sugars by the brown rot fungus Gloeophyllum trabeum was studied in suspended-culture and solid-state fermentations. Suspended-culture experiments were not effective in producing harvestable sugars from the corn fiber. The fungus consumed sugars released by fungal extracellular enzymes. Solid-state fermentation demonstrated up to 40% fiber degradation within 9days. Enzyme activity assays on solid-state fermentation filtrates confirmed the involvement of starch- and cellulose-degrading enzymes. To reduce fungal consumption of sugars and to accelerate enzyme activity, 2- and 3-d solid-state fermentation biomasses (fiber and fungus) were submerged in buffer and incubated at 37 degrees C without shaking. This anaerobic incubation converted up to almost 11% of the corn fiber into harvestable reducing sugars. Sugars released by G. trabeum were fermented to a maximum yield of 3.3g ethanol/100g fiber. This is the first report, to our knowledge, of G. trabeum fermenting sugar to ethanol. The addition of Saccharomyces cerevisiae as a co-culture led to more rapid fermentation to a maximum yield of 4.0g ethanol/100g fiber. The findings demonstrate the potential for this simple fungal process, requiring no pretreatment of the corn fiber, to produce more ethanol by hydrolyzing and fermenting carbohydrates in this lignocellulosic co-product. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Glennie, E.; Anyamba, A.; Eastman, R.
2016-12-01
A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.
Impact of Increased Corn Production on Ground Water Quality and Human Health
In this study, we use a complex coupled modeling system to assess the impacts of increased corn production on groundwater. In particular, we show how the models provide new information on the drivers of contamination in groundwater, and then relate pollutant concentration change...
Fuel ethanol production from alkaline peroxide pretreated corn stover
USDA-ARS?s Scientific Manuscript database
Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... engineered organisms and products. We are soliciting comments on whether this genetically engineered corn is... pests. Such genetically engineered organisms and products are considered ``regulated articles.'' The... Assessment for Determination of Nonregulated Status of Corn Genetically Engineered for Insect Resistance...
Implications of Using Corn Stalks as a Biofuel Source: A Joint ARS and DOE Project
NASA Astrophysics Data System (ADS)
Wilhelm, W. W.; Cushman, J.
2003-12-01
Corn stover is a readily source of biomass for cellulosic ethanol production, and may provide additional income for growers. Published research shows that residue removal changes the rate of soil physical, chemical, and biological processes, and in turn, crop growth. Building a sustainable cellulosic ethanol industry based on corn residue requires residue management practices that do not reduce long-term productivity. To develop such systems, impacts of stover removal on the soil and subsequent crops must be quantified. The ARS/DOE Biofuel Project is the cooperative endeavor among scientists from six western Corn Belt US Dept. of Agriculture, Agricultural Research Service (ARS) locations and US Dept. of Energy. The objectives of the project are to determine the influence of stover removal on crop productivity, soil aggregation, quality, carbon content, and seasonal energy balance, and carbon sequestration. When residue is removed soil temperatures fluctuate more and soil water evaporation is greater. Residue removal reduces the amount of soil organic carbon (SOC), but the degree of reduction is highly dependent on degree of tillage, quantity of stover removed, and frequency of stover removal. Of the three cultural factors (stover removal, tillage, and N fertilization) tillage had the greatest effect on amount of corn-derived SOC. No tillage tends to increase the fraction of aggregates in the 2.00 to 0.25 mm size range at all removal rates. Stover harvest reduces corn-derived SOC by 35% compared to retaining stover on the soil averaged over all tillage systems. Corn stover yield has not differed across stover removal treatments in these studies. In the irrigated study, grain yield increased with stover removal. In the rain-fed studies, grain yield has not differed among residue management treatments. Incorporating the biomass ethanol fermentation by-product into a soil with low SOC showed a positive relationship between the amount of lignin added and the subsequent humic acid concentration and aggregate stability. These and future outcomes from this effort will provide DOE and the developing biomass ethanol industry knowledge and guidelines on the environmental and crop productivity consequences of large-scale collection of corn stover.
Control of fumonisin: effects of processing.
Saunders, D S; Meredith, F I; Voss, K A
2001-01-01
Of about 10 billion bushels of corn that are grown each year in the United States, less than 2% is processed directly into food products, and about 18% is processed into intermediates such as high-fructose corn syrup, ethanol, and cornstarch. The vast majority of the annual crop is used domestically for animal feed (60%), and about 16% is exported. Thus, any program for controlling residues of fumonisin (FB) in food must recognize that most of the crop is grown for something other than food. Studies on the effects of wet milling on FB residues found these residues nondetectable in cornstarch, the starting material for high-fructose corn syrup and most other wet-milled food ingredients. Similar effects are noted for the dry-milling process. FB residues were nondetectable or quite low in dry flaking grits and corn flour, higher in corn germ, and highest in corn bran. Extrusion of dry-milled products reduces FB concentrations by 30-90% for mixing-type extruders and 20-50% for nonmixing extruders. Cooking and canning generally have little effect on FB content. In the masa process measurable FB is reduced following the cooking, soaking, and washing steps, with little conversion of FB to the hydrolyzed form. Sheeting, baking, and frying at commercial times and temperatures generally have no effect. In summary, all available studies on the effects of processing corn into food and food ingredients consistently demonstrate substantial reductions in measurable FB. No studies have shown a concentration in FB residues in food products or ingredients. PMID:11359704
NASA Astrophysics Data System (ADS)
Bhattarai, M. D.; Secchi, S.; Schoof, J. T.
2015-12-01
The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.
Review of Literature on Health Effects of Corn Oil and Its Oxidation Products
2011-04-01
the number of dead fetuses.20 In a retrospective comparison of historical teratology study data for vehicle control animals (Sprague-Dawley...Morrissey, R.E.; Richard, E. Teratologic evaluation of corn oil or distilled water administered to CD rats on gestational days 6 through 15...exposure to corn oil. Teratology , The International Journal of Abnormal Development 1983, 27, 411—416. 17. Shipman, P.M.; Schmidt, R.R. Corn oil
USDA-ARS?s Scientific Manuscript database
Acetone butanol ethanol (ABE or AB, or solvent) was produced from hydrolyzed corn stover and switchgrass using Clostridium beijerinckii P260. A control experiment using glucose resulted in the production of 21.06 gL**-1 total ABE. In this experiment, an AB yield and productivity of 0.41 and 0.31 g...
Life cycle of the corn-soybean agroecosystem for biobased production.
Landis, Amy E; Miller, Shelie A; Theis, Thomas L
2007-02-15
Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.
Influence of variety and harvest maturity on phytochemical content in corn silk.
Sarepoua, Eakrin; Tangwongchai, Ratchada; Suriharn, Bhalang; Lertrat, Kamol
2015-02-15
Corn silk has been used as a traditional herb in Asia. The objective of this study was to evaluate variability in phytochemicals in corn varieties at three maturity stages of corn silk. Ten vegetable corn varieties were evaluated in a completely randomized design with three replications. Data were recorded for total phenolic (TPC), total flavonoids (TFC), total anthocyanin (TAC) and antioxidant activity (AA) by DPPH free-radical-scavenging assays. Differences among corn varieties were observed for all parameters at all maturity stages, and the interactions between maturity stage and corn variety were significant. TPC and TAC were highest at the milky stage, whereas TFC and AA were highest at the silking stage. TPC, TFC and AA were highest in super sweet corn and white corn at the silking stage. PWC5 variety of purple waxy corn at the milky stage had the highest values for all parameters, and it is useful for further development of functional food products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Garcia, Valerie; Cooter, Ellen; Crooks, James; Hinckley, Brian; Murphy, Mark; Xing, Xiangnan
2017-05-15
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥5mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additionally, the average number of animal feeding operations (AFOs) for these areas was nearly 5 times higher, and the mean N-fertilizer rate was 4 times higher. Finally, we found that areas prone to high groundwater nitrate-N concentrations attributable to the expansion scenario did not occur in new grid cells of irrigated grain-corn croplands, but were clustered around areas of existing corn crops. This application demonstrates the value of the coupled modeling system in developing spatially refined multi-variable models to provide information for geographic locations lacking complete observational data; and in projecting possible groundwater nitrate-N concentration outcomes under alternative future crop production scenarios. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abdullah, B.; Maftukhah, S.; Listyaningrum, E.; Faradhiba, F.
2018-03-01
Cellulase is a very important enzyme for ethanol production, food, papper, etc, from lignocellulose and others. Rice straw and corn cob are the largest agricultural waste in Indonesia, while the water hyacinth weed is a plant that has not been used optimally. The content of cellulose is high enough on rice straw, water hyacinth and corn corb so it can be used as a substrate in the production of cellulase to increase the economic value of the rice straw, hyacinth, and corncob. As for the purpose of this study is to use the rice straw, water hyacinth, and corn cob as substrates of cellulase enzyme, determine the effect type of substrates, moisture content and fermentation time in production of cellulase enzyme and also determining the optimum conditions for production of cellulase enzymes. The method is solid fermentation system and using fungi Aspergillus niger ITBCC L74 as inoculum. The variable used were fermentation time is 2, 4, 6, 8 and 10 days, moisture content is 50, 60, 70, and 80%, as well as the type of substrate is rice straw, water hyacinth, and corn cob. The results showed that the highest protein content in the crude enzyme of the rice straw, water hyacinth and corncobs @ is 0.0153 mg/ml, 0.0194 mg/ml and 0. 0146 mg/ml, respectively. The optimum enzyme activity were for the rice straw, water hyacinth and corn cobs @ 2.569 U/ml, 1.606 U/ml and 1.302 U/ml, respectively. The optimum moisture content were obtain for rice straw, water hyacinth and corn cob respectively 80%, 70% and 60%. And the optimum fermentation time for rice straw, corn cob, and water hyacinth is on the sixth day. In this study showed the highest enzyme activity on the type of rice straw substrate with a water content of 80% and fermentation time 6 day.
Johnson, L; Harrison, J H; Hunt, C; Shinners, K; Doggett, C G; Sapienza, D
1999-12-01
Stage of maturity at harvest and mechanical processing affect the nutritive value of corn silage. The change in nutritive value of corn silage as maturity advances can be measured by animal digestion and macro in situ degradation studies among other methods. Predictive equations using climatic data, vitreousness of corn grain in corn silage, starch reactivity, gelatinization enthalpy, dry matter (DM) of corn grain in corn silage, and DM of corn silage can be used to estimate starch digestibility of corn silage. Whole plant corn silage can be mechanically processed either pre- or postensiling with a kernel processor mounted on a forage harvester, a recutter screen on a forage harvester, or a stationary roller mill. Mechanical processing of corn silage can improve ensiling characteristics, reduce DM losses during ensiling, and improve starch and fiber digestion as a result of fracturing the corn kernels and crushing and shearing the stover and cobs. Improvements in milk production have ranged from 0.2 to 2.0 kg/d when cows were fed mechanically processed corn silage. A consistent improvement in milk protein yield has also been observed when mechanically processed corn silage has been fed. With the advent of mechanical processors, alternative strategies are evident for corn silage management, such as a longer harvest window.
Moate, P J; Williams, S R O; Jacobs, J L; Hannah, M C; Beauchemin, K A; Eckard, R J; Wales, W J
2017-09-01
Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF 6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in the diet of dairy cows could be an effective strategy for substantially reducing their methane emissions, it also reduced their milk fat percentage and production of milk fat and energy-corrected milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, S.; Wu, M.; Wang, M.
2011-02-01
Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr.more » Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.« less
Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production
Gelfand, Ilya; Zenone, Terenzio; Jasrotia, Poonam; Chen, Jiquan; Hamilton, Stephen K.; Robertson, G. Philip
2011-01-01
Over 13 million ha of former cropland are enrolled in the US Conservation Reserve Program (CRP), providing well-recognized biodiversity, water quality, and carbon (C) sequestration benefits that could be lost on conversion back to agricultural production. Here we provide measurements of the greenhouse gas consequences of converting CRP land to continuous corn, corn–soybean, or perennial grass for biofuel production. No-till soybeans preceded the annual crops and created an initial carbon debt of 10.6 Mg CO2 equivalents (CO2e)·ha−1 that included agronomic inputs, changes in C stocks, altered N2O and CH4 fluxes, and foregone C sequestration less a fossil fuel offset credit. Total debt, which includes future debt created by additional changes in soil C stocks and the loss of substantial future soil C sequestration, can be constrained to 68 Mg CO2e·ha−1 if subsequent crops are under permanent no-till management. If tilled, however, total debt triples to 222 Mg CO2e·ha−1 on account of further soil C loss. Projected C debt repayment periods under no-till management range from 29 to 40 y for corn–soybean and continuous corn, respectively. Under conventional tillage repayment periods are three times longer, from 89 to 123 y, respectively. Alternatively, the direct use of existing CRP grasslands for cellulosic feedstock production would avoid C debt entirely and provide modest climate change mitigation immediately. Incentives for permanent no till and especially permission to harvest CRP biomass for cellulosic biofuel would help to blunt the climate impact of future CRP conversion. PMID:21825117
Shaviklo, Gholam Reza; Thorkelsson, Gudjon; Rafipour, Fereidon; Sigurgisladottir, Sjofn
2011-03-30
Cereal-based snacks are usually low in protein and other nutrients. Increased health awareness of consumers has led the food industry to develop fortified snacks with functional ingredients. Three types of extruded corn-fish snacks, containing 150 g kg(-1) carp mince and 150 g kg(-1) trout mince, 30 g kg(-1) freeze-dried saithe protein and a regular corn snack (control). were produced to study quality changes and storage stability of the products during 6-month storage at 27±2 °C. All products had the same level of water activity and proximate composition except for protein. Fortified snacks had a protein content of 93-98 g kg(-1) , compared with 65 g kg(-1) in the control. A significant increase was observed for peroxide value during storage (0.0 to 2.8 meq kg(-1)). Scores for attributes describing oxidation and off odors and flavors increased after 5-6 months' storage but attributes describing puffed corn snack odor and flavor did not change during storage of any of the products. Extrusion of corn grits with fish flesh/fish protein can be used to produce high-protein products that would be an option to provide nutrient snacks for consumers and to increase fish consumption. Copyright © 2011 Society of Chemical Industry.
Examining the impacts of increased corn production on ...
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio
Nazli, Muhamad Hazim; Abdul Halim, Ridzwan; Abdullah, Amin Mahir; Husin, Ghazali; Samsudin, Anjas Asmara
2018-05-31
Apart from various climatic differences, corn harvest stage and varieties are two major factors that can influence the yield and quality of corn silage in the tropics. A study was conducted to determine the optimum harvest stage of four corn varieties for tropical silage production in Malaysia. Using a split plot design, corn was harvested at four growth stages; silking, milk, dough and dent stages using four varieties; Sweet Corn hybrid 926, Suwan, Breeding Test Line (BTL) 1 and BTL 2. The treatments were then analysed based on the plant growth performance, yield, nutritive and feeding values followed by a financial feasibility study for potential commercialization. Significant differences and interactions were detected across the parameters suggesting varying responses among the varieties towards the harvest stages. Sweet Corn was best harvested early in the dough stage due to high dry matter (DM) yield, digestible nutrient and energy content with low fibre portion. Suwan was recommended to be harvested at the dent stage when it gave the highest DM yield with optimum digestible nutrient and energy content with low acid detergent fibre (ADF). BTL 1 and BTL 2 varieties can either be harvested at dough or dent stages as the crude protein (CP), fibre, DM yield, DM content, digestible nutrient and energy were not significantly different at both stages. Further financial analysis showed that only Sweet Corn production was not financially feasible while Suwan had the best financial appraisal values among the grain varieties. In conclusion, only the grain varieties tested had the potential for silage making according to their optimum harvest stage but Suwan is highly recommended for commercialization as it was the most profitable.
Understanding nitrogen, phosphorus, potassium and other nutrient impacts of corn stover harvest
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) stover has been identified as an important feedstock for several uses including advanced biofuel production, enhanced animal feeds, mushroom production, and several green chemistry constituents. Harvesting stover for any of these uses will increase macronutrient (N, P, and K), sec...
Biodiesel from corn distillers dried grains with solubles: preparation, evaluation and properties
USDA-ARS?s Scientific Manuscript database
Corn distillers’ dried grains with solubles (DDGS) is a co-product of dry-grind ethanol fermentation and represents a low-cost feedstock with potential to improve process economics and logistics of biodiesel manufacture through integration of biodiesel and ethanol production. Oil extracted from DDGS...
Soil-test biological activity in corn production systems: II. Greenhouse growth bioassay
USDA-ARS?s Scientific Manuscript database
Soil N mineralization is variably affected by management and edaphic conditions. A routine soil test is needed to make better predictions for N fertilizer recommendations to cereal grains on different soil types and landscape settings. We collected soils from 47 corn production fields in North Car...
Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production
USDA-ARS?s Scientific Manuscript database
Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...
Carbohydrate and nutrient composition of corn stover from three Southeastern USA locations
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) stover has been identified as an important feedstock for bioenergy and bio-product production. Our objective was to quantify nutrient removal, carbohydrate composition, theoretical ethanol yield (TEY) for various stover fractions. In 2009, 2010, and 2011, whole-plant samples were ...
Hyperspectral imagery was acquired three times during the 2006 agricultural growing season (late July to mid-September) over 35 corn fields in east central Illinois. The imagery was processed with an emphasis on rapid image product development (turnabround time of less than 24 ho...
Thlaspi arvense (Pennycress): An off-season energy crop within the corn-soybean rotation
USDA-ARS?s Scientific Manuscript database
Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...
Hydraulic properties affected by topsoil thickness in switchgrass and corn-soybean cropping systems
USDA-ARS?s Scientific Manuscript database
Loss of productive topsoil by soil erosion over time can reduce the productive capacity of soil and can significantly affect soil hydraulic properties. This study evaluated the effects of reduced topsoil thickness and perennial switchgrass (Panicum virgatum L.) versus corn (Zea mays L.)/soybean [Gly...
USDA-ARS?s Scientific Manuscript database
Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...
Mid-infrared spectroscopy and chemometrics in corn starch classification
NASA Astrophysics Data System (ADS)
Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.
1997-06-01
The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Pei, H.; Shen, Y.
2014-12-01
The North China Plain (NCP) and U.S. High Plains play critical roles in food production, which relies heavily on groundwater resources for irrigation and nutrients. Here we evaluate food production in terms of resource availability (water and nutrients) and impacts on resources (groundwater quantity and quality) within the context of climate forcing. Double cropping of corn and wheat in the NCP under intensive irrigation (80 - 90% of cropland) and massive N fertilization (384 kg/ha) resulted in total corn plus wheat yields of 13.4 kg/ha (2002 - 2011). In contrast, single cropping of corn on the USHP under less intensive irrigation (40% of cropland) and N fertilization (90 kg/ha) resulted in only 15% lower yield in the USHP (11.7 kg/ha) than in the NCP. However, irrigation essentially decouples crop production from climate extremes. Average corn and wheat yield in the NCP over the past three decades is not correlated with precipitation. Irrigated corn yield in the north and central USHP was actually higher during the recent 2012 drought by up to ~ 30% relative to the 30 year long-term mean yield whereas rainfed corn yield decreased by ~50% during the drought. The main impact of climate extremes on the aquifers is indirect through increased irrigation pumpage for crop production rather than direct through changes in recharge. Effects of crop production on groundwater quality should be much greater in the NCP because of ~4 times higher fertilizer application relative to that in the USHP. Field research experiments in the NCP indicate that much of this fertilizer application (> 200 kg N/ha) does not impact yield and could potentially leach into underlying aquifers. Projected groundwater depletion in these aquifers should result in a shift from intensive irrigation to more rainfed crop production, increasing vulnerability of crop production to climate extremes.
Mycotoxin Management Studies by USDA-"Ag Lab" in 2008
USDA-ARS?s Scientific Manuscript database
Studies again included several popcorn fields in 2008, in order to continue gathering data for modification of the previously developed management strategies for mycotoxins in field corn (the mycotoxin predictive computer program). Weather conditions were generally good for growing corn, but excess...
Mycotoxin Management Studies by USDA-ARS, NCAUR in 2009
USDA-ARS?s Scientific Manuscript database
Studies again included several popcorn fields in 2009 in order to continue gathering data for modification of the previously developed management strategies for mycotoxins in field corn (including the mycotoxin predictive computer program). Without an attempt for optimization, the field corn model ...
Greenhouse gas emissions from traditional and biofuels cropping systems
USDA-ARS?s Scientific Manuscript database
Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...
Sievers, David A; Tao, Ling; Schell, Daniel J
2014-09-01
Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
An integrated bioconversion process was developed to convert corn-stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which resulted in high retention of glucan (~100%) and xylan (>80%) in the solids. The pretreated...
The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. Thi...
Economics of growth regulator treatment of alfalfa seed for interseeding into silage corn
USDA-ARS?s Scientific Manuscript database
Previous studies have focused on interseeding of alfalfa into corn for use as a temporary cover crop rather than as a means of jump-starting alfalfa production after corn. In ongoing field studies, we are evaluating whether plant growth regulators (PGR) may be used to aid the establishment of inters...
USDA-ARS?s Scientific Manuscript database
Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE, that is the annual sum of CO2 fluxes, the total carbon uptake minus total carbon respired by the plants-soil-ecosystem) than soybean due to increased carbon uptake efficiency...
USDA-ARS?s Scientific Manuscript database
Recent USDA-NASS data indicate alfalfa and corn were planted on about 0.8 and 1.9 million hectares per year, respectively, in the Northeast, Great Lakes, Upper Midwest, and Northern Mountain regions the USA. Because both crops are often grown in rotation, alfalfa could be interseeded at corn plantin...
Results of the 1971 Corn Blight Watch experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Allen, R. D.; Bauer, M. E.; Clifton, J. W.; Frickson, J. D.; Landgrebe, D. A.
1972-01-01
Advanced remote sensing techniques are used to: (1)Detect development and spread of corn leaf blight during the growing season; (2) assess the extent and severity of blight infection; (3) assess the impact of blight on corn production; and (4) estimate the applicability of these techniques to similar situations occurring in the future.
Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production
USDA-ARS?s Scientific Manuscript database
Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...
Nitrogen source and rate effects on furrow irrigated corn yields and NUE
USDA-ARS?s Scientific Manuscript database
Nitrogen (N) rate studies were conducted under furrow irrigated corn (Zea mays L.) production on a silty clay soil to compare polymer-coated urea (PCU) and stabilized urea (SU; contains urease and nitrification inhibitors) effects on corn yields, plant N uptake and N use efficiency (NUE) to granular...
USDA-ARS?s Scientific Manuscript database
Harvesting of corn stover for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decrea...
USDA-ARS?s Scientific Manuscript database
Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...
USDA-ARS?s Scientific Manuscript database
Xylo-oligosaccharides (XOS) are known to have beneficial health properties, and are considered to be functional food ingredients. The objective of this study is to compare corn fibers separated from ground corn flour and distillers dried grains with solubles (DDGS) for XOS yield and optimum authoyd...
Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.
Zhang, Yaning; Fan, Liangliang; Liu, Shiyu; Zhou, Nan; Ding, Kuan; Peng, Peng; Anderson, Erik; Addy, Min; Cheng, Yanling; Liu, Yuhuan; Li, Bingxi; Snyder, John; Chen, Paul; Ruan, Roger
2018-07-01
The controversial synergistic effect between brown coal and biomass during co-pyrolysis deserves further investigation. This study detailed the oil production from microwave-assisted co-pyrolysis of brown coal (BC) and corn stover (CS) at different CS/BC ratios (0, 0.33, 0.50, 0.67, and 1) and pyrolysis temperatures (500, 550, and 600 °C). The results showed that a higher CS/BC ratio resulted in higher oil yield, and a higher pyrolysis temperature increased oil yield for brown coal and coal/corn mixtures. Corn stover and brown coal showed different pyrolysis characteristics, and positive synergistic effect on oil yield was observed only at CS/BC ratio of 0.33 and pyrolysis temperature of 600 °C. Oils from brown coal mainly included hydrocarbons and phenols whereas oils from corn stover and coal/corn mixtures were dominated by ketones, phenols, and aldehydes. Positive synergistic effects were observed for ketones, aldehydes, acids, and esters whereas negative synergistic effects for hydrocarbons, phenols and alcohols. Copyright © 2018 Elsevier Ltd. All rights reserved.
Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C
2005-04-20
Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.
NASA Astrophysics Data System (ADS)
Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.
2018-01-01
Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.
Sadinski, Walter; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa
2014-01-01
Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex.
Sadinski, Walt; Roth, Mark; Hayes, Tyrone; Jones, Perry; Gallant, Alisa
2014-01-01
Extensive corn production in the midwestern United States has physically eliminated or fragmented vast areas of historical amphibian habitat. Midwestern corn farmers also apply large quantities of fertilizers and herbicides, which can cause direct and indirect effects on amphibians. Limited field research regarding the statuses of midwestern amphibian populations near areas of corn production has left resource managers, conservation planners, and other stakeholders needing more information to improve conservation strategies and management plans. We repeatedly sampled amphibians in wetlands in four conservation areas along a gradient of proximity to corn production in Illinois, Iowa, Minnesota, and Wisconsin from 2002 to 2005 and estimated site occupancy. We measured frequencies of gross physical deformities in recent metamorphs and triazine concentrations in the water at breeding sites. We also measured trematode infection rates in kidneys of recently metamorphosed Lithobates pipiens collected from nine wetlands in 2003 and 2004. We detected all possible amphibian species in each study area. The amount of nearby row crops was limited in importance as a covariate for estimating site occupancy. We observed deformities in <5% of metamorphs sampled and proportions were not associated with triazine concentrations. Trematode infections were high in metamorphs from all sites we sampled, but not associated with site triazine concentrations, except perhaps for a subset of sites sampled in both years. We detected triazines more often and in higher concentrations in breeding wetlands closer to corn production. Triazine concentrations increased in floodplain wetlands as water levels rose after rainfall and were similar among lotic and lentic sites. Overall, our results suggest amphibian populations were not faring differently among these four conservation areas, regardless of their proximity to corn production, and that the ecological dynamics of atrazine exposure were complex. PMID:25216249
NASA Astrophysics Data System (ADS)
Diallo, Oumou
The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.
Sharma, Savita; Gupta, Jatinder Pal; Nagi, H P S; Kumar, Rakesh
2012-10-01
The effect of blending level (0, 5, 10, 15 and 20%) of corn bran, defatted germ and gluten with wheat flour on the physico-chemical properties (protein, crude fiber, phosphorus, iron and calcium), baking properties of bread, muffins and cookies, and extrusion properties of noodles and extruded snacks prepared from semolina were examined. Blending of wheat flour and corn byproducts significantly increased the protein, crude fiber, phosphorus, iron and calcium contents. Breads from gluten blends had higher loaf volume as compared to bran and germ breads. Among corn byproducts, gluten cookies were rated superior with respect to top grain. Muffins from germ blends and gluten blends had higher acceptability scores than the bran muffins. Blending of corn bran, defatted germ and gluten at 5 and 10% with wheat flour resulted in satisfactory bread, cookie, and muffin score. Quality of noodles was significantly influenced by addition of corn byproducts and their levels. Corn byproducts blending had significant influence on cooking time, however, gruel solid loss affected non-significantly in case of noodles. Expansion ratio and density of extruded snacks was affected non significantly by blending source and blending level. However, significant effect was observed on amperage, pressure, yield and overall acceptability of extruded snacks. Acceptable extruded products (noodles and extruded snacks) could be produced by blending corn byproducts with semolina upto 10% level.
Aflatoxin contamination of developing corn kernels.
Amer, M A
2005-01-01
Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.
Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata
2014-01-01
Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885
Fiscal year 1981 US corn and soybeans pilot preliminary experiment plan, phase 1
NASA Technical Reports Server (NTRS)
Livingston, G. P.; Nedelman, K. S.; Norwood, D. F.; Smith, J. H. (Principal Investigator)
1981-01-01
A draft of the preliminary experiment plan for the foreign commodity production forecasting project fiscal year 1981 is presented. This draft plan includes: definition of the phase 1 and 2 U.S. pilot objectives; the proposed experiment design to evaluate crop calendar, area estimation, and area aggregation components for corn and soybean technologies using 1978/1979 crop-year data; a description of individual sensitivity evaluations of the baseline corn and soybean segment classification procedure; and technology and data assessment in support of the corn and soybean estimation technology for use in the U.S. central corn belt.
USDA-ARS?s Scientific Manuscript database
Grain sorghum is a potential feedstock for fuel ethanol production due to its high starch content, which is equivalent to that of corn, and has been successfully used in several commercial corn ethanol plants in the United States. Some sorghum grain varieties contain significant levels of surface wa...
NASA Astrophysics Data System (ADS)
Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.
2017-12-01
Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.
Code of Federal Regulations, 2014 CFR
2014-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1984 Zein. (a) Zein (CAS Reg. No. 9010-66-6) is one of the components of corn gluten. It is produced commercially by extraction from corn gluten with alkaline aqueous isopropyl alcohol containing sodium hydroxide...
compare the effects of elevated temperature on 801-finish glass. The strength qualities at 75 F of Owens - Corning ECG-140 continuous-filament roving glass...with an 801 epoxy compatible finish and the same glass with an HTS epoxy compatible finish were tested. The strength qualities of Owens - Corning ECG
Quantitative attribution of major driving forces on soil organic carbon dynamics
Wu, Yiping; Liu, Shuguang; Tan, Zhengxi
2015-01-01
Soil organic carbon (SOC) storage plays a major role in the global carbon cycle and is affected by many factors including land use/management changes (e.g., biofuel production-oriented changes). However, the contributions of various factors to SOC changes are not well understood and quantified. This study was designed to investigate the impacts of changing farming practices, initial SOC levels, and biological enhancement of grain production on SOC dynamics and to attribute the relative contributions of major driving forces (CO2 enrichment and farming practices) using a fractional factorial modeling design. The case study at a crop site in Iowa in the United States demonstrated that the traditional corn-soybean (CS) rotation could still accumulate SOC over this century (from 4.2 to 6.8 kg C/m2) under the current condition; whereas the continuous-corn (CC) system might have a higher SOC sequestration potential than CS. In either case, however, residue removal could reduce the sink potential substantially. Long-term simulation results also suggested that the equilibrium SOC level may vary greatly (∼5.7 to ∼11 kg C/m2) depending on cropping systems and management practices, and projected growth enhancement could make the magnitudes higher (∼7.8 to ∼13 kg C/m2). Importantly, the factorial design analysis indicated that residue management had the most significant impact (contributing 49.4%) on SOC changes, followed by CO2 Enrichment (37%), Tillage (6.2%), the combination of CO2Enrichment-Residue removal (5.8%), and Fertilization (1.6%). In brief, this study is valuable for understanding the major forces driving SOC dynamics of agroecosystems and informative for decision-makers when seeking the enhancement of SOC sequestration potential and sustainability of biofuel production, especially in the Corn Belt region of the United States.
Biological Utilization of Wood for Production of Chemicals and Foodstuffs.
1981-03-01
ration and, corn . The results are presented in of lambs. As high as 20 percent of although the cost of gains on the table 50. The results of the...differs in that, after an initial 185 ° C. At this time, most of the low- Residues high in bark reduce the period of low-temperature hydrolysis...and hydrolyzate is removed at the per part of the chip bed. The high table 6. bottom with no interruptions until the through-put rate is continued until
Analysis of scanner data for crop inventories
NASA Technical Reports Server (NTRS)
Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.
1981-01-01
Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.
An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products.
Wouters, Angelica Terezinha Barth; Casagrande, Renata Assis; Wouters, Flademir; Watanabe, Tatiane Terumi Negrão; Boabaid, Fabiana Marques; Cruz, Cláudio Estêvão Farias; Driemeier, David
2013-03-01
An aflatoxicosis outbreak affected 65 dogs from 9 different farms after they were fed diets with cooked corn meal as a common ingredient. Of the dogs, 60 died. Numerous dogs died on additional farms, but those dogs were not included in the study. The farmers acquired the contaminated maize products, in the form of whole corn grain or as corn meal, from the same supplier. The corn product was mixed with meat that was left over from home or commercial rations to form corn polenta, which was fed to the dogs. Necropsy was performed on 3 dogs. Two of the dogs died after a few days of refusing food, showing anorexia, polydipsia, icteric mucous membranes, hematemesis, hematochezia, or melena, and bleeding of the skin, eye, ear, and mouth. The primary necropsy findings included jaundice, hemorrhages in several organs, and yellowish enlarged liver with enhanced lobular pattern. The dog that experienced chronic ascites had a yellowish liver with reduced volume, irregular surface, and increased consistency. The main histological findings included hepatocyte fatty degeneration, biliary duct hyperplasia, cholestasis and, in the chronic case, hepatic fibrosis. High-performance liquid chromatography analysis of the corn meal from 2 affected farms revealed 1,640 ppb and 1,770 ppb of aflatoxin B1, respectively. The current study demonstrates an additional way that dogs can be exposed to, poisoned, and killed by aflatoxin.
Kumar, Ajay; Demirel, Yasar; Jones, David D; Hanna, Milford A
2010-05-01
Thermochemical gasification is one of the most promising technologies for converting biomass into power, fuels and chemicals. The objectives of this study were to maximize the net energy efficiency for biomass gasification, and to estimate the cost of producing industrial gas and combined heat and power (CHP) at a feedrate of 2000kg/h. Aspen Plus-based model for gasification was combined with a CHP generation model, and optimized using corn stover and dried distillers grains with solubles (DDGS) as the biomass feedstocks. The cold gas efficiencies for gas production were 57% and 52%, respectively, for corn stover and DDGS. The selling price of gas was estimated to be $11.49 and $13.08/GJ, respectively, for corn stover and DDGS. For CHP generation, the electrical and net efficiencies were as high as 37% and 88%, respectively, for corn stover and 34% and 78%, respectively, for DDGS. The selling price of electricity was estimated to be $0.1351 and $0.1287/kWh for corn stover and DDGS, respectively. Overall, high net energy efficiencies for gas and CHP production from biomass gasification can be achieved with optimized processing conditions. However, the economical feasibility of these conversion processes will depend on the relative local prices of fossil fuels. Copyright 2009 Elsevier Ltd. All rights reserved.
Myresiotis, Charalampos K; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia
2015-09-01
Corn (Zea mays L.) is one of the most important cereal crops in the world and is used for food, feed and energy. Inoculation with plant-growth-promoting rhizobacteria (PGPR) would reduce the use of chemical fertilisers and pesticides and could be suggested as an alternative practice for sustainable production of corn in modern agricultural systems. In this study, the effect of two Bacillus PGPR formulated products, Companion (B. subtilis GB03) and FZB24 (B. subtilis FZB24), on corn growth and root uptake of insecticide thiamethoxam was investigated. All bacterial treatments enhanced root biomass production by 38-65% compared with the uninoculated control, with no stimulatory effect of PGPR on above-ground biomass of corn. The uptake results revealed that, in plants inoculated with the PGPR B. subtilis FZB24 and B. subtilis GB03, singly or in combination, the uptake and/or systemic translocation of thiamethoxam in the above-ground corn parts was significantly higher at the different growth ages compared with the control receiving no bacterial treatment. The findings suggest that the PGPR-elicited enhanced uptake of thiamethoxam could lead to improved efficiency of thiamethoxam using reduced rates of pesticides in combination with PGPR as an alternative crop protection technique. © 2014 Society of Chemical Industry.
Projected climate and agronomic implications for corn production in the Northeastern United States.
Prasad, Rishi; Gunn, Stephan Kpoti; Rotz, Clarence Alan; Karsten, Heather; Roth, Greg; Buda, Anthony; Stoner, Anne M K
2018-01-01
Corn has been a pillar of American agriculture for decades and continues to receive much attention from the scientific community for its potential to meet the food, feed and fuel needs of a growing human population in a changing climate. By midcentury, global temperature increase is expected to exceed 2°C where local effects on heat, cold and precipitation extremes will vary. The Northeast United States is a major dairy producer, corn consumer, and is cited as the fastest warming region in the contiguous U.S. It is important to understand how key agronomic climate variables affect corn growth and development so that adaptation strategies can be tailored to local climate changes. We analyzed potential local effects of climate change on corn growth and development at three major dairy locations in the Northeast (Syracuse, New York; State College, Pennsylvania and Landisville, Pennsylvania) using downscaled projected climate data (2000-2100) from nine Global Climate Models under two emission pathways (Representative Concentration Pathways (RCP) 4.5 and 8.5). Our analysis indicates that corn near the end of the 21st century will experience fewer spring and fall freezes, faster rate of growing degree day accumulation with a reduction in time required to reach maturity, greater frequencies of daily high temperature ≥35°C during key growth stages such as silking-anthesis and greater water deficit during reproductive (R1-R6) stages. These agronomic anomalies differ between the three locations, illustrating varying impacts of climate change in the more northern regions vs. the southern regions of the Northeast. Management strategies such as shifting the planting dates based on last spring freeze and irrigation during the greatest water deficit stages (R1-R6) will partially offset the projected increase in heat and drought stress. Future research should focus on understanding the effects of global warming at local levels and determining adaptation strategies that meet local needs.
Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAloon, A.; Taylor, F.; Yee, W.
2000-10-25
The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producingmore » 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.« less
NASA Astrophysics Data System (ADS)
Secchi, Silvia; Gassman, Philip W.; Williams, Jimmy R.; Babcock, Bruce A.
2009-10-01
Growing demand for corn due to the expansion of ethanol has increased concerns that environmentally sensitive lands retired from agricultural production and enrolled into the Conservation Reserve Program (CRP) will be cropped again. Iowa produces more ethanol than any other state in the United States, and it also produces the most corn. Thus, an examination of the impacts of higher crop prices on CRP land in Iowa can give insight into what we might expect nationally in the years ahead if crop prices remain high. We construct CRP land supply curves for various corn prices and then estimate the environmental impacts of cropping CRP land through the Environmental Policy Integrated Climate (EPIC) model. EPIC provides edge-of-field estimates of soil erosion, nutrient loss, and carbon sequestration. We find that incremental impacts increase dramatically as higher corn prices bring into production more and more environmentally fragile land. Maintaining current levels of environmental quality will require substantially higher spending levels. Even allowing for the cost savings that would accrue as CRP land leaves the program, a change in targeting strategies will likely be required to ensure that the most sensitive land does not leave the program.
Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest
Tan, Zhengxi; Liu, Shu-Guang
2015-01-01
Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.
USDA-ARS?s Scientific Manuscript database
Accurately measuring soil organic C (SOC) stock changes over time is essential for verifying agronomic management effects on C sequestration. This study quantified the spatial and temporal changes in SOC stocks on adjacent 65-ha corn silage-alfalfa production fields receiving liquid dairy manure in...
USDA-ARS?s Scientific Manuscript database
Weed control is challenging to farmers who are transitioning from production systems that use synthetic herbicides to organic systems. A two-year field study examined weed control efficacy and corn grain yield of air-propelled corncob grit abrasion for in-row weed control. Grits were applied based o...
USDA-ARS?s Scientific Manuscript database
Interseeded alfalfa could serve as a dual purpose crop for providing groundcover during silage corn production and forage during subsequent years of production, but this system has been unworkable because competition between the co-planted crops often leads to stand failure of interseeded alfalfa. R...
Topsoil thickness effects on corn, soybean, and switchgrass production on claypan soils
USDA-ARS?s Scientific Manuscript database
Diminished topsoil thickness or depth to claypan (DTC) is a major cause of yield and profit depression in corn (Zea mays L.) and to a lesser extent in soybean (Glycine max [L.]) production on claypan soils. Perennial grasses such as switchgrass (Panicum virgatum L.) may be more resilient to reduced ...
Alfalfa interseeded into silage corn can enhance productivity and soil and water conservation
USDA-ARS?s Scientific Manuscript database
Alfalfa and corn silage are widely planted for dairy forage production systems throughout the northern regions of the USA, accounting for about 0.8 and 1.9 million hectares per year, respectively. Much of this area could benefit from strategies to reduce soil erosion and nutrient losses. Because the...
Potassium sorbate reduces production of ethanols and 2 esters in corn silage
USDA-ARS?s Scientific Manuscript database
The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VO...
USDA-ARS?s Scientific Manuscript database
Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers...
Progress in ethanol production from corn kernel by applying cooking pre-treatment.
Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana
2009-05-01
In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.
Jin, Ying-Hua; Zhou, Dao-Wei; Qin, Li-Jie
2012-10-01
Under the background of global climate change, the climate in semiarid region of west Jilin Province changed greatly, producing a profound impact on the corn production in this region. In this study, the corn seeds were under three treatments (accelerating germination at 10 and 25 degrees C, and dry seeds), and a field experiment with early sowing and traditional sowing was conducted in 2008 to investigate the effects of early sowing these seeds on the seedling emergence, growth, and yield, and compare the effects of early sowing and traditional sowing dates on the corn production and yield. In 1961-2010, the first day of the growth season of corn in semiarid region of west Jilin Province was advanced, the air temperature increased significantly, and the precipitation displayed a decreasing trend. At present, the corn sowing date in this region could be advanced to 11th, April. Accelerating germination at 10 degrees C, directly sowing dry seeds, and bed-irrigation sowing all benefited the seedling emergence and cold resistance of early-sown seeds, and the corn plant height and leaf area under early sowing were significantly higher, with the yield increased by 35% - 48%, compared with those under traditional sowing.
Corn seeds as bioreactors for the production of phytase in the feed industry.
Chen, Rumei; Zhang, Chunyi; Yao, Bin; Xue, Guangxing; Yang, Wenzhu; Zhou, Xiaojin; Zhang, Junmin; Sun, Cheng; Chen, Ping; Fan, Yunliu
2013-05-20
Corn seed is a major ingredient of animal feed worldwide. However, it contains phytate, a major phosphate storage form that is unavailable to monogastric animals like pigs and poultry. We report a transgenic corn with bioavailable phosphate, achieved by seed-specific overexpression of Aspergillus niger phytase, an enzyme catalyzing the release of phosphate from phytate. We obtained maximal phytase activity of 125 FTU/g kernels, 1000-fold above that of the wild type, with 1000 g of kernels containing up to 67 times the feed industry requirement. Enzymatic characterization of Zea mays recombinant phytase (ZmrPhy) showed it to be equivalent to yeast (Pichia pastoris) recombinant phytase (PprPhy), a commercially available phytase product. An animal feeding trial demonstrated that ZmrPhy had similar nutritional effects on broiler chickens to PprPhy in terms of reducing inorganic phosphorus addition to feed and phosphate excretion in animal manure. These results suggest that transgenic phytase corn can be used directly in the feed industry. Experiments were conducted to assess the food safety of the corn; the results demonstrated no difference versus regular corn. This is the first genetically modified corn officially issued with a biosafety certificate in China and has great potential in the animal feed industry. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.E.; Bakshi, A.S.; Gay, S.A.
1985-01-01
Changes in electrical energy required to operate a continuous freezer were monitored for various ice cream formulae. Ice cream formulae consisted of nine different combinations of sucrose, 36 DE corn syrup, and 42 high fructose corn syrup as well as two ratios of guar gum to locust bean gum. Within the same sweetening system, a mix high in locust bean gum tended to have a lower energy demand than mix with large amounts of guar gum. This was especially pronounced in mixes with 50% 42 high fructose corn syrup and/or 50% 36 DE corn syrup solids.
NASA Astrophysics Data System (ADS)
Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.
2014-05-01
The High Plains Aquifer provides groundwater for 30% of the irrigated agriculture in the USA. Within Kansas, groundwater supports the congressional district with highest market value of agriculture. And yet, over-pumping and associated groundwater declines threaten the long-term prospects. The groundwater portion of this study quantifies the availability of groundwater stores over the next 100 years. A water-use function is developed to quantify the historical and future impacts of irrigation on corn production. A relationship between corn consumption per head of cattle quantifies the herd size that can be supported by irrigated corn. Together, we project the impacts of changes in groundwater stores on corn and cattle production for the next century. Scenarios analyze the impacts of water savings today on current and future agriculture production. Reference: Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M. and M. D. Apley, Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, Proceedings of the National Academy of Sciences of the United States of America, 110(37) E3477-E3486, September 10, 2013. http://dx.doi.org/10.1073/pnas.1220351110
Modifying the University of Missouri corn canopy sensor algorithm using soil and weather information
USDA-ARS?s Scientific Manuscript database
Corn production across the U.S. Corn belt can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N ...
USDA-ARS?s Scientific Manuscript database
Interest in utilization of feedstocks other than corn for fuel ethanol production has been increasing due to political as well as environmental reasons. Grain sorghum is an identified alternative that has a number of potential benefits relative to corn in both composition and agronomic traits. Compo...
USDA-ARS?s Scientific Manuscript database
Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a ...
USDA-ARS?s Scientific Manuscript database
The brown stink bug (BSB), Euschistus servus (Say) (Hemiptera: Pentatomidae), is a serious economic pest of corn production in the Southeastern U. S. The BSB population dynamics was monitored for 17 wks from tasseling to pre-harvest of corn plants (i.e., late May to mid-September) using pheromone ...
USDA-ARS?s Scientific Manuscript database
Aflatoxin in corn grain is a problem in many areas of the world. Any combination of environmentally stressful or agronomically unfavorable conditions can increase the likelihood of Aspergillus flavus infection and production of aflatoxin in the corn grain. In the absence of a consistent natural A....
USDA-ARS?s Scientific Manuscript database
Removal of corn (Zea mays L.) residues at high rates for biofuel and other off-farm uses may negatively impact soil and the environment in the long term. Biomass removal from perennial warm-season grasses (WSGs) grown in marginally productive lands could be an alternative to corn residue removal as ...
Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.
Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin
2011-08-01
This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing <15% of the total FB₁ species present. Less than 46% of FB₁ originally present in corn grits could be detected in the fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zein. 184.1984 Section 184.1984 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... corn gluten. It is produced commercially by extraction from corn gluten with alkaline aqueous isopropyl...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zein. 184.1984 Section 184.1984 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... corn gluten. It is produced commercially by extraction from corn gluten with alkaline aqueous isopropyl...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zein. 184.1984 Section 184.1984 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... corn gluten. It is produced commercially by extraction from corn gluten with alkaline aqueous isopropyl...
7 CFR 457.152 - Hybrid seed corn crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Hybrid seed corn crop insurance provisions. 457.152 Section 457.152 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.152 Hybrid seed...
7 CFR 457.154 - Processing sweet corn crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457.154 Section 457.154 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.154 Processing...
Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J.; Moore, Kenneth J.; Thorburn, Peter; Archontoulis, Sotirios V.
2016-01-01
Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR’s were within the historical N rate error range (40–50 kg N ha-1). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward agronomic, economic, and environmental sustainability. PMID:27891133
Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.
Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V
2016-01-01
Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward agronomic, economic, and environmental sustainability.
Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing
2014-03-01
Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously. Copyright © 2014 Elsevier Ltd. All rights reserved.
Life-cycle assessment of corn-based butanol as a potential transportation fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.; Wang, M.; Liu, J.
2007-12-31
Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel.more » The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.« less
2013-12-01
airport. 174. The main agricultural products in Colombia are rice, barley, corn, wheat, sorghum, sesame, cotton, soy, kidney bean, potato, banana ...cocoa, sugar cane, tobacco, oil palm, vegetables, fruits and flowers . Agro-industrial production crops predominate over of food crops. The forest...of poverty, misery, social inequality, 223. Domestic consumer products: rice, barley, corn, wheat, sorghum, sesame, cotton, soybeans, beans, bananas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Tucker, Melvin P; Xia, Chunjie
Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able tomore » grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.« less
Enzymatic hydrolysis and fermentation of corn for fuel alcohol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, J.T.
1985-01-01
The integration of enzyme saccharification with fermentation reduces the total time required to produce acceptable levels of ethanol. The use of a more concentrated mash (84.8 L total mash/bu corn) results in a 26.6% increase in ethanol productivity and a 21.4% increase in beer ethanol concentration compared to standard corn mash (96.6 L total mash/bu corn). Thus, the energy requirement and cost of distillation can be reduced. The addition of waste cola syrup at 30 g invert sugar/L total mash gave a 19% increase in ethanol concentration in the final beer and required only a small increase in period ofmore » fermentation. Surplus laundry starch can replace 30-50% of the weight of corn normally used in fermentation without influencing ethanol production or the time required for fermentation. Both of these waste materials reduce the unit cost of ethanol and demonstrate the value of such substances in ethanol systems.« less
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
Yao, Linxing; Lee, Show-Ling; Wang, Tong; de Moura, Juliana M L N; Johnson, Lawrence A
2012-09-01
Soy skim, a protein-rich liquid co-product from the aqueous extraction of soybeans, was co-fermented with corn to produce ethanol. Effects of soy skim addition level, type of skim, corn particle size, water-to-solids ratio, and urea on co-fermentation were determined. The addition of 20-100% skim increased the fermentation rate by 18-27% and shortened the fermentation time by 5-7h without affecting ethanol yield. Finely ground corn or high water-to-solids ratio (≥ 3.0) in the mash gave higher fermentation rates, but did not increase the ethanol yield. When the water was completely replaced with soy skim, the addition of urea became unnecessary. Soy skim retentate that was concentrated by nanofiltration increased fermentation rate by 25%. The highest level of skim addition resulted in a finished beer with 16% solids, 47% protein (dwb) containing 3.6% lysine, and an ethanol yield of 39 g/100g dry corn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.
Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong
2017-12-01
With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.
Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui
2014-01-01
A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling...— Metric units (kilograms per 1,000 kg of corn) BOD5 0.21 0.07 TSS 0.18 .06 pH (1) (1) English units (pounds per 1,000 stdbu of corn) BOD5 12.0 4.0 TSS 10.5 3.5 pH (1) (1) 1 Within the range 6.0 to 9.0. [39...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Corn Dry Milling...— Metric units (kilograms per 1,000 kg of corn) BOD5 0.21 0.07 TSS 0.18 .06 pH (1) (1) English units (pounds per 1,000 stdbu of corn) BOD5 12.0 4.0 TSS 10.5 3.5 pH (1) (1) 1 Within the range 6.0 to 9.0. [39...
Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian
2015-06-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.
Wu, Yiping; Liu, Shuguang; Young, Claudia J.; Dahal, Devendra; Sohl, Terry L.; Davis, Brian
2015-01-01
Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7–104.7 TgC as of 2050, 70–101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m2/yr (i.e., 6.6–10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development. PMID:26027873
Agronomic characterization of the Argentina Indicator Region. [U.S. corn belt and Argentine pampas
NASA Technical Reports Server (NTRS)
Hicks, D. R. (Principal Investigator)
1982-01-01
An overview of the Argentina indicator region including information on topography, climate, soils and vegetation is presented followed by a regionalization of crop livestock land use. Corn/soybean production and exports as well as agricultural practices are discussed. Similarities and differences in the physical agronomic scene, crop livestock land use and agricultural practices between the U.S. corn belt and the Argentine pampa are considered. The Argentine agricultural economy is described. Crop calendars for the Argentina indicator region, an accompanying description, notes on crop-livestock zones, wheat production, field size, and agricultural problems and practices are included.
75 FR 51045 - Pesticide Products; Registration Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... use on canola, cereals except rice, corn, legume vegetables (dry), sorghum, and soybeans. Contact... fungicide to control foliar and soil-borne plant diseases on canola, cereal grains except rice, corn, legume...
... medicated pads use liquid corn and callus removers Cutting and over-the counter corn removal products can ... nonsharp nail file. Trimming this way helps prevent cutting your skin and keeps the nails from growing ...
7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh market...
Meyers, Tilden [NOAA/ARL
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Bo1 Bondville. Site Description - Agriculture, continuous no-till since 1986, Annual rotation between corn (C4) and soybeans (C3). The field was planted with corn during 2005 and 2007, with soybeans during 2006 and 2008.
Changes in Composition and Phosphorus Profile during Dry Grind Process of Corn into Ethanol and DDGS
USDA-ARS?s Scientific Manuscript database
Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. Dry grind method has been a major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. The process consists of grinding, cooking, liquefactio...
USDA-ARS?s Scientific Manuscript database
A sustainable biorefinery must convert a broad range of renewable feedstocks into a variety of product streams, including fuels, power, and value-added bioproducts. To accomplish this, microbial-based technologies that enable new commercially viable coproducts from corn-to-ethanol biofuel fermentati...
USDA-ARS?s Scientific Manuscript database
In this study, the effect of the 80 percent ethanolic extract of corn bran (EECB) on inhibition of nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells was investigated. The EECB inhibited LPS induced NO production...
USDA-ARS?s Scientific Manuscript database
In an effort to address the aflatoxin problem in grain, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from two different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to n...
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) harvested for silage is a productive forage crop, but one that can exacerbate soil loss, surface water runoff, and nonpoint source nutrient pollution from agricultural fields. The objective of this research was to compare the effects of using Kura clover (Trifolium ambiguum M. Bie...
USDA-ARS?s Scientific Manuscript database
Water is the major factor limiting crop production in the Ogallala Aquifer Region of the U.S. Central High Plains. Seasonal precipitation is highly variable, low in amount, and not enough to meet full corn water needs. The Ogallala Aquifer is the major source of irrigation water for commercial agric...
75 FR 38072 - Notice of a Request for Extension of a Currently Approved Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
.... wheat and corn by the Soviet Union in 1972. To make sure that all parties involved in the production and.... The designated commodities for these daily reports are wheat (by class), barley, corn, grain sorghum... the size of the sales transaction, for all of these commodities, as well as wheat products, rye...
Oliveira, Luciana A; Porto, Ana L F; Tambourgi, Elias B
2006-04-01
Five agricultural wastes were evaluated in submerged fermentation for xylanolytic enzymes production by Penicillium janthinellum. The wastes were hydrolyzed in acid medium and the liquid fraction was used for cultivation. Corn cob (55.3 U/mL) and oat husk (54.8 U/mL) were the best inducers of xylanase. Sugar cane bagasse (23.0 U/mL) and corn husk (23.8 U/mL) were moderately good, while cassava peel was negligible. Protease production was very low in all agro-industrial residues. The maximum biomass yields were 1.30 and 1.17 g/L for cassava peel and corn husk after 180 h, respectively. Xylanolytic activity showed a cell growth associated profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, D.T.; Flint, E.P.
Research report: Mathematical growth analysis techniques were used to determine the effects of carbon dioxide on the growth and biomass partitioning in corn (zea mays), itchgrass (Rottbiellia exalata concentrations of 350 ppM, 600 ppM, and 1000 ppM were considered. Dry matter production in soybean and velvetleaf was increased significantly by raising the CO2 concentration above 350 ppM. Dry matter production in itchgrass was greatest at 600 ppM; CO2 levels did not affect dry matter production in corn. Weed growth with each plant at the various CO2 concentrations was also measured. CO2 enrichment increased weed growth in weeds planted with soybeanmore » and velvetleaf; weeds planted with corn and itchgrass did not experience any significant increase in growth. (18 references, 4 tables)« less
USDA-ARS?s Scientific Manuscript database
A process was developed to fractionate and isolate the hemicellulose B component of corn fiber generated by corn wet milling. The process consisted of pretreatment by soaking in aqueous ammonia (SAA) followed by enzymatic cellulose hydrolysis, during which the hemicellulose B was solubilized by cle...
ERIC Educational Resources Information Center
Grace, Clyde, Jr.; Iverson, Maynard J.
The instructional unit designed to develop the effective ability of farmers to produce, harvest, store, and market corn profitably is structured in 11 lessons. The unit was developed as a guide for use by teachers in planning and conducting young farmer or adult farmer classes. The specific topic areas include varieties of corn, principles of…
NASA Technical Reports Server (NTRS)
Malin, J. T.; Carnes, J. G. (Principal Investigator)
1981-01-01
The U.S. corn and soybeans exploratory experiment is described which consisted of evaluations of two technology components of a production forecasting system: classification procedures (crop labeling and proportion estimation at the level of a sampling unit) and sampling and aggregation procedures. The results from the labeling evaluations indicate that the corn and soybeans labeling procedure works very well in the U.S. corn belt with full season (after tasseling) LANDSAT data. The procedure should be readily adaptable to corn and soybeans labeling required for subsequent exploratory experiments or pilot tests. The machine classification procedures evaluated in this experiment were not effective in improving the proportion estimates. The corn proportions produced by the machine procedures had a large bias when the bias correction was not performed. This bias was caused by the manner in which the machine procedures handled spectrally impure pixels. The simulation test indicated that the weighted aggregation procedure performed quite well. Although further work can be done to improve both the simulation tests and the aggregation procedure, the results of this test show that the procedure should serve as a useful baseline procedure in future exploratory experiments and pilot tests.
Torres, P; Guzmán-Ortiz, M; Ramírez-Wong, B
2001-06-01
Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.
Binversie, E Y; Ruiz-Moreno, M; Carpenter, A J; Heins, B J; Crawford, G I; DiCostanzo, A; Stern, M D
2016-09-01
Dried distillers grains with solubles (DDGS) have been used in production animal diets; however, overuse of DDGS can cause toxic concentrations of ruminal hydrogen sulfide gas (HS), resulting in polioencephalomalacia, a deleterious brain disease. Because HS gas requires an acidic rumen environment and diet can influence ruminal pH, it has been postulated that dietary manipulation could help mitigate HS production. The objective of this study was to assess the effect of dietary roughage and sulfur concentrations on HS production and rumen fermentation. In Exp. 1, 7 dual-flow continuous culture fermenters were used in 4 consecutive 9-d periods consisting of 6 d of adaptation followed by 3 d of sampling. At the conclusion of each 9-d continuous culture period, adapted rumen fluid was used for inoculation of 24-h batch culture incubations for Exp. 2. For both experiments, 6 dietary treatments were formulated to consist of 0.3%, 0.4%, or 0.5% dietary sulfur (LS, MS, and HS, respectively) and 3% or 9% dietary roughage (LR and MR, respectively), using grass hay as the roughage source. A corn-based diet without DDGS was used as a control diet. Headspace gas was sampled to determine HS production and concentration. In Exp. 1, greater dietary roughage had no effect ( = 0.14) on HS production but did create a less acidic environment because of an increase ( < 0.01) in the in vitro pH. In Exp. 2, an increase in dietary sulfur caused an increase ( = 0.04) in ruminal HS production, but there was no direct effect ( = 0.25) of dietary roughage on HS production. Greater dietary roughage resulted in a less ( = 0.01) acidic final batch culture pH but a lower ( < 0.01) total VFA concentration. Further investigation is needed to determine a more effective way to mitigate ruminal HS production using dietary manipulation, which could include greater inclusion of dietary roughage or the use of different roughage sources.
Sustainable energy policy: the impact of government subsidies on ethanol as a renewable fuel
NASA Astrophysics Data System (ADS)
Osuagwu, Denis Ahamarula
The United States Congress passed the Energy Policy Act of 1978 to promote ethanol production and reduce American dependence on foreign oil. The provision of subsidies in the act is indicative of the importance of energy in the economy. America needs a national energy policy that is economically, socially, and environmentally sustainable. Considering the importance of these needs, this study examines (a) the implementation of the Energy Policy Act of 1978 in regard to government subsidies and its effect on ethanol production, (b) the effect of gasoline consumption and cost on ethanol production, (c) the effect of corn production and price on ethanol fuel, and (d) the role of mandates and global crises on ethanol production. Secondary qualitative and quantitative data collected from various sources in 1978 through 2005 study the effect of ethanol subsidies on ethanol production. An autoregression error model is used to estimate the relevance of the explanatory variables on variations in ethanol production. The following are major study findings: (1) there is a positive correlation between corn production and ethanol production, is statistically significant; (2) government subsidies have a statistically significant positive correlation with ethanol production; (3) oil import has a statistically significant positive correlation with ethanol production, but has not contributed to a reduction the quantity of imported oil; (4) the price of corn has a statistically significant inverse relationship with ethanol production; (5) though not statistically significant, the price per barrel of oil is inversely related to ethanol production; (6) the budget surplus or deficit is associated with ethanol production; and (7) advocacy and lobbying for renewable fuel have encouraged support of ethanol production. The findings also show that global crises in the oil producing regions tend to influence the passage of favorable legislation for ethanol production. Furthermore, the incremental approach to implementation of alternative energy programs has been a failure. In the absence of a national energy regulation policy, oil import is on the increase; exacerbating American dependence on foreign supplies. A sustainable energy policy requires vision and commitment, but policymakers do not seem to command political capital to achieve this objective. Investigation reveals that subsidies have contributed in the production of ethanol. The four billion gallons of ethanol produced in 2005 is significantly higher than the quantity produced in 1978. However, an increase in ethanol production has made no considerable contribution to reducing American dependence on foreign oil. A sustainable energy policy requires a proactive public policy that includes public and private investment in renewable energy and technology, together with a continuance of local oil drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Jennifer B.; Qin, Zhangcai; Mueller, Steffen
The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.
Production of Butyric Acid and Butanol from Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, David E.; Yang, Shang-Tian
Butanol replaced gasoline gallon for gallon in a 10,000 miles trip across the United States without the need to highly modify a ’92 Buick (your existing car today). Butanol can now be made for less than ethanol and yields more Btu’s from the same corn, making the plow to tire equation positive – more energy out than it takes to make it and Butanol is much safer. Butanol when substituted for gasoline gives better gas mileage and does not pollute as tested in 10 states. Butanol should now receive the same recognition as ethanol in U.S. legislation “ethanol/butanol”. There ismore » abundant plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry, which processes more than 13% of the ~9.5 billion bushels (~240 million metric tons) of corn annually produced in the U.S. to produce high-fructose-corn-syrup, dextrose, starch, and fuel alcohol, and generates more than 10 million metric tons of corn byproducts that are currently of limited use and pose significant environmental problems. The abundant inexpensive renewable resources as feedstock for fermentation, and recent advances in the fields of biotechnology and bioprocessing have resulted in a renewed interest in the fermentation production of chemicals and fuels, including n-butanol. The historic acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is one of the oldest known industrial fermentations. It was ranked second only to ethanol fermentation by yeast in its scale of production, and is one of the largest biotechnological processes ever known. However, since the 1950's industrial ABE fermentation has declined continuously, and almost all butanol is now produced via petrochemical routes (Chemical Marketing Reporter, 1993). Butanol is an important industrial solvent and is a better fuel for replacing gasoline – gallon for gallon than ethanol. Current butanol prices as a chemical are at $3.00 per gallon – wholesaling in 55 gallon drums for $6.80, with a worldwide market of 1.4 billion gallon per year. The market demand is expected to increase dramatically since butanol can now be produced economically from low-cost biomass. Butanol’s application as a replacement for gasoline will outpace ethanol, biodiesel and hydrogen when its safety and simplicity of use are seen. Butanol’s application for the Department of Defense as a clean-safe replacement for batteries when used in conjunction with fuel cell technology is seen as an application for the future. Disposable canisters made of PLA that carry butanol to be reformed and used to generate electricity for computers, night vision and stealth equipment can be easily disposed of. In a typical ABE fermentation, butyric, propionic and acetic acids are produced first by C. acetobutylicum; the culture then undergoes a metabolic shift and solvents (butanol, acetone, and ethanol) are formed (Fond et al., 1985). In conventional ABE fermentations, the butanol yield from glucose is low, typically at ~15% (w/w) and rarely exceeds 25% (0.77–1.3 gallons per bushel corn respectfully). The production of butanol is also limited by severe product inhibition. Butanol at a concentration of 10 g/L can significantly inhibit cell growth and the fermentation. Consequently, butanol titers in conventional ABE fermentations are usually lower than 13 g/L. The low butanol yield and butanol concentration made butanol production from glucose by ABE fermentation uneconomical.« less
Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol
NASA Astrophysics Data System (ADS)
Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.
2013-12-01
Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.
Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue
2018-03-01
Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fate of Fumonisin B1 in Naturally Contaminated Corn during Ethanol Fermentation
Bothast, R. J.; Bennett, G. A.; Vancauwenberge, J. E.; Richard, J. L.
1992-01-01
Two lots of corn naturally contaminated with fumonisin B1 (15 and 36 ppm) and a control lot (no fumonisin B1 detected) were used as substrates for ethanol production in replicate 8.5-liter yeast fermentations. Ethanol yields were 8.8% for both the control and low-fumonisin corn, while the high-fumonisin corn contained less starch and produced 7.2% ethanol. Little degradation of fumonisin occurred during fermentation, and most was recovered in the distillers' grains, thin stillage, and distillers' solubles fractions. No toxin was detected in the distilled alcohol or centrifuge solids. Ethanol fermentation of fumonisin-contaminated corn coupled with effective detoxification of distillers' grains and aqueous stillage is suggested as a practical process strategy for salvaging contaminated corn. PMID:16348623
A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate.
Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Thorburn, Peter J; Castellano, Michael J; Moore, Kenneth J; VanLoocke, Andrew; Heaton, Emily A; Archontoulis, Sotirios V
2018-01-01
Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time ( R 2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity ( R 2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined ( n = 31) with an average error range of ±38 kg N ha -1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.
A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate
Puntel, Laila A.; Sawyer, John E.; Barker, Daniel W.; Thorburn, Peter J.; Castellano, Michael J.; Moore, Kenneth J.; VanLoocke, Andrew; Heaton, Emily A.; Archontoulis, Sotirios V.
2018-01-01
Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost. PMID:29706974
Lyons, A. J.; Pridham, T. G.; Rogers, R. F.
1975-01-01
Mesophilic Actinomycetales were isolated from whole corn, brewer's grits, and break flour received from three different mills. In addition, strains were isolated from high-moisture (27%) field corn; high-moisture, silo-stored corn (untreated); and high-moisture corn treated with ammonia, ammonium isobutyrate, or propionic-acetic acid. According to standard techniques, 139 strains were extensively characterized and 207 additional strains were partially characterized. On the basis of these characterizations, the streptomycete strains were identified by both the systems of Pridham et al. and Hütter because these systems are rapid and accurate. In general, only Streptomyces griseus (Krainsky) Waksman and Henrici was isolated from high-moisture whole corn (treated or untreated) except from grain exposed to ammonium isobutyrate. Strains isolated from high-moisture corn subjected to that treatment represented both S. griseus and S. albus (Rossi Doria) Waksman and Henrici. The strains isolated from corn and corn products from the three mills were identified with a number of streptomycete species. Of all Actinomycetales isolated, only three were not streptomycetes—two from brewer's grits and one from break flour. Images PMID:803819
[Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].
Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru
2014-01-01
Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.
NASA Astrophysics Data System (ADS)
Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam
Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.
Genetic improvement of plants for enhanced bio-ethanol production.
Saha, Sanghamitra; Ramachandran, Srinivasan
2013-04-01
The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.
NASA Astrophysics Data System (ADS)
Yulistiani, D.; Nurhayati
2018-02-01
Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (P<0.05) rate of gas production by 24 and 18% respectively. However only in ROC potential gas production was increased (P<0.05) by 32% and percentage of methane production was decreased. From this study it can be concluded that supplementation of ground corn grain at 10% in maize straw-gliricidia mixture was able to improve diet fermentation and reduced methane production.
7 CFR 319.41-1 - Plant products permitted entry. 1
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Zea mays L.) that is free from the cob and from all other parts of corn may be imported into the... requirements of paragraphs (a), (b), and (c) of § 319.41-5: (1) Green corn on the cob, in small lots for local use only, from adjacent areas of Canada. (2) Articles made of the stalks, leaves, or cobs of corn...
7 CFR 319.41-1 - Plant products permitted entry. 1
Code of Federal Regulations, 2012 CFR
2012-01-01
... (Zea mays L.) that is free from the cob and from all other parts of corn may be imported into the... requirements of paragraphs (a), (b), and (c) of § 319.41-5: (1) Green corn on the cob, in small lots for local use only, from adjacent areas of Canada. (2) Articles made of the stalks, leaves, or cobs of corn...
7 CFR 319.41-1 - Plant products permitted entry. 1
Code of Federal Regulations, 2014 CFR
2014-01-01
... (Zea mays L.) that is free from the cob and from all other parts of corn may be imported into the... requirements of paragraphs (a), (b), and (c) of § 319.41-5: (1) Green corn on the cob, in small lots for local use only, from adjacent areas of Canada. (2) Articles made of the stalks, leaves, or cobs of corn...
7 CFR 319.41-1 - Plant products permitted entry. 1
Code of Federal Regulations, 2011 CFR
2011-01-01
... (Zea mays L.) that is free from the cob and from all other parts of corn may be imported into the... requirements of paragraphs (a), (b), and (c) of § 319.41-5: (1) Green corn on the cob, in small lots for local use only, from adjacent areas of Canada. (2) Articles made of the stalks, leaves, or cobs of corn...
7 CFR 319.41-1 - Plant products permitted entry. 1
Code of Federal Regulations, 2013 CFR
2013-01-01
... (Zea mays L.) that is free from the cob and from all other parts of corn may be imported into the... requirements of paragraphs (a), (b), and (c) of § 319.41-5: (1) Green corn on the cob, in small lots for local use only, from adjacent areas of Canada. (2) Articles made of the stalks, leaves, or cobs of corn...
New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry
2005-01-01
ethanol, high fructose corn syrup , citric acid, and amino acids also employ microbes or en- zymes. However, the inroads into commodity chemical...for manufacture of aspartame, and is illustrative of two types of biocatalyst selectivity: chemical and stereoselectivity. High - fructose corn syrup ...Current applications of biocatalysts include the production of high fruc- tose corn syrup , aspartame, semi-synthetic penicillins and award-winning cancer
USDA-ARS?s Scientific Manuscript database
The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...
Integration of succinic acid and ethanol production within a corn or barley biorefinery
USDA-ARS?s Scientific Manuscript database
Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or ...
21 CFR 358.550 - Labeling of corn and callus remover drug products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... formulated in a collodion-like vehicle. (i) “If product gets into the eye, flush with water for 15 minutes...(a). “Wash affected area and dry thoroughly.” (If appropriate: “Cut plaster to fit corn/callus... in § 358.510(b). “Wash affected area and dry thoroughly. Apply” (select one of the following, as...
21 CFR 358.550 - Labeling of corn and callus remover drug products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... formulated in a collodion-like vehicle. (i) “If product gets into the eye, flush with water for 15 minutes...(a). “Wash affected area and dry thoroughly.” (If appropriate: “Cut plaster to fit corn/callus... in § 358.510(b). “Wash affected area and dry thoroughly. Apply” (select one of the following, as...
21 CFR 358.550 - Labeling of corn and callus remover drug products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... formulated in a collodion-like vehicle. (i) “If product gets into the eye, flush with water for 15 minutes...(a). “Wash affected area and dry thoroughly.” (If appropriate: “Cut plaster to fit corn/callus... in § 358.510(b). “Wash affected area and dry thoroughly. Apply” (select one of the following, as...
21 CFR 358.550 - Labeling of corn and callus remover drug products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... formulated in a collodion-like vehicle. (i) “If product gets into the eye, flush with water for 15 minutes...(a). “Wash affected area and dry thoroughly.” (If appropriate: “Cut plaster to fit corn/callus... in § 358.510(b). “Wash affected area and dry thoroughly. Apply” (select one of the following, as...
21 CFR 358.550 - Labeling of corn and callus remover drug products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... formulated in a collodion-like vehicle. (i) “If product gets into the eye, flush with water for 15 minutes...(a). “Wash affected area and dry thoroughly.” (If appropriate: “Cut plaster to fit corn/callus... in § 358.510(b). “Wash affected area and dry thoroughly. Apply” (select one of the following, as...