Sample records for continuous cropping

  1. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat.

    PubMed

    Li, Xingyue; Lewis, Edwin E; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-10

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing "replant problem" in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  2. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    NASA Astrophysics Data System (ADS)

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-08-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community.

  3. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat

    PubMed Central

    Li, Xingyue; Lewis, Edwin E.; Liu, Qizhi; Li, Heqin; Bai, Chunqi; Wang, Yuzhu

    2016-01-01

    Continuous cropping changes soil physiochemical parameters, enzymes and microorganism communities, causing “replant problem” in strawberry cultivation. We hypothesized that soil nematode community would reflect the changes in soil conditions caused by long-term continuous cropping, in ways that are consistent and predictable. To test this hypothesis, we studied the soil nematode communities and several soil parameters, including the concentration of soil phenolic acids, organic matter and nitrogen levels, in strawberry greenhouse under continuous-cropping for five different durations. Soil pH significantly decreased, and four phenolic acids, i.e., p-hydroxybenzoic acid, ferulic acid, cinnamic acid and p-coumaric acid, accumulated with time under continuous cropping. The four phenolic acids were highly toxic to Acrobeloides spp., the eudominant genus in non-continuous cropping, causing it to reduce to a resident genus after seven-years of continuous cropping. Decreased nematode diversity indicated loss of ecosystem stability and sustainability because of continuous-cropping practice. Moreover, the dominant decomposition pathway was altered from bacterial to fungal under continuous cropping. Our results suggest that along with the continuous-cropping time in strawberry habitat, the soil food web is disturbed, and the available plant nutrition as well as the general health of the soil deteriorates; these changes can be indicated by soil nematode community. PMID:27506379

  4. [Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato].

    PubMed

    Meng, Pin-Pin; Liu, Xing; Qiu, Hui-Zhen; Zhang, Wen-Ming; Zhang, Chun-Hong; Wang, Di; Zhang, Jun-Lian; Shen, Qi-Rong

    2012-11-01

    Continuous cropping obstacle is one of the main restriction factors in potato industry. In order to explore the mechanisms of potato's continuous cropping obstacle and to reduce the impact on potato's tuber yield, a field experiment combined with PCR-DGGE molecular fingerprinting was conducted to investigate the fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. With the increasing year of potato' s continuous cropping, the numbers of visible bands in rhizosphere fungal DGGE profiles increased obviously. As compared with that of CK (rotation cropping), the operational taxonomic unit (OTU) in treatments of one to five years continuous cropping was increased by 38.5%, 38.5%, 30.8%, 46.2%, and 76.9% respectively, indicating that potato's continuous cropping caused an obvious increase in the individual numbers of dominant fungal populations in rhizosphere soil. Also with the increasing year of potato's continuous cropping, the similarity of the fungal population structure among the treatments had a gradual decrease. The sequencing of the fungal DGGE bands showed that with the increasing year of continuous cropping, the numbers of the potato's rhizosphere soil-borne pathogens Fusarium oxysporum and F. solani increased obviously, while the number of Chaetomium globosum, as a biocontrol species, had a marked decrease in the fifth year of continuous cropping. It was suggested that potato' s continuous cropping caused the pathogen fungal populations become the dominant microbial populations in rhizosphere soil, and the rhizosphere micro-ecological environment deteriorated, which in turn affected the root system, making the root vigor and its absorption area reduced, and ultimately, the tuber yield decreased markedly.

  5. Diverse rotations and poultry litter improves soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without rotations or cover crops are perceived as unsustainable for long-term yield and soil health. Continuous systems, defined as continually producing a crop on the same parcel of land for more than three years, is thought to reduce yields. Given that crop rotations a...

  6. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales, Burkholderiales, Bdellovibrionales, and so on, also were affected by plant age. PMID:25010658

  7. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields

    PubMed Central

    Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis. PMID:29538438

  8. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields.

    PubMed

    Song, Xuhong; Pan, Yuan; Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.

  9. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing.

    PubMed

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system.

  10. The Effect of Long-Term Continuous Cropping of Black Pepper on Soil Bacterial Communities as Determined by 454 Pyrosequencing

    PubMed Central

    Xiong, Wu; Li, Zhigang; Liu, Hongjun; Xue, Chao; Zhang, Ruifu; Wu, Huasong; Li, Rong; Shen, Qirong

    2015-01-01

    In the present study, 3 replanted black pepper orchards with continuously cropping histories for 10, 21, and 55 years in tropical China, were selected for investigating the effect of monoculture on soil physiochemical properties, enzyme activities, bacterial abundance, and bacterial community structures. Results showed long-term continuous cropping led to a significant decline in soil pH, organic matter contents, enzymatic activities, and resulted in a decrease in soil bacterial abundance. 454 pyrosequencing analysis of 16S rRNA genes revealed that the Acidobacteria and Proteobacteria were the main phyla in the replanted black pepper orchard soils, comprising up to 73.82% of the total sequences; the relative abundances of Bacteroidetes and Firmicutes phyla decreased with long-term continuous cropping; and at genus level, the Pseudomonas abundance significantly depleted after 21 years continuous cropping. In addition, bacterial diversity significantly decreased after 55 years black pepper continuous cropping; obvious variations for community structures across the 3 time-scale replanted black pepper orchards were observed, suggesting monoculture duration was the major determinant for bacterial community structure. Overall, continuous cropping during black pepper cultivation led to a significant decline in soil pH, organic matter contents, enzymatic activities, resulted a decrease in soil bacterial abundance, and altered soil microbial community membership and structure, which in turn resulted in black pepper poor growth in the continuous cropping system. PMID:26317364

  11. Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods

    PubMed Central

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping. PMID:25401150

  12. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut - Pathogenic and Beneficial Fungi were Selected

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2012-01-01

    Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping. PMID:22808226

  13. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    PubMed

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices.

    PubMed

    Tan, Yong; Cui, Yinshan; Li, Haoyu; Kuang, Anxiu; Li, Xiaoran; Wei, Yunlin; Ji, Xiuling

    2017-01-01

    Rhizosphere and endophytic fungal communities are considered critically important for plant health and soil fertility. In response to continuous cropping, Panax notoginseng becomes vulnerable to attack by fungal pathogens. In the present study, culture-independent Illumina MiSeq was used to investigate the rhizospheric and root endophytic fungi in response to continuous Panax notoginseng cropping practices. The results demonstrated that fungal diversity is increased inside the roots and in rhizospheric. Ascomycota, Zygomycota, Basidiomycota and Chytridiomycota were the dominant phyla detected during the continuous cropping of Panax notoginseng. The fungal diversity in the rhizospheric soil and roots of root-rot P. notoginseng plants are less than that of healthy plants in the same cultivating year, thus showing that root-rot disease also affects the community structure and diversity of rhizospheric and root endophytic fungi. Similarities in the major fungal components show that endophytic fungal communities are similar to rhizospheric soil fungal community based on a specialized subset of organisms. Canonical correspondence analysis on the fungal communities in root-rot rhizospheric from both healthy plants and rotation soils reveals that the soil pH and organic matter have the greatest impact upon the microbial community composition during continuous cropping, whereas soil nutrition status does not significantly affect the fungal community composition in response to continuous cropping practices. In addition, the results suggest that the unclassified genera Leotiomycetes, Cylindrocarpon, Fusarium and Mycocentrospora are shown as the potential pathogens which are responsible for the obstacles in continuous cropping of P. notoginseng. Further exploration of these potential pathogens might be useful for the biological control of continuous cropping of P. notoginseng. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. [Progress in improvement of continuous monoculture cropping problem in Panax ginseng by controlling soil-borne disease management].

    PubMed

    Wang, Rui; Dong, Lin-Lin; Xu, Jiang; Chen, Jun-Wen; Li, Xi-Wen; Chen, Shi-Lin

    2016-11-01

    The continuous monoculture cropping problem severely has hindered the land resource of Panax ginseng cultivation and threatened the sustainable development of ginseng industry. There are comprehensive factors causing the continuous monoculture cropping problem, such as deterioration of soil physical and chemical properties, accumulation of allelochemical, increase of pesticide residue and heavy metal, imbalance of rhizospheric micro-ecosystem, and increase of soil-borne diseases. Among soil-borne disease was one of the key factors. More than 40 soil-borne diseases have been reported in the ginseng cultivation, especially, the diseases were more serious in the ginseng replanting land. Here main soil-borne diseases and their prevention way have been summarized, and we try to provide the effective improvement strategy of continuous monoculture cropping problem focusing on the disease control and offer reference for overcoming the ginseng continuous monoculture cropping problem. Copyright© by the Chinese Pharmaceutical Association.

  16. 26 CFR 1.501(c)(16)-1 - Corporations organized to finance crop operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Corporations organized to finance crop operations. 1.501(c)(16)-1 Section 1.501(c)(16)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(16)-1 Corporations organized to finance crop...

  17. Using pennycress, camelina, and canola cash crops to provision pollinators

    USDA-ARS?s Scientific Manuscript database

    As pollinator decline continues, the need to provide high value forage for insects continues to rise. Finding agricultural crops to diversify the landscape and provide forage is one way to improve pollinator health. Three winter industrial oilseed crops (pennycress, winter camelina, and winter canol...

  18. Effects of bt crops on arthropod natual enemies: a global synthesis

    USDA-ARS?s Scientific Manuscript database

    The global adoption of transgenic crops producing the insecticidal proteins from Bacillus thuringiensis Berliner (Bacillaceae), (Bt) continues to grow with 66 M hectares of Bt crops grown in a total of 25 countries in 2011 (James 2011). Unintended environmental effects from the technology continue t...

  19. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  20. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    USDA-ARS?s Scientific Manuscript database

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  1. Soil organic carbon and land use in Veneto and Friuli Venezia Giulia (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Renzi, Gianluca; Benedetti, Anna

    2014-05-01

    The Italian Ministry of Agricultural Food and Forestry Policies (MiPAAF) has set up a statistical survey aimed to provide the national forecast of yields and areas related to the main Italian agricultural crops (AGRIT). The methodology is based on field surveys and remote-sensed data, covers yearly the whole national territory, and is based on 100,000 observations which are statistically selected from a predefined grid made up of about 1,200,000 georeferenced points. In 2011-2012 we determined the soil organic carbon content (SOC) of 1,160 sampling points situated in Northern Italy in the plains and hills of Veneto (VEN) and Friuli Venezia Giulia (FVG), for which the land use in the period 2008-2010 was known. Samples have been subdivided in three main classes: arable crops, orchards and fodder crops. SOC was higher in FVG samples (2.48%, n=266) than in VEN samples (1.90%, n=894). The average value (2.03%) is clearly affected by the higher number of VEN samples. FVG data have been aggregated in continuous crops (maize, soybean, wheat), 2-yr rotations (maize-wheat, soybean wheat, maize-soybean), 3-yr rotations, vineyards (totally, partially and no-grassed), alfalfa, and permanent fodder crops. No significant differences were detected among the land uses due to the low number of samples in some classes, but some important findings do exist from the agronomic point of view. Fodder crops (5.65%), alfalfa (3.41%) and vineyards (2.72%) showed the higher SOC content. SOC was 2.94% and 1.39 % in the grassed and no-grassed vineyards respectively. In the arable crops the average SOC was 2.18%, ranging from 2.32% (soybean-wheat rotation) to 2.03% (continuous soybean). SOC was 2.19% in the continuous maize, with 2.23% in corn and 1.87% in silage maize. The lower values were in the maize-wheat rotation (1.53%) and the continuous wheat (1.47%). VEN data have been aggregated in continuous crops (maize, soybean and wheat), 2-yr rotations (maize-wheat, soybean-wheat, maize-soybean, soybean-alfalfa, wheat-alfalfa, maize-alfalfa), 3-yr rotations, orchards (mulched, totally, partially and no-grassed), alfalfa, permanent fodder crops, and land use change (from arable to fodder crops and vice versa). The mean value was 1.57% in arable crops, 2.46% in orchards (including vineyards, olive groves, and fruit crops), 3.13% in fodder crops. SOC in orchards was 1.82% (no grassed), 2.46% (grassed), 2.69% (mulched); 2.10 and 2.08% in the 2-yr rotations soybean-wheat and soybean-alfalfa respectively. SOC in the other arable crops was between 1.79% (land use change) and 1.37% (continuous soybean). A higher SOC was shown in VEN samples also when comparing continuous corn (1.69%) and continuous silage maize (1.43%). Data, even limited to two Regions, have clearly shown the positive contribution to SOC storage of orchards (mainly in grassed and mulched systems) and fodder crops, which are more conservative systems due to the lower soil disturbance from tillage operations; and to a lower extent of cropping systems with alfalfa or other legume crops.

  2. Integrating multiple satellite data for crop monitoring

    USDA-ARS?s Scientific Manuscript database

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  3. Impact of crop rotation and soil amendments on long-term no-tilled soybean yields

    USDA-ARS?s Scientific Manuscript database

    Continuous cropping systems without cover crops are perceived as unsustainable for long-term yield and soil health. To test this, cropping sequence and cover crop effects on soybean (Glycine max L.) yields were assessed. Main effects were 10 cropping sequences of soybean, corn (Zea mays L.), and co...

  4. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop insurance...

  5. 7 CFR 457.132 - Cranberry crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cranberry crop insurance provisions. 457.132 Section 457.132 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.132 Cranberry crop insurance...

  6. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop insurance...

  7. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rice crop insurance provisions. 457.141 Section 457.141 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.141 Rice crop insurance...

  8. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Grape crop insurance provisions. 457.138 Section 457.138 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance...

  9. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Apple crop insurance provisions. 457.158 Section 457.158 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance...

  10. 7 CFR 457.157 - Plum crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Plum crop insurance provisions. 457.157 Section 457.157 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.157 Plum crop insurance...

  11. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Onion crop insurance provisions. 457.135 Section 457.135 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance...

  12. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop insurance...

  13. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.134 Peanut crop insurance...

  14. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop insurance...

  15. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    PubMed Central

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p < 0.05) under P–B rotation by 78%, 85% and 83% in the 2, 4 and 7–year continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p <0.05) tuber yield by 19% and 18%, compared to P–C and P–L rotation respectively. P–L rotation also increased potato tuber yield compared to P–C, but the effect was lesser relative to P–B rotation. These results suggest that adopting potato–legume rotation system has the potential to improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  16. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry pea crop insurance provisions. 457.140 Section 457.140 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.140 Dry pea crop insurance...

  17. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Table grape crop insurance provisions. 457.149 Section 457.149 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance...

  18. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance...

  19. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.150 Dry bean crop insurance...

  20. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Potato crop insurance-certified seed endorsement. 457.145 Section 457.145 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop...

  1. 7 CFR 457.2 - Availability of Federal crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of Federal crop insurance. 457.2 Section 457.2 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.2 Availability of Federal crop...

  2. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes.

    PubMed

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants.

  3. Diversity of Rhizosphere Soil Arbuscular Mycorrhizal Fungi in Various Soybean Cultivars under Different Continuous Cropping Regimes

    PubMed Central

    Jie, Weiguang; Liu, Xiaorui; Cai, Baiyan

    2013-01-01

    Recent studies have shown that continuous cropping in soybean causes substantial changes to the microbial community in rhizosphere soil. In this study, we investigated the effects of continuous cropping for various time periods on the diversity of rhizosphere soil arbuscular mycorrhizal (AM) fungi in various soybean cultivars at the branching stage. The soybean cultivars Heinong 37 (an intermediate cultivar), Heinong 44 (a high-fat cultivar) and Heinong 48 (a high-protein cultivar) were seeded in a field and continuously cropped for two or three years. We analyzed the diversity of rhizosphere soil AM fungi of these soybean plants at the branching stage using morphological and denaturing gradient gel electrophoresis (DGGE) techniques. The clustering analysis of unweighted pair-group method with arithmetic averages (UPGMA) was then used to investigate the AM fungal community shifts. The results showed that increasing the number of years of continuous cropping can improve the colonization rate of AM fungi in different soybean cultivars at the branching stage. The dominant AM fungi in the experimental fields were Funneliformismosseae and Glomus spp. The number of years of continuous cropping and the soybean cultivar both had obvious effects on the diversity of AM fungi, which was consistent with the results of colonization rate analysis. This study establishes a basis for screening dominant AM fungi of soybean. In addition, the results of this study may be useful for the development of AM fungal inoculants. PMID:23977368

  4. Current issues connected with usage of genetically modified crops in production of feed and livestock feeding.

    PubMed

    Kwiatek, K; Mazur, M; Sieradzki, Z

    2008-01-01

    Progress, which is brought by new advances in modern molecular biology, allowed interference in the genome of live organisms and gene manipulation. Introducing new genes to the recipient organism enables to give them new features, absent before. Continuous increase in the area of the biotech crops triggers continuous discussion about safety of genetically modified (GM) crops, including food and feed derived from them. Important issue connected with cultivation of genetically modified crops is a horizontal gene transfer and a bacterial antibiotic resistance. Discussion about safety of GM crops concerns also food allergies caused by eating genetically modified food. The problem of genetic modifications of GM crops used for livestock feeding is widely discussed, taking into account Polish feed law.

  5. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong

    2016-01-01

    Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system.

  6. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated with Vanilla Fusarium Wilt Disease

    PubMed Central

    Xiong, Wu; Zhao, Qingyun; Xue, Chao; Xun, Weibing; Zhao, Jun; Wu, Huasong; Li, Rong; Shen, Qirong

    2016-01-01

    Long-term vanilla monocropping often results in the occurrence of vanilla Fusarium wilt disease, seriously affecting its production all over the world. In the present study, vanilla exhibited significantly less Fusarium wilt disease in the soil of a long-term continuously cropped black pepper orchard. The entire fungal communities of bulk and rhizosphere soils between the black pepper-vanilla system (i.e., vanilla cropped in the soil of a continuously cropped black pepper orchard) and vanilla monoculture system were compared through the deep pyrosequencing. The results showed that the black pepper-vanilla system revealed a significantly higher fungal diversity than the vanilla monoculture system in both bulk and rhizosphere soils. The UniFrac-weighted PCoA analysis revealed significant differences in bulk soil fungal community structures between the two cropping systems, and fungal community structures were seriously affected by the vanilla root system. In summary, the black pepper-vanilla system harbored a lower abundance of Fusarium oxysporum in the vanilla rhizosphere soil and increased the putatively plant-beneficial fungal groups such as Trichoderma and Penicillium genus, which could explain the healthy growth of vanilla in the soil of the long-term continuously cropped black pepper field. Thus, cropping vanilla in the soil of continuously cropped black pepper fields for maintaining the vanilla industry is executable and meaningful as an agro-ecological system. PMID:26903995

  7. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    PubMed

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  8. Arbuscular mycorrhizal fungal communities in the rhizosphere of a continuous cropping soybean system at the seedling stage.

    PubMed

    Cui, Jiaqi; Bai, Li; Liu, Xiaorui; Jie, Weiguang; Cai, Baiyan

    Arbuscular mycorrhizae (AM) fungi play a crucial role in the growth of soybean; however, the planting system employed is thought to have an effect on AM fungal communities in the rhizosphere. This study was performed to explore the influence of continuous soybean cropping on the diversity of Arbuscular mycorrhizal (AM) fungi, and to identify the dominant AM fungus during the seedling stage. Three soybean cultivars were planted under two and three years continuous cropping, respectively. The diversity of AM fungi in the rhizosphere soil at the seedling stage was subsequently analyzed using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). The results showed that an increase in cropping years improved the colonization rate of AM in all three soybean cultivars. Moreover, the dominant species were found to be Funneliformis mosseae and Glomus species. The results of cluster analysis further confirmed that the number of years of continuous cropping significantly affected the composition of rhizospheric AM fungal communities in different soybean cultivars. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Impacts of Cropping Systems on Aggregates Associated Organic Carbon and Nitrogen in a Semiarid Highland Agroecosystem

    PubMed Central

    Chu, Jiashu; Zhang, Tianzhe; Chang, Weidong; Zhang, Dan; Zulfiqar, Saman; Fu, Aigen; Hao, Yaqi

    2016-01-01

    The effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates. The cropping systems increased the stocks of OC and N in total soils (0–40 cm) at mean rates of 15.6 g OC m-2 yr-1 and 1.2 g N m-2 yr-1 relative to a fallow control. The continuous cropping of alfalfa produced the largest increases at the 0–20 cm depth. The OC and N stocks in total soils were significantly correlated with the changes in the >0.053 mm aggregates. 27-year of cropping increased OC stocks in the >0.053 mm size class of aggregates and N stocks in the >0.25 mm size class but decreased OC stocks in the <0.053 mm size class and N stocks in the <0.25 mm size class. The increases in OC and N stocks in these aggregates accounted for 99.5 and 98.7% of the total increases, respectively, in the continuous alfalfa system. The increases in the OC and N stocks associated with the >0.25 mm aggregate size class accounted for more than 97% of the total increases in the continuous wheat and the legume-grain rotation systems. These results suggested that long-term cropping has the potential to sequester OC and N in soils and that the increases in soil OC and N stocks were mainly due to increases associated with aggregates >0.053 mm. PMID:27764209

  10. 7 CFR 205.205 - Crop rotation practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....205 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS... pest management in annual and perennial crops; (c) Manage deficient or excess plant nutrients; and (d...

  11. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year...

  12. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year...

  13. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage seeding...

  14. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance provisions. 457.142 Section 457.142 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern potato...

  15. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut...

  16. 7 CFR 457.143 - Northern potato crop insurance-quality endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-quality endorsement. 457.143 Section 457.143 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.143...

  17. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Macadamia tree crop insurance provisions. 457.130 Section 457.130 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree...

  18. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean...

  19. Influence of poultry litter and double cropping on soybean yield

    USDA-ARS?s Scientific Manuscript database

    Continuous cultivation of mono-cropping systems coupled with inorganic fertilizer consumption has led to a decline in soil fertility, negatively influencing crop yields. Poultry litter application and double cropping are two management practices that could be used with conservation tillage to increa...

  20. Genomic exploitation of genetic variation for crop improvement

    USDA-ARS?s Scientific Manuscript database

    Crop plants produce food, fiber, and fuel that are essential to human civilization and mainstays of economic prosperity. Our society continues to cultivate and improve the crop plants for better quality and productivity with sustainable environments. The process of crop genetic improvement has bee...

  1. Limited irrigation of corn-based no-till crop rotations in West Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...

  2. Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances.

    PubMed

    Zhou, Xingang; Wang, Zhilin; Jia, Huiting; Li, Li; Wu, Fengzhi

    2018-01-01

    Soil microbial communities have profound effects on the growth, nutrition and health of plants in agroecosystems. Understanding soil microbial dynamics in cropping systems can assist in determining how agricultural practices influence soil processes mediated by microorganisms. In this study, soil bacterial communities were monitored in a continuously monocropped Jerusalem artichoke (JA) system, in which JA was successively monocropped for 3 years in a wheat field. Soil bacterial community compositions were estimated by amplicon sequencing of the 16S rRNA gene. Abundances of ammonia-oxidizing and denitrifying bacteria were estimated by quantitative PCR analysis of the amoA , nirS , and nirK genes. Results showed that 1-2 years of monocropping of JA did not significantly impact the microbial alpha diversity, and the third cropping of JA decreased the microbial alpha diversity ( P < 0.05). Principal coordinates analysis and permutational multivariate analysis of variance analyses revealed that continuous monocropping of JA changed soil bacterial community structure and function profile ( P < 0.001). At the phylum level, the wheat field was characterized with higher relative abundances of Latescibacteria , Planctomycetes , and Cyanobacteria , the first cropping of JA with Actinobacteria , the second cropping of JA with Acidobacteria , Armatimonadetes , Gemmatimonadetes , and Proteobacteria . At the genus level, the first cropping of JA was enriched with bacterial species with pathogen-antagonistic and/or plant growth promoting potentials, while members of genera that included potential denitrifiers increased in the second and third cropping of JA. The first cropping of JA had higher relative abundances of KO terms related to lignocellulose degradation and phosphorus cycling, the second cropping of JA had higher relative abundances of KO terms nitrous-oxide reductase and nitric-oxide reductase, and the third cropping of JA had higher relative abundances of KO terms nitrate reductase and nitrite reductase. The abundances of amoA genes decreased while nirK increased in the third cropping of JA, nirS continuously increased in the second and third cropping of JA ( P < 0.05). Redundancy analysis and Mantel test found that soil organic carbon and Olsen phosphorus contents played important roles in shaping soil bacterial communities. Overall, our results revealed that continuous monocropping of JA changed soil bacterial community composition and its functional potentials.

  3. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12...

  4. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12...

  5. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-storage coverage endorsement. 457.146 Section 457.146 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.146...

  6. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Hybrid seed corn crop insurance provisions. 457.152 Section 457.152 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.152 Hybrid seed...

  7. 7 CFR 457.147 - Central and Southern potato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Central and Southern potato crop insurance provisions. 457.147 Section 457.147 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.147...

  8. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-processing quality endorsement. 457.144 Section 457.144 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.144...

  9. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh market...

  10. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457.154 Section 457.154 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.154 Processing...

  11. Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...

  12. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED...

  13. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED...

  14. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED...

  15. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED...

  16. 7 CFR 205.207 - Wild-crop harvesting practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Wild-crop harvesting practice standard. 205.207 Section 205.207 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED...

  17. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.139...

  18. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Guaranteed production plan of fresh market tomato crop insurance provisions. 457.128 Section 457.128 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS...

  19. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh market...

  20. Long-term cropping systems study

    USDA-ARS?s Scientific Manuscript database

    This long-term study has been conducted on the Agronomy Farm at ARDC since the early 1970’s. In the beginning, the objectives were mainly related to crop production as affected by different cropping systems. The cropping systems included in the study are Continuous Corn, Soybean, and Sorghum; 2-year...

  1. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts... percentages established for any crop year shall remain in effect after that crop year until salable and...

  2. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.).

    PubMed

    Yang, Ruiping; Mo, Yanling; Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012-2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality.

  3. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  4. [A semimicroquality evaluation method on Panax notoginseng and its application in analysis of continuous cropping obstacles research samples].

    PubMed

    Cao, Yi; Wang, Chao-Qun; Xu, Feng; Jia, Xiu-Hong; Liu, Guang-Xue; Yang, Sheng-Chao; Long, Guang-Qiang; Chen, Zhong-Jian; Wei, Fu-Zhou; Yang, Shao-Zhou; Fukuda, Kozo; Wang, Xuan; Cai, Shao-Qing

    2016-10-01

    Panax notoginseng is a commonly used traditional Chinese medicine with blood activating effect while has continuous cropping obstacle problem in planting process. In present study, a semimicroextraction method with water-saturated n-butanol on 0.1 g notoginseng sample was established with good repeatability (RSD<2.5%) and 9.6%-20.6% higher extraction efficiency of seven saponins than the conventional method. A total of 16 characteristic peaks were identified by LC-MS-IT-TOF, including eight 20(S)-protopanaxatriol (PPT) type saponins and eight 20(S)-protopanaxadiol (PPD) type saponins. The established method was utilized to evaluate the quality of notoginseng samples cultivated by manual intervened methods to overcome continuous cropping obstacles.As a result, HPLC fingerprint similarity, content of Fa and ratio of notoginsenoside K and notoginsenoside Fa (N-K/Fa) were found out to be as valuatable markers of the quality of samples in continuous cropping obstacle research, of which N-K/Fa could also be applied to the analysis of notoginseng samples with different growth years.Notoginseng samples with continuous cropping obstacle had HPLC fingerprint similarity lower than 0.87, in consistent with normal sample, and had significant lower content of notoginsenoside Fa and significant higher N-K/Fa (2.35-4.74) than normal group (0.45-1.33). All samples in the first group with manual intervention showed high similarity with normal group (>0.87), similar content of common peaks and N-K/Fa (0.42-2.06). The content of notoginsenoside K in the second group with manual intervention was higher than normal group. All samples except two displayed similarity higher than 0.87 and possessed content of 16 saponins close to normal group. The result showed that notoginseng samples with continuous cropping obstacle had lower quality than normal sample. And manual intervened methods could improve their quality in different levels.The method established in this study was simple, fast and accurate, and the markers may provide new guides for quality control in continuous cropping obstacle research of notoginseng. Copyright© by the Chinese Pharmaceutical Association.

  5. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    USDA-ARS?s Scientific Manuscript database

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  6. Acquisition and management of continuous data streams for crop water management

    USDA-ARS?s Scientific Manuscript database

    Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...

  7. The potential of cover crops for improving soil function

    NASA Astrophysics Data System (ADS)

    Stoate, Chris; Crotty, Felicity

    2017-04-01

    Cover crops can be grown over the autumn and winter ensuring green cover throughout the year. They have been described as improving soil structure, reducing soil erosion and potentially even a form of grass weed control. These crops retain nutrients within the plant, potentially making them available for future crops, as well as increasing soil organic matter. Over the last three years, we have investigated how different cover crop regimes affect soil quality. Three separate experiments over each autumn/winter period have investigated how different cover crops affect soil biology, physics and chemistry, with each experiment building on the previous one. There have been significant effects of cover crops on soil structure, as well as significantly lower weed biomass and increased yields in the following crop - in comparison to bare stubble. For example, the effect of drilling the cover crops on soil structure in comparison to a bare stubble control that had not been driven on by machinery was quantified, and over the winter period the soil structure of the cover crop treatments changed, with compaction reduced in the cover crop treatments, whilst the bare stubble control remained unchanged. Weeds were found in significantly lower biomass in the cover crop mixes in comparison to the bare stubble control, and significantly lower weed biomass continued to be found in the following spring oat crop where the cover crops had been, indicating a weed suppressive effect that has a continued legacy in the following crop. The following spring oats have shown similar results in the last two years, with higher yields in the previous cover crop areas compared to the bare stubble controls. Overall, these results are indicating that cover crops have the potential to provide improvements to soil quality, reduce weeds and improve yields. We discuss the economic implications.

  8. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  9. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  10. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  11. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  12. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  13. The Lower Sevier River Basin Crop Monitor and Forecast Decision Support System: Exploiting Landsat Imagery to Provide Continuous Information to Farmers and Water Managers

    NASA Astrophysics Data System (ADS)

    Torres-Rua, A. F.; Walker, W. R.; McKee, M.

    2013-12-01

    The last century has seen a large number of innovations in agriculture such as better policies for water control and management, upgraded water conveyance, irrigation, distribution, and monitoring systems, and better weather forecasting products. In spite of this, irrigation management and irrigation water deliveries by farmers/water managers is still based on factors like water share amounts, tradition, and past experience on irrigation. These factors are not necessarily related to the actual crop water use; they are followed because of the absence of related information provided in a timely manner at an affordable cost. Thus, it is necessary to develop means to deliver continuous and personalized information about crop water requirements to water users/managers at the field and irrigation system levels so managers at these levels can better quantify the required versus available water for irrigation during the irrigation season. This study presents a new decision support system (DSS) platform that addresses the absence of information on actual crop water requirements and crop performance by providing continuous updated farm-based crop water use along with other farm performance indicators such as crop yield and farm management to irrigators and water managers. This DSS exploits the periodicity of the Landsat Satellite Mission (8 to 16 days, depending on the period of interest) to provide remote monitoring at the individual field and irrigation system levels. The Landsat satellite images are converted into information about crop water use, yield performance and field management through application of state-of-the-art semi-physical and statistical algorithms that provide this information at a pixel basis that are ultimately aggregated to field and irrigation system levels. A version of the DSS has been implemented for the agricultural lands in the Lower Sevier River, Utah, and has been operational since the beginning of the 2013 irrigation season. The main goal of this DSS implementation is to provide continuous and personalized information to farmers and water managers regarding crops in fields and the irrigation delivery system throughout the irrigation season so that decisions related to agricultural water use can result in water savings while not diminishing crop yields.

  14. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  15. Origins of food crops connect countries worldwide.

    USDA-ARS?s Scientific Manuscript database

    Crop genetic diversity is concentrated within specific geographic regions worldwide. While access to this diversity is critical to continued increases in agricultural productivity, the geopolitical significance of the geography of crop diversity has not been quantified. We assess the degree to which...

  16. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  17. The Effects of Cattle Manure and Garlic Rotation on Soil under Continuous Cropping of Watermelon (Citrullus lanatus L.)

    PubMed Central

    Liu, Changming; Wang, Yongqi; Ma, Jianxiang; Zhang, Yong; Li, Hao; Zhang, Xian

    2016-01-01

    Continuous cropping of watermelon (Citrullus lanatus L.) can lead to reduced yield and quality. We aimed to determine the effects of cattle manure addition and rotation with green garlic to improve yield and reduce disease incidence in watermelon and to examine the effects on the biological and chemical characteristics of the soil. Field experiments were performed during 2012–2014 on land previously under two years of continuous watermelon cropping in northwest China. We examined three treatment combinations: watermelon and garlic rotation, cattle manure application before watermelon planting, and combined cattle manure addition and crop rotation. Watermelon monoculture was retained as a control. Watermelon yield was significantly higher and disease incidence was lower in the treatments than the control. The populations of soil bacteria and actinomycetes and the bacteria/fungi ratio increased significantly and soil enzyme activities were generally enhanced under treatments. Available nutrients and soil organic matter contents were much higher under experimental treatments than the control. Results suggest both cattle manure application and garlic rotation can ameliorate the negative effects of continuous cropping. The combined treatment of cattle manure addition and green garlic rotation was optimal to increase yield, reduce disease incidence and enhance soil quality. PMID:27258145

  18. Photoperiod shift effects on yield characteristics of rice

    NASA Technical Reports Server (NTRS)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  19. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  20. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China.

  1. Greenhouse gas emissions from traditional and biofuels cropping systems

    USDA-ARS?s Scientific Manuscript database

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  2. 7 CFR 457.5 - Creditors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Creditors. 457.5 Section 457.5 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.5 Creditors. An interest of a person in an insured crop...

  3. Meeting the challenge of food and energy security.

    PubMed

    Karp, Angela; Richter, Goetz M

    2011-06-01

    Growing crops for bioenergy or biofuels is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. Focussing on the question of food or fuel is thus not helpful. The bigger, more pertinent, challenge is how the increasing demands for food and energy can be met in the future, particularly when water and land availability will be limited. Energy crop production systems differ greatly in environmental impact. The use of high-input food crops for liquid transport fuels (first-generation biofuels) needs to be phased out and replaced by the use of crop residues and low-input perennial crops (second/advanced-generation biofuels) with multiple environmental benefits. More research effort is needed to improve yields of biomass crops grown on lower grade land, and maximum value should be extracted through the exploitation of co-products and integrated biorefinery systems. Policy must continually emphasize the changes needed and tie incentives to improved greenhous gas reduction and environmental performance of biofuels.

  4. Improving selenium nutritional value of major crops

    USDA-ARS?s Scientific Manuscript database

    Micronutrient efficiency and development of nutrient-dense crops continue to be one of the most important global challenges. Se is an essential micronutrient to humans and serves as a cancer preventative agent. In order to improve Se nutritional and health promoting values in food crops, a better un...

  5. Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...

  6. A national research & development strategy for biomass crop feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Cushman, J.H.

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limitsmore » of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.« less

  7. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    NASA Astrophysics Data System (ADS)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  8. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  9. The Effect of Five Biomass Cropping Systems on Soil-Saturated Hydraulic Conductivity Across a Topographic Gradient

    Treesearch

    Usman Anwar; Lisa A. Schulte; Matthew Helmers; Randall K. Kolka

    2017-01-01

    Understanding the environmental impact of bioenergy crops is needed to inform bioenergy policy development. We determined the effects of five biomass cropping systems—continuous maize (Zea mays), soybean (Glycine max)-triticale (Triticosecale ×)/soybean-maize, maize-switchgrass (Panicum virgatum...

  10. Radiometer footprint model to estimate sunlit and shaded components for row crops

    USDA-ARS?s Scientific Manuscript database

    This paper describes a geometric model for computing the relative proportion of sunlit vegetation, shaded vegetation, sunlit soil, and shaded soil appearing in a circular or elliptical radiometer footprint for row crops, where the crop rows were modeled as continuous ellipses. The model was validate...

  11. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  12. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  13. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  14. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  15. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  16. 7 CFR 1405.6 - Crop insurance requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contributed in the previous year, or is expected to contribute in the current crop year, 10 percent or more of... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop insurance requirement. 1405.6 Section 1405.6 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT...

  17. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of plants...

  18. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of plants...

  19. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  20. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  1. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  2. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  3. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  4. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.400 Ethoxyquin in certain dehydrated forage crops... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethoxyquin in certain dehydrated forage crops. 573...

  5. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.400 Ethoxyquin in certain dehydrated forage crops... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethoxyquin in certain dehydrated forage crops. 573...

  6. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.400 Ethoxyquin in certain dehydrated forage crops... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethoxyquin in certain dehydrated forage crops. 573...

  7. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.400 Ethoxyquin in certain dehydrated forage crops... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethoxyquin in certain dehydrated forage crops. 573...

  8. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.400 Ethoxyquin in certain dehydrated forage crops... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethoxyquin in certain dehydrated forage crops. 573...

  9. Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems.

    PubMed

    Tian, Yongqiang; Wang, Qing; Zhang, Weihua; Gao, Lihong

    2016-02-15

    Continuous cropping is a common agricultural practice in the word. In China, farmers often apply excessive fertilizers to fields in an attempt to maintain yields in continuous cropping systems. However, this practice often results in high nutrient concentrations in soils, nutrient pollution in leaching water and more crop disease. Here, we investigated 8 different soils from continuously cropped cucumbers in Northern China that grouped into those with extremely high nutrient levels (EHNL) and those with lower nutrient levels (LNL). All soils were treated with Caragana microphylla-straw (CMS) compost addition, and then were used to measure soil physiochemical and microbial properties, leaching water quality, plant root growth and cucumber fruit yield. In general, the EHNL-soil showed higher nitrate, phosphorus and potassium concentrations in the leaching water compared to the LNL-soil. However, the CMS compost application increased soil nutrient and water holding capacities, total microbial biomass (bacteria and fungi), root length, plant biomass and fruit yields, but decreased nutrient concentrations in the leaching water from the EHNL-soil. In addition, the CMS compost decreased the number of Fusarium oxysporum f. sp. cucumerinum in soils with very high concentration of mineral nitrogen. Our results infer that CMS compost application was an effective method for reducing environmental risk of excessively fertilized soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Effects of continuous cropping of vegetables on ammonia oxidizers community structure].

    PubMed

    Meng, De-Long; Yang, Yang; Wu, Yan-Zheng; Wu, Min-Na; Qin, Hong-Ling; Zhu, Yi-Jun; Wei, Wen-Xue

    2012-04-01

    Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability. Two series of vegetable soils were selected from Huangxing, Changsha, reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history. In each series five independent topsoils (0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field. Terminal restriction fragment length polymorphism (T-RFLP) and quantity PCR (Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene, soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA. In the vegetable soils, although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene, no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate. It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA, but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential (PNF).

  11. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    NASA Astrophysics Data System (ADS)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.

  12. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    NASA Astrophysics Data System (ADS)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  13. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities.

    PubMed

    Zhao, Qingyun; Xiong, Wu; Xing, Yizhang; Sun, Yan; Lin, Xingjun; Dong, Yunping

    2018-04-17

    Long-term monoculture severely inhibits coffee plant growth, decreases its yield and results in serious economic losses in China. Here, we selected four replanted coffee fields with 4, 18, 26 and 57 years of monoculture history in Hainan China to investigate the influence of continuous cropping on soil chemical properties and microbial communities. Results showed long-term monoculture decreased soil pH and organic matter content and increased soil EC. Soil bacterial and fungal richness decreased with continuous coffee cropping. Principal coordinate analysis suggested monoculture time was a major determinant of bacterial and fungal community structures. Relative abundances of bacterial Proteobacteria, Bacteroidetes and Nitrospira and fungal Ascomycota phyla decreased over time. At genus level, potentially beneficial microbes such as Nitrospira and Trichoderma, significantly declined over time and showed positive relationships with coffee plant growth in pots. In conclusion, continuous coffee cropping decreased soil pH, organic matter content, potentially beneficial microbes and increased soil EC, which might lead to the poor growth of coffee plants in pots and decline of coffee yields in fields. Thus, developing sustainable agriculture to improve soil pH, organic matter content, microbial activity and reduce the salt stress under continuous cropping system is important for coffee production in China.

  14. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    USDA-ARS?s Scientific Manuscript database

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  15. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notice of loss for covered tropical crops. 1437.504 Section 1437.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining Coverage in...

  16. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... substance included on the National List of synthetic substances allowed for use in organic crop production...

  17. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  18. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  19. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or soil. (2) Boric acid—structural pest control, no direct contact with organic food or crops. (3... 7 Agriculture 3 2010-01-01 2010-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List...

  20. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  1. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... substance included on the National List of synthetic substances allowed for use in organic crop production...

  2. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  3. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Organic Production and Handling... rotation and soil and crop nutrient management practices, as provided for in §§ 205.203 and 205.205; (2... substance included on the National List of synthetic substances allowed for use in organic crop production...

  4. Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India.

    PubMed

    Pokharia, Anil K; Agnihotri, Rajesh; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R N; Negi, Bipin Chandra

    2017-01-01

    Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600-3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to 'drought-resistant' millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase.

  5. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food

    PubMed Central

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-01-01

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China’s major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans. PMID:26380899

  6. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food.

    PubMed

    Sun, Jing; Wu, Wenbin; Tang, Huajun; Liu, Jianguo

    2015-09-18

    Despite heated debates over the safety of genetically modified (GM) food, GM crops have been expanding rapidly. Much research has focused on the expansion of GM crops. However, the spatiotemporal dynamics of non-genetically modified (non-GM) crops are not clear, although they may have significant environmental and agronomic impacts and important policy implications. To understand the dynamics of non-GM crops and to inform the debates among relevant stakeholders, we conducted spatiotemporal analyses of China's major non-GM soybean production region, the Heilongjiang Province. Even though the total soybean planting area decreased from 2005 to 2010, surprisingly, there were hotspots of increase. The results also showed hotspots of loss as well as a large decline in the number and continuity of soybean plots. Since China is the largest non-GM soybean producer in the world, the decline of its major production region may signal the continual decline of global non-GM soybeans.

  7. Food or Fuel: New Competition for the World's Cropland. Worldwatch Paper 35.

    ERIC Educational Resources Information Center

    Brown, Lester R.

    The paper explores how continuously expanding world demand for food, feed, and fuel is generating pressure to restructure agricultural land use. In addition, problems related to transfer of agricultural crop land to energy crops are discussed. The technology of energy crops has developed to the point where large-scale commercial production of…

  8. Soil pH and exchangeable cation responses to tillage and fertilizer in dryland cropping systems

    USDA-ARS?s Scientific Manuscript database

    Long-term use of nitrogen (N) fertilizers can lead to soil acidification and other chemical changes that can lower fertility. Here, we present near-surface (0-7.6 cm) soil chemistry data from 16 years of two different crop rotations in the US northern Great Plains: (1) continuous crop (CC; spring w...

  9. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    USDA-ARS?s Scientific Manuscript database

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  10. 7 CFR 981.57 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.57... established for any crop year shall continue in effect with respect to all almonds for which the reserve... requirements for all such almonds theretofore received for his own account or handled during that crop year...

  11. Crop Registration: The Pathway to Public Access of Plant Genetic Materials to Build Crops for the Future

    USDA-ARS?s Scientific Manuscript database

    Starting as Crop Science Registrations in the American Journal of the Society of Agronomy in 1926, and continuing 80+ years later in the Journal of Plant Registrations, 11,241 plant cultivars, germplasm, parental lines, genetic stocks and mapping populations have been registered as of December 31, 2...

  12. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    PubMed

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  13. Analysis of scanner data for crop inventories

    NASA Technical Reports Server (NTRS)

    Horvath, R. (Principal Investigator); Cicone, R. C.; Kauth, R. J.; Malila, W. A.; Pont, W.; Thelen, B.; Sellman, A.

    1981-01-01

    Accomplishments for a machine-oriented small grains labeler T&E, and for Argentina ground data collection are reported. Features of the small grains labeler include temporal-spectral profiles, which characterize continuous patterns of crop spectral development, and crop calendar shift estimation, which adjusts for planting date differences of fields within a crop type. Corn and soybean classification technology development for area estimation for foreign commodity production forecasting is reported. Presentations supporting quarterly project management reviews and a quarterly technical interchange meeting are also included.

  14. Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is actively debated. Using 60 site-years of maize (Zea mays L.) yield response to a wide range of N fertilizer rates in continuous maize and annually rotated maize-soybean [Glycine max...

  15. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    USDA-ARS?s Scientific Manuscript database

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  16. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  17. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  18. 7 CFR 457.127 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.127 Section 457.127 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.127 [Reserved] ...

  19. 7 CFR 457.156 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.156 Section 457.156 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.156 [Reserved] ...

  20. 7 CFR 457.103 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.103 Section 457.103 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.103 [Reserved] ...

  1. 7 CFR 457.6 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.6 Section 457.6 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.6 [Reserved] ...

  2. 7 CFR 457.120 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.120 Section 457.120 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.120 [Reserved] ...

  3. Management of Lesion Nematodes and Potato Early Dying with Rotation Crops

    PubMed Central

    LaMondia, J.A.

    2006-01-01

    Soil-incorporated rotation/green manure crops were evaluated for management of potato early dying caused by Verticillium dahliae and Pratylenchus penetrans. After two years of rotation/green manure and a subsequent potato crop, P. penetrans numbers were less after ‘Saia’ oat/‘Polynema’ marigold, ‘Triple S’ sorghum-sudangrass, or ‘Garry’ oat than ‘Superior’ potato or ‘Humus’ rapeseed. The area under the disease progress curve (AUDPC) for early dying was lowest after Saia oat/marigold, and tuber yields were greater than continuous potato after all crops except sorghum-sudangrass. Saia oat/marigold crops resulted in the greatest tuber yields. After one year of rotation/green manure, a marigold crop increased tuber yields and reduced AUDPC and P. penetrans. In the second potato crop after a single year of rotation, plots previously planted to marigolds had reduced P. penetrans densities and AUDPC and increased tuber yield. Rapeseed supported more P. penetrans than potato, but had greater yields. After two years of rotation/green manure crops and a subsequent potato crop, continuous potato had the highest AUDPC and lowest tuber weight. Rotation with Saia oats (2 yr) and Rudbeckia hirta (1 yr) reduced P. penetrans and increased tuber yields. AUDPC was lowest after R. hirta. Two years of sorghum-sudangrass did not affect P. penetrans, tuber yield or AUDPC. These results demonstrate that P. penetrans may be reduced by one or two years of rotation to non-host or antagonistic plants such as Saia oat, Polynema marigold, or R. hirta and that nematode control may reduce the severity of potato early dying. PMID:19259461

  4. Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions.

    PubMed

    Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F

    2013-01-01

    In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. 7 CFR 457.9 - Appropriation contingency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Appropriation contingency. 457.9 Section 457.9 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.9 Appropriation contingency...

  6. Sampling Simulations for Assessing the Accuracy of U.S. Agricultural Crop Mapping from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Dwyer, Linnea; Yadav, Kamini; Congalton, Russell G.

    2017-04-01

    Providing adequate food and water for a growing, global population continues to be a major challenge. Mapping and monitoring crops are useful tools for estimating the extent of crop productivity. GFSAD30 (Global Food Security Analysis Data at 30m) is a program, funded by NASA, that is producing global cropland maps by using field measurements and remote sensing images. This program studies 8 major crop types, and includes information on cropland area/extent, if crops are irrigated or rainfed, and the cropping intensities. Using results from the US and the extensive reference data available, CDL (USDA Crop Data Layer), we will experiment with various sampling simulations to determine optimal sampling for thematic map accuracy assessment. These simulations will include varying the sampling unit, the sampling strategy, and the sample number. Results of these simulations will allow us to recommend assessment approaches to handle different cropping scenarios.

  7. Altered cropping pattern and cultural continuation with declined prosperity following abrupt and extreme arid event at ~4,200 yrs BP: Evidence from an Indus archaeological site Khirsara, Gujarat, western India

    PubMed Central

    Pokharia, Anil K.; Sharma, Shalini; Bajpai, Sunil; Nath, Jitendra; Kumaran, R. N.; Negi, Bipin Chandra

    2017-01-01

    Archaeological sites hold important clues to complex climate-human relationships of the past. Human settlements in the peripheral zone of Indus culture (Gujarat, western India) are of considerable importance in the assessment of past monsoon-human-subsistence-culture relationships and their survival thresholds against climatic stress exerted by abrupt changes. During the mature phase of Harappan culture between ~4,600–3,900yrsBP, the ~4,100±100yrsBP time slice is widely recognized as one of the major, abrupt arid-events imprinted innumerous well-dated palaeo records. However, the veracity of this dry event has not been established from any archaeological site representing the Indus (Harappan) culture, and issues concerning timing, changes in subsistence pattern, and the likely causes of eventual abandonment (collapse) continue to be debated. Here we show a significant change in crop-pattern (from barley-wheat based agriculture to ‘drought-resistant’ millet-based crops) at ~4,200 yrs BP, based on abundant macrobotanical remains and C isotopes of soil organic matter (δ13CSOM) in an archaeological site at Khirsara, in the Gujarat state of western India. The crop-change appears to be intentional and was likely used as an adaptation measure in response to deteriorated monsoonal conditions. The ceramic and architectural remains of the site indicate that habitation survived and continued after the ~4,200yrsBP dry climatic phase, but with declined economic prosperity. Switching to millet-based crops initially helped inhabitants to avoid immediate collapse due to climatic stresses, but continued aridity and altered cropping pattern led to a decline in prosperity levels of inhabitants and eventual abandonment of the site at the end of the mature Harappan phase. PMID:28985232

  8. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  9. [Changes of diversity and composition of fungal communities in rhizosphere of Panax ginseng].

    PubMed

    Dong, Lin-Lin; Niu, Wei-Hao; Wang, Rui; Xu, Jiang; Zhang, Lian-Juan; Zhang, Jun; Chen, Shi-Lin

    2017-02-01

    Continuous cropping obstacles resulted in the yield losses of Panax ginseng, and affected the development of ginseng industry. Soil fungal communities participated in the key ecological process, and their changes of diversity and composition were related to the continuous cropping obstacles. We analyzed the changes of fungal diversity and composition in the rhizosphere of ginseng using the high-throughput sequencing method, stated the effects of ginseng cultivation on the micro-ecology, and provided effective strategies for overcoming continuous cropping obstacles. Compared to those of the forest soils, the fungal diversity of ginseng rhizosphere soils was increased, and the increasing trends were declined with an increasing years of ginseng cultivation; the relative abundance of Sordariomycetes, Alatospora, Eurotiomycetes, Leotiomycetes, Saccharomycetes, Mucorales and Pezizomycetes were increased in the rhizosphere of ginseng. Pearson's correlation index indicated that soil chemical perporties affected the relative abundance of fungal communities. pH was significantly related to the relative abundance of Dothideomycetes and Alatospora; the content of available potassium was markedly associated with the relative abundance of Dothideomycetes, Alatospora and Mucorales; the content of total nitrogen was significant correlation with the relative abundance of Sordariomycetes and Mucorales. These results indicated that fertilization was one of pivotal factors affecting the rhizosphere micro-ecology of ginseng, and optimization of fertilization system was an effective method to overcome continuous cropping obstacles. Copyright© by the Chinese Pharmaceutical Association.

  10. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  11. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  12. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  13. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  14. Soil organic carbon dynamics and crop yield for different crop rotations in a degraded ferruginous tropical soil in a semi-arid region: a simulation approach.

    PubMed

    Soler, C M Tojo; Bado, V B; Traore, K; Bostick, W McNair; Jones, J W; Hoogenboom, G

    2011-10-01

    In recent years, simulation models have been used as a complementary tool for research and for quantifying soil carbon sequestration under widely varying conditions. This has improved the understanding and prediction of soil organic carbon (SOC) dynamics and crop yield responses to soil and climate conditions and crop management scenarios. The goal of the present study was to estimate the changes in SOC for different cropping systems in West Africa using a simulation model. A crop rotation experiment conducted in Farakô-Ba, Burkina Faso was used to evaluate the performance of the cropping system model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) for simulating yield of different crops. Eight crop rotations that included cotton, sorghum, peanut, maize and fallow, and three different management scenarios, one without N (control), one with chemical fertilizer (N) and one with manure applications, were studied. The CSM was able to simulate the yield trends of various crops, with inconsistencies for a few years. The simulated SOC increased slightly across the years for the sorghum-fallow rotation with manure application. However, SOC decreased for all other rotations except for the continuous fallow (native grassland), in which the SOC remained stable. The model simulated SOC for the continuous fallow system with a high degree of accuracy normalized root mean square error (RMSE)=0·001, while for the other crop rotations the simulated SOC values were generally within the standard deviation (s.d.) range of the observed data. The crop rotations that included a supplemental N-fertilizer or manure application showed an increase in the average simulated aboveground biomass for all crops. The incorporation of this biomass into the soil after harvest reduced the loss of SOC. In the present study, the observed SOC data were used for characterization of production systems with different SOC dynamics. Following careful evaluation of the CSM with observed soil organic matter (SOM) data similar to the study presented here, there are many opportunities for the application of the CSM for carbon sequestration and resource management in Sub-Saharan Africa.

  15. Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton

    USDA-ARS?s Scientific Manuscript database

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing tw...

  16. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  17. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  18. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  19. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  20. 7 CFR 457.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Applicability. 457.1 Section 457.1 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.1 Applicability. The provisions of this part are...

  1. Organic carbon dynamics and soil stability in five semiarid agroecosystems

    USDA-ARS?s Scientific Manuscript database

    In the semiarid Texas High Plains where continuous cotton (CTN) is the dominate cropping practice, alternative agroecosystems such as integrated crop-livestock agroecosystems (ICL) are gaining interest for their versatility in management approaches to conserve water in this water-limited environment...

  2. 7 CFR 981.81 - Assessment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... four months of the succeeding crop year. No later than the fifth month the amount not expended from... its marketing promotion expenses of the succeeding crop year, and any unexpended portion of those...

  3. 7 CFR 457.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Applicability. 457.1 Section 457.1 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.1 Applicability. The provisions of this part are...

  4. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate change will stress this further and impacts on crop growth are expected to be twofold, owing to the sensitive stages occurring earlier during the growing season and to the changes in return period of extreme weather events. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  5. Effects on aquatic and human health due to large scale bioenergy crop expansion.

    PubMed

    Love, Bradley J; Einheuser, Matthew D; Nejadhashemi, A Pouyan

    2011-08-01

    In this study, the environmental impacts of large scale bioenergy crops were evaluated using the Soil and Water Assessment Tool (SWAT). Daily pesticide concentration data for a study area consisting of four large watersheds located in Michigan (totaling 53,358 km²) was estimated over a six year period (2000-2005). Model outputs for atrazine, bromoxynil, glyphosate, metolachlor, pendimethalin, sethoxydim, triflualin, and 2,4-D model output were used to predict the possible long-term implications that large-scale bioenergy crop expansion may have on the bluegill (Lepomis macrochirus) and humans. Threshold toxicity levels were obtained for the bluegill and for human consumption for all pesticides being evaluated through an extensive literature review. Model output was compared to each toxicity level for the suggested exposure time (96-hour for bluegill and 24-hour for humans). The results suggest that traditional intensive row crops such as canola, corn and sorghum may negatively impact aquatic life, and in most cases affect the safe drinking water availability. The continuous corn rotation, the most representative rotation for current agricultural practices for a starch-based ethanol economy, delivers the highest concentrations of glyphosate to the stream. In addition, continuous canola contributed to a concentration of 1.11 ppm of trifluralin, a highly toxic herbicide, which is 8.7 times the 96-hour ecotoxicity of bluegills and 21 times the safe drinking water level. Also during the period of study, continuous corn resulted in the impairment of 541,152 km of stream. However, there is promise with second-generation lignocellulosic bioenergy crops such as switchgrass, which resulted in a 171,667 km reduction in total stream length that exceeds the human threshold criteria, as compared to the base scenario. Results of this study may be useful in determining the suitability of bioenergy crop rotations and aid in decision making regarding the adaptation of large-scale bioenergy cropping systems. Published by Elsevier B.V.

  6. [Effects of different crop rotations on growth of continuous cropping sorghum and its rhizosphere soil micro-environment.

    PubMed

    Wang, Jin Song; Fan, Fang Fang; Guo, Jun; Wu, Ai Lian; Dong, Er Wei; Bai, Wen Bin; Jiao, Xiao Yan

    2016-07-01

    The effects of crop rotation on sorghum [Sorghum biocolor (L) Moench] growth, rhizosphere microbial community and the activity of soil enzymes for successive crops of sorghum were evaluated. Five years of continuous monoculture sorghum as the control (CK) was compared to alfalfa and scallion planted in the fourth year. The results showed that incorporation of alfalfa and scallion into the rotation significantly improved sorghum shoot growth. Specifically, sorghum grain yield increased by 16.5% in the alfalfa rotation plots compared to the CK. The rotations also increased sorghum root system growth, with alfalfa or scallion rotation increasing sorghum total root length by 0.3 and 0.4 times, total root surface area by 0.6 and 0.5 times, root volume by 1.2 and 0.6 times, and root biomass by 1.0 and 0.3 times, respectively. Alfalfa rotation also expanded sorghum root distribution below the 10 cm soil depth. A Biolog analysis on biome functions in the sorghum flowering period indicated significantly higher microbial activity in the rotation plots. The alfalfa and scallion rotation increased the Shannon index by 0.2 and 0.1 times compared to the CK, and improved the sucrose activity in the rhizosphere soil. It was concluded that including alfalfa in rotation with sorghum improved sorghum rhizosphere soil environment, enhanced soil microbial enzyme activity, alleviated the obstacle of continuous cropping and thus increased the sorghum yield.

  7. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  8. 7 CFR 402.1 - General statement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false General statement. 402.1 Section 402.1 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE CATASTROPHIC RISK PROTECTION ENDORSEMENT § 402.1 General statement. The Federal Crop Insurance Act...

  9. 7 CFR 457.126 - Popcorn cop isurance povisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Popcorn cop isurance povisions. 457.126 Section 457.126 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn cop isurance...

  10. 7 CFR 601.3 - Defense responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Defense responsibilities. 601.3 Section 601.3 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... selection and use of land for agricultural production. (2) The harvesting of crops. (3) The use of crops...

  11. 7 CFR 601.3 - Defense responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Defense responsibilities. 601.3 Section 601.3 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... selection and use of land for agricultural production. (2) The harvesting of crops. (3) The use of crops...

  12. 7 CFR 457.7 - The contract.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false The contract. 457.7 Section 457.7 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.7 The contract. The insurance contract shall become...

  13. 7 CFR 457.4 - OMB control numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false OMB control numbers. 457.4 Section 457.4 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.4 OMB control numbers. The information collection...

  14. 7 CFR 402.1 - General statement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false General statement. 402.1 Section 402.1 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE CATASTROPHIC RISK PROTECTION ENDORSEMENT § 402.1 General statement. The Federal Crop Insurance Act...

  15. 7 CFR 457.114-457.115 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.114-457.115 Section 457.114-457.115 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS §§ 457.114-457.115 [Reserved] ...

  16. 7 CFR 457.10-457.100 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 457.10-457.100 Section 457.10-457.100 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.10-457.100 [Reserved] ...

  17. Optimization of the co-digestion of catch crops with manure using a central composite design and reactor operation.

    PubMed

    Molinuevo-Salces, Beatriz; Ahring, Birgitte K; Uellendahl, Hinrich

    2015-02-01

    This study investigates the effect of catch crops as co-substrate on manure-based anaerobic digestion. Batch experiments were carried out for two catch crops, namely Italian ryegrass (IR) and oil seed radish (OSR), in co-digestion with manure. Methane yields in the range of 271-558 and 216-361 ml CH4/g volatile solids (VS) were obtained for OSR and IR in co-digestion, respectively. OSR co-digestion was chosen for semi-continuous reactor experiments. The addition of 50 % of OSR to manure (on VS basis) in semi-continuous anaerobic digestion resulted in a methane yield of 348 ml CH4/g VS, an improvement of 1.46 times compared to manure alone. Adaptation to OSR was observed, and no ammonia or volatile fatty acid-mediated inhibition was detected. The results prove that it is feasible to use catch crops as co-substrate for manure-based biogas production, obtaining a stable process with significantly higher methane yields than that of manure alone.

  18. The cultivation of energy crops for biogas production and the application of digestates are characterized by high variability of CO2 exchange and soil organic C stock changes

    NASA Astrophysics Data System (ADS)

    Augustin, Juergen; Fiedler, Sebastian; Heintze, Gawan; Rohwer, Marcus; Prescher, Anne-Katrin; Pohl, Madlen; Jurisch, Nicole; Hagemann, Ulrike

    2017-04-01

    In Germany, agricultural production accounts for approx. 15% of total anthropogenic greenhouse gas emissions. The cultivation of energy crops is thus considered an important option to reduce the climate impact and maintain or increase soil organic carbon (SOC) stocks. In particular, this applies to the continuously expanding cultivation of energy crops for biogas production and the associated use of residues from anaerobic digestion (digestates) as organic fertilizer. To date, there is only limited and contradicting evidence on the impacts of this management practice on the CO2 exchange as well as the change of SOC stocks. We will present results from a 4-year field study at 5 sites in Germany using identical methods to investigate the interacting effects of i) 3 N-fertilizer treatments including calcium ammonium nitrate and digestates and ii) a crop rotation of 7 energy crops like maize, sorghum, triticale, and wheat on net ecosystem CO2 exchange (NEE) and the change of SOC stocks. We used the manual chamber approach for measuring NEE as the difference between gross primary production and ecosystem respiration. The determination of SOC stock changes was based on a C budget approach, which includes the cumulated annual NEE, the C export by harvest, and the C import by application of anaerobic digestates. The CO2 exchange and the change of SOC stocks were influenced by multiple factors like crop, site, fertilization, and climate, as well as their complex interactions. A large proportion of the variability of the CO2 exchange can be attributed to interannual climatic variability. Productive crops like maize and sorghum generally feature the most intensive CO2 exchange, while less productive crops can compensate for this by means of longer cultivation times. Regardless of the extreme variability, pronounced and partly significant differences of NEE and C budgets between sites were observed. On average, SOC stocks declined over a full crop rotation, but with highly variable positive and negative C budgets. This indicates that, in most cases, neither the selected crops nor the application of anaerobic digestates were sufficient to compensate for SOC losses. Apparently, the potential of anaerobic digestates to maintain or increase SOC stocks is considerably smaller than expected. If continuous decreases of SOC stocks due to energy crop cultivation are to be avoided, additional studies on the optimization of crop rotations (selection of plants with high C input), and digestate fertilization (type of digestate, amount and application technique) are required. A continuously improved version of the methodology used in this study promises faster and more precise results than classic long-term field trials.

  19. Continuous cropping of endangered therapeutic plants via electron beam soil-treatment and neutron tomography.

    PubMed

    Sim, Cheul Muu; Seong, Bong Jae; Kim, Dong Won; Kim, Yong Bum; Wi, Seung Gon; Kim, Gyuil; Oh, Hwasuk; Kim, TaeJoo; Chung, Byung Yeoup; Song, Jeong Young; Kim, Hong Gi; Oh, Sang-Keun; Shin, Young Dol; Seok, Jea Hwan; Kang, Min Young; Lee, Yunhee; Radebe, Mabuti Jacob; Kardjilov, Nikolay; Honermeier, Bernd

    2018-02-01

    Various medicinal plants are threatened with extinction owing to their over-exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root-rot pathogens, which prevent continuous-cropping, were treated with an electron beam. The level of soil-borne fungus was reduced to ≤0.01% by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4-year-old plant was higher in electron beam-treated soil (81.0%) than in fumigated (62.5%), virgin (78%), or untreated-replanting soil (0%). Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4-6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herbs.

  20. Seed fates in crop-wild hybrid sunflower: crop allele and maternal effects.

    PubMed

    Pace, Brian A; Alexander, Helen M; Emry, Jason D; Mercer, Kristin L

    2015-02-01

    Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.

  1. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    NASA Astrophysics Data System (ADS)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  2. Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber.

    PubMed

    Chen, Li-Hua; Huang, Xin-Qi; Zhang, Feng-Ge; Zhao, Di-Kun; Yang, Xing-Ming; Shen, Qi-Rong

    2012-09-01

    The reduction in diversity of the soil microbial community causes the disorder of continuous cropping. The aim of this study was to determine the effects of applying Trichoderma harzianum SQR-T037 bio-organic fertiliser (BIO) on the microbial community in continuously cropped cucumber soil. Four treatments were set: (1) control, where neither seedling nursery soil (N) nor transplanted soil (T) was amended with BIO; (2) N treatment, where nursery soil was amended with BIO (1% w/w) but transplanted soil was not; (3) N + T treatment, where BIO was added to both nursery soil (1% w/w) and transplanted soil (0.5% w/w); (4) uncropped soil, where soil was left uncropped consistently. A disease index of 72.2% was found for the control treatment, while the N and N + T treatments had disease indices of only 25 and 15% respectively. Analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed that the bacterial communities of the N and N + T treatments were similar to those of the uncropped soil but distinct from those of the control soil. The fungal communities of the N and N + T treatments differed from those of both the uncropped soil and the control. Addition of BIO to both the nursery soil and the transplanted soil can diversify the microbial community in continuously cropped cucumber soil and thus effectively control Fusarium wilt of cucumber plants. Copyright © 2012 Society of Chemical Industry.

  3. Bridging conventional and molecular genetics of sorghum insect resistance

    USDA-ARS?s Scientific Manuscript database

    Sustainable production of sorghum, Sorghum bicolor (L.) Moench, depends on effective control of insect pests as they continue to compete with humans for the sorghum crop. Insect pests are major constraint in sorghum production, and nearly 150 insect species are serious pests of this crop worldwide,...

  4. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must be...

  5. 7 CFR 400.117 - Determination of delinquency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Determination of delinquency. 400.117 Section 400.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION... Succeeding Crop Years § 400.117 Determination of delinquency. Prior to disclosing information about a debt to...

  6. Medicinal and aromatic crops: Production, Phytochemistry, and Utilization

    USDA-ARS?s Scientific Manuscript database

    In the later part of the 20th century the United States experienced a remarkable surge in public interest towards medicinal and aromatic crops and this trend continues. This consumer interest helped create a significant demand for plants with culinary and medicinal applications as the public discove...

  7. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    PubMed

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger.

  8. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate.

    PubMed

    Batley, Jacqueline; Edwards, David

    2016-04-01

    The changing climate and growing global population will increase pressure on our ability to produce sufficient food. The breeding of novel crops and the adaptation of current crops to the new environment are required to ensure continued food production. Advances in genomics offer the potential to accelerate the genomics based breeding of crop plants. However, relating genomic data to climate related agronomic traits for use in breeding remains a huge challenge, and one which will require coordination of diverse skills and expertise. Bioinformatics, when combined with genomics has the potential to help maintain food security in the face of climate change through the accelerated production of climate ready crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...

  10. Canopy reflectance sensors as a decision tool for N rate

    USDA-ARS?s Scientific Manuscript database

    Technology and procedures continue to mature for canopy reflectance sensing used to assess crop N health and make in-season N fertilizer recommendations. While canopy sensing has been explored with many crops, work in corn (Zea mays L.) dominates largely because of high N fertilizer requirements and...

  11. Impacts of Alternative Cropping Systems on Fruit Quality: Opportunities for Collaborative Research

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide (MB) is a soil fumigant that has been critical for the production of vegetable crops, cut flowers, and strawberries in Florida. However, the continued phase-out of soil uses of this broad-spectrum fumigant necessitates the implementation of alternatives for controlling soil borne pes...

  12. Impacts of alternative cropping systems on fruit quality: Opportunities for collaborative research

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide (MB) is a soil fumigant that has been critical for the production of vegetable crops, cut flowers, and strawberries in Florida. However, the continued phase-out of soil uses of this broad-spectrum fumigant necessitates the implementation of alternatives for controlling soil borne pest...

  13. 7 CFR 400.133 - Written decision following a hearing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Written decision following a hearing. 400.133 Section 400.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE... 1986 and Succeeding Crop Years § 400.133 Written decision following a hearing. (a) At the conclusion of...

  14. 7 CFR 400.133 - Written decision following a hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Written decision following a hearing. 400.133 Section 400.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE... 1986 and Succeeding Crop Years § 400.133 Written decision following a hearing. (a) At the conclusion of...

  15. 7 CFR 400.133 - Written decision following a hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Written decision following a hearing. 400.133 Section 400.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE... 1986 and Succeeding Crop Years § 400.133 Written decision following a hearing. (a) At the conclusion of...

  16. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions §...

  17. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions §...

  18. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions §...

  19. 7 CFR 932.19 - Crop year and fiscal year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year and fiscal year. 932.19 Section 932.19 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions §...

  20. Increases of soil phosphatase and urease activities in potato fields by cropping rotation practices

    USDA-ARS?s Scientific Manuscript database

    Potato yield in Maine has remained relatively constant for over 50 years. To identify and quantify constraints to potato productivity, we established Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and Continuous Potato (PP) cropping systems under both rainfed ...

  1. Integrated biological and cultural practices can reduce crop rotation period of organic strawberries

    USDA-ARS?s Scientific Manuscript database

    Approached by an organic grower and the land owner, a team of researchers conducted a replicated on-farm experiment with the break period between strawberry crops (continuous strawberries with broccoli residue incorporation, one year break, two year break, three year break, and seven year break) as ...

  2. Natural and anthropogenic rates of soil erosion

    USDA-ARS?s Scientific Manuscript database

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  3. 77 FR 6562 - Notice of Receipt of Requests for Amendments To Delete Uses in Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... name and address 264 Bayer CropScience, P.O. Box 12014, 2. T.W. Alexander Drive, Research Triangle Park... these products who desire continued use on crops or sites being deleted should contact the applicable... BXN Cotton. [[Page 6563

  4. Producing biofuel crops: environmental and economic implications and strategies

    USDA-ARS?s Scientific Manuscript database

    The growing need for sustainable fuel sources must become compatible with the continued need for food by an ever increasing world population and the effects of climate change on ability to produce food and biofuel. Growing more hectares of biofuel crops such as corn increases sediment and nutrient l...

  5. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer.

    PubMed

    Ling, Ning; Deng, Kaiying; Song, Yang; Wu, Yunchen; Zhao, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2014-01-01

    The application method for a novel bioorganic fertilizer (BIO) was developed to improve its biocontrol efficacy of Fusarium wilt (Ling et al. 2010). However, its efficacy on controlling Fusarium wilt and the variations of microbial community after long-term application for watermelon production had not been elucidated. To clarify, a 4-years pot experiment of mono-cropping watermelon was conducted. The results revealed that though the disease incidences were increased in all treatments with the increase of continuous cropping years, the treatment of BIO application both in nursery and pot soil always maintained the lowest disease incidence. The real-time PCR results showed that the population of Paenibacillus polymyxa was decreased with continuous cropping years, but in all seasons, the treatment with BIO application both in nursery and pot soil had a highest population of P. polymyxa than the other treatments. On the other hand, the abundance of the pathogen FON was increased with the increase of continuous cropping years and the lowest rate of increase was found by BIO application in both nursery and pot soil. DGGE patterns showed that the bacterial diversity was weakened after mono-cropping of watermelon for 4 years, but the consecutive applications of BIO at nursery and transplanting stage resulted in the minimal change of bacterial diversity. More detailed differences on bacterial diversity between control and double application of BIO treatment after 4-years monoculture were analyzed by 454 pyrosequencing, which showed the dominant phyla found in both samples were Firmicutes, Proteobacteria and Actinobacteria, and the consecutive applications of BIO recruited more beneficial bacteria than control, such as Bacillus, Paenibacillus, Haliangium, Streptomyces. Overall, these results, to a certain extent, approved that the consecutive applications of BIO at nursery and transplanting stage could effectively suppress watermelon Fusarium wilt by regulating the rhizosphere bacterial diversity. These results could give some clues that how to regulate the soil microbial community to an appropriate level which can keep the plant healthy and thus control the soil-borne diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Implementation of Sentinel-2 Data in the M4Land System for the Generation of Continuous Information Products in Agriculture

    NASA Astrophysics Data System (ADS)

    Klug, P.; Schlenz, F.; Hank, T.; Migdall, S.; Weiß, I.; Danner, M.; Bach, H.; Mauser, W.

    2016-08-01

    The analysis system developed in the frame of the M4Land project (Model based, Multi-temporal, Multi scale and Multi sensorial retrieval of continuous land management information) has proven its capabilities of classifying crop type and creating products on the intensity of agricultural production using optical remote sensing data from Landsat and RapidEye. In this study, Sentinel-2 data is used for the first time together with Landsat 7 ETM+ and 8 OLI data within the M4Land analysis system to derive continuously crop type and the agricultural intensity of fields in an area north of Munich, Germany and the year 2015.

  7. Enhancing the crops to feed the poor.

    PubMed

    Huang, Jikun; Pray, Carl; Rozelle, Scott

    2002-08-08

    Solutions to the problem of how the developing world will meet its future food needs are broader than producing more food, although the successes of the 'Green Revolution' demonstrate the importance of technology in generating the growth in food output in the past. Despite these successes, the world still faces continuing vulnerability to food shortages. Given the necessary funding, it seems likely that conventional crop breeding, as well as emerging technologies based on molecular biology, genetic engineering and natural resource management, will continue to improve productivity in the coming decades.

  8. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  9. Global income and production impacts of using GM crop technology 1996–2013

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324

  10. Global income and production impacts of using GM crop technology 1996-2013.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.

  11. The ebb and flow of airborne pathogens: Monitoring and use in disease management decisions

    USDA-ARS?s Scientific Manuscript database

    Perhaps the earliest form of monitoring the regional spread of plant disease was a group of growers gathering together at the market and discussing what they see in their crops. This type of reporting continues to this day through regional extension blogs, by crop consultants and more formal scoutin...

  12. Resistant Citrullus lanatus var. citroides Rootstocks for Managing Root-knot Nematodes in Grafted Watermelon

    USDA-ARS?s Scientific Manuscript database

    Southern root-knot nematode (RKN), Meloidogyne incognita, is an important re-emerging pest of watermelon. Several factors have contributed to re-emergence of RKN including: 1) ban of methyl bromide for soil fumigation; 2) reduced land area for crop rotation; and 3) continuous cropping of cucurbits u...

  13. Using FACE systems to screen wheat cultivars for yield increases at elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Because of continuing increases in atmospheric CO2, identifying cultivars of crops with larger yield increases at elevated CO2 may provide an avenue to increase crop yield potential in future climates. Free-air CO2 enrichment (FACE) systems have most often been used with multiple replications of ea...

  14. Evaluation of tillage, cover crop, & herbicide effects on weed control, yield and grade in peanut?

    USDA-ARS?s Scientific Manuscript database

    Peanut production continues to play a large role in agriculture in the Southeastern United States and weed challenges persist. Therefore, it is important to reduce weed competition in peanut to protect yield and grade. With traditional use of herbicides for weed control in peanut and rotational crop...

  15. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  16. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil

    USDA-ARS?s Scientific Manuscript database

    The soil microbial component is essential for sustainable agricultural systems and soil health. This study evaluated the lasting impacts of 5 years of soil health improvements from alternative cropping systems compared to intensively tilled continuous cotton (Cont. Ctn) in a low organic matter sandy...

  17. Anaerobic Soil Disinfestation (ASD) Combined with Soil Solarization for Root-Knot Nematode Control in Vegetable and Ornamental Crops in Florida

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) combined with soil solarization continues to be evaluated for management of plant-parasitic nematodes in vegetable and ornamental crops in Florida. ASD combines organic amendments and soil saturation to stimulate microbial activity and create anaerobic conditions...

  18. Impact of preceding crop on alfalfa competitiveness with weeds

    USDA-ARS?s Scientific Manuscript database

    Organic producers would like to include no-till practices in their farming systems. We are seeking to develop a continuous no-till system for organic farming, based on a complex rotation that includes a 3-year sequence of alfalfa. In this study, we evaluated impact of preceding crop on weed infest...

  19. 7 CFR 400.137 - Procedures for salary offset; types of collection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Procedures for salary offset; types of collection. 400.137 Section 400.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP...-Regulations for the 1986 and Succeeding Crop Years § 400.137 Procedures for salary offset; types of collection...

  20. Population dynamics of Meloidogyne arenaria and Pasteuria penetrans in a long-term crop rotation study.

    USDA-ARS?s Scientific Manuscript database

    The endospore-forming bacterium Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). This study was a continuation of earlier research to determine the effect of crop sequence on abundance of the bacterium, and was conducted from 2000 to 2008 at a field site natura...

  1. 7 CFR 457.3 - Premium rates, production guarantees or amounts of insurance, coverage levels, and prices at...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Premium rates, production guarantees or amounts of... Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.3 Premium rates, production guarantees or...

  2. Semi-continuous anaerobic digestion of different silage crops: VFAs formation, methane yield from fiber and non-fiber components and digestate composition.

    PubMed

    Pokój, T; Bułkowska, K; Gusiatin, Z M; Klimiuk, E; Jankowski, K J

    2015-08-01

    This study presents the results of long-term semi-continuous experiments on anaerobic digestion at an HRT of 45d with ten silages: 2 annual and 4 perennial crops, and 4 mixtures of annual with perennial crops. The composition of substrates and digestates was determined with Van Soest's fractionation method. Removal of non-fiber materials ranged from 49.4% (Miscanthus sacchariflorus) to 89.3% (Zea mays alone and mixed with M. sacchariflorus), that of fiber materials like lignin ranged from 0.005% (Z. mays alone and mixed with grasses at VS ratio of 90:10%) to 46.5% (Sida hermaphrodita). The lowest stability of anaerobic digestion, as confirmed by normalized data concentrations of volatile fatty acids, was reported for both miscanthuses and sugar sorghum. The methane yield coefficients for non-fiber and fiber materials were 0.3666 and 0.2556L/g, respectively. All digestate residues had high fertilizing value, especially those from mixtures of crops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Patterns of Cereal Yield Growth across China from 1980 to 2010 and Their Implications for Food Production and Food Security

    PubMed Central

    Li, Xiaoyun; Liu, Nianjie; You, Liangzhi; Ke, Xinli; Liu, Haijun; Huang, Malan; Waddington, Stephen R.

    2016-01-01

    After a remarkable 86% increase in cereal production from 1980 to 2005, recent crop yield growth in China has been slow. County level crop production data between 1980 and 2010 from eastern and middle China were used to analyze spatial and temporal patterns of rice, wheat and maize yield in five major farming systems that include around 90% of China's cereal production. Site-specific yield trends were assessed in areas where those crops have experienced increasing yield or where yields have stagnated or declined. We find that rice yields have continued to increase on over 12.3 million hectares (m. ha) or 41.8% of the rice area in China between 1980 and 2010. However, yields stagnated on 50% of the rice area (around 14.7 m. ha) over this time period. Wheat yields increased on 13.8 m. ha (58.2% of the total harvest area), but stagnated on around 3.8 m. ha (15.8% of the harvest area). Yields increased on a smaller proportion of the maize area (17.7% of harvest area, 5.3 m. ha), while yields have stagnated on over 54% (16.3 m. ha). Many parts of the lowland rice and upland intensive sub-tropical farming systems were more prone to stagnation with rice, the upland intensive sub-tropical system with wheat, and maize in the temperate mixed system. Large areas where wheat yield continues to rise were found in the lowland rice and temperate mixed systems. Land and water constraints, climate variability, and other environmental limitations undermine increased crop yield and agricultural productivity in these systems and threaten future food security. Technology and policy innovations must be implemented to promote crop yields and the sustainable use of agricultural resources to maintain food security in China. In many production regions it is possible to better match the crop with input resources to raise crop yields and benefits. Investments may be especially useful to intensify production in areas where yields continue to improve. For example, increased support to maize production in southern China, where yields are still rising, seems justified. PMID:27404110

  4. Control of Salmonella Enteritidis in turkeys using organic acids and competitive exclusion product.

    PubMed

    Milbradt, E L; Zamae, J R; Araújo Júnior, J P; Mazza, P; Padovani, C R; Carvalho, V R; Sanfelice, C; Rodrigues, D M; Okamoto, A S; Andreatti Filho, R L

    2014-08-01

    To evaluate the use of organic acids (OAs) and competitive exclusion (CE) product administered continuously in the feed and transiently in drinking water on the control of Salmonella enterica subspecie enterica serotype Enteritidis (SE) prior to slaughter. The influence of treatments were evaluated on pH, population of the lactic acid bacteria (LAB) and bacteria of the family Enterobacteriaceae, concentration of volatile fatty acids and SE colonization in the crop and caecum. The birds were challenged with SE 24 h before being slaughtered, and then, the caeca and crop were removed and subjected to SE counts. Continuous administration of OAs reduced the population of bacteria from the Enterobacteriaceae family in both crop and caecum, positively influenced the butyric acid concentration and reduced SE colonization in the caecum. The diet supplemented with CE product positively influenced the quantity of LAB in the crop and caecum, elevated the butyric acid concentration and reduced both Enterobacteriaceae quantity and SE colonization in the caecum. There was no effect from administering the treatments via drinking water on the variables measured. Continuous supplementation in feed with OAs and CE product reduced SE colonization of the caeca. Supplementation of OAs and CE product in diet to turkeys can reduce the SE load, potentially leading to a lower contamination risk of meat during slaughter. © 2014 The Society for Applied Microbiology.

  5. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems. © 2013 Society of Chemical Industry.

  6. Global Adoption of Genetically Modified (GM) Crops: Challenges for the Public Sector.

    PubMed

    Huesing, Joseph E; Andres, David; Braverman, Michael P; Burns, Andrea; Felsot, Allan S; Harrigan, George G; Hellmich, Richard L; Reynolds, Alan; Shelton, Anthony M; Jansen van Rijssen, Wilna; Morris, E Jane; Eloff, Jacobus N

    2016-01-20

    Advances in biotechnology continue to drive the development of a wide range of insect-protected, herbicide-tolerant, stress-tolerant, and nutritionally enhanced genetically modified (GM) crops, yet societal and public policy considerations may slow their commercialization. Such restrictions may disproportionately affect developing countries, as well as smaller entrepreneurial and public sector initiatives. The 2014 IUPAC International Congress of Pesticide Chemistry (San Francisco, CA, USA; August 2014) included a symposium on "Challenges Associated with Global Adoption of Agricultural Biotechnology" to review current obstacles in promoting GM crops. Challenges identified by symposium presenters included (i) poor public understanding of GM technology and the need for enhanced communication strategies, (ii) nonharmonized and prescriptive regulatory requirements, and (iii) limited experience with regulations and product development within some public sector programs. The need for holistic resistance management programs to enable the most effective use of insect-protected crops was also a point of emphasis. This paper provides details on the symposium discussion and provides background information that can be used in support of further adoption of beneficial GM crops. Overall, it emphasizes that global adoption of modern agricultural biotechnology has not only provided benefits to growers and consumers but has great potential to provide solutions to an increasing global population and diminishing agricultural land. This potential will be realized by continued scientific innovation, harmonized regulatory systems, and broader communication of the benefits of the high-yielding, disease-resistant, and nutritionally enhanced crops attainable through modern biotechnology.

  7. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    PubMed

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard to avoid. For that reason, and in order to comply with international agreements to protect and enhance biodiversity, agriculture needs to focus on practices that are more environmentally friendly, including an overall reduction in pesticide use. (Pesticides are used for agricultural as well non-agricultural purposes. Most commonly they are used as plant protection products and regarded as a synonym for it and so also in this text.).

  8. [Effects of lime-ammonium bicarbonate fumigation and biofertilizer application on Fusarium wilt and biomass of continuous cropping cucumber and watermelon.

    PubMed

    Shen, Zong Zhuan; Sun, Li; Wang, Dong Sheng; Lyu, Na Na; Xue, Chao; Li, Rong; Shen, Qi Rong

    2017-10-01

    In this study, the population size of soil microbes was determined using plate counting method after the application of lime-ammonium bicarbonate and ammonium bicarbonate fumigation. In addition, biofertilizer was applied after soil fumigation and population of Fusarium oxysporum, Fusarium wilt disease control efficiency and plant biomass were determined in the cucumber and watermelon continuous cropping soil. The results showed that the population of F. oxysporum in cucumber mono-cropped soil fumigated with lime-ammonium bicarbonate or ammonium bicarbonate was decreased by 95.4% and 71.4%, while that in watermelon mono-cropped soil was decreased by 87.3% and 61.2%, respectively compared with non-fumigated control (CK). Furthermore, the greenhouse experiment showed that biofertilizer application, soil fumigation and crop type showed significant effects on the number of soil F. oxysporum, Fusarium wilt disease incidence, disease control efficiency and plant biomass based on multivariate analysis of variance. In the lime-ammonium bicarbonate fumigated soil amended with biofertilizer (LFB), significant reductions in the numbers of F. oxysporum and Fusarium wilt disease incidence were observed in both cucumber and watermelon cropped soil compared to non-fumigated control soil applied with organic fertilizer. The disease control rate was 91.9% and 92.5% for cucumber and watermelon, respectively. Moreover, LFB also significantly increased the plant height, stem diameter, leaf SPAD, and dry biomass for cucumber and watermelon. It was indicated that biofertilizer application after lime-ammonium bicarbonate fumigation could effectively reduce the abundance of F. oxysporum in soil, control Fusarium wilt disease and improve plant biomass in cucumber and watermelon mono-cropping systems.

  9. [Effect of substrate of edible mushroom on continuously cropping obstacle of Rehmannia glutinosa].

    PubMed

    Ru, Rui-Hong; Li, Xuan-Zhen; Hunag, Xiao-Shu; Gao, Feng; Wang, Jian-Ming; Li, Ben-Yin; Zhang, Zhong-Yi

    2014-08-01

    The continuous cultivation of Rehmannia glutinosa causes the accumulation of phenolic acids in soil. It is supposed to be the reason of the so called "continuously cropping obstacle". In this study, phenolic acids (hydroxybenzoic acid, vanillic acid, eugenol, vanillin and ferulic acid) were degraded by the extracta of all the tested spent mushroom substrate (SMS) and the maximal degradation rate was 75.3%, contributed by extraction of SMS of Pleurotus eryngii. Pot experiment indicated that hydroxybenzoic acid and vanillin in soil were also degraded effectively by SMS of P. eryngii. The employment of SMS enhanced ecophysiology index to near the normal levels, such as crown width, leaves number, leaf length, leaf width and height. At the same time, the fresh and dry weight and total catalpol concentration of tuberous root weight of R. glutinosa was increased to 2.70, 3.66, 2.25 times by employment of SMS, respectively. The increase of bacteria, fungi and actinomycetes numbers in rhizosphere soil were observed after the employment of SMS by microbial counts. The employment of SMS also enhanced the enzyme activity in soils, such as sucrase, cellulase, phosphalase, urease and catelase. These results indicated that the employment of SMS alleviated the continuously cropping obstacle of R. glutinosa in some extent.

  10. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize

    USDA-ARS?s Scientific Manuscript database

    On a land area and production basis, maize represents the majority of the crops that form the largest continuous ecosystem in temperate North America. Thus, any influence of atmospheric changes on maize is likely to have an impact on the region’s hydrological cycle. As a C4 crop, photosynthesis in ...

  11. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    PubMed

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  12. Spatial estimation from remotely sensed data via empirical Bayes models

    NASA Technical Reports Server (NTRS)

    Hill, J. R.; Hinkley, D. V.; Kostal, H.; Morris, C. N.

    1984-01-01

    Multichannel satellite image data, available as LANDSAT imagery, are recorded as a multivariate time series (four channels, multiple passovers) in two spatial dimensions. The application of parametric empirical Bayes theory to classification of, and estimating the probability of, each crop type at each of a large number of pixels is considered. This theory involves both the probability distribution of imagery data, conditional on crop types, and the prior spatial distribution of crop types. For the latter Markov models indexed by estimable parameters are used. A broad outline of the general theory reveals several questions for further research. Some detailed results are given for the special case of two crop types when only a line transect is analyzed. Finally, the estimation of an underlying continuous process on the lattice is discussed which would be applicable to such quantities as crop yield.

  13. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for irrigation water use can be reduced when adopting the SRI methodology in the future. The reducing of groundwater recharge could be supplemented by using 1,500 hectares of fallow paddy fields, located at proximal-fan region, as recharge pools in the wet season. The adoption of water-saving irrigation would be helpful for the relevant government agency to formulate the integral water resource management strategies in this region. Keywords:Groundwater recharge, SRI, FEMWATER, Field irrigation requirement

  14. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil.

    PubMed

    Ma, Hai-Yan; Yang, Bo; Wang, Hong-Wei; Yang, Qi-Yin; Dai, Chuan-Chao

    2016-01-15

    Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices. © 2015 Society of Chemical Industry.

  15. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Beusen, Arthur H. W.; Van Apeldoorn, Dirk F.; Mogollón, José M.; Yu, Chaoqing; Bouwman, Alexander F.

    2017-04-01

    Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900-2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.

  16. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  17. Benchmark study on glyphosate-resistant cropping systems in the United States. Part 4: Weed management practices and effects on weed populations and soil seedbanks.

    PubMed

    Wilson, Robert G; Young, Bryan G; Matthews, Joseph L; Weller, Stephen C; Johnson, William G; Jordan, David L; Owen, Micheal D K; Dixon, Philip M; Shaw, David R

    2011-07-01

    Weed management in glyphosate-resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field-scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post-emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate-resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non-GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry.

  18. Global income and production impacts of using GM crop technology 1996–2014

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697

  19. Global income and production impacts of using GM crop technology 1996-2014.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2016-01-02

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996-2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.

  20. The importance of long‐term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience

    PubMed Central

    Johnston, A. E.

    2018-01-01

    Summary Long‐term field experiments that test a range of treatments and are intended to assess the sustainability of crop production, and thus food security, must be managed actively to identify any treatment that is failing to maintain or increase yields. Once identified, carefully considered changes can be made to the treatment or management, and if they are successful yields will change. If suitable changes cannot be made to an experiment to ensure its continued relevance to sustainable crop production, then it should be stopped. Long‐term experiments have many other uses. They provide a field resource and samples for research on plant and soil processes and properties, especially those properties where change occurs slowly and affects soil fertility. Archived samples of all inputs and outputs are an invaluable source of material for future research, and data from current and archived samples can be used to develop models to describe soil and plant processes. Such changes and uses in the Rothamsted experiments are described, and demonstrate that with the appropriate crop, soil and management, acceptable yields can be maintained for many years, with either organic manure or inorganic fertilizers. Highlights Long‐term experiments demonstrate sustainability and increases in crop yield when managed to optimize soil fertility.Shifting individual response curves into coincidence increases understanding of the factors involved.Changes in inorganic and organic pollutants in archived crop and soil samples are related to inputs over time.Models describing soil processes are developed from current and archived soil data. PMID:29527119

  1. Cover crop root, shoot, and rhizodeposit contributions to soil carbon in a no- till corn bioenergy cropping system

    NASA Astrophysics Data System (ADS)

    Austin, E.; Grandy, S.; Wickings, K.; McDaniel, M. D.; Robertson, P.

    2016-12-01

    Crop residues are potential biofuel feedstocks, but residue removal may result in reduced soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass and as well as help to mitigate the negative effects of residue removal by adding belowground C to stable soil C pools. In a no-till continuous corn bioenergy system in the northern portion of the US corn belt, we used 13CO2 pulse labeling to trace C in a winter rye (secale cereale) cover crop into different soil C pools for two years following rye termination. Corn stover contributed 66 (another 163 was in harvested corn stover), corn roots 57, rye shoot 61, rye roots 59, and rye rhizodeposits 27 g C m-2 to soil C. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools and much of the root-derived C was in mineral- associated soil fractions. Our results underscore the importance of cover crop roots vs. shoots as a source of soil C. Belowground C inputs from winter cover crops could substantially offset short term stover removal in this system.

  2. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    PubMed

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest.

  3. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    PubMed

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  4. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    PubMed

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  5. Copula-based models of systemic risk in U.S

    Treesearch

    Barry K. Goodwin; Ashley Hungerford Hungerford

    2015-01-01

    The federal crop insurance program has been a major fixture of U.S. agricultural policy since the 1930s, and continues to grow in size and importance. Indeed, it now represents the most prominent farm policy instrument, accounting for more government spending than any other farm commodity program. The 2014 Farm Bill further expanded the crop insurance program and...

  6. Manifesting Destiny: A Land Education Analysis of Settler Colonialism in Jamestown, Virginia, USA

    ERIC Educational Resources Information Center

    McCoy, Kate

    2014-01-01

    Globally, colonization has been and continues to be enacted in the take-over of Indigenous land and the subsequent conversion of agriculture from diverse food and useful crops to large-scale monoculture and cash crops. This article uses a land education analysis to map the rise of the ideology and practices of Manifest Destiny in Virginia.…

  7. Uninformed and disinformed society and the GMO market.

    PubMed

    Twardowski, Tomasz; Małyska, Aleksandra

    2015-01-01

    The EU has a complicated regulatory framework, and this is slowing down the approval process of new genetically modified (GM) crops. Currently, labeling of GM organisms (GMOs) is mandatory in all Member States. However, the USA, in which GMO labeling is not mandatory, continues to lead the production of biotech crops, biopharmaceuticals, biomaterials, and bioenergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  9. Seed crop size variation in the dominant South American conifer Araucaria angustifolia

    NASA Astrophysics Data System (ADS)

    Souza, Alexandre F.; Uarte de Matos, Daniele; Forgiarini, Cristiane; Martinez, Jaime

    2010-01-01

    Temporal variation in seed crop size of the long-lived pioneer conifer Araucaria angustifolia was studied in subtropical South America. We evaluated the expectations that: 1) A. angustifolia presents highly variable seed production (mast seeding behavior); 2) A. angustifolia has endogenous cycles of reproduction of two or three years; 3) There is a tendency for a high seed production year to be followed by an unusually low production year; 4) populations show synchrony in seed production at a geographical scale; 5) seed crop size is influenced by distinct climatic factors occurring during "key" reproductive stages and 6) as an expression of plant productivity, seed crop size should depend on integrated resource availability during the reproductive cycle. We obtained data from two distinct sources: 1) seed harvesting records from a private forest (14 years), and 2) commercial data from 22 municipalities in the Rio Grande do Sul State. Expectations 1, 2, 3 and 5 were not met, while expectations 4 and 6 were supported by the data. A. angustifolia showed environmentally triggered, continuous, moderately fluctuating, and regionally synchronous reproduction. Seed set seems to track variations in resource abundance as well as respond continuously to improved opportunities for successful regeneration.

  10. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was similar at both depths, and POC was higher in CCS than in ICLS at 0-5 cm, while at 0-20 cm this trend was opposite. This is probably due to the presence of deep roots under pastures in ICLS. Delta carbon-13 values for 0-5 cm were -22.9, -21.2 and -19.9 per mil for REF, ICLS and CCS, respectively (P<0.05). The lower delta carbon-13 in REF soils is explained by the presence of tree species with high lignin content in natural vegetation. Lignin has lower delta carbon-13 compared to cellulose (dominating in crops and pastures), which is present in greater proportion in plant residues of ICLS and CCS. Delta carbon-13 for 0-20 cm depth was similar for both systems. This means that in CCS there was a higher C input from C4 plants than in ICLS and REF, reflecting corn-plant residue contribution to SOC, meanwhile the main component of SOC in ICLS derived from pasture-plant residues. Results showed that ICLS under no tillage improved SOC levels due to higher plant residue inputs derived mainly from pasture compared to continuous cropping systems.

  11. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China

    PubMed Central

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983–1999 and 2000–2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6–11.0% and 19.5–92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming. PMID:26336098

  12. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    PubMed

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  13. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  14. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  15. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    NASA Astrophysics Data System (ADS)

    B, Potgieter A.; D, Rodriguez; B, Power; J, Mclean; P, Davis

    2014-02-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (~1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible and 90m for thermal) satellite platforms. Results showed that spatial variations in crop yield were related to a satellite derived canopy stress index (CSIsat) and a moisture stress index (MSIsat). A weather station level canopy stress index (CSIws) calculated at midday was correlated to the CSIsat at late morning. In addition, a strong linear relationship was observed between EVI and LST at point scale throughout the crop growth period. Differences were smallest at anthesis when the canopy closure was highest. This suggests that LST imagery data around flowering could be used to calculate crop stress over large areas of the crop. The harvested yield was related (R2 = 0.67) to CSIsat using a fix date across all fields. This relationship improved (R2 = 0.92) using both indices from all five dates across all fields during the crop growth period. Here we successfully showed that satellite derived crop attributes (CSIsat and MSIsat) can account for most of the variability in final crop yield and that they can be used to predict crop yield at field scales. Applications of these results could enhance the ability of producers to hedge their financial on -farm crop production losses due to in-season water stress by taking crop insurance. This is likely to further improve their adaptive capacity and thus strengthening the long-term viability of the industry domestically and elsewhere.

  16. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.

    PubMed

    Yang, Zhenping; Yang, Wenping; Li, Shengcai; Hao, Jiaomin; Su, Zhifeng; Sun, Min; Gao, Zhiqiang; Zhang, Chunlai

    2016-01-01

    As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.

  17. Lab to farm: applying research on plant genetics and genomics to crop improvement.

    PubMed

    Ronald, Pamela C

    2014-06-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

  18. 26 CFR 1.451-6 - Election to include crop insurance proceeds in gross income in the taxable year following the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Election to include crop insurance proceeds in... (CONTINUED) INCOME TAXES Taxable Year for Which Items of Gross Income Included § 1.451-6 Election to include... or damage. (a) In general. (1) For taxable years ending after December 30, 1969, a taxpayer reporting...

  19. Cover cropping to reduce nitrate loss through subsurface drainage in the northern U.S. corn belt.

    PubMed

    Strock, J S; Porter, P M; Russelle, M P

    2004-01-01

    Despite the use of best management practices for nitrogen (N) application rate and timing, significant losses of nitrate nitrogen (NO3(-)-N) in drainage discharge continue to occur from row crop cropping systems. Our objective was to determine whether a autumn-seeded winter rye (Secale cereale L.) cover crop following corn (Zea mays L.) would reduce NO3(-)-N losses through subsurface tile drainage in a corn-soybean [Glycine mar (L.) Merr.] cropping system in the northern Corn Belt (USA) in a moderately well-drained soil. Both phases of the corn-soybean rotation, with and without the winter rye cover crop following corn, were established in 1998 in a Normania clay loam (fine-loamy, mixed, mesic Aquic Haplustoll) soil at Lamberton, MN. Cover cropping did not affect subsequent soybean yield, but reduced drainage discharge, flow-weighted mean nitrate concentration (FWMNC), and NO3(-)-N loss relative to winter fallow, although the magnitude of the effect varied considerably with annual precipitation. Three-year average drainage discharge was lower with a winter rye cover crop than without (p = 0.06). Over three years, subsurface tile-drainage discharge was reduced 11% and NO3(-)-N loss was reduced 13% for a corn-soybean cropping system with a rye cover crop following corn than with no rye cover crop. We estimate that establishment of a winter rye cover crop after corn will be successful in one of four years in southwestern Minnesota. Cover cropping with rye has the potential to be an effective management tool for reducing NO3(-)-N loss from subsurface drainage discharge despite challenges to establishment and spring growth in the north-central USA.

  20. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  1. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    PubMed

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  2. Role of modern chemistry in sustainable arable crop protection.

    PubMed

    Smith, Keith; Evans, David A; El-Hiti, Gamal A

    2008-02-12

    Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion into renewable fuels and chemical feedstocks. This will further increase the demand for higher crop yields per unit area, requiring chemicals used in crop production to be even more sophisticated. In order to contribute to programmes of integrated crop management, there is a requirement for chemicals to display high specificity, demonstrate benign environmental and toxicological profiles, and be biodegradable. It will also be necessary to improve production of those chemicals, because waste generated by the production process mitigates the overall benefit. Three aspects are considered in this review: advances in the discovery process for new molecules for sustainable crop protection, including tests for environmental and toxicological properties as well as biological activity; advances in synthetic chemistry that may offer efficient and environmentally benign manufacturing processes for modern crop protection chemicals; and issues related to energy use and production through agriculture.

  3. The Development of a Remote Sensor System and Decision Support Systems Architecture to Monitor Resistance Development in Transgenic Crops

    NASA Technical Reports Server (NTRS)

    Cacas, Joseph; Glaser, John; Copenhaver, Kenneth; May, George; Stephens, Karen

    2008-01-01

    The United States Environmental Protection Agency (EPA) has declared that "significant benefits accrue to growers, the public, and the environment" from the use of transgenic pesticidal crops due to reductions in pesticide usage for crop pest management. Large increases in the global use of transgenic pesticidal crops has reduced the amounts of broad spectrum pesticides used to manage pest populations, improved yield and reduced the environmental impact of crop management. A significant threat to the continued use of this technology is the evolution of resistance in insect pest populations to the insecticidal Bt toxins expressed by the plants. Management of transgenic pesticidal crops with an emphasis on conservation of Bt toxicity in field populations of insect pests is important to the future of sustainable agriculture. A vital component of this transgenic pesticidal crop management is establishing the proof of concept basic understanding, situational awareness, and monitoring and decision support system tools for more than 133650 square kilometers (33 million acres) of bio-engineered corn and cotton for development of insect resistance . Early and recent joint NASA, US EPA and ITD remote imagery flights and ground based field experiments have provided very promising research results that will potentially address future requirements for crop management capabilities.

  4. Detecting crop population growth using chlorophyll fluorescence imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  5. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact.

    PubMed

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  6. Genetically Modified Herbicide-Tolerant Crops, Weeds, and Herbicides: Overview and Impact

    NASA Astrophysics Data System (ADS)

    Bonny, Sylvie

    2016-01-01

    Genetically modified (GM) crops have been and continue to be a subject of controversy despite their rapid adoption by farmers where approved. For the last two decades, an important matter of debate has been their impact on pesticide use, particularly for herbicide-tolerant (HT) crops. Some claim that these crops bring about a decrease in herbicide use, while others claim the opposite. In fact, since 1996, most cultivated GMOs have been GMHT crops, which involve the use of an associated herbicide, generally glyphosate. In their very first years of adoption, HT crops often led to some decrease in herbicide use. However, the repetition of glyphosate-tolerant crops and of glyphosate only applications in the same fields without sufficient alternation and herbicide diversity has contributed to the appearance of glyphosate-resistant weeds. These weeds have resulted in a rise in the use of glyphosate and other herbicides. This article explores this situation and the impacts of herbicide-resistant weeds, using an interdisciplinary approach and drawing on recent data. The paper analyzes the spread of GMHT crops worldwide and their consequences on herbicide use in the USA in particular. It then addresses the global development of glyphosate-resistant weeds and their impact, particularly focusing on the USA. Finally, the last section explores how industry, farmers, and weed scientists are coping with the spread of resistant weeds. The concluding comments deal more widely with trends in GM crops.

  7. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE PAGES

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.; ...

    2016-10-03

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  8. Bioenergy cropping systems that incorporate native grasses stimulate growth of plant-associated soil microbes in the absence of nitrogen fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oates, Lawrence G.; Duncan, David S.; Sanford, Gregg R.

    The choice of crops and their management can strongly influence soil microbial communities and their processes. Here, we used lipid biomarker profiling to characterize how soil microbial composition of five potential bioenergy cropping systems diverged from a common baseline five years after they were established. The cropping systems we studied included an annual system (continuous no-till corn) and four perennial crops (switchgrass, miscanthus, hybrid poplar, and restored prairie). Partial- and no-stover removal were compared for the corn system, while N-additions were compared to unfertilized plots for the perennial cropping systems. Arbuscular mycorrhizal fungi (AMF) and Gram-negative biomass was higher inmore » unfertilized perennial grass systems, especially in switchgrass and prairie. Gram-positive bacterial biomass decreased in all systems relative to baseline values in surface soils (0–10 cm), but not subsurface soils (10–25 cm). Overall microbial composition was similar between the two soil depths. Our findings demonstrate the capacity of unfertilized perennial cropping systems to recreate microbial composition found in undisturbed soil environments and indicate how strongly agroecosystem management decisions such as N addition and plant community composition can influence soil microbial assemblages.« less

  9. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed Central

    Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.

    2016-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  10. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed

    Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E

    2015-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.

  11. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  12. Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States

    DOE PAGES

    Oates, Lawrence G.; Duncan, David S.; Gelfand, Ilya; ...

    2015-05-14

    Greenhouse gas (GHG) emissions from soils are a key sustainability metric of cropping systems. During crop establishment, disruptive land-use change is known to be a critical, but under reported period, for determining GHG emissions. We measured soil N 2O emissions and potential environmental drivers of these fluxes from a three-year establishment-phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS). Cropping systems treatments were annual monocultures (continuous corn, corn–soybean–canola rotation), perennial monocultures (switchgrass, miscanthus, and poplar), and perennial polycultures (native grass mixture, early successional community, and restored prairie) all grown using best management practices specific tomore » the system. Cumulative three-year N 2O emissions from annuals were 142% higher than from perennials, with fertilized perennials 190% higher than unfertilized perennials. Emissions ranged from 3.1 to 19.1 kg N 2O-N ha -1 yr -1 for the annuals with continuous corn > corn–soybean–canola rotation and 1.1 to 6.3 kg N 2O-N ha -1 yr -1 for perennials. Nitrous oxide peak fluxes typically were associated with precipitation events that closely followed fertilization. Bayesian modeling of N 2O fluxes based on measured environmental factors explained 33% of variability across all systems. Models trained on single systems performed well in most monocultures (e.g., R 2 = 0.52 for poplar) but notably worse in polycultures (e.g., R 2 = 0.17 for early successional, R 2 = 0.06 for restored prairie), indicating that simulation models that include N 2O emissions should be parameterized specific to particular plant communities. These results indicate that perennial bioenergy crops in their establishment phase emit less N 2O than annual crops, especially when not fertilized. These findings should be considered further alongside yield and other metrics contributing to important ecosystem services.« less

  13. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    PubMed Central

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  14. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Urban farming model in South Jakarta

    NASA Astrophysics Data System (ADS)

    Indrawati, E.

    2018-01-01

    The development of infrastructure rapidly, large of population and large of urbanization. Meanwhile, agricultural land is decreasing and agricultural production continues to decline. The productive crops is needed for consumption and it is also to improve the environment from oxygen provisioning, antidote to air pollution and to improve soil conditions. The use of yard land for horticultural crops (vegetables, fruits and ornamental plants), spices, medicines, herbs etc. can benefit for the owners of the yard particularly and the general public. The purpose of this research is to identify the model of home yard utilization, mosque yard, office, school, urban park and main road and sub main road, which can improve environmental quality in Pesanggrahan district. The method of analysis used descriptive analysis method by observation. Then analyzed the percentage of the use of yard with productive crops as urban farming. The results showed that the most productive crops were planted in Kelurahan Pesanggrahan 67% which compared with in Kelurahan Ulujami 47%, and in Kelurahan Petukangan Utara 27%. The most types of productive crops were grown as fruit trees and vegetable crops.

  16. Determining the potential productivity of food crops in controlled environments

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  17. Detection of meteorological extreme effect on historical crop yield anomaly

    NASA Astrophysics Data System (ADS)

    Kim, W.; Iizumi, T.; Nishimori, M.

    2017-12-01

    Meteorological extremes of temperature and precipitation are a critical issue in the global climate change, and some studies investigating how the extreme changes in accordance with the climate change are continuously reported. However, it is rarely understandable that the extremes affect crop yield worldwide as heatwave, coolwave, drought, and flood, albeit some local or national reports are available. Therefore, we globally investigated the extremes effects on the variability of historical yield of maize, rice, soy, and wheat with a standardized index and a historical yield anomaly. For the regression analysis, the standardized index is annually aggregated in the consideration of a crop calendar, and the historical yield is detrended with 5-year moving average. Throughout this investigation, we found that the relationship between the aggregated standardized index and the historical yield anomaly shows not merely positive correlation but also negative correlation in all crops in the globe. Namely, the extremes cause decrease of crop yield as a matter of course, but increase in some regions contrastingly. These results help us to quantify the extremes effect on historical crop yield anomaly.

  18. 40 CFR 73.81 - Qualified conservation measures and renewable energy generation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes, landfill gas, energy crops, and eligible components of municipal solid waste), solar, geothermal... renewable energy generation. 73.81 Section 73.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Energy Conservation and Renewable Energy...

  19. 40 CFR 73.81 - Qualified conservation measures and renewable energy generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes, landfill gas, energy crops, and eligible components of municipal solid waste), solar, geothermal... renewable energy generation. 73.81 Section 73.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE ALLOWANCE SYSTEM Energy Conservation and Renewable Energy...

  20. Accelerating plant breeding.

    PubMed

    De La Fuente, Gerald N; Frei, Ursula K; Lübberstedt, Thomas

    2013-12-01

    The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  2. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  3. Using water vapor isotopes to examine evapotranspiration dynamics in corn and miscanthus reveals challenges to the technique as well as seasonal differences between crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Bernacchi, C.

    2016-12-01

    Second-generation biofuel crops are being planted at an increasing extent around the globe. Changing land use from common field crops to perennial biofuel crops such as miscanthus or switchgrass is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. Partitioning was also accomplished with a combination of sap flow sensors and soil lysimeters. Preliminary results reveal that while daily transpiration fraction can be strongly influenced by meteorological events, the whole season transpiration fraction dominates variations in ET in miscanthus fields more so than in fields of maize.

  4. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management

    PubMed Central

    2010-01-01

    Since 1996, genetically modified herbicide-resistant (HR) crops, particularly glyphosate-resistant (GR) crops, have transformed the tactics that corn, soybean, and cotton growers use to manage weeds. The use of GR crops continues to grow, but weeds are adapting to the common practice of using only glyphosate to control weeds. Growers using only a single mode of action to manage weeds need to change to a more diverse array of herbicidal, mechanical, and cultural practices to maintain the effectiveness of glyphosate. Unfortunately, the introduction of GR crops and the high initial efficacy of glyphosate often lead to a decline in the use of other herbicide options and less investment by industry to discover new herbicide active ingredients. With some exceptions, most growers can still manage their weed problems with currently available selective and HR crop-enabled herbicides. However, current crop management systems are in jeopardy given the pace at which weed populations are evolving glyphosate resistance. New HR crop technologies will expand the utility of currently available herbicides and enable new interim solutions for growers to manage HR weeds, but will not replace the long-term need to diversify weed management tactics and discover herbicides with new modes of action. This paper reviews the strengths and weaknesses of anticipated weed management options and the best management practices that growers need to implement in HR crops to maximize the long-term benefits of current technologies and reduce weed shifts to difficult-to-control and HR weeds. PMID:20586458

  5. Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom (Agaricus bisporus) yield.

    PubMed

    Royse, Daniel J

    2010-01-01

    Double-cropping offers growers an opportunity to increase production efficiency while reducing costs. We evaluated degree of fragmentation, supplementation, and addition of phase II compost (PIIC) to 2nd break compost (2BkC) on mushroom yield and biological efficiency (BE%). One crop was extended as a triple crop in which we evaluated effect of compost type, and addition of phase II compost and supplement. All crops involved removing the casing layer after 2nd break and then using 2BkC for the various treatments. Simple fragmentation of the compost increased mushroom yield by 30% compared to non-fragmented compost. Addition of a commercial supplement to fragmented compost increased mushroom yield by 53-56% over non-supplemented, fragmented 2BkC. Fragmented, supplemented 2BkC resulted in a 99% and 108% yield increase over the non-fragmented control depending on degree of fragmentation (3x, 1x, respectively). A 3rd crop of mushrooms was produced from 2BkC, but yields were about one-half that of the 1st and 2nd crops. Double-cropping (and even triple-cropping) offers growers an opportunity to increase bio-efficiency, reduce production costs, and increase profitability. The cost of producing Agaricus bisporus continues to rise due to increasing expenses including materials, energy, and labor. Optimizing production practices, through double- or triple-cropping, could help growers become more efficient and competitive, and ensure the availability of mushrooms for consumers.

  6. Transfer of antibiotics from wastewater or animal manure to soil and edible crops.

    PubMed

    Pan, Min; Chu, L M

    2017-12-01

    Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log K ow ), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  8. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  9. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.

  10. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  11. Status of market, regulation and research of genetically modified crops in Chile.

    PubMed

    Sánchez, Miguel A; León, Gabriel

    2016-12-25

    Agricultural biotechnology and genetically modified (GM) crops are effective tools to substantially increase productivity, quality, and environmental sustainability in agricultural farming. Furthermore, they may contribute to improving the nutritional content of crops, addressing needs related to public health. Chile has become one of the most important global players for GM seed production for counter-season markets and research purposes. It has a comprehensive regulatory framework to carry out this activity, while at the same time there are numerous regulations from different agencies addressing several aspects related to GM crops. Despite imports of GM food/feed or ingredients for the food industry being allowed without restrictions, Chilean farmers are not using GM seeds for farming purposes because of a lack of clear guidelines. Chile is in a rather contradictory situation about GM crops. The country has invested considerable resources to fund research and development on GM crops, but the lack of clarity in the current regulatory situation precludes the use of such research to develop new products for Chilean farmers. Meanwhile, a larger scientific capacity regarding GM crop research continues to build up in the country. The present study maps and analyses the current regulatory environment for research and production of GM crops in Chile, providing an updated overview of the current status of GM seeds production, research and regulatory issues. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  13. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Weather based risks and insurances for agricultural production

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2015-04-01

    Extreme weather events such as frost, drought, heat waves and rain storms can have devastating effects on cropping systems. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The principle of return periods or frequencies of natural hazards is adopted in many countries as the basis of eligibility for the compensation of associated losses. For adequate risk management and eligibility, hazard maps for events with a 20-year return period are often used. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The impact of extreme weather events particularly during the sensitive periods of the farming calendar therefore requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event in the farming calendar. Physically based crop models such as REGCROP (Gobin, 2010) assist in understanding the links between different factors causing crop damage. Subsequent examination of the frequency, magnitude and impacts of frost, drought, heat stress and soil moisture stress in relation to the cropping season and crop sensitive stages allows for risk profiles to be confronted with yields, yield losses and insurance claims. The methodology is demonstrated for arable food crops, bio-energy crops and fruit. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. Though average yields have risen continuously due to technological advances, there is no evidence that relative tolerance to adverse weather events has improved. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.

  15. Worldwide Emerging Environmental Issues Affecting the U.S. Military. Summarizing Environmental Security Monthly Scanning May 2005 - May 2006

    DTIC Science & Technology

    2006-05-01

    breed of ‘refugee’ within international frameworks,” while Dr. Bogardi, Director of UNU’s Institute for Environment and Human Security in Bonn...Modified Organisms (GMOs) Continues FAO calls for an international framework for GM trees GM Crops Created Superweed Europe to Redouble Efforts to...avoid eventual damages to their crops , to protection of endangered species that need special habitat conditions. Enviromatics could impact

  16. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  17. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  18. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  19. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  20. 32 CFR 644.507 - Sales.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Sales. 644.507 Section 644.507 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.507 Sales. DEs will...

  1. Sensible heat balance measurements of soil water evaporation beneath a maize canopy

    USDA-ARS?s Scientific Manuscript database

    Soil water evaporation is an important component of the water budget in a cropped field. Few methods are available for continuous and independent measurement of soil water evaporation. A sensible heat balance (SHB) approach has recently been demonstrated for continuously determining soil water evapo...

  2. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  3. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  4. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    PubMed Central

    Otto, Clint R. V.; Roth, Cali L.; Carlson, Benjamin L.; Smart, Matthew D.

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes. PMID:27573824

  5. Soil Organic Matter Quality of an Oxisol Affected by Plant Residues and Crop Sequence under No-Tillage

    NASA Astrophysics Data System (ADS)

    Cora, Jose; Marcelo, Adolfo

    2013-04-01

    Plant residues are considered the primarily resource for soil organic matter (SOM) formation and the amounts and properties of plant litter are important controlling factors for the SOM quality. We determined the amounts, quality and decomposition rate of plant residues and the effects of summer and winter crop sequences on soil organic C (TOC) content, both particulate organic C (POC) and mineral-associated organic C (MOC) pools and humic substances in a Brazilian Rhodic Eutrudox soil under a no-tillage system. The organic C analysis in specifics pools used in this study was effective and should be adopted in tropical climates to evaluate the soil quality and the sustainability of various cropping systems. Continuous growth of soybean (Glycine max L. Merrill) on summer provided higher contents of soil POC and continuous growth of maize (Zea mays L.) provided higher soil humic acid and MOC contents. Summer soybean-maize rotation provided the higher plant diversity, which likely improved the soil microbial activity and the soil organic C consumption. The winter sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp), oilseed radish (Raphanus sativus L.) and pearl millet (Pennisetum americanum (L.) Leeke) enhanced the soil MOC, a finding that is attributable to the higher N content of the crop residue. Sunn hemp and pigeon pea provided the higher soil POC content. Sunn hemp showed better performance and positive effects on the SOM quality, making it a suitable winter crop choice for tropical conditions with a warm and dry winter.

  6. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern institutions established to evaluate how conservation practices, including cover crops, improve the resilience of Midwest agriculture to future change. Such collaborations can help better quantify long term impacts of conservation practices on the landscape that ultimately lead to more climate-smart management of such agricultural systems.

  7. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

    PubMed Central

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154

  8. Real-time x-ray fluorescence analysis of crop canopy to spatially assess phytoextraction efficiency and subsurface status of low-Z elements: a case study for phosphorus

    NASA Astrophysics Data System (ADS)

    Dao, Thanh

    2017-04-01

    Leaf analysis has been extensively used to interpret results of nutrient supplementation studies about crop growth and yield responses, and to define availability thresholds for a wide range of soils and climatic conditions. The compositional results reflect the nutritional status, uptake efficiency, and the geo-chemical environment of the element in the subsurface. An X-ray fluorescence (XRF)-based proximal sensing approach was evaluated and proposed for real-time determination of water content and element-specific composition of corn seedling leaves, which was comprised mostly of essential macronutrients of low-atomic number Z, such as phosphorus (P) or potassium. Intensities of scattered radiation associated with the X-ray tube Ag anode were significantly correlated with leaf water content (θw), which was used to normalize fluorescence intensities of P. Crop canopy water status was also obtained as ancillary data. The θw - P relative concentration relationship was best described by a sigmoidal function (r2 = 0.938 and RMSE=0.02). The Ag-Lα line was deemed to be effective for normalizing the intensities of Kα lines of P and other low-Z elements, in addition to the commonly used Kα and Kβ lines. Its intensity was significantly correlated to leaf water content and was used to develop calibrations and obtain P concentration on a dry weight basis and unbiased estimates of crop P status. Therefore, the in situ fluorescence sensing system presents a new paradigm in nutrient management to re-evaluate calibrations of observed crop responses against those predicted by current soil testing and fertility recommendations. Updates to the rates of supplemental P and crop growth response relationships are critically needed as crop cultivars, supplemental P sources, or alternative soil-crop management systems are continually changing. Changes in soil microenvironments that are site- or field-specific, and climate are expected to continue to be the norm and can modify those soil-plant relationships. The high-throughput of hand-held XRFS enhances our ability to make management adjustment, particularly at the short early stages of growth, when crop plants are most susceptible to P deficiency. The precision of macronutrient management can be applied at a field-specific scale. As the process can be repeated for each growing season, the knowledge base of soil fertility, crop extraction efficiency and uptake, and elemental availability can only grow in time to improve the predictability of site-specific plant responses to given yield goals and levels of nutrient and soil management inputs. Matching nutrient supply to actual levels needed by the crop minimizes loss of excess agricultural inputs and reduces the risks of adverse impact on the health of the surrounding soil and water resources.

  9. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  10. Forest amount affects soybean productivity in Brazilian agricultural frontier

    NASA Astrophysics Data System (ADS)

    Rattis, L.; Brando, P. M.; Marques, E. Q.; Queiroz, N.; Silverio, D. V.; Macedo, M.; Coe, M. T.

    2017-12-01

    Over the past three decades, large tracts of tropical forests have been converted to crop and pasturelands across southern Amazonia, largely to meet the increasing worldwide demand for protein. As the world's population continue to grow and consume more protein per capita, forest conversion to grow more crops could be a potential solution to meet such demand. However, widespread deforestation is expected to negatively affect crop productivity via multiple pathways (e.g., thermal regulation, rainfall, local moisture, pest control, among others). To quantify how deforestation affects crop productivity, we modeled the relationship between forest amount and enhanced vegetation index (EVI—a proxy for crop productivity) during the soybean planting season across southern Amazonia. Our hypothesis that forest amount causes increased crop productivity received strong support. We found that the maximum MODIS-based EVI in soybean fields increased as a function of forest amount across three spatial-scales, 0.5 km, 1 km, 2 km, 5 km, 10 km, 15 km and 20 km. However, the strength of this relationship varied across years and with precipitation, but only at the local scale (e.g., 500 meters and 1 km radius). Our results highlight the importance of considering forests to design sustainable landscapes.

  11. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices

    NASA Astrophysics Data System (ADS)

    Eanes, Francis R.; Singh, Ajay S.; Bulla, Brian R.; Ranjan, Pranay; Prokopy, Linda S.; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J.

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers ( n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  12. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices.

    PubMed

    Eanes, Francis R; Singh, Ajay S; Bulla, Brian R; Ranjan, Pranay; Prokopy, Linda S; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers (n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  13. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Technical Reports Server (NTRS)

    Hill, W. A.; Mortley, D. G.; Loretan, P. A.; Bonsi, C. K.; Morris, C. E.; Mackowiak, C. L.; Wheeler, R. M.; Tibbitts, T. W.

    1992-01-01

    Among the crops selected by NASA for growth in controlled ecological life-support systems are four that have subsurface edible parts: potatoes, sweet potatoes, sugar beets and peanuts. These crops can be produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent, and high-pressure sodium-plus-metal-halide lamps have proven to be effective light sources. Continuous light with 16-C and 28/22-C (day/night) temperatures produce highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g/sq m for potatoes, sweet potatoes, sugar beets and peanuts, respectively, are produced in controlled environment hydroponic systems.

  14. CHALLENGES AND STRATEGIES ON FIBROUS FEEDSTUFFS DENSIFICATION AND ITS INTERACTION WITH LIQUID INGREDIENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pordesimo, Lester O.; Tumuluru, Jaya Shankar

    2015-10-01

    There has been continuing interest and support in using herbaceous biomass, mostly agricultural crop residues, in the U.S. as feedstocks for producing bioenergy, liquid transportation fuels, and industrial chemicals/materials. With the potential of greater collection of agricultural crop residues for the foregoing industrial applications there will be a commensurate greater availability of crop residues for utilization in agricultural production. Agricultural crop residues are typically used in agricultural production as roughage or bedding for cattle. Use of herbaceous biomass, corn stover of greatest interest at the present time, and processing coproducts thereof, as a feed ingredient presents an opportunity to reducemore » ration costs and improve livestock enterprise profitability by replacing an amount of corn and other feed grains in livestock diets with proper formulation. The obvious advantage of utilizing corn stover is its wide availability and low cost.« less

  15. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Remote sensing for vineyard management

    NASA Technical Reports Server (NTRS)

    Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.

    1980-01-01

    Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.

  17. A Comparison of Crop Yields Using El Nino and Non-El Nino Climatological Data in a Crop Model

    DTIC Science & Technology

    1990-01-01

    Limiting 4. Irrigation Inputs and Water Balance Switch 5. Fertili =er Inputs 6. Sele: New Variety 7. Soi: Prof’le inou:s (Water Salance,Root Pre...PLANTS/SG METE GENETIC SPECIFIC CONSTANTS 6fq E2 =10.8 0 0 P5= 6 8 5 .0 0 1 ..-’E DA’ CuLOT-6NWCON= .30 RUNOFF CURVE NO.= 79.0 Press "Enter" to continue

  18. Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy.

    PubMed

    Kitinoja, Lisa; Saran, Sunil; Roy, Susanta K; Kader, Adel A

    2011-03-15

    This article discusses the needs and challenges of developing good, science-based, simple methods for postharvest handling that can be made available in developing countries. Some of the traditional challenges have been successfully met (i.e. identifying causes and sources of losses for key crops, identifying many potential postharvest technologies of practical use for reducing losses), but many challenges remain. These include the characterization of indigenous crops in terms of their unique postharvest physiology (e.g. respiration rate, susceptibility to water loss, chilling sensitivity, ethylene sensitivity), ascertaining the differences between handling recommendations made for well-known varieties and the needs of local varieties of crops, and determining cost effectiveness of scale-appropriate postharvest technologies in each locale and for each crop. Key issues include building capacity at the local level in postharvest science, university teaching and extension, and continued adaptive research efforts to match emerging postharvest technologies to local needs as these continue to change over time. Development of appropriate postharvest technology relies upon many disciplines that are relevant to the overall success of horticulture, i.e. plant biology, engineering, agricultural economics, food processing, nutrition, food safety, and environmental conservation. The expanding pool of new information derived from postharvest research and outreach efforts in these areas can lead in many directions which are likely to have an impact on relieving poverty in developing countries. Copyright © 2011 Society of Chemical Industry.

  19. Agriculture: Soils

    EPA Pesticide Factsheets

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  20. Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop.

    PubMed

    Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John

    2017-04-01

    One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.

  1. Assessing cover crop management under actual and climate change conditions.

    PubMed

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Insight into the effects of different cropping systems on soil bacterial community and tobacco bacterial wilt rate.

    PubMed

    Niu, Jiaojiao; Chao, Jin; Xiao, Yunhua; Chen, Wu; Zhang, Chao; Liu, Xueduan; Rang, Zhongwen; Yin, Huaqun; Dai, Linjian

    2017-01-01

    Rotation is an effective strategy to control crop disease and improve plant health. However, the effects of crop rotation on soil bacterial community composition and structure, and crop health remain unclear. In this study, using 16S rRNA gene sequencing, we explored the soil bacterial communities under four different cropping systems, continuous tobacco cropping (control group), tobacco-maize rotation, tobacco-lily rotation, and tobacco-turnip rotation. Results of detrended correspondence analysis and dissimilarity tests showed that soil bacterial community composition and structure changed significantly among the four groups, such that Acidobacteria and Actinobacteria were more abundant in the maize rotation group (16.6 and 11.5%, respectively) than in the control (8.5 and 7.1%, respectively). Compared with the control group (57.78%), maize and lily were effective rotation crops in controlling tobacco bacterial wilt (about 23.54 and 48.67%). On the other hand, tobacco bacterial wilt rate was increased in the turnip rotation (59.62%) relative to the control. Further study revealed that the abundances of several bacterial populations were directly correlated with tobacco bacterial wilt. For example, Acidobacteria and Actinobacteria were significantly negatively correlated to the tobacco bacterial wilt rate, so they may be probiotic bacteria. Canonical correspondence analysis showed that soil pH and calcium content were key factors in determining soil bacterial communities. In conclusion, our study revealed the composition and structure of bacterial communities under four different cropping systems and may unveil molecular mechanisms for the interactions between soil microorganisms and crop health. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The oldest, continuous cotton experiments in the world

    USDA-ARS?s Scientific Manuscript database

    In the late 1800s, the Southern U.S. was producing most of the world’s cotton on highly erodible soils with little or no lime or fertilizer inputs. Continuous cotton with no cover crops was taking a toll from the land and its farmers. Land Grant Universities and Experiment Stations were just getti...

  4. Continued support of long-term research - the old rotation

    USDA-ARS?s Scientific Manuscript database

    The “Old Rotation” experiment (circa 1896) is the oldest continuous cotton study in the world and the third oldest field crops experiment in the U.S. on the same site. The complete history of this experiment was published in 2008 in the centennial issue of Agronomy Journal (C.C. Mitchell, D.P. Delan...

  5. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    NASA Astrophysics Data System (ADS)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.

  6. Evaluation of Cuphea as a rotation crop for control of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, Robert W; Isbell, Terry A

    2005-12-01

    The ability to prevent significant root feeding damage to corn, Zea mays L., by the western corn rootworm, Diabrotica virgifera virgifera LeConte, by crop rotation with soybean, Glycine max (L.) Merr., has been lost in portions of the Corn Belt because this pest has adapted to laying eggs in soybean fields. Cuphea spp. has been proposed as a new broadleaf crop that may provide an undesirable habitat for rootworm adults because of its sticky surface and therefore may reduce or prevent oviposition in these fields. A 4-yr study (1 yr to establish seven rotation programs followed by 3 yr of evaluation) was conducted to determine whether crop rotation with Cuphea would provide cultural control of corn rootworm. In support of Cuphea as a rotation crop, fewer beetles were captured by sticky traps in plots of Cuphea over the 4 yr of this study compared with traps in corn and soybean, suggesting that fewer eggs may be laid in plots planted to Cuphea. Also, corn grown after Cuphea was significantly taller during vegetative growth, had significantly lower root damage ratings for 2 of 3 yr, and had significantly higher yields for 2 of 3 yr compared with continuous corn plots. In contrast to these benefits, growing Cuphea did not prevent economic damage to subsequent corn crops as indicated by root damage ratings > 3.0 recorded for corn plants in plots rotated from Cuphea, and sticky trap catches that exceeded the threshold of five beetles trap(-1) day(-1). Beetle emergence from corn plots rotated from Cuphea was significantly lower, not different and significantly higher compared with beetle emergence from continuous corn plots for 2002, 2003 and 2004 growing seasons, respectively. A high number of beetles were captured by emergence cages in plots planted to Cuphea, indicating that rootworm larvae may be capable of completing larval development by feeding on roots of Cuphea, although peak emergence lagged approximately 4 wk behind peak emergence from corn. Based on these data, it is unlikely that crop rotation with Cuphea will provide consistent, economical, cultural control of corn rootworm.

  7. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.

    2017-12-01

    Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be compounded by declining groundwater levels along the western edge of the High Plains Aquifer that increase reliance on dryland farming systems. Understanding these challenges provides opportunities to develop future transition and adaptation strategies in partnership with producers, policy makers, and rural communities.

  8. Ranking agricultural practices on soil water improvements: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Basche, A.; DeLonge, M. S.; Gonzalez, J.

    2016-12-01

    Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.

  9. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through additional plant biomass (agroforestry, hedges and cover crops) resulted in higher additional C storage rates, while the reduction of soil organic matter mineralisation through reduced tillage seemed less effective. When applied to the French agricultural sector, excluding areas with soils with major technical constraints or negative environmental consequences (e.g. poorly aerated soils with high N2O emissions), the measures considered here allowed to increase French soil C stocks by 0 to more than 1 Tg C y-1. However, our estimates are associated with high uncertainties, due to the high variability in soil C storage associated with pedo-climatic conditions and cropping systems, and on the very few studies available for some practices such as agroforestry under temperate conditions.

  10. A systems approach to identify adaptation strategies for Midwest US cropping systems under increased climate variability and change.

    NASA Astrophysics Data System (ADS)

    Basso, B.; Dumont, B.

    2015-12-01

    A systems approach was implemented to assess the impact of management strategies and climate variability on crop yield, nitrate leaching and soil organic carbon across the the Midwest US at a fine scale spatial resolution. We used the SALUS model which designed to simulated yield and environmental outcomes of continous crop rotations under different agronomic management, soil, weather. We extracted soil parameters from the SSURGO (Soil Survey Geographic) data of nine Midwest states (IA, IL, IN, MI, MN, MO, OH, SD, WI) and weather from NARR (North American Regional Reanalysis). State specific management itineraries were extracted from USDA-NAS. We present the results different cropping systems (continuous corn, corn-soybean and extended rotations) under different management practices (no-tillage, cover crops and residue management). Simulations were conducted under both the baseline (1979-2014) and projected climatic projections (RCP2.5, 6). Results indicated that climate change would likely have a negative impact on corn yields in some areas and positive in others. Soil N, and C losses can be reduced with the adoption of conservation practices.

  11. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during the sensitive stages of summer crops increases and may be further aggravated by atmospheric moisture deficits and heat stress. Summer crops may therefore benefit from earlier planting dates and beneficial moisture conditions during early canopy development, but will suffer from increased drought and heat stress during crop maturity. During the harvesting stages, the number of waterlogged days increases in particular for tuber crops. Physically based crop models assist in understanding the links between different factors causing crop damage. The approach allows for assessing the meteorological impacts on crop growth due to the sensitive stages occurring earlier during the growing season and due to extreme weather events. Though average yields have risen continuously between 1947 and 2008 mainly due to technological advances, there is no evidence that relative tolerance to adverse weather conditions such as atmospheric moisture deficit and temperature extremes has changed.

  12. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.

    2015-12-01

    California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.

  14. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  15. Identification of residues of sulfosulfuron and its metabolites in subsoil-dissipation kinetics and factors influencing the stability and degradation of residues from topsoil to subsoil under predominant cropping conditions.

    PubMed

    Atmakuru, Ramesh; Perumal Elumalai, Thirugnanam; Sivanandam, Sathiyanarayanan

    2007-07-01

    Long term stability of sulfosulfuron was investigated in subsoil under the natural wheat cropping conditions. Experiments were conducted by applying a commercial formulation of sulfosulfuron on soil at 50 g/ha and 100 g/ha. To understand the factors influencing the persistence of residues two different experiments were conducted. In one experiment wheat crop was cultivated once at the beginning of the two years study period and subsequently the plots were kept undisturbed for the remaining period. In another experiment cultivation of subsequent crops were continued during the study period. In both the cases sulfosulfuron was applied only once at the beginning of the study. Representative soil samples were collected from the depths viz., 0-5, 15, 30, 45, 60 and 90 cm on different pre determined sampling occasions 50, 100, 200, 300, 400, 500 and 600 days after the application of the herbicide. The collected soil samples were analyzed for the residues of sulfosulfuron. Under the influence of continuous cropping conditions residues of sulfosulfuron were found to be relatively low when compared with the soil samples collected from the agriculture plots maintained without any cultivation. The residues detected are in the range 0.001 to 0.017 microg/g. Samples collected from the depth, at 30 to 45 cm showed higher residual concentrations. Soil samples were also showed the presence of break down products. The data has been confirmed by LC-MS/MS. The relation between residue content of sulfosulfuron and the factors contributing the stability of herbicide concentration were also studied.

  16. Modifying agricultural crops for improved nutrition.

    PubMed

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  17. Some Findings of the Viet Cong Motivation and Morale Study: June-December 1965

    DTIC Science & Technology

    1966-02-01

    An Evaluation of Chemical Crop Destruction in Vietnam, R. Betts, F. Deiton, October 1967. RM-5450-1 A Statistical Analysis of the U.S. Crop Spraying...advantage of surprise, of superior numbers, and of being dug in, while the ARVN must fight in the open. DEFOLIATION Fear of chemical spray continued to...the impression that the Americans were making extensive use of chemical warfare. The Viet Cong appear to avoid defoliated areas from fear of detec

  18. Natural Products in the Discovery of Agrochemicals.

    PubMed

    Loiseleur, Olivier

    2017-12-01

    Natural products have a long history of being used as, or serving as inspiration for, novel crop protection agents. Many of the discoveries in agrochemical research in the last decades have their origin in a wide range of natural products from a variety of sources. In light of the continuing need for new tools to address an ever-changing array of fungal, weed and insect pests, new agricultural practices and evolving regulatory requirements, the needs for new agrochemical tools remains as critical as ever. In that respect, nature continues to be an important source for novel chemical structures and biological mechanisms to be applied for the development of pest control agents. Here we review several of the natural products and their derivatives which contributed to shape crop protection research in past and present.

  19. Time Series Analysis of Remote Sensing Observations for Citrus Crop Growth Stage and Evapotranspiration Estimation

    NASA Astrophysics Data System (ADS)

    Sawant, S. A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S. S.

    2016-06-01

    Satellite based earth observation (EO) platforms have proved capability to spatio-temporally monitor changes on the earth's surface. Long term satellite missions have provided huge repository of optical remote sensing datasets, and United States Geological Survey (USGS) Landsat program is one of the oldest sources of optical EO datasets. This historical and near real time EO archive is a rich source of information to understand the seasonal changes in the horticultural crops. Citrus (Mandarin / Nagpur Orange) is one of the major horticultural crops cultivated in central India. Erratic behaviour of rainfall and dependency on groundwater for irrigation has wide impact on the citrus crop yield. Also, wide variations are reported in temperature and relative humidity causing early fruit onset and increase in crop water requirement. Therefore, there is need to study the crop growth stages and crop evapotranspiration at spatio-temporal scale for managing the scarce resources. In this study, an attempt has been made to understand the citrus crop growth stages using Normalized Difference Time Series (NDVI) time series data obtained from Landsat archives (http://earthexplorer.usgs.gov/). Total 388 Landsat 4, 5, 7 and 8 scenes (from year 1990 to Aug. 2015) for Worldwide Reference System (WRS) 2, path 145 and row 45 were selected to understand seasonal variations in citrus crop growth. Considering Landsat 30 meter spatial resolution to obtain homogeneous pixels with crop cover orchards larger than 2 hectare area was selected. To consider change in wavelength bandwidth (radiometric resolution) with Landsat sensors (i.e. 4, 5, 7 and 8) NDVI has been selected to obtain continuous sensor independent time series. The obtained crop growth stage information has been used to estimate citrus basal crop coefficient information (Kcb). Satellite based Kcb estimates were used with proximal agrometeorological sensing system observed relevant weather parameters for crop ET estimation. The results show that time series EO based crop growth stage estimates provide better information about geographically separated citrus orchards. Attempts are being made to estimate regional variations in citrus crop water requirement for effective irrigation planning. In future high resolution Sentinel 2 observations from European Space Agency (ESA) will be used to fill the time gaps and to get better understanding about citrus crop canopy parameters.

  20. Growing root, tuber and nut crops hydroponically for CELSS.

    PubMed

    Hill, W A; Mortley, D G; Mackowiak, C L; Loretan, P A; Tibbitts, T W; Wheeler, R M; Bonsi, C K; Morris, C E

    1992-01-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  1. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop health and yield across and within fields, and improving the identification of crop areas ready for harvest.

  3. Satellite passive microwave detection of surface water inundation changes over the pan-Arctic from AMSR

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Jones, L. A.; Watts, J. D.

    2016-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical crops will be explored. Those impacts include discussions on productivity, yield, and influences on carbon and energy fluxes.

  4. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    USDA-ARS?s Scientific Manuscript database

    The effects of cotton (Gossypium hirsutum L.):soybean [Glycine max (L.) Merr.] rotations on the soil fertility levels are limited. An irrigated soybean:cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, MS. Rotation sequences were; continuous soybean, continuous cotton...

  5. Performance of Continuous CO2 Measurements in Soils: A Preliminary Assessment

    USDA-ARS?s Scientific Manuscript database

    Sensors for the continuous measurement of CO2 concentrations in soil are available but are not validated for real time, in situ measurement of CO2 in actively growing cropping systems. This study evaluated the Vaisala GM222 CO2 sensor over a range of soil conditions in the greenhouse and in the fiel...

  6. Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.

  7. RNA interference as a resistance mechanism against crop parasites in Africa: a 'Trojan horse' approach.

    PubMed

    Runo, Steven; Alakonya, Amos; Machuka, Jesse; Sinha, Neelima

    2011-02-01

    Biological crop pests cause serious economic losses. In Africa, the most prevalent parasites are insect pests, plant pathogenic root-knot nematodes, viruses and parasitic plants. African smallholder farmers struggle to overcome these parasitic constraints to agricultural production. Crop losses and the host range of these parasites have continued to increase in spite of the use of widely advocated control methods. A sustainable method to overcome biological pests in Africa would be to develop crop germplasm resistant to parasites. This is achievable using either genetic modification (GM) or a non-GM approach. However, there is a paucity of resistant genes available for introduction. Additionally, the biological processes underpinning host parasite resistance are not sufficiently well understood. The authors review a technology platform for using RNA-mediated interference (RNAi) as bioengineered resistance to important crop parasites in Africa. To achieve acquired resistance, a host crop is stably transformed with a transgene that encodes a hairpin RNA targeting essential parasitic genes. The RNAi sequence is chosen in such a way that it shares no homology with the host's genes, so it remains 'inactive' until parasitism. Upon parasitism, the RNAi sequence enters the parasite and post-transcriptional gene silencing (PTGS) mechanisms are activated, leading to the death of the parasite. Copyright © 2010 Society of Chemical Industry.

  8. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  9. Assuring the safety of genetically modified (GM) foods: the importance of an holistic, integrative approach.

    PubMed

    Cockburn, Andrew

    2002-09-11

    Genes change continuously by natural mutation and recombination enabling man to select and breed crops having the most desirable traits such as yield or flavour. Genetic modification (GM) is a recent development which allows specific genes to be identified, isolated, copied and inserted into other plants with a high level of specificity. The food safety considerations for GM crops are basically the same as those arising from conventionally bred crops, very few of which have been subject to any testing yet are generally regarded as being safe to eat. In contrast a rigorous safety testing paradigm has been developed for GM crops, which utilises a systematic, stepwise and holistic approach. The resultant science based process, focuses on a classical evaluation of the toxic potential of the introduced novel trait and the wholesomeness of the transformed crop. In addition, detailed consideration is given to the history and safe use of the parent crop as well as that of the gene donor. The overall safety evaluation is conducted under the concept known as substantial equivalence which is enshrined in all international crop biotechnology guidelines. This provides the framework for a comparative approach to identify the similarities and differences between the GM product and its comparator which has a known history of safe use. By building a detailed profile on each step in the transformation process, from parent to new crop, and by thoroughly evaluating the significance from a safety perspective, of any differences that may be detected, a very comprehensive matrix of information is constructed which enables the conclusion as to whether the GM crop, derived food or feed is as safe as its traditional counterpart. Using this approach in the evaluation of more than 50 GM crops which have been approved worldwide, the conclusion has been that foods and feeds derived from genetically modified crops are as safe and nutritious as those derived from traditional crops. The lack of any adverse effects resulting from the production and consumption of GM crops grown on more than 300 million cumulative acres over the last 5 years supports these safety conclusions.

  10. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    There is a continuing need to develop new sources of information on agricultural crop water consumption in the arid Western U.S. Pursuant to the California Water Conservation Act of 2009, for instance, the stakeholder community has developed a set of quantitative indicators involving measurement of evapotranspiration (ET) or crop consumptive use (Calif. Dept. Water Resources, 2012). Fraction of reference ET (or, crop coefficients) can be estimated from a biophysical description of the crop canopy involving green fractional cover (Fc) and height as per the FAO-56 practice standard of Allen et al. (1998). The current study involved 19 fields in California's San Joaquin Valley and Central Coast during 2011-12, growing a variety of specialty and commodity crops: lettuce, raisin, tomato, almond, melon, winegrape, garlic, peach, orange, cotton, corn and wheat. Most crops were on surface or subsurface drip, though micro-jet, sprinkler and flood were represented as well. Fc was retrospectively estimated every 8-16 days by optical satellite data and interpolated to a daily timestep. Crop height was derived as a capped linear function of Fc using published guideline maxima. These variables were used to generate daily basal crop coefficients (Kcb) per field through most or all of each respective growth cycle by the density coefficient approach of Allen & Pereira (2009). A soil water balance model for both topsoil and root zone, based on FAO-56 and using on-site measurements of applied irrigation and precipitation, was used to develop daily soil evaporation and crop water stress coefficients (Ke, Ks). Key meteorological variables (wind speed, relative humidity) were extracted from the California Irrigation Management Information System (CIMIS) for climate correction. Basal crop ET (ETcb) was then derived from Kcb using CIMIS reference ET. Adjusted crop ET (ETc_adj) was estimated by the dual coefficient approach involving Kcb, Ke, and incorporating Ks. Cumulative ETc_adj throughout each monitoring period was lower than cumulative ETb for most crops, indicating that effect of water stress tended to exceed that of soil evaporation relative to basal conditions. We present results from the analysis and discuss implications for operational use of satellite-based Kcb and ETcb estimates for agricultural water resource management.

  11. Perspectives on transgenic, herbicide-resistant crops in the United States almost 20 years after introduction.

    PubMed

    Duke, Stephen O

    2015-05-01

    Herbicide-resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate-resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate-resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate-resistant crops over broad areas facilitated the evolution of glyphosate-resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate-resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl-CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate-resistant crops had initially. In the more distant future, other herbicide-resistant crops (including non-transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide-resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  12. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  13. Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1998-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.

  14. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.

    PubMed

    Fan, Mingsheng; Shen, Jianbo; Yuan, Lixing; Jiang, Rongfeng; Chen, Xinping; Davies, William J; Zhang, Fusuo

    2012-01-01

    In recent years, agricultural growth in China has accelerated remarkably, but most of this growth has been driven by increased yield per unit area rather than by expansion of the cultivated area. Looking towards 2030, to meet the demand for grain and to feed a growing population on the available arable land, it is suggested that annual crop production should be increased to around 580 Mt and that yield should increase by at least 2% annually. Crop production will become more difficult with climate change, resource scarcity (e.g. land, water, energy, and nutrients) and environmental degradation (e.g. declining soil quality, increased greenhouse gas emissions, and surface water eutrophication). To pursue the fastest and most practical route to improved yield, the near-term strategy is application and extension of existing agricultural technologies. This would lead to substantial improvement in crop and soil management practices, which are currently suboptimal. Two pivotal components are required if we are to follow new trajectories. First, the disciplines of soil management and agronomy need to be given increased emphasis in research and teaching, as part of a grand food security challenge. Second, continued genetic improvement in crop varieties will be vital. However, our view is that the biggest gains from improved technology will come most immediately from combinations of improved crops and improved agronomical practices. The objectives of this paper are to summarize the historical trend of crop production in China and to examine the main constraints to the further increase of crop productivity. The paper provides a perspective on the challenge faced by science and technology in agriculture which must be met both in terms of increased crop productivity but also in increased resource use efficiency and the protection of environmental quality.

  15. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can determinate which level of rice crop requirement is met. Finally we have established rice crop zones classified as: suitable, moderate suitable, marginal suitable and unsuitable. Several methods have been used to estimate the degree with which crop requirements are satisfied, pondering weights of limiting factors to adequate crop conditions. Better conditions for cropping in a specific area imply less risk in production. In this case, crop will be less affected by pests and disease, although this closely depends on crop management. Farmers have to invest less money to produce and could increase their benefit. Results are showed and discussed with the aim to study the efficiency and potential of this risk map.

  16. 50 CFR 19.31 - State permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PLANTS (CONTINUED) AIRBORNE HUNTING State Permits and Annual Report Requirements § 19.31 State permits..., domestic animals, human life or crops. States may not issue permits for the purpose of sport hunting. (b...

  17. Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine

    PubMed Central

    Shin, Yong-Gil; Rho, Jae-Young

    2014-01-01

    Iris yellow spot virus (IYSV) is a plant pathogenic virus which has been reported to continuously occur in onion bulbs, allium field crops, seed crops, lisianthus, and irises. In South Korea, IYSV is a “controlled” virus that has not been reported, and inspection is performed when crops of the genus Iris are imported into South Korea. In this study, reverse-transcription polymerase chain reaction (RT-PCR) and nested PCR inspection methods, which can detect IYSV, from imported crops of the genus Iris at quarantine sites, were developed. In addition, a modified positive plasmid, which can be used as a positive control during inspection, was developed. This modified plasmid can facilitate a more accurate inspection by enabling the examination of a laboratory contamination in an inspection system. The inspection methods that were developed in this study are expected to contribute, through the prompt and accurate inspection of IYSV at quarantine sites to the plant quarantine in South Korea. PMID:25506310

  18. Remote sensing in Iowa agriculture: Identification and classification of Iowa crop lands using ERTS-1 and complimentary underflight imagery

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P.; Carlson, R. E.; Thomson, G. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Results of the continuing analysis of ERTS-1 imagery covering Iowa during 1972 and periods during 1973 are covered. Emphasis is placed on the identification and classification of major crop types at two test sites in Iowa. Standard photointerpretive methods were used in this analysis including the direct enlargement of black and white single-band products and additive color multi-band procedures using a miniadcol system. The use of sequential coverage during the crop growing season is emphasized as a means to improve the effectiveness of ERTS-1 photointerpretations of crop land acreage estimates in Iowa. Illustrative black and white and color prints of both ERTS-1 and underflight imagery are included. In addition, forest land inventories at one test site are reported. A new method for the inventory of forest lands using ERTS-1 imagery is reported and compared with estimates obtained using earlier underflight imagery.

  19. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rice Research to Break Yield Barriers

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Ramamoorthy, Rengasamy; Kohli, Ajay; Kumar, Prakash P.

    2015-10-01

    The world’s population continues to expand and it is expected to cross 9 billion by 2050. This would significantly amplify the demand for food, which will pose serious threats to global food security. Additional challenges are being imposed due to a gradual decrease in the total arable land and global environmental changes. Hence, it is of utmost importance to review and revise the existing food production strategies by incorporating novel biotechnological approaches that can help to break the crop yield barriers in the near future. In this review, we highlight some of the concerns hampering crop yield enhancements. The review also focuses on modern breeding techniques based on genomics as well as proven biotechnological approaches that enable identification and utilization of candidate genes. Another aspect of discussion is the important area of research, namely hormonal regulation of plant development, which is likely to yield valuable regulatory genes for such crop improvement efforts in the future. These strategies can serve as potential tools for developing elite crop varieties for feeding the growing billions.

  1. Precise, flexible and affordable gene stacking for crop improvement.

    PubMed

    Chen, Weiqiang; Ow, David W

    2017-09-03

    The genetic engineering of plants offers a revolutionary advance for crop improvement, and the incorporation of transgenes into crop species can impart new traits that would otherwise be difficult to obtain through conventional breeding. Transgenes introduced into plants, however, can only be useful when bred out to field cultivars. As new traits are continually added to further improve transgenic cultivars, clustering new DNA near previously introduced transgenes keep from inflating the number of segregating units that breeders must assemble back into a breeding line. Here we discuss various options to introduce DNA site-specifically into an existing transgenic locus. As food security is becoming a pressing global issue, the old proverb resonates true to this day: "give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime." Hence, we describe a recombinase-mediate gene stacking system designed with freedom to operate, providing an affordable option for crop improvement by less developed countries where food security is most at risk.

  2. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  3. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities

    PubMed Central

    Jarvis, Devra I.; Brown, Anthony H. D.; Cuong, Pham Hung; Collado-Panduro, Luis; Latournerie-Moreno, Luis; Gyawali, Sanjaya; Tanto, Tesema; Sawadogo, Mahamadou; Mar, Istvan; Sadiki, Mohammed; Hue, Nguyen Thi-Ngoc; Arias-Reyes, Luis; Balma, Didier; Bajracharya, Jwala; Castillo, Fernando; Rijal, Deepak; Belqadi, Loubna; Rana, Ram; Saidi, Seddik; Ouedraogo, Jeremy; Zangre, Roger; Rhrib, Keltoum; Chavez, Jose Luis; Schoen, Daniel; Sthapit, Bhuwon; De Santis, Paola; Fadda, Carlo; Hodgkin, Toby

    2008-01-01

    Varietal data from 27 crop species from five continents were drawn together to determine overall trends in crop varietal diversity on farm. Measurements of richness, evenness, and divergence showed that considerable crop genetic diversity continues to be maintained on farm, in the form of traditional crop varieties. Major staples had higher richness and evenness than nonstaples. Variety richness for clonal species was much higher than that of other breeding systems. A close linear relationship between traditional variety richness and evenness (both transformed), empirically derived from data spanning a wide range of crops and countries, was found both at household and community levels. Fitting a neutral “function” to traditional variety diversity relationships, comparable to a species abundance distribution of “neutral ecology,” provided a benchmark to assess the standing diversity on farm. In some cases, high dominance occurred, with much of the variety richness held at low frequencies. This suggested that diversity may be maintained as an insurance to meet future environmental changes or social and economic needs. In other cases, a more even frequency distribution of varieties was found, possibly implying that farmers are selecting varieties to service a diversity of current needs and purposes. Divergence estimates, measured as the proportion of community evenness displayed among farmers, underscore the importance of a large number of small farms adopting distinctly diverse varietal strategies as a major force that maintains crop genetic diversity on farm. PMID:18362337

  4. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  5. 50 CFR 19.12 - Exceptions to general prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) AIRBORNE HUNTING Prohibitions § 19.12 Exceptions to general prohibitions..., domesticated animals, human life or crops; or (2) Is acting within the limitations of a permit referred to in...

  6. 50 CFR 19.12 - Exceptions to general prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... WILDLIFE AND PLANTS (CONTINUED) AIRBORNE HUNTING Prohibitions § 19.12 Exceptions to general prohibitions..., domesticated animals, human life or crops; or (2) Is acting within the limitations of a permit referred to in...

  7. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control § 993...

  8. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control § 993...

  9. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control § 993...

  10. 7 CFR 993.55 - Application of salable and reserve percentages after end of crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Order Regulating Handling Reserve Control § 993...

  11. GénoPlante-Info (GPI): a collection of databases and bioinformatics resources for plant genomics

    PubMed Central

    Samson, Delphine; Legeai, Fabrice; Karsenty, Emmanuelle; Reboux, Sébastien; Veyrieras, Jean-Baptiste; Just, Jeremy; Barillot, Emmanuel

    2003-01-01

    Génoplante is a partnership program between public French institutes (INRA, CIRAD, IRD and CNRS) and private companies (Biogemma, Bayer CropScience and Bioplante) that aims at developing genome analysis programs for crop species (corn, wheat, rapeseed, sunflower and pea) and model plants (Arabidopsis and rice). The outputs of these programs form a wealth of information (genomic sequence, transcriptome, proteome, allelic variability, mapping and synteny, and mutation data) and tools (databases, interfaces, analysis software), that are being integrated and made public at the public bioinformatics resource centre of Génoplante: GénoPlante-Info (GPI). This continuous flood of data and tools is regularly updated and will grow continuously during the coming two years. Access to the GPI databases and tools is available at http://genoplante-info.infobiogen.fr/. PMID:12519976

  12. Electronic Dimmable Ballasts for High-Intensity Discharge Sodium Vapor and Metal Halide Lamps

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard

    2002-01-01

    Two types of high-intensity discharge lamps were tested using dimmable ballasts. The main purpose for evaluating this lighting system was to determine its efficacy for saving power. Whereas previous variable level lighting systems for HID lamps in Advanced Life Support applications were adjustable in two or three steps using capacitive switching, this system allows for continuously adjustable lamp output. This type of lighting system when used as part of an Advanced Life Support biomass production system would provide only the amount of light energy a crop needed at any particular point in its growth cycle. Since most of the equivalent system mass in an ALS system is from the light energy required to grow the crops, controlling that light energy dynamically over a continuous range of operation would dramatically reduce the power consumption and reduce system mass.

  13. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    NASA Astrophysics Data System (ADS)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An intuitive web-based geo-information platform is developed to allow both the industry and the research centres to access, analyse and combine the data with their own field observations for improved decision-making.

  14. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean along with crop residue retention presents a win–win scenario due to improved crop yield, increased economic return, and trends of increasing soil fertility. The biggest challenge, however, remains with producing enough biomass and retaining same on the field. PMID:28680427

  15. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin differences between maize and sorghum were the least pronounced due to the poorer performance of maize under these site conditions. Furthermore, the comparatively lower land-lease rates in these regions allowed for positive equity capital formation also in sorghum crops.

  16. Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation.

    PubMed

    Guleria, Praveen; Kumar, Vineet; Guleria, Shiwani

    2017-12-01

    Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.

  17. Effects of irrigation, cover crop, and manure on soil greenhouse gas emissions after stover removal in no-till continuous corn

    USDA-ARS?s Scientific Manuscript database

    Corn stover is used widely for livestock co-feed and is targeted as a near-term feedstock for the developing cellulosic ethanol industry. High biomass production in intensely managed systems, such as irrigated continuous corn, may have a greater potential to provide stover for either livestock or bi...

  18. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  19. Economic impact of GM crops

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  20. Economic impact of GM crops: the global income and production effects 1996-2012.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.

  1. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    PubMed Central

    Etesami, Hassan; Beattie, Gwyn A.

    2018-01-01

    Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress. PMID:29472908

  2. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  3. Contribution of pod borer pests to soybean crop production (case in Pondidaha, Konawe District, Southeast Sulawesi)

    NASA Astrophysics Data System (ADS)

    Rahayu, M.; Bande, LOS; Hasan, A.; Yuswana, A.; Rinambo, F.

    2018-02-01

    Soybean (Glycine max L.) is one of the most important crops which production continues to be improved in all areas of soybean cultivation centers in an effort to maintain the availability of soybean foods, including Southeast Sulawesi. The purpose of this study was to analyze the contribution of pod borer pests to soybean crop production. Methods of direct observation were made on observed variables, including species and population of pest pod borer, intensity, and crop production. The result that found four types of pod borer pests are Nezara viridula, Riptortus linearis, Etiella zinckenella, and Leptocorisa acuta, each with a different population and contribution to the intensity of pod damage. The result of path analysis showed that directly population of N. viridula (61.14) and E. zinckenella (66.44) gave positive contribution in increasing pod damage, by 0.332 and 0.502 respectively, while the negative contribution was shown by population of R. linearis and L. acuta. Damage of the pod causes increased production of low soybean is only about 0.202, therefore required appropriate control techniques to control pod borer pests populations in soybean crops.

  4. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  5. Soil thresholds and a decision tool to manage food safety of crops grown in chlordecone polluted soil in the French West Indies.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Lesueur-Jannoyer, Magalie

    2017-04-01

    Due to the persistent pollution of soils by an organochlorine, chlordecone (CLD also known as Kepone © ) in the French West Indies, some crops may be contaminated beyond the European regulatory threshold, the maximum residue limit (MRL). Farmers need to be able to foresee the risk of not complying with the regulatory threshold in each field and for each crop, if not, farmers whose fields are contaminated would have to stop cultivating certain crops in the fields concerned. To help farmers make the right choices, we studied the relationship between contamination of the soil and contamination of crops. We showed that contamination of a crop by CLD depended on the crop concerned, the soil CLD content and the type of soil. We grouped crop products in three categories: (i) non-uptakers and low-uptakers, (ii) medium-uptakers, and (iii) high-uptakers, according to their level of contamination and the resulting risk of exceeding MRL. Using a simulation model, we computed the soil threshold required to ensure the risk of not complying with MRL was sufficiently low for each crop product and soil type. Threshold values ranged from 0.02 μgkg -1 for dasheen grown in nitisol to 1.7 μgkg -1 for yam grown in andosol in the high-uptake category, and from 1 μgkg -1 for lettuce grown in nitisol to 45 μgkg -1 for the leaves of spring onions grown in andosol in the medium-uptake category. Contamination of non-uptakers and low-uptakers did not depend on soil contamination. With these results, we built an easy-to-use decision support tool based on two soil thresholds (0.1 and 1 μgkg -1 ) to enable growers to adapt their cropping system and hence to be able to continue farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses

    PubMed Central

    Zheng, Chengyu; Kang, Chunsheng; Yang, Zichao; Yao, Xiaotong; Song, Fengbin; Zhang, Runzhi; Wang, Xuerong; Xu, Ning; Zhang, Chunyi; Li, Wei; Li, Shumin

    2017-01-01

    Greenhouse eggplant monocropping in China has contributed to the aggravation of soil-borne diseases, reductions in crop quality and yield, and the degradation of physical and chemical soil properties. Crop rotation is one effective way of alleviating the problems of continuous cropping worldwide; however, few studies have reported changes in soil bacterial community structures and physical and chemical soil properties after Brassica vegetables had been rotated with eggplant in greenhouses. In this experiment, mustard-eggplant (BFN) and oilseed rape-eggplant (BFC) rotations were studied to identify changes in the physicochemical properties and bacterial community structure in soil that was previously subject to monocropping. Samples were taken after two types of Brassica plants incorporated into soil for 15 days to compare with continually planted eggplant (control, CN) and chemical disinfection of soil (CF) in greenhouses. MiSeq pyrosequencing was used to analyze soil bacterial diversity and structure in the four different treatments. A total of 55,129 reads were identified, and rarefaction analysis showed that the soil treatments were equally sampled. The bacterial richness of the BFC treatment and the diversity of the BFN treatment were significantly higher than those of the other treatments. Further comparison showed that the bacterial community structures of BFC and BFN treatments were also different from CN and CF treatments. The relative abundance of several dominant bacterial genera in the BFC and BFN treatments (such as Flavobacteria, Stenotrophomonas, Massilia and Cellvibrio, which played different roles in improving soil fertility and advancing plant growth) was distinctly higher than the CN or CF treatments. Additionally, the total organic matter and Olsen-P content of the BFC and BFN treatments were significantly greater than the CN treatment. We conclude that Brassica vegetables-eggplant crop rotations could provide a more effective means of solving the problems of greenhouse eggplant monocultures. PMID:28346463

  7. Changes in soil bacterial community structure as a result of incorporation of Brassica plants compared with continuous planting eggplant and chemical disinfection in greenhouses.

    PubMed

    Li, Tianzhu; Liu, Tongtong; Zheng, Chengyu; Kang, Chunsheng; Yang, Zichao; Yao, Xiaotong; Song, Fengbin; Zhang, Runzhi; Wang, Xuerong; Xu, Ning; Zhang, Chunyi; Li, Wei; Li, Shumin

    2017-01-01

    Greenhouse eggplant monocropping in China has contributed to the aggravation of soil-borne diseases, reductions in crop quality and yield, and the degradation of physical and chemical soil properties. Crop rotation is one effective way of alleviating the problems of continuous cropping worldwide; however, few studies have reported changes in soil bacterial community structures and physical and chemical soil properties after Brassica vegetables had been rotated with eggplant in greenhouses. In this experiment, mustard-eggplant (BFN) and oilseed rape-eggplant (BFC) rotations were studied to identify changes in the physicochemical properties and bacterial community structure in soil that was previously subject to monocropping. Samples were taken after two types of Brassica plants incorporated into soil for 15 days to compare with continually planted eggplant (control, CN) and chemical disinfection of soil (CF) in greenhouses. MiSeq pyrosequencing was used to analyze soil bacterial diversity and structure in the four different treatments. A total of 55,129 reads were identified, and rarefaction analysis showed that the soil treatments were equally sampled. The bacterial richness of the BFC treatment and the diversity of the BFN treatment were significantly higher than those of the other treatments. Further comparison showed that the bacterial community structures of BFC and BFN treatments were also different from CN and CF treatments. The relative abundance of several dominant bacterial genera in the BFC and BFN treatments (such as Flavobacteria, Stenotrophomonas, Massilia and Cellvibrio, which played different roles in improving soil fertility and advancing plant growth) was distinctly higher than the CN or CF treatments. Additionally, the total organic matter and Olsen-P content of the BFC and BFN treatments were significantly greater than the CN treatment. We conclude that Brassica vegetables-eggplant crop rotations could provide a more effective means of solving the problems of greenhouse eggplant monocultures.

  8. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors.

    PubMed

    Adewumi, Aderemi Oluyinka; Chetty, Sivashan

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA's results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems.

  9. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  10. Soil quality monitoring in an area with land use change

    NASA Astrophysics Data System (ADS)

    Wilson, Marcelo; Gabioud, Emmanuel; Sasal, María Carolina; Oszust, José; Paz Gonzalez, Antonio

    2013-04-01

    The characterization of the soil quality through soil quality indicators (SQI), provides an effective method for the monitoring of the impacts to soil by use and management decisions. The key is to identify variables that are sensitive to changes in the soil functions and processes. The native forest area of Entre Ríos (Argentina) is associated with a constant change in land use, with an increase in recent years in agricultural use, especially for soybean crop. The aim was to monitor soil quality in three soils of an area of this area where native forest is being replaced by an agricultural system based in soybean crop, using a a minimum data set (MDS) previously selected for three soil type. The three soils selected were a Vertic Argiudoll, an Aquic Argiudoll and a Vertic Ocracualf. Treatments included plots with continuous cropping with different number of years under soybean crop, crop-pasture rotation, long-term pasture (PP), and uncropped land (UC) in pristine situation, which was taken as a reference. The crops were sowed under no tillage system and some plots were systematized with terraces contour to runoff management. The selection of a group of soil indicators in a MDS, was developed locally because it must be different for each soil type and each particular use. Total organic carbon (TOC), aggregate stability and pH were common indicators. Furthermore, it was assessed macroporosity, total porosity, cation exchange capacity two biological indicators (microbial biomass Carbon and potentially mineralizable Nitrogen) and A horizon soil mass, as a measure of the soil erosion. Statistical analysis, as linear regression analysis, ANOVA and cluster analysis were used. The soil indicators showed the changes caused by soil use, being more marked deterioration in the Vertic Ocracualf. TOC, microbial biomass Carbon and aggregate stability were the most sensitive SQI. However, positive changes were observed in potentially mineralizable Nitrogen, wiht PP. In the Vertic Argiudoll, the changes caused by agricultural use were significant in the plots with most years of continuous cropping as compared with UC and PP treatments, whereas in the Vertic Ocracualf with few years under agriculture, processes of soil deterioration started to be detected. The Aquic Argiudoll showed high resilience through all SQI. In the Vertic Ocracualf, we recommended that the period of crops rotation should be shorter than the period under pasture, to maintain the soil quality. The native forest should be the basis of sustainable production systems in the area. In addition, the agricultural use should be defined according to the soil limitations, and the dynamic soil qualities.

  11. Connections Between Soil Fertility Declines, Land Use, Ethnicity, Education, and Wealth In Uganda

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Hartter, J.; Grandy, S.

    2016-12-01

    Food security issues are particularly acute in Uganda, where the world's 8th highest population growth rate will lead to cultivation of all land available for agriculture by 2022. Agricultural intensification in Uganda, which includes continuous cropping, mono-cropping and expansion of agriculture into marginal areas, has put unprecedented pressure on soils. In western Uganda, we surveyed 474 households, collecting demographic data, information on land use practices and perceptions of risk to crop yields and food security. We also sampled soils from maize fields associated with each surveyed household and measured total organic C and nutrients such as nitrogen (N) and phosphorus (P). Using these data, we sought to determine how risk perceptions, ethnicity, household wealth and education combine to determine land use decisions and ultimately, declines in soil organic matter and soil nutrients. We conducted our study within 5 km of an un-cultivated native tropical forest reserve, Kibale National Park (KNP), which serves as a reference point for potential soil fertility. Of 470 respondents, only 29 answered `no' when asked if they noticed year to year declines in crop yields. Across all maize fields we found soil C has been reduced by 30% and soil N by 45% relative to KNP soils and declines were more pronounced when survey respondents were Bakiga rather than Batooro. Households that indicated they were "very much" dependent upon profits from maize had a 31% increase in soil C:N while those indicating no dependence on maize profits had a significantly lower increase in soil C:N of 21%. Ethnicity and education influenced land use decisions; the Batooro and people with a lower level of education were more likely to burn their fields or crop residues. Additionally, the Bakiga were more likely to use rock P in their fields and in consequence had 108% while Batooro soils had 65% of the P found in KNP soils. Across all respondents, the top two ranked risks to crop yields and food security were weather related, with soil fertility ranked third on average, regardless of ethnicity, education or wealth. While crop yields are being noticeably affected by declining soil organic matter and soil nutrients, in particular soil N, people in this region continue to be worried more about changing weather patterns than soil fertility.

  12. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.

    PubMed

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-03-03

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.

  13. A multiple chamber, semicontinuous, crop carbon dioxide exchange system: design, calibration, and data interpretation

    NASA Technical Reports Server (NTRS)

    van Iersel, M. W.; Bugbee, B.

    2000-01-01

    Long-term, whole crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (P-net, positive) and dark respiration(R-dark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia x hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.

  14. Genetic diversity in Carthamus tinctorius (Asteraceae; safflower), an underutilized oilseed crop.

    PubMed

    Pearl, Stephanie A; Burke, John M

    2014-10-01

    • Underutilized crops are potentially valuable resources for meeting increasing food demands. Safflower, an oilseed crop, is an example of one such underutilized crop that thrives in moisture-limited areas. Characterization of the genetic diversity maintained within the gene pools of underutilized crops such as safflower is an important step in their further development.• A total of 190 safflower individuals, including 134 USDA accessions, 48 breeding lines from two private North American safflower breeding companies, and eight wild safflower individuals, were genotyped using 133 single nucleotide polymorphism (SNP) markers. We then used the resulting data to assess the amount and distribution of genetic diversity within and among these collections of safflower.• Although just a modest reduction in gene diversity was observed in the commercial breeding lines (relative to the other safflower groupings), safflower domestication was accompanied by a significant decrease in allelic richness. Further, our results suggest that most safflower breeding lines originated from a single pool of diversity within the Old World safflower germplasm.• Taken together, our results suggest that both the safflower germplasm collection and related, wild species harbor previously undocumented genetic diversity that could help fuel future improvement efforts. Paired with analyses of functional diversity, the molecular resources described herein will be thus be useful in the continued development of safflower as an oilseed crop. © 2014 Botanical Society of America, Inc.

  15. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

    PubMed Central

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-01-01

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815

  16. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa

    PubMed Central

    Schuiteman, Matthew A.; Vos, Ronald J.

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy. PMID:28248976

  17. Increased resiliency and activity of microbial mediated carbon cycling enzymes in diversified bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Upton, R.; Bach, E.; Hofmockel, K. S.

    2017-12-01

    Microbes are mediators of soil carbon (C) and are influenced in membership and activity by nitrogen (N) fertilization and inter-annual abiotic factors. Microbial communities and their extracellular enzyme activities (EEA) are important parameters that influence ecosystem C cycling properties and are often included in microbial explicit C cycling models. In an effort to generate model relevant, empirical findings, we investigated how both microbial community structure and C degrading enzyme activity are influenced by inter-annual variability and N inputs in bioenergy crops. Our study was performed at the Comparison of Biofuel Systems field-site from 2011 to 2014, in three bioenergy cropping systems, continuous corn (CC) and two restored prairies, both fertilized (FP) and unfertilized (P). We hypothesized microbial community structure would diverge during the prairie restoration, leading to changes in C cycling enzymes over time. Using a sequencing approach (16S and ITS) we determined the bacterial and fungal community structure response to the cropping system, fertilization, and inter-annual variability. Additionally, we used EEA of β-glucosidase, cellobiohydrolase, and β-xylosidase to determine inter-annual and ecosystem impacts on microbial activity. Our results show cropping system was a main effect for microbial community structure, with corn diverging from both prairies to be less diverse. Inter-annual changes showed that a drought occurring in 2012 significantly impacted microbial community structure in both the P and CC, decreasing microbial richness. However, FP increased in microbial richness, suggesting the application of N increased resiliency to drought. Similarly, the only year in which C cycling enzymes were impacted by ecosystem was 2012, with FP supporting higher potential enzymatic activity then CC and P. The highest EEA across all ecosystems occurred in 2014, suggesting the continued root biomass and litter build-up in this no till system provides increased C cycling activity. Our results showed that diverse cropping systems still benefit from N fertilization to confer resiliency to abiotic stress factors. Long-term studies for microbial mediation of soil C are necessary for modeling the impacts of restoration on SOC to assure inclusion of sustainability and resiliency.

  18. Residual soil nitrate content and profitability of five cropping systems in northwest Iowa.

    PubMed

    De Haan, Robert L; Schuiteman, Matthew A; Vos, Ronald J

    2017-01-01

    Many communities in the Midwestern United States obtain their drinking water from shallow alluvial wells that are vulnerable to contamination by NO3-N from the surrounding agricultural landscape. The objective of this research was to assess cropping systems with the potential to produce a reasonable return for farmers while simultaneously reducing the risk of NO3-N movement into these shallow aquifers. From 2009 to 2013 we conducted a field experiment in northwest Iowa in which we evaluated five cropping systems for residual (late fall) soil NO3-N content and profitability. Soil samples were taken annually from the top 30 cm of the soil profile in June and August, and from the top 180 cm in November (late fall). The November samples were divided into 30 cm increments for analysis. Average residual NO3-N content in the top 180 cm of the soil profile following the 2010 to 2013 cropping years was 134 kg ha-1 for continuous maize (Zea mays L.) with a cereal rye (Secale cereale L.) cover crop, 18 kg ha-1 for perennial grass, 60 kg ha-1 for a three year oat (Avena sativa L.)-alfalfa (Medicago sativa L.)-maize rotation, 85 kg ha-1 for a two year oat/red clover (Trifolium pratense L.)-maize rotation, and 90 kg ha-1 for a three year soybean (Glycine max (L.) Merr.)-winter wheat (Triticum aestivum L.)-maize rotation. However, residual NO3-N in the 90 to 180 cm increment of the soil profile was not significantly higher in the oat-alfalfa-maize cropping system than the perennial grass system. For 2010 to 2013, average profit ($ ha-1 yr-1) was 531 for continuous corn, 347 for soybean-winter wheat-maize, 264 for oat-alfalfa-maize, 140 for oat/red clover-maize, and -384 (loss) for perennial grass. Considering both residual soil NO3-N and profitability data, the oat-alfalfa-maize rotation performed the best in this setting. However, given current economic pressures widespread adoption is likely to require changes in public policy.

  19. Environmental health impacts of feeding crops to farmed fish.

    PubMed

    Fry, Jillian P; Love, David C; MacDonald, Graham K; West, Paul C; Engstrom, Peder M; Nachman, Keeve E; Lawrence, Robert S

    2016-05-01

    Half of the seafood consumed globally now comes from aquaculture, or farmed seafood. Aquaculture therefore plays an increasingly important role in the global food system, the environment, and human health. Traditionally, aquaculture feed has contained high levels of wild fish, which is unsustainable for ocean ecosystems as demand grows. The aquaculture industry is shifting to crop-based feed ingredients, such as soy, to replace wild fish as a feed source and allow for continued industry growth. This shift fundamentally links seafood production to terrestrial agriculture, and multidisciplinary research is needed to understand the ecological and environmental health implications. We provide basic estimates of the agricultural resource use associated with producing the top five crops used in commercial aquaculture feed. Aquaculture's environmental footprint may now include nutrient and pesticide runoff from industrial crop production, and depending on where and how feed crops are produced, could be indirectly linked to associated negative health outcomes. We summarize key environmental health research on health effects associated with exposure to air, water, and soil contaminated by industrial crop production. Our review also finds that changes in the nutritional content of farmed seafood products due to altered feed composition could impact human nutrition. Based on our literature reviews and estimates of resource use, we present a conceptual framework describing the potential links between increasing use of crop-based ingredients in aquaculture and human health. Additional data and geographic sourcing information for crop-based ingredients are needed to fully assess the environmental health implications of this trend. This is especially critical in the context of a food system that is using both aquatic and terrestrial resources at unsustainable rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  1. Biodegradation of Fresh vs. Oven-Dried Inedible Crop Residue in a Continuously Stirred Tank Reactor

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Strayer, Richard

    1998-01-01

    The degradation of soluble organics and mineral recovery from fresh and oven-dried biomass were compared in an Intermediate-Scale Aerobic Bioreactor (8 L working volume) to determine if drying crop residue improves performance in a continuously stirred tank reactor (CSTR). The study was conducted in an Intermediate-Scale Aerobic Bioreactor (ISAB) CSTR with dimensions of 390 mm height x 204 mm diameter. The pH in the bioreactor was controlled at 6.0, temperature at 30 C, and aeration at 7.0 L/min. Gases monitored were CO2 evolution and dissolved oxygen. Homogeneously mixed wheat cultures, used either fresh or oven-dried biomass and were leached, then placed in the ISAB for a 4-day degradation period. Studies found that mineral recovery was greater for leached oven-dried crop residue. However, after activity by the mixed microbial communities in the ISAB CSTR, there were little notable differences in the measured mineral recovery and degradation of soluble organic compounds. Degradation of soluble organic compounds was also shown to improve for leached oven-dried crop residue, but after mixing in the CSTR the degradation of the fresh biomass seemed to be slightly greater. Time for the biomass to turn in the CSTR appeared to be one factor for the experimental differences between the fresh and oven-dried biomass. Other factors, although not as defined, were the differing physical structures in the cell walls and varying microbial components of the fresh and oven-dried treatments due to changes in chemical composition after drying of the biomass.

  2. 7 CFR 987.71 - Expenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements..., together with all data supporting such recommendation, shall be submitted to the Secretary within a reasonable time after the marketing policy for each crop year is recommended. ...

  3. 7 CFR 3430.205 - Funding restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... ASSISTANCE PROGRAMS-GENERAL AWARD ADMINISTRATIVE PROVISIONS Specialty Crop Research Initiative § 3430.205 Funding restrictions. (a) Prohibition against construction. Funds made available under this subpart shall...

  4. Organic watermelon production systems

    USDA-ARS?s Scientific Manuscript database

    The increasing perception by consumers that organic food tastes better and is healthier continues to expand the demand for organically produced crops. Research investigating certified organic production requires a systems approach to determine the optimum combination of individual components to max...

  5. Production of sugarcane and tropical grasses as a renewable energy source. Second annual report, 1978-1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    Reseach continued on tropical grasses from Saccharum and related genera as sources of intensively-produced, solar-dried biomass. Categories of candidate grasses include short-, intermediate-, and long-rotation species. These categories are based on the time interval required for maximum dry matter production, and on future management requirements of energy crops for intensive co-production with food crop commodities. Year 1 studies at the greenhouse and field-plot levels were continued and broadened during Year 2. This included candidate screening, importation and quarantine of new clones, breeding, controlled nitrogen and water regimes, chemical growth control, tissue expansion and maturation control, seeding rates, harvest frequency, andmore » variable row spacing. Second-year studies were extended to the project's field-scale and mechanized-harvest phases. These include initial economic anayses for the short-rotation phases. These include initial economic analyses for the short-rotation category of candidate species.« less

  6. Biogenerative life-support system: Farming on the Moon

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    Plants can be used to recycle food, oxygen, and water in a closed habitat (e.g., on the moon, Mars, or in a space craft. A variety of crops might be grown, probably in underground growth units to avoid harmful radiation and micrometeorites. Artificial light will be necessary although some sunlight might be brought in via fiber optics. Transpired water will be condensed in coils exposed to space and shaded from sunlight. Oxygen and CO 2 levels will be maintained by controlling photosynthesis and waste oxidation. Plants will be grown hydroponically. Wheat has been produced at the rate of 60 g m -2 d -1, which could feed a human continuously from a farm only 13 m 2, but nearly continuous light equivalent to sunlight is required along with ideal temperatures, enriched CO 2, suitable cultivars, etc. Lower light results in more efficient photosynthesis but requires a larger farm, as do safety considerations and many crops.

  7. A half-century analysis of landscape dynamics in southern Québec, Canada.

    PubMed

    Jobin, Benoît; Latendresse, Claudie; Baril, Alain; Maisonneuve, Charles; Boutin, Céline; Côté, Dominique

    2014-04-01

    We studied landscape dynamics for three time periods (<1950, 1965, and 1997) along a gradient of agricultural intensity from highly intensive agriculture to forested areas in southern Québec. Air photos were analyzed to obtain long-term information on land cover (crop and habitat types) and linear habitats (hedgerows and riparian habitats) and landscape metrics were calculated to quantify changes in habitat configuration. Anthropogenic areas increased in all types of landscapes but mostly occurred in the highly disturbed cash crop dominated landscape. Perennial crops (pasture and hayfields) were largely converted into annual crops (corn and soybean) between 1965 and 1997. The coalescence of annual crop fields resulted in a more homogeneous agricultural landscape. Old fields and forest cover was consistently low and forest fragmentation remained stable through time in the intensive agriculture landscapes. However, forest cover increased and forest fragmentation receded in the forest-dominated landscapes following farm abandonment and the transition of old fields into forests. Tree-dominated hedgerows and riparian habitats increased in areas with intensive agriculture. Observed changes in land cover classes are related to proximate factors, such as surficial deposits and topography. Agriculture intensification occurred in areas highly suitable for agriculture whereas farm abandonment was observed in poor-quality agriculture terrains. Large-scale conversion of perennial crops into annual crops along with continued urbanization exerts strong pressures on residual natural habitats and their inhabiting wildlife. The afforestation process occurring in the more forested landscapes along with the addition of tree-dominated hedgerows and riparian habitats in the agriculture-dominated landscapes should improve landscape ecological value.

  8. LACIE performance predictor final operational capability program description, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.

  9. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

    PubMed Central

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-01-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands PMID:26709335

  10. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950.

    PubMed

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-06-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.

  11. Satellite image simulations for model-supervised, dynamic retrieval of crop type and land use intensity

    NASA Astrophysics Data System (ADS)

    Bach, H.; Klug, P.; Ruf, T.; Migdall, S.; Schlenz, F.; Hank, T.; Mauser, W.

    2015-04-01

    To support food security, information products about the actual cropping area per crop type, the current status of agricultural production and estimated yields, as well as the sustainability of the agricultural management are necessary. Based on this information, well-targeted land management decisions can be made. Remote sensing is in a unique position to contribute to this task as it is globally available and provides a plethora of information about current crop status. M4Land is a comprehensive system in which a crop growth model (PROMET) and a reflectance model (SLC) are coupled in order to provide these information products by analyzing multi-temporal satellite images. SLC uses modelled surface state parameters from PROMET, such as leaf area index or phenology of different crops to simulate spatially distributed surface reflectance spectra. This is the basis for generating artificial satellite images considering sensor specific configurations (spectral bands, solar and observation geometries). Ensembles of model runs are used to represent different crop types, fertilization status, soil colour and soil moisture. By multi-temporal comparisons of simulated and real satellite images, the land cover/crop type can be classified in a dynamically, model-supervised way and without in-situ training data. The method is demonstrated in an agricultural test-site in Bavaria. Its transferability is studied by analysing PROMET model results for the rest of Germany. Especially the simulated phenological development can be verified on this scale in order to understand whether PROMET is able to adequately simulate spatial, as well as temporal (intra- and inter-season) crop growth conditions, a prerequisite for the model-supervised approach. This sophisticated new technology allows monitoring of management decisions on the field-level using high resolution optical data (presently RapidEye and Landsat). The M4Land analysis system is designed to integrate multi-mission data and is well suited for the use of Sentinel-2's continuous and manifold data stream.

  12. Preliminary validation of leaf area index sensor in Huailai

    NASA Astrophysics Data System (ADS)

    Cai, Erli; Li, Xiuhong; Liu, Qiang; Dou, Baocheng; Chang, Chongyan; Niu, Hailin; Lin, Xingwen; Zhang, Jialin

    2015-12-01

    Leaf area index (LAI) is a key variable in many land surface models that involve energy and mass exchange between vegetation and the environment. In recent years, extracting vegetation structure parameters from digital photography becomes a widely used indirect method to estimate LAI for its simplicity and ease of use. A Leaf Area Index Sensor (LAIS) system was developed to continuously monitor the growth of crops in several sampling points in Huailai, China. The system applies 3G/WIFI communication technology to remotely collect crop photos in real-time. Then the crop photos are automatically processed and LAI is estimated based on the improved leaf area index of Lang and Xiang (LAILX) algorithm in LAIS. The objective of this study is to primarily verify the LAI estimated from LAIS (Lphoto) through comparing them with the destructive green LAI (Ldest). Ldest was measured across the growing season ntil maximum canopy development while plants are still green. The preliminary verification shows that Lphoto corresponds well with the Ldest (R2=0.975). In general, LAI could be accurately estimated with LAIS and its LAI shows high consistency compared with the destructive green LAI. The continuous LAI measurement obtained from LAIS could be used for the validation of remote sensing LAI products.

  13. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  14. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  15. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    NASA Astrophysics Data System (ADS)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  16. Research investment implications of shifts in the global geography of wheat stripe rust.

    PubMed

    Beddow, Jason M; Pardey, Philip G; Chai, Yuan; Hurley, Terrance M; Kriticos, Darren J; Braun, Hans-Joachim; Park, Robert F; Cuddy, William S; Yonow, Tania

    2015-09-14

    Breeding new crop varieties with resistance to the biotic stresses that undermine crop yields is tantamount to increasing the amount and quality of biological capital in agriculture. However, the success of genes that confer resistance to pests induces a co-evolutionary response that depreciates the biological capital embodied in the crop, as pests evolve the capacity to overcome the crop's new defences. Thus, simply maintaining this biological capital, and the beneficial production and economic outcomes it bestows, requires continual reinvestment in new crop defences. Here we use observed and modelled data on stripe rust occurrence to gauge changes in the geographic spread of the disease over recent decades. We document a significant increase in the spread of stripe rust since 1960, with 88% of the world's wheat production now susceptible to infection. Using a probabilistic Monte Carlo simulation model we estimate that 5.47 million tonnes of wheat are lost to the pathogen each year, equivalent to a loss of US$979 million per year. Comparing the cost of developing stripe-rust-resistant varieties of wheat with the cost of stripe-rust-induced yield losses, we estimate that a sustained annual research investment of at least US$32 million into stripe rust resistance is economically justified.

  17. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    NASA Astrophysics Data System (ADS)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  18. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  19. Field-scale and Regional Variability in Evapotranspiration over Crops in California using Eddy Covariance and Surface Renewal

    NASA Astrophysics Data System (ADS)

    Kent, E. R.; Clay, J. M.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Monteiro, R. O. C.; Monteiro, P. F. C.; Shapiro, K.; Rice, S.; Snyder, R. L.; Daniele, Z.; Paw U, K. T.

    2016-12-01

    Evapotranspiration (ET) estimated using a single crop coefficient and a grass reference largely ignores variability due to heterogeneity in microclimate, soils, and crop management. We employ a relatively low cost energy balance residual method using surface renewal and eddy covariance measurements to continuously estimate half-hourly and daily ET across more than 15 fields and orchards spanning four crops and two regions of California. In the Sacramento-San Joaquin River Delta, measurements were taken in corn, pasture, and alfalfa fields, with 4-5 stations in each crop type spread across the region. In the Southern San Joaquin Valley, measurements were taken in three different pistachio orchards, with one orchard having six stations instrumented to examine salinity-induced heterogeneity. We analyze field-scale and regional variability in ET and measured surface energy balance components. Cross comparisons between the eddy covariance and the surface renewal measurements confirm the robustness of the surface renewal method. A hybrid approach in which remotely sensed net radiation is combined with in situ measurements of sensible heat flux is also investigated. This work will provide ground-truth data for satellite and aerial-based ET estimates and will inform water management at the field and regional scales.

  20. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    PubMed Central

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. PMID:25844008

  1. Environmental impacts of conversion of cropland to biomass production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, T.H.; Brown, G.F.; Bingham, L.

    1996-12-31

    A study was initiated to determine the effects of conversion of row crop land to biomass production on runoff quality and quantity. Treatments were: (1) remain in row crop (no-till corn); (2) convert to short rotation woody crop (SRWC) production with sweetgum (Liquidambar styraciflua L.) planted in a 1.5 in by 3 in spacing maintaining complete weed control; (3) convert to SRWC with a tall fescue (Festuca eliator L.) cover crop planted in a 2.4 in strip centered between rows of trees to reduce erosion; and (4) convert to switchgrass (Panicum virgatum L.) as a biomass energy crop. Plots withinmore » a block similar in size (approximately 0.45 ha in block 1 and 0.20 ha in block 2), slope, soils, topographic position, recent land use history, etc. Although switchgrass plots eroded more early in the growing season, erosion was low once it became well established. Conversely, plots where trees were grown with no cover continued to erode throughout the growing season. These results indicate that growing short-rotation intensively cultured hardwoods with complete weed control will provide little erosion relief in agricultural fields, at least during the first growing season. Planting switchgrass for bioenergy production, however, does protect the soil. Nutrient runoff was related to fertilization.« less

  2. Impact of production practices on physicochemical properties of rice grain quality.

    PubMed

    Bryant, Rolfe J; Anders, Merle; McClung, Anna

    2012-02-01

    Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off. However, the influence of these cultural management practices on rice physicochemical properties is unknown. Our objective was to evaluate the influence of nitrogen fertilizer source, water management system, and crop rotation on rice grain quality. Grain protein concentration was lower in a continuous rice production system than in a rice-soybean rotation. Neither amylose content nor gelatinization temperature was altered by fertilizer source, crop rotation, or water management. BF water management decreased peak and breakdown viscosities relative to a flooded system. Peak and final paste viscosities were decreased by all fertilizer sources, whereas, crop rotation had no influence on the Rapid Visco Analyser profile. Sustainable production systems that decrease water use and utilize crop rotations and slow-release fertilizers have no major impact on rice physicochemical properties. Published 2011 by John Wiley & Sons, Ltd.

  3. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects.

    PubMed

    Verzeaux, Julien; Hirel, Bertrand; Dubois, Frédéric; Lea, Peter J; Tétu, Thierry

    2017-11-01

    Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Crop residue decomposition in Minnesota biochar amended plots

    NASA Astrophysics Data System (ADS)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  5. Evolutionary Genomics of Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat is the world’s largest and most important food crop for direct human consumption, therefore, continued wheat improvement is paramount for feeding an ever-increasing human population. Wheat improvement is tightly associated with the characterization and understanding of wheat evolution and gene...

  6. 7 CFR 400.169 - Disputes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the insurance industry, or FCIC approved policy and procedure, it may request, the Deputy... Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF... Administrator of Insurance Services to make a final administrative determination addressing the disputed action...

  7. 7 CFR 1437.308 - Ginseng.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Ginseng. 1437.308 Section 1437.308 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  8. 7 CFR 1437.304 - Floriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Floriculture. 1437.304 Section 1437.304 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  9. 7 CFR 1437.305 - Ornamental nursery.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Ornamental nursery. 1437.305 Section 1437.305 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM...

  10. 7 CFR 1437.308 - Ginseng.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Ginseng. 1437.308 Section 1437.308 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  11. 7 CFR 1437.307 - Mushrooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Mushrooms. 1437.307 Section 1437.307 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  12. 7 CFR 1437.304 - Floriculture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Floriculture. 1437.304 Section 1437.304 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  13. 7 CFR 1437.305 - Ornamental nursery.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Ornamental nursery. 1437.305 Section 1437.305 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM...

  14. 7 CFR 1437.305 - Ornamental nursery.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Ornamental nursery. 1437.305 Section 1437.305 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM...

  15. 7 CFR 1437.304 - Floriculture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Floriculture. 1437.304 Section 1437.304 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  16. 7 CFR 1437.307 - Mushrooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Mushrooms. 1437.307 Section 1437.307 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  17. 7 CFR 1437.305 - Ornamental nursery.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Ornamental nursery. 1437.305 Section 1437.305 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM...

  18. 7 CFR 1437.308 - Ginseng.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Ginseng. 1437.308 Section 1437.308 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  19. 7 CFR 1437.307 - Mushrooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Mushrooms. 1437.307 Section 1437.307 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining...

  20. 7 CFR 1437.305 - Ornamental nursery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Ornamental nursery. 1437.305 Section 1437.305 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM...

  1. 7 CFR 400.57 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false [Reserved] 400.57 Section 400.57 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.57 [Reserved] ...

  2. 7 CFR 400.57 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false [Reserved] 400.57 Section 400.57 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.57 [Reserved] ...

  3. 7 CFR 400.57 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false [Reserved] 400.57 Section 400.57 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.57 [Reserved] ...

  4. 7 CFR 400.57 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false [Reserved] 400.57 Section 400.57 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.57 [Reserved] ...

  5. 7 CFR 3430.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION... definitions applicable to the program under this subpart include: Integrated project means a project that... or activity. Specialty crop means fruits and vegetables, tree nuts, dried fruits, and horticulture...

  6. 7 CFR 400.57 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false [Reserved] 400.57 Section 400.57 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual Production History § 400.57 [Reserved] ...

  7. 7 CFR 1450.4 - Violations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Violations. 1450.4 Section 1450.4 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  8. 7 CFR 1450.9 - Assignments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Assignments. 1450.9 Section 1450.9 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  9. 7 CFR 1450.10 - Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Appeals. 1450.10 Section 1450.10 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  10. 7 CFR 1450.9 - Assignments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Assignments. 1450.9 Section 1450.9 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  11. 7 CFR 1450.13 - Miscellaneous.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Miscellaneous. 1450.13 Section 1450.13 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  12. 7 CFR 1450.10 - Appeals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Appeals. 1450.10 Section 1450.10 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  13. 7 CFR 1450.200 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false General. 1450.200 Section 1450.200 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  14. 7 CFR 1450.13 - Miscellaneous.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Miscellaneous. 1450.13 Section 1450.13 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  15. 7 CFR 1450.200 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false General. 1450.200 Section 1450.200 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  16. 7 CFR 1450.10 - Appeals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Appeals. 1450.10 Section 1450.10 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  17. 7 CFR 1450.4 - Violations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Violations. 1450.4 Section 1450.4 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  18. 7 CFR 1450.212 - Establishment payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Establishment payments. 1450.212 Section 1450.212 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP...

  19. 7 CFR 1450.200 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false General. 1450.200 Section 1450.200 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  20. 7 CFR 1450.209 - Signup.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Signup. 1450.209 Section 1450.209 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  1. 7 CFR 1450.200 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false General. 1450.200 Section 1450.200 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  2. 7 CFR 1450.4 - Violations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Violations. 1450.4 Section 1450.4 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  3. 7 CFR 1450.1 - Administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Administration. 1450.1 Section 1450.1 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  4. 7 CFR 1450.212 - Establishment payments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Establishment payments. 1450.212 Section 1450.212 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP...

  5. 7 CFR 1450.209 - Signup.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Signup. 1450.209 Section 1450.209 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  6. 7 CFR 1450.9 - Assignments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Assignments. 1450.9 Section 1450.9 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  7. 7 CFR 1450.10 - Appeals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Appeals. 1450.10 Section 1450.10 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  8. 7 CFR 1450.212 - Establishment payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Establishment payments. 1450.212 Section 1450.212 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP...

  9. 7 CFR 1450.212 - Establishment payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Establishment payments. 1450.212 Section 1450.212 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP...

  10. 7 CFR 1450.13 - Miscellaneous.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Miscellaneous. 1450.13 Section 1450.13 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  11. 7 CFR 1450.209 - Signup.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Signup. 1450.209 Section 1450.209 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  12. 7 CFR 1450.13 - Miscellaneous.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Miscellaneous. 1450.13 Section 1450.13 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  13. 7 CFR 1450.4 - Violations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Violations. 1450.4 Section 1450.4 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  14. 7 CFR 1450.209 - Signup.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Signup. 1450.209 Section 1450.209 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Establishment...

  15. 7 CFR 1450.9 - Assignments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Assignments. 1450.9 Section 1450.9 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions...

  16. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed

    Higo, Masao; Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans ( Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha -1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance.

  17. Can phosphorus application and cover cropping alter arbuscular mycorrhizal fungal communities and soybean performance after a five-year phosphorus-unfertilized crop rotational system?

    PubMed Central

    Sato, Ryohei; Serizawa, Ayu; Takahashi, Yuichi; Gunji, Kento; Tatewaki, Yuya; Isobe, Katsunori

    2018-01-01

    Background Understanding diversity of arbuscular mycorrhizal fungi (AMF) is important for optimizing their role for phosphorus (P) nutrition of soybeans (Glycine max (L.) Merr.) in P-limited soils. However, it is not clear how soybean growth and P nutrition is related to AMF colonization and diversity of AMF communities in a continuous P-unfertilized cover cropping system. Thus, we investigated the impact of P-application and cover cropping on the interaction among AMF colonization, AMF diversity in soybean roots, soybean growth and P nutrition under a five-year P-unfertilized crop rotation. Methods In this study, we established three cover crop systems (wheat, red clover and oilseed rape) or bare fallow in rotation with soybean. The P-application rates before the seeding of soybeans were 52.5 and 157.5 kg ha−1 in 2014 and 2015, respectively. We measured AMF colonization in soybean roots, soybean growth parameters such as aboveground plant biomass, P uptake at the flowering stage and grain yields at the maturity stage in both years. AMF community structure in soybean roots was characterized by specific amplification of small subunit rDNA. Results The increase in the root colonization at the flowering stage was small as a result of P-application. Cover cropping did not affect the aboveground biomass and P uptake of soybean in both years, but the P-application had positive effects on the soybean performance such as plant P uptake, biomass and grain yield in 2015. AMF communities colonizing soybean roots were also significantly influenced by P-application throughout the two years. Moreover, the diversity of AMF communities in roots was significantly influenced by P-application and cover cropping in both years, and was positively correlated with the soybean biomass, P uptake and grain yield throughout the two years. Discussion Our results indicated that P-application rather than cover cropping may be a key factor for improving soybean growth performance with respect to AMF diversity in P-limited cover cropping systems. Additionally, AMF diversity in roots can potentially contribute to soybean P nutrition even in the P-fertilized cover crop rotational system. Therefore, further investigation into the interaction of AMF diversity, P-application and cover cropping is required for the development of more effective P management practices on soybean growth performance. PMID:29682413

  18. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve substantially the climate, crop, and economic simulation tools that are used to characterize the agricultural sector, to assess future world food security under changing climate conditions, and to enhance adaptation capacity both globally and regionally. To understand better and improve the modeled crop responses, AgMIP has conducted detailed crop model intercomparisons at closely observed field sites for wheat (Asseng et al., 2013), rice (Li et al., in review), maize (Bassu et al., 2014), and sugarcane (Singels et al., 2013). A coordinated modeling exercise was one of the original motivations for AgMIP, and C3MP provides rapid estimation of crop responses to CO2, water, and temperature (CTW) changes, adding dimension and insight into the crop model intercomparisons, while facilitating interactions within the global community of modelers. C3MP also contributes a fast-track, multi-model climate sensitivity assessment for the AgMIP climate and crop modeling teams on Research Track 2 (Fig. 1), which seeks to understand the impact of projected climatic changes on crop production and food security (Rosenzweig et al., 2013; Ruane et al., 2014).

  19. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors

    PubMed Central

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA’s results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems. PMID:28792495

  20. Does aquaculture add resilience to the global food system?

    PubMed

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

Top