NASA Astrophysics Data System (ADS)
Clowes, P.; Mccallum, S.; Welch, A.
2006-10-01
We are currently developing a multilayer avalanche photodiode (APD)-based detector for use in positron emission tomography (PET), which utilizes thin continuous crystals. In this paper, we developed a Monte Carlo-based simulation to aid in the design of such detectors. We measured the performance of a detector comprising a single thin continuous crystal (3.1 mm times 9.5 mm times 9.5 mm) of lutetium yttrium ortho-silicate (LYSO) and an APD array (4times4) elements; each element 1.6 mm2 and on a 2.3 mm pitch. We showed that a spatial resolution of better than 2.12 mm is achievable throughout the crystal provided that we adopt a Statistics Based Positioning (SBP) Algorithm. We then used Monte Carlo simulation to model the behavior of the detector. The accuracy of the Monte Carlo simulation was verified by comparing measured and simulated parent datasets (PDS) for the SBP algorithm. These datasets consisted of data for point sources at 49 positions uniformly distributed over the detector area. We also calculated the noise in the detector circuit and verified this value by measurement. The noise value was included in the simulation. We show that the performance of the simulation closely matches the measured performance. The simulations were extended to investigate the effect of different noise levels on positioning accuracy. This paper showed that if modest improvements could be made in the circuit noise then positioning accuracy would be greatly improved. In summary, we have developed a model that can be used to simulate the performance of a variety of APD-based continuous crystal PET detectors
Depth of interaction decoding of a continuous crystal detector module.
Ling, T; Lewellen, T K; Miyaoka, R S
2007-04-21
We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be approximately 25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability.
Development of a Scintillation Detector and the Influence on Clinical Imaging
NASA Astrophysics Data System (ADS)
Panetta, Joseph Vincent
The detector is the functional unit within a Positron Emission Tomography (PET) scanner, serving to convert the energy of radiation emitted from a patient into positional information, and as such contributes significantly to the performance of the scanner. Excellent spatial resolution in continuous detectors that are thick has proven difficult to achieve using simple positioning algorithms, leading to research in the field to improve performance. This thesis aims to investigate the effect of modifications to the scintillation light spread within the bulk of the scintillator to improve performance, focusing on the use of laser induced optical barriers (LIOBs) etched within thick continuous crystals, and furthermore aims to translate the effect on detector performance to scanner quantitation in patient studies. The conventional continuous detector is first investigated by analyzing the various components of the detector as well as its limitations. It is seen that the performance of the detector is affected by a number of variables that either cannot be improved or may be improved only at the expense of greater complexity or computing time; these include the photodetector, the positioning algorithm, and Compton scatter in the detector. The performance of the detectors, however, is fundamentally determined by the light spread within the detector, and limited by the depth-dependence of the light spread and poor performance in the entrance region, motivating efforts to modify this aspect of the detector. The feasibility and potential of LIOBs to fine-tune this light spread and improve these limitations is then studied using both experiments and simulations. The behavior of the LIOBs in response to optical light is investigated, and the opacity of the etchings is shown to be dependent on the parameters of the etching procedure. Thick crystals were also etched with LIOBs in their entrance region in a grid pattern in order to improve the resolution in the entrance region. Measurements show an overall improvement in spatial resolution: the resolution in the etched region of the crystals is slightly improved (e.g., 0.8mm for a 25mm thick crystal), though in the unetched region, it is slightly degraded (e.g., 0.4mm for a 25mm thick crystal). While the depth-dependence of the response of the crystal is decreased, the depth-of-interaction (DOI) performance is degraded as well. Simulation studies informed by these measurements show that the properties of the LIOBs strongly affect the performance of the crystal, and ultimately further illustrate that trade-offs in spatial resolution, position sampling, and DOI resolution are inherent in varying the light spread using LIOBs in this manner; these may be used as a guide for future experiments. System Monte Carlo simulations were used to investigate the added benefit of improved detector spatial resolution and position sampling to the imaging performance of a whole-body scanner. These simulations compared the performance of scanners composed of conventional pixelated detectors to that of scanners using continuous crystals. Results showed that the improved performance (relative to that of 4-mm pixelated detectors) of continuous crystals with a 2-mm resolution, pertinent to both the etched 14mm thick crystal studied as well as potential designs with the etched 25mm thick crystal, increased the mean contrast recovery coefficient (CRC) of images by 22% for 5.5mm spheres. Last, a set of experiments aimed to test the correspondence between quantification in phantom and patient images using a lesion embedding methodology, so that any improvements determined using phantom studies may be understood clinically. The results show that the average CRC values for lesions embedded in the lung and liver agree well with those for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRC resulting from application of post-filters on the subject and phantom images are consistent within measurement uncertainty. This study shows that the improvements in CRC resulting from improved spatial resolution, measured using phantom studies in the simulations, are representative of improvements in quantitative accuracy in patient studies. While unmodified thick continuous detectors hold promise for both improved image quality and quantitation in whole-body imaging, excellent performance requires intensive hardware and computational solutions. Laser induced optical barriers offer the ability to modify the light spread within the scintillator to improve the intrinsic performance of the detector: while measurements with crystals etched with relatively transmissive etchings show a slight improvement in resolution, simulations show that the LIOBs may be fine-tuned to result in improved performance using relatively simple positioning algorithms. For systems in which DOI information is less important, and transverse resolution and sensitivity are paramount, etching thick detectors with this design, fine-tuned to the particular thickness of the crystal and application, is an interesting alternative to the standard detector design. (Abstract shortened by ProQuest.).
X-ray light valve (XLV): a novel detectors' technology for digital mammography
NASA Astrophysics Data System (ADS)
Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter
2014-03-01
A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.
Single-crystal diffraction instrument TriCS at SINQ
NASA Astrophysics Data System (ADS)
Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.
2000-03-01
The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.
Comparison of modeled and measured performance of a GSO crystal as gamma detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parno, Diana Syemour; Friend, Megan Lynn; Mamyan, Vahe
2013-11-01
We have modeled, tested, and installed a large, cerium-activated Gd{sub 2}SiO{sub 5} crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.
Boron selenide semiconductor detectors for thermal neutron counting
NASA Astrophysics Data System (ADS)
Kargar, Alireza; Tower, Joshua; Cirignano, Leonard; Shah, Kanai
2013-09-01
Thermal neutron detectors in planar configuration were fabricated from B2Se3 (Boron Selenide) crystals grown at RMD Inc. All fabricated semiconductor devices were characterized for the current-voltage (I-V) characteristic and neutron counting measurement. In this study, the resistivity of crystals is reported and the collected pulse height spectra are presented for devices irradiated with the 241AmBe neutron source. Long-term stability of the B2Se3 devices for neutron detection under continuous bias and without being under continuous bias was investigated and the results are reported. The B2Se3 devices showed response to thermal neutrons of the 241AmBe source.
Theocharous, E; Theocharous, S P; Lehman, J H
2013-11-20
A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.
NASA Astrophysics Data System (ADS)
Jorge, L. S.; Bonifacio, D. A. B.; DeWitt, Don; Miyaoka, R. S.
2016-12-01
Continuous scintillator-based detectors have been considered as a competitive and cheaper approach than highly pixelated discrete crystal positron emission tomography (PET) detectors, despite the need for algorithms to estimate 3D gamma interaction position. In this work, we report on the implementation of a positioning algorithm to estimate the 3D interaction position in a continuous crystal PET detector using a Field Programmable Gate Array (FPGA). The evaluated method is the Statistics-Based Processing (SBP) technique that requires light response function and event position characterization. An algorithm has been implemented using the Verilog language and evaluated using a data acquisition board that contains an Altera Stratix III FPGA. The 3D SBP algorithm was previously successfully implemented on a Stratix II FPGA using simulated data and a different module design. In this work, improvements were made to the FPGA coding of the 3D positioning algorithm, reducing the total memory usage to around 34%. Further the algorithm was evaluated using experimental data from a continuous miniature crystal element (cMiCE) detector module. Using our new implementation, average FWHM (Full Width at Half Maximum) for the whole block is 1.71±0.01 mm, 1.70±0.01 mm and 1.632±0.005 mm for x, y and z directions, respectively. Using a pipelined architecture, the FPGA is able to process 245,000 events per second for interactions inside of the central area of the detector that represents 64% of the total block area. The weighted average of the event rate by regional area (corner, border and central regions) is about 198,000 events per second. This event rate is greater than the maximum expected coincidence rate for any given detector module in future PET systems using the cMiCE detector design.
Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Den Berg, L.; Schnepple, W.F.
1981-01-01
Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reducedmore » gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.« less
NASA Technical Reports Server (NTRS)
Bratt, P. R.; Lewis, N. N.; Long, L. E.
1978-01-01
The development of doped-germanium detectors which have optimized performance in the 30- to 120-mu m wavelength range and are capable of achieving the objectives of the infrared astronomical satellite (IRAS) space mission is discussed. Topics covered include the growth and evaluation of Ge:Ga and Ge:Be crystals, procedures for the fabrication and testing of detectors, irradiance calculations, detector responsivity, and resistance measurements through MOSFET. Test data are presented in graphs and charts.
Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian
2016-01-01
A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141
Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R
2012-10-21
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.
Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.
2012-01-01
In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690
Which strategy for a protein crystallization project?
NASA Technical Reports Server (NTRS)
Kundrot, C. E.
2004-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Which Strategy for a Protein Crystallization Project?
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.
2003-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
High resolution gamma detector for small-animal positron emission tomography
NASA Astrophysics Data System (ADS)
Ling, Tao
In this study, the performance of continuous miniature crystal element (cMiCE) detectors with LYSO crystals of different thickness were investigated. Potential designs of a cMiCE small animal positron emission tomography scanner were also evaluated by an analytical simulation approach. The cMiCE detector was proposed as a high sensitivity, low cost alternative to the prevailing discrete crystal detectors. A statistics based positioning (SBP) algorithm was developed to solve the scintillation position estimation problem and proved to be successful on a cMiCE detector with a 4 mm thick crystal. By assuming a Gaussian distribution, the distributions of the photomultiplier signals could be characterized by mean and variance, which are functions of scintillation position. After calibrating the detector on a grid of locations, a 2D table of the mean and variance can be built. The SBP algorithm searches the tables to find the location that maximizes the likelihood between the mean and variance of known positions and the incoming scintillation event. In this work, the performance of the SBP algorithm on cMiCE detectors with thicker crystals (6 and 8 mm) was studied. The stopping power of a cMiCE detector is 40% and 49% for 6 and 8 mm thick crystals respectively. The intrinsic spatial resolution is 1.2 mm and 1.4 mm FWHM for the center and corner sections of a 6 mm thick crystal detector, and 1.3 mm and 1.6 mm for center and corner of an 8 mm thick crystal detector. These results demonstrate that the cMiCE detector is a promising candidate for high resolution, high sensitivity PET applications. A maximum-likelihood (ML) clustering method was developed to empirically separate the experimental data set into two to four subgroups according to the depth-of-interaction of the detected photons. This method enabled us to build 2-DOI lookup tables (LUT) (mean and variance lookup tables for front group and back group). Using the 2-DOI SBP LUTs, the scintillation position and DOI could be estimated at the same time. The experimental measured misclassification rate for the 8 mm thick crystal detector is approximately 25%. The ML clustering method also provided a better fit to the distributions of the experimental signals, especially for the skewed ones. It therefore led to a significant improvement in the intrinsic spatial resolution in the corner region of the detector. In order to eliminate the effort in calibrating a cMiCE detector, a parametric positioning method was studied. Gaussian, Cauchy, and parametric models for the light distribution inside the crystal were tested. From the diagnosis of the sum of squared residues and the goodness of fit to the experimental data, the parametric model was found to be the best fit to the light distribution. It was also the best performer in terms of intrinsic spatial resolution and DOI resolution. Using the parametric model, the intrinsic spatial resolution is 1.1 mm and 1.3 mm FWHM for the center and corner regions of the 8 mm thick crystal detector respectively. The DOI resolution is 3.2 mm FWHM. Another variation of the SBP algorithm was tried to reduce the number of readouts need to be digitized. Several themes of different trade-offs between the readout number and spatial resolution were tested. The results show that excluding the PMT channels with less 1% of the total signal or digitizing only the nearest 21 channels around the channel with the maximum signal are the best choices, while the intrinsic spatial resolution is not compromised. An analytical simulation approach was developed to investigate how the choice of cMiCE detectors affect image figures of merit for mouse-imaging cMICE PET scanners. For a high resolution imaging system, important physical effects that impact image quality are positron range, detector point-spread function and coincident photon count levels (i.e., statistical noise). Modeling of these effects was included in an analytical simulation that generated multiple realizations of sinograms with varying levels of each effect. To evaluate image quality with respect to quantitation and detection task performance, four different figures of merit were measured: (1) root mean square error; (2) a region of interest SNR (SNRROI); (3) non-prewhitening matched filter SNR (SNRNPW); and (4) recovery coefficient. The results indicate that positron range and non-stationary detector point-spread response effects cause significant reductions of quantitation (SNRROI) and detection (SNRNPW) accuracy for small regions, e.g., a 0.01 cc sphere. A cMiCE detector with 6 mm thick crystal is better for quantitation, while the one with 8 mm thick crystal is better for detection. DOI capability makes a major impact on the FOMs. cMiCE detector with 8 mm thick crystal + 2-DOI capability proved to be the best candidate for both quantitation and detection.
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga
2017-09-01
We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all crystals of the first layer and some crystals of the second and the third layers of the segmented array.
Crystals for krypton helium-alpha line emission microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Jeffrey A.; Haugh, Michael J.
2018-04-17
A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signalmore » in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.« less
SPECT detectors: the Anger Camera and beyond
Peterson, Todd E.; Furenlid, Lars R.
2011-01-01
The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904
Zendle, R.
1983-11-03
A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.
Zendle, Robert
1985-01-01
A thermoluminescence dosimeter having a very small rate of decline of sensitivity during subsequent uses after heating is disclosed. The dosimeter includes a detector crystal and a glass enclosure in which the detector crystal is located. The glass enclosure is air tight and is filled with a super dry inert fill gas. The inert fill gas is nonreactive with the detector crystal when the detector crystal is heated to thermoluminescence. The fill gas is selected from the group consisting of air, nitrogen, and argon, suitable admixed with 5 to 25 percent helium. The detector crystal consists essentially of calcium fluoride. The fill gas is preferably contained at a subatmospheric pressure in the glass enclosure.
Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R
2016-02-01
In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3-3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%-7% with phosphor-coated crystals compared to uncoated crystals. These results demonstrate the feasibility of obtaining TOF-DOI capabilities with simple block detector readout using phosphor-coated crystals.
Berg, Eric; Roncali, Emilie; Kapusta, Maciej; Du, Junwei; Cherry, Simon R.
2016-01-01
Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals. PMID:26843254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei
Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI providedmore » the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.« less
NASA Astrophysics Data System (ADS)
Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.
2016-02-01
A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial template model used.
NASA Astrophysics Data System (ADS)
Pilotti, R.; Angelone, M.; Marinelli, M.; Milani, E.; Verona-Rinati, G.; Verona, C.; Prestopino, G.; Montereali, R. M.; Vincenti, M. A.; Schooneveld, E. M.; Scherillo, A.; Pietropaolo, A.
2016-11-01
An innovative diamond detector layout is presented that is designed to operate at high temperature under intense neutron and gamma fluxes. It is made of a 500 μm “electronic grade” diamond film with 100 nm thick Ag metal contacts deposited onto each surface of the film by means of thermal evaporation. A 2 μ \\text{m} thick layer of 6LiF has been deposited on top of one of the two Ag contacts to make the detector sensitive to thermal neutrons. The device was tested at the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK) using the INES beam line. The detector was continuously irradiated for 100 hours in vacuum (p = 10-5 \\text{mbar}) , exposed to a neutron flux of about 106 n cm-2 s-1 at a temperature T =150 ^\\circ \\text{C} . The aim of this experiment was to study the time dependence of the diamond detector performance while operating at high temperature under irradiation, providing a first experimental proof of reliable continuous operation for 100 hours at high temperature in a harsh environment.
Methods of measurement for semiconductor materials, process control, and devices
NASA Technical Reports Server (NTRS)
Bullis, W. M. (Editor)
1972-01-01
Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.
Characterization of TlBrxCl1-x Crystals for Radiation Detectors
NASA Astrophysics Data System (ADS)
Onodera, Toshiyuki; Hitomi, Keitaro; Onodera, Chikara; Shoji, Tadayoshi; Mochizuki, Katsumi
2012-08-01
Thallium bromide chloride TlBrxCl1-x crystals have been evaluated as a material used for fabrication of room temperature radiation detectors. In this study, TlBrxCl1-x crystals with various chlorine (Cl) concentrations were grown by the travelling molten zone method and the detectors were fabricated from the crystals. The optical properties of the crystals were evaluated by measuring the transmittances. The charge transport properties were characterized by the Hecht analysis. The band gap energy of the crystals proportionally increased with Cl concentration. Mobility-lifetime products (μτ) of the crystals decreased with increasing Cl concentration.
1981-05-01
crystals Cesium cadmium fluoride Ultrasonic wave propagation Potassium zinc fluoride Nonlinear acoustics 20. A’?S1 RACT (Continue on reverse side If...is the stray capacitance of the detector, L is the inductance of the wire leading from the banana jack to the BNC connector (shown in Figure 111-2). Z...The samples on which measurements were made included [lO0] and [1111 copper samples, a sample of potassium zinc fluoride (KZnF 3 ) and a sample of
NASA Astrophysics Data System (ADS)
Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang
2008-12-01
Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.
Continued development of thallium bromide and related compounds for gamma-ray spectrometers
NASA Astrophysics Data System (ADS)
Kim, H.; Churilov, A.; Ciampi, G.; Cirignano, L.; Higgins, W.; Kim, S.; O'Dougherty, P.; Olschner, F.; Shah, Kanai
2011-02-01
Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma-ray spectroscopy due to high density, high Z and wide bandgap of the material. Low melting point and cubic crystal structure of selected compositions of these compounds facilitate crystal growth by melt techniques. Recent advances in material purification, crystal growth, and device processing have led to mobility-lifetime products of electrons in the mid 10 -3 cm 2/V range enabling working detectors of greater than 15 mm thickness to be fabricated. In this paper we report on our recent progress on TlBr detector development and first results from TlBr xCl 1- x devices. Pulse height spectra will be presented from TlBr arrays as thick as 18 mm. Depth corrected spectra will also be presented. For a 5 mm thick TlBr array, energy resolution of less than 1% (FWHM at 662 keV) was obtained after depth correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, K. W.; Bitter, M. L.; Scott, S. D.
2009-03-24
A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu
Liquid crystal foil for the detection of breast cancer
NASA Astrophysics Data System (ADS)
Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk
2016-09-01
Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.
Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector.
Rajendran, Chitra; Dworkowski, Florian S N; Wang, Meitian; Schulze-Briese, Clemens
2011-05-01
The first study of room-temperature macromolecular crystallography data acquisition with a silicon pixel detector is presented, where the data are collected in continuous sample rotation mode, with millisecond read-out time and no read-out noise. Several successive datasets were collected sequentially from single test crystals of thaumatin and insulin. The dose rate ranged between ∼ 1320 Gy s(-1) and ∼ 8420 Gy s(-1) with corresponding frame rates between 1.565 Hz and 12.5 Hz. The data were analysed for global radiation damage. A previously unreported negative dose-rate effect is observed in the indicators of global radiation damage, which showed an approximately 75% decrease in D(1/2) at sixfold higher dose rate. The integrated intensity decreases in an exponential manner. Sample heating that could give rise to the enhanced radiation sensitivity at higher dose rate is investigated by collecting data between crystal temperatures of 298 K and 353 K. UV-Vis spectroscopy is used to demonstrate that disulfide radicals and trapped electrons do not accumulate at high dose rates in continuous data collection.
Advances in TlBr detector development
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo
2013-09-01
Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.
Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout
NASA Astrophysics Data System (ADS)
Bläckberg, L.; El Fakhri, G.; Sabet, H.
2017-11-01
A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to >42%, and for rough interfaces >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.
Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.
Bläckberg, L; El Fakhri, G; Sabet, H
2017-10-19
A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to >42%, and for rough interfaces >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically pixelated array 35% with polished pixel surfaces and 59% with rough surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Chris; Daigle, Stephen; Buckner, Matt
2015-02-18
The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ) 15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Li, Deng; Lu, Xiaoming; Cheng, Xinyi; Wang, Liwei
2014-10-01
Continuous crystal-based positron emission tomography (PET) detectors could be an ideal alternative for current high-resolution pixelated PET detectors if the issues of high performance γ interaction position estimation and its real-time implementation are solved. Unfortunately, existing position estimators are not very feasible for implementation on field-programmable gate array (FPGA). In this paper, we propose a new self-organizing map neural network-based nearest neighbor (SOM-NN) positioning scheme aiming not only at providing high performance, but also at being realistic for FPGA implementation. Benefitting from the SOM feature mapping mechanism, the large set of input reference events at each calibration position is approximated by a small set of prototypes, and the computation of the nearest neighbor searching for unknown events is largely reduced. Using our experimental data, the scheme was evaluated, optimized and compared with the smoothed k-NN method. The spatial resolutions of full-width-at-half-maximum (FWHM) of both methods averaged over the center axis of the detector were obtained as 1.87 ±0.17 mm and 1.92 ±0.09 mm, respectively. The test results show that the SOM-NN scheme has an equivalent positioning performance with the smoothed k-NN method, but the amount of computation is only about one-tenth of the smoothed k-NN method. In addition, the algorithm structure of the SOM-NN scheme is more feasible for implementation on FPGA. It has the potential to realize real-time position estimation on an FPGA with a high-event processing throughput.
A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryemadhi, A.; Barner, L.; Grove, A.
Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less
A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications
Kryemadhi, A.; Barner, L.; Grove, A.; ...
2017-10-31
Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less
NASA Astrophysics Data System (ADS)
Surti, S.; Karp, J. S.
2018-03-01
The advent of silicon photomultipliers (SiPMs) has introduced the possibility of increased detector performance in commercial whole-body PET scanners. The primary advantage of these photodetectors is the ability to couple a single SiPM channel directly to a single pixel of PET scintillator that is typically 4 mm wide (one-to-one coupled detector design). We performed simulation studies to evaluate the impact of three different event positioning algorithms in such detectors: (i) a weighted energy centroid positioning (Anger logic), (ii) identifying the crystal with maximum energy deposition (1st max crystal), and (iii) identifying the crystal with the second highest energy deposition (2nd max crystal). Detector simulations performed with LSO crystals indicate reduced positioning errors when using the 2nd max crystal positioning algorithm. These studies are performed over a range of crystal cross-sections varying from 1 × 1 mm2 to 4 × 4 mm2 as well as crystal thickness of 1 cm to 3 cm. System simulations were performed for a whole-body PET scanner (85 cm ring diameter) with a long axial FOV (70 cm long) and show an improvement in reconstructed spatial resolution for a point source when using the 2nd max crystal positioning algorithm. Finally, we observe a 30-40% gain in contrast recovery coefficient values for 1 and 0.5 cm diameter spheres when using the 2nd max crystal positioning algorithm compared to the 1st max crystal positioning algorithm. These results show that there is an advantage to implementing the 2nd max crystal positioning algorithm in a new generation of PET scanners using one-to-one coupled detector design with lutetium based crystals, including LSO, LYSO or scintillators that have similar density and effective atomic number as LSO.
Neutron response characterization for an EJ299-33 plastic scintillation detector
Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.; ...
2014-05-10
Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less
NASA Astrophysics Data System (ADS)
MacDonald, Lawrence R.; Hunter, William C. J.; Kinahan, Paul E.; Miyaoka, Robert S.
2013-10-01
We used simulations to investigate the relationship between sensitivity and spatial resolution as a function of crystal thickness in a rectangular PET scanner intended for quantitative assessment of breast cancers. The system had two 20 × 15-cm2 and two 10 × 15-cm2 flat detectors forming a box, with the larger detectors separated by 4 or 8 cm. Depth-of-interaction (DOI) resolution was modeled as a function of crystal thickness based on prior measurements. Spatial resolution was evaluated independent of image reconstruction by deriving and validating a surrogate metric from list-mode data ( dFWHM). When increasing crystal thickness from 5 to 40 mm, and without using DOI information, the dFWHM for a centered point source increased from 0.72 to 1.6 mm. Including DOI information improved dFWHM by 12% and 27% for 5- and 40-mm-thick crystals, respectively. For a point source in the corner of the FOV, use of DOI information improved dFWHM by 20% (5-mm crystal) and 44% (40-mm crystal). Sensitivity was 7.7% for 10-mm-thick crystals (8-cm object). Increasing crystal thickness on the smaller side detectors from 10 to 20 mm (keeping 10-mm crystals on the larger detectors) boosted sensitivity by 24% (relative) and degraded dFWHM by only 3%/8% with/without DOI information. The benefits of measuring DOI must be evaluated in terms of the intended clinical task of assessing tracer uptake in small lesions. Increasing crystal thickness on the smaller side detectors provides substantial sensitivity increase with minimal accompanying loss in resolution.
Characteristics and performance of thin LaBr3(Ce) crystal for X-ray astronomy
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Lanthanum Bromide crystal is the latest among the family of the scintillation counters and has an advantage over conventional room temperature detectors. It has a high atomic number, high light yield, and fast decay time compared to NaI(Tl) crystal and therefore, the energy resolution, of LaBr3 detector is superior and it has higher detection efficiency. In recent past, laboratory studies have been generally made using thick crystal geometry (1.5×1.5-inch and 2×2-inch). Similarly, simulation studies are also in progress for the use of LaBr3 detectors in the ground based high energy physics experiments. The detector background counting rate of LaBr3 crystal is affected by the internal radioactivity and is due to naturally occurring radioisotopes 138La and 227Ac, similar to the sodium Iodide detector which is affected by the iodine isotopes. We have developed a new detector using thin lanthanum bromide crystal (3×30-mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on Dec. 21, 2007, which reached a ceiling altitude of 4.3 mbs. A background counting rate of 1.6 ×10-2 ct cm-2 s-1 keV-1 sr-1 was observed at the ceiling altitude. This paper describes the details of the electronics hardware, energy resolution and the background characteristics of the detector at ceiling altitude
Detector Position Estimation for PET Scanners.
Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul
2012-06-11
Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.
A Protein Coated Piezoelectric Crystal Detector
1990-05-01
and acetylcholine, which continues the cyclic process. Organophosphate agents and other acetyicholinesterase inhibitors form a covalent intermediate...and/or decontamination purposes. With the current state of development and technology in the area of biotechnology, the use of chemical warfare agents ...by an enemy in battle is no longer just a probability, but a very likely possibility. Organophosphorus agents and other cholinesterase inhibitors are
SCINTILLATION EXPOSURE RATE DETECTOR
Spears, W.G.
1960-11-01
A radiation detector for gamma and x rays is described. The detector comprises a scintillation crystal disposed between a tantalum shield and the input of a photomultiplier tube, the crystal and the shield cooperating so that their combined response to a given quantity of radiation at various energy levels is substantially constant.
Performance evaluation for 120 four-layer DOI block detectors of the jPET-D4.
Inadama, Naoko; Murayama, Hideo; Ono, Yusuke; Tsuda, Tomoaki; Hamamoto, Manabu; Yamaya, Taiga; Yoshida, Eiji; Shibuya, Kengo; Nishikido, Fumihiko; Takahashi, Kei; Kawai, Hideyuki
2008-01-01
The jPET-D4 is a brain positron emission tomography (PET) scanner that we have developed to meet user demands for high sensitivity and high spatial resolution. For this scanner, we developed a four-layer depth-of-interaction (DOI) detector. The four-layer DOI detector is a key component for the jPET-D4, its performance has great influence on the overall system performance. Previously, we reported the original technique for encoding four-layer DOI. Here, we introduce the final design of the jPET-D4 detector and present the results of an investigation on uniformity in performance of the detector. The performance evaluation was done over the 120 DOI crystal blocks for the detectors, which are to be assembled into the jPET-D4 scanner. We also introduce the crystal assembly method, which is simple enough, even though each DOI crystal block is composed of 1,024 crystal elements. The jPET-D4 detector consists of four layers of 16 x 16 Gd(2)SiO(5) (GSO) crystals and a 256-channel flat-panel position-sensitive photomultiplier tube (256ch FP-PMT). To identify scintillated crystals in the four-layer DOI detector, we use pulse shape discrimination and position discrimination on the two-dimensional (2D) position histogram. For pulse shape discrimination, two kinds of GSO crystals that show different scintillation decay time constants are used in the upper two and lower two layers, respectively. Proper reflector arrangement in the crystal block then allows the scintillated crystals to be identified in these two-layer groupings with two 2D position histograms. We produced the 120 DOI crystal blocks for the jPET-D4 system, and measured their characteristics such as the accuracy of pulse shape discrimination, energy resolution, and the pulse height of the full energy peak. The results show a satisfactory and uniform performance of the four-layer DOI crystal blocks; for example, misidentification rate in each GSO layer is <5% based on pulse shape discrimination, the averaged energy resolutions for the central four crystals of the first (farthest from the FP-PMT), second, third, and 4th layers are 15.7 +/- 1.0, 15.8 +/- 0.6, 17.7 +/- 1.2, and 17.3 +/- 1.4%, respectively, and variation in pulse height of the full energy peak among the four layers is <5% on average.
1992-02-21
Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.
Ultra compact spectrometer apparatus and method using photonic crystals
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)
2009-01-01
The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.
Rejection of Alpha Surface Background in Non-scintillating Bolometric Detectors: The ABSuRD Project
Biassoni, M.; Brofferio, C.; Bucci, C.; ...
2016-01-14
Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less
Timing and tracking for the Crystal Barrel detector
NASA Astrophysics Data System (ADS)
Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer
2017-01-01
The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
Room temperature aluminum antimonide radiation detector and methods thereof
Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W
2015-03-03
In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Naomi; Ito, H.; Han, S.
We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm{sup 3} of resolution by using some scintillating blocks with a volume of 1 mm{sup 3}, which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PETmore » detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using {sup 22}Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd{sub 3}(Al,Ga){sub 5}O{sub 12} (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)« less
Handheld isotope identification system
Frankle, Christen M [Los Alamos, NM; Becker, John A [Alameda, CA; Cork,; Christopher, P [Pleasant Hill, CA; Madden, Norman W [Livermore, CA
2007-01-09
A portable radiation detector using a high-purity germanium crystal as the sensing device. The crystal is fabricated such that it exhibits a length to width ratio greater than 1:1 and is oriented within the detector to receive radiation along the width of said crystal. The crystal is located within a container pressurized with ultra-pure nitrogen, and the container is located within a cryostat under vacuum.
Development of GEM gas detectors for X-ray crystal spectrometry
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Czarski, T.; Dominik, W.; Jakubowska, K.; Rzadkiewicz, J.; Scholz, M.; Pozniak, K.; Kasprowicz, G.; Zabolotny, W.
2014-03-01
Two Triple Gas Electron Multiplier (Triple-GEM) detectors were developed for high-resolution X-ray spectroscopy measurements for tokamak plasma to serve as plasma evolution monitoring in soft X-ray region (SXR). They provide energy resolved fast dynamic plasma radiation imaging in the SXR with 0.1 kHz frequency. Detectors were designed and constructed for continuous data-flow precise energy and position measurement of plasma radiation emitted by metal impurities, W46+ and Ni26+ ions, at 2.4 keV and 7.8 keV photon energies, respectively. High counting rate capability of the detecting units has been achieved with good position resolution. This article presents results of the laboratory and tokamak experiments together with the system performance under irradiation by photon flux from the plasma core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biassoni, M.; Brofferio, C.; Bucci, C.
Due to their excellent energy resolution values and the vast choice of possible materials, bolometric detectors are currently widely used in the physics of rare events. A limiting aspect for bolometers rises from their inability to discriminate among radiation types or surface from bulk events. It has been demonstrated that the main limitation to sensitivity for purely bolometric detectors is represented by surface alpha contaminations, causing a continuous background that cannot be discriminated. A new scintillation based technique for the rejection of surface alpha background in non- scintillating bolometric experiments is proposed in this work. The idea is to combinemore » a scintillating and a high sensitivity photon detector with a non- scintillating absorber. Finally, we present results showing the possibility to reject events due to alpha decay at or nearby the surface of the crystal.« less
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo
2007-02-01
In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32×32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45×1.45×4.5 mm 3. The FP-PMT has a large detective area (49×49 mm 2) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.
Electro-Optic Lightning Detector
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewica, R. J.
1998-01-01
Electric field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Continuous field observations can also be used to warn of impending electrical hazards. For example, the USAF Eastern Range (ER) and NASA Kennedy Space Center (KSC) in Florida currently operate a ground-based network of electric field mill sensors to warn against lightning hazards to space vehicle operations/launches. The sensors provide continuous recordings of the ambient field. Others investigators have employed flat-plate electric field antennas to detect changes In the ambient field due to lightning. In each approach, electronic circuitry is used to directly detect and amplify the effects of the ambient field on an exposed metal conductor (antenna plate); in the case of continuous field recordings, the antenna plate is alternately shielded and unshielded by a grounded conductor. In this work effort, an alternate optical method for detecting lightning-caused electric field changes is Introduced. The primary component in the detector is an anisotropic electro-optic crystal of potassium di-hydrogen phosphate (chemically written as KH2PO4 (KDP)). When a voltage Is placed across the electro-optic crystal, the refractive Indices of the crystal change. This change alters the polarization state of a laser light beam that is passed down the crystal optic axis. With suitable application of vertical and horizontal polarizers, a light transmission measurement is related to the applied crystal voltage (which in turn Is related to the lightning caused electric field change). During the past two years, all critical optical components were procured, assembled, and aligned. An optical housing, calibration set-up, and data acquisition system was integrated for breadboard testing. The sensor was deployed at NASA Marshall Space Flight Center (MSFC) in the summer of 1998 to collect storm data. Because solid-state technology is used, future designs of the sensor will be significantly scaled down In physical dimension and weight compared to the present optical breadboard prototype. The use of fiber optics would also provide significant practical improvements.
Testing the Ge Detectors for the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
Testing the Ge detectors for the MAJORANA DEMONSTRATOR
Xu, W.; Abgrall, N.; Aguayo, E.; ...
2015-03-24
High purity germanium (HPGe) crystals will be used for the Majorana Demonstrator, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performances of the HPGe crystals. A variety of crystal properties are being investigated, including both basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distribution. In this talk, we will present our measurements that characterize the HPGe crystals. In addition, we will discussmore » the experiment’s simulation package for the detector characterization setup, where additional information is learned from data simulation comparisons.« less
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Xiao, Yong; Cheng, Xinyi; Li, Deng; Wang, Liwei
2016-02-01
For the continuous crystal-based positron emission tomography (PET) detector built in our lab, a maximum likelihood algorithm adapted for implementation on a field programmable gate array (FPGA) is proposed to estimate the three-dimensional (3D) coordinate of interaction position with the single-end detected scintillation light response. The row-sum and column-sum readout scheme organizes the 64 channels of photomultiplier (PMT) into eight row signals and eight column signals to be readout for X- and Y-coordinates estimation independently. By the reference events irradiated in a known oblique angle, the probability density function (PDF) for each depth-of-interaction (DOI) segment is generated, by which the reference events in perpendicular irradiation are assigned to DOI segments for generating the PDFs for X and Y estimation in each DOI layer. Evaluated by the experimental data, the algorithm achieves an average X resolution of 1.69 mm along the central X-axis, and DOI resolution of 3.70 mm over the whole thickness (0-10 mm) of crystal. The performance improvements from 2D estimation to the 3D algorithm are also presented. Benefiting from abundant resources of FPGA and a hierarchical storage arrangement, the whole algorithm can be implemented into a middle-scale FPGA. By a parallel structure in pipelines, the 3D position estimator on the FPGA can achieve a processing throughput of 15 M events/s, which is sufficient for the requirement of real-time PET imaging.
Positron source position sensing detector and electronics
Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.
1985-01-01
A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.
Heeter, R F; Anderson, S G; Booth, R; Brown, G V; Emig, J; Fulkerson, S; McCarville, T; Norman, D; Schneider, M B; Young, B K F
2008-10-01
A novel time, space, and energy-resolved x-ray spectrometer has been developed which produces, in a single snapshot, a broadband and relatively calibrated spectrum of the x-ray emission from a high-energy density laboratory plasma. The opacity zipper spectrometer (OZSPEC-1) records a nearly continuous spectrum for x-ray energies from 240 to 5800 eV in a single shot. The second-generation OZSPEC-2, detailed in this work, records fully continuous spectra on a single shot from any two of these three bands: 270-650, 660-1580, and 1960-4720 eV. These instruments thus record thermal and line radiation from a wide range of plasmas. These instruments' single-shot bandwidth is unmatched in a time-gated spectrometer; conversely, other broadband instruments are either time-integrated (using crystals or gratings), lack spectral resolution (diode arrays), or cover a lower energy band (gratings). The OZSPECs are based on the zipper detector, a large-format (100x35 mm) gated microchannel plate detector, with spectra dispersed along the 100 mm dimension. OZSPEC-1 and -2 both use elliptically bent crystals of OHM, RAP, and/or PET. Individual spectra are gated in 100 ps. OZSPEC-2 provides one-dimensional spatial imaging with 30-50 microm resolution over a 1500 microm field of view at the source. The elliptical crystal design yields broad spectral coverage with resolution E/DeltaE>500, strong rejection of hard x-ray backgrounds, and negligible source broadening for extended sources. Near-term applications include plasma opacity measurements, detailed spectra of inertial fusion Hohlraums, and laboratory astrophysics experiments.
Feasibility Study of an Axially Extendable Multiplex Cylinder PET
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Ito, Hiroshi; Yamaya, Taiga
2013-10-01
Current clinical PET scanners have a 15-22 cm axial field-of-view (FOV). These scanners image the whole body using six or more bed positions. We designed an axially extendable multiplex cylinder (AEMC) PET scanner to provide high versatility for clinical and research studies using semiconductor photo-sensor based, depth-of-interaction (DOI) detectors. Since silicon-photomultipliers (Si-PMs) have high gain like conventional photomultiplier tubes and a compact design, the Si-PM-based detector is particularly expected to enable various new detector arrangements. The AEMC-PET scanner consists of multiple independent and laminated detector rings using the DOI detectors. The AEMC-PET scanner can extend the axial FOV as each stacked detector ring can be slid sideways. When this PET scanner is used for the four-layer DOI detector, its minimum axial FOV is 24 cm and its maximum crystal thickness is 3 cm. On the other hand, the axial FOV can be extended to 96 cm when laminated detector rings are slid sideways, but the crystal thickness must be 1/4 of 3 cm. In this work, we evaluated performance characteristics of the PET scanner with a variable axial FOV using Monte Carlo simulation. From the simulation of the 180-cm line source, the 96-cm axial FOV was found to have two-fold better sensitivity compared to the 24-cm axial FOV. For extension of the axial FOV, scatter and attenuation of oblique lines-of-response reduced the yield of true coincidences, but effects of scatter and attenuation were small. Conclusive results were obtained showing the 52.8-cm axial FOV yielded an increase in the noise equivalent count rate of approximately 30% relative to the 24-cm axial FOV. We expect the designed AEMC-PET scanner will provide high versatility in applications such as for measuring whole-body tracer uptakes while keeping the continuous axial FOV; as well, the scan time for static images will be reduced for a comparable number of detectors as conventional PET scanners.
Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector.
Fan, Peng; Ma, Tianyu; Wei, Qingyang; Yao, Rutao; Liu, Yaqiang; Wang, Shi
2016-02-07
The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods.
Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S; Schaart, Dennis R
2017-02-13
We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm × 32 mm × 22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.
NASA Astrophysics Data System (ADS)
Tabacchini, Valerio; Surti, Suleman; Borghi, Giacomo; Karp, Joel S.; Schaart, Dennis R.
2017-03-01
We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm × 32 mm × 22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DSR) configuration. The detector spatial resolution appeared to be markedly better than that of a detector consisting of the same crystal with conventional back-sided readout (BSR). Here, we aim to evaluate the influence of this difference in the detector spatial response on the quality of reconstructed images, so as to quantify the potential benefit of the DSR approach for high-resolution, whole-body time-of-flight (TOF) positron emission tomography (PET) applications. We perform Monte Carlo simulations of clinical PET systems based on BSR and DSR detectors, using the results of our detector characterization experiments to model the detector spatial responses. We subsequently quantify the improvement in image quality obtained with DSR compared to BSR, using clinically relevant metrics such as the contrast recovery coefficient (CRC) and the area under the localized receiver operating characteristic curve (ALROC). Finally, we compare the results with simulated rings of pixelated detectors with DOI capability. Our results show that the DSR detector produces significantly higher CRC and increased ALROC values than the BSR detector. The comparison with pixelated systems indicates that one would need to choose a crystal size of 3.2 mm with three DOI layers to match the performance of the BSR detector, while a pixel size of 1.3 mm with three DOI layers would be required to get on par with the DSR detector.
A Satellite Borne Cadmium Sulfide Total Corpuscular Energy Detector
NASA Technical Reports Server (NTRS)
Freeman, John W.
1961-01-01
The properties of single crystals of cadmium sulfide as radiation detectors are described. It has been found possible to select crystals such that: (a) The ratio of increase of conductivity under irradiation to the rate of absorption of energy in the crystal is substantially independent of particle energy (over the examined ranges of 500 ev to 80 kev for electrons and 5 kev to 180 kev for protons) and of the magnitude of energy flux (over the range from.005 to 10 ergs/cm(sup 2 -sec); and (b) The above ration is substantially the same for protons, electrons, alpha particles, x-rays, and gamma-rays. For a driving voltage of 100 volts, typical crystal yield currents of 10(sup -7) to 10(sup- 6) amperes for each erg/cm(sup 2-sec) of energy absorbed by the crystal. The threshold of such crystal detectors (resulting from dark currents of the order of 10(sup 10 amp) is typically 10(sup -3) ergs/cm(sup 2- sec). For the selected crystals a response-temperature coefficient of -0.25% per degree centigrade is found for the temperature range -50 deg C to + 50 deg C. A description is given of a complete CdS total corpuscular energy detector for the study of geomagnetically trapped radiation by means of a satellite. The detector described has a dynamic range great than 10(sup 4), a solid angle of 10(exp -3) steradian, and a detection threshold of approximately 1 erg/cm(sup 2-sec-sterad). A similar detector employing a small magnet for the selective exclusion of electrons is also described. Noteworthy practical features of these detectors for satellite and space probe experiments are: (a) Use of bare crystals, without covering foils, in order to detect charged particles having energies as low as hundreds of electron volts. (b) Simplicity of electronic auxiliaries. (c) Compactness, lightweight and nechanical ruggedness. (d) Low electrical power requirements; and (e) Conversion of conduction current to the rate of a twostate relaxation oscillator in order to facilitate telemetric transmission of data. A pair of such detectors was flown as part of the s-46 satellite payload on March 23, 1960, but due to vehicular failure an orbit was not achieved and the operation of the CdS detectors was observed for only, six minutes of flight.
Room temperature X- and gamma-ray detectors using thallium bromide crystals
NASA Astrophysics Data System (ADS)
Hitomi, K.; Muroi, O.; Shoji, T.; Suehiro, T.; Hiratate, Y.
1999-10-01
Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68eV) and high X- and γ-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and γ-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation γ-ray (511keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56keV FWHM (11%) for 511keV γ-rays. Energy resolution of 1.81keV FWHM for 5.9keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and /1/f noise were dominant noise sources in the detector system. Current-voltage characteristics of the TlBr detector with a small Peltier cooler were also measured. Significant reduction of the detector leakage current was observed for the cooled detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Chris C.; Febbraro, Michael; Massey, Thomas N.
Organic scintillation detectors have shown promise as neutron detectors for characterizing special nuclear materials in various arms-control and homeland security applications. Recent advances have yielded a new plastic scintillator - EJ299-33 - with pulse-shape-discrimination (PSD) capability. Plastic scintillators would have a much expanded range of deployment relative to liquids and crystals. Here in this paper, we present a full characterization of pulse height response to fission-energy neutrons for an EJ299-33 detector with 7.62-by-7.62-cm cylindrical active volume, and compare with an EJ309 liquid scintillator in the same assembly. Scintillation light output relations, energy resolutions, and response matrices are presented for bothmore » detectors. A Continuous spectrum neutron source, obtained via the bombardment of 27Al with 7.44-MeV deuterons at the Edwards Accelerator Facility at Ohio University, was used for the measurement. A new procedure for evaluating and comparing PSD performance is presented which accounts for the effect of the light output relation on the ability to detect low energy neutrons. The EJ299-33 is shown to have considerable deficit in matrix condition, and in PSD figure of merit when compared to EJ309, especially when neutron energy is taken into account. Furthermore the EJ299 is likely to bring a modest PSD capability into a array of held applications that are not accessible to liquids or crystals.« less
Crystal growth, fabrication and evaluation of cadmium manganese telluride gamma ray detectors
NASA Astrophysics Data System (ADS)
Burger, Arnold; Chattopadhyay, Kaushik; Chen, Henry; Olivier Ndap, Jean; Ma, Xiaoyan; Trivedi, Sudhir; Kutcher, Susan W.; Chen, Rujin; Rosemeier, Robert D.
1999-03-01
Cadmium manganese telluride (Cd 1- xMn xTe) is a diluted magnetic semiconductor material which forms the basis for many important devices such as IR detectors, solar cells, magnetic field sensors, optical isolators, and visible and near IR lasers. High resistivity (>10 10 Ω cm) and high μ τ (>10 -6 cm 2/V) material, which are the two prerequisites in the fabrication of radiation detectors, has recently been demonstrated at Brimrose Corp. This paper presents the crystal growth of intentionally vanadium doped crystals, the surface preparation and contacting procedure, as well as the best detector performance obtained so far. Dark current characteristics, and low temperature photoluminescence results are also presented and discussed.
TlBr and TlBr xI 1-x crystals for γ-ray detectors
NASA Astrophysics Data System (ADS)
Churilov, Alexei V.; Ciampi, Guido; Kim, Hadong; Higgins, William M.; Cirignano, Leonard J.; Olschner, Fred; Biteman, Viktor; Minchello, Mark; Shah, Kanai S.
2010-04-01
TlBr and TlBr xI 1-x are wide bandgap semiconductor materials being investigated for applications in γ-ray spectroscopy. They have a good combination of density and atomic numbers, promising to make them very efficient detectors. Their low melting points and simple cubic and orthorhombic crystal structures are favorable for bulk crystal growth. However, these semiconductors need to be extremely pure to become useful as radiation detectors. Impurities can lead to charge trapping and scattering, reducing the charge transit lengths and limiting the detector thickness to <1 mm. Additional purification steps were implemented to improve the purity and mobility-lifetime product ( μτ) of electrons. Detector-grade TlBr with the electron μτ product of up to 6×10 -3 cm 2/V has been produced, which allowed operation of detectors up to 15 mm thickness. The ternary TlBr xI 1-x was investigated at different compositions to vary the bandgap and explore the effect of added TlI on the long term stability of detectors. The material analysis and detector characterization results are included.
Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
Ast, Stefan; Samblowski, Aiko; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman
2012-06-15
Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.
Initial performance of the COSINE-100 experiment
NASA Astrophysics Data System (ADS)
Adhikari, G.; Adhikari, P.; de Souza, E. Barbosa; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W. G.; Kang, W.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, M. C.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Prihtiadi, H.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.
2018-02-01
COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting physics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least 2 years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment.
Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F
2008-10-01
A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiede, Christian, E-mail: christian.thiede@uni-muenster.de; Schmidt, Anke B.; Donath, Markus
2015-08-15
Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination,more » temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.« less
Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo
2011-11-07
We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.
NASA Technical Reports Server (NTRS)
Steiner, B.; Dobbyn, R.; Black, D.; Burdette, H.; Kuriyama, M.; Spal, R.; Vandenberg, L.; Fripp, A.; Simchick, R.; Lal, R.
1991-01-01
Irregularities found in three crystals grown in space, in four crystals grown entirely on the ground were examined and compared. Irregularities were observed in mercuric iodide, lead tin telluride, triglycine sulfate, and gallium arsenide by high resolution synchrotron x radiation diffraction imaging. Radiation detectors made from mercuric iodide crystals grown in microgravity were reported to perform far better than conventional detectors grown from the same material under full gravity. Effort is now underway to reproduce these 'space' crystals, optimize their properties, and extend comparable superiority to other types of materials.
NASA Astrophysics Data System (ADS)
Surti, S.; Karp, J. S.
2015-07-01
Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15 mm thick crystals can provide similar or better performance than that achieved by a detector using 20 mm thick crystals.
Ahmed, Abdella M; Tashima, Hideaki; Yamaya, Taiga
2018-03-01
The dominant factor limiting the intrinsic spatial resolution of a positron emission tomography (PET) system is the size of the crystal elements in the detector. To increase sensitivity and achieve high spatial resolution, it is essential to use advanced depth-of-interaction (DOI) detectors and arrange them close to the subject. The DOI detectors help maintain high spatial resolution by mitigating the parallax error caused by the thickness of the scintillator near the peripheral regions of the field-of-view. As an optimal geometry for a brain PET scanner, with high sensitivity and spatial resolution, we proposed and developed the helmet-chin PET scanner using 54 four-layered DOI detectors consisting of a 16 × 16 × 4 array of GSOZ scintillator crystals with dimensions of 2.8 × 2.8 × 7.5 mm 3 . All the detectors used in the helmet-chin PET scanner had the same spatial resolution. In this study, we conducted a feasibility study of a new add-on detector arrangement for the helmet PET scanner by replacing the chin detector with a segmented crystal cube, having high spatial resolution in all directions, which can be placed inside the mouth. The crystal cube (which we have named the mouth-insert detector) has an array of 20 × 20 × 20 LYSO crystal segments with dimensions of 1 × 1 × 1 mm 3 . Thus, the scanner is formed by the combination of the helmet and mouth-insert detectors, and is referred to as the helmet-mouth-insert PET scanner. The results show that the helmet-mouth-insert PET scanner has comparable sensitivity and improved spatial resolution near the center of the hemisphere, compared to the helmet-chin PET scanner.
Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.
2013-01-01
An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-11-18
A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.
Semiconductor neutron detectors
NASA Astrophysics Data System (ADS)
Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai
2016-09-01
Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.
High resolution scintillation detector with semiconductor readout
Levin, Craig S.; Hoffman, Edward J.
2000-01-01
A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.
Gu, Z; Prout, D L; Silverman, R W; Herman, H; Dooraghi, A; Chatziioannou, A F
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm 3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm 3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm 2 ) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm 2 ), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-01-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system. PMID:26478600
NASA Astrophysics Data System (ADS)
Gu, Z.; Prout, D. L.; Silverman, R. W.; Herman, H.; Dooraghi, A.; Chatziioannou, A. F.
2015-06-01
A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass lightguide and a light detector. The annihilation photon entrance (top) layer is a 48×48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.
Electrical delay line multiplexing for pulsed mode radiation detectors
NASA Astrophysics Data System (ADS)
Vinke, Ruud; Yeom, Jung Yeol; Levin, Craig S.
2015-04-01
Medical imaging systems are composed of a large number of position sensitive radiation detectors to provide high resolution imaging. For example, whole-body Positron Emission Tomography (PET) systems are typically composed of thousands of scintillation crystal elements, which are coupled to photosensors. Thus, PET systems greatly benefit from methods to reduce the number of data acquisition channels, in order to reduce the system development cost and complexity. In this paper we present an electrical delay line multiplexing scheme that can significantly reduce the number of readout channels, while preserving the signal integrity required for good time resolution performance. We experimented with two 4 × 4 LYSO crystal arrays, with crystal elements having 3 mm × 3 mm × 5 mm and 3 mm × 3 mm × 20 mm dimensions, coupled to 16 Hamamatsu MPPC S10931-050P SiPM elements. Results show that each crystal could be accurately identified, even in the presence of scintillation light sharing and inter-crystal Compton scatter among neighboring crystal elements. The multiplexing configuration degraded the coincidence timing resolution from ∼243 ps FWHM to ∼272 ps FWHM when 16 SiPM signals were combined into a single channel for the 4 × 4 LYSO crystal array with 3 mm × 3 mm × 20 mm crystal element dimensions, in coincidence with a 3 mm × 3 mm × 5 mm LYSO crystal pixel. The method is flexible to allow multiplexing configurations across different block detectors, and is scalable to an entire ring of detectors.
Fabrication of double-sided thallium bromide strip detectors
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Nagano, Nobumichi; Onodera, Toshiyuki; Kim, Seong-Yun; Ito, Tatsuya; Ishii, Keizo
2016-07-01
Double-sided strip detectors were fabricated from thallium bromide (TlBr) crystals grown by the traveling-molten zone method using zone-purified materials. The detectors had three 3.4-mm-long strips with 1-mm widths and a surrounding electrode placed orthogonally on opposite surfaces of the crystals at approximately 6.5×6.5 mm2 in area and 5 mm in thickness. Excellent charge transport properties for both electrons and holes were observed from the TlBr crystals. The mobility-lifetime products for electrons and holes in the detector were measured to be ~3×10-3 cm2/V and ~1×10-3 cm2/V, respectively. The 137Cs spectra corresponding to the gamma-ray interaction position were obtained from the detector. An energy resolution of 3.4% of full width at half maximum for 662-keV gamma rays was obtained from one "pixel" (an intersection of the strips) of the detector at room temperature.
A SPECT system simulator built on the SolidWorks TM 3D-Design package.
Li, Xin; Furenlid, Lars R
2014-08-17
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorks TM -created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorks TM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
A SPECT system simulator built on the SolidWorksTM 3D design package
NASA Astrophysics Data System (ADS)
Li, Xin; Furenlid, Lars R.
2014-09-01
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design work flow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full com- plement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorksTM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
NASA Astrophysics Data System (ADS)
Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee
2010-08-01
Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.
Mossbauer spectrometer radiation detector
NASA Technical Reports Server (NTRS)
Singh, J. J. (Inventor)
1973-01-01
A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-09-11
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.
NASA Technical Reports Server (NTRS)
Lal, R. B.
1995-01-01
One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.
Stabilized thallium bromide radiation detectors and methods of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leao, Cedric Rocha; Lordi, Vincenzo
According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.
NASA Astrophysics Data System (ADS)
Guerra, J. G.; Rubiano, J. G.; Winter, G.; Guerra, A. G.; Alonso, H.; Arnedo, M. A.; Tejera, A.; Martel, P.; Bolivar, J. P.
2017-06-01
In this work, we have developed a computational methodology for characterizing HPGe detectors by implementing in parallel a multi-objective evolutionary algorithm, together with a Monte Carlo simulation code. The evolutionary algorithm is used for searching the geometrical parameters of a model of detector by minimizing the differences between the efficiencies calculated by Monte Carlo simulation and two reference sets of Full Energy Peak Efficiencies (FEPEs) corresponding to two given sample geometries, a beaker of small diameter laid over the detector window and a beaker of large capacity which wrap the detector. This methodology is a generalization of a previously published work, which was limited to beakers placed over the window of the detector with a diameter equal or smaller than the crystal diameter, so that the crystal mount cap (which surround the lateral surface of the crystal), was not considered in the detector model. The generalization has been accomplished not only by including such a mount cap in the model, but also using multi-objective optimization instead of mono-objective, with the aim of building a model sufficiently accurate for a wider variety of beakers commonly used for the measurement of environmental samples by gamma spectrometry, like for instance, Marinellis, Petris, or any other beaker with a diameter larger than the crystal diameter, for which part of the detected radiation have to pass through the mount cap. The proposed methodology has been applied to an HPGe XtRa detector, providing a model of detector which has been successfully verificated for different source-detector geometries and materials and experimentally validated using CRMs.
NASA Astrophysics Data System (ADS)
Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng
2018-02-01
Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3 × 3 × 20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3 × 3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E > 400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
NASA Astrophysics Data System (ADS)
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling is successful, we will have a path for continuously adapting the high-background, high-NEP detectors we have demonstrated on the ground to the ultralow-NEP detectors needed for space.
Code of Federal Regulations, 2014 CFR
2014-07-01
... x-rays are dispersed spatially by crystal diffraction on the basis of wavelength. The crystal and detector are made to synchronously rotate and the detector then receives only one wavelength at a time. The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... x-rays are dispersed spatially by crystal diffraction on the basis of wavelength. The crystal and detector are made to synchronously rotate and the detector then receives only one wavelength at a time. The...
NASA Astrophysics Data System (ADS)
Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.
2018-04-01
A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector.
Chang, Chen-Ming; Cates, Joshua W; Levin, Craig S
2017-01-07
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising [Formula: see text] mm LYSO:Ce crystal optically coupled to [Formula: see text] mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was [Formula: see text]% and [Formula: see text]% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.
Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; ...
2014-12-24
We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd 1-xMn xTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd 1-xMn xTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are freemore » from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less
Langenbrunner, James R.
1996-01-01
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI.
Langenbrunner, J.R.
1996-05-07
An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs.
Detectors in Extreme Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaj, G.; Carini, G.; Carron, S.
2015-08-06
Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 10 12 - 10 13 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impedingmore » data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.« less
Evaluation of Large Volume SrI2(Eu) Scintillator Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, B W; Cherepy, N J; Drury, O B
2010-11-18
There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packagedmore » detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.« less
NASA Astrophysics Data System (ADS)
Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga
2018-01-01
Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X’tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X’tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3 × 3 × 20 mm3 and 1.5 × 1.5 × 20 mm3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4 × 4 crystal array of 3 × 3 × 20 mm3 with 7 DOI segments and an 8 × 8 crystal array of 1.5 × 1.5 × 20 mm3 with 13 DOI segments. Each readout included a 4 × 4 channel of the 3 × 3 mm2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4 × 4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8 × 8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8 × 8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4 × 4 array with air between the crystal bars and for the 8 × 8 array with partial reflectors between the crystal bars were 10.1% ± 0.3% and 10.8% ± 0.8%, respectively. Timing resolutions of 783 ± 36 ps and 1.14 ± 0.22 ns were obtained for the detectors composed of the 4 × 4 array and the 8 × 8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X’tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.
Mohammadi, Akram; Yoshida, Eiji; Nishikido, Fumihiko; Nitta, Munetaka; Shimizu, Keiji; Sakai, Toshiaki; Yamaya, Taiga
2018-01-11
Depth of interaction (DOI) information is indispensable to improving the sensitivity and spatial resolution of positron emission tomography (PET) systems, especially for small field-of-view PET such as small animal PET and human brain PET. We have already developed a series of X'tal cube detectors for isotropic spatial resolution and we obtained the best isotropic resolution of 0.77 mm for detectors with six-sided readout. However, it is still challenging to apply the detector for PET systems due to the high cost of six-sided readout electronics and carrying out segmentation of a monolithic cubic scintillator in three dimensions using the subsurface laser engraving (SSLE) technique. In this work, we propose a more practical X'tal cube with a two-sided readout detector, which is made of crystal bars segmented in the height direction only by using the SSLE technique. We developed two types of prototype detectors with a 3 mm cubic segment and a 1.5 mm cubic segment by using 3 × 3 × 20 mm 3 and 1.5 × 1.5 × 20 mm 3 crystal bars segmented into 7 and 13 DOI segments, respectively, using the SSLE technique. First, the performance of the detector, composed of one crystal bar with different DOI segments and two thorough silicon via (TSV) multi-pixel photon counters (MPPCs) as readout at both ends of the crystal bar, were evaluated in order to demonstrate the capability of the segmented crystal bars as a DOI detector. Then, performance evaluation was carried out for a 4 × 4 crystal array of 3 × 3 × 20 mm 3 with 7 DOI segments and an 8 × 8 crystal array of 1.5 × 1.5 × 20 mm 3 with 13 DOI segments. Each readout included a 4 × 4 channel of the 3 × 3 mm 2 active area of the TSV MPPCs. The three-dimensional position maps of the detectors were obtained by the Anger-type calculation. All the segments in the 4 × 4 array were identified very clearly when there was air between the crystal bars, as each crystal bar was coupled to one channel of the MPPCs; however, it was necessary to optimize optical conditions between crystal bars for the 8 × 8 array because of light sharing between crystal bars coupled to one channel of the MPPCs. The optimization was performed for the 8 × 8 array by inserting reflectors fully or partially between the crystal bars and the best crystal identification performance was obtained with the partial reflectors between the crystal bars. The mean energy resolutions at the 511 keV photo peak for the 4 × 4 array with air between the crystal bars and for the 8 × 8 array with partial reflectors between the crystal bars were 10.1% ± 0.3% and 10.8% ± 0.8%, respectively. Timing resolutions of 783 ± 36 ps and 1.14 ± 0.22 ns were obtained for the detectors composed of the 4 × 4 array and the 8 × 8 array with partial reflectors, respectively. These values correspond to single photon timing resolutions. Practical X'tal cubes with 3 mm and 1.5 mm DOI resolutions and two-sided readout were developed.
Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging
NASA Astrophysics Data System (ADS)
Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.
2011-02-01
The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.
Charge carrier transport properties in thallium bromide crystalls used as radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olschner, F.; Toledo-Quinones, M.; Shah, K.S.
1990-06-01
Thallium bromide (TlBr) is an attractive material for use in radiation detectors because of its wide bandgap (2.68 eV) and very high atomic number. Usefulness as a semiconductor detector material, however, also requires good charge carrier transport properties in order to maximize the magnitude of the signal from the detector. The authors report on measurements of the two most important transport parameters; the mobility {mu} and the mean trapping time {tau} for electrons and holes in TlBr crystals prepared in the laboratory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... by crystal diffraction on the basis of wavelength. The crystal and detector are made to synchronously rotate and the detector then receives only one wavelength at a time. The intensity of the x-rays emitted...
NASA Astrophysics Data System (ADS)
Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain
2015-10-01
We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.
Spatial resolution limits for the isotropic-3D PET detector X’tal cube
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga
2013-11-01
Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals was improved 39% relative to the (1 mm)3 cubic crystals. On the other hand, spatial resolution with (0.5 mm)3 cubic crystals was improved 47% relative to the (1 mm)3 cubic crystals. The X’tal cube promises better spatial resolution for the 3D crystal block with isotropic resolution.
Dosimetry with diamond detectors
NASA Astrophysics Data System (ADS)
Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.
2010-05-01
In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.
NASA Technical Reports Server (NTRS)
Casay, G. A.; Wilson, W. W.
1992-01-01
One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.
Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity
NASA Astrophysics Data System (ADS)
Sylla, Lamine; Fauler, Alex; Fiederle, Michael; Duffar, Thierry; Dieguez, Ernesto; Zanotti, Lucio; Zappettini, Andrea; Roosen, GÉrald
2009-08-01
The phenomenon of ldquodewettingrdquo associated with the Vertical Bridgman (VB) crystal growth technique leads to the growth of a crystal without contact with the crucible. One dramatic consequence of this modified VB process is the reduction of structural defects within the crystal. It has been observed in several microgravity experiments for different semiconductor crystals. This work is concentrated on the growth of high resistivity (Cd,Zn)Te:In (CZT) crystals by achieving the phenomenon of dewetting under microgravity condition and its application in the processing of CZT detectors. Two Cd0.9Zn0.1Te:In crystals were grown in space on the Russian FOTON satellite in the POLIZON-M facility in September 2007 (mission M3). At the end of the preliminary melting phase of one crystal, a Rotating Magnetic Field (RMF) was applied in order to reduce the typical tellurium clusters within the melt before the pulling. The other crystal was superheated with 20 K above the melting point before the pulling. A third reference crystal has been grown on the ground in similar thermal conditions. Profiles measurements of the space grown crystals surface gave the evidence of a successful dewetting during the crystal growth. Characterization methods such as IR microscopy and CoReMa have been performed on the three crystals. CZT detectors have been processed from the grown part of the different crystals. The influence of the dewetting on the material quality and the detector properties completes the study.
Zhang, Xuezhu; Stortz, Greg; Sossi, Vesna; Thompson, Christopher J; Retière, Fabrice; Kozlowski, Piotr; Thiessen, Jonathan D; Goertzen, Andrew L
2013-12-07
In this study we present a method of 3D system response calculation for analytical computer simulation and statistical image reconstruction for a magnetic resonance imaging (MRI) compatible positron emission tomography (PET) insert system that uses a dual-layer offset (DLO) crystal design. The general analytical system response functions (SRFs) for detector geometric and inter-crystal penetration of coincident crystal pairs are derived first. We implemented a 3D ray-tracing algorithm with 4π sampling for calculating the SRFs of coincident pairs of individual DLO crystals. The determination of which detector blocks are intersected by a gamma ray is made by calculating the intersection of the ray with virtual cylinders with radii just inside the inner surface and just outside the outer-edge of each crystal layer of the detector ring. For efficient ray-tracing computation, the detector block and ray to be traced are then rotated so that the crystals are aligned along the X-axis, facilitating calculation of ray/crystal boundary intersection points. This algorithm can be applied to any system geometry using either single-layer (SL) or multi-layer array design with or without offset crystals. For effective data organization, a direct lines of response (LOR)-based indexed histogram-mode method is also presented in this work. SRF calculation is performed on-the-fly in both forward and back projection procedures during each iteration of image reconstruction, with acceleration through use of eight-fold geometric symmetry and multi-threaded parallel computation. To validate the proposed methods, we performed a series of analytical and Monte Carlo computer simulations for different system geometry and detector designs. The full-width-at-half-maximum of the numerical SRFs in both radial and tangential directions are calculated and compared for various system designs. By inspecting the sinograms obtained for different detector geometries, it can be seen that the DLO crystal design can provide better sampling density than SL or dual-layer no-offset system designs with the same total crystal length. The results of the image reconstruction with SRFs modeling for phantom studies exhibit promising image recovery capability for crystal widths of 1.27-1.43 mm and top/bottom layer lengths of 4/6 mm. In conclusion, we have developed efficient algorithms for system response modeling of our proposed PET insert with DLO crystal arrays. This provides an effective method for both 3D computer simulation and quantitative image reconstruction, and will aid in the optimization of our PET insert system with various crystal designs.
Infrared diagnosis using liquid crystal detectors
NASA Technical Reports Server (NTRS)
Hugenschmidt, M.; Vollrath, K.
1986-01-01
The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.
A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn
We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less
Thallium bromide radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, K.S.; Lund, J.C.; Olschner, F.
1989-02-01
Radiation detectors have been fabricated from crystals of the semiconductor material thallium bromide (TlBr) and the performance of these detectors as room temperature photon spectrometers has been measured. These detectors exhibit improved energy resolution over previously reported TlBr detectors. These results indicate that TlBr is a very promising radiation detector material.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Liu, Yaqiang; Gu, Yu
2016-10-01
An Anger-logic based pixelated PET detector block requires a crystal position map (CPM) to assign the position of each detected event to a most probable crystal index. Accurate assignments are crucial to PET imaging performance. In this paper, we present a novel automatic approach to generate the CPMs for dual-layer offset (DLO) PET detectors using a stratified peak tracking method. In which, the top and bottom layers are distinguished by their intensity difference and the peaks of the top and bottom layers are tracked based on a singular value decomposition (SVD) and mean-shift algorithm in succession. The CPM is created by classifying each pixel to its nearest peak and assigning the pixel with the crystal index of that peak. A Matlab-based graphical user interface program was developed including the automatic algorithm and a manual interaction procedure. The algorithm was tested for three DLO PET detector blocks. Results show that the proposed method exhibits good performance as well as robustness for all the three blocks. Compared to the existing methods, our approach can directly distinguish the layer and crystal indices using the information of intensity and offset grid pattern.
Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menasce, D.; et al.
2013-06-01
We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was aboutmore » 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke $-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.« less
Semiconductor crystal high resolution imager
NASA Technical Reports Server (NTRS)
Matteson, James (Inventor); Levin, Craig S. (Inventor)
2011-01-01
A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).
1999-05-12
to an infrared television camera AVTO TVS-2100. The detector in the camera was an InSb crystal having sensitivity in the wavelength region between 3.0...Serial Number: Navy Case: 79,823 camera AVTO TVS-2100, with a detector of the In Sb crystal, having peak sensitivity in the wavelength region between
Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors
NASA Astrophysics Data System (ADS)
Krishna, Ramesh M.
In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far. In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.
NASA Astrophysics Data System (ADS)
Auffray, E.; Ben Mimoun Bel Hadj, F.; Cortinovis, D.; Doroud, K.; Garutti, E.; Lecoq, P.; Liu, Z.; Martinez, R.; Paganoni, M.; Pizzichemi, M.; Silenzi, A.; Xu, C.; Zvolský, M.
2015-06-01
This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and energy resolution. In order to effectively reduce the noise in the PET image, high time resolution for the gamma detection is mandatory. The Coincidence Time Resolution (CTR) of all the SiPMs assembled with crystals is measured, and results show a value close to the demanding goal of 200 ps FWHM. The light output is evaluated for every channel for a preliminary detector calibration, showing an average of about 1800 pixels fired on the SiPM for a 511 keV interaction. Finally, the average energy resolution at 511 keV is about 13 %, enough for effective Compton rejection.
Gamboa, E. J.; Bachmann, B.; Kraus, D.; ...
2016-08-01
The recent development of high-repetition rate x-ray free electron lasers (FEL), makes it possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. We describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS)more » for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. Furthermore, the signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.« less
Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization
NASA Astrophysics Data System (ADS)
Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.
High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.
Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX.
Azli, Tarek; Chaoui, Zine-El-Abidine
2015-03-01
The MCNPX code was used to determine the efficiency of a N-type HPGe detector after two decades of operation. Accounting for the roundedness of the crystal`s front edges and an inhomogeneous description of the detector's dead layers were shown to achieve better agreement between measurements and simulation efficiency determination. The calculations were experimentally verified using point sources in the energy range from 50keV to 1400keV, and an overall uncertainty less than 2% was achieved. In order to use the detector for different matrices and geometries in radioactivity, the suggested model was validated by changing the counting geometry and by using multi-gamma disc sources. The introduced simulation approach permitted the revaluation of the performance of an HPGe detector in comparison of its initial condition, which is a useful tool for precise determination of the thickness of the inhomogeneous dead layer. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karanfil, C; Bunker, G; Newville, M; Segre, C U; Chapman, D
2012-05-01
Third-generation synchrotron radiation sources pose difficult challenges for energy-dispersive detectors for XAFS because of their count rate limitations. One solution to this problem is the bent crystal Laue analyzer (BCLA), which removes most of the undesired scatter and fluorescence before it reaches the detector, effectively eliminating detector saturation due to background. In this paper experimental measurements of BCLA performance in conjunction with a 13-element germanium detector, and a quantitative analysis of the signal-to-noise improvement of BCLAs are presented. The performance of BCLAs are compared with filters and slits.
Positron annihilation spectroscopy techniques applied to the study of an HPGe detector
NASA Astrophysics Data System (ADS)
Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernández-Varea, J. M.
2013-05-01
Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV γ-rays from the 19F(p,αγ)16O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.
Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O’Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan
2015-01-01
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC’s active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm2. Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module’s mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/−0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules. PMID:26085702
NASA Astrophysics Data System (ADS)
Benaglia, A.; Gundacker, S.; Lecoq, P.; Lucchini, M. T.; Para, A.; Pauwels, K.; Auffray, E.
2016-09-01
Precise timing capability will be a key aspect of particle detectors at future high energy colliders, as the time information can help in the reconstruction of physics events at the high collision rate expected there. Other than being used in detectors for PET, fast scintillating crystals coupled to compact Silicon Photomultipliers (SiPMs) constitute a versatile system that can be exploited to realize an ad-hoc timing device to be hosted in a larger high energy physics detector. In this paper, we present the timing performance of LYSO:Ce and LSO:Ce codoped 0.4% Ca crystals coupled to SiPMs, as measured with 150 GeV muons at the CERN SPS H2 extraction line. Small crystals, with lengths ranging from 5 mm up to 30 mm and transverse size of 2 × 2mm2 or 3 × 3mm2 , were exposed to a 150 GeV muon beam. SiPMs from two different companies (Hamamatsu and FBK) were used to detect the light produced in the crystals. The best coincidence time resolution value of (14.5 ± 0.5) ps , corresponding to a single-detector time resolution of about 10 ps, is demonstrated for 5 mm long LSO:Ce,Ca crystals coupled to FBK SiPMs, when time walk corrections are applied.
A review of recent measurements of optical and thermal properties of alpha-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (alpha-HgI2) is a material which was found important applications as room temperature x ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of alpha-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth, and device fabrication.
A new PET detector concept for compact preclinical high-resolution hybrid MR-PET
NASA Astrophysics Data System (ADS)
Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph
2018-04-01
This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.
Characterization of highly multiplexed monolithic PET / gamma camera detector modules.
Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R
2018-03-29
PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.
Hanging drop crystal growth apparatus
NASA Technical Reports Server (NTRS)
Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)
1990-01-01
This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.
Influence of depth of interaction upon the performance of scintillator detectors.
Brown, Mark S; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis
2014-01-01
The uncertainty in time of particle detection within a scintillator detector, characterised by the coincidence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no relationship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%.
Solid state neutron detector and method for use
Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren
2002-01-01
Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
The Backscatter Cloudprobe with Polarization Detection: A New Aircraft Ice Water Detector
NASA Astrophysics Data System (ADS)
Freer, M.; Baumgardner, D.; Axisa, D.
2017-12-01
The differentiation of liquid water and ice crystals smaller than 100 um in mixed phase clouds continues to challenge the cloud measurement community. In situ imaging probes now have pixel resolution down to about 5 um, but at least 10 pixels are needed to accurately distinguish a water droplet from an ice crystal. This presents a major obstacle for the understanding of cloud glaciation in general, and the formation and evolution of cloud ice in particular. A new sensor has recently been developed that can detect and quantify supercooled liquid droplets and ice crystals. The Backscatter Cloudprobe with Polarization Detection (BCPD) is a very lightweight, compact and low power optical spectrometer that has already undergone laboratory, wind tunnel and flight tests that have validated its capabilities. The BCPD employs the optical approach with single particles that has been used for years in remote sensing to distinguish liquid water from ice crystals in ensembles of cloud particles. The sensor is mounted inside an aircraft and projects a linearly polarized laser beam to the outside through a heated window. Particles that pass through the sample volume of the laser scatter light and the photons scattered in the back direction pass through another heated window where they are collected and focused onto a beam splitter that directs them onto two photodetectors. The P-detector senses the light with polarization parallel to that of the incident light and the S-Detector measures the light that is perpendicular to that of the laser. The polarization ratio, S/P, is sensitive to the asphericity of a particle and is used to identify liquid water and ice crystals. The BCPD has now been exercised in an icing wind tunnel where it was compared with other cloud spectrometers. It has also been flown on the NCAR C-130 and on a commercial Citation, making measurements in all water, all ice and mixed phase clouds. Results from these three applications clearly show that the BCPD can be employed successfully to derive ice fraction in mixed phase clouds at sizes less than 50 um, a size range that has previously been inaccessible to cloud researchers.
GaSe and GaTe anisotropic layered semiconductors for radiation detectors
NASA Astrophysics Data System (ADS)
Mandal, Krishna C.; Choi, Michael; Kang, Sung Hoon; Rauh, R. David; Wei, Jiuan; Zhang, Hui; Zheng, Lili; Cui, Y.; Groza, M.; Burger, A.
2007-09-01
High quality detector grade GaSe and GaTe single crystals have been grown by a modified vertical Bridgman technique using high purity Ga (7N) and in-house zone refined (ZR) precursor materials (Se and Te). A state-of-the-art computer model, MASTRAPP, is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown crystals. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The crystals harvested from ingots of 8-10 cm length and 2.5 cm diameter, have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, low temperature photoluminescence (PL), atomic force microscopy (AFM), and optical absorption/transmission measurements. Single element devices up to 1 cm2 in area have been fabricated from the crystals and tested as radiation detectors by measuring current-voltage (I-V) characteristics and pulse height spectra using 241Am source. The crystals have shown high promise as nuclear detectors with their high dark resistivity (>=10 9 Ω .cm), good charge transport properties (μτ e ~ 1.4x10 -5 cm2/V and μτ h ~ 1.5x10 -5 cm2/V), and relatively good energy resolution (~4% energy resolution at 60 keV). Details of numerical modeling and simulation, detector fabrication, and testing using a 241Am energy source (60 keV) is presented in this paper.
Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants
NASA Astrophysics Data System (ADS)
Beer, S.; Streun, M.; Hombach, T.; Buehler, J.; Jahnke, S.; Khodaverdi, M.; Larue, H.; Minwuyelet, S.; Parl, C.; Roeb, G.; Schurr, U.; Ziemons, K.
2010-02-01
Positron emitters such as 11C, 13N and 18F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is 11CO2 since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET™ system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.
Design and initial performance of PlanTIS: a high-resolution positron emission tomograph for plants.
Beer, S; Streun, M; Hombach, T; Buehler, J; Jahnke, S; Khodaverdi, M; Larue, H; Minwuyelet, S; Parl, C; Roeb, G; Schurr, U; Ziemons, K
2010-02-07
Positron emitters such as (11)C, (13)N and (18)F and their labelled compounds are widely used in clinical diagnosis and animal studies, but can also be used to study metabolic and physiological functions in plants dynamically and in vivo. A very particular tracer molecule is (11)CO(2) since it can be applied to a leaf as a gas. We have developed a Plant Tomographic Imaging System (PlanTIS), a high-resolution PET scanner for plant studies. Detectors, front-end electronics and data acquisition architecture of the scanner are based on the ClearPET system. The detectors consist of LSO and LuYAP crystals in phoswich configuration which are coupled to position-sensitive photomultiplier tubes. Signals are continuously sampled by free running ADCs, and data are stored in a list mode format. The detectors are arranged in a horizontal plane to allow the plants to be measured in the natural upright position. Two groups of four detector modules stand face-to-face and rotate around the field-of-view. This special system geometry requires dedicated image reconstruction and normalization procedures. We present the initial performance of the detector system and first phantom and plant measurements.
TES-Based Light Detectors for the CRESST Direct Dark Matter Search
NASA Astrophysics Data System (ADS)
Rothe, J.; Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; D'Addabbo, A.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Langenkämper, A.; Loebell, J.; Mancuso, M.; Mondragon, E.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schipperges, V.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoğlu, C.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.
2018-05-01
The CRESST experiment uses cryogenic detectors based on transition-edge sensors to search for dark matter interactions. Each detector module consists of a scintillating CaWO_4 crystal and a silicon-on-sapphire (SOS) light detector which operate in coincidence (phonon-light technique). The 40-mm-diameter SOS disks (2 g mass) used in the data taking campaign of CRESST-II Phase 2 (2014-2016) reached absolute baseline resolutions of σ = 4-7 eV. This is the best performance reported for cryogenic light detectors of this size. Newly developed silicon beaker light detectors (4 cm height, 4 cm diameter, 6 g mass), which cover a large fraction of the target crystal surface, have achieved a baseline resolution of σ = 5.8 eV. First results of further improved light detectors developed for the ongoing low-threshold CRESST-III experiment are presented.
NASA Astrophysics Data System (ADS)
Mandal, Krishna C.; Krishna, Ramesh M.; Pak, Rahmi O.; Mannan, Mohammad A.
2014-09-01
CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from zone refined ultra-pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled, and optimized by a computer simulation and modeling program developed in our laboratory. The grown crystals were thoroughly characterized after cutting wafers from the ingots and processed by chemo-mechanical polishing (CMP). The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ~10 μm for CdTe and ~8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm-2 for CdTe and ≤ 3×104 cm-2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ~ 1.5×1010 Ω-cm for CdTe and 2-5×1011 Ω-cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe = 2×10-3 cm2/V (μτh = 8×10-5 cm2/V) and 3-6×10-3 cm2/V (μτh = 4- 6×10-5 cm2/V) for CdTe and CZT, respectively. Detectors in single pixel, Frisch collar, and coplanar grid geometries were fabricated. Detectors in Frisch grid and guard-ring configuration were found to exhibit energy resolution of 1.4% and 2.6 %, respectively, for 662 keV gamma rays. Assessments of the detector performance have been carried out also using 241Am (60 keV) showing energy resolution of 4.2% FWHM.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
NASA Astrophysics Data System (ADS)
Kertzscher, Gustavo; Beddar, Sam
2016-11-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy
Kertzscher, Gustavo; Beddar, Sam
2016-01-01
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from > 5% to < 1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was < 3% as long as the source distance from the scintillator was < 7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by > 5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence. PMID:27740947
Ruby-based inorganic scintillation detectors for 192Ir brachytherapy.
Kertzscher, Gustavo; Beddar, Sam
2016-11-07
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector
Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.
2016-01-01
It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3 mm × 3 mm × 10 mm LYSO:Ce crystal optically coupled to 3 mm × 3 mm × 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7 ± 0.2% and 11.3 ± 0.2% FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics. PMID:27991437
Schoenborn, Benno P
2010-11-01
The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.
Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, thesemore » small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. Conclusions: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.« less
Teaming with Brookhaven National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.
BNL has started growing CdZnTeSe crystals for room-temperature radiation detector applications. The addition of Se to CdTe reduces the concentration of secondary phases and sub-grain boundary networks. The addition of Zn increases the energy band gap. Material characterization to understand the limiting factors of radiation detection material and to improve the properties continues to be a core element of an extensive R&D program at the LBNL’s ALS and BNL’s NSLS-II synchrotron facilities. ALS’s Beamline 3.3.2 is available for 60% of its beamtime and allows us to perform both White Beam X-ray Diffraction Topography and Micron Scale X-ray Detector Mapping. Themore » latter technique is extremely useful when measuring scintillators because it allows us to subtract contributions from the variability in the counting statistics, and also the fluctuations due to delta electrons, and non-proportionality. BNL has recently developed a new type of thermal neutron detector using pad technology in combination with 3He gas operated in ionization mode. The new detector is used for coded aperture thermal neutron imaging.« less
ZnO nanodisk based UV detectors with printed electrodes.
Alenezi, Mohammad R; Alshammari, Abdullah S; Alzanki, Talal H; Jarowski, Peter; Henley, Simon John; Silva, S Ravi P
2014-04-08
The fabrication of highly functional materials for practical devices requires a deep understanding of the association between morphological and structural properties and applications. A controlled hydrothermal method to produce single crystal ZnO hexagonal nanodisks, nanorings, and nanoroses using a mixed solution of zinc sulfate (ZnSO4) and hexamethylenetetramine (HMTA) without the need of catalysts, substrates, or templates at low temperature (75 °C) is introduced. Metal-semiconductor-metal (MSM) ultraviolet (UV) detectors were fabricated based on individual and multiple single-crystal zinc oxide (ZnO) hexagonal nanodisks. High quality single crystal individual nanodisk devices were fabricated with inkjet-printed silver electrodes. The detectors fabricated show record photoresponsivity (3300 A/W) and external quantum efficiency (1.2 × 10(4)), which we attribute to the absence of grain boundaries in the single crystal ZnO nanodisk and the polarity of its exposed surface.
NASA Astrophysics Data System (ADS)
Seifert, Stefan; van der Lei, Gerben; van Dam, Herman T.; Schaart, Dennis R.
2013-05-01
Monolithic scintillator detectors can offer a combination of spatial resolution, energy resolution, timing performance, depth-of-interaction information, and detection efficiency that make this type of detector a promising candidate for application in clinical, time-of-flight (TOF) positron emission tomography (PET). In such detectors the scintillation light is distributed over a relatively large number of photosensor pixels and the light intensity per pixel can be relatively low. Therefore, monolithic scintillator detectors are expected to benefit from the low readout noise offered by a novel photosensor called the digital silicon photomultiplier (dSiPM). Here, we present a first experimental characterization of a TOF PET detector comprising a 24 × 24 × 10 mm3 LSO:Ce,0.2%Ca scintillator read out by a dSiPM array (DPC-6400-44-22) developed by Philips Digital Photon Counting. A spatial resolution of ˜1 mm full-width-at-half-maximum (FWHM) averaged over the entire crystal was obtained (varying from just below 1 mm FWHM in the detector center to ˜1.2 mm FWHM close to the edges). Furthermore, the bias in the position estimation at the crystal edges that is typically found in monolithic scintillators is well below 1 mm even in the corners of the crystal.
NASA Astrophysics Data System (ADS)
van Roosmalen, Jarno; Beekman, Freek J.; Goorden, Marlies C.
2018-01-01
Imaging of 99mTc-labelled tracers is gaining popularity for detecting breast tumours. Recently, we proposed a novel design for molecular breast tomosynthesis (MBT) based on two sliding focusing multi-pinhole collimators that scan a modestly compressed breast. Simulation studies indicate that MBT has the potential to improve the tumour-to-background contrast-to-noise ratio significantly over state-of-the-art planar molecular breast imaging. The aim of the present paper is to optimize the collimator-detector geometry of MBT. Using analytical models, we first optimized sensitivity at different fixed system resolutions (ranging from 5 to 12 mm) by tuning the pinhole diameters and the distance between breast and detector for a whole series of automatically generated multi-pinhole designs. We evaluated both MBT with a conventional continuous crystal detector with 3.2 mm intrinsic resolution and with a pixelated detector with 1.6 mm pixels. Subsequently, full system simulations of a breast phantom containing several lesions were performed for the optimized geometry at each system resolution for both types of detector. From these simulations, we found that tumour-to-background contrast-to-noise ratio was highest for systems in the 7 mm-10 mm system resolution range over which it hardly varied. No significant differences between the two detector types were found.
NASA Astrophysics Data System (ADS)
Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.
2017-04-01
The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.
Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Naomi; Ito, Hiroshi; Kawai, Hideyuki
We have been developing sub mm resolution andmore » $$ 1 million DOI-PET detector using wavelength shifting fibers (WLSF), scintillation crystals of plate shape and SiPM (MPPC: HAMAMATSU K. K.). Conventional design of DOI-PET detector is obtained about mm{sup 3} of resolution by using some blocks detecting gamma-ray in mm 3 voxel. It requires the production cost of $$ a few ten million or more for high technique of processing crystal and a lot of number of photo-devices, and this technology is reaching the limit of the resolution. Both higher resolution and lower cost of DOI-PET detector production is challenging for PET diagnosis population. We propose two type of detector. One is a whole body PET system, and the other for brain or small animal. Both PET system consist 6 blocks. the former consist of 6 layers 300 mm x 300 mm x 4 mm crystal plate. The latter consist 16 crystal layers, 4 x 4 crystal array. The size of crystal plate is 40 mm x 40 mm x 1 mm.The WLSF sheets connect to upper and lower plane. The whole PET systems connect 8 SiPMs are bonded on each side. For the brain PET, 9 WLSF fibers are bond on the each side. The expected position resolution maybe less than 1 mm at the former. We have estimation experimental performance the system using {sup 22}Na radioactive source. The collection efficiency of WLSF (R-3) sheet was achieved 10% with GAGG at 511 keV. The relation between reconstruction position and incident position is obtained linearity and achieved the resolution of 0.7 mm FWHM for x-axis of DOI by readout WLSF. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...
2017-08-22
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Design and performance of a large area neutron sensitive anger camera
Visscher, Theodore; Montcalm, Christopher A.; Donahue, Jr., Cornelius; ...
2015-05-21
We describe the design and performance of a 157mm x 157mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of < 1.2mm with distortion < 0.5mm on over 50 installed Anger Cameras. The performance of the detector is limited by the light yield of the scintillator, and it is estimated that the resolution of the current detector could be doubled with a brighter scintillator. Data collected from small (<1mm 3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low R w(F) values
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
NASA Astrophysics Data System (ADS)
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B.; Tai, Yuan-Chuan
2010-05-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-05-07
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications.
A sub-millimeter resolution PET detector module using a multi-pixel photon counter array
Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan
2010-01-01
A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 × 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 × 0.8 × 3 mm3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 × 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing among multiple MPPC and to diffuse and direct scintillation light can reduce the nonlinearity of the detector response within the limited dynamic range of a typical MPPC. As a result, the proposed PET detector module has the potential to be refined for use in high-resolution PET insert applications. PMID:20393236
NASA Astrophysics Data System (ADS)
Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.
2015-07-01
The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.
Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy
NASA Astrophysics Data System (ADS)
Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.
2014-05-01
PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.
Scintillation light detectors with Neganov Luke amplification
NASA Astrophysics Data System (ADS)
Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.
2006-04-01
For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.
Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method
Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY
2010-07-20
The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.
Investigation of Cd1-xMgxTe as possible materials for X and gamma ray detectors
NASA Astrophysics Data System (ADS)
Mycielski, Andrzej; Kochanowska, Dominika M.; Witkowska-Baran, Marta; Wardak, Aneta; Szot, Michał; Domagała, Jarosław; Witkowski, Bartłomiej S.; Jakieła, Rafał; Kowalczyk, Leszek; Witkowska, Barbara
2018-06-01
In recent years, a series of investigations has been devoted to a possibility of using crystals based on CdTe with addition of magnesium (Mg) for X and gamma radiation detectors. Since we have had wide technological possibilities of preparing crystals and investigating their properties, we performed crystallizations of the crystals mentioned above. Thereafter, we investigated selected properties of the obtained materials. The crystallization processes were performed by using the Low Pressure Bridgman (LPB) method. The elements used: Cd, Te, Mg were of the highest purity available at present. In order to obtain reliable conclusions the crystallization processes were carried out at identical technological conditions. The details of our technological method and the results of the investigation of physical properties of the samples are presented below.
Ohlinger, R.D.; Humphrey, H.W.
1985-08-26
A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.
MO-F-CAMPUS-J-03: Development of a Human Brain PET for On-Line Proton Beam-Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yiping
Purpose: To develop a prototype PET for verifying proton beam-range before each fractionated therapy that will enable on-line re-planning proton therapy. Methods: Latest “edge-less” silicon photomultiplier arrays and customized ASIC readout electronics were used to develop PET detectors with depth-of-interaction (DOI) measurement capability. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together to form a large detector panel. Detectors with 1.5×1.5 and 2.0×2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or signal multiplexing was used to transfer 3D interaction position-codedmore » analog signals through flexible-print-circuit cables or PCB board to dedicated ASIC front-end electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition of coincidence events and data transfer. The modular detector and scalable electronics/data acquisition will enable flexible PET system configuration for different imaging geometry. Results: Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ∼18% and 2.8 ns energy and timing resolutions, and around 2–3 mm DOI resolution. A small prototype PET scanner with one detector ring has been built and evaluated, validating the technology and design. A large size detector panel has been fabricated by scaling up from modular detectors. Different designs of resistor and capacitor based signal multiplexing boards were tested and selected based on optimal crystal identification and timing performance. Stackable readout electronics boards and FPGA-based data acquisition boards were developed and tested. A brain PET is under construction. Conclusion: Technology of large-size DOI detector based on SiPM array and advanced readout has been developed. PET imaging performance and initial phantom studies of on-line proton beam-range measurement will be conducted and reported. NIH grant R21CA187717; Cancer Prevention and Research Institute of Texas grant RP120326.« less
Nishikido, Fumihiko; Tachibana, Atsushi; Obata, Takayuki; Inadama, Naoko; Yoshida, Eiji; Suga, Mikio; Murayama, Hideo; Yamaya, Taiga
2015-01-01
Recently, various types of PET-MRI systems have been developed by a number of research groups. However, almost all of the PET detectors used in these PET-MRI systems have no depth-of-interaction (DOI) capability. The DOI detector can reduce the parallax error and lead to improvement of the performance. We are developing a new PET-MRI system which consists of four-layer DOI detectors positioned close to the measured object to achieve high spatial resolution and high scanner sensitivity. As a first step, we are investigating influences the PET detector and the MRI system have on each other using a prototype four-layer DOI-PET detector. This prototype detector consists of a lutetium yttrium orthosilicate crystal block and a 4 × 4 multi-pixel photon counter array. The size of each crystal element is 1.45 mm × 1.45 mm × 4.5 mm, and the crystals are arranged in 6 × 6 elements × 4 layers with reflectors. The detector and some electric components are packaged in an aluminum shielding box. Experiments were carried out with 3.0 T MRI (GE, Signa HDx) and a birdcage-type RF coil. We demonstrated that the DOI-PET detector was normally operated in simultaneous measurements with no influence of the MRI measurement. A slight influence of the PET detector on the static magnetic field of the MRI was observed near the PET detector. The signal-to-noise ratio was decreased by presence of the PET detector due to environmental noise entering the MRI room through the cables, even though the PET detector was not powered up. On the other hand, no influence of electric noise from the PET detector in the simultaneous measurement on the MRI images was observed, even though the PET detector was positioned near the RF coil.
TIGRESS highly-segmented high-purity germanium clover detector
NASA Astrophysics Data System (ADS)
Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.
2005-05-01
The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.
NASA Astrophysics Data System (ADS)
Vrba, Tomas; Fojtik, Pavel
2014-11-01
In the case of an accidental release of 131I, a system for large-scale monitoring of the population for the radionuclide intake is needed. A monitoring system is required to be capable of measuring adult as well as child subjects across a wide range of ages. Such system has been developed by the National Radiation Protection Institute in Prague (NRPI) and the Evinet company (member of the Nuvia Group). This paper describes the optimisation of the NaI(Tl) detector chosen for this system. The design of the crystal was based on Monte Carlo (MC) simulations, and supported by literature. These simulations examined three different crystal shapes and several dimensions. Based on the MC study, two prototype detectors, with crystal diameters 80 and 73 mm, were manufactured and compared with the crystals having dimensions ∅45×40 mm used for thyroid measurement at NRPI and with a standard NaI(Tl) probe (∅76.2×76.2 mm). The detector with a crystal of 80 mm diameter gave the best results and was chosen for further production.
Uchida, H; Sakai, T; Yamauchi, H; Hakamata, K; Shimizu, K; Yamashita, T
2016-09-21
We propose a novel scintillation detector design for positron emission tomography (PET), which has depth of interaction (DOI) capability and uses a single-ended readout scheme. The DOI detector contains a pair of crystal bars segmented using sub-surface laser engraving (SSLE). The two crystal bars are optically coupled to each other at their top segments and are coupled to two photo-sensors at their bottom segments. Initially, we evaluated the performance of different designs of single crystal bars coupled to photomultiplier tubes at both ends. We found that segmentation by SSLE results in superior performance compared to the conventional method. As the next step, we constructed a crystal unit composed of a 3 × 3 × 20 mm 3 crystal bar pair, with each bar containing four layers segmented using the SSLE. We measured the DOI performance by changing the optical conditions for the crystal unit. Based on the experimental results, we then assessed the detector performance in terms of the DOI capability by evaluating the position error, energy resolution, and light collection efficiency for various crystal unit designs with different bar sizes and a different number of layers (four to seven layers). DOI encoding with small position error was achieved for crystal units composed of a 3 × 3 × 20 mm 3 LYSO bar pair having up to seven layers, and with those composed of a 2 × 2 × 20 mm 3 LYSO bar pair having up to six layers. The energy resolution of the segment in the seven-layer 3 × 3 × 20 mm 3 crystal bar pair was 9.3%-15.5% for 662 keV gamma-rays, where the segments closer to the photo-sensors provided better energy resolution. SSLE provides high geometrical accuracy at low production cost due to the simplicity of the crystal assembly. Therefore, the proposed DOI detector is expected to be an attractive choice for practical small-bore PET systems dedicated to imaging of the brain, breast, and small animals.
Yamamoto, Seiichi
2012-01-01
In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd₂SiO₅ (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Camarda, G. S.; Cui, Y.
We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm{sup 2} and 6 × 6 mm{sup 2} and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.
Influence of Depth of Interaction upon the Performance of Scintillator Detectors
Brown, Mark S.; Gundacker, Stefan; Taylor, Alaric; Tummeltshammer, Clemens; Auffray, Etiennette; Lecoq, Paul; Papakonstantinou, Ioannis
2014-01-01
The uncertainty in time of particle detection within a scintillator detector, characterised by the coinci- dence time resolution (CTR), is explored with respect to the interaction position within the scintillator crystal itself. Electronic collimation between two scintillator detectors is utilised to determine the CTR with depth of interaction (DOI) for different materials, geometries and wrappings. Significantly, no rela- tionship between the CTR and DOI is observed within experimental error. Confinement of the interaction position is seen to degrade the CTR in long scintillator crystals by 10%. PMID:24875832
Tao, Li; Daghighian, Henry M; Levin, Craig S
2017-01-01
We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.
Barium iodide and strontium iodide crystals andd scintillators implementing the same
Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold
2013-11-12
In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.
Thin NaI(Tl) crystals to enhance the detection sensitivity for molten 241Am sources.
Peura, Pauli; Bélanger-Champagne, Camille; Eerola, Paula; Dendooven, Peter; Huhtalo, Eero
2018-04-26
A thin 5-mm NaI(Tl) scintillator detector was tested with the goal of enhancing the detection efficiency of 241 Am gamma and X rays for steelworks operations. The performance of a thin (5 mm) NaI(Tl) detector was compared with a standard 76.2-mm thick NaI(Tl) detector. The 5-mm thick detector crystal results in a 55% smaller background rate at 60 keV compared with the thicker detector, translating into the ability to detect 30% weaker 241 Am sources. For a 5 mm thick and 76.2 mm diameter NaI detector in the ladle car tunnel at Outokumpu Tornio Works, the minimum activity of a molten 241 Am source that can be detected in 5 s with 95% probability is 9 MBq. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold
2014-11-17
The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector
NASA Astrophysics Data System (ADS)
Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Després, Philippe
2017-07-01
Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm3 crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.
NASA Astrophysics Data System (ADS)
Pani, R.; Pellegrini, R.; Betti, M.; De Vincentis, G.; Cinti, M. N.; Bennati, P.; Vittorini, F.; Casali, V.; Mattioli, M.; Orsolini Cencelli, V.; Navarria, F.; Bollini, D.; Moschini, G.; Iurlaro, G.; Montani, L.; de Notaristefani, F.
2007-02-01
The principal limiting factor in the clinical acceptance of scintimammography is certainly its low sensitivity for cancers sized <1 cm, mainly due to the lack of equipment specifically designed for breast imaging. The National Institute of Nuclear Physics (INFN) has been developing a new scintillation camera based on Lanthanum tri-Bromide Cerium-doped crystal (LaBr 3:Ce), that demonstrating superior imaging performances with respect to the dedicated scintillation γ-camera that was previously developed. The proposed detector consists of continuous LaBr 3:Ce scintillator crystal coupled to a Hamamatsu H8500 Flat Panel PMT. One centimeter thick crystal has been chosen to increase crystal detection efficiency. In this paper, we propose a comparison and evaluation between lanthanum γ-camera and a Multi PSPMT camera, NaI(Tl) discrete pixel based, previously developed under "IMI" Italian project for technological transfer of INFN. A phantom study has been developed to test both the cameras before introducing them in clinical trials. High resolution scans produced by LaBr 3:Ce camera showed higher tumor contrast with a detailed imaging of uptake area than pixellated NaI(Tl) dedicated camera. Furthermore, with the lanthanum camera, the Signal-to-Noise Ratio ( SNR) value was increased for a lesion as small as 5 mm, with a consequent strong improvement in detectability.
Lead and uranium group abundances in cosmic rays
NASA Technical Reports Server (NTRS)
Yadav, J. S.; Perelygin, V. P.
1985-01-01
The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.
NASA Astrophysics Data System (ADS)
Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.
2017-02-01
In the last 40 years, in the field of Molecular Medicine imaging there has been a huge growth in the employment and in the improvement of detectors for PET and SPECT applications in order to reach accurate diagnosis of the diseases. The most important feature required to these detectors is an high quality of images that is usually obtained benefitting from the development of a wide number of new scintillation crystals with high imaging performances. In this contest, features like high detection efficiency, short decay time, great spectral match with photodetectors, absence of afterglow and low costs are surely attractive. However, there are other factors playing an important role in the realization of high quality images such as energy and spatial resolutions, position linearity and contrast resolution. With the aim to realize an high performace gamma ray detector for PET and SPECT applications, this work is focused on the evaluation of the imaging characteristics of a recently developed scintillation crystal, CRY019.
Photo-detectors for time of flight positron emission tomography (ToF-PET).
Spanoudaki, Virginia Ch; Levin, Craig S
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs.
Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET)
Spanoudaki, Virginia Ch.; Levin⋆, Craig S.
2010-01-01
We present the most recent advances in photo-detector design employed in time of flight positron emission tomography (ToF-PET). PET is a molecular imaging modality that collects pairs of coincident (temporally correlated) annihilation photons emitted from the patient body. The annihilation photon detector typically comprises a scintillation crystal coupled to a fast photo-detector. ToF information provides better localization of the annihilation event along the line formed by each detector pair, resulting in an overall improvement in signal to noise ratio (SNR) of the reconstructed image. Apart from the demand for high luminosity and fast decay time of the scintillation crystal, proper design and selection of the photo-detector and methods for arrival time pick-off are a prerequisite for achieving excellent time resolution required for ToF-PET. We review the two types of photo-detectors used in ToF-PET: photomultiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) with a special focus on SiPMs. PMID:22163482
Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications
NASA Technical Reports Server (NTRS)
Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.
2010-01-01
Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R.
2016-01-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator’s temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector’s single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal. PMID:27295658
Berg, Eric; Roncali, Emilie; Hutchcroft, Will; Qi, Jinyi; Cherry, Simon R
2016-11-01
In a scintillation detector, the light generated in the scintillator by a gamma interaction is converted to photoelectrons by a photodetector and produces a time-dependent waveform, the shape of which depends on the scintillator properties and the photodetector response. Several depth-of-interaction (DOI) encoding strategies have been developed that manipulate the scintillator's temporal response along the crystal length and therefore require pulse shape discrimination techniques to differentiate waveform shapes. In this work, we demonstrate how maximum likelihood (ML) estimation methods can be applied to pulse shape discrimination to better estimate deposited energy, DOI and interaction time (for time-of-flight (TOF) PET) of a gamma ray in a scintillation detector. We developed likelihood models based on either the estimated detection times of individual photoelectrons or the number of photoelectrons in discrete time bins, and applied to two phosphor-coated crystals (LFS and LYSO) used in a previously developed TOF-DOI detector concept. Compared with conventional analytical methods, ML pulse shape discrimination improved DOI encoding by 27% for both crystals. Using the ML DOI estimate, we were able to counter depth-dependent changes in light collection inherent to long scintillator crystals and recover the energy resolution measured with fixed depth irradiation (~11.5% for both crystals). Lastly, we demonstrated how the Richardson-Lucy algorithm, an iterative, ML-based deconvolution technique, can be applied to the digitized waveforms to deconvolve the photodetector's single photoelectron response and produce waveforms with a faster rising edge. After deconvolution and applying DOI and time-walk corrections, we demonstrated a 13% improvement in coincidence timing resolution (from 290 to 254 ps) with the LFS crystal and an 8% improvement (323 to 297 ps) with the LYSO crystal.
Improved spatial resolution in PET scanners using sampling techniques
Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.
2009-01-01
Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586
Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M
2013-02-01
To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.
Missouri University Multi-Plane Imager (MUMPI): A high sensitivity rapid dynamic ECT brain imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, K.W.; Holmes, R.A.
1984-01-01
The authors have designed a unique ECT imaging device that can record rapid dynamic images of brain perfusion. The Missouri University Multi-Plane Imager (MUMPI) uses a single crystal detector that produces four orthogonal two-dimensional images simultaneously. Multiple slice images are reconstructed from counts recorded from stepwise or continuous collimator rotation. Four simultaneous 2-d image fields may also be recorded and reviewed. The cylindrical sodium iodide crystal and the rotating collimator concentrically surround the source volume being imaged with the collimator the only moving part. The design and function parameters of MUMPI have been compared to other competitive tomographic head imagingmore » devices. MUMPI's principal advantages are: 1) simultaneous direct acquisition of four two-dimensional images; 2) extremely rapid project set acquisition for ECT reconstruction; and 3) instrument practicality and economy due to single detector design and the absence of heavy mechanical moving components (only collimator rotation is required). MUMPI should be ideal for imaging neutral lipophilic chelates such as Tc-99m-PnAO which passively diffuses across the intact blood-brain-barrier and rapidly clears from brain tissue.« less
A SYSTEM FOR CONTINUOUS MEASUREMENT OF RADIOACTIVITY IN FLOWING STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapkin, E.; Gibbs, J.A.
1962-10-31
An apparatus for the determination of alpha or BETA radioactivity in either circulating liquid or gas streams was developed. Solid anthracene crystals are used. The detector consists of a Lucite light pipe coated with titanium dioxide and coupled to two photomultipliers which are in turn fed to appropriate coincidence type circuitry. The detection cell, which consists of a 9-mm OD glass tube with appropriate fittings on either end, was packed with anthracene crystals. A glass frit, or glass wool, was incorporated in the cell on the downstream side to contain the anthracene and a pledget of glass wool was placedmore » above the anthracene on the upstream side. Carbon-14 counting efficiency was found to be of the order of 50% with a coincident background from 100 divisions to infinity of less than 40 cpm at 900 v. Tritium counting efficiency was in the range of 7% and the integral background from 100 divisions to infinity was about 90 cpm at 1130 v. Discussion is also given on the electronics of the detector and the performance in closed flowing systems and gas analysis. (P.C.H.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, D.; Eisner, A.
1997-10-01
During the budget period beginning May 16, 1995, the UCSD group of the U.C. Intercampus Institute for Research at Particle Accelerators devoted approximately 75% of its effort to the PEP-II B Factory and the associated BABAR detector at SLAC, and 25% of its effort to the LSND collaboration at LAMPF. Michael Sullivan spent all of his time on PEP-II, while Alan Eisner split his time between BABAR and LSND. Sullivan remained a critical member of the group designing the PEP-II interaction region and the machine-detector interface; and, in fact, toward the end of the period he left IIRPA to becomemore » a SLAC employee, in order to ensure his continued participation in those efforts. That work has focused on developing an interaction region in which the accelerator can achieve the required high specific luminosity while, at the same time, maintaining low enough beam background to allow a detector to operate. Both requirements are essential to achieving the primary physics goal of not only detecting but doing detailed measurements of CP violation. Eisner`s work on the BABAR detector concentrated on the electromagnetic (CsI crystal) calorimeter. With the calorimeter geometry largely established, he turned his attention more fully to the areas of calorimeter data acquisition and calibration. The data acquisition focus, was on understaning the performance of the proposed system via calculations and simulations, a joint project with Yao-xin Wang of the UCSB IIRPA group.« less
Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.
Feng, Bing; Zeng, Gengsheng L
2014-04-10
A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.
Characterization of highly multiplexed monolithic PET / gamma camera detector modules
NASA Astrophysics Data System (ADS)
Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.
2018-04-01
PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.
Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit
NASA Astrophysics Data System (ADS)
Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang
2017-11-01
Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.
A protein coated piezoelectric crystal detector
NASA Astrophysics Data System (ADS)
Suleiman, Ahmad; Pender, Marie; Ngeh-Ngwainbi, Jerome; Lubrano, Glenn; Guilbault, George
1990-05-01
The purpose of this project was to develop a protein coated, portable piezoelectric crystal detector for organophosphorus compounds. The performance of acetylcholinesterase, GD-1 anti-soman, anti-DMMP antibody, and bovine serum albumin (BSA) coatings was evaluated. Different immobilization methods were also tested. The responses obtained with the protein coatings immobilized via cross-linking with glutaraldehyde were acceptable, provided that the reference crystal was coated with dextran. The proposed coatings showed good stability and reasonable lifetimes that ranged from approximately three weeks in the case of the antibody coatings to several months in the case of BSA. Although moisture, gasoline, and sulfur are potential interferents, their effects on the sensor were eliminated by using a sodium sulfate scrubber which did not affect the performance of the detector towards organophosphates. A small, battery operated portable instrument capable of real time measurements with alarm function was produced. The instrument can be used in a wide range of applications, depending on the coatings applied to the crystals.
X-ray imaging crystal spectrometer for extended X-ray sources
Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.
2001-01-01
Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valenciaga, Y; Prout, D; Chatziioannou, A
2015-06-15
Purpose: To examine the effect of different scintillator surface treatments (BGO crystals) on the fraction of scintillation photons that exit the crystal and reach the photodetector (SiPM). Methods: Positron Emission Tomography is based on the detection of light that exits scintillator crystals, after annihilation photons deposit energy inside these crystals. A considerable fraction of the scintillation light gets trapped or absorbed after going through multiple internal reflections on the interfaces surrounding the crystals. BGO scintillator crystals generate considerably less scintillation light than crystals made of LSO and its variants. Therefore, it is crucial that the small amount of light producedmore » by BGO exits towards the light detector. The surface treatment of scintillator crystals is among the factors affecting the ability of scintillation light to reach the detectors. In this study, we analyze the effect of different crystal surface treatments on the fraction of scintillation light that is detected by the solid state photodetector (SiPM), once energy is deposited inside a BGO crystal. Simulations were performed by a Monte Carlo based software named GATE, and validated by measurements from individual BGO crystals coupled to Philips digital-SiPM sensor (DPC-3200). Results: The results showed an increment in light collection of about 4 percent when only the exit face of the BGO crystal, is unpolished; compared to when all the faces are polished. However, leaving several faces unpolished caused a reduction of at least 10 percent of light output when the interaction occurs as far from the exit face of the crystal as possible compared to when it occurs very close to the exit face. Conclusion: This work demonstrates the advantages on light collection from leaving unpolished the exit face of BGO crystals. The configuration with best light output will be used to obtain flood images from BGO crystal arrays coupled to SiPM sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, R.D.
1994-01-01
As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of threemore » used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal`s photo multiplier tube (PMT).« less
Materials processing threshold report. 1: Semiconductor crystals for infrared detectors
NASA Technical Reports Server (NTRS)
Sager, E. V.; Thompson, T. R.; Nagler, R. G.
1980-01-01
An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.
Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays.
Calva-Coraza, E; Alva-Sánchez, H; Murrieta-Rodríguez, T; Martínez-Dávalos, A; Rodríguez-Villafuerte, M
2017-10-01
We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137 Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys
NASA Astrophysics Data System (ADS)
Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.
2000-07-01
A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga
2014-11-01
In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate accuracy is improved, as DOI resolution is high.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camarda, G. S.; Bolotnikov, A. E.; Cui, Y.
The goal of this project is to obtain and characterize scintillators, emerging- and commercial-compoundsemiconductor radiation- detection materials and devices provided by vendors and research organizations. The focus of our proposed research is to clarify the role of the deleterious defects and impurities responsible for the detectors' non-uniformity in scintillating crystals, commercial semiconductor radiation-detector materials, and in emerging R&D ones. Some benefits of this project addresses the need for fabricating high-performance scintillators and compound-semiconductor radiation-detectors with the proven potential for large-scale manufacturing. The findings help researchers to resolve the problems of non-uniformities in scintillating crystals, commercial semiconductor radiation-detector materials, and inmore » emerging R&D ones.« less
Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng
2018-02-01
The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO 4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. © 2017 American Association of Physicists in Medicine.
A phoswich detector design for improved spatial sampling in PET
NASA Astrophysics Data System (ADS)
Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.
2018-02-01
Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.
The laser control of the muon g -2 experiment at Fermilab
Anastasi, A.; Anastasio, A.; Avino, S.; ...
2017-11-09
Here, we present that the Muon g-2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a μ = (g μ-2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed ofmore » six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.« less
The laser control of the muon g -2 experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Anastasio, A.; Avino, S.
Here, we present that the Muon g-2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a μ = (g μ-2)/2 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed ofmore » six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.« less
Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1
NASA Astrophysics Data System (ADS)
Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.
2009-07-01
We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...
2015-09-06
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
Polycrystalline scintillators for large area detectors in HEP experiments
NASA Astrophysics Data System (ADS)
Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.
2017-06-01
After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.
The Forward Endcap of the Electromagnetic Calorimeter for the PANDA Detector at FAIR
NASA Astrophysics Data System (ADS)
Albrecht, Malte; PANDA Collaboration
2015-02-01
The versatile 4π-detector PANDA will be built at the Facility for Antiproton and Ion Research (FAIR), an accelerator complex, currently under construction near Darmstadt, Germany. A cooled antiproton beam in a momentum range of 1.5 - 15GeV/c will be provided by the High Energy Storage Ring (HESR). All measurements at PANDA rely on an excellent performance of the detector with respect to tracking, particle identification and energy measurement. The electromagnetic calorimeter (EMC) of the PANDA detector will be equipped with 15744 PbWO4 crystals (PWO-II), which will be operated at a temperature of - 25° C in order to increase the light output. The design of the forward endcap of the EMC has been finalized. The crystals will be read out with Large Area Avalanche Photo Diodes (LAAPDs) in the outer regions and with Vacuum Photo Tetrodes (VPTTs) in the innermost part. Production of photosensor units utilizing charge integrating preamplifiers has begun. A prototype comprised of 216 PbWO4 crystals has been built and tested at various accelerators (CERN SPS, ELSA/Bonn, MAMI/Mainz), where the crystals have been exposed to electron and photon beams of 25MeV up to 15GeV. The results of these test measurements regarding the energy and position resolution are presented.
Naturally occurring 32Si and low-background silicon dark matter detectors
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...
2018-02-10
Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
Naturally occurring 32Si and low-background silicon dark matter detectors
NASA Astrophysics Data System (ADS)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.
2018-05-01
The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.
Naturally occurring 32Si and low-background silicon dark matter detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary
Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
Naturally occurring 32 Si and low-background silicon dark matter detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary
The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
Multi-Element CZT Array for Nuclear Safeguards Applications
NASA Astrophysics Data System (ADS)
Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.
2016-12-01
Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.
NASA Astrophysics Data System (ADS)
Peng, Hao
2015-10-01
A fundamental challenge for PET block detector designs is to deploy finer crystal elements while limiting the number of readout channels. The standard Anger-logic scheme including light sharing (an 8 by 8 crystal array coupled to a 2×2 photodetector array with an optical diffuser, multiplexing ratio: 16:1) has been widely used to address such a challenge. Our work proposes a generalized model to study the impacts of two critical parameters on spatial resolution performance of a PET block detector: multiple interaction events and signal-to-noise ratio (SNR). The study consists of the following three parts: (1) studying light output profile and multiple interactions of 511 keV photons within crystal arrays of different crystal widths (from 4 mm down to 1 mm, constant height: 20 mm); (2) applying the Anger-logic positioning algorithm to investigate positioning/decoding uncertainties (i.e., "block effect") in terms of peak-to-valley ratio (PVR), with light sharing, multiple interactions and photodetector SNR taken into account; and (3) studying the dependency of spatial resolution on SNR in the context of modulation transfer function (MTF). The proposed model can be used to guide the development and evaluation of a standard Anger-logic based PET block detector including: (1) selecting/optimizing the configuration of crystal elements for a given photodetector SNR; and (2) predicting to what extent additional electronic multiplexing may be implemented to further reduce the number of readout channels.
Recent developments in cyanide detection: A review
Ma, Jian; Dasgupta, Purnendu K.
2010-01-01
The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024
Test of a prototype neutron spectrometer based on diamond detectors in a fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipenko, M.; Ripani, M.; Ricco, G.
2015-07-01
A prototype of neutron spectrometer based on diamond detectors has been developed. This prototype consists of a {sup 6}Li neutron converter sandwiched between two CVD diamond crystals. The radiation hardness of the diamond crystals makes it suitable for applications in low power research reactors, while a low sensitivity to gamma rays and low leakage current of the detector permit to reach good energy resolution. A fast coincidence between two crystals is used to reject background. The detector was read out using two different electronic chains connected to it by a few meters of cable. The first chain was based onmore » conventional charge-sensitive amplifiers, the other used a custom fast charge amplifier developed for this purpose. The prototype has been tested at various neutron sources and showed its practicability. In particular, the detector was calibrated in a TRIGA thermal reactor (LENA laboratory, University of Pavia) with neutron fluxes of 10{sup 8} n/cm{sup 2}s and at the 3 MeV D-D monochromatic neutron source named FNG (ENEA, Rome) with neutron fluxes of 10{sup 6} n/cm{sup 2}s. The neutron spectrum measurement was performed at the TAPIRO fast research reactor (ENEA, Casaccia) with fluxes of 10{sup 9} n/cm{sup 2}s. The obtained spectra were compared to Monte Carlo simulations, modeling detector response with MCNP and Geant4. (authors)« less
Design and performance of a high spatial resolution, time-of-flight PET detector
Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman
2014-01-01
This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711
Characterization of Large Volume CLYC Scintillators for Nuclear Security Applications
NASA Astrophysics Data System (ADS)
Soundara-Pandian, Lakshmi; Tower, J.; Hines, C.; O'Dougherty, P.; Glodo, J.; Shah, K.
2017-07-01
We report on our development of large volume Cs2LiYCl6 (CLYC) detectors for nuclear security applications. Three-inch diameter boules have been grown and 3-in right cylinders have been fabricated. Crystals containing either >95% 6Li or >99% 7Li have been grown for applications specific to thermal or fast neutron detection, respectively. We evaluated their gamma and neutron detection properties and the performance is as good as small size crystals. Gamma and neutron efficiencies were measured for large crystals and compared with smaller size crystals. With their excellent performance characteristics, and the ability to detect fast neutrons, CLYC detectors are excellent triple-mode scintillators for use in handheld and backpack instruments for nuclear security applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Silin; Yang, Yongfeng, E-mail: yfyang@ucdavis.edu; Cherry, Simon R.
Purpose: Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. Methods: The crystal size in all arrays was 1.5more » mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. Results: The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity of DOI ratio vs depth and simplifies the DOI calibration procedure also was developed and tested. Conclusions: The results of these studies provide useful guidance in selecting the proper reflectors and crystal surface treatments when LSO arrays are used for high-resolution PET applications in small animal scanners or dedicated breast and brain scanners.« less
Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
Theocharous, E; Engtrakul, C; Dillon, A C; Lehman, J
2008-08-01
The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 microm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 microm thick LiTaO(3) crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10(-9) A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.
NASA Astrophysics Data System (ADS)
Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong
2017-04-01
The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.
Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2016-03-07
The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems.In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm).Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution.
Design and evaluation of a SiPM-based large-area detector module for positron emission imaging
NASA Astrophysics Data System (ADS)
Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.
2018-03-01
The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.
Development of multi-layer crystal detector and related front end electronics
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.; Paolozzi, L.
2014-05-01
A crystal (diamond) particle detector has been developed and tested, whose constitute elements are a multi-layer polycrystalline diamond and a pick-up system capable of collecting in parallel the charge produced in the layers. The charge is read with a charge-to-voltage amplifier (5-6 mV/fC) realized with bipolar junction transistors in order to minimize the effect of the detector capacitance. The tests performed with cosmic rays and at the beam test facility of Frascati with 500 MeV electrons in single electron mode operation have shown that a detector with 4-5 layers of 250 μm thickness each and 9 mm2 active area exhibits an upper limit of 150 ps time resolution for minimum ionizing particles at an operating voltage of about 350 V.
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals
Smither, Robert K [Hinsdale, IL
2008-12-23
A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.
2007-08-21
In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design formore » the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.« less
NASA Astrophysics Data System (ADS)
Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar
2016-10-01
Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.
Ejection of Coulomb Crystals from a Linear Paul Ion Trap for Ion-Molecule Reaction Studies.
Meyer, K A E; Pollum, L L; Petralia, L S; Tauschinsky, A; Rennick, C J; Softley, T P; Heazlewood, B R
2015-12-17
Coulomb crystals are being increasingly employed as a highly localized source of cold ions for the study of ion-molecule chemical reactions. To extend the scope of reactions that can be studied in Coulomb crystals-from simple reactions involving laser-cooled atomic ions, to more complex systems where molecular reactants give rise to multiple product channels-sensitive product detection methodologies are required. The use of a digital ion trap (DIT) and a new damped cosine trap (DCT) are described, which facilitate the ejection of Coulomb-crystallized ions onto an external detector for the recording of time-of-flight (TOF) mass spectra. This enables the examination of reaction dynamics and kinetics between Coulomb-crystallized ions and neutral molecules: ionic products are typically cotrapped, thus ejecting the crystal onto an external detector reveals the masses, identities, and quantities of all ionic species at a selected point in the reaction. Two reaction systems are examined: the reaction of Ca(+) with deuterated isotopologues of water, and the charge exchange between cotrapped Xe(+) with deuterated isotopologues of ammonia. These reactions are examples of two distinct types of experiment, the first involving direct reaction of the laser-cooled ions, and the second involving reaction of sympathetically-cooled heavy ions to form a mixture of light product ions. Extensive simulations are conducted to interpret experimental results and calculate optimal operating parameters, facilitating a comparison between the DIT and DCT approaches. The simulations also demonstrate a correlation between crystal shape and image shape on the detector, suggesting a possible means for determining crystal geometry for nonfluorescing ions.
Timing capabilities of garnet crystals for detection of high energy charged particles
NASA Astrophysics Data System (ADS)
Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.
2017-04-01
Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazarewicz, W.
The new large detector systems are certain to shed new light on many aspects of nuclear structure. Some of these areas for future studies are discussed. In this contribution the author concentrates on several aspects of nuclear spectroscopy, that will be accessible by modern detector systems (e.g., {gamma}-ray crystal balls or new-generation particle detectors).
An edge-readout, multilayer detector for positron emission tomography.
Li, Xin; Ruiz-Gonzalez, Maria; Furenlid, Lars R
2018-06-01
We present a novel gamma-ray-detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma-ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma-ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean-detector-response functions (MDRFs) were calculated by simulating signals from 511 keV gamma-ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma-ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical-coupling media and SiPM windows. We also analyzed timing performance including influence of gamma-ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360-6050PE MPPCs read out by an AiT-16-channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662-keV photons from a 137 Cs source. The spatial resolution was experimentally determined by imaging a tungsten slit that created a beam of 0.44 mm (FWHM) width normal to the detector surface. The energy resolution was evaluated by analyzing list-mode data from flood illumination by the 137 Cs source. We find that in a block-detector-sized LYSO layer read out by five SiPMs per edge, illuminated by 511-keV photons, the average resolution is 1.49 mm (FWHM). With the introduction of optical barriers, average spatial resolution improves to 0.56 mm (FWHM). The DOI resolution is the layer thickness of 3.0 mm. We also find that optical-coupling media and SiPM-window materials have an impact on spatial resolution. The timing simulation with LYSO crystal yields a coincidence resolving time (CRT) of 200-400 ps, which is slightly position dependent. And the introduction of optical barriers has minimum influence. The prototype CsI(Tl) detector, with a smaller area and fewer SiPMs, was measured to have central-area spatial resolutions of 0.70 and 0.39 mm without and with optical barriers, respectively. These results match well with our simulations. An energy resolution of 6.4% was achieved at 662 keV. A detector design based on a stack of monolithic scintillator layers that uses edge readouts offers several advantages over current block detectors for PET. For example, there is no tradeoff between spatial resolution and detection sensitivity since no reflector material displaces scintillator crystal, and submillimeter resolution can be achieved. DOI information is readily available, and excellent timing and energy resolutions are possible. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert S Miyaoka
The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support <1 mm3 image resolution and >15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using amore » novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.« less
Homogeneity of CdZnTe detectors
NASA Astrophysics Data System (ADS)
Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.
1998-02-01
We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.
High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P.; Brown, G.V.; Goddard, R.
2004-10-01
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P; Brown, G V; Goddard, R
2004-02-20
A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.
Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array
NASA Astrophysics Data System (ADS)
Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping
2016-04-01
One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm3 size) with 22Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.
40 CFR 86.1306-96 - Equipment required and specifications; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., continuous hydrocarbon detector and a heated, continuous nitrogen oxide detector (see § 86.1310); methanol-fueled engines require a heated hydrocarbon detector, a methanol detector and a formaldehyde detector; either a heated or non-heated continuous hydrocarbon detector may be used with natural gas-fueled and...
40 CFR 86.1306-96 - Equipment required and specifications; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., continuous hydrocarbon detector and a heated, continuous nitrogen oxide detector (see § 86.1310); methanol-fueled engines require a heated hydrocarbon detector, a methanol detector and a formaldehyde detector; either a heated or non-heated continuous hydrocarbon detector may be used with natural gas-fueled and...
40 CFR 86.1306-96 - Equipment required and specifications; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., continuous hydrocarbon detector and a heated, continuous nitrogen oxide detector (see § 86.1310); methanol-fueled engines require a heated hydrocarbon detector, a methanol detector and a formaldehyde detector; either a heated or non-heated continuous hydrocarbon detector may be used with natural gas-fueled and...
40 CFR 86.1306-96 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., continuous hydrocarbon detector and a heated, continuous nitrogen oxide detector (see § 86.1310); methanol-fueled engines require a heated hydrocarbon detector, a methanol detector and a formaldehyde detector; either a heated or non-heated continuous hydrocarbon detector may be used with natural gas-fueled and...
An effective method for thallium bromide purification and research on crystal properties
NASA Astrophysics Data System (ADS)
Zheng, Zhiping; Meng, Fang; Gong, Shuping; Quan, Lin; Wang, Jing; Zhou, Dongxiang
2012-06-01
Thallium bromide (TlBr) is a promising candidate for room-temperature X- and gamma-ray detectors in view of its excellent intrinsic features. However, material purity and crystal quality concerns still limit the use of TlBr crystals as detectors. In this work, a combination of hydrothermal recrystallization (HR) and vacuum distillation (VD) methods were applied to purify TlBr salts prior to crystal growth. Trace impurities at the ppb/ppm level were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The results showed that the impurity concentrations of the TlBr salt decreased significantly after HR and VD purification, and high performance of the resultant TlBr crystal in areas such as electrical and optical properties was achieved. The combination of HR and VD methods could fabricate purer material, with an order of magnitude higher resistivity and better optical quality, than HR or VD method used separately. The possible technological considerations affecting the parameters of the crystals are investigated.
Liu, Chen-Yi; Goertzen, Andrew L
2013-07-21
An iterative position-weighted centre-of-gravity algorithm was developed and tested for positioning events in a silicon photomultiplier (SiPM)-based scintillation detector for positron emission tomography. The algorithm used a Gaussian-based weighting function centred at the current estimate of the event location. The algorithm was applied to the signals from a 4 × 4 array of SiPM detectors that used individual channel readout and a LYSO:Ce scintillator array. Three scintillator array configurations were tested: single layer with 3.17 mm crystal pitch, matched to the SiPM size; single layer with 1.5 mm crystal pitch; and dual layer with 1.67 mm crystal pitch and a ½ crystal offset in the X and Y directions between the two layers. The flood histograms generated by this algorithm were shown to be superior to those generated by the standard centre of gravity. The width of the Gaussian weighting function of the algorithm was optimized for different scintillator array setups. The optimal width of the Gaussian curve was found to depend on the amount of light spread. The algorithm required less than 20 iterations to calculate the position of an event. The rapid convergence of this algorithm will readily allow for implementation on a front-end detector processing field programmable gate array for use in improved real-time event positioning and identification.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Proton-induced radioactivity in NaI (Tl) scintillation detectors
NASA Technical Reports Server (NTRS)
Fishman, G. J.
1977-01-01
Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.
Thallium halide radiation detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ijaz-ur-Rahman; Hofstadter, R.
1984-03-15
During a series of experiments on crystal conduction counters performed at Stanford University on thallium halide crystals, we have observed motion of both hole and electron carriers in a TlBr crystal. At a temperature near -90 /sup 0/C the hole motion produces larger pulses than electron motion. We have studied the behavior of TlBr, TlCl, and KRS-5 (40 mol % TlBr + 60 mol % TlI) crystals and examined them as possible crystal conduction detectors of ..cap alpha.. particles and ..gamma.. rays. TlBr appears to be a promising candidate for applications to nuclear physics and high-energy ..gamma..-ray physics. Modules ofmore » TlBr in ''crystal-ball'' geometry may lead to new detection possibilities. At -20 /sup 0/C space-charge accumulation in TlBr decreases to such an extent that operation at this temperature seems possible with moderate electrical gradients. In the long-neglected field of crystal conduction counters, we have potentially removed the space-charge limitation in TlBr and, allowing for both hole and electron motion, raised the possibility for spectroscopic performance of this material for ..gamma..-ray studies.« less
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
Novel inter-crystal scattering event identification method for PET detectors
NASA Astrophysics Data System (ADS)
Lee, Min Sun; Kang, Seung Kwan; Lee, Jae Sung
2018-06-01
Here, we propose a novel method to identify inter-crystal scattering (ICS) events from a PET detector that is even applicable to light-sharing designs. In the proposed method, the detector observation was considered as a linear problem and ICS events were identified by solving this problem. Two ICS identification methods were suggested for solving the linear problem, pseudoinverse matrix calculation and convex constrained optimization. The proposed method was evaluated based on simulation and experimental studies. For the simulation study, an 8 × 8 photo sensor was coupled to 8 × 8, 10 × 10 and 12 × 12 crystal arrays to simulate a one-to-one coupling and two light-sharing detectors, respectively. The identification rate, the rate that the identified ICS events correctly include the true first interaction position and the energy linearity were evaluated for the proposed ICS identification methods. For the experimental study, a digital silicon photomultiplier was coupled with 8 × 8 and 10 × 10 arrays of 3 × 3 × 20 mm3 LGSO crystals to construct the one-to-one coupling and light-sharing detectors, respectively. Intrinsic spatial resolutions were measured for two detector types. The proposed ICS identification methods were implemented, and intrinsic resolutions were compared with and without ICS recovery. As a result, the simulation study showed that the proposed convex optimization method yielded robust energy estimation and high ICS identification rates of 0.93 and 0.87 for the one-to-one and light-sharing detectors, respectively. The experimental study showed a resolution improvement after recovering the identified ICS events into the first interaction position. The average intrinsic spatial resolutions for the one-to-one and light-sharing detector were 1.95 and 2.25 mm in the FWHM without ICS recovery, respectively. These values improved to 1.72 and 1.83 mm after ICS recovery, respectively. In conclusion, our proposed method showed good ICS identification in both one-to-one coupling and light-sharing detectors. We experimentally validated that the ICS recovery based on the proposed identification method led to an improved resolution.
Temperature characteristics of the radiation detector using TlBr crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoji, T.; Hitomi, K.; Muroi, O.
1999-12-01
The radiation detector was fabricated from the TlBr crystals grown by TMZ (traveling molten zone) method and the FWHM and transit time of electrons and holes were measured as a function of temperature. The TlBr radiation detector shows the best response characteristics at about 313 K (3.19K{sup {sm{underscore}bullet}1}) in cases where holes mainly contributed to the output pulses. However, in the temperatures higher than 300 K (2.22 K{sup {sm{underscore}bullet}1}), the FWHM for {sup 241}Am {alpha}-particles (5.498 MeV) becomes worse. An activation energy of about 0.90eV has been deduced from the resistivity measurement.
Electro-optic Lightning Detector
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewicz, Richard J.
1996-01-01
The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.
Electro-Optic Lightning Detector
NASA Technical Reports Server (NTRS)
Koshak, Willliam; Solakiewicz, Richard
1998-01-01
The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.
Electro-Optic Lighting Detector
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewicz, Richard J.
1999-01-01
The design, alignment, calibration, and field deployment of a solid-state lightning detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate electro-optic crystal that is attached in series to a flat-plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. Lightning-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred lightning electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center in northern Alabama.
Polarization reconstruction algorithm for a Compton polarimeter
NASA Astrophysics Data System (ADS)
Vockert, M.; Weber, G.; Spillmann, U.; Krings, T.; Stöhlker, Th
2018-05-01
We present the technique of Compton polarimetry using X-ray detectors based on double-sided segmented semiconductor crystals that were developed within the SPARC collaboration. In addition, we discuss the polarization reconstruction algorithm with particular emphasis on systematic deviations between the observed detector response and our model function for the Compton scattering distribution inside the detector.
Cathodoluminescence and Photoemission of Doped Lithium Tetraborate
2011-03-01
7Li B O ) crystals are being developed for possible use in solid state neutron detectors . Already used in thermoluminescent dosimeters, enriched 2 4...Page 1. Detector Conversion Reactions [5...wide use applications. [1] The ideal neutron detector would either be hand held or small enough to be used at ports of embarkation or attached to
Characterization of Thallium Bromide Detectors Made From Material Purified by the Filter Method
NASA Astrophysics Data System (ADS)
Onodera, Toshiyuki; Hitomi, Keitaro; Tada, Tsutomu; Shoji, Tadayoshi; Mochizuki, Katsumi
2013-10-01
Thallium bromide (TlBr) has been regarded as candidate detector materials for the gamma-ray spectrometers operating at room temperature. In this study, a simple and rapid method, the filter method, was performed to purify a raw TlBr material used for fabrication of TlBr detectors. The material was loaded on shards of crashed quartz and installed in a Pyrex tube, and was melted using a furnace. A purified material passing through interspaces of the shards of quartz was collected in a quartz ampoule located at the outlet of the Pyrex tube. After the purification, impurities colored black extracted from the raw material remained. TlBr crystals were then grown by the travelling molten zone method both from the raw material and the purified material. TlBr detectors were fabricated from the grown crystals, and were characterized by measuring mobility-lifetime products (μτ) for carriers and gamma-ray spectra ( 137Cs) at room temperature. μτ for electrons of a TlBr detector fabricated from the purified material was around 5 times higher than that of a detector fabricated from the raw material.
SuperCDMS Underground Detector Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M.; Mahapatra, R.; Bunker, Raymond A.
The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less
Development of a TES-Based Anti-Coincidence Detector for Future X-Ray Observations
NASA Technical Reports Server (NTRS)
Bailey, Catherine N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.;
2012-01-01
Microcalorimeters onboard future x-ray observatories require an anticoincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.
Development of a TES-Based Anti-Coincidence Detector for Future X-ray Observatories
NASA Technical Reports Server (NTRS)
Bailey, Catherine
2011-01-01
Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anticoincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We will present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...
2016-02-15
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
Study the performance of LYSO and CeBr3 crystals using Silicon Photomultipliers
NASA Astrophysics Data System (ADS)
Kryemadhi, Abaz
2016-03-01
The Silicon Photomultipliers (SiPMs) are novel photon-detectors which have been progressively found their use in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers advantages compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high light yield and fast decay time. The response of these detectors to low energy gamma rays and cosmic ray muons will be presented. Messiah College Workload Reallocation Program.
Development of the new generation of glass-based neutron detection materials
NASA Astrophysics Data System (ADS)
Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.
2012-10-01
Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Paul M.; Sulekar, Soumitra; Yeo, Shinyoung
2016-01-01
The susceptibility of layered structures to stacking faults is a problem in some of the more attractive semiconductor materials for ambient-temperature radiation detectors. In the work presented here, Bridgman-grown BiI3 layered single crystals are investigated to understand and eliminate this structural disorder, which reduces radiation detector performance. The use of superheating gradients has been shown to improve crystal quality in non-layered semiconductor crystals; thus the technique was here explored to improve the growth of BiI3. When investigating the homogeneity of non-superheated crystals, highly geometric void defects were found to populate the bulk of the crystals. Applying a superheating gradient tomore » the melt prior to crystal growth improved structural quality and decreased defect density from the order of 4600 voids per cm3 to 300 voids per cm3. Corresponding moderate improvements to electronic properties also resulted from the superheat gradient method of crystal growth. Comparative measurements through infrared microscopy, etch-pit density, x-ray rocking curves, and sheet resistivity readings show that superheat gradients in BiI3 growth led to higher quality crystals.« less
Solar axion search technique with correlated signals from multiple detectors
Xu, Wenqin; Elliott, Steven R.
2017-01-25
The coherent Bragg scattering of photons converted from solar axions inside crystals would boost the signal for axion-photon coupling enhancing experimental sensitivity for these hypothetical particles. Knowledge of the scattering angle of solar axions with respect to the crystal lattice is required to make theoretical predications of signal strength. Hence, both the lattice axis angle within a crystal and the absolute angle between the crystal and the Sun must be known. In this paper, we examine how the experimental sensitivity changes with respect to various experimental parameters. We also demonstrate that, in a multiple-crystal setup, knowledge of the relative axismore » orientation between multiple crystals can improve the experimental sensitivity, or equivalently, relax the precision on the absolute solar angle measurement. However, if absolute angles of all crystal axes are measured, we find that a precision of 2°–4° will suffice for an energy resolution of σ E = 0.04E and a flat background. Lastly, we also show that, given a minimum number of detectors, a signal model averaged over angles can substitute for precise crystal angular measurements, with some loss of sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Characteristics of Un doped and Europium-dopedSrI2 Scintillator Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, Benjamin; Cherepy, Nerine; Drury, Owen
2012-01-01
High energy resolution gamma-ray detectors that can be formed into relatively large sizes while operating at room temperature offer many advantages for national security applications. We are working toward that goal through the development of SrI{sub 2}(Eu) scintillator detectors, which routinely provide <;3.0% energy resolution at 662 keV with volumes >;10 cm{sup 3}. In this study, we have tested pure, undoped SrI{sub 2} to gain a better understanding of the scintillation properties and spectroscopic performance achievable without activation. An undoped crystal grown from 99.999% pure SrI{sub 2} pellets was tested for its spectroscopic performance, its light yield, and uniformity ofmore » scintillation light collection as a function of gamma-ray interaction position relative to the crystal growth direction. Undoped SrI{sub 2} was found to provide energy resolution of 5.3% at 662 keV, and the light collection nonuniformity varied by only 0.72% over the length of the crystal. Measurements of both a 3% Eu-doped and the undoped SrI{sub 2} crystal were carried out in the SLYNCI facility and indicate differences in their light yield non-proportionality. The surprisingly good scintillation properties of the pure SrI{sub 2} crystal suggests that with high-purity feedstock, further reduction of the Eu concentration can be made to grow larger crystals while not adversely impacting the spectroscopic performance.« less
Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification
NASA Technical Reports Server (NTRS)
Su, Ching-Hua
2014-01-01
Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality
Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving
Hunter, William C. J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.
2015-01-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25914421
Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving.
Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K
2013-10-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.
Light-Sharing Interface for dMiCE Detectors using Sub-Surface Laser Engraving
Hunter, William C.J.; Miyaoka, Robert S.; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K.
2014-01-01
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of this crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for a crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mmˆ3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Geiger-Müller avalanche photodiodes from Hamamatsu. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions events. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern. PMID:25506194
Light-Sharing Interface for dMiCE Detectors Using Sub-Surface Laser Engraving.
Hunter, William C J; Miyaoka, Robert S; MacDonald, Lawrence; McDougald, Wendy; Lewellen, Thomas K
2015-02-06
We have previously reported on dMiCE, a method of resolving depth or interaction (DOI) in a pair of discrete crystals by encoding light sharing properties as a function of depth in the interface of a crystal-element pair. A challenge for this method is the cost and repeatability of interface treatment for each crystal pair. In this work, we report our preliminary results on using sub-surface laser engraving (SSLE) as a means of forming this depth-dependent interface in a dMiCE detector. A surplus first-generation SSLE system was used to create a partially reflective layer 100-microns thick at the boundary between two halves of a 1.4-by-2.9-by-20 mm 3 LYSO crystal. The boundary of these paired crystal elements was positioned between two 3-mm wide Silicon photomultiplier arrays. The responses of these two photodetectors were acquired for an ensemble of 511-keV photons collimated to interact at a fixed depth in just one crystal element. Interaction position was then varied to measure detector response as a function of depth, which was then used to maximum-likelihood positions. Despite use of sub-optimal SSLE processing we found an average DOI resolution of 3.4 mm for front-sided readout and 3.9 mm for back-sided readout while obtaining energy resolutions on the order of 10%. We expect DOI resolution can be improved significantly by optimizing the SSLE process and pattern.
NASA Technical Reports Server (NTRS)
Mahdavi, M.; Giboni, K. L.; Vajda, S.; Schweitzer, J. S.; Truax, J. A.
1994-01-01
Detectors that will be used for planetary missions must have their responses calibrated in a reproducible manner. In addition, it is important to characterize a detector system at uneven portions of its life cycle, for example after exposure to different amounts of radiation. A calibration and response characterization facility has been constructed at Schlumberger-Doll Research for all types of gamma- and x-ray detectors that may be used for planetary measurement. This facility is currently being tested. Initial use is expected for the MARS 94 detectors. The facility will then also be available for calibrating other detectors as well as arrays of detectors such as the NEAR detector with its central Nal(TI) crystal surrounded with a large BGO crystal. Cadmium telluride detectors are investigated for applications in space explorations. These detectors show an energy resolution of 5 keV for the 122 keV 57Co line. Earlier reported polarization effects are not observed. The detectors can be used at temperatures up to 100 C, although with reduced energy resolution. The thickness of standard detectors is limited to 2 mm. These detectors become fully efficient at bias voltages above 200 V. Initial results for a 1 cm thick detector show that the quality of the material is inferior to the thinner standard detectors and hole trapping affects the pulse height. A detailed characterization of the detector is in progress. Prototypes of photomultipliers based on a Channel Electron Multiplier (CEM) are being built to study their performance. Such photomultipliers promise better timing characteristics and a higher dynamic range while being more compact and of lower in weight.
The ground support equipment for the LAUE project
NASA Astrophysics Data System (ADS)
Caroli, E.; Auricchio, N.; Basili, A.; Carassiti, V.; Cassese, F.; Del Sordo, S.; Frontera, F.; Pecora, M.; Recanatesi, L.; Schiavone, F.; Silvestri, S.; Squerzanti, S.; Stephen, J. B.; Virgilli, E.
2013-09-01
The development of wide band Laue lens imaging technology is challenging, but has important potential applications in hard X- and γ-ray space instrumentation for the coming decades. The Italian Space Agency has funded a project dedicated to the development of a reliable technology to assemble a wide band Laue lens for use in space. The ground support equipment (GSE) for this project was fundamental to its eventual success... The GSE was implemented in a hard X-ray beam line built at the University of Ferrara and had the main purpose of controlling the assembly of crystals onto the Laue lens petal and to verify its final performance. The GSE incorporates the management and control of all the movements of the beam line mechanical subsystems and of the precision positioner (based on a Hexapod tool) of crystals on the petal, as well as the acquisition, storing and analysis of data obtained from the focal plane detectors (an HPGe spectrometer and an X-ray flat panel imager). The GSE is based on two PC's connected through a local network: one, placed inside the beam line, to which all the movement subsystems and the detector I/O interface and on which all the management and acquisition S/W runs, the other in the control room allows the remote control and implements the offline analysis S/W of the data obtained from the detectors. Herein we report on the GSE structure with its interface with the beam line mechanical system, with the fine crystal positioner and with the focal plane detector. Furthermore we describe the SW developed for the handling of the mechanical movement subsystems and for the analysis of the detector data with the procedure adopted for the correct orientation of the crystals before their bonding on the lens petal support.
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-01-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3×3×20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162±1 ps FWHM, approaching the analytically calculated lower bound within 6.5%. PMID:26083559
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Vinke, Ruud; Levin, Craig S.
2015-07-01
Excellent timing resolution is required to enhance the signal-to-noise ratio (SNR) gain available from the incorporation of time-of-flight (ToF) information in image reconstruction for positron emission tomography (PET). As the detector’s timing resolution improves, so does SNR, reconstructed image quality, and accuracy. This directly impacts the challenging detection and quantification tasks in the clinic. The recognition of these benefits has spurred efforts within the molecular imaging community to determine to what extent the timing resolution of scintillation detectors can be improved and develop near-term solutions for advancing ToF-PET. Presented in this work, is a method for calculating the Cramér-Rao lower bound (CRLB) on timing resolution for scintillation detectors with long crystal elements, where the influence of the variation in optical path length of scintillation light on achievable timing resolution is non-negligible. The presented formalism incorporates an accurate, analytical probability density function (PDF) of optical transit time within the crystal to obtain a purely mathematical expression of the CRLB with high-aspect-ratio (HAR) scintillation detectors. This approach enables the statistical limit on timing resolution performance to be analytically expressed for clinically-relevant PET scintillation detectors without requiring Monte Carlo simulation-generated photon transport time distributions. The analytically calculated optical transport PDF was compared with detailed light transport simulations, and excellent agreement was found between the two. The coincidence timing resolution (CTR) between two 3× 3× 20 mm3 LYSO:Ce crystals coupled to analogue SiPMs was experimentally measured to be 162+/- 1 ps FWHM, approaching the analytically calculated lower bound within 6.5%.
Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals
NASA Astrophysics Data System (ADS)
Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong
2016-05-01
The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.
Growth and characterization of crystals for IR detectors and second harmonic gereration devices
NASA Technical Reports Server (NTRS)
Lal, Ravi B.; Batra, Ashok K.; Rao, Sistla M.; Bhatia, S. S.; Chunduru, Kunar P.; Paulson, Ron; Moorkherji, Tripty K.
1989-01-01
Two types of materials, L-arginine phosphate (LAP) and doped triglycine sulfate (TGS), are examined for their growth characteristics and relevant properties for second harmonic generation and IR detector applications, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocci, Valerio; Chiodi, Giacomo; Iacoangeli, Francesco
The necessity to use Photo Multipliers (PM) as light detector limited in the past the use of crystals in radiation handled device preferring the Geiger approach. The Silicon Photomultipliers (SiPMs) are very small and cheap, solid photon detectors with good dynamic range and single photon detection capability, they are usable to supersede cumbersome and difficult to use Photo Multipliers (PM). A SiPM can be coupled with a scintillator crystal to build efficient, small and solid radiation detector. A cost effective and easily replicable Hardware software module for SiPM detector readout is made using the ArduSiPM solution. The ArduSiPM is anmore » easily battery operable handled device using an Arduino DUE (an open Software/Hardware board) as processor board and a piggy-back custom designed board (ArduSiPM Shield), the Shield contains all the blocks features to monitor, set and acquire the SiPM using internet network. (authors)« less
Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki
2014-01-01
The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.
NASA Astrophysics Data System (ADS)
Kornienko, Vladimir V.; Kitaeva, Galiya Kh.; Sedlmeir, Florian; Leuchs, Gerd; Schwefel, Harald G. L.
2018-05-01
We study a calibration scheme for terahertz wave nonlinear-optical detectors based on spontaneous parametric down-conversion. Contrary to the usual low wavelength pump in the green, we report here on the observation of spontaneous parametric down-conversion originating from an in-growth poled lithium niobate crystal pumped with a continuous wave 50 mW, 795 nm diode laser system, phase-matched to a terahertz frequency idler wave. Such a system is more compact and allows for longer poling periods as well as lower losses in the crystal. Filtering the pump radiation by a rubidium-87 vapor cell allowed the frequency-angular spectra to be obtained down to ˜0.5 THz or ˜1 nm shift from the pump radiation line. The presence of an amplified spontaneous emission "pedestal" in the diode laser radiation spectrum significantly hampers the observation of spontaneous parametric down-conversion spectra, in contrast to conventional narrowband gas lasers. Benefits of switching to longer pump wavelengths are pointed out, such as collinear optical-terahertz phase-matching in bulk crystals.
A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator
NASA Technical Reports Server (NTRS)
Miller, Franklin K.
2012-01-01
A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.
Growth and characterization of SrI2:Eu2+ single crystal for gamma ray detector applications
NASA Astrophysics Data System (ADS)
Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.
2018-04-01
Europium activated Strontium Iodide single crystal was grown by vertical Bridgman-stockbarger technique. The melting point and freezing point of SrI2:Eu2+ crystal was analyzed by TG/DTA. The Radioluminescence emission was recorded. The scintillation measurement was carried out for the grown SrI2:Eu2+ crystal under 137Cs gamma energy source.
Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R
2006-12-01
PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.
NASA Astrophysics Data System (ADS)
Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration
2017-06-01
The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.
NASA Astrophysics Data System (ADS)
Darken, L.
1994-02-01
The IEEE and ANSI have recently approved "Standard Test Procedures for High-Purity Germanium Crystals for Radiation Detectors" proposed by the IEEE/NPSS/Nuclear Instruments and Detectors Committee. The standard addresses three aspects of the characterisation of high-purity germanium: (i) the determination by the van der Pauw method of the net carrier concentration and type; (ii) the measurement by capacitance transient techniques of the concentration of trapping levels; (iii) the description of the crystallographic properties revealed by preferential etching. In addition to describing the contents of this standard, the purpose of this work is also to place the issues faced in the context of professional consensus: points of agreement, points of disagreement, and subjects poorly understood.
Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar
2018-02-01
Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.
Improved detector for the measurement of gamma radiation
NASA Astrophysics Data System (ADS)
Zelt, F. B.
1985-07-01
The present invention lies in the field of gamma ray spectrometry of geologic deposits and other materials, such as building materials (cement, asphalt, etc.) More specifically, the invention is an improved device for the gamma ray spetcrometery of gelogical deposits as a tool for petroleum exploration, geologic research and monitoring of radio-active materials such as in uranium mill tailings and the like. Improvement consists in enlarging the area of the receptor face and without any necessarily substantial increase in the volume of the receptor crystal over the current cylindrical shapes. The invention also provides, as a corollary of the increase in area receptor crystal face, a reduction in the weight of the amount of material necessary to provide effective shielding of the crystal from atmospheric radiation and radiation from deposits not under examination. The area of the receptor crystal face is increased by forming the crystal as a truncated cone with the shielding shaped as a hollow frustrum of a cone. A photomultiplier device is secured to the smaller face of the crystal. The improved detector shape can also be used in scintillometers which measure total gamma radiation.
Large Format CMOS-based Detectors for Diffraction Studies
NASA Astrophysics Data System (ADS)
Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.
2013-03-01
Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.
Roncali, Emilie; Schmall, Jeffrey P.; Viswanath, Varsha; Berg, Eric; Cherry, Simon R.
2014-01-01
Current developments in positron emission tomography (PET) focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate (LSO) crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm3 crystals coupled to a photomultiplier tube (PMT). Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a range of treatments and materials attached to the surface. PMID:24694727
NASA Astrophysics Data System (ADS)
Uribe, J.; Aykac, M.; Baghaei, H.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Wong, V.; Xing, Tao; Ramirez, R.; Wong, Wai-Hoi
2003-06-01
Recent approvals by CMS (HCFA) for reimbursement of positron emission tomography (PET) scans fuels the rapid grow of the PET market, thus creating the need for more affordable dedicated PET scanners. The objective of the work presented here was the development of a BGO position-sensitive block with similar detector area (40 mm /spl times/ 40 mm) and same number of crystals (8 /spl times/ 8) as the block of a commercial BGO PET, using the less expensive photomultiplier quadrant sharing (PQS) technique. This block is coupled to four single-anode 40-mm diameter photomultipliers (PMT) instead of the 19-mm PMT used in a popular commercial BGO PET, and each PMT is shared by four adjacent detector blocks. Potentially, this design needs only 25% of the number of PMT used in the commercial BGO PET. In order not to waste the unused half-row of PMT at the edges of a detector panel/module when the module is made up solely of square blocks, an extended rectangular block has to be developed for the edge-blocks in the module, which maximized the use of the PMT and minimized the gap between modules. Only the extended block needs to be developed to derive the design for all the blocks in the module because the symmetric square block uses the same light-distributing partitions as those along the short side of the extended rectangular block. White-paint masks applied with accurate templates and airbrush were fine-tuned for every pair of adjacent crystals. The experimental block developed in this study provided good crystal-decoding. The composite energy spectrum of all 64 crystals showed a prominent photopeak. The worst crystal sitting in the air space between 4 round PMTs still has 60% of the signal pulse height as the best crystal. The average energy resolution was 21.8% for 511 keV gamma (range 17% - 28.7%) that compared well with the 22% - 44% measured with GE and CTI blocks. The image resolution provided by the PQS blocks is expected to be comparable to that of commercial BGO PETs as similar size crystals were decoded.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia; Carman, M Leslie; Payne, Steve
2014-10-28
An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.
NASA Technical Reports Server (NTRS)
Morten, F. D. (Editor); Seeley, John S. (Editor)
1986-01-01
The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.
Thermal detection of single e-h pairs in a biased silicon crystal detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romani, R. K.; Brink, P. L.; Cabrera, B.
We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua
2014-05-14
An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less
Thermal detection of single e-h pairs in a biased silicon crystal detector
Romani, R. K.; Brink, P. L.; Cabrera, B.; ...
2018-01-23
We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e –h +) pair in the crystal near the grid. The energy of the drifting charges is measured withmore » a phonon sensor noise σ ~0.09 e – h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e –s transported across the crystal.« less
Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals
NASA Astrophysics Data System (ADS)
Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.
2014-09-01
We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.
In-situ data collection at the photon factory macromolecular crystallography beamlines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke, E-mail: yusuke.yamada@kek.jp; Matsugaki, Naohiro; Kato, Ryuichi
Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography, and in-situ diffraction experiment has a capability to make researchers to proceed this step more efficiently. At the Photon Factory, a new tabletop diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, an on-axis viewing system and a plate rack with a capacity for ten crystallization plates. These components sit on a common plate and are able to be placed on the existing diffractometer table. The CCD detector with a large active area and a pixel arraymore » detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and a user interface have also been developed. The new diffractometer has been operational for users and used for evaluation of crystallization screening since 2014.« less
Thermal detection of single e-h pairs in a biased silicon crystal detector
NASA Astrophysics Data System (ADS)
Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.
2018-01-01
We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.
Handheld dual thermal neutron detector and gamma-ray spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush
2017-05-02
A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less
Continuous depth-of-interaction encoding using phosphor-coated scintillators.
Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R
2009-03-21
We investigate a novel detector using a lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium-aluminum-gallium oxide:cerium, Y(3)(Al,Ga)(5)O(12):Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of approximately 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5 x 1.5 x 20 mm(3) LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 x 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be approximately 8 mm for this 2 cm thick array.
Continuous Depth-of-Interaction Encoding Using Phosphor-Coated Scintillators
Du, Huini; Yang, Yongfeng; Glodo, Jarek; Wu, Yibao; Shah, Kanai; Cherry, Simon R.
2009-01-01
We investigate a novel detector using lutetium oxyorthosilicate (LSO) scintillator and YGG (yttrium aluminum gallium oxide:cerium, Y3(Al,Ga)5O12:Ce) phosphor to construct a detector with continuous depth-of-interaction (DOI) information. The far end of the LSO scintillator is coated with a thin layer of YGG phosphor powder which absorbs some fraction of the LSO scintillation light and emits wavelength-shifted photons with a characteristic decay time of ∼ 50 ns. The near end of the LSO scintillator is directly coupled to a photodetector. The photodetector detects a mixture of the LSO light and the light emitted by YGG. With appropriate placement of the coating, the ratio of the light converted from the YGG coating with respect to the unconverted LSO light can be made to depend on the interaction depth. DOI information can then be estimated by inspecting the overall light pulse decay time. Experiments were conducted to optimize the coating method. 19 ns decay time differences across the length of the detector were achieved experimentally when reading out a 1.5×1.5×20 mm3 LSO crystal with unpolished surfaces and half-coated with YGG phosphor. The same coating scheme was applied to a 4 by 4 LSO array. Pulse shape discrimination (PSD) methods were studied to extract DOI information from the pulse shape changes. The DOI full-width-half-maximum (FWHM) resolution was found to be ∼8 mm for this 2 cm thick array. PMID:19258685
Characterization of the scintillation anisotropy in crystalline stilbene scintillator detectors
Schuster, P.; Brubaker, E.
2016-11-23
This study reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects duemore » to the molecular or crystal structure and not an external effect on the measurement system.« less
Hierarchical microstructures in CZT
NASA Astrophysics Data System (ADS)
Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.
2011-10-01
Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.
Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors
NASA Astrophysics Data System (ADS)
Adams, Aaron Lee
Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging from 500 to 800°C. The characterization techniques that will be used to quantify the effects of the post-growth annealing experiments include: 1) 3D infrared transmission microscopy to measure the size, distribution, and concentration of Tellurium inclusions; 2) current-voltage measurements to determine the effect of post-growth annealing on the resistivity of CdZnTe crystals; and 3) X-ray diffraction topography, available at the National Synchrotron Light Source (NSLS) facilities at Brookhaven National Laboratory (BNL), to measure the correlation between device performance and annealing conditions
NASA Astrophysics Data System (ADS)
Surabhi, Raja Rahul Reddy
In the past decade, there has been new and increased usage of radiation-detection technologies for applications in homeland security, non-proliferation, and national defense. Most of these applications require a portable device with high gamma-ray energy resolution and detection efficiency, compact size, room-temperature operation, and low cost. Consequently, there is a renewed understanding of the material limitations for these technologies and a great demand to develop next-generation radiation-detection materials that can operate at room temperature. Mercuric iodide (HgI2), Lead iodide (PbI2), and CdZnTe (CZT) are the current leading candidates for radiation detector applications. This is because of their high atomic number and large band gap that makes them particularly well suited for fabrication of high resolution and high efficiency compact devices. PbI2 is a promising material for room temperature nuclear radiation detectors, characterized by its wide band gap (EG=2.32eV) and high-density (rho=6.2g/cm3). It has been reported that PbI2 crystal detectors are able to detect gamma-ray in the range of 1KeV-1MeV, with good energy resolution. However, PbI 2 detectors have not been studied in detail because of non-availability of high quality single crystals. This study presents the synthesis, purification, growth and characterization of PbI2 single crystals grown. In this research, solid-state synthesis technique has been utilized for obtaining PbI2 as a starting material. For the first time, a unique low-temperature purification technique has been developed to obtain high-purity starting material. The crystals were grown using 2-zone Bridgman-Stockbarger (B.S) technique wherein growth rate and temperature gradient at the solid-liquid interface were optimized. Single crystals of PbI2 were successfully grown in quartz glass ampoule under different growth conditions. Material purity was determined by measuring the elemental concentration using the Inductively coupled plasma-optical emission spectroscopy (ICP-OES). ICP-OES is utilized for estimating impurities present in the low-temperature purified material, zone refined material and melt grown PbI2 crystals. The zone-refined material contains no traceable amounts of impurities, whereas the low-temperature purified material and melt grown PbI2 crystals show very low concentration of K (potassium) and Na (sodium) impurities. Crystal characterization has been performed for determining optical properties by UV-VIS spectroscopy. The energy band gap (EG) is an important parameter for materials used for room temperature gamma-ray detector applications. The absorption peak at 530nm is a characteristic of PbI2 and corresponds to the onset of the transitions from the valence band to the exciton level. From this absorption spectrum the calculated indirect band gap of PbI 2 was 2.33+/-0.025 eV at room temperature. For measuring the electrical properties (Dielectric and I-V characteristics) of the crystal, Ag (silver) contacts are applied to both sides of the sample. Dielectric analysis on melt grown PbI2 showed that space charge polarization was dominant at lower frequencies but stabilizes at higher frequencies over different operating temperatures. On the other hand, dielectric analysis for zone-refined material space charge polarization was constant over the operating range resulting in fewer lattice defects. Therefore the low temperature purified material followed by zone-refined purification provides detector grade material with fewer lattice defects. The measured electrical resistivity for melt grown PbI2 and zone-refined material are 3.185 x 10 10 O-cm and 0.754 x 109 O-cm at room temperature along (001) plane respectively.
Studying radiation hardness of a cadmium tungstate crystal based radiation detector
NASA Astrophysics Data System (ADS)
Shtein, M. M.; Smekalin, L. F.; Stepanov, S. A.; Zatonov, I. A.; Tkacheva, T. V.; Usachev, E. Yu
2016-06-01
The given article considers radiation hardness of an X-ray detector used in production of non-destructive testing instruments and inspection systems. In the course of research, experiments were carried out to estimate radiation hardness of a detector based on cadmium tungstate crystal and its structural components individually. The article describes a layout of an experimental facility that was used for measurements of radiation hardness. The radiation dose dependence of the photodiode current is presented, when it is excited by a light flux of a scintillator or by an external light source. Experiments were carried out to estimate radiation hardness of two types of optical glue used in detector production; they are based on silicon rubber and epoxy. With the help of a spectrophotometer and cobalt gun, each of the glue samples was measured for a relative light transmission factor with different wavelengths, depending on the radiation dose. The obtained data are presented in a comprehensive analysis of the results. It was determined, which of the glue samples is most suitable for production of detectors working under exposure to strong radiation.
Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L
2014-10-01
For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A large area high resolution imaging detector for fast atom diffraction
NASA Astrophysics Data System (ADS)
Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe
2018-07-01
We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.
A Central Positron Source to Perform the Timing Alignment of Detectors in a PET Scanner
NASA Astrophysics Data System (ADS)
Thompson, C. J.; Camborde, M.-L.; Casey, M. E.
2005-10-01
Accurate timing alignment and stability are important to maximize the true counts and minimize the random counts in positron emission tomography. Its importance increases in time-of-flight (TOF) scanners. We propose using a central positron emitting source enclosed in a detector which detects the excess energy of the positron before it annihilates as a timing reference. All crystals can be time-aligned with respect to this central source. We evaluated 10 /spl mu/Ci /sup 22/Na and /sup 68/Ge sources embedded in cylinders of plastic scintillator coupled to a fast PMT. Light flashes produced after the parent isotope emits positrons are detected, and the anode signals from the PMT are the reference time for each positron decay. The time delay before the gamma ray is detected by the scanner's conventional gamma ray detectors is the time offset to be applied to that crystal. Since all detectors are almost the same distance from the central source, TOF errors are minimized. Preliminary results show a mean signal amplitude of >0.5 V from /sup 22/Na at 1000-V PMT bias, a timing FWHM of 850 ps with respect to a small LSO crystal. This suggests it could be useful to align both conventional and TOF PET scanners.
The timing resolution of scintillation-detector systems: Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng
2009-11-01
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
The timing resolution of scintillation-detector systems: Monte Carlo analysis.
Choong, Woon-Seng
2009-11-07
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
Photonic crystal scintillators and methods of manufacture
Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose
2015-08-11
Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.
Modelling Time-of-Arrival Ambiguities in a Combined Acousto-Optic and Crystal Video Receiver
1995-11-01
The probability of pulses overlapping in time being received by a combined acousto - optic /crystal video receiver is investigated. Theoretical analysis...number of pulses in that bandwidth. The number of frequency subbands with crystal detectors required to cover the acousto - optic receiver bandwidth is therefore a compromise between cost and complexity of implementation.
Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S
2015-05-01
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.
High field CdS detector for infrared radiation
NASA Technical Reports Server (NTRS)
Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.
1972-01-01
New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.
Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.
2011-05-15
The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence ofmore » the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.« less
CZT Detector Development for New Generation Hard-X Astronomical Instruments
NASA Astrophysics Data System (ADS)
Uslenghi, Michela; Conti, Giancarlo; D'Angelo, Sergio; Fiorini, Mauro; Quadrini, Egidio M.; Natalucci, Lorenzo; Ubertini, Pietro
2006-04-01
In the context of the definition of a future European gamma-ray mission, following the now on-orbit INTEGRAL observatory, we are carrying out a feasibility study on a Gamma Ray Wide Field Camera (5-500 KeV) for transient event detection. Recent achievements in high energy astronomy have validated the CZT detectors performances in terms of good spatial resolution, detection efficiency, energy resolution and low noise at room temperature. We started a development program aimed to explore the possibilities to improve and optimize the performance of this kind of detectors, acting at the level of both the readout system and crystal quality. Preliminary results of characterization of pixelated crystals provided by IMARAD (now Orbotech) are presented, along with their analysis and interpretation based on an analytical model of signal formation.
Neutron detection using a crystal ball calorimeter
NASA Astrophysics Data System (ADS)
Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.
2015-12-01
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.
Calibration of X-Ray diffractometer by the experimental comparison method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P., E-mail: dudka@ns.crys.ras.ru
2015-07-15
A software for calibrating an X-ray diffractometer with area detector has been developed. It is proposed to search for detector and goniometer calibration models whose parameters are reproduced in a series of measurements on a reference crystal. Reference (standard) crystals are prepared during the investigation; they should provide the agreement of structural models in repeated analyses. The technique developed has been used to calibrate Xcalibur Sapphire and Eos, Gemini Ruby (Agilent) and Apex x8 and Apex Duo (Bruker) diffractometers. The main conclusions are as follows: the calibration maps are stable for several years and can be used to improve structuralmore » results, verified CCD detectors exhibit significant inhomogeneity of the efficiency (response) function, and a Bruker goniometer introduces smaller distortions than an Agilent goniometer.« less
Apparatus for growing HgI.sub.2 crystals
Schieber, Michael M.; Beinglass, Israel; Dishon, Giora
1978-01-01
A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
NASA Astrophysics Data System (ADS)
Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.
2011-11-01
To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.
NASA Astrophysics Data System (ADS)
Abt, I.; Caldwell, A.; Gutknecht, D.; Kröninger, K.; Lampert, M.; Liu, X.; Majorovits, B.; Quirion, D.; Stelzer, F.; Wendling, P.
2007-07-01
The first true coaxial 18-fold segmented n-type HPGe prototype detector produced by Canberra-France for the GERDA neutrinoless double beta-decay project was tested both at Canberra-France and at the Max-Planck-Institut für Physik in Munich. The main characteristics of the detector are given and measurements concerning detector properties are described. A novel method to establish contacts between the crystal and a Kapton cable is presented.
Performance of photomultiplier tubes and sodium iodide scintillation detector systems
NASA Technical Reports Server (NTRS)
Meegan, C. A.
1981-01-01
The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.
A BGO detector for Positron Emission Profiling in catalysts
NASA Astrophysics Data System (ADS)
Mangnus, A. V. G.; van Ijzendoorn, L. J.; de Goeij, J. J. M.; Cunningham, R. H.; van Santen, R. A.; de Voigt, M. J. A.
1995-05-01
As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm.
Wang, Xin; Mu, Baozhong; Jiang, Li; Zhu, Jingtao; Yi, Shengzhen; Wang, Zhanshan; He, Pengfei
2011-12-01
Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 μm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.
Purification of Germanium Crystals by Zone Refining
NASA Astrophysics Data System (ADS)
Kooi, Kyler; Yang, Gang; Mei, Dongming
2016-09-01
Germanium zone refining is one of the most important techniques used to produce high purity germanium (HPGe) single crystals for the fabrication of nuclear radiation detectors. During zone refining the impurities are isolated to different parts of the ingot. In practice, the effective isolation of an impurity is dependent on many parameters, including molten zone travel speed, the ratio of ingot length to molten zone width, and number of passes. By studying the theory of these influential factors, perfecting our cleaning and preparation procedures, and analyzing the origin and distribution of our impurities (aluminum, boron, gallium, and phosphorous) identified using photothermal ionization spectroscopy (PTIS), we have optimized these parameters to produce HPGe. We have achieved a net impurity level of 1010 /cm3 for our zone-refined ingots, measured with van der Pauw and Hall-effect methods. Zone-refined ingots of this purity can be processed into a detector grade HPGe single crystal, which can be used to fabricate detectors for dark matter and neutrinoless double beta decay detection. This project was financially supported by DOE Grant (DE-FG02-10ER46709) and the State Governor's Research Center.
LYSO crystal testing for an EDM polarimeter
NASA Astrophysics Data System (ADS)
Müller, F.; Keshelashvili, I.; Mchedlishvili, D.;
2017-11-01
Four detector modules, built from three different LYSO crystals and two different types of light sensors (PMTs and SiPM arrays), have been tested with a deuteron beam from 100 MeV - 270 MeV at the COSY accelerator facility for the srEDM project at the Forschungszentrum Jülich in Germany. The detector modules were arranged in a cluster hand mounted on a positioning table. The deuteron beam was targeted at the center of each individual crystal for data analysis. The signals were digitized using a 14 bit, 250 MS/s flash ADC. Further, the energy spectra were calibrated using the known beam energies from the accelerator. From the calibrated spectra, the energy resolution was calculated. A resolution of 3% for the low energies and down to 1% for the high energy of 270 MeV was achieved. A deuteron reconstruction efficiency of almost 100% for low energies and around 70% for high energies was achieved. The SiPM light sensor showed a very good performance and will be used for the next generation of detector modules.
Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.
Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P
2012-10-01
A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.
Quantitative Kα line spectroscopy for energy transport in ultra-intense laser plasma interaction
NASA Astrophysics Data System (ADS)
Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Nakai, M.; Koga, M.; Shiraga, H.; Kojima, S.; Azechi, H.; Ozaki, T.; Chen, H.; Pakr, J.; Williams, G. J.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K.; Okano, Y.
2012-10-01
X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes, for the detectors and crystal respectively. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for Au Kα x-ray line emissions, is derived as a consequence of this work. By considering the hot electron temperature, the transfer efficiency from LFEX laser to Au plate target is about 8% to 10%.
Analytical response function for planar Ge detectors
NASA Astrophysics Data System (ADS)
García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.
2016-04-01
We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.
Solution-Grown Rubrene Crystals as Radiation Detecting Devices
Carman, Leslie; Martinez, H. Paul; Voss, Lars; ...
2017-01-11
There has been increased interest in organic semiconductors over the last decade because of their unique properties. Of these, 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) has generated the most interest because of its high charge carrier mobility. In this paper, large single crystals with a volume of ~1 cm 3 were grown from solution by a temperature reduction technique. The faceted crystals had flat surfaces and cm-scale, visually defect-free areas suitable for physical characterization. X-ray diffraction analysis indicates that solvent does not incorporate into the crystals and photoluminescence spectra are consistent with pristine, high-crystallinity rubrene. Furthermore, the response curve to pulsedmore » optical illumination indicates that the solution grown crystals are of similar quality to those grown by physical vapor transport, albeit larger. The good quality of these crystals in combination with the improvement of electrical contacts by application of conductive polymer on the graphite electrodes have led to the clear observation of alpha particles with these rubrene detectors. Finally, preliminary results with a 252Cf source generate a small signal with the rubrene detector and may demonstrate that rubrene can also be used for detecting high-energy neutrons.« less
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.
Shao, Yiping; Yao, Rutao; Ma, Tianyu
2008-12-01
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yiping; Yao Rutao; Ma Tianyu
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, B., E-mail: blu@ipp.ac.cn; Hefei Science Center, Chinese Academy of Sciences, Hefei 230031; Chen, J.
2016-11-15
A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like spectra were observed simultaneously for the first time on one detector for a wide range of plasma parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consistent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at 4.017 Å) on the short-wavelength side of the Lyman-α line (Lα1) was identified for typical USN discharges, which was diffracted by a He-like crystal (2d = 4.913 Å). Another possible Femore » XXV line (1.85 Å) was observed to be located on the long-wavelength side of resonance line (w), which was diffracted from a H-like crystal (2d = 4.5622 Å) on the second order. Be-like argon lines were also observable that fill the detector space between the He-like and H-like spectra.« less
Lyu, B; Chen, J; Hu, R J; Wang, F D; Li, Y Y; Fu, J; Shen, Y C; Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N; Lee, S G; Ye, M Y; Shi, Y J; Wan, B N
2016-11-01
A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like spectra were observed simultaneously for the first time on one detector for a wide range of plasma parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consistent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at 4.017 Å) on the short-wavelength side of the Lyman-α line (Lα1) was identified for typical USN discharges, which was diffracted by a He-like crystal (2d = 4.913 Å). Another possible Fe XXV line (1.85 Å) was observed to be located on the long-wavelength side of resonance line (w), which was diffracted from a H-like crystal (2d = 4.5622 Å) on the second order. Be-like argon lines were also observable that fill the detector space between the He-like and H-like spectra.
1985-04-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.
Spacelab-3 (STS-51B) Onboard Photograph
NASA Technical Reports Server (NTRS)
1985-01-01
The primary purpose of the Spacelab-3 mission was to conduct materials science experiments in a stable low-gravity environment. In addition, the crew performed research in life sciences, fluid mechanics, atmospheric science, and astronomy. Spacelab-3 was equipped with several new minilabs, special facilities that would be used repeatedly on future flights. Two elaborate crystal growth furnaces, a life support and housing facility for small animals, and two types of apparatus for the study of fluids were evaluated on their inaugural flight. In this photograph, astronaut Don Lind observes the mercuric iodide growth experiment through a microscope at the vapor crystal growth furnace. The goals of this investigation were to grow near-perfect single crystals of mercuric iodide and to gain improved understanding of crystal growth by a vapor process. Mercuric iodide crystals have practical use as sensitive x-ray and gamma-ray detectors, and in portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications in diagnosis and therapy, and in astronomical instruments. Managed by the Marshall Space Flight Center, Spacelab-3 (STS-51B) was launched aboard the Space Shuttle Orbiter Challenger on April 29, 1985.
Resonant coherent excitation of relativistic Ar 17+ ions channeled in a Si crystal
NASA Astrophysics Data System (ADS)
Azuma, T.; Ito, T.; Yamazaki, Y.; Komaki, K.; Sano, M.; Torikoshi, M.; Kitagawa, A.; Takada, E.; Murakami, T.
1998-02-01
We observed resonant coherent excitation (RCE) of 1s electron to n=2 states in Ar 17+ through measurements of the survived fraction of 390 MeV/u hydrogen-like Ar 17+ channeled in a Si crystal. We adopted a totally depleted Si surface barrier detector as a target crystal as well as a probe of the energy deposition. The charge state of emerged ions was measured by a combination of a charge separation magnet and a 2D-position sensitive detector. We observed the RCE for planar channeled ions by tilting the target Si crystal from the direction of [1 1 0] axis in the (2 2¯ 0) , (0 0 4) , and (1 1¯ 1) planes. Prominent resonances at tilt angles under the resonance condition were observed. Moreover, each resonance profile is split into several lines due to the l· s interaction and the Stark effect originating in the static crystal field. The energy deposition in the crystal gives the information of the amplitude of the ion trajectory. The resonance peak position, intensity and width in the survived fraction of Ar 17+ reflect the position dependent strength of the crystal field, the RCE and the electron loss probabilities. They are in good accord with our calculation of the transition energy and probability.
Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M F; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A; Gotz, Andy
2012-08-01
The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.
Gamma-ray spectrometer experiment, Apollo 17: NaI(T1) detector crystal activation
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Schmadebeck, R. L.; Bielefeld, M.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Schonfeld, E.; Peterson, L. E.; Arnold, J. R.
1973-01-01
An attempt was made to obtain experimental data on proton induced activity and its effect on gamma ray spectral measurements. A NaI(T1) crystal flown in Apollo 17 command module was used for the experiment.
The Hard X-ray experiment on the Astronomical Netherlands Satellite
NASA Technical Reports Server (NTRS)
Gursky, H.; Schnopper, H.; Parsignault, D.
1975-01-01
The Hard X-ray Experiment flown on the Astronomical Netherlands Satellite is described. The instrument consists of two parts. One is a large-area detector of about 60 sq cm in total area, sensitive in the energy range between 1.5 and 30 keV. Two counters comprise this detector, each collimated 10 min by 3 deg and offset in the narrow direction by 4 min. The other part is a Bragg-crystal assembly consisting of two PET crystals and counters aligned to search for the silicon emission lines near 2 keV. Instrument characteristics and orbital operations are described.
The nuclear radiation monitor for the Spacelab/Shuttle
NASA Technical Reports Server (NTRS)
Fishman, G. J.
1978-01-01
A 5 inch by 5 inch diameter sodium iodide scintillation crystal, viewed by a 5 inch photomultiplier was designed to be mounted near the center of the shuttle payload bay to quantitatively measure the neutron and gamma ray environment during the second Spacelab mission. The expected energy resolution is 8% FWHM at 662 keV. The detector will operate in an energy range from 0.1 to 20 MeV. A charged anticoincidence shield consisting of a 1 cm thick plastic scintillator viewed by three 2 inch photomultiplier tubes, covers the crystal detector which has nearly omnidirectional response.
A first principle approach for clover detector
NASA Astrophysics Data System (ADS)
Kshetri, R.
2012-08-01
A simple model based on probability flow arguments has been presented for understanding the clover germanium detector. Using basic concepts of absorption and scattering of gamma-rays, the operation of the clover detector has been described in terms of six probability amplitudes and a parameter. Instead of using an empirical method or simulation, this work presents the first attempt to calculate the peak-to-total and peak-to-background ratios of the clover detector using experimental data of relative single crystal efficiency and addback factor as an input. A unique feature of our approach is that these ratios could be calculated for energies where their direct measurement is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. Results for four gamma-ray energies (Eγ = 1.408, 3.907, 7.029 and 10.430 MeV) have been discussed. Agreement between experimental data and analysis results has been observed. The present approach could describe clover-type detectors as well. As an example, the nine element detector has been considered. We have demonstrated that our formalism can describe both finite and infinite interactions of γ-rays with the clover crystals. The work presented in this paper follows similar philosophy as presented in a recent paper (R. Kshetri, JInst 2012 7 P04008), which deals with modeling of encapsulated type composite detectors like miniball, cluster and SPI (Spectrometer for INTEGRAL satellite).
Dual concentric crystal low energy photon detector
Guilmette, R.A.
A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.
Advances in the growth of alkaline-earth halide single crystals for scintillator detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A
2014-01-01
Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector productionmore » costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.« less
NASA Astrophysics Data System (ADS)
Bennati, P.; Dasu, A.; Colarieti-Tosti, M.; Lönn, G.; Larsson, D.; Fabbri, A.; Galasso, M.; Cinti, M. N.; Pellegrini, R.; Pani, R.
2017-05-01
We designed and tested new concept imaging devices, based on a thin scintillating crystal, aimed at the online monitoring of the range of protons in tissue during proton radiotherapy. The proposed crystal can guarantee better spatial resolution and lower sensitivity with respect to a thicker one, at the cost of a coarser energy resolution. Two different samples of thin crystals were coupled to a position sensitive photo multiplier tube read out by 64 independent channels electronics. The detector was equipped with a knife-edge Lead collimator that defined a reasonable field of view of about 10 cm in the target. Geant4 Monte Carlo simulations were used to optimize the design of the experimental setup and assess the accuracy of the results. Experimental measurements were carried out at the Skandion Clinic, the recently opened proton beam facility in Uppsala, Sweden. PMMA and water phantoms studies were performed with a first prototype based on a round 6.0 mm thick Cry019 crystal and with a second detector based on a thinner 5 × 5 cm2, 2.0 mm thick LFS crystal. Phantoms were irradiated with mono-energetic proton beams whose energy was in the range between 110 and 160 MeV. According with the simulations and the experimental data, the detector based on LFS crystal seems able to identify the peak of prompt-gamma radiation and its results are in fair agreement with the expected shift of the proton range as a function of energy. The count rate remains one of the most critical limitations of our system, which was able to cope with only about 20% of the clinical dose rate. Nevertheless, we are confident that our study might provide the basis for developing a new full-functional system.
Kang, Jihoon; Choi, Yong
2016-07-01
Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was considerably improved, and this approach will provide opportunities to develop GAPD based PET detector with a high LCE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A scintillator geometry suitable for very small PET gantries
NASA Astrophysics Data System (ADS)
Gonzalez, A. J.; Gonzalez-Montoro, A.; Aguilar, A.; Cañizares, G.; Martí, R.; Iranzo, S.; Lamprou, E.; Sanchez, S.; Sanchez, F.; Benlloch, J. M.
2017-12-01
In this work we are describing a novel approach to the scintillator crystal configuration as used in nuclear medicine imaging. Our design is related to the coupling in one PET module of the two separate crystal configurations used so far there: monolithic and crystal arrays. The particular design we have studied is based on a two-layer scintillator approach (hybrid) composed of a monolithic LYSO crystal (5-6 mm thickness) and a LYSO crystal array with 4-5 mm height (0.8 and 1 mm pixels). We show here the detector block performance, in terms of spatial, energy and DOI information, to be used as a module in the design of PET scanners. The design we propose allows one to achieve accurate three-dimensional spatial resolution (including DOI information) while assuring high detection efficiency at reasonable cost. Moreover, the proposed design improves the spatial response uniformity across the whole detector module, and especially at the edge region. The crystal arrays are mounted in the front and were well resolved. The monolithic crystal inserted between crystal array and the photosensor, provided measured FWHM resolution as good as 1.5-1.7 mm including the 1 mm source size. The monolithic block achieved a DOI resolution (FWHM) nearing 3 mm. We compared these results with an approach in which we use a single monolithic block with total volume equals to the hybrid approach. In general, comparable performances were obtained.
Neutron detection using a crystal ball calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martem’yanov, M. A., E-mail: mmartemi@gmail.com; Kulikov, V. V.; Krutenkova, A. P.
2015-12-15
The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describemore » the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimaoka, T., E-mail: t.shimaoka@eng.hokudai.ac.jp; Kaneko, J. H.; Tsubota, M.
A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes andmore » electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.« less
Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory
2015-08-11
A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.
Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2006-02-21
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
Temperature cycling vapor deposition HgI.sub.2 crystal growth
Schieber, Michael M.; Beinglass, Israel; Dishon, Giora
1977-01-01
A method and horizontal furnace for vapor phase growth of HgI.sub.2 crystals which utilizes controlled axial and radial airflow to maintain the desired temperature gradients. The ampoule containing the source material is rotated while axial and radial air tubes are moved in opposite directions during crystal growth to maintain a desired distance and associated temperature gradient with respect to the growing crystal, whereby the crystal interface can advance in all directions, i.e., radial and axial according to the crystallographic structure of the crystal. Crystals grown by this method are particularly applicable for use as room-temperature nuclear radiation detectors.
TlBr purification and single crystal growth for the detector applications
NASA Astrophysics Data System (ADS)
Kozlov, Vasilij; Heikkilä, Mikko; Kostamo, Pasi; Lipsanen, Harri; Leskelä, Markku
2011-05-01
The combination of distillation, Bridgman-Stockbarger, hydrothermal recrystallisation and travelling molten zone (TMZ) methods were used for TlBr purification. Grown crystals were characterised by XRD rocking curve and FTIR spectroscopy methods, and by electrical measurements made from 200 to 300 K.
Measurement of intrinsic radioactive backgrounds from the 137Cs and U/Th chains in CsI(Tl) crystals
NASA Astrophysics Data System (ADS)
Liu, Shu-Kui; Yue, Qian; Lin, Shin-Ted; Li, Yuan-Jing; Tang, Chang-Jian; Wong Tsz-King, Henry; Xing, Hao-Yang; Yang, Chao-Wen; Zhao, Wei; Zhu, Jing-Jun
2015-04-01
The inorganic CsI(Tl) crystal scintillator is a candidate anti-compton detector for the China Dark matter Experiment. Studying the intrinsic radiopurity of the CsI(Tl) crystal is an issue of major importance. The timing, energy and spatial correlations, as well as the capability of pulse shape discrimination provide powerful methods for the measurement of intrinsic radiopurities. The experimental design, detector performance and event-selection algorithms are described. A total of 359×3 kg-days data from three prototypes of CsI(Tl) crystals were taken at China Jinping Underground Laboratory (CJPL), which offers a good shielding environment. The contamination levels of internal isotopes from 137Cs, 232Th and 238U series, as well as the upper bounds of 235U series are reported. Identification of the whole α peaks from U/Th decay chains and derivation of those corresponding quenching factors are achieved. Supported by National Natural Science Foundation of China (11275107, 11175099)
Millikelvin cryocooler for space- and ground-based detector systems
NASA Astrophysics Data System (ADS)
Bartlett, J.; Hardy, G.; Hepburn, I.; Milward, S.; Coker, P.; Theobald, C.
2012-09-01
This paper describes the design of a continuously operating millikelvin cryocooler (mKCC) and its origins. It takes heritage from the double adiabatic demagnetization refrigerator (dADR) which was built for the European Space Agency (ESA). The compact design is based on a tandem configuration continuous ADR which alternately cycles two dADRs. The mKCC is a single module (dimensions 355 x 56 x120 mm) which operates from a 4 K bath (liquid or cryocooler) and provides an interface to the user which is settable from < 100 mK to 4 K. Predicted maximum cooling power at 100 mK is 7μW. It will use only single crystal tungsten magnetoresistive heat switches (the first ADR cooler to do so) and the measured thermal performance of these heat switches is presented. The mKCC uses ten shielded 2 Tesla superconducting magnets capable of ramping to full field in 20 - 30 seconds. This has been demonstrated in the lab and the results are given for the successful performance of a prototype Chromium Potassium Alum (CPA) pill using one of these magnets. The mKCC has been designed to be fully automated and user friendly with the aim of expanding the use of millikelvin cryogenics and providing a good testing and operating platform for detector systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitomi, K.; Shoji, T.; Suehiro, T.
1999-06-01
In this study, TlBr detectors were irradiated with 25 MeV protons accelerated by an AVF cyclotron. Isothermal annealing was performed to restore the performance of the detectors. In order to characterize the radiation damage and thermal annealing effects on the TlBr detectors, the authors measured current-voltage (I-V) characteristics, mobility-lifetime ({mu}{tau}) products and spectrometric responses. The I-V and {mu}{tau} measurements suggest that electron traps have been induced by 25 MeV protons in the TlBr crystals. X- and {gamma}-ray energy spectra were measured for two different electronic conditions: the electric signals induced mainly by electron carriers traversing the crystal were used formore » one case and the signal induced by hole carriers were used in the other case. After irradiation of 25 MeV protons, the {sup 241}Am X- and {gamma}-ray spectra obtained in the former showed significantly degraded energy resolution. No degradation of energy resolution, however, was observed in the latter case. Noticeable improvements of the degraded detector performance have been observed after the thermal annealing.« less
Characterization of Two Ton NaI Scintillator
NASA Astrophysics Data System (ADS)
Maier, Alleta; Coherent Collaboration
2017-09-01
The COHERENT collaboration is dedicated to measuring Coherent Elastic Neutrino-Nucleus Scattering (CE νNS), an interaction predicted by the standard model that ultimately serves as a background floor for dark matter detection. In the pursuit of observing the N2 scaling predicted, COHERENT is deploying two tons of NaI[Tl] detector to observe CE νNS recoils of sodium nuclei. Before the two tons of this NaI[Tl] scintillator are deployed, however, all crystals and PMTs must be characterized to understand the individual properties vital to precision in the measurement of CE νNS. This detector is also expected to allow COHERENT to observe charged current and CE νNS interactions with 127I. A standard operating procedure is developed to characterize each detector based on seven properties relevant to precision in the measurement of CE νNS: energy scale, energy resolution, low-energy light yield non-linearity, decay time energy dependence, position variance, time variance, and background levels. Crystals will be tested and characterized for these properties in the context of a ton-scale NaI[Tl] detector. Preliminary development of the SOP has allowed for greater understanding of optimization methods needed for characterization for the ton scale detector. TUNL, NSF, Duke University.
A novel synthetic single crystal diamond device for in vivo dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, Marco; Prestopino, G., E-mail: giuseppe.prestopino@uniroma2.it; Tonnetti, A.
Purpose: Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of “Tor Vergata” University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. Methods: The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application wasmore » performed under irradiation with {sup 60}Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. Results: The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. Conclusions: The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.« less
A novel synthetic single crystal diamond device for in vivo dosimetry.
Marinelli, Marco; Prestopino, G; Tonnetti, A; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Pimpinella, M; Guerra, A S; De Coste, V
2015-08-01
Aim of the present work is to evaluate the synthetic single crystal diamond Schottky photodiode developed at the laboratories of "Tor Vergata" University in Rome in a new dosimeter configuration specifically designed for offline wireless in vivo dosimetry (IVD) applications. The new diamond based dosimeter, single crystal diamond detector (SCDD-iv), consists of a small unwired detector and a small external reading unit that can be connected to commercial electrometers for getting the detector readout after irradiation. Two nominally identical SCDD-iv dosimeter prototypes were fabricated and tested. A basic dosimetric characterization of detector performances relevant for IVD application was performed under irradiation with (60)Co and 6 MV photon beams. Preirradiation procedure, response stability, short and long term reproducibility, leakage charge, fading effect, linearity with dose, dose rate dependence, temperature dependence, and angular response were investigated. The SCDD-iv is simple, with no cables linked to the patient and the readout is immediate. The range of response with dose has been tested from 1 up to 12 Gy; the reading is independent of the accumulated dose and dose rate independent in the range between about 0.5 and 5 Gy/min; its temperature dependence is within 0.5% between 25 and 38 °C, and its directional dependence is within 2% from 0° to 90°. The combined relative standard uncertainty of absorbed dose to water measurements is estimated lower than the tolerance and action level of 5%. The reported results indicate the proposed novel offline dosimeter based on a synthetic single crystal diamond Schottky photodiode as a promising candidate for in vivo dosimetry applications with photon beams.
Large Area Cd0.9Zn0.1Te Pixelated Detector: Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Chaudhuri, Sandeep K.; Nguyen, Khai; Pak, Rahmi O.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Mandal, Krishna C.
2014-04-01
Cd0.9Zn0.1Te (CZT) based pixelated radiation detectors have been fabricated and characterized for gamma ray detection. Large area CZT single crystals has been grown using a tellurium solvent method. A 10 ×10 guarded pixelated detector has been fabricated on a 19.5 ×19.5 ×5 mm3 crystal cut out from the grown ingot. The pixel dimensions were 1.3 ×1.3 mm2 and were pitched at 1.8 mm. A guard grid was used to reduce interpixel/inter-electrode leakage. The crystal was characterized in planar configuration using electrical, optical and optoelectronic methods prior to the fabrication of pixelated geometry. Current-voltage (I-V) measurements revealed a leakage current of 27 nA at an operating bias voltage of 1000 V and a resistivity of 3.1 ×1010 Ω-cm. Infrared transmission imaging revealed an average tellurium inclusion/precipitate size less than 8 μm. Pockels measurement has revealed a near-uniform depth-wise distribution of the internal electric field. The mobility-lifetime product in this crystal was calculated to be 6.2 ×10 - 3 cm2/V using alpha ray spectroscopic method. Gamma spectroscopy using a 137Cs source on the pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with percentage resolution (FWHM) as high as 1.8%.
X-ray detection capability of a BaCl{sub 2} single crystal scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshimizu, Masanori; CREST, Japan Science and Technology Agency, Sanbancho, Chiyoda-ku, Tokyo 102-0075; Onodera, Kazuya
2012-01-15
The x-ray detection capability of a scintillation detector equipped with a BaCl{sub 2} single crystal was evaluated. The scintillation decay kinetics can be expressed by a sum of two exponential decay components. The fast and slow components have lifetimes of 1.5 and 85 ns, respectively. The total light output is 5% that of YAP:Ce. A subnanosecond timing resolution was obtained. The detection efficiency of a 67.41 keV x-ray is 87% for a detector equipped with a BaCl{sub 2} crystal 6-mm thick. Thus, excellent timing resolution and high detection efficiency can be simultaneously achieved. Additionally, luminescence decay characteristics under vacuum ultravioletmore » excitation have been investigated. Radiative decay of self-trapped excitons is thought to be responsible for the fast scintillation component.« less
BEAM-ish: A Graphical User Interface for the Physical Characterization of Macromolecular Crystals
NASA Technical Reports Server (NTRS)
Lovelace, Jeff; Snell, Edward H.; Pokross, Matthew; Arvai, Andrew S.; Nielsen, Chris; Nguyen, Xuong; Bellamy, Henry D; Borgstahl, Gloria E. O.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Crystal mosaicity is determined from the measurement of the reflection angular width and can be used as an indicator of crystal perfection. A new method has been developed that combines the use of unfocused synchrotron radiation, super-fine phi slicing and a CCD area detector to simultaneously measure the mosaicity of hundreds of reflections . The X-ray beam characteristics and Lorentz correction are deconvoluted from the resulting reflection widths to calculate the true crystal mosaicity.
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution
NASA Astrophysics Data System (ADS)
Cates, Joshua W.; Levin, Craig S.
2018-06-01
Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long (20 mm length) and narrow (4–5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3–20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this ‘side readout’ configuration, a CTR of 102 ± 2 ps FWHM was measured with mm3 crystals coupled to rows of mm2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single mm2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér–Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.
Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.
2016-07-01
The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.
NASA Astrophysics Data System (ADS)
Omidvari, Negar; Schulz, Volkmar
2015-06-01
This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.
Development of a DOI PET Detector Having the Structure of the X'tal Cube Extended in One Direction
NASA Astrophysics Data System (ADS)
Inadama, Naoko; Hirano, Yoshiyuki; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga
2016-10-01
X'tal cube is the cubic depth of interaction (DOI) PET detector which our research group developed. In this work, aiming to get higher sensitivity, we developed the long rectangular shape X'tal cube (long-XC) by extending the cubic X'tal cube structure in one direction. We verified performance of this long-XC and also studied detector parameters for optimization. The same as the X'tal cube, the crystal block of the long-XC is composed of a 3D array of cubic scintillation crystal elements. Reflectors are not inserted between these crystal elements. The scintillation light then spreads without being obstructed by reflectors and is detected by multiple numbers of the multi-pixel photon counters (MPPCs) coupled on all six sides of the crystal block. For crystal element identification, a simple Anger-type calculation is used. In this study, we arranged 3.0 mm×3.0 mm×3.0 mm LGSO crystal elements in a 6 × 6 × 14 array for the long-XC. In a previous study, we had already confirmed that for the X'tal cube consisting of a 6 × 6 × 6 array of the same crystal elements and 54 MPPCs, identification of all 216 crystal elements was possible and the average energy resolution for all the elements was about 11 %. The long-XC contains more than twice the number of the crystal elements but less than twice the number of the MPPCs compared to the previous X'tal cube. The detector parameters investigated with the long-XC were: the number of MPPCs on both sides in the extended direction (edge MPPCs); the MPPC type, the MPPCs of 25 μm × 25 μm or 50 μm × 50 μm pixel sizes; the material between the crystal elements, an air gap or an optical glue having a closer refractive index to that of LGSO than air has; and the MPPC signals used in the Anger-type calculation. Results of the crystal element identification performance showed that reducing the number of the edge MPPCs caused performance degradation only at the part near the edge. For the MPPC type, the 50 μm type was better than the 25 μm type, and for the material, air was much better than the optical glue. We found that the choice of MPPC signals for the Anger-type calculation was effective in the optical glue condition. For the long-XC in the air gap condition and using the 50 μm type MPPCs, we observed it had good performance and there was no significant degradation at the central part which is far from the edge MPPCs. For irradiation of 662 keV gamma-rays, we measured approximately 11 - 13 % energy resolution for each crystal element and there was only a small difference in light outputs between crystal elements at the central part and at the edges. These results at the central part suggested the possibility of further extension of the long-XC for higher sensitivity.
Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire
2012-01-01
A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.
Characteristics and performance of thin LaBr3(Ce) crystal for hard X-ray astronomy
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
2011-01-01
We have developed a new detector using thin lanthanum bromide crystal (32 × 3 mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on two different occasions, December 21, 2007, which reached a ceiling altitude of 4.3 mbs and April 25, 2008 reaching a ceiling altitude 2.8 mbs. The observed background counting rate at the ceiling altitude of 4 mbs was ˜4 × 10-3 ct cm-2 s-1 keV-1 sr-1. This paper describes the details of the experiment, the detector characteristics, and the background behaviour at the ceiling altitude.
Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control
Johns, Paul M.; Baciak, James E.; Nino, Juan C.
2016-09-02
In some of the more attractive semiconducting compounds for ambient temperature radiation detector applications are impacted by low charge collection efficiency due to the presence of point and volumetric defects. This has been particularly true in the case of BiI 3, which features very attractive properties (density, atomic number, band gap, etc.) to serve as a gamma ray detector, but has yet to demonstrate its full potential. Here, we show that by applying growth techniques tailored to reduce defects, the spectral performance of this promising semiconductor can be realized. Gamma ray spectra from >100 keV source emissions are now obtainedmore » from high quality Sb:BiI 3 bulk crystals with limited concentrations of defects (point and extended). The spectra acquired in these high quality crystals feature photopeaks with resolution of 2.2% at 662 keV. Infrared microscopy is used to compare the local microstructure between radiation sensitive and non-responsive crystals. Our work demonstrates that BiI 3 can be prepared in melt-grown detector-grade samples with superior quality and can acquire the spectra from a variety of gamma ray sources.« less
Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout
NASA Astrophysics Data System (ADS)
Yang, H.; Menaa, N.; Bronson, F.; Kastner, M.; Venkataraman, R.; Mueller, W. F.
2011-10-01
Previous work showed that enriched 6Li halide scintillation crystal is a good candidate for portable neutron-sensitive detectors. Photodiode readout is a good alternative to PMT in compact devices. These detectors are often required to work in presence of a strong gamma background. Therefore, great discrimination against gamma rays is crucial. Because of the high Q-value of the 6Li(n,α) 3H reaction, the light yield of a neutron capture signal corresponds to 3-4 MeV gamma equivalent in spite of the quenching effect of heavily charged particles. As a result, energy discrimination is quite effective against gamma signals generated in thin crystals. However, direct gamma interactions inside the photodiode can create pulses whose amplitude is large enough to interfere with thermal neutron peak. This study shows an innovative design based on coincident readout to solve this problem. In this design, two photodiodes are attached on both sides of the LiI crystal. The output signal is only accepted when both photodiodes give out coincident output. The method is proved to effectively suppress background in the neutron window in a 420 mR/h 137Cs field down to the level of natural background.
Rothkirch, André; Gatta, G Diego; Meyer, Mathias; Merkel, Sébastien; Merlini, Marco; Liermann, Hanns Peter
2013-09-01
Fast detectors employed at third-generation synchrotrons have reduced collection times significantly and require the optimization of commercial as well as customized software packages for data reduction and analysis. In this paper a procedure to collect, process and analyze single-crystal data sets collected at high pressure at the Extreme Conditions beamline (P02.2) at PETRA III, DESY, is presented. A new data image format called `Esperanto' is introduced that is supported by the commercial software package CrysAlis(Pro) (Agilent Technologies UK Ltd). The new format acts as a vehicle to transform the most common area-detector data formats via a translator software. Such a conversion tool has been developed and converts tiff data collected on a Perkin Elmer detector, as well as data collected on a MAR345/555, to be imported into the CrysAlis(Pro) software. In order to demonstrate the validity of the new approach, a complete structure refinement of boron-mullite (Al5BO9) collected at a pressure of 19.4 (2) GPa is presented. Details pertaining to the data collections and refinements of B-mullite are presented.
Growth of mercuric iodide single crystals from dimethylsulfoxide
Carlston, Richard C.
1976-07-13
Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.
Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm 3 pixelated detectors, fabricated with conventional pixel patterns with progressively smallermore » pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less
2012-06-01
this report. The property measurements that have been focused on were the assessment of density ( Archimedes ). grain structure {optical and SEM...Scintillator", Materials Letters 60 1960-1963 (2006) [15] J.S. Reed, Forming Processes, Chapter 20 in Introduction to the Principles of Ceramic
NASA Astrophysics Data System (ADS)
Marinelli, Marco; Pompili, F.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cirrone, G. A. P.; Cuttone, G.; La Rosa, R. M.; Raffaele, L.; Romano, F.; Tuvè, C.
2014-12-01
A synthetic single crystal diamond based Schottky photodiode was tested at INFN-LNS on the proton beam line (62 MeV) dedicated to the radiation treatment of ocular disease. The diamond detector response was studied in terms of pre-irradiation dose, linearity with dose and dose rate, and angular dependence. Depth dose curves were measured for the 62 MeV pristine proton beam and for three unmodulated range-shifted proton beams; furthermore, the spread-out Bragg peak was measured for a modulated therapeutic proton beam. Beam parameters, recommended by the ICRU report 78, were evaluated to analyze depth-dose curves from diamond detector. Measured dose distributions were compared with the corresponding dose distributions acquired with reference plane-parallel ionization chambers. Field size dependence of the output factor (dose per monitor unit) in a therapeutic modulated proton beam was measured with the diamond detector over the range of ocular proton therapy collimator diameters (5-30 mm). Output factors measured with the diamond detector were compared to the ones by a Markus ionization chamber, a Scanditronix Hi-p Si stereotactic diode and a radiochromic EBT2 film. Signal stability within 0.5% was demonstrated for the diamond detector with no need of any pre-irradiation dose. Dose and dose rate dependence of the diamond response was measured: deviations from linearity resulted to be within ±0.5% over the investigated ranges of 0.5-40.0 Gy and 0.3-30.0 Gy/min respectively. Output factors from diamond detector measured with the smallest collimator (5 mm in diameter) showed a maximum deviation of about 3% with respect to the high resolution radiochromic EBT2 film. Depth-dose curves measured by diamond for unmodulated and modulated beams were in good agreement with those from the reference plane-parallel Markus chamber, with relative differences lower than ±1% in peak-to-plateau ratios, well within experimental uncertainties. A 2.5% variation in diamond detector response was observed in angular dependence measurements carried-out by varying the proton beam incidence angle in the polar direction. The dosimetric characterization of the tested synthetic single crystal diamond detector clearly indicates its suitability for relative dosimetry in ocular therapy proton beams, with no need of any correction factors accounting for dose rate and linear energy transfer dependence.
Germanium detectors in homeland security at PNNL
Stave, S.
2015-05-01
Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less
Application of metallic magnetic calorimeter in rare event search
NASA Astrophysics Data System (ADS)
Kim, I.; Jo, H. S.; Kang, C. S.; Kim, G. B.; Kim, H. L.; Kim, S. R.; Kim, Y. H.; Lee, H. J.; Lee, J. H.; Lee, M. K.; Oh, S. Y.; So, J. H.
2017-09-01
Metallic magnetic calorimeters (MMCs) are highly sensitive temperature sensors that use the paramagnetic nature of erbium in a metallic host and superconducting electronics usually composed of a superconducting niobium coil and a current sensing superconducting quantum interference device. This article discusses the applicability of MMCs in experimental searches for rare events in particle physics. A detector module using two MMCs was built to perform low-temperature measurements of heat and scintillation light generated by particle interaction in a 340 g 40Ca100MoO4 crystal. The energy transfer mechanism, from incident particles to the components of the heat and light sensors, is described through a thermal model. MMCs, with gold films collecting athermal phonons, can be used over wide ranges of operating temperature and crystal volume without a significant change in detector performances. Rare event searches could thus benefit from MMC-based detectors presenting such flexibility as well as excellent energy resolution and particle discrimination power.
Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter
NASA Astrophysics Data System (ADS)
Foerster, N.; Broniatowski, A.; Eitel, K.; Marnieros, S.; Paul, B.; Piro, M.-C.; Siebenborn, B.
2016-08-01
The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures (mathrm {{<}20 mK}) and low electric fields (mathrm {{<}1 V/cm}). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.
Dark matter directional detection: comparison of the track direction determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couturier, C.; Zopounidis, J.P.; Sauzet, N.
Several directional techniques have been proposed for a directional detection of Dark matter, among others anisotropic crystal detectors, nuclear emulsion plates, and low-pressure gaseous TPCs. The key point is to get access to the initial direction of the nucleus recoiling due to the elastic scattering by a WIMP. In this article, we aim at estimating, for each method, how the information of the recoil track initial direction is preserved in different detector materials. We use the SRIM simulation code to emulate the motion of the first recoiling nucleus in each material. We propose the use of a new observable, Dmore » , to quantify the preservation of the initial direction of the recoiling nucleus in the detector. We show that in an emulsion mix and an anisotropic crystal, the initial direction is lost very early, while in a typical TPC gas mix, the direction is well preserved.« less
Kampfer, Severin; Cho, Nathan; Combs, Stephanie E; Wilkens, Jan J
2018-05-29
The aim of this study was to investigate a single crystal diamond detector, the microDiamond detector from PTW (PTW-Freiburg, Freiburg, Germany), concerning the particular requirements in the set-up and energy range used in small animal radiotherapy (RT) research (around 220kV). We tested it to find out the minimal required pre-irradiation dose, the dose linearity, dose rate dependency and the angular response as well as usability in the small animal radiation research platform, SARRP (Xstrahl Ltd., Camberley, UK). For a stable signal in the range of energies used in the study, we found a required pre-irradiation dose of 10Gy. The dose linearity and dose rate dependence measurements showed a very good performance of the microDiamond detector. Regarding the effect of angular dependency, the variation of the response signal is less than 0.5% within the first 15° of the polar angle. In the azimuthal angle, however, there are differences in detector response up to 20%, depending on the range of energies used in the study. In addition, we compared the detector to a radiosensitive film for a profile measurement of a 5×5mm 2 irradiation field. Both methods showed a good accordance with the field size, however, the film has a steeper dose gradient in the penumbra region but also a higher noise than the microDiamond detector. We demonstrated that the microDiamond detector is a useful measurement tool for small animal RT research due to its small size. Nevertheless, it seems to be very important to verify the response of the detector in the given set-up and energy range. Copyright © 2018. Published by Elsevier GmbH.
Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J
2015-11-01
A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth-dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4-41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth-dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Somlai-Schweiger, I; Ziegler, S I
2015-04-01
A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed "CHERENCUBE" consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimation is presented and the requirements for a practical implementation of the proposed concept are defined. The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm(3) and 10 × 10 × 10 mm(3). For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO4. Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Detection efficiency increases with crystal size from 8.2% (1 × 1 × 1 mm(3)) to 58.6% (10 × 10 × 10 mm(3)) and decreases applying a photon detection threshold of 5/10/20 photons to 6.3%/4.3%/0.7% and 49.3%/30.4%/2.8%, respectively. The detection rate in the six photodetectors is uniform due to the nearly isotropic cone emission. Most cones originated after a photoelectric effect interaction, with two dominating peaks for the kinetic energy of the electron at 422.99 and 441.47 keV. The detection distance between same-event photons defines the spatial resolution of the detector required for individual photon recognition, with 20% of the detected photons having their closest neighbor within a distance of 5% of the length of the cube. Same-event photons are detected within a time window whose width is determined by the crystal size, with values of 30 and 150 ps for a 1 × 1 × 1 mm(3) and a 10 × 10 × 10 mm(3) cube, respectively. The DOI reconstruction has an accuracy of approximately 23% of the length of the cube, with an average value of 2.2 mm for a 10 × 10 × 10 mm(3) CHERENCUBE. The proposed concept requires a detector with high photodetection efficiency. The structure of the sensitive surface of the detector should be a two dimensional array of microcells, able to provide individual detection coordinates and time stamps. The microcell size determines the ability to recognize individual photons, influencing detection efficiency. The 3D DOI recognition relies on the accuracy of the time stamps and detection coordinates, without the need for a recognition of the projected patterns of photons. The refractive index of the material defines a detector intrinsic energy-based rejection of scattered PET events at the cost of reduced sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somlai-Schweiger, I., E-mail: ian.somlai@tum.de; Ziegler, S. I.
Purpose: A new concept for a depth-of-interaction (DOI) capable time-of-flight (TOF) PET detector is defined, based only on the detection of Cherenkov photons. The proposed “CHERENCUBE” consists of a cubic Cherenkov radiator with position-sensitive photodetectors covering each crystal face. By means of the spatial distribution of the detected photons and their time of arrival, the point of interaction of the gamma-ray in the crystal can be determined. This study analyzes through theoretical calculations and Monte Carlo simulations the potential advantages of the concept toward reaching a Cherenkov-only detector for TOF-PET with DOI capability. Furthermore, an algorithm for the DOI estimationmore » is presented and the requirements for a practical implementation of the proposed concept are defined. Methods: The Monte Carlo simulations consisted of a cubic crystal with one photodetector coupled to each one of the faces of the cube. The sensitive area of the detector matched exactly the crystal size, which was varied in 1 mm steps between 1 × 1 × 1 mm{sup 3} and 10 × 10 × 10 mm{sup 3}. For each size, five independent simulations of ten thousand 511 keV gamma-rays were triggered at a fixed distance of 10 mm. The crystal chosen was PbWO{sub 4}. Its scintillation properties were simulated, but only Cherenkov photons were analyzed. Photodetectors were simulated having perfect photodetection efficiency and infinite time resolution. For every generated particle, the analysis considered its creation process, parent and daughter particles, energy, origin coordinates, trajectory, and time and position of detection. The DOI determination is based on the distribution of the emission time of all photons per event. These values are calculated as a function of the coordinates of detection and origin for every photon. The common origin is estimated by finding the distribution with the most similar emission time-points. Results: Detection efficiency increases with crystal size from 8.2% (1 × 1 × 1 mm{sup 3}) to 58.6% (10 × 10 × 10 mm{sup 3}) and decreases applying a photon detection threshold of 5/10/20 photons to 6.3%/4.3%/0.7% and 49.3%/30.4%/2.8%, respectively. The detection rate in the six photodetectors is uniform due to the nearly isotropic cone emission. Most cones originated after a photoelectric effect interaction, with two dominating peaks for the kinetic energy of the electron at 422.99 and 441.47 keV. The detection distance between same-event photons defines the spatial resolution of the detector required for individual photon recognition, with 20% of the detected photons having their closest neighbor within a distance of 5% of the length of the cube. Same-event photons are detected within a time window whose width is determined by the crystal size, with values of 30 and 150 ps for a 1 × 1 × 1 mm{sup 3} and a 10 × 10 × 10 mm{sup 3} cube, respectively. The DOI reconstruction has an accuracy of approximately 23% of the length of the cube, with an average value of 2.2 mm for a 10 × 10 × 10 mm{sup 3} CHERENCUBE. Conclusions: The proposed concept requires a detector with high photodetection efficiency. The structure of the sensitive surface of the detector should be a two dimensional array of microcells, able to provide individual detection coordinates and time stamps. The microcell size determines the ability to recognize individual photons, influencing detection efficiency. The 3D DOI recognition relies on the accuracy of the time stamps and detection coordinates, without the need for a recognition of the projected patterns of photons. The refractive index of the material defines a detector intrinsic energy-based rejection of scattered PET events at the cost of reduced sensitivity.« less
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
NASA Astrophysics Data System (ADS)
Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; Ryan, J. M.; McConnell, M. L.
2016-03-01
We present the results of the first high-altitude balloon flight test of a concept for an advanced Compton telescope making use of modern scintillator materials with silicon photomultiplier (SiPM) readouts. There is a need in the fields of high-energy astronomy and solar physics for new medium-energy gamma-ray ( 0.4-10 MeV) detectors capable of making sensitive observations of both line and continuum sources over a wide dynamic range. A fast scintillator-based Compton telescope with SiPM readouts is a promising solution to this instrumentation challenge, since the fast response of the scintillators permits both the rejection of background via time-of-flight (ToF) discrimination and the ability to operate at high count rates. The Solar Compton Telescope (SolCompT) prototype presented here was designed to demonstrate stable performance of this technology under balloon-flight conditions. The SolCompT instrument was a simple two-element Compton telescope, consisting of an approximately one-inch cylindrical stilbene crystal for a scattering detector and a one-inch cubic LaBr3:Ce crystal for a calorimeter detector. Both scintillator detectors were read out by 2×2 arrays of Hamamatsu S11828-3344 MPPC devices. Custom front-end electronics provided optimum signal rise time and linearity, and custom power supplies automatically adjusted the SiPM bias voltage to compensate for temperature-induced gain variations. A tagged calibration source, consisting of 240 nCi of 60Co embedded in plastic scintillator, was placed in the field of view and provided a known source of gamma rays to measure in flight. The SolCompT balloon payload was launched on 24 August 2014 from Fort Sumner, NM, and spent 3.75 h at a float altitude of 123,000 ft. The instrument performed well throughout the flight. After correcting for small ( 10%) residual gain variations, we measured an in-flight ToF resolution of 760 ps (FWHM). Advanced scintillators with SiPM readouts continue to show great promise for future gamma-ray instruments.
NASA Astrophysics Data System (ADS)
Wade, C.; Barrière, N. M.; Tomsick, J. A.; Hanlon, L.; Boggs, S. E.; Lowell, A.; von Ballmoos, P.; Massahi, S.
2018-07-01
Laue lenses use Bragg diffraction to concentrate soft γ-rays onto a detector. This decoupling of the collecting area from the detector volume can generate a significant increase in sensitivity for applications in astrophysics and nuclear medicine. A demonstrator lens was constructed at the UC Berkeley's Space Sciences Laboratory in 2014 by gluing 48 Fe and Al diffracting crystals to an aluminium substrate. The goal was to demonstrate a fast and accurate assembly technique that is compatible with the large number of crystals required to fabricate a Laue lens telescope for astronomical observations. We present here the lens design, the assembly technique we used, and the results of measurements of the angular misalignments before and after curing of the glue and during environmental testing (thermal, vacuum, and vibration). We conclude that our alignment technique is fast enough to assemble a full lens made of several thousand crystals. The achieved alignment accuracy had an average of 32.7‧‧ and a standard deviation of 44.1‧‧. The accuracy could be improved by using an alternative glue or by having better control over the asymmetry angle resulting from the crystal cut.
Development of compact particle detectors for space based instruments
NASA Astrophysics Data System (ADS)
Barner, Lindsey; Grove, Andrew; Mohler, Jacob; Sisson, Caleb; Roth, Alex; Kryemadhi, Abaz
2017-01-01
The Silicon Photomultipliers (SiPMs) are new photon-detectors which have been increasingly used in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers benefits compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high stopping power, very good light yield and fast decay time. The response of these detectors to low energy gamma rays will be presented. NASA Pennsylvania Space Grant Consortium.
Research on annealing and properties of TlBr crystals for radiation detector use
NASA Astrophysics Data System (ADS)
Zhiping, Zheng; Yongtao, Yu; Dongxiang, Zhou; Shuping, Gong; Qiuyun, Fu
2014-03-01
In this paper, annealing was carried out in air after cutting, polishing and etching to eliminate defects introduced by crystal and wafer preparation work. The effect of annealing temperature and time on the properties of TlBr crystals was investigated. The crystal quality was characterized by infrared (IR) transmittance spectrum, I-V measurement, XRD and energy response spectrum. In the annealing temperature range (100-320 °C) applied, it was found that higher temperature was more effective for improving quality. Furthermore, it is proved that an appropriate annealing time is vital for better crystal quality.
Surface treatment and protection method for cadmium zinc telluride crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.
Engineering cell-fluorescent ion track hybrid detectors.
Niklas, Martin; Greilich, Steffen; Melzig, Claudius; Akselrod, Mark S; Debus, Jürgen; Jäkel, Oliver; Abdollahi, Amir
2013-06-11
The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al₂O₃:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u⁻¹). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy resolution.
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Recent developments in photodetection for medical applications
NASA Astrophysics Data System (ADS)
Llosá, Gabriela
2015-07-01
The use of the most advanced technology in medical imaging results in the development of high performance detectors that can significantly improve the performance of the medical devices employed in hospitals. Scintillator crystals coupled to photodetectors remain to be essential detectors in terms of performance and cost for medical imaging applications in different imaging modalities. Recent advances in photodetectors result in an increase of the performance of the medical scanners. Solid state detectors can provide substantial performance improvement, but are more complex to integrate into clinical detectors due mainly to their higher cost. Solid state photodetectors (APDs, SiPMs) have made new detector concepts possible and have led to improvements in different imaging modalities. Recent advances in detectors for medical imaging are revised.
Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET.
Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S
2014-12-01
Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed. Compared to 3 × 3 × 20 mm(3) LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm(3) crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm(3) LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.
Side readout of long scintillation crystal elements with digital SiPM for TOF-DOI PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeom, Jung Yeol, E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu; Vinke, Ruud; Levin, Craig S., E-mail: yeomjy@kumoh.ac.kr, E-mail: cslevin@stanford.edu
Purpose: Side readout of scintillation light from crystal elements in positron emission tomography (PET) is an alternative to conventional end-readout configurations, with the benefit of being able to provide accurate depth-of-interaction (DOI) information and good energy resolution while achieving excellent timing resolution required for time-of-flight PET. This paper explores different readout geometries of scintillation crystal elements with the goal of achieving a detector that simultaneously achieves excellent timing resolution, energy resolution, spatial resolution, and photon sensitivity. Methods: The performance of discrete LYSO scintillation elements of different lengths read out from the end/side with digital silicon photomultipliers (dSiPMs) has been assessed.more » Results: Compared to 3 × 3 × 20 mm{sup 3} LYSO crystals read out from their ends with a coincidence resolving time (CRT) of 162 ± 6 ps FWHM and saturated energy spectra, a side-readout configuration achieved an excellent CRT of 144 ± 2 ps FWHM after correcting for timing skews within the dSiPM and an energy resolution of 11.8% ± 0.2% without requiring energy saturation correction. Using a maximum likelihood estimation method on individual dSiPM pixel response that corresponds to different 511 keV photon interaction positions, the DOI resolution of this 3 × 3 × 20 mm{sup 3} crystal side-readout configuration was computed to be 0.8 mm FWHM with negligible artifacts at the crystal ends. On the other hand, with smaller 3 × 3 × 5 mm{sup 3} LYSO crystals that can also be tiled/stacked to provide DOI information, a timing resolution of 134 ± 6 ps was attained but produced highly saturated energy spectra. Conclusions: The energy, timing, and DOI resolution information extracted from the side of long scintillation crystal elements coupled to dSiPM have been acquired for the first time. The authors conclude in this proof of concept study that such detector configuration has the potential to enable outstanding detector performance in terms of timing, energy, and DOI resolution.« less
Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI.
Schmall, Jeffrey P; Surti, Suleman; Karp, Joel S
2015-05-07
A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4 × 4 mm(2) silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15 mm long LaBr3(Ce:20%) crystal on top of a 15 mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12 mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12 mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution-timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The interface in the stacked crystal geometry itself plays a major role in creating the differences in signal shape and this can be used to construct stacked DOI detectors using the same scintillator type, thereby simplifying and broadening the application of this technique.
Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI
Schmall, Jeffrey P; Surti, Suleman; Karp, Joel S
2015-01-01
A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4×4 mm2 silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15-mm long LaBr3(Ce:20%) crystal on top of a 15-mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12-mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12-mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution—timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The interface in the stacked crystal geometry itself plays a major role in creating the differences in signal shape and this can be used to construct stacked DOI detectors using the same scintillator type, thereby simplifying and broadening the application of this technique. PMID:25860172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Chernyak, D. M.; Mokina, V. M.
2015-10-28
A radiopure cadmium tungstate crystal scintillator, enriched in {sup 106}Cd ({sup 106}CdWO{sub 4}), was used to search for double beta decay processes in {sup 106}Cd in coincidence with an ultra-low background set-up containing four high purity germanium (HPGe) detectors in a single cryostat. The experiment has been completed after 13085 h of data taking. New improved limits on most of the double beta processes in {sup 106}Cd have been set on the level of 10{sup 20}−10{sup 21} yr. Tn particular, the half-life limit on the two neutrino electron capture with positron emission, T{sub 1/2} ≥ 1.8 × 10{sup 21} yr, reachedmore » the region of theoretical predictions.« less
X-ray absorption fine structure (XAFS) spectroscopy using synchrotron radiation
NASA Astrophysics Data System (ADS)
Shrivastava, B. D.
2012-05-01
The X-ray absorption fine structure (XAFS) spectra are best recorded when a highly intense beam of X-rays from a synchrotron is used along with a good resolution double crystal or curved crystal spectrometer and detectors like ionization chambers, scintillation counters, solid state detectors etc. Several synchrotrons around the world have X-ray beamlines dedicated specifically to XAFS spectroscopy. Fortunately, the Indian synchrotron (Indus-2) at Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore has started operation. A dispersive type EXAFS beamline called BL-8 has been commissioned at this synchrotron and another beamline having double crystal monochromator (DCM) is going to be commissioned shortly. In Indian context, in order that more research workers use these beamlines, the study of XAFS spectroscopy using synchrotron radiation becomes important. In the present work some of the works done by our group on XAFS spectroscopy using synchrotron radiation have been described.
Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal
NASA Astrophysics Data System (ADS)
Lee, H. S.; Adhikari, G.; Adhikari, P.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, H. O.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Lee, J. H.; Lee, M. H.; Leonard, D. S.; Li, J.; Oh, S. Y.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, K. S.; Shim, J. H.; So, J. H.
2015-08-01
We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton-scattered 662 keV γ-rays from a 137Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg·year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.
Possible Detection of Solar Neutrons from the ISS
NASA Astrophysics Data System (ADS)
Benker, Nicole; Echeverria-Mora, Elena; Hamblin, Jennifer; Dowben, Peter A.; Enders, Axel; Kananen, Brant; Petrosky, James; McClory, John
2018-06-01
A low energy steady state solar neutron flux has been long predicted [1]. The Detector for the Analysis of Solar Neutrons (DANSON), designed to detect this flux, was launched on the OA-5 mission to the International Space Station (ISS) on 17 Oct. 2016, deployed aboard ISS, and returned 19 March 2017. This detector is insensitive to high energy solar neutron events associated with solar flares, which have now been routinely detected in the range of 40 to 140 MeV, but the lower energy steady state solar neutron background has not been thoroughly examined. DANSON is based on boron rich detector elements combined with a plastic moderator to thermalize neutrons at energies above 40 meV, maximizing the B10 capture of epithermal neutrons. The detector elements include boron carbide (B10C2HX) heterojunction diodes on silicon and lithium tetraborate (Li2B4O7) single crystals. Three types of lithium tetraborate detector elements are used: crystals with a natural abundance of 10B (approx. 20% 10B, 80% 11B), crystals enriched in 10B, and crystals enriched in 11B. Enrichment in 10B provides a higher cross section for thermal neutron capture, while enrichment in 11B results in a negligible cross section for thermal neutron capture while maintaining a proton capture cross section comparable to that of 10B. The signature of neutron capture in the lithium tetraborate samples is evident in the thermoluminescent spectra. In the boron carbide diodes, the signature is measured in the huge decrease in drift carrier lifetimes compared to pre-flight characterization data, corresponding to about 3×109 neutrons/cm2 exposure. Since the estimated total solar exposure time for deployment is 8×106 seconds, this amounts to about 250 to 375 neutrons and protons/cm2sec. The detector package shows increased detection on the zenith side of ISS, after subtraction of radiation events from energetic protons and other sources, indicating possible detection of solar neutrons. Additionally, detection of events on the nadir side implies detection of cosmic ray generated neutrons.[1] Biermann VL, Haxe O, Schulter A (1951) Neutrale Ultrastrahlung von der Sonne. Zeitschrift für Naturforschung 6a: 47-48.
Ultrahigh resolution protein crystallography: Concanavalin A to 0.94 Å and beyond
NASA Astrophysics Data System (ADS)
Deacon, A. M.; Gleichmann, T.; Harrop, S. J.; Helliwell, J. R.; Kalb Gilboa, A. J.; Yariv, J.
1996-09-01
Many years ago the idea of collecting voluminous quantities of weak reflection intensities from a protein crystal, at high resolution, was a particular challenge [J.R. Helliwell (1979) Daresbury Study Weekend DL/SCI R13, pp. 1-6]. The combination of insertion devices with very high x-ray fluxes at short x-ray wavelengths, sensitive CCD detectors, and freezing of crystals have provided the means to certainly match those best hopes. So much so that the data can best be described as ultrahigh resolution, at least as evidenced in our studies of the 25000 molecular weight plant protein concanavalin A. (The intrinsic property of this protein is to bind sugar molecules; it is implicated in cell-to-cell recognition processes and is widely used as a laboratory diagnostic tool.) At CHESS we have used a 0.9 Å wavelength beam on station A1, fed by a 24 pole multipole wiggler. Both an imaging plate system and the Princeton 1k CCD detector [M. Tate et al., J. Appl. Cryst. 28, 196 (1995)] have been used on this experimental setup to collect diffraction data sets from frozen concanavalin A crystals (saccharide-free crystal form). The rapid readout of the CCD was most convenient compared with the image plate and its associated scanning and erasing. Moreover the data processing results towards the edges of the detectors, 0.98 Å, show that the CCD is much better than the image plate at recording these weaker data (Rmerge(I) 13% versus 44%, respectively). The poor performance of the image plate with weak signals has of course been documented by the Daresbury detector group [R. Lewis, J. Synchrotron Radiation 1, 43 (1994)]. However, the aperture of the CCD used was limiting here. Very recently, in another run at CHESS with the CCD on A1, we have been able to record diffraction data to 0.94 Å by further offsetting the detector. We again found that the reflections are still strong at the edge. Clearly the use of even shorter wavelengths than 0.9 Å would be very useful in matching the solid angle of the diffraction pattern to the available detector aperture, for a reasonable crystal-to-detector distance. In addition, absorption errors in the data can be simultaneously removed by such a strategy. Indeed, finely focused x-ray beams of, say 0.5 Å wavelength, are especially well suited to high energy, low emittance synchrotron radition (SR) machines. Some initial tests carried out on CHESS station F2 with a 0.5 Å wavelength beam and the CCD detector show an improvement in the R-merge(I) to 2 Å resolution, in comparison to the data collected at 0.9 Å wavelength (i.e., 2.3% versus 3.0%). In conclusion, the diffraction resolution limit (0.94 Å) seen already in our concanavalin A studies can be further enhanced and is important for the most detailed molecular model refinement (and the testing of structure solving strategies), in conjunction with novel spectroscopic and theoretical studies. This paper builds upon the work of Deacon et al. [Rev. Sci. Instrum. 66, 1287 (1995)].
Crystal Growth and Characterization of THO2 and UxTh1-xO2
2013-03-01
bulk actinide crystals would open up new possibilities for the detection of weapons of mass destruction, the study of the effect of aging on...way of growing bulk actinide materials of optical quality. These refractory oxide single crystals offer potential applications in thorium nuclear...fuel technology, wide-band-gap uranium-based direct-conversion solid state neutron detectors, and understanding how actinide fuels age with time. ThO2
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
NASA Astrophysics Data System (ADS)
Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.
2017-12-01
We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.
NASA Astrophysics Data System (ADS)
Duval, Jean-Marc; Cain, Benjamin M.; Timbie, Peter T.
2004-10-01
Cryogenic detectors for astrophysics depend on cryocoolers capable of achieving temperatures below ~ 100 mK. In order to provide continuous cooling at 50 mK for space or laboratory applications, we are designing a miniature adiabatic demagnetization refrigerator (MADR) anchored at a reservoir at 5 K. Continuous cooling is obtained by the use of several paramagnetic pills placed in series with heat switches. All operations are fully electronic and this technology can be adapted fairly easily for a wide range of temperatures and cooling powers. We are focusing on reducing the size and mass of the cooler. For that purpose we have developed and tested magnetoresistive heat switches based on single crystals of tungsten. Several superconducting magnets are required for this cooler and we have designed and manufactured compact magnets. A special focus has been put on the reduction of parasitic magnetic fields in the cold stage, while minimizing the mass of the shields. A prototype continuous MADR, using magnetoresistive heat switches, small paramagnetic pills and compact magnets has been tested. A design of MADR that will provide ~ 5 uW of continuous cooling down to 50 mK is described.
Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre
2012-05-01
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
NASA Astrophysics Data System (ADS)
Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.
2016-12-01
Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.
A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A
2006-07-01
A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.
Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications
Gao, Lan; Hill, K. W.; Bitter, M.; ...
2016-08-23
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Bergé, L.; Boiko, R. S.; Chapellier, M.; Chernyak, D. M.; Coron, N.; Devoyon, L.; Drillien, A.-A.; Dumoulin, L.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Giuliani, A.; Gray, D.; Gros, M.; Hervé, S.; Humbert, V.; Ivanov, I. M.; Juillard, A.; Kobychev, V. V.; Koskas, F.; Loidl, M.; Magnier, P.; Makarov, E. P.; Mancuso, M.; de Marcillac, P.; Marnieros, S.; Marrache-Kikuchi, C.; Navick, X.-F.; Nones, C.; Olivieri, E.; Paul, B.; Penichot, Y.; Pessina, G.; Plantevin, O.; Poda, D. V.; Redon, T.; Rodrigues, M.; Shlegel, V. N.; Strazzer, O.; Tenconi, M.; Torres, L.; Tretyak, V. I.; Vasiliev, Ya. V.; Velazquez, M.; Viraphong, O.
2015-10-01
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of 100Mo using radiopure ZnMoO4 crystals enriched in 100Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO4 crystal scintillators (˜ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in 100Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ˜ 0.5 counts/(yr keV ton) in the region of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danevich, F. A., E-mail: danevich@kinr.kiev.ua; Boiko, R. S.; Chernyak, D. M.
The LUMTNEU program aims at performing a pilot experiment on 0ν2β decay of {sup 100}Mo using radiopure ZnMoO{sub 4} crystals enriched in {sup 100}Mo operated as cryogenic scintillating bolometers. Large volume ZnMoO{sub 4} crystal scintillators (∼ 0.3 kg) were developed and tested showing high performance in terms of radiopurity, energy resolution and α/β particle discrimination capability. Zinc molybdate crystal scintillators enriched in {sup 100}Mo were grown for the first time by the low-thermal-gradient Czochralski technique with a high crystal yield and an acceptable level of enriched molybdenum irrecoverable losses. A background level of ∼ 0.5 counts/(yr keV ton) in the regionmore » of interest can be reached in a large detector array thanks to the excellent detectors radiopurity and particle discrimination capability, suppression of randomly coinciding events by pulse-shape analysis, and anticoincidence cut. These results pave the way to future sensitive searches based on the LUMTNEU technology, capable of approachingand exploring the inverted hierarchy region of the neutrino mass pattern.« less
Semiconductor neutron detector
Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM
2011-03-08
A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.
Laterally-Biased Quantum IR Detectors
2013-10-23
Rocío San-Román, Adrián Hierro , Journal of Crystal Growth 323, (2011), 496-500. [3] Semiconductor Devices: Physics and Technology 2nd Ed., S.M. Sze...6] “Laterally biased double quantum well IR detector fabricated by MBE regrowth”, Álvaro Guzmán, Rocío San-Román, Adrián Hierro , 16th
Production, characterization and operation of Ge enriched BEGe detectors in GERDA
NASA Astrophysics Data System (ADS)
Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2015-02-01
The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.
HIGH-RESOLUTION L(Y)SO DETECTORS USING PMT-QUADRANT-SHARING FOR HUMAN & ANIMAL PET CAMERAS
Ramirez, Rocio A.; Liu, Shitao; Liu, Jiguo; Zhang, Yuxuan; Kim, Soonseok; Baghaei, Hossain; Li, Hongdi; Wang, Yu; Wong, Wai-Hoi
2009-01-01
We developed high resolution L(Y)SO detectors for human and animal PET applications using Photomultiplier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 × 1.27 × 10 mm3 for the animal PQS-blocks and 3.25 × 3.25 × 20 mm3 for human ones. Polymer mirror film patterns (PMR) were placed between crystals as reflector. The blocks were assembled together using optical grease and wrapped by Teflon tape. The blocks were coupled to regular round PMT’s of 19/51 mm in PQS configuration. List-mode data of Ga-68 source (511 KeV) were acquired with our high yield pileup-event recovery (HYPER) electronics and data acquisition software. The high voltage bias was 1100V. Crystal decoding maps and individual crystal energy resolutions were extracted from the data. To investigate the potential imaging resolution of the PET cameras with these blocks, we used GATE (Geant4 Application for Tomographic Emission) simulation package. GATE is a GEANT4 based software toolkit for realistic simulation of PET and SPECT systems. The packing fractions of these blocks were found to be 95.6% and 98.2%. From the decoding maps, all 196 and 225 crystals were clearly identified. The average energy resolutions were 14.0% and 15.6%. For small animal PET systems, the detector ring diameter was 16.5 cm with an axial field of view (AFOV) of 11.8 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 1.24 (1.25) mm near the center is potentially achievable. For the wholebody human PET systems, the detector ring diameter was 86 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 3.09(3.38) mm near the center is potentially achievable. From this study we can conclude that PQS design could achieve high spatial resolutions and excellent energy resolutions on human and animal PET systems with substantially lower production costs and inexpensive readout devices. PMID:19946463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, K.; Okamoto, A.; Kitajima, S.
To investigate the deuteron and triton density ratio in core plasmas, a new methodology with measurement of tritium (DT) and deuterium (DD) neutron count rate ratio using a double-crystal time-of-flight (TOF) spectrometer is proposed. Multi-discriminator electronic circuits for the first and second detectors are used in addition to the TOF technique. The optimum arrangement of the detectors and discrimination window were examined considering the relations between the geometrical arrangement and deposited energy using a Monte Carlo Code, PHITS (Particle and Heavy Ion Transport Code System). An experiment to verify the calculations was performed using DD neutrons from an accelerator.
3-dimensional imaging system using crystal diffraction lenses
Smither, R.K.
1999-02-09
A device for imaging a plurality of sources of x-ray and gamma-ray radiation is provided. Diffracting crystals are used for focusing the radiation and directing the radiation to a detector which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for a method for imaging x-ray and gamma radiation by supplying a plurality of sources of radiation; focusing the radiation onto a detector; analyzing the focused radiation to collect data as to the type and location of the radiation; and producing an image using the data. 18 figs.
Method and apparatus for electron-only radiation detectors from semiconductor materials
Lund, James C.
2000-01-01
A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.
MAJORANA Collaboration's experience with germanium detectors
Mertens, S.; Abgrall, N.; Avignone, F. T.; ...
2015-05-01
The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less
NASA Astrophysics Data System (ADS)
Nishimaru, Momoko; Nakasa, Miku; Kudo, Shoji; Takiyama, Hiroshi
2017-07-01
Crystallization operation of cocrystal production has deposition risk of undesired crystals. Simultaneously, continuous manufacturing processes are focused on. In this study, conditions for continuous cocrystallization considering risk reduction of undesired crystals deposition were investigated on the view point of thermodynamics and kinetics. The anti-solvent cocrystallization was carried out in four-component system of carbamazepine, saccharin, methanol and water. From the preliminary batch experiment, the relationships among undesired crystal deposition, solution composition decided by mixing ratio of solutions, and residence time for the crystals were considered, and then the conditions of continuous experiment were decided. Under these conditions, the continuous experiment was carried out. The XRD patterns of obtained crystals in the continuous experiment showed that desired cocrystals were obtained without undesired crystals. This experimental result was evaluated by using multi-component phase diagrams from the view point of the operation point's movement. From the evaluation, it was found that there is a certain operation condition which the operation point is fixed with time in the specific domain without the deposition risk of undesired single component crystals. It means the possibility of continuous production of cocrystals without deposition risk of undesired crystals was confirmed by using multi-component phase diagrams.
Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2010-01-01
Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.
Research Studies on Photons and Biphotons
2013-10-01
harmonic transmit through the crystal . Scattered photons are detected by a YAP:Ce scintillation detector with energy resolution of 30. We choose to phase...counts as a function of photon energy is shown in Fig. 2a at full intensity (no filter before the diamond crystal ) and at the peak of the phase matching...are generated in the crystal or due to elastic scattering from the residual harmonic content in the incident beam. The absorption coefficients for Al
Thermal conductivity studies of CdZnTe with varying Te excess
Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...
2016-08-28
Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less
Thermal conductivity studies of CdZnTe with varying Te excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin
Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less
Online Data Quality and Bad Interval Detection for the CUORE Neutrinoless Double Beta Decay Search
NASA Astrophysics Data System (ADS)
Welliver, Bradford; Cuore Collaboration
2016-09-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a large neutrinoless double beta decay (0 νββ) search being installed underground at the Laboratori Nazionali del Gran Sasso (LNGS). 0 νββ searches can address fundamental questions about the nature of the neutrino, such as whether it is a Dirac or MAJORANA fermion, its mass scale, and may provide insight into the observed matter-antimatter asymmetry in the universe. CUORE is the largest array of bolometer instrumented crystals in the world, nineteen times larger than the previous implementation used in CUORE-0, and contains a total of 988 TeO2 crystals with a mass of 741kg and is expected to achieve a sensitivity on the 130Te 0 νββ half-life of T1 / 2 = 9 . 5 x 1025 years (90 % C.L.) after 5 years of operation. The large number of individual crystals in CUORE presents challenges for monitoring data quality and the determination of bad intervals of time in detector operation. We will discuss the work being performed to provide expanded online detector quality monitoring tools as well as the development of automated algorithms to test and identify periods of abnormal behavior across all of the individual detectors.
NASA Astrophysics Data System (ADS)
Franc, J.; Kubát, J.; Grill, R.; Dědič, V.; Hlídek, P.; Moravec, P.; Belas, E.
2011-05-01
Accumulation of space charge on deep levels represents one of the major problems in fabrication of semi-insulating CdTe and CdZnTe X-ray and gamma-ray detectors, because it influences the applied electric field and can even result in a complete breakdown of the field in part of the sample (polarization and dead layer formation). The goal of the study was to evaluate possibilities of localization of areas of potential space charge accumulation in as grown crystals by steady state measurement of lux-ampere characteristics. All measurements were done at room temperature using He-Ne laser. Voltage was applied parallel to the direction of light propagation in the range 10-100 V. It was observed that all lux-ampere characteristics are sub-linear. Screening effects caused by space charge accumulated on deep levels explain these results. Crystals prepared by Vertical gradient freeze method in our laboratory are compared to a commercially available detector-grade sample prepared by Travelling heater method. Comparison of crystals grown from precursors of different starting purity shows an increase of the slope of lux-ampere characteristics with a decrease of impurity content. A correlation between the slope of lux-ampere characteristics and the mobility-lifetime product of electrons was observed, too.
van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R
2013-05-21
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.
2013-05-01
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Ma, Tianyu; Xu, Tianpeng; Zeng, Ming; Gu, Yu; Dai, Tiantian; Liu, Yaqiang
2018-01-01
Modern positron emission tomography (PET) detectors are made from pixelated scintillation crystal arrays and readout by Anger logic. The interaction position of the gamma-ray should be assigned to a crystal using a crystal position map or look-up table. Crystal identification is a critical procedure for pixelated PET systems. In this paper, we propose a novel crystal identification method for a dual-layer-offset LYSO based animal PET system via Lu-176 background radiation and mean shift algorithm. Single photon event data of the Lu-176 background radiation are acquired in list-mode for 3 h to generate a single photon flood map (SPFM). Coincidence events are obtained from the same data using time information to generate a coincidence flood map (CFM). The CFM is used to identify the peaks of the inner layer using the mean shift algorithm. The response of the inner layer is deducted from the SPFM by subtracting CFM. Then, the peaks of the outer layer are also identified using the mean shift algorithm. The automatically identified peaks are manually inspected by a graphical user interface program. Finally, a crystal position map is generated using a distance criterion based on these peaks. The proposed method is verified on the animal PET system with 48 detector blocks on a laptop with an Intel i7-5500U processor. The total runtime for whole system peak identification is 67.9 s. Results show that the automatic crystal identification has 99.98% and 99.09% accuracy for the peaks of the inner and outer layers of the whole system respectively. In conclusion, the proposed method is suitable for the dual-layer-offset lutetium based PET system to perform crystal identification instead of external radiation sources.
Evaluation of a clinical TOF-PET detector design that achieves ⩽100 ps coincidence time resolution.
Cates, Joshua W; Levin, Craig S
2018-06-07
Commercially available clinical positron emission tomography (PET) detectors employ scintillation crystals that are long ([Formula: see text]20 mm length) and narrow (4-5 mm width) optically coupled on their narrow end to a photosensor. The aspect ratio of this traditional crystal rod configuration and 511 keV photon attenuation properties yield significant variances in scintillation light collection efficiency and transit time to the photodetector, due to variations in the 511 keV photon interaction depth in the crystal. These variances contribute significant to coincidence time resolution degradation. If instead, crystals are coupled to a photosensor on their long side, near-complete light collection efficiency can be achieved, and scintillation photon transit time jitter is reduced. In this work, we compare the achievable coincidence time resolution (CTR) of LGSO:Ce(0.025 mol%) crystals 3-20 mm in length when optically coupled to silicon photomultipliers (SiPMs) on either their short end or long side face. In this 'side readout' configuration, a CTR of 102 ± 2 ps FWHM was measured with [Formula: see text] mm 3 crystals coupled to rows of [Formula: see text] mm 2 SensL-J SiPMs using leading edge time pickoff and a single timing channel. This is in contrast to a CTR of 137 ± 3 ps FWHM when the same crystals were coupled to single [Formula: see text] mm 2 SiPMs on their narrow ends. We further study the statistical limit on CTR using side readout via the Cramér-Rao lower bound (CRLB), with consideration given to ongoing work to further improve photosensor technologies and exploit fast phenomena to ultimately achieve 10 ps FWHM CTR. Potential design aspects of scalable front-end signal processing readout electronics using this side readout configuration are discussed. Altogether, we demonstrate that the side readout configuration offers an immediate solution for 100 ps CTR clinical PET detectors and mitigates factors prohibiting future efforts to achieve 10 ps FWHM CTR.
High spatial resolution X-ray and gamma ray imaging system using diffraction crystals
Smither, Robert K [Hinsdale, IL
2011-05-17
A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.
Enhancing the detector for advanced neutron capture experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, A.; Mosby, S.; Baramsai, B.
2015-05-28
The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We, thus, report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. Furthermore, the upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.
Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter
2013-01-01
When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, G; Beddar, S
Purpose: To study the promising potential of inorganic scintillator detectors (ISDs) and investigate various unwanted luminescence properties which may compromise their accuracy. Methods: The ISDs were comprised of a ruby crystal coupled to a polymethyl methacrylate (PMMA) fiber-optic cable and a charged coupled device camera. A new type of ISD was manufactured and included a long-pass filter that was sandwiched between the crystal and the fiber-optic cable. The purpose of the filter was to suppress the Cerenkov and fluorescence background light induced in the PMMA (the stem signal) from striking the ruby crystal, generating unwanted ruby excitation. A variety ofmore » experiments were performed to characterize the ruby based ISDs. The relative contribution of the induced ruby signal and the stem signal were quantified while exposing the detector and a bare fiber-optic cable to a high dose rate (HDR) brachytherapy (BT) source, respectively. The unwanted ruby excitation was quantified while irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and a comparison to other commonly used organic scintillator detectors (BCF-12, BCF-60). Results: When the BT source dwelled 0.5 cm away from the fiber-optic cable, the unwanted ruby excitation amounted to >5% of the total signal if the source-distance from the scintillator was >7 cm. However, the unwanted excitation was suppressed to <1% if the ISD incorporated an optic filter. The stem signal was suppressed with a 20 nm band-pass filter and was <3% as long as the source-distance was <7 cm. The ruby based ISDs generated signal up to 20(40) times that of BCF-12(BCF-60). Conclusion: The study presents solutions to unwanted luminescence properties of ruby based ISDs for HDR BT. An optic filter should be sandwiched between the scintillator volume and the fiber-optic cable to prevent the stem signal to excite the ruby crystal.« less
Zhang, Yuxuan; Ramirez, Rocio A; Li, Hongdi; Liu, Shitao; An, Shaohui; Wang, Chao; Baghaei, Hossain; Wong, Wai-Hoi
2010-02-01
A lower-cost high-sensitivity high-resolution positron emission mammography (PEM) camera is developed. It consists of two detector modules with the planar detector bank of 20 × 12 cm(2). Each bank has 60 low-cost PMT-Quadrant-Sharing (PQS) LYSO blocks arranged in a 10 × 6 array with two types of geometries. One is the symmetric 19.36 × 19.36 mm(2) block made of 1.5 × 1.5 × 10 mm(3) crystals in a 12 × 12 array. The other is the 19.36 × 26.05 mm(2) asymmetric block made of 1.5 × 1.9 × 10 mm(3) crystals in 12 × 13 array. One row (10) of the elongated blocks are used along one side of the bank to reclaim the half empty PMT photocathode in the regular PQS design to reduce the dead area at the edge of the module. The bank has a high overall crystal packing fraction of 88%, which results in a very high sensitivity. Mechanical design and electronics have been developed for low-cost, compactness, and stability purposes. Each module has four Anger-HYPER decoding electronics that can handle a count-rate of 3 Mcps for single events. A simple two-module coincidence board with a hardware delay window for random coincidences has been developed with an adjustable window of 6 to 15 ns. Some of the performance parameters have been studied by preliminary tests and Monte Carlo simulations, including the crystal decoding map and the 17% energy resolution of the detectors, the point source sensitivity of 11.5% with 50 mm bank-to-bank distance, the 1.2 mm-spatial resolutions, 42 kcps peak Noise Equivalent Count Rate at 7.0-mCi total activity in human body, and the resolution phantom images. Those results show that the design goal of building a lower-cost, high-sensitivity, high-resolution PEM detector is achieved.
The hard X-ray burst spectrometer on the solar maximum mission
NASA Technical Reports Server (NTRS)
Orwig, L. E.; Frost, K. J.; Dennis, B. R.
1979-01-01
The primary scientific objective of the spectrometer is to provide a greater understanding of the role of energetic electrons in solar flares. This will be achieved by observations of high energy X-rays in the energy range from 20 to 200 keV with time resolution of 0.128s on a continuous basis and as short as 1 ms for limited intervals. The X-ray detector is an actively shielded CsI(Na) crystal with a thickness of 0.635 cm and a sensitive area of 71 sq cm. In the first year after launch, it is expected that approximately 1000 flares above the sensitivity threshold of 0.2 photons/(sq cm s) lasting for one second, will be detected.
Purification of HgI.sub.2 for nuclear detector fabrication
Schieber, Michael M.
1978-01-01
A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.
Microelectronics used for Semiconductor Imaging Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijne, Erik H. M.
Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.
Olcott, Peter D; Peng, Hao; Levin, Craig S
2009-01-01
A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
Characterization of an in-vacuum PILATUS 1M detector.
Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael
2014-05-01
A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.
Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs
NASA Astrophysics Data System (ADS)
Schug, David; Wehner, Jakob; Goldschmidt, Benjamin; Lerche, Christoph; Dueppenbecker, Peter Michael; Hallen, Patrick; Weissler, Bjoern; Gebhardt, Pierre; Kiessling, Fabian; Schulz, Volkmar
2015-06-01
In positron emission tomography (PET) systems, light sharing techniques are commonly used to readout scintillator arrays consisting of scintillation elements, which are smaller than the optical sensors. The scintillating element is then identified evaluating the signal heights in the readout channels using statistical algorithms, the center of gravity (COG) algorithm being the simplest and mostly used one. We propose a COG algorithm with a fixed number of input channels in order to guarantee a stable calculation of the position. The algorithm is implemented and tested with the raw detector data obtained with the Hyperion-II D preclinical PET insert which uses Philips Digital Photon Counting's (PDPC) digitial SiPMs. The gamma detectors use LYSO scintillator arrays with 30 ×30 crystals of 1 ×1 ×12 mm3 in size coupled to 4 ×4 PDPC DPC 3200-22 sensors (DPC) via a 2-mm-thick light guide. These self-triggering sensors are made up of 2 ×2 pixels resulting in a total of 64 readout channels. We restrict the COG calculation to a main pixel, which captures most of the scintillation light from a crystal, and its (direct and diagonal) neighboring pixels and reject single events in which this data is not fully available. This results in stable COG positions for a crystal element and enables high spatial image resolution. Due to the sensor layout, for some crystals it is very likely that a single diagonal neighbor pixel is missing as a result of the low light level on the corresponding DPC. This leads to a loss of sensitivity, if these events are rejected. An enhancement of the COG algorithm is proposed which handles the potentially missing pixel separately both for the crystal identification and the energy calculation. Using this advancement, we show that the sensitivity of the Hyperion-II D insert using the described scintillator configuration can be improved by 20-100% for practical useful readout thresholds of a single DPC pixel ranging from 17-52 photons. Furthermore, we show that the energy resolution of the scanner is superior for all readout thresholds if singles with a single missing pixel are accepted and correctly handled compared to the COG method only accepting singles with all neighbors present by 0-1.6% (relative difference). The presented methods can not only be applied to gamma detectors employing DPC sensors, but can be generalized to other similarly structured and self-triggering detectors, using light sharing techniques, as well.
Charge transport properties in CdZnTe detectors grown by the vertical Bridgman technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auricchio, N.; Caroli, E.; Marchini, L.
2011-12-15
Presently, a great amount of effort is being devoted to the development of CdTe and CdZnTe (CZT) detectors for a large variety of applications such as medical, industrial, and space research. We present the spectroscopic properties of some CZT crystals grown by the standard vertical Bridgman method and by the boron oxide encapsulated vertical Bridgman method, which has been recently implemented at IMEM-CNR (Parma, Italy). In this technique, the crystal is grown in an open quartz crucible fully encapsulated by a thin layer of liquid boron oxide. This method prevents contact between the crystal and the crucible, thereby allowing largermore » single grains with a lower dislocation density to be obtained. Several mono-electrode detectors were realized, with each having two planar gold contacts. The samples are characterized by an active area of about 7 mm x 7 mm and thicknesses ranging from 1 to 2 mm. The charge transport properties of the detectors have been studied by mobility-lifetime ({mu} x {tau}) product measurements, carried out at the European Synchrotron Radiation Facility (Grenoble, France) in the planar transverse field configuration, where the impinging beam direction is orthogonal to the collecting electric field. We have performed several fine scans between the electrodes with a beam spot of 10 {mu}m x 10 {mu}m at various energies from 60 to 400 keV. In this work, we present the test results in terms of the ({mu} x {tau}) product of both charge carriers.« less
Characterization of pixelated TlBr detectors with Tl electrodes
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo
2014-05-01
A 4.36-mm-thick pixelated thallium bromide (TlBr) detector with Tl electrodes was fabricated from a crystal grown by the traveling molten zone method using zone-purified material. The detector had four 1×1 mm2 pixelated anodes. The detector performance was characterized at room temperature. The mobility-lifetime products of electrons for each pixel of the TlBr detector were measured to be >2.8×10-3 cm2/V. The four pixelated anodes of the detector exhibited energy resolutions of 1.5-1.8% full width at half maximum (FWHM) for 662-keV gamma rays for single-pixel events with the depth correction method. An energy resolution of 4.5% FWHM for 662-keV gamma rays was obtained from a reconstructed energy spectrum using two-pixel events from the two pixelated anodes on the detector.
Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.;
2014-01-01
We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.
Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors
NASA Astrophysics Data System (ADS)
Martín, S.; Quintana, B.; Barrientos, D.
2016-07-01
The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).
Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com
2014-06-09
The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less
A graphite crystal polarimeter for stellar X-ray astronomy.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.
1972-01-01
The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.
Large-volume protein crystal growth for neutron macromolecular crystallography.
Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay
2015-04-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
Kwon, Sun Il; Ferri, Alessandro; Gola, Alberto; Berg, Eric; Piemonte, Claudio; Cherry, Simon R.; Roncali, Emilie
2016-01-01
Abstract. Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; <210 ps) was obtained by coupling RGB-HD SiPMs and 3 × 3 × 20 mm3 lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins (∼6.7-mm width) with an average sensitivity of 83.1%. A CRT of ∼200 ps combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector. PMID:27921069
Cherenkov light identification in TeO2 crystals with Si low-temperature detectors
NASA Astrophysics Data System (ADS)
Gironi, L.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Giachero, A.; Gotti, C.; Maino, M.; Margesin, B.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Puiu, A.; Sisti, M.; Terranova, F.
2017-09-01
Low temperature thermal detectors with particle identification capabilities are among the best detectors for next generation experiments for the search of neutrinoless double beta decay. Thermal detectors allow to reach excellent energy resolution and to optimize the detection efficiency, while the possibility to identify the interacting particle allows to greatly reduce the background. Tellurium dioxide is one of the favourite compounds since it has long demonstrated the first two features and could reach the third through Cherenkov emission tagging [1]. A new generation of cryogenic light detectors are however required to detect the few Cherenkov photons emitted by electrons of few MeV energy. Preliminary measurements with new Si light detectors demonstrated a clear event-by-event discrimination between alpha and beta/gamma interactions at the 130Te neutrinoless double beta decay Q-value (2528 keV).
The SAFIR experiment: Concept, status and perspectives
NASA Astrophysics Data System (ADS)
Becker, Robert; Buck, Alfred; Casella, Chiara; Dissertori, Günther; Fischer, Jannis; Howard, Alexander; Ito, Mikiko; Khateri, Parisa; Lustermann, Werner; Oliver, Josep F.; Röser, Ulf; Warnock, Geoffrey; Weber, Bruno
2017-02-01
The SAFIR development represents a novel Positron Emission Tomography (PET) detector, conceived for preclinical fast acquisitions inside the bore of a Magnetic Resonance Imaging (MRI) scanner. The goal is hybrid and simultaneous PET/MRI dynamic studies at unprecedented temporal resolutions of a few seconds. The detector relies on matrices of scintillating LSO-based crystals coupled one-to-one with SiPM arrays and readout by fast ASICs with excellent timing resolution and high rate capabilities. The paper describes the detector concept and the initial results in terms of simulations and characterisation measurements.
Design of an FPGA-Based Algorithm for Real-Time Solutions of Statistics-Based Positioning
DeWitt, Don; Johnson-Williams, Nathan G.; Miyaoka, Robert S.; Li, Xiaoli; Lockhart, Cate; Lewellen, Tom K.; Hauck, Scott
2010-01-01
We report on the implementation of an algorithm and hardware platform to allow real-time processing of the statistics-based positioning (SBP) method for continuous miniature crystal element (cMiCE) detectors. The SBP method allows an intrinsic spatial resolution of ~1.6 mm FWHM to be achieved using our cMiCE design. Previous SBP solutions have required a postprocessing procedure due to the computation and memory intensive nature of SBP. This new implementation takes advantage of a combination of algebraic simplifications, conversion to fixed-point math, and a hierarchal search technique to greatly accelerate the algorithm. For the presented seven stage, 127 × 127 bin LUT implementation, these algorithm improvements result in a reduction from >7 × 106 floating-point operations per event for an exhaustive search to < 5 × 103 integer operations per event. Simulations show nearly identical FWHM positioning resolution for this accelerated SBP solution, and positioning differences of <0.1 mm from the exhaustive search solution. A pipelined field programmable gate array (FPGA) implementation of this optimized algorithm is able to process events in excess of 250 K events per second, which is greater than the maximum expected coincidence rate for an individual detector. In contrast with all detectors being processed at a centralized host, as in the current system, a separate FPGA is available at each detector, thus dividing the computational load. These methods allow SBP results to be calculated in real-time and to be presented to the image generation components in real-time. A hardware implementation has been developed using a commercially available prototype board. PMID:21197135
NASA Astrophysics Data System (ADS)
Tai, Yuan-Chuan; Chatziioannou, Arion F.; Yang, Yongfeng; Silverman, Robert W.; Meadors, Ken; Siegel, Stefan; Newport, Danny F.; Stickel, Jennifer R.; Cherry, Simon R.
2003-06-01
MicroPET II is a second-generation animal PET scanner designed for high-resolution imaging of small laboratory rodents. The system consists of 90 scintillation detector modules arranged in three contiguous axial rings with a ring diameter of 16.0 cm and an axial length of 4.9 cm. Each detector module consists of a 14 × 14 array of lutetium oxyorthosilicate (LSO) crystals coupled to a multi-channel photomultiplier tube (MC-PMT) through a coherent optical fibre bundle. Each LSO crystal element measures 0.975 mm × 0.975 mm in cross section by 12.5 mm in length. A barium sulphate reflector material was used between LSO elements leading to a detector pitch of 1.15 mm in both axial and transverse directions. Fused optical fibre bundles were made from 90 µm diameter glass fibres with a numerical aperture of 0.56. Interstitial extramural absorber was added between the fibres to reduce optical cross talk. A charge-division readout circuit was implemented on printed circuit boards to decode the 196 crystals in each array from the outputs of the 64 anode signals of the MC-PMT. Electronics from Concorde Microsystems Inc. (Knoxville, TN) were used for signal amplification, digitization, event qualification, coincidence processing and data capture. Coincidence data were passed to a host PC that recorded events in list mode. Following acquisition, data were sorted into sinograms and reconstructed using Fourier rebinning and filtered backprojection algorithms. Basic evaluation of the system has been completed. The absolute sensitivity of the microPET II scanner was 2.26% at the centre of the field of view (CFOV) for an energy window of 250-750 keV and a timing window of 10 ns. The intrinsic spatial resolution of the detectors in the system averaged 1.21 mm full width at half maximum (FWHM) when measured with a 22Na point source 0.5 mm in diameter. Reconstructed image resolution ranged from 0.83 mm FWHM at the CFOV to 1.47 mm FWHM in the radial direction, 1.17 mm FWHM in the tangential direction and 1.42 mm FWHM in the axial direction at 1 cm offset from the CFOV. These values represent highly significant improvements over our earlier microPET scanner (approximately fourfold sensitivity increase and 25-35% improvement in linear spatial resolution under equivalent operating conditions) and are expected to be further improved when the system is fully optimized. This work was originally conducted at UCLA, Crump Institute for Molecular Imaging, and was continued and completed at UC Davis, Department of Biomedical Engineering.
Rugged superconducting detector for monitoring infrared energy sources in harsh environments
NASA Astrophysics Data System (ADS)
Laviano, F.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Minetti, B.; Rovelli, A.; Mezzetti, E.
2010-12-01
Broadband electromagnetic characterization of hot plasmas, such as in nuclear fusion reactors and related experiments, requires detecting systems that must withstand high flux of particles and electromagnetic radiations. We propose a rugged layout of a high temperature superconducting detector aimed at 3 THz collective Thomson scattering (CTS) spectroscopy in hot fusion plasma. The YBa2Cu3O7 - x superconducting film is patterned by standard photolithography and the sensing area of the device is created by means of high-energy heavy ion irradiation, in order to modify the crystal structure both of the superconducting film and of the substrate. This method diminishes process costs and resulting device fragility due to membrane or air-bridge structures that are commonly needed for MIR and FIR radiation detection. Moreover the sensing area of the device is wired by the same superconducting material and thus excellent mechanical strength is exhibited by the whole device, due to the oxide substrate. Continuous wave operation of prototype devices is demonstrated at liquid nitrogen temperature, for selected infrared spectra of broadband thermal energy sources. Several solutions, which exploit the advantages coming from the robustness of this layout in terms of intrinsic radiation hardness of the superconducting material and of the needed optical components, are analysed with reference to applications of infrared electromagnetic detectors in a tokamak machine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsz, M.; Duchene, G.; Didierjean, F.
The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Lan; Hill, K. W.; Bitter, M.
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Method and apparatus for atomic imaging
Saldin, Dilano K.; de Andres Rodriquez, Pedro L.
1993-01-01
A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.
Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L
2012-10-01
High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.
NASA Astrophysics Data System (ADS)
Preziosi, E.; Sánchez, S.; González, A. J.; Pani, R.; Borrazzo, C.; Bettiol, M.; Rodriguez-Alvarez, M. J.; González-Montoro, A.; Moliner, L.; Benlloch, J. M.
2016-12-01
One of the technical objectives of the MindView project is developing a brain-dedicated PET insert based on monolithic scintillation crystals. It will be inserted in MRI systems with the purpose to obtain simultaneous PET and MRI brain images. High sensitivity, high image quality performance and accurate detection of the Depth-of-Interaction (DoI) of the 511keV photons are required. We have developed a DoI estimation method, dedicated to monolithic scintillators, allowing continuous DoI estimation and a DoI-dependent algorithm for the estimation of the photon planar impact position, able to improve the single module imaging capabilities. In this work, through experimental measurements, the proposed methods have been used for the estimation of the impact positions within the monolithic crystal block. We have evaluated the PET system performance following the NEMA NU 4-2008 protocol by reconstructing the images using the STIR 3D platform. The results obtained with two different methods, providing discrete and continuous DoI information, are compared with those obtained from an algorithm without DoI capabilities and with the ideal response of the detector. The proposed DoI-dependent imaging methods show clear improvements in the spatial resolution (FWHM) of reconstructed images, allowing to obtain values from 2mm (at the center FoV) to 3mm (at the FoV edges).
Ultrasonic liquid-in-line detector for tubes
Piper, Thomas C.
1991-01-01
An apparatus and method for detecting the presence of liquid in pipes or tubes using ultrasonic techniques A first piezoelectric crystal is coupled to the outside of the pipe or tube at the location where liquid in the tube is to be detected. A second piezoelectric crystal is coupled to the outside of the pipe or tube at the same location along the tube but circumferentially displaced from the first crystal by an angle around the pipe or tube of less than 180.degree.. Liquid in the pipe or tube is detected by measuring the attenuation of an ultrasonic signal sent by the first piezoelectric crystal and received by the second piezoelectric crystal.
NASA Astrophysics Data System (ADS)
Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton
2016-09-01
Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.
Control of Protein Crystal Nucleation and Growth Using Stirring Solution
NASA Astrophysics Data System (ADS)
Niino, Ai; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo
2004-11-01
We have previously developed a protein crystallization technique using a stirring protein solution and revealed that (i) continuous stirring prevents excess spontaneous nucleation and accelerates the growth of protein crystals and (ii) prestirring (solution stirring in advance) promotes the crystal nucleation of hen egg-white lysozyme. In bovine adenosine deaminase (ADA) crystallization, continuous stirring improves the crystal quality but elongates the nucleation time. In this paper, in order to control both the crystal nucleation and growth of ADA using a Micro-Stirring technique, we carried out five different stirring patterns such as (i) no stirring, (ii) continuous stirring, (iii) prestirring, (iv) poststirring (stirring late in the growth period) and (v) restirring (combined pre- and poststirring). The results showed that high-quality well-shaped crystals were obtained under the continuous stirring and restirring conditions and the nucleation time under the prestirring and restirring conditions was shorter than that under the continuous stirring and poststirring conditions. Consequently, high-quality crystals were promptly obtained under the restirring condition. These results suggest that we are able to control both the nucleation and growth of protein crystals with the stirring techniques.
Recent Development of TlBr Gamma-Ray Detectors
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Tada, Tsutomu; Kim, Seong-Yun; Wu, Yan; Tanaka, Tomonobu; Shoji, Tadayoshi; Yamazaki, Hiromichi; Ishii, Keizo
2011-08-01
Planar detectors, strip detectors, and double-sided strip detectors were fabricated from TlBr crystals grown by the traveling molten zone method using zone-purified material. The detector performance including the leakage current, energy resolutions, and timing performance were evaluated in order to assess the capability of the detectors for PET and SPECT applications. The TlBr detectors exhibited excellent spectroscopic performance at room temperature. An energy resolution of 3.4% FWHM at 511 keV was obtained from a TlBr planar detector 1 mm thick. A TlBr strip detector 1 mm thick with four anode strip electrodes exhibited almost uniform detector performance over the strips with the average energy resolution of 4.4% FWHM at 511 keV. A TlBr double-sided strip detector exhibited an energy resolution of 6.3% FWHM for 122 keV gamma-rays. Coincidence timing spectra between a TlBr planar detector and a BaF2 scintillation detector were recorded at room temperature. Timing resolutions of 14 ns and 24 ns were obtained from TlBr detectors 0.5 mm and 1 mm thick, respectively. By cooling the detector to 0° C, an improved timing resolution of 12 ns was obtained from a TlBr detector 1 mm thick.
Timing Performance of TlBr Detectors
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Tada, Tsutomu; Onodera, Toshiyuki; Shoji, Tadayoshi; Kim, Seong-Yun; Xu, Yuanlai; Ishii, Keizo
2013-08-01
The timing performance of TlBr detectors was evaluated at room temperature (22 °C). 0.5-mm-thick planar TlBr detectors with Tl circular electrodes with a diameter of 3 mm were fabricated from TlBr crystals grown by the traveling molten zone method using a zone-purified material. The pulse rise time of the TlBr detector was measured using a digital oscilloscope as the cathode surface of the device was irradiated with a 22Na gamma-ray source. Coincidence timing spectra were obtained between the TlBr detector and a BaF2 scintillation detector when both detectors were irradiated with 511 keV positron annihilation gamma-rays. The timing resolution of the TlBr detector was found to be inversely proportional to the applied bias voltage. The TlBr detector, in coincidence with the BaF2 detector, exhibited timing resolutions characterized by a 6.5 ns full width at half maximum (FWHM) and an 8.5 ns FWHM with and without an energy window of 350 keV-560 keV, respectively.
Improving the growth of CZT crystals for radiation detectors: a modeling perspective
NASA Astrophysics Data System (ADS)
Derby, Jeffrey J.; Zhang, Nan; Yeckel, Andrew
2012-10-01
The availability of large, single crystals of cadmium zinc telluride (CZT) with uniform properties is key to improving the performance of gamma radiation detectors fabricated from them. Towards this goal, we discuss results obtained by computational models that provide a deeper understanding of crystal growth processes and how the growth of CZT can be improved. In particular, we discuss methods that may be implemented to lessen the deleterious interactions between the ampoule wall and the growing crystal via engineering a convex solidification interface. For vertical Bridgman growth, a novel, bell-curve furnace temperature profile is predicted to achieve macroscopically convex solid-liquid interface shapes during melt growth of CZT in a multiple-zone furnace. This approach represents a significant advance over traditional gradient-freeze profiles, which always yield concave interface shapes, and static heat transfer designs, such as pedestal design, that achieve convex interfaces over only a small portion of the growth run. Importantly, this strategy may be applied to any Bridgman configuration that utilizes multiple, controllable heating zones. Realizing a convex solidification interface via this adaptive bell-curve furnace profile is postulated to result in better crystallinity and higher yields than conventional CZT growth techniques.
Valais, I; Michail, C; David, S; Nomicos, C D; Panayiotakis, G S; Kandarakis, I
2008-06-01
The present study is a comparative investigation of the luminescence properties of (Lu,Y)(2)SiO(5):Ce (LYSO:Ce), Lu(2)SiO(5):Ce (LSO:Ce), Gd(2)SiO(5):Ce (GSO:Ce) and (Bi(4)Ge(3)O(12)) BGO single crystal scintillators under medical X-ray excitation. All scintillating crystals have dimensions of 10 x 10 x 10 mm(3) are non-hygroscopic exhibiting high radiation absorption efficiency in the energy range used in medical imaging applications. The comparative investigation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in X-ray energies employed in general X-ray imaging (40-140 kV) and in mammographic X-ray imaging (22-49 kV). Additionally, light emission spectra of crystals at various X-ray energies were measured, in order to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems and the overall efficiency (effective efficiency) of a scintillator-optical detector combination. The light emission performance of LYSO:Ce and LSO:Ce scintillators studied was found very high for X-ray imaging.
CORC: An Online Data Quality Tool For CUORE
NASA Astrophysics Data System (ADS)
Welliver, Bradford
2017-09-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a large neutrinoless double beta decay search experiment. Currently CUORE is actively taking data at the Laboratori Nazionali del Gran Sasso (LNGS). These searches can address fundamental questions about the nature of the neutrino and may provide insight into the observed matter-antimatter asymmetry in the universe leading to beyond standard model physics via lepton number violation. CUORE is the largest array of crystal bolometers in the world, containing a total of 988 TeO2 crystals with a mass of 742kg and is expected to achieve a sensitivity on the 130Te 0 νββ half-life of T1 / 2 = 9 × 1025 years (90% C.L.) after 5 years of operation. The large number of individual crystals in CUORE presents challenges for monitoring data quality and determination of time periods of detector behavior suitable for analysis. We will discuss the current state of the online run diagnostic system that allows for easy monitoring of all crystals, provides an overview of performance over time, and gives an ability to set flags for periods of bad detector behavior as well as set phone and email alarms on various cryostat parameters.
Support of research in X-ray astronomy
NASA Technical Reports Server (NTRS)
Garmire, G.
1983-01-01
Activities described include: (1) the evaluation of CCD detectors for X-ray astronomy applications; (2) contributions to the development of an imaging gas scintillation proportional counter; (3) the evaluation of certain metal oxide crystals as potential radiation detectors; (4) optical observations and searches for X-ray sources discovered by the HEAO-1 A2 experiment; and (5) theoretical modeling of nonequilibrium ionization structure of supernova remnants.
Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga
2013-01-01
The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.
Ko, Guen Bae; Lee, Jae Sung
2015-01-01
Metal package photomultiplier tubes (PMTs) with a metal channel dynode structure have several advanced features for devising such time-of-flight (TOF) and high spatial resolution positron emission tomography (PET) detectors, thanks to their high packing density, large effective area ratio, fast time response, and position encoding capability. Here, we report on an investigation of new metal package PMTs with high quantum efficiency (QE) for high-resolution PET and TOF PET detector modules. The latest metal package PMT, the Hamamatsu R11265 series, is served with two kinds of photocathodes that have higher quantum efficiency than normal bialkali (typical QE ≈ 25%), super bialkali (SBA; QE ≈ 35%), and ultra bialkali (UBA; QE ≈ 43%). In this study, the authors evaluated the performance of the new PMTs with SBA and UBA photocathodes as a PET detector by coupling various crystal arrays. They also investigated the performance improvements of high QE, focusing in particular on a block detector coupled with a lutetium-based scintillator. A single 4 × 4 × 10 mm(3) LYSO, a 7 × 7 array of 3 × 3 × 20 mm(3) LGSO, a 9 × 9 array of 1.2 × 1.2 × 10 mm(3) LYSO, and a 6 × 6 array of 1.5 × 1.5 × 7 mm(3) LuYAP were used for evaluation. All coincidence data were acquired with a DRS4 based fast digitizer. This new PMT shows promising crystal positioning accuracy, energy and time discrimination performance for TOF, and high-resolution PET applications. The authors also found that a metal channel PMT with SBA was enough for both TOF and high-resolution application, although UBA gave a minor improvement to time resolution. However, significant performance improvement was observed in relative low light output crystals (LuYAP) coupled with UBA. The results of this study will be of value as a useful reference to select PMTs for high-performance PET detectors.
Engineering cell-fluorescent ion track hybrid detectors
2013-01-01
Background The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). Methods The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u−1). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. Results The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. Conclusions The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy resolution. PMID:23758749
Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, Jeffrey
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physicsmore » involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The first chapter gives basic background information about dark matter and searches for it. We then describe the basic CDMS detector technology in Chapter two. Chapter three focuses on superconductivity and explains some of the solid state physic most relevant to our Al and W film studies. We then turn our attention to the fabrication processes used to make test devices, and describe some of the studies done to characterize our W and Al film properties. Chapter five explains the experimental setup including how a 3He/4He dilution refrigerator works, and how our electronics were configured. We then get to chapter six where we present key experimental results. Chapter seven covers the TES model we used for our test devices to simulate the data pulse shapes and reconstruct the pulse energies. We also describe the diffusion models used to fit our data. Finally, we end with a short summary of our findings and provide a few suggestions for future studies.« less
NASA Astrophysics Data System (ADS)
Dementyev, E. N.; Dovga, E. Ya.; Kulipanov, G. N.; Medvedko, A. S.; Mezentsev, N. A.; Pindyurin, V. F.; Sheromov, M. A.; Skrinsky, A. N.; Sokolov, A. S.; Ushakov, V. A.; Zagorodnikov, E. I.; Kaidorin, A. G.; Neugodov, Yu. V.
1986-05-01
The first results of studying the performance of a fast X-ray one-coordinate detector on the SR beam from VEPP-4 are presented. The detector consists of 128 independent channels, each being a scintillation counter on the basis of NaI(Tl) crystals. The spatial resolution of the detector constitutes 1.5 mm and its speed of response is 128 × 1 MHz. The main purpose of the detector is to examine the human circulatory system by the method of difference angiography at an energy of quanta corresponding to the K-absorption edge of iodine (33.2 keV). The first results on radiation exposure of the blood vessels of a live dog with a spatial resolution of 0.75 mm are given.
Son, Jeong-Whan; Lee, Min Sun; Lee, Jae Sung
2017-01-21
Positron emission tomography (PET) detectors with the ability to encode depth-of-interaction (DOI) information allow us to simultaneously improve the spatial resolution and sensitivity of PET scanners. In this study, we propose a DOI PET detector based on a stair-pattern reflector arrangement inserted between pixelated crystals and a single-ended scintillation light readout. The main advantage of the proposed method is its simplicity; DOI information is decoded from a flood map and the data can be simply acquired by using a single-ended readout system. Another potential advantage is that the two-step DOI detectors can provide the largest peak position distance in a flood map because two-dimensional peak positions can be evenly distributed. We conducted a Monte Carlo simulation and obtained flood maps. Then, we conducted experimental studies using two-step DOI arrays of 5 × 5 Lu 1.9 Y 0.1 SiO 5 :Ce crystals with a cross-section of 1.7 × 1.7 mm 2 and different detector configurations: an unpolished single-layer ( U S) array, a polished single-layer ( P S) array and a polished stacked two-layer ( P T) array. For each detector configuration, both air gaps and room-temperature vulcanization (RTV) silicone gaps were tested. Detectors U S and P T showed good peak separation in each scintillator with an average peak-to-valley ratio (PVR) and distance-to-width ratio (DWR) of 2.09 and 1.53, respectively. Detector P S RTV showed lower PVR and DWR (1.65 and 1.34, respectively). The configuration of detector P T Air is preferable for the construction of time-of-flight-DOI detectors because timing resolution was degraded by only about 40 ps compared with that of a non-DOI detector. The performance of detectors U S Air and P S RTV was lower than that of a non-DOI detector, and thus these designs are favorable when the manufacturing cost is more important than timing performance. The results demonstrate that the proposed DOI-encoding method is a promising candidate for PET scanners that require high resolution and sensitivity and operate with conventional acquisition systems.
NASA Astrophysics Data System (ADS)
Gray, Kory Forrest
The goal of this project was to examine the possibility of creating a novel thermal infrared detector based on silicon CMOS technology that has been enhanced by the latest nano-engineering discoveries. Silicon typically is not thought as an efficient thermoelectric material. However recent advancements in nanotechnology have improved the potential for a highly sensitive infrared detector based on nano-structured silicon. The thermal conductivity of silicon has been shown to be reduced from 150 W/mK down to 60 W/mK just by decreasing the scale of the silicon from bulk down to the sub-micron scale. Further reduction of the thermal conductivity has been shown by patterning silicon with a phonon crystal structure which has been reported to have thermal conductivities down to 10 W/mK. The phonon crystal structure consists of a 2D array of holes that are etched into the silicon. The size and pitch of the holes are on the order of the mean free path of the phonons in silicon which is approximately 200-500nm. This particular device had 200nm holes on a 400nm pitch. The Seebeck coefficient of silicon can also be enhanced by the reduction of the material from the bulk to sub-micron scale and with degenerate level doping. The combination of decreased thermal conductivity and increased Seebeck coefficient allow silicon to be a promising material for thermoelectric infrared detectors. The highly doped silicon is desired to reduce the electrical resistance of the device. The low electrical resistance is required to reduce the Johnson noise of the device which is the dominant noise source for most thermal detectors. This project designed a MEMS thermopile using a silicon-on-insulator substrate, and a CMOS compatible process. The basic thermopile consists of a silicon dioxide membrane with phononic crystal patterned silicon thermocouples around the edges of the membrane. Vertical aligned, multi-walled, carbon nanotubes were used as the infrared absorption layer. A MEMS thermoelectric detector with a D* of 3 * 107 cm Hz 0.5/W was demonstrated with a time response of 3-10 milliseconds. With this initial research, it is possible to improve the D* to the high 108 cm Hz 0.5/W range by slightly changing the design of the thermopile and patterning the absorption layer.
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...
2015-03-30
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Large-volume protein crystal growth for neutron macromolecular crystallography
Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay
2015-01-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493
Large-volume protein crystal growth for neutron macromolecular crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Joseph D.; Baird, James K.; Coates, Leighton
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors
NASA Astrophysics Data System (ADS)
Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J. L.; Tolosa, A.
2018-03-01
We investigate the performance of large area radiation detectors, with high energy- and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50×50 mm2) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8×8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm2), with a pixel size of 6×6 mm2, we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thicknesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3×3 mm2.