Conceptual Design of a 100kW Energy Integrated Type Bi-Directional Tidal Current Turbine
NASA Astrophysics Data System (ADS)
Kim, Ki Pyoung; Ahmed, M. Rafiuddin; Lee, Young Ho
2010-06-01
The development of a tidal current turbine that can extract maximum energy from the tidal current will be extremely beneficial for supplying continuous electric power. The present paper presents a conceptual design of a 100kW energy integrated type tidal current turbine for tidal power generation. The instantaneous power density of a flowing fluid incident on an underwater turbine is proportional to the cubic power of current velocity which is approximately 2.5m/s. A cross-flow turbine, provided with a nozzle and a diffuser, is designed and analyzed. The potential advantages of ducted and diffuser-augmented turbines were taken into consideration in order to achieve higher output at a relatively low speed. This study looks at a cross-flow turbine system which is placed in an augmentation channel to generate electricity bi-directionally. The compatibility of this turbine system is verified using a commercial CFD code, ANSYSCFX. This paper presents the results of the numerical analysis in terms of pressure, streaklines, velocity vectors and performance curves for energy integrated type bi-directional tidal current turbine (BDT) with augmentation.
Currens, J.C.
1999-01-01
Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.Analytical data for nitrate and triazines from 566 samples collected over a 3-year period at Pleasant Grove Spring, Logan County, KY, were statistically analyzed to determine the minimum data set needed to calculate meaningful yearly averages for a conduit-flow karst spring. Results indicate that a biweekly sampling schedule augmented with bihourly samples from high-flow events will provide meaningful suspended-constituent and dissolved-constituent statistics. Unless collected over an extensive period of time, daily samples may not be representative and may also be autocorrelated. All high-flow events resulting in a significant deflection of a constituent from base-line concentrations should be sampled. Either the geometric mean or the flow-weighted average of the suspended constituents should be used. If automatic samplers are used, then they may be programmed to collect storm samples as frequently as every few minutes to provide details on the arrival time of constituents of interest. However, only samples collected bihourly should be used to calculate averages. By adopting a biweekly sampling schedule augmented with high-flow samples, the need to continuously monitor discharge, or to search for and analyze existing data to develop a statistically valid monitoring plan, is lessened.
NASA Technical Reports Server (NTRS)
Baker, David (Inventor)
1998-01-01
A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.
Storage requirements for Georgia streams
Carter, Robert F.
1983-01-01
The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.
Nonsteady-Flow Thrust Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Foa, J. V.
1979-01-01
Ejector augmenters in which the transfer of mechanical energy from the primary to the secondary flow takes place through the work of interface pressure forces are investigated. Nonsteady flow processes are analyzed from the standpoint of energy transfer efficiency and a comparison of a rotary jet augmenter to an ejector is presented.
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guntur, S.; Schreck, S.; Sorensen, N. N.
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) themore » National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.« less
Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data
NASA Astrophysics Data System (ADS)
Ahuja, Avtar S.
1980-01-01
The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.
Improvement of trout streams in Wisconsin by augmenting low flows with ground water
Novitzki, R.P.
1973-01-01
Approximately 2 cubic feet per second of ground water were introduced into the Little Plover River in 1968 when natural streamflow ranged from 3 to 4 cubic feet per second. These augmentation flows were retained undiminished through the 2-mile reach of stream monitored. Maximum stream temperatures were reduced as much as 5?F (3?C) at the augmentation site during the test period, although changes became insignificant more than 1 mile downstream. Maximum temperatures might be reduced as much as 10?F (6?C) during critical periods, based on estimates using a stream temperature model developed as part of the study. During critical periods significant temperature improvement may extend 2 miles or more downstream. Changes in minimum DO (dissolved oxygen) levels were slight, primarily because of the high natural DO levels occurring during the test period. Criteria for considering other streams for flow augmentation are developed on the basis of the observed hydrologic responses in the Little Plover River. Augmentation flows of nearly 2? cubic feet per second of ground water were introduced into the headwater reach of Black Earth Creek from the end of June through mid-October 1969. Streamflow ranged from 1 to 2 cubic feet per second at the augmentation site, and the average flow at the gaging station at Black Earth, approximately 8 miles downstream, ranged from 25 to 50 cubic feet per second. Augmentation flows were retained through the 8-mile reach of stream. Temperature of the augmentation flow as it entered the stream ranged from 60? to 70?F (about 16? to 21?C) during the test period, and minimum stream temperatures were raised 5?F (3?C) or more at the augmentation site, with changes extending from 2 to 3 miles downstream. Augmentation during critical periods could maintain stream temperatures between 40? and 70?F (4? and 21?C) through most of the study reach. DO levels were increased by as much as 2 milligrams per liter or more below the augmentation site, although the improvement diminished to approximately 1 milligram per liter downstream in the problem reach. During critical periods DO improvement in the problem reach would be somewhat greater. Flow augmentation would not be necessary during normal conditions in either of the streams studied. Critical DO and temperature levels are not known to occur in the Little Plover River. Since the construction of secondary treatment facilities at the Cross Plains sewage-treatment plant, critical DO levels are no longer expected to be a problem in Black Earth Creek. However, results from this study may be used to estimate the effectiveness of flow augmentation in other streams in similar areas in which critical DO or temperature levels may occur.
NASA Astrophysics Data System (ADS)
Curran, M. L.; Hales, G.; Michalak, M.
2016-12-01
Digital Terrain Models (DTMs) generated in Agisoft Photoscan from photogrammetry provide a basis for a high resolution, quantitative analysis of geomorphic features that are difficult to describe using conventional, commonly used techniques. Photogrammetric analysis can be particularly useful in investigating the spatial and temporal dispersal of gravel in high gradient mountainous streams. The Oak Grove Fork (OGF), located in northwestern Oregon, is one of the largest tributaries to the Clackamas River. Lake Harriet Dam and diversion was built on the OGF in 1924 as part of a hydroelectric development by Portland General Electric. Decreased flow and sediment supply downstream of Lake Harriet Dam has resulted in geomorphic and biological changes, including reduced salmonid habitat. As part of a program to help restore a portion of the natural sediment supply and improve salmonid habitat, gravel augmentation is scheduled to begin September 2016. Tracking the downstream movement of augmented gravels is crucial to establishing program success. The OGF provides a unique setting for this study; flow is regulated at the dam, except for spillover during high flow events, and a streamflow gaging station downstream of the study area reports discharge. As such, the controlled environment of the OGF provides a natural laboratory to study how a sediment-depleted channel responds geomorphically to a known volume of added gravel. This study uses SfM to evaluate deposition of the augmented gravel following its introduction. The existing channel is characterized by coarse, angular gravel, cobble, and boulder; the augmented gravel is finer, rounded, and 5% of the volume is an exotic lithology to provide a visual tracer. Baseline, pre-gravel introduction DTMs are constructed and will be differenced with post-gravel introduction DTMs to calculate change at four study sites. Our preliminary pilot testing on another river shows that centimeter-scale accretion and aggradation within the wetted channel and on exposed gravel bars can be detected using this methodology. The resolution of the baseline DTMs on the Oak Grove Fork support these initial results. Continued monitoring and quantifying of vertical change within the study reach will inform future rehabilitation efforts and gravel augmentation practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, Albert E.; Schlecte, J.Warren
1997-07-01
The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.
Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.
1974-01-01
This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928
Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin
2012-11-01
Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.
Characteristics of the Langley 8-foot Transonic Tunnel with Slotted Test Section
NASA Technical Reports Server (NTRS)
Wright, Ray H; Ritchie, Virgil S; Pearson, Albin O
1958-01-01
A large wind tunnel, approximately 8 feet in diameter, has been converted to transonic operation by means of slots in the boundary extending in the direction of flow. The usefulness of such a slotted wind tunnel, already known with respect to the reduction of the subsonic blockage interference and the production of continuously variable supersonic flows, has been augmented by devising a slot shape with which a supersonic test region with excellent flow quality could be produced. Experimental locations of detached shock waves ahead of axially symmetric bodies at low supersonic speeds in the slotted test section agreed satisfactorily with predictions obtained by use of existing approximate methods.
A new approach to enforce element-wise mass/species balance using the augmented Lagrangian method
NASA Astrophysics Data System (ADS)
Chang, J.; Nakshatrala, K.
2015-12-01
The least-squares finite element method (LSFEM) is one of many ways in which one can discretize and express a set of first ordered partial differential equations as a mixed formulation. However, the standard LSFEM is not locally conservative by design. The absence of this physical property can have serious implications in the numerical simulation of subsurface flow and transport. Two commonly employed ways to circumvent this issue is through the Lagrange multiplier method, which explicitly satisfies the element-wise divergence by introducing new unknowns, or through appending a penalty factor to the continuity constraint, which reduces the violation in the mass balance. However, these methodologies have some well-known drawbacks. Herein, we propose a new approach to improve the local balance of species/mass balance. The approach augments constraints to a least-square function by a novel mathematical construction of the local species/mass balance, which is different from the conventional ways. The resulting constrained optimization problem is solved using the augmented Lagrangian, which corrects the balance errors in an iterative fashion. The advantages of this methodology are that the problem size is not increased (thus preserving the symmetry and positive definite-ness) and that one need not provide an accurate guess for the initial penalty to reach a prescribed mass balance tolerance. We derive the least-squares weighting needed to ensure accurate solutions. We also demonstrate the robustness of the weighted LSFEM coupled with the augmented Lagrangian by solving large-scale heterogenous and variably saturated flow through porous media problems. The performance of the iterative solvers with respect to various user-defined augmented Lagrangian parameters will be documented.
Bubble Augmented Propulsor Mixture Flow Simulation near Choked Flow Condition
NASA Astrophysics Data System (ADS)
Choi, Jin-Keun; Hsiao, Chao-Tsung; Chahine, Georges
2013-03-01
The concept of waterjet thrust augmentation through bubble injection has been the subject of many patents and publications over the past several decades, and computational and experimental evidences of the augmentation of the jet thrust through bubble growth in the jet stream have been reported. Through our experimental studies, we have demonstrated net thrust augmentation as high as 70%for air volume fractions as high as 50%. However, in order to enable practical designs, an adequately validated modeling tool is required. In our previous numerical studies, we developed and validated a numerical code to simulate and predict the performance of a two-phase flow water jet propulsion system for low void fractions. In the present work, we extend the numerical method to handle higher void fractions to enable simulations for the high thrust augmentation conditions. At high void fractions, the speed of sound in the bubbly mixture decreases substantially and could be as low as 20 m/s, and the mixture velocity can approach the speed of sound in the medium. In this numerical study, we extend our numerical model, which is based on the two-way coupling between the mixture flow field and Lagrangian tracking of a large number of bubbles, to accommodate compressible flow regimes. Numerical methods used and the validation studies for various flow conditions in the bubble augmented propulsor will be presented. This work is supported by Office of Naval Research through contract N00014-11-C-0482 monitored by Dr. Ki-Han Kim.
The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)
2008-06-10
flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced
Entrainment and thrust augmentation in pulsatile ejector flows
NASA Technical Reports Server (NTRS)
Sarohia, V.; Bernal, L.; Bui, T.
1981-01-01
This study comprised direct thrust measurements, flow visualization by use of a spark shadowgraph technique, and mean and fluctuating velocity measurements with a pitot tube and linearized constant temperature hot-wire anemometry respectively. A gain in thrust of as much as 10 to 15% was observed for the pulsatile ejector flow as compared to the steady flow configuration. From the velocity profile measurements, it is concluded that this enhanced augmentation for pulsatile flow as compared to a nonpulsatile one was accomplished by a corresponding increased entrainment by the primary jet flow. It is also concluded that the augmentation and total entrainment by a constant area ejector critically depends upon the inlet geometry of the ejector. Experiments were performed to evaluate the influence of primary jet to ejector area ratio, ejector length, and presence of a diffuser on pulsatile ejector performance.
1988-06-01
Turbulence Augmentation 04 19 ABS. T (Continue on reverse di necessary and identify by block number) A n’-feriCal stud~y of the flow field and heat...urderpredicts the heat t ransfer re,,c as given I3- z. direct calculation Lusing Fcurier’s lawl. DD Form 1473, JUN 86 P~*’viowJ rdirionsa,e obsolete...SEWiPI’e CLASSIFiCV’i0N CIH, A UNCLASSIF D N -~ -~ ’ 4\\./~~ f. .% S ’ ’p ’ ’,S V % %~ TABLE OF CONTENTS SECTION PAGE T Introduction
Cheng, Chui Ling
2016-08-03
Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
Eddy Viscosity for Variable Density Coflowing Streams,
EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.
Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio
2009-10-01
Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.
Towards Pervasive Augmented Reality: Context-Awareness in Augmented Reality.
Grubert, Jens; Langlotz, Tobias; Zollmann, Stefanie; Regenbrecht, Holger
2017-06-01
Augmented Reality is a technique that enables users to interact with their physical environment through the overlay of digital information. While being researched for decades, more recently, Augmented Reality moved out of the research labs and into the field. While most of the applications are used sporadically and for one particular task only, current and future scenarios will provide a continuous and multi-purpose user experience. Therefore, in this paper, we present the concept of Pervasive Augmented Reality, aiming to provide such an experience by sensing the user's current context and adapting the AR system based on the changing requirements and constraints. We present a taxonomy for Pervasive Augmented Reality and context-aware Augmented Reality, which classifies context sources and context targets relevant for implementing such a context-aware, continuous Augmented Reality experience. We further summarize existing approaches that contribute towards Pervasive Augmented Reality. Based our taxonomy and survey, we identify challenges for future research directions in Pervasive Augmented Reality.
ERIC Educational Resources Information Center
Bressler, D. M.; Bodzin, A. M.
2013-01-01
Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…
Theoretical Study of Turbulent Mixing in Inclined Ducted Jets.
Jet mixing flow, * Thrust augmentation , Curved profiles, Short takeoff aircraft, Flow fields, Ducts, Ejectors , Mathematical models, Secondary flow, Theory, Angles, Problem solving, Incompressible flow
Augmented longitudinal acoustic trap for scalable microparticle enrichment.
Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M
2018-05-01
We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20 μ m polystyrene and ∼10 μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.
Chopski, Steven G; Rangus, Owen M; Moskowitz, William B; Throckmorton, Amy L
2014-09-01
A mechanical blood pump specifically designed to increase pressure in the great veins would improve hemodynamic stability in adolescent and adult Fontan patients having dysfunctional cavopulmonary circulation. This study investigates the impact of axial-flow blood pumps on pressure, flow rate, and energy augmentation in the total cavopulmonary circulation (TCPC) using a patient-specific Fontan model. The experiments were conducted for three mechanical support configurations, which included an axial-flow impeller alone in the inferior vena cava (IVC) and an impeller with one of two different protective stent designs. All of the pump configurations led to an increase in pressure generation and flow in the Fontan circuit. The increase in IVC flow was found to augment pulmonary arterial flow, having only a small impact on the pressure and flow in the superior vena cava (SVC). Retrograde flow was neither observed nor measured from the TCPC junction into the SVC. All of the pump configurations enhanced the rate of power gain of the cavopulmonary circulation by adding energy and rotational force to the fluid flow. We measured an enhancement of forward flow into the TCPC junction, reduction in IVC pressure, and only minimally increased pulmonary arterial pressure under conditions of pump support. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Experiments on high speed ejectors
NASA Technical Reports Server (NTRS)
Wu, J. J.
1986-01-01
Experimental studies were conducted to investigate the flow and the performance of thrust augmenting ejectors for flight Mach numbers in the range of 0.5 to 0.8, primary air stagnation pressures up to 107 psig (738 kPa), and primary air stagnation temperatures up to 1250 F (677 C). The experiment verified the existence of the second solution ejector flow, where the flow after complete mixing is supersonic. Thrust augmentation in excess of 1.2 was demonstrated for both hot and cold primary jets. The experimental ejector performed better than the corresponding theoretical optimal first solution ejector, where the mixed flow is subsonic. Further studies are required to realize the full potential of the second solution ejector. The research program was started by the Flight Dynamics Research Corporation (FDRC) to investigate the characteristic of a high speed ejector which augments thrust of a jet at high flight speeds.
Entrainment and mixing in thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1983-01-01
An experimental investigation of two-dimensional thrust augmenting ejector flows has been conducted. Measurements of the shroud surface pressure distribution, mean velocity, turbulent intensities and Reynolds stresses were made in two shroud geometries at various primary nozzle pressure ratios. The effects of shroud geometry and primary nozzle pressure ratio on the shroud surface pressure distribution, mean flow field and turbulent field were determined. From these measurements the evolution of mixing within the shroud of the primary flow and entrained fluid was obtained. The relationship between the mean flow field, the turbulent field and the shroud surface pressure distribution is discussed.
Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)
2010-09-28
augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions
Abrupt increase in rat carotid blood flow induces rapid alteration of artery mechanical properties
Monson, Kenneth L.; Matsumoto, Melissa M.; Young, William L.; Manley, Geoffrey T.; Hashimoto, Tomoki
2010-01-01
Vascular remodeling is essential to proper vessel function. Dramatic changes in mechanical environment, however, may initiate pathophysiological vascular remodeling processes that lead to vascular disease. Previous work by some of our group has demonstrated a dramatic rise in matrix metalloproteinase (MMP) expression shortly following an abrupt increase in carotid blood flow. We hypothesized that there would be a corresponding change in carotid mechanical properties. Unilateral carotid ligation surgery was performed to produce an abrupt, sustained increase in blood flow through the contralateral carotid artery of rats. The flow-augmented artery was harvested after sham surgery or 1, 2, or 6 days after flow augmentation. Vessel mechanical response in the circumferential direction was then evaluated through a series of pressure-diameter tests. Results show that the extent of circumferential stretch (normalized change in diameter) at in vivo pressure levels was significantly different (p<0.05) from normo-flow controls at 1 and 2 days following flow augmentation. Measurements at 1, 2, and 6 days were not significantly different from one another, but a trend in the data suggested that circumferential stretch was largest 1 day following surgery and subsequently decreased toward baseline values. Because previous work with this model indicated a similar temporal pattern for MMP-9 expression, an exploratory set of experiments was conducted where vessels were tested 1 day following surgery in animals treated with broad spectrum MMP inhibitors (either doxycycline or GM6001). Results showed a trend for the inhibitors to minimize changes in mechanical properties. Observations demonstrate that vessel mechanical properties change rapidly following flow augmentation and that alterations may be linked to expression of MMPs. PMID:21094476
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
NASA Astrophysics Data System (ADS)
Meldi, M.; Poux, A.
2017-10-01
A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%- 15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.
Curtis, Jennifer A.; Wright, Scott A.; Minear, Justin T.; Flint, Lorraine E.
2015-01-01
The highest rates of change in the areal extents of channel and riparian features were observed during the pre‑2001 period, which was longer and relatively wetter than the post-2001 period. A series of tributary floods in 1997, 1998, and 2006 increased channel complexity and floodplain connectivity. During the post-2006 period, managed-flow releases, in the absence of tributary flooding, combined with gravel augmentation and mechanical restoration, caused localized increases in sediment supply and transport capacity that led to smaller, but measurable, increases in channel complexity and floodplain connectivity in the upper river near Lewiston Dam. Extensive pre-2001 channel widening and the muted geomorphic response of channel rehabilitation sites to post-2001 managed flows highlight the need for continued monitoring and assessment of the magnitude, duration, and timing of prescriptive flows and associated geomorphic responses.
Control-Volume Analysis Of Thrust-Augmenting Ejectors
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1990-01-01
New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.
A Simple Model of Pulsed Ejector Thrust Augmentation
NASA Technical Reports Server (NTRS)
Wilson, Jack; Deloof, Richard L. (Technical Monitor)
2003-01-01
A simple model of thrust augmentation from a pulsed source is described. In the model it is assumed that the flow into the ejector is quasi-steady, and can be calculated using potential flow techniques. The velocity of the flow is related to the speed of the starting vortex ring formed by the jet. The vortex ring properties are obtained from the slug model, knowing the jet diameter, speed and slug length. The model, when combined with experimental results, predicts an optimum ejector radius for thrust augmentation. Data on pulsed ejector performance for comparison with the model was obtained using a shrouded Hartmann-Sprenger tube as the pulsed jet source. A statistical experiment, in which ejector length, diameter, and nose radius were independent parameters, was performed at four different frequencies. These frequencies corresponded to four different slug length to diameter ratios, two below cut-off, and two above. Comparison of the model with the experimental data showed reasonable agreement. Maximum pulsed thrust augmentation is shown to occur for a pulsed source with slug length to diameter ratio equal to the cut-off value.
A Determinate Model of Thrust-Augmenting Ejectors
NASA Astrophysics Data System (ADS)
Whitley, N.; Krothapalli, A.; van Dommelen, L.
1996-01-01
A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.
Global convergence of inexact Newton methods for transonic flow
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1990-01-01
In computational fluid dynamics, nonlinear differential equations are essential to represent important effects such as shock waves in transonic flow. Discretized versions of these nonlinear equations are solved using iterative methods. In this paper an inexact Newton method using the GMRES algorithm of Saad and Schultz is examined in the context of the full potential equation of aerodynamics. In this setting, reliable and efficient convergence of Newton methods is difficult to achieve. A poor initial solution guess often leads to divergence or very slow convergence. This paper examines several possible solutions to these problems, including a standard local damping strategy for Newton's method and two continuation methods, one of which utilizes interpolation from a coarse grid solution to obtain the initial guess on a finer grid. It is shown that the continuation methods can be used to augment the local damping strategy to achieve convergence for difficult transonic flow problems. These include simple wings with shock waves as well as problems involving engine power effects. These latter cases are modeled using the assumption that each exhaust plume is isentropic but has a different total pressure and/or temperature than the freestream.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.
Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng
2007-01-01
Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.
1992-01-01
Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy; Perusek, Gail P.; Ibrahim, Mounir
1992-01-01
Full temperature ejector model simulations are expensive, and difficult to implement experimentally. If an approximate similarity principle could be established, properly chosen performance parameters should be similar for both hot and cold flow tests if the initial Mach number and total pressures of the flow field are held constant. Existing ejector data is used to explore the utility of one particular similarity principle; the Munk and Prim similarity principle for isentropic flows. Static performance test data for a full-scale thrust augmenting ejector are analyzed for primary flow temperatures up to 1560 R. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow paramenter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments.
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
NASA Technical Reports Server (NTRS)
Storms, Bruce Lowell
1989-01-01
Flow field measurements were obtained in a three-dimensional thrust augmenting ejector using laser Doppler velocimetry and hot wire anemometry. The primary nozzle, segmented into twelve slots of aspect ratio 3.0, was tested at a pressure ratio of 1.15. Results are presented on the mean velocity, turbulence intensity, and Reynolds stress progressions in the mixing chamber of the constant area ejector. The segmented nozzle was found to produce streamwise vortices that may increase the mixing efficiency of the ejector flow field. Compared to free jet results, the jet development is reduced by the presence of the ejector walls. The resulting thrust augmentation ratio of this ejector was also calculated to be 1.34.
Transcranial Doppler and cerebral augmentation in acute ischemic stroke.
Saqqur, Maher; Ibrahim, Mohamed; Butcher, Ken; Khan, Khurshid; Emery, Derek; Manawadu, Dulka; Derksen, Carol; Schwindt, Brenda; Shuaib, Ashfaq
2013-07-01
Collateral flow augmentation using partial aortic occlusion may improve cerebral perfusion in acute stroke. We assessed the effect of partial aortic occlusion on arterial flow velocities of acute stroke patients. Patients with neurological deficits following thrombolysis were treated with partial aortic occlusion. Transcranial Doppler ultrasound (TCD) was used to measure arterial flow velocities at baseline, before and during balloon inflation. The augmented mean flow velocity (MFV), peak systolic velocity (PSV), and end diastolic velocity flow percentages (aMFV%, aPSV%, aEDV%) were calculated and compared based on outcome. Of 11 patients, 3 did not have a temporal window and thus were excluded from our analysis. Six of the remaining 8 patients had middle cerebral artery (MCA) occlusions; the final 2 had terminal internal carotid artery (TICA) occlusions. Three of these 8 patients had good outcome at 90 days (mRS < 3). Before intra-aortic balloon inflation (IABI), the mean affected artery MFV was 23 ± 11 cm/s; during the procedure it was 26 ± 12 cm/s (P = .2). Mean affected artery PSV at baseline and during balloon inflation were 37 ± 16 and 46 ± 23, respectively (P = .1). Mean augmented affected artery MFV% in patients with good long-term outcome was 65.4 ± 46, while the result in those with poor outcome was -3.7 ± 21 (P = .03). Three patients developed anterior cross-filling, and of these 2 had good long-term outcome. TCD monitoring of patients treated with IABI may help in predicting outcome in this novel device. Copyright © 2012 by the American Society of Neuroimaging.
Static performance tests of a flight-type STOVL ejector
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1991-01-01
The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.
Flow interaction of diffuser augmented wind turbines
NASA Astrophysics Data System (ADS)
Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.
2016-09-01
Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.
NASA Astrophysics Data System (ADS)
Fu, Zhidong; Qin, Suyang; Liu, Hong
2014-01-01
The dynamics of dual vortex ring flows is studied experimentally and numerically in a model system that consists of a piston-cylinder apparatus. The flows are generated by double identical strokes which have the velocity profile characterized by the sinusoidal function of half the period. By calculating the total wake impulse in two strokes in the experiments, it is found that the average propulsive force increases by 50% in the second stroke for the sufficiently small stroke length, compared with the first stroke. In the numerical simulations, two types of transient force augmentation are revealed, there being the transient force augmentation for the small stroke lengths and the absolute transient force augmentation for the large stroke lengths. The relative transient force augmentation increases to 78% for L/D = 1, while the absolute transient force augmentation for L/D = 4 is twice as much as that for L/D = 1. Further investigation demonstrates that the force augmentation is attributed to the interaction between vortex rings, which induces transport of vortex impulse and more evident fluid entrainment. The critical situation of vortex ring separation is defined and indicated, with vortex spacing falling in a narrow gap when the stroke lengths vary. A new model is proposed concerning the limiting process of impulse, further suggesting that apart from vortex formation timescale, vortex spacing should be interpreted as an independent timescale to reflect the dynamics of vortex interaction.
Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R
2015-04-01
Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.
Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.
2015-01-01
Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183
Advanced supersonic propulsion system technology study, phase 2
NASA Technical Reports Server (NTRS)
Allan, R. D.
1975-01-01
Variable cycle engines were identified, based on the mixed-flow low-bypass-ratio augmented turbofan cycle, which has shown excellent range capability in the AST airplane. The best mixed-flow augmented turbofan engine was selected based on range in the AST Baseline Airplane. Selected variable cycle engine features were added to this best conventional baseline engine, and the Dual-Cycle VCE and Double-Bypass VCE were defined. The conventional mixed-flow turbofan and the Double-Bypass VCE were on the subjects of engine preliminary design studies to determine mechanical feasibility, confirm weight and dimensional estimates, and identify the necessary technology considered not yet available. Critical engine components were studied and incorporated into the variable cycle engine design.
Rescue Therapy for Refractory Vasospasm after Subarachnoid Hemorrhage
Durrant, Julia C.; Hinson, Holly E.
2014-01-01
Vasospasm and delayed cerebral ischemia remain to be the common causes of increased morbidity and mortality after aneurysmal subarachnoid hemorrhage. The majority of clinical vasospasm responds to hemodynamic augmentation and direct vascular intervention; however, a percentage of patients continue to have symptoms and neurological decline. Despite suboptimal evidence, clinicians have several options in treating refractory vasospasm in aneurysmal subarachnoid hemorrhage (aSAH), including cerebral blood flow enhancement, intra-arterial manipulations, and intra-arterial and intrathecal infusions. This review addresses standard treatments as well as emerging novel therapies aimed at improving cerebral perfusion and ameliorating the neurologic deterioration associated with vasospasm and delayed cerebral ischemia. PMID:25501582
Anaplastic Large Cell Lymphoma Associated With Breast Implants
Ravi-Kumar, Shalini; Sanaei, Omid; Vasef, Mohammad; Rabinowitz, Ian; Fekrazad, Mohammad Houman
2012-01-01
A forty two years old woman with a history of bilateral breast augmentation for cosmetic reasons was presented for poor healing of the surgical site. Tissue and periprosthetic fluid were removed from the wound site revealing an atypical lymphoid infiltrate. Subsequently the patient developed axillary lymph adenopathy. Excisional biopsy was performed. Flow cytometry was non-diagnostic. She continued to heal poorly and eventually had removal of implant during a simple mastectomy. A nodular area in the breast specimen showed ALK negative anaplastic large cell lymphoma (ALCL). The patient was treated in the private section, with only a pathology consultation being done at our institution (Figures 1-3). PMID:25734041
Muthiah, Kavitha; Gupta, Sunil; Otton, James; Robson, Desiree; Walker, Robyn; Tay, Andre; Macdonald, Peter; Keogh, Anne; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S
2014-08-01
The aim of this study was to determine the contribution of pre-load and heart rate to pump flow in patients implanted with continuous-flow left ventricular assist devices (cfLVADs). Although it is known that cfLVAD pump flow increases with exercise, it is unclear if this increment is driven by increased heart rate, augmented intrinsic ventricular contraction, or enhanced venous return. Two studies were performed in patients implanted with the HeartWare HVAD. In 11 patients, paced heart rate was increased to approximately 40 beats/min above baseline and then down to approximately 30 beats/min below baseline pacing rate (in pacemaker-dependent patients). Ten patients underwent tilt-table testing at 30°, 60°, and 80° passive head-up tilt for 3 min and then for a further 3 min after ankle flexion exercise. This regimen was repeated at 20° passive head-down tilt. Pump parameters, noninvasive hemodynamics, and 2-dimensional echocardiographic measures were recorded. Heart rate alteration by pacing did not affect LVAD flows or LV dimensions. LVAD pump flow decreased from baseline 4.9 ± 0.6 l/min to approximately 4.5 ± 0.5 l/min at each level of head-up tilt (p < 0.0001 analysis of variance). With active ankle flexion, LVAD flow returned to baseline. There was no significant change in flow with a 20° head-down tilt with or without ankle flexion exercise. There were no suction events. Centrifugal cfLVAD flows are not significantly affected by changes in heart rate, but they change significantly with body position and passive filling. Previously demonstrated exercise-induced changes in pump flows may be related to altered loading conditions, rather than changes in heart rate. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Numerical Study of Flow Augmented Thermal Management for Entry and Re-Entry Environments
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Neroorkar, Kshitij D.; Chen, Yen-Sen; Wang, Ten-See; Daso, Endwell O.
2007-01-01
The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Mace, James L.; Mani, Mori
2009-01-01
The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.
Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2011-01-01
Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.
NASA Astrophysics Data System (ADS)
Downs, P. W.; Gilvear, D. J.
2017-12-01
Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed particle dynamics thus have implications both for the biological effectiveness of gravel augmentation and the efficacy criterion of `minimum mobility'. They also reflect the challenges inherent to constraint-limited natural experiments that are, conversely, important in proving the value of geomorphology to resource managers.
Turbulence modeling and surface heat transfer in a stagnation flow region
NASA Technical Reports Server (NTRS)
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
NASA Astrophysics Data System (ADS)
Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor
2017-12-01
The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.
The Design of Immersive English Learning Environment Using Augmented Reality
ERIC Educational Resources Information Center
Li, Kuo-Chen; Chen, Cheng-Ting; Cheng, Shein-Yung; Tsai, Chung-Wei
2016-01-01
The study uses augmented reality (AR) technology to integrate virtual objects into the real learning environment for language learning. The English AR classroom is constructed using the system prototyping method and evaluated by semi-structured in-depth interviews. According to the flow theory by Csikszenmihalyi in 1975 along with the immersive…
Optimal control applied to a model for species augmentation.
Bodine, Erin N; Gross, Louis J; Lenhart, Suzanne
2008-10-01
Species augmentation is a method of reducing species loss via augmenting declining or threatened populations with individuals from captive-bred or stable, wild populations. In this paper, we develop a differential equations model and optimal control formulation for a continuous time augmentation of a general declining population. We find a characterization for the optimal control and show numerical results for scenarios of different illustrative parameter sets. The numerical results provide considerably more detail about the exact dynamics of optimal augmentation than can be readily intuited. The work and results presented in this paper are a first step toward building a general theory of population augmentation, which accounts for the complexities inherent in many conservation biology applications.
Nucleation of Super-Critical Carbon Dioxide in a Venturi Nozzle
NASA Astrophysics Data System (ADS)
Jarrahbashi, Dorrin; Pidaparti, Sandeep; Ranjan, Devesh
2015-11-01
The supercritical carbon dioxide (S-CO2) Brayton cycle combines the primary advantages of the ideal Brayton and Rankine cycles by utilizing CO2 above its critical pressure. In addition to single phase and small back work ratios, supercritical fluids offer other advantages, e.g. heat transfer augmentation and low specific volume. Pressure reduction at the entrance of the compressor may cause homogenous nucleation, vapor production, and collapse of bubbles due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and affect the materials used in design. The flow of S-CO2 through a venturi nozzle near the critical point has been studied. A transient compressible 3D Navier-Stokes solver, coupled with continuity, and energy equation has been used. Developed FIT libraries based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO2 properties. The mass fraction of vapor created in the venturi has been calculated using homogeneous equilibrium model (HEM). The flow conditions that lead to nucleation have been investigated. The sensitivity of nucleation to the inlet pressure and temperature, flow rate, and venturi profile has been shown.
Ferrarin, M; Brambilla, M; Garavello, L; Di Candia, A; Pedotti, A; Rabuffetti, M
2004-05-01
Different types of visual cue for subjects with Parkinson's disease (PD) produced an improvement in gait and helped some of them prevent or overcome freezing episodes. The paper describes a portable gait-enabling device (optical stimulating glasses (OSGs) that provides, in the peripheral field of view, different types of continuous optic flow (backward or forward) and intermittent stimuli synchronised with external events. The OSGs are a programmable, stand-alone, augmented reality system that can be interfaced with a PC for program set-up. It consists of a pair of non-corrective glasses, equipped with two matrixes of 70 micro light emitting diodes, one on each side, controlled by a microprocessor. Two foot-switches are used to synchronise optical stimulation with specific gait events. A pilot study was carried out on three PD patients and three controls, with different types of optic flow during walking along a fixed path. The continuous optic flow in the forward direction produced an increase in gait velocity in the PD patients (up to + 11% in average), whereas the controls had small variations. The stimulation synchronised with the swing phase, associated with an attentional strategy, produced a remarkable increase in stride length for all subjects. After prolonged testing, the device has shown good applicability and technical functionality, it is easily wearable and transportable, and it does not interfere with gait.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.
Augmenting ejector endwall effects. [V/STOL aircraft
NASA Technical Reports Server (NTRS)
Porter, J. L.; Squyers, R. A.
1979-01-01
Rectangular inlet ejectors which had multiple hypermixing nozzles for their primary jets were investigated for the effects of endwall blowing on thrust augmentation performance. The ejector configurations tested had both straight wall and active boundary layer control type diffusers. Endwall flows were energized and controlled by simple blowing jets suitably located in the ejector. Both the endwall and boundary layer control diffuser blowing rates were varied to determine optimum performance. High area ratio diffusers with insufficient endwall blowing showed endwall separation and rapid degradation of thrust performance. Optimized values of diffuser boundary layer control and endwall nozzle blowing rates in an ejector augmenter were shown to achieve high levels of augmentation performance for maximum compactness.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
NASA Astrophysics Data System (ADS)
Padowski, J.; Yang, Q.; Brady, M.; Jessup, E.; Yoder, J.
2016-12-01
In 2013, the Washington State Supreme Court ruled against a 2001 amendment that set aside groundwater reservations for development within the Skagit River Basin (Swinomish Indian Tribal Community v. Washington State Department of Ecology). As a consequence, hundreds of properties no longer have a secure, uninterruptible water right and must be fully mitigated to offset their impacts on minimum in-stream flows. To date, no solutions have been amenable to the private, tribal and government parties involved. The objective of this study is to identify implementable, alternative water mitigation strategies for meeting minimum in-stream flow requirements while providing non-interruptible water to 455 property owners without legal water rights in the Skagit Basin. Three strategies of interest to all parties involved were considered: 1) streamflow augmentation from small-gauge municipal pipes, or trucked water deliveries for either 2) direct household use or 3) streamflow augmentation. Each mitigation strategy was assessed under two different demand scenarios and five augmentation points along 19 sub-watershed (HUC12) stream reaches. Results indicate that water piped for streamflow augmentation could provide mitigation at a cost of <10,000 per household for 20 - 60% of the properties in question, but a similar approach could be up to twenty times more expensive for those remaining properties in basins furthest from existing municipal systems. Trucked water costs also increase for upper basin properties, but over a 20-year period are still less expensive for basins where piped water costs would be high (e.g., 100,000 for trucking vs. $200,000 for piped water). This work suggests that coordination with municipal water systems to offset in-stream flow reductions, in combination with strategic mobile water delivery, could provide mitigation solutions within the Skagit Basin that may satisfy concerned parties.
Yager, Richard M.; Metz, P.A.
2004-01-01
Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T
Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2016-04-01
Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.
A modeling technique for STOVL ejector and volume dynamics
NASA Technical Reports Server (NTRS)
Drummond, C. K.; Barankiewicz, W. S.
1990-01-01
New models for thrust augmenting ejector performance prediction and feeder duct dynamic analysis are presented and applied to a proposed Short Take Off and Vertical Landing (STOVL) aircraft configuration. Central to the analysis is the nontraditional treatment of the time-dependent volume integrals in the otherwise conventional control-volume approach. In the case of the thrust augmenting ejector, the analysis required a new relationship for transfer of kinetic energy from the primary flow to the secondary flow. Extraction of the required empirical corrections from current steady-state experimental data is discussed; a possible approach for modeling insight through Computational Fluid Dynamics (CFD) is presented.
Recent development of a jet-diffuser ejector
NASA Technical Reports Server (NTRS)
Alperin, M.; Wu, J. J.
1980-01-01
The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.
Belcik, J. Todd; Davidson, Brian P.; Xie, Aris; Wu, Melinda D.; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y.; Field, Joshua; Harmann, Leanne; Chilian, William M.; Linden, Joel; Lindner, Jonathan R.
2017-01-01
Background Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signalling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Methods Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for ten minutes after intravenous injection of 2×108 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signalling pathways were assessed by studying interventions that either (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or KATP channels; or (3) inhibited downstream signalling pathways involving endothelial nitric oxide synthase (eNOS) or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease (SCD). Results Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hrs in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with SCD. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced a nearly 40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or through adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of eNOS abolished the effects of therapeutic ultrasound, indicating downstream signalling through both NO and prostaglandins. Conclusions Therapeutic ultrasound using microbubble cavitation to increase muscle perfusion relies on shear-dependent increases in ATP which can act through a diverse portfolio of purinergic signalling pathways. These events can reverse hindlimb ischemia in mice for >24 hours, and increase muscle blood flow in patients with sickle cell disease. Clinical Trial Registration NCT01566890 (https://clinicaltrials.gov/ct2/show/NCT01566890) PMID:28174191
Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R
2017-03-28
Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of endothelial nitric oxide synthase abolished the effects of therapeutic ultrasound, indicating downstream signaling through both nitric oxide and prostaglandins. Therapeutic ultrasound using microbubble cavitation to increase muscle perfusion relies on shear-dependent increases in ATP, which can act through a diverse portfolio of purinergic signaling pathways. These events can reverse hindlimb ischemia in mice for >24 hours and increase muscle blood flow in patients with sickle cell disease. URL: http://clinicaltrials.gov. Unique identifier: NCT01566890. © 2017 American Heart Association, Inc.
Piao, Jin-Chun; Kim, Shin-Dug
2017-11-07
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.
Unsteady Ejector Performance: an Experimental Investigation Using a Pulsejet Driver
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Wilson, Jack; Dougherty, Kevin T.
2002-01-01
An experimental investigation is described in which thrust augmentation and mass entrainment were measured for a variety of simple cylindrical ejectors driven by a gasoline-fueled pulsejet. The ejectors were of varying length, diameter, and inlet radius. Measurements were also taken to determine the effect on performance of the distance between pulsejet exit and ejector inlet. Limited tests were also conducted to determine the effect of driver cross-sectional shape. Optimal values were found for all three ejector parameters with respect to thrust augmentation. This was not the case with mass entrainment, which increased monotonically with ejector diameter. Thus, it was found that thrust augmentation is not necessarily directly related to mass entrainment, as is often supposed for ejectors. Peak thrust augmentation values of 1.8 were obtained. Peak mass entrainment values of 30 times the driver mass flow were also observed. Details of the experimental setup and results are presented. Preliminary analysis of the results indicates that the enhanced performance obtained with an unsteady jet (primary source) over comparably sized ejectors driven with steady jets is due primarily to the structure of the starting vortex-type flow associated with the former.
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
Smith, B J; Yamaguchi, E; Gaver, D P
2010-01-01
We have designed, fabricated and evaluated a novel translating stage system (TSS) that augments a conventional micro particle image velocimetry (µ-PIV) system. The TSS has been used to enhance the ability to measure flow fields surrounding the tip of a migrating semi-infinite bubble in a glass capillary tube under both steady and pulsatile reopening conditions. With conventional µ-PIV systems, observations near the bubble tip are challenging because the forward progress of the bubble rapidly sweeps the air-liquid interface across the microscopic field of view. The translating stage mechanically cancels the mean bubble tip velocity, keeping the interface within the microscope field of view and providing a tenfold increase in data collection efficiency compared to fixed-stage techniques. This dramatic improvement allows nearly continuous observation of the flow field over long propagation distances. A large (136-frame) ensemble-averaged velocity field recorded with the TSS near the tip of a steadily migrating bubble is shown to compare well with fixed-stage results under identical flow conditions. Use of the TSS allows the ensemble-averaged measurement of pulsatile bubble propagation flow fields, which would be practically impossible using conventional fixed-stage techniques. We demonstrate our ability to analyze these time-dependent two-phase flows using the ensemble-averaged flow field at four points in the oscillatory cycle.
A full-scale STOVL ejector experiment
NASA Technical Reports Server (NTRS)
Barankiewicz, Wendy S.
1993-01-01
The design and development of thrust augmenting short take-off and vertical landing (STOVL) ejectors has typically been an iterative process. In this investigation, static performance tests of a full-scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators, yarn tufts and paint dots) was used to assess inlet flowfield characteristics, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate 'seasonal' aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature. Full-scale experimental tests such as this are expensive, and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles -- in particular, the Munk and Prim similarity principle for isentropic flow -- was explored. At different primary temperatures, exit pressure contours are compared for similarity. A nondimensional flow parameter is then shown to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, then properly chosen performance parameters should be similar for both hot flow and cold flow model tests.
Two-Phase Flow Model and Experimental Validation for Bubble Augmented Waterjet Propulsion Nozzle
NASA Astrophysics Data System (ADS)
Choi, J.-K.; Hsiao, C.-T.; Wu, X.; Singh, S.; Jayaprakash, A.; Chahine, G.
2011-11-01
The concept of thrust augmentation through bubble injection into a waterjet has been the subject of many patents and publications over the past several decades, and there are simplified computational and experimental evidence of thrust increase. In this work, we present more rigorous numerical and experimental studies which aim at investigating two-phase water jet propulsion systems. The numerical model is based on a Lagrangian-Eulerian method, which considers the bubbly mixture flow both in the microscopic level where individual bubble dynamics are tracked and in the macroscopic level where bubbles are collectively described by the local void fraction of the mixture. DYNAFLOW's unsteady RANS solver, 3DYNAFS-Vis is used to solve the macro level variable density mixture medium, and a fully unsteady two-way coupling between this and the bubble dynamics/tracking code 3DYNAFS-DSM is utilized. Validation studies using measurements in a half 3-D experimental setup composed of divergent and convergent sections are presented. Visualization of the bubbles, PIV measurements of the flow, bubble size and behavior are observed, and the measured flow field data are used to validate the models. Thrust augmentation as high as 50% could be confirmed both by predictions and by experiments. This work was supported by the Office of Naval Research under the contract N00014-07-C-0427, monitored by Dr. Ki-Han Kim.
Analysis of managed aquifer recharge for retiming streamflow in an alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Roudebush, Jason A.; Stednick, John D.
2017-01-01
Maintenance of low flows during dry periods is critical for supporting ecosystem function in many rivers. Managed aquifer recharge is one method that can be used to augment low flows in rivers that are hydraulically connected to an alluvial groundwater system. In this study, we performed numerical modeling to evaluate a managed recharge operation designed to retime streamflow in the South Platte River, northeastern Colorado (USA). Modeling involved the simulation of spatially and temporally variable groundwater-surface water exchange, as well as streamflow routing in the river. Periodic solutions that incorporate seasonality were developed for two scenarios, a natural base case scenario and an active management scenario that included groundwater pumping and managed recharge. A framework was developed to compare the scenarios by analyzing changes in head-dependent inflows and outflows to/from the aquifer, which was used to interpret the simulated impacts on streamflow. The results clearly illustrate a retiming of streamflow. Groundwater pumping near the river during winter months causes a reduction in streamflow during those months. Delivery of the pumped water to recharge ponds, located further from the river, has the intended effect of augmenting streamflow during low-flow summer months. Higher streamflow is not limited to the target time period, however, which highlights an inefficiency of flow augmentation projects that rely on water retention in the subsurface.
Yang, Zhengfei; Tang, David; Wu, Xiaobo; Hu, Xianwen; Xu, Jiefeng; Qian, Jie; Yang, Min; Tang, Wanchun
2015-01-01
During cardiopulmonary resuscitation (CPR), myocardial blood flow generated by chest compression rarely exceeds 35% of its normal level. Cardiac output generated by chest compression decreases gradually with the prolongation of cardiac arrest and resuscitation. Early studies have demonstrated that myocardial blood flow during CPR is largely dependent on peripheral vascular resistance. In this study, we investigated the effects of chest compression in combination with physical control of peripheral vascular resistance assisted by tourniquets on myocardial blood flow during CPR. Ventricular fibrillation was induced and untreated for 7 min in ten male domestic pigs weighing between 33 and 37 kg. The animals were then randomized to receive CPR alone or a tourniquet assisted CPR (T-CPR). In the CPR alone group, chest compression was performed by a miniaturized mechanical chest compressor. In the T-CPR group, coincident with the start of resuscitation, the thin elastic tourniquets were wrapped around the four limbs from the distal end to the proximal part. After 2 min of CPR, epinephrine (20 μg/kg) was administered via the femoral vein. After 5 min of CPR, defibrillation was attempted by a single 150 J shock. If resuscitation was not successful, CPR was resumed for 2 min before the next defibrillation. The protocol was continued until successful resuscitation or for a total of 15 min. Five minutes after resuscitation, the elastic tourniquets were removed. The resuscitated animals were observed for 2h. T-CPR generated significantly greater coronary perfusion pressure, end-tidal carbon dioxide and carotid blood flow. There was no difference in both intrathoracic positive and negative pressures between the two groups. All animals were successfully resuscitated with a single shock in both groups. There were no significant changes in hemodynamics observed in the animals treated in the T-CPR group before-and-after the release of tourniquets at post-resuscitation 5 min. T-CPR improves myocardial and cerebral perfusion during CPR. It may provide a new and convenient method for augmenting myocardial and cerebral blood flow during CPR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
NASA Technical Reports Server (NTRS)
Ames, Forrest E.
1994-01-01
A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.
Goff, Elizabeth A; Nicholas, Christian L; Kleiman, Jan; Spear, Owen; Morrell, Mary J; Trinder, John
2012-12-01
The influence of flow limitation on the magnitude of the cardiorespiratory response to arousal from sleep is of interest in older people, because they experience considerable flow limitation and frequent arousals from sleep. We studied older flow-limiting subjects, testing the hypothesis that the cardiorespiratory activation response would be larger when arousal occurred during flow limitation, compared to no flow limitation, and chemical stimuli were controlled. In 11 older adults [mean ± standard deviation (SD) age: 68 ± 5 years] ventilation was stabilized using continuous positive airway pressure, and flow limitation was induced by dialling down the pressure. Partial pressure of end-tidal carbon dioxide (PetCO(2)) was maintained by titration of the inspired CO(2) and hyperoxia was maintained using 40% O(2) balanced with nitrogen. Flow limitation at the time of arousal did not augment cardiovascular activation response (heart rate P = 0.7; systolic blood pressure P = 0.6; diastolic blood pressure P = 0.3), whereas ventilation was greater following arousals during flow limitation compared to no flow limitation (P < 0.001). The pre-post-arousal differences in ventilation reflected significant pre-arousal suppression (due to flow limitation) plus post-arousal activation. In summary, the cardiovascular response to arousal from sleep is not influenced by flow limitation at the time of arousal, when chemical stimuli are controlled in older adults. This finding may contribute to the decreased cardiovascular burden associated with sleep-disordered breathing reported in older adults, although our data do not exclude the possibility that flow limitation in the presence of mild hypoxic hypercapnia could increase the cardiovascular response to arousal. © 2012 European Sleep Research Society.
A computational model for three-dimensional incompressible wall jets with large cross flow
NASA Technical Reports Server (NTRS)
Murphy, W. D.; Shankar, V.; Malmuth, N. D.
1979-01-01
A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.
Heavy impurity confinement in hybrid operation scenario plasmas with a rotating 1/1 continuous mode
NASA Astrophysics Data System (ADS)
Raghunathan, M.; Graves, J. P.; Nicolas, T.; Cooper, W. A.; Garbet, X.; Pfefferlé, D.
2017-12-01
In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behavior of tungsten trace impurities in a JET-like hybrid scenario with both axisymmetric and saturated 1/1 ideal helical core in the presence of strong plasma rotation. For this purpose, we obtain the equilibria from VMEC and use VENUS-LEVIS, a guiding-center orbit-following code, to follow heavy impurity particles. In this work, VENUS-LEVIS has been modified to account for strong plasma flows with associated neoclassical effects arising from such flows. We find that the combination of helical core and plasma rotation augments the standard neoclassical inward pinch compared to axisymmetry, and leads to a strong inward pinch of impurities towards the magnetic axis despite the strong outward diffusion provided by the centrifugal force, as frequently observed in experiments.
NASA Astrophysics Data System (ADS)
Farraji, Hossein; Zaman, Nastaein Qamaruz; Aziz, Hamidi Abdul; Sa'at, Siti Kamariah Md
2017-10-01
Palm oil mill effluent (POME) is the largest wastewater in Malaysia. Of the 60 million tons of POME produced annually, 2.4-3 million tons are total solids. Turbidity is caused by suspended solids, and 75% of total suspended solids are organic matter. Coagulation and flocculation are popular treatments for turbidity removal. Traditional commercial treatments do not meet discharge standards. This study evaluated natural zeolite and municipal wastewater (MWW)-augmented sequencing batch reactor as a microbiological digestion method for the decontamination of POME in response surface methodology. Aeration, contact time, and MWW/POME ratio were selected as response factors for turbidity removal. Results indicated that turbidity removal varied from 96.7% (MWW/POME ratio=50 %, aeration flow=0.5 L/min, and contact time=12) to 99.31% (MWW/POME ratio=80%, aeration flow 4L/min, and contact time 12 h). This study is the first to present MWW augmentation as a suitable microorganism supplier for turbidity biodegradation in high-strength agroindustrial wastewater.
Viscid/inviscid interaction analysis of thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilacqua, P. M.; Dejoode, A. D.
1979-01-01
A method was developed for calculating the static performance of thrust augmenting ejectors by matching a viscous solution for the flow through the ejector to an inviscid solution for the flow outside the ejector. A two dimensional analysis utilizing a turbulence kinetic energy model is used to calculate the rate of entrainment by the jets. Vortex panel methods are then used with the requirement that the ejector shroud must be a streamline of the flow induced by the jets to determine the strength of circulation generated around the shroud. In effect, the ejector shroud is considered to be flying in the velocity field of the jets. The solution is converged by iterating between the rate of entrainment and the strength of the circulation. This approach offers the advantage of including external influences on the flow through the ejector. Comparisons with data are presented for an ejector having a single central nozzle and Coanda jet on the walls. The accuracy of the matched solution is found to be especially sensitive to the jet flap effect of the flow just downstream of the ejector exit.
Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configurations
NASA Technical Reports Server (NTRS)
Maglieri, Domenic J.; Hubbard, Harvey H.
1959-01-01
Experimental noise studies were conducted on model configurations of some proposed jet-augmented flaps to determine their far-field noise characteristics. The tests were conducted using cold-air jets of circular and rectangular exits having equal areas, at pressure ratios corresponding to exit velocities slightly below choking. Results indicated that the addition of a flap to a nozzle may change both its noise radiation pattern and frequency spectrum. Large reductions in the noise radiated in the downward direction are realized when the flow from a long narrow rectangular nozzle as permitted to attach to and flow along a large flap surface. Deflecting or turning the jet flow by means of impingement on the under surfaces increases the noise radiated in all directions and especially in the downward direction for the jet-flap configurations tested. Turning of the flow from nozzles by means of a flap turns the noise pattern approximately an equal amount. The principle of using a jet-flap shield with flow attachment may have some application as a noise suppressor.
Internal-external flow integration for a thin ejector-flapped wing section
NASA Technical Reports Server (NTRS)
Woolard, H. W.
1979-01-01
Thin airfoil theories of an ejector flapped wing section are reviewed. The global matching of the external airfoil flow with the ejector internal flow and the overall ejector flapped wing section aerodynamic performance are examined. Mathematical models of the external and internal flows are presented. The delineation of the suction flow coefficient characteristics are discussed. The idealized lift performance of an ejector flapped wing relative to a jet augmented flapped wing are compared.
Experimental investigation of control/display augmentation effects in a compensatory tracking task
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Schmidt, David K.
1988-01-01
The effects of control/display augmentation on human performance and workload have been investigated for closed-loop, continuous-tracking tasks by a real-time, man-in-the-loop simulation study. The experimental results obtained indicate that only limited improvement in actual tracking performance is obtainable through display augmentation alone; with a very high level of display augmentation, tracking error will actually deteriorate. Tracking performance improves when status information is furnished for reasonable levels of display quickening; again, very high quickening levels lead to tracking error deterioration due to the incompatibility between the status information and the quickened signal.
Flügge, Tabea; Nelson, Katja; Nack, Claudia; Stricker, Andres; Nahles, Susanne
2015-04-01
This study identified the soft tissue changes of the alveolar ridge at different time points within 12 weeks after tooth extraction with and without socket augmentation. In 38 patients with single tooth extractions, 40 sockets were augmented and 39 extraction sockets were not augmented. At 2, 4, 6, 8 and 12 weeks impressions were taken and casts digitized with a laser scanner. The horizontal and vertical changes were compared between augmented and non-augmented sites. A p-value <0.05 was considered statistically significant. The mean changes of augmented sockets were between 0.4 mm (2 weeks) and 0.8 mm (12 weeks). In non-augmented sockets changes of 0.7 mm (2 weeks) and of 1.0 mm (12 weeks) were demonstrated. The mean values differed significantly between the buccal and oral region (p < 0.01). Overall, there were significant differences of the mean dimensional changes regarding time (p < 0.01) and augmentation (p < 0.01). Augmented sockets showed less resorption within 4 weeks after extraction compared to non-augmented sockets. Non-augmented sockets showed a continuous dimensional loss with a great variation over 12 weeks whereas augmented sockets had the highest degree of resorption between 4 and 6 weeks. At 12 weeks a comparable resorption in augmented and non-augmented sockets was observed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
Xu, Yan-Jun; Elimban, Vijayan; Dhalla, Naranjan S
2017-08-01
In this study, we investigated the effects of CO 2 water-bath therapy on blood flow and angiogenesis in the ischemic hind limb, as well as some plasma angiogenic factors in peripheral ischemic model. The hind limb ischemia was induced by occluding the femoral artery for 2 weeks in rats and treated with or without CO 2 water-bath therapy at 37 °C for 4 weeks (20 min treatment every day for 5 days per week). The peak blood flow and minimal and mean blood flow in the ischemic skeletal muscle were markedly increased by the CO 2 water-bath therapy. This increase in blood flow was associated with development of angiogenesis in the muscle, as well as reduction in the ischemia-induced increase in plasma malondialdehyde levels. Although plasma vascular endothelial growth factor and nitric oxide levels were increased in animals with peripheral ischemia, the changes in these biomarkers were not affected by CO 2 water-bath therapy. These results suggest that augmentation of blood flow in the ischemic hind limb by CO 2 water-bath therapy may be due to the development of angiogenesis and reduction in oxidative stress.
50 years of computer simulation of the human thermoregulatory system.
Hensley, Daniel W; Mark, Andrew E; Abella, Jayvee R; Netscher, George M; Wissler, Eugene H; Diller, Kenneth R
2013-02-01
This paper presents an updated and augmented version of the Wissler human thermoregulation model that has been developed continuously over the past 50 years. The existing Fortran code is translated into C with extensive embedded commentary. A graphical user interface (GUI) has been developed in Python to facilitate convenient user designation of input and output variables and formatting of data presentation. Use of the code with the GUI is described and demonstrated. New physiological elements were added to the model to represent the hands and feet, including the unique vascular structures adapted for heat transfer associated with glabrous skin. The heat transfer function and efficacy of glabrous skin is unique within the entire body based on the capacity for a very high rate of blood perfusion and the novel capability for dynamic regulation of blood flow. The model was applied to quantify the absolute and relative contributions of glabrous skin flow to thermoregulation for varying levels of blood perfusion. The model also was used to demonstrate how the unique features of glabrous skin blood flow may be recruited to implement thermal therapeutic procedures. We have developed proprietary methods to manipulate the control of glabrous skin blood flow in conjunction with therapeutic devices and simulated the effect of these methods with the model.
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
Vonnahme, Kimberly A; Lemley, Caleb O
2011-01-01
As placental growth and vascularity precedes exponential fetal growth, not only is proper establishment of the placenta important, but also a continual plasticity of placental function throughout gestation. Inadequate maternal environment, such as nutritional plane, has been documented to alter fetal organogenesis and growth, thus leading to improper postnatal growth and performance in many livestock species. The timing and duration of maternal nutritional restriction appears to influence the capillary vascularity, angiogenic profile and vascular function of the placenta in cattle and sheep. In environments where fetal growth and/or fetal organogenesis are compromised, potential therapeutics may augment placental nutrient transport capacity and improve offspring performance. Supplementation of specific nutrients, including protein, as well as hormone supplements, such as indolamines, during times of nutrient restriction may assist placental function. Current use of Doppler ultrasonography has allowed for repeated measurements of uterine and umbilical blood flow including assessment of uteroplacental hemodynamics in cattle, sheep and swine. Moreover, these variables can be monitored in conjugation with placental capacity and fetal growth at specific time points of gestation. Elucidating the consequences of inadequate maternal intake on the continual plasticity of placental function will allow us to determine the proper timing and duration for intervention.
Applied Augmented Reality for High Precision Maintenance
NASA Astrophysics Data System (ADS)
Dever, Clark
Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.
Piao, Jin-Chun; Kim, Shin-Dug
2017-01-01
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan
2010-01-01
Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism’s photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO2. No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs. PMID:20133799
Mass, Tali; Genin, Amatzia; Shavit, Uri; Grinstein, Mor; Tchernov, Dan
2010-02-09
Worldwide, many marine coastal habitats are facing rapid deterioration due in part to human-driven changes in habitat characteristics, including changes in flow patterns, a factor known to greatly affect primary production in corals, algae, and seagrasses. The effect of flow traditionally is attributed to enhanced influx of nutrients and dissolved inorganic carbon (DIC) across the benthic boundary layer from the water to the organism however, here we report that the organism's photosynthetic response to changes in the flow is nearly instantaneous, and that neither nutrients nor DIC limits this rapid response. Using microelectrodes, dual-pulse amplitude-modulated fluorometry, particle image velocimetry, and real time mass-spectrometry with the common scleractinian coral Favia veroni, the alga Gracilaria cornea, and the seagrass Halophila stipulacea, we show that this augmented photosynthesis is due to flow-driven enhancement of oxygen efflux from the organism to the water, which increases the affinity of the RuBisCO to CO(2). No augmentation of photosynthesis was found in the absence of flow or when flow occurred, but the ambient concentration of oxygen was artificially elevated. We suggest that water motion should be considered a fundamental factor, equivalent to light and nutrients, in determining photosynthesis rates in marine benthic autotrophs.
An experimental investigation of two-dimensional thrust augmenting ejectors, part 2
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1984-01-01
The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data.
Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2009-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
Compression Pad Cavity Heating Augmentation on Orion Heat Shield
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2011-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.
2007-02-01
and Astronautics 11 PS3C W3 P3 T3 FAR3 Ps3 W41 P41 T41 FAR41 Ps41 W4 P4 T4 FAR4 Ps4 7 NozFlow 6 Flow45 5 Flow44 4 Flow41 3 Flow4 2 Flow3 1 N2Bal... Motivation for Modeling and Simulation Work The Augmented Generic Engine Model (AGEM) Model Verification and Validation (V&V) Assessment of AGEM V&V
32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false NDRB support and augmentation by regular and reserve activities. 724.223 Section 724.223 National Defense Department of Defense (Continued) DEPARTMENT... can be undertaken without interference with mission accomplishment. The NDRB shall coordinate requests...
32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false NDRB support and augmentation by regular and reserve activities. 724.223 Section 724.223 National Defense Department of Defense (Continued) DEPARTMENT... can be undertaken without interference with mission accomplishment. The NDRB shall coordinate requests...
32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false NDRB support and augmentation by regular and reserve activities. 724.223 Section 724.223 National Defense Department of Defense (Continued) DEPARTMENT... can be undertaken without interference with mission accomplishment. The NDRB shall coordinate requests...
32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false NDRB support and augmentation by regular and reserve activities. 724.223 Section 724.223 National Defense Department of Defense (Continued) DEPARTMENT... can be undertaken without interference with mission accomplishment. The NDRB shall coordinate requests...
32 CFR 724.223 - NDRB support and augmentation by regular and reserve activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false NDRB support and augmentation by regular and reserve activities. 724.223 Section 724.223 National Defense Department of Defense (Continued) DEPARTMENT... can be undertaken without interference with mission accomplishment. The NDRB shall coordinate requests...
Pulsed Ejector Thrust Amplification Tested and Modeled
NASA Technical Reports Server (NTRS)
Wilson, Jack
2004-01-01
There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Wang, Chao; Wang, Zhenyao; Luo, Fei; Li, Yuqin
2017-08-01
The lipid productivity controlled by both of biomass and lipid content was really crucial for economic-feasibility of microalgae-based biofuels production. This study attempted at augmenting lipid productivity in an emerging oleaginous model alga Coccomyxa subellipsoidea by different nitrogen manipulation including one-stage continuous N-sufficiency (OCNS), N-deprivation (OCND), N-limitation (OCNL), and also two-stage batch N-starvation (TBNS). Amongst four tested nitrogen manipulation strategies, OCNS performed remarkable promoting effect on cell metabolic growth and the maximum biomass was achieved by 7.39 g/L. Whereas TBNS regime induced the highest lipid content (over 50.5%). Only OCNL treatment augmented the lipid productivity by 232.37 mg/L/day, representing 1.25-fold more than TBNS and even as much as 5.06-fold more than that of OCND strategy. OCNL also strengthened the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acid (C18:1) which were inclined to high-quality biofuels-making. This might be due to that most part of energy and metabolic flux (e.g. acetyl-CoA) derived from TCA cycle and glycolysis flowed into fatty acids biosynthesis pathway (especially C18:1) response to OCNL manipulation. This study represented a pioneering work of utilizing OCNL for lipids production by C. subellipsoidea and clearly implied that OCNL might be a feasible way for algal lipid production on a commercial scale and also promoted the potential of C. subellipsoidea as an ideal biodiesel feedstock.
Laser manipulation of atomic and molecular flows
NASA Astrophysics Data System (ADS)
Lilly, Taylor C.
The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.
New-generation diabetes management: glucose sensor-augmented insulin pump therapy
Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V
2011-01-01
Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management. PMID:21728731
New-generation diabetes management: glucose sensor-augmented insulin pump therapy.
Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V
2011-07-01
Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management.
Metz, Patricia A.; Sacks, Laura A.
2002-01-01
The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite, indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)
Flow Experience and Educational Effectiveness of Teaching Informatics Using AR
ERIC Educational Resources Information Center
Giasiranis, Stefanos; Sofos, Loizos
2017-01-01
The purpose of this study was the investigation of the added value of technology of augmented reality (AR) in education and, particularly, whether this contributes to both student performance improvement, as well as the appearance of the psychological condition of Flow, which according to research, has had a positive effect on their performance…
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.
Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan
2016-03-07
Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.
NASA Astrophysics Data System (ADS)
Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun
2013-08-01
A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.
Kumar, Matthew M; Goldberg, Andrew D; Kashiouris, Markos; Keenan, Lawrence R; Rabinstein, Alejandro A; Afessa, Bekele; Johnson, Larry D; Atkinson, John L D; Nayagam, Vedha
2014-10-01
Delay in instituting neuroprotective measures after cardiac arrest increases death and decreases neuronal recovery. Current hypothermia methods are slow, ineffective, unreliable, or highly invasive. We report the feasibility of rapid hypothermia induction in swine through augmented heat extraction from the lungs. Twenty-four domestic crossbred pigs (weight, 50-55kg) were ventilated with room air. Intraparenchymal brain temperature and core temperatures from pulmonary artery, lower esophagus, bladder, rectum, nasopharynx, and tympanum were recorded. In eight animals, ventilation was switched to cooled helium-oxygen mixture (heliox) and perfluorocarbon (PFC) aerosol and continued for 90min or until target brain temperature of 32°C was reached. Eight animals received body-surface cooling with water-circulating blankets; eight control animals continued to be ventilated with room air. Brain and core temperatures declined rapidly with cooled heliox-PFC ventilation. The brain reached target temperature within the study period (mean [SD], 66 [7.6]min) in only the transpulmonary cooling group. Cardiopulmonary functions and poststudy histopathological examination of the lungs were normal. Transpulmonary cooling is novel, rapid, minimally invasive, and an effective technique to induce therapeutic hypothermia. High thermal conductivity of helium and vaporization of PFC produces rapid cooling of alveolar gases. The thinness and large surface area of alveolar membrane facilitate rapid cooling of the pulmonary circulation. Because of differences in thermogenesis, blood flow, insulation, and exposure to the external environment, the brain cools at a different rate than other organs. Transpulmonary hypothermia was significantly faster than body surface cooling in reaching target brain temperature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Owolabi, Mayowa O
2014-01-01
Teacher's attitude domain, a pivotal aspect of clinical teaching, is missing in the Stanford Faculty Development Program Questionnaire (SFDPQ), the most widely used student-based assessment method of clinical teaching skills. This study was conducted to develop and validate the teacher's attitude domain and evaluate the validity and internal consistency reliability of the augmented SFDPQ. Items generated for the new domain included teacher's enthusiasm, sobriety, humility, thoroughness, empathy, and accessibility. The study involved 20 resident doctors assessed once by 64 medical students using the augmented SFDPQ. Construct validity was explored using correlation among the different domains and a global rating scale. Factor analysis was performed. The response rate was 94%. The new domain had a Cronbach's alpha of 0.89, with 1-factor solution explaining 57.1% of its variance. It showed the strongest correlation to the global rating scale (rho = 0.71). The augmented SFDPQ, which had a Cronbach's alpha of 0.93, correlated better (rho = 0.72, p < 0.00001) to the global rating scale than the original SFDPQ (rho = 0.67, p < 0.00001). The new teacher's attitude domain exhibited good internal consistency and construct and factorial validity. It enhanced the content and construct validity of the SFDPQ. The validated construct of the augmented SFDPQ is recommended for design and evaluation of basic and continuing clinical teaching programs. © 2014 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.
NASA Astrophysics Data System (ADS)
Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.
2018-01-01
In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.
Ophir, Ella; Bornstein, Jacob; Odeh, Marwan; Kaminsky, Svetlana; Shnaider, Oleg; Megel, Yuri; Barnea, Ofer
2014-03-01
To obtain and study new data on the dynamics of the labor process and to develop a contraction-based index of labor progress. This study was carried out at the Delivery Room, Department of Obstetrics and Gynecology, Western Galilee Hospital, Nahariya, Israel, using a new device (Birth Track). We continuously monitored cervical dilatation (CD) and head descent (HD) in 30 nulliparaous women during active labor with (augmented group) and without (study group) oxytocin augmentation. This led to the development and validation of progress indices based on features extracted from continuous monitoring. There were no significant differences between the average of each parameter in the study and augmented groups, except for HD velocity. Average HD velocity was faster in the study group. Linear regression analyses demonstrated that head station (HS) amplitude and Toco amplitude were the best parameters for predicting HD velocity in both groups. In the study group, average HD velocity was also significantly related to Toco rate and contraction efficiency. In the augmented group, only a weak correlation with Toco rate was seen, and no correlation with contraction efficiency. With the assistance of the Birth Track device, we can obtain continuous data on the labor process and indices to estimate the labor progress process without the use of vaginal (manual) examination. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.
Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port
NASA Astrophysics Data System (ADS)
Marshall, Joel H.
A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.
Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.
Payne, G.A.
1989-01-01
During March through October 1986, 52,560 acre-feet of water passed the continuous-record stream gaging station on the Clearwater River near Clearbrook, Minnesota, 4.8 river miles upstream from the Red Lake Indian Reservation. Flow at the downstream boundary of the Reservation totaled 93,770 acre-feet. The increase in Clearwater River flow in the reach bordering the Reservation equaled 32,950 acre-feet; 60 percent of the increase occurred during March, April, and May. During those months, flow in the Clearwater River was augmented by flow from Kiwosay Reservoir and Butcher Knife Creek, which are located on the Reservation. Daily streamflow records showed that flow in the river increased in the Reservation reach throughout the study except for 13 days during October when losses occurred. At the downstream Reservation boundary, all daily mean flows exceeded the 36 cubic feet per second minimum flow required by the Minnesota Department of Natural Resources for the gaging station at Plummer, Minnesota located 29.9 miles downstream from the Reservation boundary. Monthly flows generally followed expected seasonal trends, with the highest monthly totals occurring in April and May and the lowest monthly totals occurring during August, September, and October. Seasonal trends were modified by reservoir releases, withdrawals for irrigation, and return flows that resulted from drainage of adjacent wild-rice fields. A series of flow measurements showed that localized withdrawals and return flows at times exceeded 20 percent of total streamflow. Discharge measurements made during low flow indicated higher rates of groundwater discharge in the vicinity of the Kiwosay Reservoir than in other parts of the study reach. Measurements made during August indicated that groundwater discharge in the reach of the river bordering the Reservation resulted in a flow gain of about 20 percent. Analysis of long-term streamflow records showed that near-average hydrologic conditions prevailed during the study period.
Jenkins, Martin
2016-01-01
Objective. In clinical trials of RA, it is common to assess effectiveness using end points based upon dichotomized continuous measures of disease activity, which classify patients as responders or non-responders. Although dichotomization generally loses statistical power, there are good clinical reasons to use these end points; for example, to allow for patients receiving rescue therapy to be assigned as non-responders. We adopt a statistical technique called the augmented binary method to make better use of the information provided by these continuous measures and account for how close patients were to being responders. Methods. We adapted the augmented binary method for use in RA clinical trials. We used a previously published randomized controlled trial (Oral SyK Inhibition in Rheumatoid Arthritis-1) to assess its performance in comparison to a standard method treating patients purely as responders or non-responders. The power and error rate were investigated by sampling from this study. Results. The augmented binary method reached similar conclusions to standard analysis methods but was able to estimate the difference in response rates to a higher degree of precision. Results suggested that CI widths for ACR responder end points could be reduced by at least 15%, which could equate to reducing the sample size of a study by 29% to achieve the same statistical power. For other end points, the gain was even higher. Type I error rates were not inflated. Conclusion. The augmented binary method shows considerable promise for RA trials, making more efficient use of patient data whilst still reporting outcomes in terms of recognized response end points. PMID:27338084
NASA Technical Reports Server (NTRS)
Khare, J. M.; Kentfield, J. A. C.
1979-01-01
A flexible, and easily modified, test rig is described which allows a one dimensional nonsteady flow stream to be generated, economically from a steady flow source of compressed air. This nonsteady flow is used as the primary stream in a nonsteady flow ejector constituting part of the test equipment. Standard piezo-electric pressure transducers etc. allow local pressures to be studied, as functions of time, in both the primary and secondary (mixed) flow portions of the apparatus. Provision is also made for measuring the primary and secondary mass flows and the thrust generated. Sample results obtained with the equipment are presented.
A fast response miniature probe for wet steam flow field measurements
NASA Astrophysics Data System (ADS)
Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.
2016-12-01
Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.
Avoiding Focus Shifts in Surgical Telementoring Using an Augmented Reality Transparent Display.
Andersen, Daniel; Popescu, Voicu; Cabrera, Maria Eugenia; Shanghavi, Aditya; Gomez, Gerardo; Marley, Sherri; Mullis, Brian; Wachs, Juan
2016-01-01
Conventional surgical telementoring systems require the trainee to shift focus away from the operating field to a nearby monitor to receive mentor guidance. This paper presents the next generation of telementoring systems. Our system, STAR (System for Telementoring with Augmented Reality) avoids focus shifts by placing mentor annotations directly into the trainee's field of view using augmented reality transparent display technology. This prototype was tested with pre-medical and medical students. Experiments were conducted where participants were asked to identify precise operating field locations communicated to them using either STAR or a conventional telementoring system. STAR was shown to improve accuracy and to reduce focus shifts. The initial STAR prototype only provides an approximate transparent display effect, without visual continuity between the display and the surrounding area. The current version of our transparent display provides visual continuity by showing the geometry and color of the operating field from the trainee's viewpoint.
2007-11-01
information into awareness. Broadbent’s (1958) " Filter " model of attention (see Figure 1) maps the flow of information from the senses through a number of...benefits of an attentional cueing paradigm can be explained within these models . For example, the selective filter is augmented by the information...capacity filter ’, while Wickens’ model represents this with a limited amount of ’attentional resources’ available to perception, decision making
Jones, Edward C.; Perry, Russell W.; Risley, John C.; Som, Nicholas A.; Hetrick, Nicholas J.
2016-03-31
Augmentation scenarios were based on historical hydrological and meteorological data, combined with prescribed flow and temperature releases from Lewiston Dam provided by the Bureau of Reclamation. Water releases were scheduled to achieve targeted flows of 2,500, 2,800, and 3,200 cubic feet per second in the lower Klamath River from mid-August through late September, coinciding with the upstream migration of adult fall-run Chinook salmon (Oncorhynchus tshawytscha). Water temperatures simulated at river mile 5.7 on the Klamath River showed a 5 °C decrease from the No Action historical baseline, which was near or greater than 23 °C when augmentation began in mid-August. Thereafter, an approximate 1 °C difference among augmentation scenarios emerged, with the decrease in water temperature commensurate to the level of augmentation. All augmentation scenarios simulated water temperatures equal to or less than 21 °C from mid-August through late September. Water temperatures equal to or greater than 23 °C are of particular interest because of a thermal threshold known to inhibit upstream migration of salmon. When temperatures exceed this approximate 23 °C threshold, Chinook salmon are known to congregate in high densities in thermal refugias and show extended residence times, which can potentially trigger epizootic outbreaks such as of Ichthyophthirius multifiliis (“Ich”) and Flavobacterium columnare (“Columnaris”) that were the causative factors of the Klamath River fish kill in 2002. A model with the ability to simulate water temperatures in response to management actions at the basin scale is a valuable asset for water managers who must make decisions about how best to use limited water resources, which directly affect the state of fisheries in the Klamath Basin.
Detonation wave augmentation of gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1984-01-01
The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.
Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog
2015-09-01
Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.
A study of the Flint River, Michigan, as it relates to low-flow augmentation
Hulbert, Gordon C.
1972-01-01
One of the uses of the Flint River is dilution of waste-water. Population and industrial growth in the Flint area hah placed new demands on the stream and emphasized the need for an analysis of the surface water resources of the basin. This report describes selected streamflow characteristics of the Flint River and its tributaries, and presents draft-storage relations for the river basin. Flow characteristics for 17 sites show that the 7-day 2-year low flow ranges from 0 to 0.17 cfs (cubic feet per second) per square mile. Draft-storage relations for the basin show that existing storage, if fully utilized, could, on an average, provide a minimum discharge at Montrose of 160 cfs in 19 out of 20 years. The discharge, in conjunction with water diverted from Lake Huron to the Flint River through the Detroit and Flint water systems (about 60 cfs in 1971), indicates that low flows would seldom be less than about 200 cfs at Montrose. Diversions from the basin for irrigation may reduce low flows by about 12 cfs. Ground-water sources offer small potential for development of large supplies of water for streamflow augmentation, although wells in the glacial deposits may provide a supplemental source of water at some locations.
Effect of cevimeline on salivary components in patients with Sjögren syndrome.
Suzuki, Kimihiro; Matsumoto, Mitsuyo; Nakashima, Masahiro; Takada, Kunio; Nakanishi, Takashi; Okada, Makoto; Ohsuzu, Fumitaka
2005-05-01
The aim of this study is to clarify the effects of cevimeline on various components in human saliva, such as immunoglobulin A (IgA), lysozyme, alpha-amylase and squamous cell carcinoma (SCC) antigen. Twelve female patients with Sjögren syndrome (SS) and 14 healthy women were enrolled. After the first saliva collection, one capsule (30 mg) of cevimeline was administered to each subject. Saliva was collected again after 90 min. The salivary flow rate and concentration of each component were measured. In both groups the salivary flow rate and amylase concentration were significantly increased by cevimeline. The lysozyme and IgA concentrations did not change significantly in both groups. The SCC antigen concentration did not change significantly in the SS group, but it decreased significantly in the control group. The secretion rates of amylase and IgA showed significant increases in both groups. The secretion rate of lysozyme significantly increased only in the control group, while the secretion rate of SCC significantly increased only in the SS group. Cevimeline augments not only the salivary flow rate but also the secretion rate of some digestive and/or defense factors from infections. It may be beneficial for SS patients to continue taking cevimeline to prevent oral infections, and other serious sequelae. Copyright (c) 2005 S. Karger AG, Basel.
Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian
2012-01-01
Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.
[Augmentation with PMMA cement].
Kühn, K-D; Höntzsch, D
2015-09-01
Cements based on polymethyl methacrylate (PMMA) can be used without any problem in a variety of clinical augmentations. Cement-related complications in surgical procedures involving PMMA cements, such as embolism, thermal necrosis, toxicity and hypersensitivity, are often due to other causes. Knowledge about the properties of the cement helps the user to safely employ PMMA cements in augmentations. High radio-opacity is required in vertebral body augmentations and this is provided in particular by zirconium dioxide. In vertebral body augmentations, a low benzoyl peroxide (BPO) content can considerably prolong the liquid dough phase. In augmentations with cement fillings in the region of a tumor, a high BPO content can specifically increase the peak temperature of the PMMA cement. In osteosynthetic augmentations with PMMA, necrosis is rare because heat development in the presence of metallic implants is low due to heat conduction via the implant. Larger cement fillings where there is no heat conduction via metal implants can exhibit substantially higher peak temperatures. The flow properties of PMMA cements are of particular importance for the user to allow optimum handling of PMMA cements. In patients with hypersensitivity to antibiotics, there is no need to avoid the use of PMMA as there are sufficient PMMA-based alternatives. The PMMA cements are local drug delivery systems and antibiotics, antiseptics, antimycotics and also cytostatics can be mixed with the cement. Attention must be paid to antagonistic and synergistic effects.
Augmenting Trastuzumab Therapy against Breast Cancer through Selective Activation of NK Cells
2014-12-01
purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines including MCF7 (A and E...purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A...and Whiteside, T.L. 2007. A novel multiparametric flow cytometry -based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons
2016-11-09
software, and their networking to augment optical diagnostics employed in supersonic reacting and non-reacting flow experiments . A high-speed...facility at Caltech. Experiments to date have made use of this equipment, extending previous capabilities to high-speed schlieren quantitative flow...visualization and image correlation velocimetry, with further experiments currently in progress. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17
1980-12-01
augmentation techniques, entropy generation, irreversibility, exergy . 20. ABSTRACT (Continue on rovers. side If necessary and Identify by block number...35 3.5 Internally finned tubes ...... ................. .. 37 3.6 Internally roughened tubes ..... ............... . 41 3.7 Other heat transfer...irreversibility and entropy generation as fundamental criterion for evaluating and, eventually, minimizing the waste of usable energy ( exergy ) in energy
Aircrew Training Devices: Fidelity Features.
1981-01-01
providing artificial cues for glideslope and lineup . He found that an adaptive strategy for using augmenting cues, where the presence or absence of the...with continuously available sources of augmented information for lineup and glideslope in the simulatot, they performed more poorly on test trials...flown: fighting wing, barrel roll attack, sequential attack, free engagement, aileron roll and loop. Results indicated higher ratings of realism for
Shaikh, Amir Y; Wang, Na; Yin, Xiaoyan; Larson, Martin G; Vasan, Ramachandran S; Hamburg, Naomi M; Magnani, Jared W; Ellinor, Patrick T; Lubitz, Steven A; Mitchell, Gary F; Benjamin, Emelia J; McManus, David D
2016-09-01
The relations of measures of arterial stiffness, pulsatile hemodynamic load, and endothelial dysfunction to atrial fibrillation (AF) remain poorly understood. To better understand the pathophysiology of AF, we examined associations between noninvasive measures of vascular function and new-onset AF. The study sample included participants aged ≥45 years from the Framingham Heart Study offspring and third-generation cohorts. Using Cox proportional hazards regression models, we examined relations between incident AF and tonometry measures of arterial stiffness (carotid-femoral pulse wave velocity), wave reflection (augmentation index), pressure pulsatility (central pulse pressure), endothelial function (flow-mediated dilation), resting brachial arterial diameter, and hyperemic flow. AF developed in 407/5797 participants in the tonometry sample and 270/3921 participants in the endothelial function sample during follow-up (median 7.1 years, maximum 10 years). Higher augmentation index (hazard ratio, 1.16; 95% confidence interval, 1.02-1.32; P=0.02), baseline brachial artery diameter (hazard ratio, 1.20; 95% confidence interval, 1.01-1.43; P=0.04), and lower flow-mediated dilation (hazard ratio, 0.79; 95% confidence interval, 0.63-0.99; P=0.04) were associated with increased risk of incident AF. Central pulse pressure, when adjusted for age, sex, and hypertension (hazard ratio, 1.14; 95% confidence interval, 1.02-1.28; P=0.02) was associated with incident AF. Higher pulsatile load assessed by central pulse pressure and greater apparent wave reflection measured by augmentation index were associated with increased risk of incident AF. Vascular endothelial dysfunction may precede development of AF. These measures may be additional risk factors or markers of subclinical cardiovascular disease associated with increased risk of incident AF. © 2016 American Heart Association, Inc.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Code Validation Studies of High-Enthalpy Flows
2006-12-01
stage of future hypersonic vehicles. The development and design of such vehicles is aided by the use of experimentation and numerical simulation... numerical predictions and experimental measurements. 3. Summary of Previous Work We have studied extensively hypersonic double-cone flows with and in...the experimental measurements and the numerical predictions. When we accounted for that effect in numerical simulations, and also augmented the
Flow separation on flapping and rotating profiles with spanwise gradients.
Wong, J G; laBastide, B P; Rival, D E
2017-02-15
The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles has been investigated experimentally. Three time-varying cases were considered: a two-dimensional reference case with a spanwise-uniform angle-of-attack variation α; a case with increasing α towards the profile tip (similar to flapping flyers); and a case with increasing α towards the profile root (similar to rotor blades experiencing an axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient produces a vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the profile. Specifically, when replicating the angle-of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-vorticity gradient is aligned such that circulation increases within the measurement domain. This in turn increases the local LEV growth rate, which is suggestive of force augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity gradient and spanwise flow, thereby replicating that arrangement found in a flapping flyer, was found to reduce local circulation. From this, we can conclude that spanwise flow can be arranged to vary LEV growth to prolong lift augmentation and reduce the unsteadiness of cyclic loads.
Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.
Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali
2017-01-01
This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
Basafa, Ehsan; Murphy, Ryan J; Kutzer, Michael D; Otake, Yoshito; Armand, Mehran
2013-01-01
Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement into the porous medium of cancellous bone. We used the method of Smoothed Particle Hydrodynamics (SPH) to model the flow of PMMA inside porous media. We modified the standard formulation of SPH to incorporate the extreme viscosities associated with bone cement. Darcy creeping flow of fluids through isotropic porous media was simulated and the results were compared with those reported in the literature. Further validation involved injecting PMMA cement inside porous foam blocks - osteoporotic cancellous bone surrogates - and simulating the injections using our proposed SPH model. Millimeter accuracy was obtained in comparing the simulated and actual cement shapes. Also, strong correlations were found between the simulated and the experimental data of spreading distance (R(2) = 0.86) and normalized pressure (R(2) = 0.90). Results suggest that the proposed model is suitable for use in an osteoporotic femoral augmentation planning framework.
A Synthetic Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection
Murray, Preston R.; Thomson, Scott L.; Smith, Marshall E.
2013-01-01
Objective Design and evaluate a platform for studying the mechanical effects of augmentation injections using synthetic self-oscillating vocal fold models. Study Design Basic science. Methods Life-sized, synthetic, multi-layer, self-oscillating vocal fold models were created that simulated bowing via volumetric reduction of the body layer relative to that of a normal, unbowed model. Material properties of the layers were unchanged. Models with varying degrees of bowing were created and paired with normal models. Following initial acquisition of data (onset pressure, vibration frequency, flow rate, and high-speed image sequences), bowed models were injected with silicone that had material properties similar to those used in augmentation procedures. Three different silicone injection quantities were tested: sufficient to close the glottal gap, insufficient to close the glottal gap, and excess silicone to create convex bowing of the bowed model. The above-mentioned metrics were again taken and compared. Pre- and post-injection high-speed image sequences were acquired using a hemilarynx setup, from which medial surface dynamics were quantified. Results The models vibrated with mucosal wave-like motion and at onset pressures and frequencies typical of human phonation. The models successfully exhibited various degrees of bowing which were then mitigated by injecting filler material. The models showed general pre- to post-injection decreases in onset pressure, flow rate, and open quotient, and a corresponding increase in vibration frequency. Conclusion The model may be useful in further explorations of the mechanical consequences of augmentation injections. PMID:24476985
The Effects of Rotation on Boundary Layers in Turbomachine Rotors
NASA Technical Reports Server (NTRS)
Johnston, J. P.
1974-01-01
The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.
An experimental test of alternative population augmentation scenarios.
Kronenberger, John A; Gerberich, Jill C; Fitzpatrick, Sarah W; Broder, E Dale; Angeloni, Lisa M; Funk, W Chris
2018-01-19
Human land use is fragmenting habitats worldwide and inhibiting dispersal among previously connected populations of organisms, often leading to inbreeding depression and reduced evolutionary potential in the face of rapid environmental change. To combat this augmentation of isolated populations with immigrants is sometimes used to facilitate demographic and genetic rescue. Augmentation with immigrants that are genetically and adaptively similar to the target population effectively increases population fitness, but if immigrants are very genetically or adaptively divergent, augmentation can lead to outbreeding depression. Despite well-cited guidelines for the best practice selection of immigrant sources, often only highly divergent populations remain, and experimental tests of these riskier augmentation scenarios are essentially nonexistent. We conducted a mesocosm experiment with Trinidadian guppies (Poecilia reticulata) to test the multigenerational demographic and genetic effects of augmenting 2 target populations with 3 types of divergent immigrants. We found no evidence of demographic rescue, but we did observe genetic rescue in one population. Divergent immigrant treatments tended to maintain greater genetic diversity, abundance, and hybrid fitness than controls that received immigrants from the source used to seed the mesocosms. In the second population, divergent immigrants had a slightly negative effect in one treatment, and the benefits of augmentation were less apparent overall, likely because this population started with higher genetic diversity and a lower reproductive rate that limited genetic admixture. Our results add to a growing consensus that gene flow can increase population fitness even when immigrants are more highly divergent and may help reduce uncertainty about the use of augmentation in conservation. © 2018 Society for Conservation Biology.
Using augmented reality to teach and learn biochemistry.
Vega Garzón, Juan Carlos; Magrini, Marcio Luiz; Galembeck, Eduardo
2017-09-01
Understanding metabolism and metabolic pathways constitutes one of the central aims for students of biological sciences. Learning metabolic pathways should be focused on the understanding of general concepts and core principles. New technologies such Augmented Reality (AR) have shown potential to improve assimilation of biochemistry abstract concepts because students can manipulate 3D molecules in real time. Here we describe an application named Augmented Reality Metabolic Pathways (ARMET), which allowed students to visualize the 3D molecular structure of substrates and products, thus perceiving changes in each molecule. The structural modification of molecules shows students the flow and exchange of compounds and energy through metabolism. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):417-420, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Heuslein, Joshua L.; Meisner, Joshua K.; Li, Xuanyue; Song, Ji; Vincentelli, Helena; Leiphart, Ryan J.; Ames, Elizabeth G.; Price, Richard J.
2015-01-01
Objective Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of flow direction reversal, occurring in numerous collateral artery segments after femoral artery ligation (FAL), is unknown. Our objective was to determine if flow direction reversal in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis. Approach and Results Collateral segments experiencing flow reversal after FAL in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post-FAL) remodeling. Genome-wide transcriptional analyses on HUVECs exposed to flow reversal conditions mimicking those occurring in-vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (NFκB, VEGF, FGF2, TGFβ) and arteriogenic canonical pathways (PKA, PDE, MAPK). Augmented expression of key pro-arteriogenic molecules (KLF2, ICAM-1, eNOS) was also verified by qRT-PCR, leading us to test whether ICAM-1 and/or eNOS regulate amplified arteriogenesis in flow-reversed collateral segments in-vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after FAL in ICAM-1−/− mice; however, eNOS−/− mice showed no such differences. Conclusions Flow reversal leads to a broad amplification of pro-arteriogenic endothelial signaling and a sustained ICAM-1-dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by flow reversal may lead to more effective and durable therapeutic options for arterial occlusive diseases. PMID:26338297
NASA Astrophysics Data System (ADS)
Murillo, J.; García-Navarro, P.
2012-02-01
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.
The impact of circulation control on rotary aircraft controls systems
NASA Technical Reports Server (NTRS)
Kingloff, R. F.; Cooper, D. E.
1987-01-01
Application of circulation to rotary wing systems is a new development. Efforts to determine the near and far field flow patterns and to analytically predict those flow patterns have been underway for some years. Rotary wing applications present a new set of challenges in circulation control technology. Rotary wing sections must accommodate substantial Mach number, free stream dynamic pressure and section angle of attack variation at each flight condition within the design envelope. They must also be capable of short term circulation blowing modulation to produce control moments and vibration alleviation in addition to a lift augmentation function. Control system design must provide this primary control moment, vibration alleviation and lift augmentation function. To accomplish this, one must simultaneously control the compressed air source and its distribution. The control law algorithm must therefore address the compressor as the air source, the plenum as the air pressure storage and the pneumatic flow gates or valves that distribute and meter the stored pressure to the rotating blades. Also, mechanical collective blade pitch, rotor shaft angle of attack and engine power control must be maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiebig, M.; Chen, Y.; Grosse-Gorgemann, A.
1995-08-01
Numerical investigations of three-dimensional flow and heat transfer in a finned tube with punched longitudinal vortex generators (LVG`s) are carried out for Reynolds number of 250 and 300. Air with a Prandtl number of 0.7 is used as the fluid. The flow is both thermally and hydrodynamically developing. The LVG is a delta winglet pair (DWP) punched out of the fin and is located directly behind the tube, symmetrically separated by one tube diameter. The DWP generates longitudinal vortices in the wake of the tube, defers flow separation on the tube, deflects the main stream into the tube wake, andmore » strong reduces the ``dead water zone.`` Heat transfer reversal is avoided by the DWP. Comparison of the span-averaged Nusselt numbers for the fin with and without DWP shows significant local heat transfer enhancement of several hundred percent in the tube wake. For Re = 300 and Fi = 200 the global heat transfer augmentation by a DWP, which amounts to only 2.5% of the fin area, is 31%.« less
Approximate similarity principle for a full-scale STOVL ejector
NASA Astrophysics Data System (ADS)
Barankiewicz, Wendy S.; Perusek, Gail P.; Ibrahim, Mounir B.
1994-03-01
Full-scale ejector experiments are expensive and difficult to implement at engine exhaust temperatures. For this reason the utility of using similarity principles, in particular the Munk and prim principle for isentropic flow, was explored. Static performance test data for a full-scale thrust augmenting ejector were analyzed for primary flow temperature up to 1560 R. At different primary temperatures, exit pressure contours were compared for similarity. A nondimensional flow parameter is then used to eliminate primary nozzle temperature dependence and verify similarity between the hot and cold flow experiments. Under the assumption that an appropriate similarity principle can be established, properly chosen performance parameters were found to be similar for both flow and cold flow model tests.
Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.
The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.
Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B
2018-04-01
River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.
The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation
NASA Astrophysics Data System (ADS)
Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.
2018-04-01
River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.
The art and science of flow control
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.
NASA Technical Reports Server (NTRS)
Jones, William L.; Dowman, Harry W.
1947-01-01
Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
NASA Technical Reports Server (NTRS)
Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callaham, Michael; Carrier, Chris
2011-01-01
In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
NASA Technical Reports Server (NTRS)
VanFossen, G. James; Bunker, Ronald S.
2000-01-01
Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.
Code of Federal Regulations, 2013 CFR
2013-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2014 CFR
2014-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2012 CFR
2012-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Heater head for stirling engine
Corey, John A.
1985-07-09
A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.
In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.
Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M
2001-04-01
OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.
Diéguez, Godofredo; García-Villalón, Angel Luis
2011-01-01
The relative role of NO derived from endothelium NO synthase (eNOS) and neuronal NO synthase (nNOS) in renovascular reactivity during renal hypotension is unknown. To examine this issue, we recorded the effects of unspecific inhibitor of NO synthase N(w)-nitro-L-arginine methyl esther (L-NAME) and inhibitor of nNOS 7-nitroindazole monosodium salt (7-NINA) on renal vasodilator and vasoconstrictor responses in anesthetized goats during renal hypotension by constricting the abdominal aorta. Intrarenal administration of L-NAME and hypotension, either untreated or treated with L-NAME, decreased resting renal blood flow, and the increases in renal blood flow by acetylcholine but not those by sodium nitroprusside were tempered, and the decreases by norepinephrine and angiotensin II were augmented. Intraperitoneal administration of 7-NINA did not affect, and 7-NINA+hypotension decreased renal blood flow, and under these conditions the increases in renal blood flow by acetylcholine and sodium nitroprusside were not modified, and the decreases by norepinephrine and angiotensin II were slightly (during 7-NINA) or consistently augmented (7-NINA+hypotension). Therefore, NO derived from eNOS plays a significant role, while that derived from nNOS plays a little role, if any, to regulate renal blood flow and to mediate acetylcholine-induced vasodilation, as well to modulate renal vasoconstriction by norepinephrine and angiotensin II. Copyright © 2011 Elsevier Inc. All rights reserved.
Performance Enhancement of Unsteady Ejectors Investigated Using a Pulsejet Driver
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2003-01-01
Unsteady ejectors are currently under investigation for use in some pulse detonation engine (PDE) propulsion systems. This is due primarily to their potential high performance in comparison to steady ejectors of similar dimensions relative to the source or driver jet. Although some experimental work has been done in the past to study thrust augmentation with unsteady ejectors, there is no proven theory by which optimal design parameters can be selected and an effective ejector constructed for a given pulsed flow. Therefore, an experimental facility was developed at the NASA Glenn Research Center to study the correlation between ejector design and performance, and to get a better understanding of the flow phenomena that result in thrust augmentation. A commercially available pulsejet was used for the unsteady driving jet. This was paired with a basic, yet flexible, ejector design that allowed parametric evaluation of the effects that length, diameter, and inlet radius have on performance.
Electrohydrodynamic convective heat transfer in a square duct.
Grassi, Walter; Testi, Daniele
2009-04-01
Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2017-01-01
An experimental investigation of the effects of distributed surface roughness on boundary-layer transition and turbulent heating has been conducted. Hypersonic wind tunnel testing was performed using hemispherical models with surface roughness patterns simulating those produced by heat shield ablation. Global aeroheating and transition onset data were obtained using phosphor thermography at Mach 6 and Mach 10 over a range of roughness heights and free stream Reynolds numbers sufficient to produce laminar, transitional and turbulent flow. Upstream movement of the transition onset location and increasing heating augmentation over predicted smooth-wall levels were observed with both increasing roughness heights and increasing free stream Reynolds numbers. The experimental heating data are presented herein, as are comparisons to smooth-wall heat transfer distributions from computational flow-field simulations. The transition onset data are also tabulated, and correlations of these data are presented.
Multithreaded hybrid feature tracking for markerless augmented reality.
Lee, Taehee; Höllerer, Tobias
2009-01-01
We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time performance, multiple operations are processed in a synchronized multi-threaded manner: capturing a video frame, tracking features using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user's outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking approach, and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for interaction.
Preliminary dynamic tests of a flight-type ejector
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1992-01-01
A thrust augmenting ejector was tested to provide experimental data to assist in the assessment of theoretical models to predict duct and ejector fluid-dynamic characteristics. Eleven full-scale thrust augmenting ejector tests were conducted in which a rapid increase in the ejector nozzle pressure ratio was effected through a unique bypass/burst-disk subsystem. The present work examines two cases representative of the test performance window. In the first case, the primary nozzle pressure ration (NPR) increased 36 percent from one unchoked (NPR = 1.29) primary flow condition to another (NPR = 1.75) over a 0.15 second interval. The second case involves choked primary flow conditions, where a 17 percent increase in primary nozzle flowrate (from NPR = 2.35 to NPR = 2.77) occurred over approximately 0.1 seconds. Transient signal treatment of the present dataset is discussed and initial interpretations of the results are compared with theoretical predictions for a similar STOVL ejector model.
Dion, Gregory R; Achlatis, Efstratios; Teng, Stephanie; Fang, Yixin; Persky, Michael; Branski, Ryan C; Amin, Milan R
2017-11-01
Compromised cough effectiveness is correlated with dysphagia and aspiration. Glottic insufficiency likely yields decreased cough strength and effectiveness. Although vocal fold augmentation favorably affects voice and likely improves cough strength, few data exist to support this hypothesis. To assess whether vocal fold augmentation improves peak airflow measurements during maximal-effort cough following augmentation. This case series study was conducted in a tertiary, academic laryngology clinic. Participants included 14 consecutive individuals with glottic insufficiency due to vocal fold paralysis, which was diagnosed via videostrobolaryngoscopy as a component of routine clinical examination. All participants who chose to proceed with augmentation were considered for the study whether office-based or operative augmentation was planned. Postaugmentation data were collected only at the first follow-up visit, which was targeted for 14 days after augmentation but varied on the basis of participant availability. Data were collected from June 5, 2014, to October 1, 2015. Data analysis took place between October 2, 2015, and March 3, 2017. Peak airflow during maximal volitional cough was quantified before and after vocal fold augmentation. Participants performed maximal coughs, and peak expiratory flow during the maximal cough was captured according to American Thoracic Society guidelines. Among the 14 participants (7 men and 7 women), the mean (SD) age was 62 (18) years. Three types of injectable material were used for vocal fold augmentation: carboxymethylcellulose in 5 patients, hyaluronic acid in 5, and calcium hydroxylapatite in 4. Following augmentation, cough strength increased in 11 participants and decreased cough strength was observed in 3. Peak airflow measurements during maximal cough varied from a decrease of 40 L/min to an increase of 150 L/min following augmentation. When preaugmentation and postaugmentation peak airflow measurements were compared, the median improvement was 50 L/min (95% CI, 10-75 L/min; P = .01). Immediate peak airflow measurements during cough collected within 30 minutes of augmentation varied when compared with measurements collected at follow-up (103-380 vs 160-390 L/min). Peak airflow during maximal cough may improve with vocal fold augmentation. Additional assessment and measurements are needed to further delineate which patients will benefit most regarding their cough from vocal fold augmentation.
NASA Astrophysics Data System (ADS)
Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul
2017-06-01
Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest; Kingery, Joseph E.
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.« less
Topological and behavioral disorder in collective motion
NASA Astrophysics Data System (ADS)
Quint, David
2014-03-01
A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (extrinsic), and those that arise from behavioral heterogeneties within the swarm itself (intrinsic). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous 2 d agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment.
Alfieri, A; Bregy, A; Constantinescu, M; Stuker, F; Schaffner, T; Frenz, M; Banic, A; Reinert, M
2008-01-01
Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit.
Oakley, C; Spafford, C; Beard, J D
2017-05-01
The objective of this study was to collect 1 year follow-up information on walking distance, speed, compliance, and cost in patients with intermittent claudication who took part in a previously reported 12 week randomised clinical trial of a home exercise programme augmented with Nordic pole walking versus controls who walked normally. A second objective was to look at quality of life and ankle brachial pressure indices (ABPIs) after a 12 week augmented home exercise programme. Thirty-two of the 38 patients who completed the original trial were followed-up after 6 and 12 months. Frequency, duration, speed, and distance of walking were recorded using diaries and pedometers. A new observational cohort of 29 patients was recruited to the same augmented home exercise programme. ABPIs, walking improvement, and quality of life questionnaire were recorded at baseline and 12 weeks (end of the programme). Both groups in the follow-up study continued to improve their walking distance and speed over the following year. Compliance was excellent: 98% of the augmented group were still walking with poles at both 6 and 12 months, while 74% of the control group were still walking at the same point. The augmented group increased their mean walking distance to 17.5 km by 12 months, with a mean speed of 4.2 km/hour. The control group only increased their mean walking distance from 4.2 km to 5.6 km, and speed to 3.3 km/hour. Repeated ANOVA showed the results to be highly significant (p = .002). The 21/29 patients who completed the observational study showed a statistically significant increase in resting ABPIs from baseline (mean ± SD 0.75 ± 0.12) to week 12 (mean ± SD 0.85 ± 0.12) (t = (20) -8.89, p = .000 [two-tailed]). All their walking improvement and quality of life parameters improved significantly (p = .002 or less in the six categories) over the same period and their mean health scores improved by 79%. Following a 12 week augmented home exercise programme, most patients with intermittent claudication continued to significantly improve their walking distance and walking speed at 1 year compared with normal walking. Quality of life and ABPIs improved significantly after only 12 weeks and it is postulated that the improvement in ABPI was due to collateral development. These results justify the belief that an augmented home exercise programme will be as clinically effective as existing supervised exercise programmes, with the added benefits of lower cost and better compliance. Funding for a multicentre trial comparing an augmented home exercise programme with existing supervised exercise programme is now urgently required. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Development of Augmented Spark Impinging Igniter System for Methane Engines
NASA Technical Reports Server (NTRS)
Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.
2017-01-01
The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.
NASA Astrophysics Data System (ADS)
Maldonado, Jaime J.
1994-04-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
NASA Technical Reports Server (NTRS)
Maldonado, Jaime J.
1994-01-01
Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.
Ma, Junqiang; Ma, Yonglie; Dong, Bin; Bandet, Mischa V; Shuaib, Ashfaq; Winship, Ian R
2017-08-01
Collateral circulation is a key variable determining prognosis and response to recanalization therapy during acute ischemic stroke. Remote ischemic perconditioning (RIPerC) involves inducing peripheral ischemia (typically in the limbs) during stroke and may reduce perfusion deficits and brain damage due to cerebral ischemia. In this study, we directly investigated pial collateral flow augmentation due to RIPerC during distal middle cerebral artery occlusion (MCAo) in rats. Blood flow through pial collaterals between the anterior cerebral artery (ACA) and the MCA was assessed in male Sprague Dawley rats using in vivo laser speckle contrast imaging (LSCI) and two photon laser scanning microscopy (TPLSM) during distal MCAo. LSCI and TPLSM revealed that RIPerC augmented collateral flow into distal MCA segments. Notably, while control rats exhibited an initial dilation followed by a progressive narrowing of pial arterioles 60 to 150-min post-MCAo (constricting to 80-90% of post-MCAo peak diameter), this constriction was prevented or reversed by RIPerC (such that vessel diameters increased to 105-110% of post-MCAo, pre-RIPerC diameter). RIPerC significantly reduced early ischemic damage measured 6 h after stroke onset. Thus, prevention of collateral collapse via RIPerC is neuroprotective and may facilitate other protective or recanalization therapies by improving blood flow in penumbral tissue.
Blood flow dynamics in heart failure
NASA Technical Reports Server (NTRS)
Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.
1999-01-01
BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.
Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm
NASA Astrophysics Data System (ADS)
Küchlin, Stephan; Jenny, Patrick
2018-06-01
Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.
Staab, Katie Lynn; Holzman, Roi; Hernandez, L Patricia; Wainwright, Peter C
2012-05-01
A protrusible upper jaw has independently evolved multiple times within teleosts and has been implicated in the success of two groups in particular: Acanthomorpha and Cypriniformes. We use digital particle image velocimetry (DPIV) to compare suction feeding flow dynamics in a representative of each of these clades: goldfish and bluegill. Using DPIV, we contrast the spatial pattern of flow, the temporal relationship between flow and head kinematics, and the contribution of jaw protrusion to the forces exerted on prey. As expected, the spatial patterns of flow were similar in the two species. However, goldfish were slower to reach maximal kinematic excursions, and were more flexible in the relative timing of jaw protrusion, other jaw movements and suction flows. Goldfish were also able to sustain flow speeds for a prolonged period of time as compared with bluegill, in part because goldfish generate lower peak flow speeds. In both species, jaw protrusion increased the force exerted on the prey. However, slower jaw protrusion in goldfish resulted in less augmentation of suction forces. This difference in force exerted on prey corresponds with differences in trophic niches and feeding behavior of the two species. The bluegill uses powerful suction to capture insect larvae whereas the goldfish uses winnowing to sort through detritus and sediment. The kinethmoid of goldfish may permit jaw protrusion that is independent of lower jaw movement, which could explain the ability of goldfish to decouple suction flows (due to buccal expansion) from upper jaw protrusion. Nevertheless, our results show that jaw protrusion allows both species to augment the force exerted on prey, suggesting that this is a fundamental benefit of jaw protrusion to suction feeders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.
High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less
Logic flowgraph methodology - A tool for modeling embedded systems
NASA Technical Reports Server (NTRS)
Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.
1991-01-01
The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Darian, Armen; Sindir, Munir
1992-01-01
We have applied and compared the efficiency and accuracy of two commonly used numerical methods for the solution of Navier-Stokes equations. The artificial compressibility method augments the continuity equation with a transient pressure term and allows one to solve the modified equations as a coupled system. Due to its implicit nature, one can have the luxury of taking a large temporal integration step at the expense of higher memory requirement and larger operation counts per step. Meanwhile, the fractional step method splits the Navier-Stokes equations into a sequence of differential operators and integrates them in multiple steps. The memory requirement and operation count per time step are low, however, the restriction on the size of time marching step is more severe. To explore the strengths and weaknesses of these two methods, we used them for the computation of a two-dimensional driven cavity flow with Reynolds number of 100 and 1000, respectively. Three grid sizes, 41 x 41, 81 x 81, and 161 x 161 were used. The computations were considered after the L2-norm of the change of the dependent variables in two consecutive time steps has fallen below 10(exp -5).
Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi
2016-07-01
To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.
Reserve Component Logistics Responsibilities in the Total Force,
1982-10-01
It diferent from Report) 14. SUPPLEMENTARY NOTES Four Service-specific Working Notes are included as Appendices. 19. KEY WORDS (Continue on reverse...During the balance of the task, we will augment the data presented in this working note with: - time phasing of RC units after mobilization for a NATO or...aerial refueling During the balance of the task, we will augment the data presented in this working paper with: - time phasings of RC units after
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C.; Dibrani, B.; Richmond, M.
2006-01-01
This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004. Although temperature, and hence density, differences during flow augmentation periods between the Clearwater and Snake rivers were approximately equal (7-12 C) for all four years, the discharge ratio varied which resulted in significant differences in entrainment of cooler Clearwater River water into the Lower Granite Reservoir epilimnion. However, as a direct result of system management, Lower Granite Dam tailrace temperatures were maintained near 20 C during all years. Primary differences in the other three lower Snake River reservoirs were therefore a result of meteorological conditions and dam operations, which produced variations in wind setup and surface heating. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are capable of matching diurnal and long-term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the three-dimensional non-hydrostatic model Flow3D. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake river discharge. Simulation results were linked with the particle tracking model FINS to develop reservoir-integrated metrics that varied due to these alternative operation schemes. Findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir, which may also impact the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less
A Shallow Layer Approach for Geo-flow emplacement
NASA Astrophysics Data System (ADS)
Costa, A.; Folch, A.; Mecedonio, G.
2009-04-01
Geophysical flows such as lahars or lava flows severely threat the communities located on or near the volcano flanks. Risks and damages caused by the propagation of this kind of flows require a quantitative description of this phenomenon and reliable tools for forecasting their emplacement. Computational models are a valuable tool for planning risk mitigation countermeasures, such as human intervention to force flow diversion, artificial barriers, and allow for significant economical and social benefits. A FORTRAN 90 code based on a Shallow Layer Approach for Geo-flows (SLAG) for describing transport and emplacement of diluted lahars, water and lava was developed in both serial and parallel version. Three rheological models, such as those describing i) a viscous, ii) a turbulent, and iii) a dilatant flow respectively, were implemented in order to describe transport of lavas, water and diluted lahars. The code was made user-friendly by creating some interfaces that allow the user to easily define the problem, extract and interpolate the topography of the simulation domain. Moreover SLAG outputs can be written in both GRD format (e.g., Surfer), NetCDF format, or visualized directly in GoogleEarth. In SLAG the governing equations were treated using a Godunov splitting method following George (2008) algorithm based on a Riemann solver for the shallow water equations that decomposes an augmented state variable the depth, momentum, momentum flux, and bathymetry into four propagating discontinuities or waves. For our application, the algorithm was generalized for solving the energy equation. For validating the code in simulating real geophysical flows, we performed few simulations the lava flow event of the the 3rd and 4th January 1992 Etna eruption, the July 2001 Etna lava flows, January 2002 Nyragongo lava flows and few test cases for simulating transport of diluted lahars. Ref: George, D.L. (2008), Augmented Riemann Solvers for the Shallow Water Equations over Variable Topography with Steady States and Inundation, J. Comput. Phys., 227 (6), 3089-3113, doi:10.1016/j.jcp.2007.10.027.
The Influence of Electrode and Channel Configurations on Flow Battery Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, RM; Perry, ML
2014-05-21
Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society.more » All rights reserved.« less
Nagm, Alhusain; Horiuchi, Tetsuyoshi; Hasegawa, Takatoshi; Hongo, Kazuhiro
2016-04-01
In reverse bypass that used a naturally formed "bonnet" superficial temporal artery, intraoperative volume flow measurement quantifies flow augmentation after revascularization, confirms flow preservation, and identifies inadvertent vessel compromise. A 75-year-old man presented with transient ischemic attacks attributed to right internal carotid artery stenosis. He underwent successful reverse bypass via a naturally formed "bonnet" superficial temporal artery middle cerebral artery bypass. As the result of proper intraoperative volume flow evaluation, a successful reverse bypass was achieved. Modification of the intraoperative stroke risk and prediction of the long-term patency after reverse bypass can be achieved by meticulous intraoperative blood flow evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Geyer, James; Bogan, Richard
2017-09-01
Restless legs syndrome (RLS) is a chronic disorder causing clinically significant discomfort to approximately 3% of adults. Although RLS was first identified centuries ago, our understanding of this disorder, its causes, and its treatments is still evolving. In particular, our knowledge of the potential negative effects of RLS treatments, including dopaminergic augmentation, continues to expand. Augmentation, which refers to a paradoxical treatment-related increase in RLS symptoms, has been associated with all three dopamine agonists approved for the treatment of RLS - rotigotine, pramipexole, and ropinirole. This review presents key information on prevention and treatment of dopaminergic augmentation from the recently published consensus-based guidelines issued by the International RLS Study Group task force in conjunction with the European RLS Study Group and the RLS Foundation for first-line treatment of RLS/Willis-Ekbom disease. If dopamine agonists are used to treat RLS, it is recommended that the dosage should be kept as low as possible without exceeding the maximum dose recommended for RLS treatment. As the frequency of augmentation with the rotigotine patch may only be slightly lower than that associated with pramipexole or ropinirole, medications that are effective and have little risk of augmentation, such as alpha-2-delta ligands, may be considered for initial RLS treatment. In addition, we present our clinical experience with treating patients with dopaminergic augmentation by highlighting 2 case studies and practical considerations when treating different patient populations. Applying current RLS augmentation diagnosis and treatment guidelines, as well as collecting detailed histories of worsening RLS symptoms, is critical for patient safety and effective management of RLS augmentation.
A control-volume method for analysis of unsteady thrust augmenting ejector flows
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1988-01-01
A method for predicting transient thrust augmenting ejector characteristics is presented. The analysis blends classic self-similar turbulent jet descriptions with a control volume mixing region discretization to solicit transient effects in a new way. Division of the ejector into an inlet, diffuser, and mixing region corresponds with the assumption of viscous-dominated phenomenon in the latter. Inlet and diffuser analyses are simplified by a quasi-steady analysis, justified by the assumptions that pressure is the forcing function in those regions. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Flow Control Research at NASA Langley in Support of High-Lift Augmentation
NASA Technical Reports Server (NTRS)
Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.
2002-01-01
The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.
Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke
Armitage, Glenn A; Todd, Kathryn G; Shuaib, Ashfaq; Winship, Ian R
2010-01-01
Collateral vasculature may provide an alternative route for blood flow to reach the ischemic tissue and partially maintain oxygen and nutrient support during ischemic stroke. However, much about the dynamics of stroke-induced collateralization remains unknown. In this study, we used laser speckle contrast imaging to map dynamic changes in collateral blood flow after middle cerebral artery occlusion in rats. We identified extensive anastomatic connections between the anterior and middle cerebral arteries that develop after vessel occlusion and persist for 24 hours. Augmenting blood flow through these persistent yet dynamic anastomatic connections may be an important but relatively unexplored avenue in stroke therapy. PMID:20517321
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T.T.; Keller, J.O.
1987-07-10
A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.
Bauer, Daniel P.; Steele, Timothy Doak; Anderson, Richard D.
1978-01-01
An analysis of the waste-load assimilative capacity of the Yampa River from Steamboat Springs to Hayden, Colo., a distance of 38 miles, was made during September 1975 to obtain information on the effects of projected waste loadings on this stream reach. Simulations of effects of waste loadings on streamflow quality were made using a steady-state water-quality model. The simulations were based on 7-day low-flow values with a 10-year recurrence interval and population projections for 2010. Model results for December and September streamflow conditions indicated that the recommended 1978 Colorado and 1976 U.S. Environmental Protection Agency water-quality standard of 0.02 milligram per liter for nonionized ammonia concentration would be exceeded. Model simulations also included the effect of a flow augmentation of 20 cubic feet per second from a proposed upstream reservoir. The permissible ammonia loading in the study reach could be increased approximately 25 percent with this amount of flow augmentation. Simulations of concentrations of dissolved oxygen, fecal-coliform bacteria, and nitrate nitrogen indicated that the State 's water-quality goals proposed for 1978, 1983, or 1985 would not be exceeded. (Woodard-USGS)
Augment clinical measurement using a constraint-based esophageal model
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Acharya, Shashank; Kahrilas, Peter; Patankar, Neelesh; Pandolfino, John
2017-11-01
Quantifying the mechanical properties of the esophageal wall is crucial to understanding impairments of trans-esophageal flow characteristic of several esophageal diseases. However, these data are unavailable owing to technological limitations of current clinical diagnostic instruments that instead display esophageal luminal cross sectional area based on intraluminal impedance change. In this work, we developed an esophageal model to predict bolus flow and the wall property based on clinical measurements. The model used the constraint-based immersed-boundary method developed previously by our group. Specifically, we first approximate the time-dependent wall geometry based on impedance planimetry data on luminal cross sectional area. We then fed these along with pressure data into the model and computed wall tension based on simulated pressure and flow fields, and the material property based on the strain-stress relationship. As examples, we applied this model to augment FLIP (Functional Luminal Imaging Probe) measurements in three clinical cases: a normal subject, achalasia, and eosinophilic esophagitis (EoE). Our findings suggest that the wall stiffness was greatest in the EoE case, followed by the achalasia case, and then the normal. This is supported by NIH Grant R01 DK56033 and R01 DK079902.
Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...
Augmenting an observation network to facilitate flow and transport model discrimination.
USDA-ARS?s Scientific Manuscript database
Improving understanding of subsurface conditions includes performance comparison for competing models, independently developed or obtained via model abstraction. The model comparison and discrimination can be improved if additional observations will be included. The objective of this work was to i...
Tran, Quynh K; Jassby, David; Schwabe, Kurt A
2017-11-01
As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Candon, M. J.; Ogawa, H.
2018-06-01
Scramjets are a class of hypersonic airbreathing engine that offer promise for economical, reliable and high-speed access-to-space and atmospheric transport. The expanding flow in the scramjet nozzle comprises of unburned hydrogen. An after-burning scheme can be used to effectively utilize the remaining hydrogen by supplying additional oxygen into the nozzle, aiming to augment the thrust. This paper presents the results of a single-objective design optimization for a strut fuel injection scheme considering four design variables with the objective of maximizing thrust augmentation. Thrust is found to be augmented significantly owing to a combination of contributions from aerodynamic and combustion effects. Further understanding and physical insights have been gained by performing variance-based global sensitivity analysis, scrutinizing the nozzle flowfields, analyzing the distributions and contributions of the forces acting on the nozzle wall, and examining the combustion efficiency.
Performance Evaluation of a SLA Negotiation Control Protocol for Grid Networks
NASA Astrophysics Data System (ADS)
Cergol, Igor; Mirchandani, Vinod; Verchere, Dominique
A framework for an autonomous negotiation control protocol for service delivery is crucial to enable the support of heterogeneous service level agreements (SLAs) that will exist in distributed environments. We have first given a gist of our augmented service negotiation protocol to support distinct service elements. The augmentations also encompass related composition of the services and negotiation with several service providers simultaneously. All the incorporated augmentations will enable to consolidate the service negotiation operations for telecom networks, which are evolving towards Grid networks. Furthermore, our autonomous negotiation protocol is based on a distributed multi-agent framework to create an open market for Grid services. Second, we have concisely presented key simulation results of our work in progress. The results exhibit the usefulness of our negotiation protocol for realistic scenarios that involves different background traffic loading, message sizes and traffic flow asymmetry between background and negotiation traffics.
Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.
2008-01-01
An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1996-01-01
This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.
Performance of a solar augmented heat pump
NASA Astrophysics Data System (ADS)
Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.
Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.
Starting Vortex Identified as Key to Unsteady Ejector Performance
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2004-01-01
Unsteady ejectors are currently under investigation for use in some pulse-detonation-engine-based propulsion systems. Experimental measurements made in the past, and recently at the NASA Glenn Research Center, have demonstrated that thrust augmentation can be enhanced considerably when the driver is unsteady. In ejector systems, thrust augmentation is defined as = T(sup Total)/T(sup j), where T(sup Total) is the total thrust of the combined ejector and driving jet and T(sup j) is the thrust due to the driving jet alone. There are three images in this figure, one for each of the named thrust sources. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left, and the shape and location of each driver is shown on the far right of each image. The emitted vortex is a clearly defined "doughnut" of highly vortical (spinning) flow. In these planar images, the vortex appears as two distorted circles, one above, and one below the axis of symmetry. Because they are spinning in the opposite direction, the two circles have vorticity of opposite sign and thus are different colors. There is also a rectangle shown in each image. Its width represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. The exact mechanism behind the enhanced performance is unclear; however, it is believed to be related to the powerful vortex emitted with each pulse of the unsteady driver. As such, particle imaging velocimetry (PIV) measurements were obtained for three unsteady drivers: a pulsejet, a resonance tube, and a speaker-driven jet. All the drivers were tested with ejectors, and all exhibited performance enhancement over similarly sized steady drivers. The characteristic starting vortices of each driver are shown in these images. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left. The shape and location of each driver is shown on the far right of each image. The rectangle shown in each image represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. Although not shown, it was observed that the emitted vortex spread as it traveled downstream. The spreading rate for the pulsejet is shown as the dashed lines in the top image. A tapered ejector was fabricated that matched this shape. When tested, the ejector demonstrated superior performance to all those previously tested at Glenn (which were essentially of straight, cylindrical form), achieving a remarkable thrust augmentation of 2. The measured thrust augmentation is shown as a function of ejector length. Also shown are the thrust augmentation values achieved with the straight, cylindrical ejectors of varying diameters. Here, thrust augmentation is plotted as a function of ejector length for several families of ejector diameters. It can be seen that large thrust augmentation values are indeed obtained and that they are sensitive to both ejector length and diameter, particularly the latter. Five curves are shown. Four correspond to straight ejector diameters of 2.2, 3.0, 4.0, and 6.0 in. The fifth curve corresponds to the tapered ejector contoured to bound the emitted vortex. For each curve, there are several data points corresponding to different lengths. The largest value of thrust augmentation is 2.0 for the tapered ejector and 1.81 for the straight ejectors. Regardless of their diameters, all the ejectors trend toward peak performance at a particular leng. That the cross-sectional dimensions of optimal ejectors scaled precisely with the vortex dimensions on three separate pulsed thrust sources demonstrates that the action of the vortex is responsible for the enhanced ejector performance. The result also suggests that, in the absence of a complete understanding of the entrainment and augmentation mechanisms, methods of characterizing starting vortices may be useful for correlating and predicting unsteady ejector performance.
Schmidt, Mark Christopher
2000-01-01
In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.
On the Quantification of Cellular Velocity Fields.
Vig, Dhruv K; Hamby, Alex E; Wolgemuth, Charles W
2016-04-12
The application of flow visualization in biological systems is becoming increasingly common in studies ranging from intracellular transport to the movements of whole organisms. In cell biology, the standard method for measuring cell-scale flows and/or displacements has been particle image velocimetry (PIV); however, alternative methods exist, such as optical flow constraint. Here we review PIV and optical flow, focusing on the accuracy and efficiency of these methods in the context of cellular biophysics. Although optical flow is not as common, a relatively simple implementation of this method can outperform PIV and is easily augmented to extract additional biophysical/chemical information such as local vorticity or net polymerization rates from speckle microscopy. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chavez-Abraham, Victor; Barr, Jason S; Zwiebel, Paul C
2011-08-01
Postoperative pain management following aesthetic plastic surgery traditionally has been achieved by systemic administration of several narcotic pain medications. Because this method can lead to undesirable side effects such as sedation, nausea, vomiting, and respiratory depression, a more efficacious method of postoperative analgesia with fewer side effects needs to be implemented in outpatient cosmetic surgery. From March of 2003 until December of 2008, 690 patients underwent augmentation mammaplasty and 215 patients underwent abdominoplasty. All of these patients were equipped with an elastomeric continuous infusion pump postoperatively and were prescribed oral narcotics. Prior to 2003, patients were prescribed only oral narcotics postoperatively. A retrospective chart review of patients before and after implementation of the pain pump was undertaken to review the perceived pain patients experienced postoperatively with and without the pump. The self-administration of oral narcotics was also assessed. Patients equipped with the pain pump experienced a statistically significant decrease in perceived pain compared to those without the pump (augmentation mammaplasty: 2.27 vs. 3.68, p < 0.05; abdominoplasty: 2.81 vs. 4.32, p < 0.05). Similarly, patients with the pump saw a statistically significant decrease in the use of the oral narcotic Vicodin™ at 72 h postoperatively (5 mg hydrocodone/500 mg acetaminophen, Abbott Laboratories, Abbott Park, IL) (augmentation mammaplasty: 26.5 mg/2650 mg vs. 49 mg/4900 mg, p < 0.01; abdominoplasty: 29.5 mg/2950 mg vs. 56.5 mg/5650 mg, p < 0.01). The utilization of a continuous-infusion pain pump following augmentation mammaplasty or abdominoplasty is an efficacious method to significantly reduce both the amount of pain patients experience and the quantity of narcotics used postoperatively.
1975-10-01
63 29 Variation of Profile Shape with Time for Axisyinmetric Camphor Models 63 30 The Development of Ablated Nose Shapes Over Which Flow...ablation tests using camphor models and inferred from downrange observation of full scale flight missions. Regions of gross instability on nose...been verified in wind tunnel tests of camphor models where shapes similar to those shown on Figure 29 can be developed under transitional conditions
2013-06-26
flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take
An application of the suction analog for the analysis of asymmetric flow situations
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1976-01-01
A recent extension of the suction analogy for estimation of vortex loads on asymmetric configurations is reviewed. This extension includes asymmetric augmented vortex lift and the forward sweep effect on side edge suction. Application of this extension to a series of skewed wings has resulted in an improved estimating capability for a wide range of asymmetric flow situations. Hence, the suction analogy concept now has more general applicability for subsonic lifting surface analysis.
Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail
NASA Technical Reports Server (NTRS)
Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.
2016-01-01
This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
Transitional flow in thin tubes for space station freedom radiator
NASA Technical Reports Server (NTRS)
Loney, Patrick; Ibrahim, Mounir
1995-01-01
A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.
Sympathetic vascular transduction is augmented in young normotensive blacks
NASA Technical Reports Server (NTRS)
Ray, Chester A.; Monahan, Kevin D.
2002-01-01
The purpose of the present study was to determine sympathetic vascular transduction in young normotensive black and white adults. We hypothesized that blacks would demonstrate augmented transduction of muscle sympathetic nerve activity (MSNA) into vascular resistance. To test this hypothesis, MSNA, forearm blood flow, heart rate, and arterial blood pressure were measured during lower body negative pressure (LBNP). At rest, no differences existed in arterial blood pressure, heart rate, forearm blood flow, and forearm vascular resistance (FVR). Likewise, LBNP elicited comparable responses of these variables for blacks and whites. Baseline MSNA did not differ between blacks and whites, but whites demonstrated greater increases during LBNP (28 +/- 7 vs. 55 +/- 18%, 81 +/- 21 vs. 137 +/- 42%, 174 +/- 81 vs. 556 +/- 98% for -5, -15, and -40 mmHg LBNP, respectively; P < 0.001). Consistent with smaller increases in MSNA but similar FVR responses during LBNP, blacks demonstrated greater sympathetic vascular transduction (%FVR/%MSNA) than whites (0.95 +/- 0.07 vs. 0.82 +/- 0.07 U; 0.82 +/- 0.11 vs. 0.64 +/- 0.09 U; 0.95 +/- 0.37 vs. 0.35 +/- 0.09 U; P < 0.01). In summary, young whites demonstrate greater increases in MSNA during baroreceptor unloading than age-matched normotensive blacks. However, more importantly, for a given increase in MSNA, blacks demonstrate greater forearm vasoconstriction than whites. This finding may contribute to augmented blood pressure reactivity in blacks.
Malliaras, Konstantinos; Charitos, Efstratios; Diakos, Nikolaos; Pozios, Iraklis; Papalois, Apostolos; Terrovitis, John; Nanas, John
2014-12-01
We investigated the effects of intra-aortic balloon pump (IABP) counterpulsation on left ventricular (LV) contractility, relaxation, and energy consumption and probed the underlying physiologic mechanisms in 12 farm pigs, using an ischemia-reperfusion model of acute heart failure. During both ischemia and reperfusion, IABP support unloaded the LV, decreased LV energy consumption (pressure-volume area, stroke work), and concurrently improved LV mechanical performance (ejection fraction, stroke volume, cardiac output). During reperfusion exclusively, IABP also improved LV relaxation (tau) and contractility (Emax, PRSW). The beneficial effects of IABP support on LV relaxation and contractility correlated with IABP-induced augmentation of coronary blood flow. In conclusion, we find that during both ischemia and reperfusion, IABP support optimizes LV energetic performance (decreases energy consumption and concurrently improves mechanical performance) by LV unloading. During reperfusion exclusively, IABP support also improves LV contractility and active relaxation, possibly due to a synergistic effect of unloading and augmentation of coronary blood flow.
Access to augmentative and alternative communication: new technologies and clinical decision-making.
Fager, Susan; Bardach, Lisa; Russell, Susanne; Higginbotham, Jeff
2012-01-01
Children with severe physical impairments require a variety of access options to augmentative and alternative communication (AAC) and computer technology. Access technologies have continued to develop, allowing children with severe motor control impairments greater independence and access to communication. This article will highlight new advances in access technology, including eye and head tracking, scanning, and access to mainstream technology, as well as discuss future advances. Considerations for clinical decision-making and implementation of these technologies will be presented along with case illustrations.
Multiple-cycle Simulation of a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Yungster, S.; Perkins, H. D.
2002-01-01
This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.
Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Barrera, Kira E.
2014-01-01
During September and November 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from September 20 to 28 (11BHM03) and the second was from November 2 to 4 (11BHM04). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).
Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Taylor, Carl A.; Barrera, Kira E.
2014-01-01
During May and June 2011 the (USGS), in cooperation with (USF), conducted geochemical surveys on the west Florida Shelf to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. The first cruise was conducted from May 3 to 9 (11BHM01) and the second was from June 25 to 30 (11BHM02). To view each cruise's survey lines, please see the Trackline page. Each cruise took place aboard the Research Vessel (R/V) Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed from and returned to Saint Petersburg, Florida. Data collection included sampling of the surface and water column with lab analysis of pH, dissolved inorganic carbon (DIC) or total carbon dioxide (TCO2), and total alkalinity (TA). lLb analysis was augmented with a continuous flow-through system (referred to as sonde data) with a conductivity-temperature-depth (CTD) sensor, which also recorded salinity and pH. Corroborating the USGS data are the vertical CTD profiles (referred to as station samples) collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence and optical backscatter. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts. Two autonomous flow-through (AFT) instruments recorded pH and CO2 every 3-5 minutes on each cruise (referred to as AFT data).
M. Mehryan, S. A.; Moradi Kashkooli, Farshad; Soltani, M.; Raahemifar, Kaamran
2016-01-01
The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton’s linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out. PMID:27322536
NADPH oxidase 4-derived superoxide mediates flow-stimulated NKCC2 activity in thick ascending limbs.
Saez, Fara; Hong, Nancy J; Garvin, Jeffrey L
2018-05-01
Luminal flow augments Na + reabsorption in the thick ascending limb more than can be explained by increased ion delivery. This segment reabsorbs 30% of the filtered load of Na + , playing a key role in its homeostasis. Whether flow elevations enhance Na + -K + -2Cl - cotransporter (NKCC2) activity and the second messenger involved are unknown. We hypothesized that raising luminal flow augments NKCC2 activity by enhancing superoxide ([Formula: see text]) production by NADPH oxidase 4 (NOX4). NKCC2 activity was measured in thick ascending limbs perfused at either 5 or 20 nl/min with and without inhibitors of [Formula: see text] production. Raising luminal flow from 5 to 20 nl/min enhanced NKCC2 activity from 4.8 ± 0.9 to 6.3 ± 1.2 arbitrary fluorescent units (AFU)/s. Maintaining flow at 5 nl/min did not alter NKCC2 activity. The superoxide dismutase mimetic manganese (III) tetrakis (4-benzoic acid) porphyrin chloride blunted NKCC2 activity from 3.5 ± 0.4 to 2.5 ± 0.2 AFU/s when flow was 20 nl/min but not 5 nl/min. When flow was 20 nl/min, NKCC2 activity showed no change with time. The selective NOX1/4 inhibitor GKT-137831 blunted NKCC2 activity when thick ascending limbs were perfused at 20 nl/min from 7.2 ± 1.1 to 4.5 ± 0.8 AFU/s but not at 5 nl/min. The inhibitor also prevented luminal flow from elevating [Formula: see text] production. Allopurinol, a xanthine oxidase inhibitor, had no effect on NKCC2 activity when flow was 20 nl/min. Tetanus toxin prevents flow-induced stimulation of NKCC2 activity. We conclude that elevations in luminal flow enhance NaCl reabsorption in thick ascending limbs by stimulating NKCC2 via NOX4 activation and increased [Formula: see text]. NKCC2 activation is primarily the result of insertion of new transporters in the membrane.
Butler, C; Watson-Wright, W M; Wilkinson, M; Johnstone, D E; Armour, J A
1988-03-01
Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored.
Grechenig, Stephan; Gänsslen, Axel; Gueorguiev, Boyko; Berner, Arne; Müller, Michael; Nerlich, Michael; Schmitz, Paul
2015-10-01
Current literature data and clinical experience show that the number of pelvic fractures continuously rises due to the increasing elderly population. In the elderly with suspected osteoporosis additional implant augmentation with bone cement seems to be an option to avoid secondary displacement. There are no reported biomechanical data in the literature comparing the fixation strength (and anchorage) of standard and augmented SI screws so far. The purpose of this study was to assess the biomechanical performance of cement-augmented versus non-augmented SI screws in a human cadaveric pelvis model. Six human cadaveric pelvises preserved with the method of Thiel were used in this study. Each pelvis was split to a pair of 2 hemi-pelvises, assigned to 2 different groups for instrumentation with one non-augmented or one contralateral cement-augmented SI screw, placed in the body of S1 in a randomized fashion. The osteosynthesis followed a standard procedure with 3D controlled percutaneous iliosacral screw positioning. A biomechanical setup for a quasistatic pullout test of each SI screw was used. Construct stiffness and maximum pullout force were calculated from the load-displacement curve of the machine data. Statistical evaluation was performed at a level of significance p = .05 for all statistical tests. Stiffness and pullout force in the augmented group (501.6 N/mm ± 123.7, 1336.8 N ± 221.1) were significantly higher than in the non-augmented one (289.7 N/mm ± 97.1, 597.7 N ± 115.5), p = .04 and p = .014, respectively. BMD influenced significantly the pullout force in all study groups. Cement augmentation significantly increased the fixation strength in iliosacral screw osteosynthesis of the sacrum in a biomechanical human cadaveric model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.
Kim, Jinho; Jeong, Yong
2013-01-01
Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.
Assessing the impact of managed aquifer recharge on seasonal low flows in a semi-arid alluvial river
NASA Astrophysics Data System (ADS)
Ronayne, M. J.; Roudebush, J. A.; Stednick, J. D.
2016-12-01
Managed aquifer recharge (MAR) is one strategy that can be used to augment seasonal low flows in alluvial rivers. Successful implementation requires an understanding of spatio-temporal groundwater-surface water exchange. In this study we conducted numerical groundwater modeling to analyze the performance of an existing MAR system in the South Platte River Valley in northeastern Colorado (USA). The engineered system involves a spatial reallocation of water during the winter months; alluvial groundwater is extracted near the river and pumped to upgradient recharge ponds, with the intent of producing a delayed hydraulic response that increases the riparian zone water table (and therefore streamflow) during summer months. Higher flows during the summer are required to improve riverine habitat for threatened species in the Platte River. Modeling scenarios were constrained by surface (streamflow gaging) and subsurface (well data) measurements throughout the study area. We compare two scenarios to analyze the impact of MAR: a natural base case scenario and an active management scenario that includes groundwater pumping and managed recharge. Steady-periodic solutions are used to evaluate the long-term stabilized behavior of the stream-aquifer system with and without pumping/recharge. Streamflow routing is included in the model, which permits quantification of the timing and location of streamflow accretion (increased streamflow associated with MAR). An analysis framework utilizing capture concepts is developed to interpret seasonal changes in head-dependent flows to/from the aquifer, including groundwater-surface water exchange that impacts streamflow. Results demonstrate that accretion occurs during the target low-flow period but is not limited to those months, highlighting an inefficiency that is a function of the aquifer geometry and hydraulic properties. The results of this study offer guidance for other flow augmentation projects that rely on water storage in shallow alluvial aquifers.
Nonsurgical Medical Penile Girth Augmentation: Experience-Based Recommendations.
Oates, Jayson; Sharp, Gemma
2017-10-01
Penile augmentation is increasingly sought by men who are dissatisfied with the size and/or appearance of their penis. However, augmentation procedures are still considered to be highly controversial with no standardized recommendations reported in the medical literature and limited outcome data. Nevertheless, these procedures continue to be performed in increasing numbers in private settings. Therefore, there is a need for safe, effective, and minimally invasive procedures to be developed, evaluated, and reported in the research literature. In this article, we focus particularly on girth enhancement procedures rather than lengthening procedures as penile girth appears to be particularly important for sexual satisfaction. We discuss the advantages and disadvantages of the common techniques to date, with a focus on the minimally invasive injectable girth augmentation techniques. Based on considerable operative experience, we offer our own suggestions for patient screening, technique selection, and perioperative care. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Hegde, Aditya; Kalyani, Bangalore G; Arumugham, Shyam Sundar; Narayanaswamy, Janardhanan C; Math, Suresh Bada; Reddy, Y C Janardhan
2017-03-01
To study the effectiveness and tolerability of aripiprazole augmentation in patients with highly treatment-resistant obsessive-compulsive disorder (OCD) in a real-world scenario. We conducted a chart review of patients who were initiated on aripiprazole augmentation at a specialty OCD clinic in India between 2004 and 2014. Primary outcome measure was all-cause discontinuation. 23 patients were eligible for analysis. Patients had not achieved symptom remission despite a mean of over 3 prior SRI trials. Aripiprazole was continued to be used in seven patients (30%) at the time of last follow-up. Thirteen patients (57%) discontinued the drug due to side effects, and three patients (13%) discontinued aripiprazole citing no improvement. Six patients (26%) were noted to have ≥25% reduction on the Yale-Brown Obsessive-Compulsive Scale. The study demonstrated, in a real-world setting, that aripiprazole may be a useful augmenting agent in a proportion of patients with highly treatment-resistant OCD. However, side effects may lead to premature discontinuation in many of them.
Cardiopulmonary Responses to Pressure Breathing.
1995-05-01
possible improvement in VAIQ relationships, at least in lowV a/Q regions or shunt. This is equivalent to continuous positive airway pressure ( CPAP ) used clinically to augment arterial oxygenation in patients.
Navier-Stokes computations for circulation control airfoils
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.
1987-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Duan, Liya; Guan, Tao; Yang, Bo
2009-01-01
Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. Registration is one of the most difficult problems currently limiting the usability of AR systems. In this paper, we propose a novel natural feature tracking based registration method for AR applications. The proposed method has following advantages: (1) it is simple and efficient, as no man-made markers are needed for both indoor and outdoor AR applications; moreover, it can work with arbitrary geometric shapes including planar, near planar and non planar structures which really enhance the usability of AR systems. (2) Thanks to the reduced SIFT based augmented optical flow tracker, the virtual scene can still be augmented on the specified areas even under the circumstances of occlusion and large changes in viewpoint during the entire process. (3) It is easy to use, because the adaptive classification tree based matching strategy can give us fast and accurate initialization, even when the initial camera is different from the reference image to a large degree. Experimental evaluations validate the performance of the proposed method for online pose tracking and augmentation.
Augmented reality in the surgery of cerebral aneurysms: a technical report.
Cabrilo, Ivan; Bijlenga, Philippe; Schaller, Karl
2014-06-01
Augmented reality is the overlay of computer-generated images on real-world structures. It has previously been used for image guidance during surgical procedures, but it has never been used in the surgery of cerebral aneurysms. To report our experience of cerebral aneurysm surgery aided by augmented reality. Twenty-eight patients with 39 unruptured aneurysms were operated on in a prospective manner with augmented reality. Preoperative 3-dimensional image data sets (angio-magnetic resonance imaging, angio-computed tomography, and 3-dimensional digital subtraction angiography) were used to create virtual segmentations of patients' vessels, aneurysms, aneurysm necks, skulls, and heads. These images were injected intraoperatively into the eyepiece of the operating microscope. An example case of an unruptured posterior communicating artery aneurysm clipping is illustrated in a video. The described operating procedure allowed continuous monitoring of the accuracy of patient registration with neuronavigation data and assisted in the performance of tailored surgical approaches and optimal clipping with minimized exposition. Augmented reality may add to the performance of a minimally invasive approach, although further studies need to be performed to evaluate whether certain groups of aneurysms are more likely to benefit from it. Further technological development is required to improve its user friendliness.
Effects of regulated river flows on habitat suitability for the robust redhorse
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2015-01-01
The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.
On Raviart-Thomas and VMS formulations for flow in heterogeneous materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Daniel Zack
It is well known that the continuous Galerkin method (in its standard form) is not locally conservative, yet many stabilized methods are constructed by augmenting the standard Galerkin weak form. In particular, the Variational Multiscale (VMS) method has achieved popularity for combating numerical instabilities that arise for mixed formulations that do not otherwise satisfy the LBB condition. Among alternative methods that satisfy local and global conservation, many employ Raviart-Thomas function spaces. The lowest order Raviart-Thomas finite element formulation (RT0) consists of evaluating fluxes over the midpoint of element edges and constant pressures within the element. Although the RT0 element posesmore » many advantages, it has only been shown viable for triangular or tetrahedral elements (quadrilateral variants of this method do not pass the patch test). In the context of heterogenous materials, both of these methods have been used to model the mixed form of the Darcy equation. This work aims, in a comparative fashion, to evaluate the strengths and weaknesses of either approach for modeling Darcy flow for problems with highly varying material permeabilities and predominantly open flow boundary conditions. Such problems include carbon sequestration and enhanced oil recovery simulations for which the far-field boundary is typically described with some type of pressure boundary condition. We intend to show the degree to which the VMS formulation violates local mass conservation for these types of problems and compare the performance of the VMS and RT0 methods at boundaries between disparate permeabilities.« less
Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.
1998-01-01
Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.
2005-02-24
This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the latemore » 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.« less
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Transient flow thrust prediction for an ejector propulsion concept
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A method for predicting transient thrust augmenting ejector characteristics is introduced. The analysis blends classic self-similar turbulent jet descriptions with a mixing region control volume analysis to predict transient effects in a new way. Details of the theoretical foundation, the solution algorithm, and sample calculations are given.
Hypersonic and Supersonic Flow Roadmaps Using Bibliometrics and Database Tomography.
ERIC Educational Resources Information Center
Kostoff, R. N.; Eberhart, Henry J.; Toothman, Darrell Ray
1999-01-01
Database Tomography (DT) is a textual database-analysis system consisting of algorithms for extracting multiword phrase frequencies and proximities from a large textual database, to augment interpretative capabilities of the expert human analyst. Describes use of the DT process, supplemented by literature bibliometric analyses, to derive technical…
Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.
2006-01-30
This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.« less
Addressing BI Transactional Flows in the Real-Time Enterprise Using GoldenGate TDM
NASA Astrophysics Data System (ADS)
Pareek, Alok
It's time to visit low latency and reliable real-time (RT) infrastructures to support next generation BI applications instead of continually debating the need and notion of real-time. The last few years have illuminated some key paradigms affecting data management. The arguments put forth to move away from traditional DBMS architectures have proven persuasive - and specialized architectural data stores are being adopted in the industry [1]. The change from traditional database pull methods towards intelligent routing/push models is underway, causing applications to be redesigned, redeployed, and re-architected. One direct result of this is that despite original warnings about replication [2] - enterprises continue to deploy multiple replicas to support both performance, and high availability of RT applications, with an added complexity around manageability of heterogeneous computing systems. The enterprise is overflowing with data streams that require instantaneous processing and integration, to deliver faster visibility and invoke conjoined actions for RT decision making, resulting in deployment of advanced BI applications as can be seen by stream processing over RT feeds from operational systems for CEP [3]. Given these various paradigms, a multitude of new challenges and requirements have emerged, thereby necessitating different approaches to management of RT applications for BI. The purpose of this paper is to offer a viewpoint on how RT affects critical operational applications, evolves the weight of non-critical applications, and pressurizes availability/data-movement requirements in the underlying infrastructure. I will discuss how the GoldenGate TDM platform is being deployed within the RTE to manage some of these challenges particularly around RT dissemination of transactional data to reduce latency in data integration flows, to enable real-time reporting/DW, and to increase availability of underlying operational systems. Real world case studies will be used to support the various discussion points. The paper is an argument to augment traditional DI flows with a real-time technology (referred to as transactional data management) to support operational BI requirements.
40 CFR 80.50 - General test procedure requirements for augmentation of the emission models.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 80.45. (1) VOC, NOX, CO, and CO2 emissions must be measured for all fuel-vehicle combinations tested. (2) Toxics emissions must be measured when testing the extension fuels per the requirements of § 80... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated...
40 CFR 80.50 - General test procedure requirements for augmentation of the emission models.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 80.45. (1) VOC, NOX, CO, and CO2 emissions must be measured for all fuel-vehicle combinations tested. (2) Toxics emissions must be measured when testing the extension fuels per the requirements of § 80... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated...
40 CFR 80.50 - General test procedure requirements for augmentation of the emission models.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 80.45. (1) VOC, NOX, CO, and CO2 emissions must be measured for all fuel-vehicle combinations tested. (2) Toxics emissions must be measured when testing the extension fuels per the requirements of § 80... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated...
40 CFR 80.50 - General test procedure requirements for augmentation of the emission models.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 80.45. (1) VOC, NOX, CO, and CO2 emissions must be measured for all fuel-vehicle combinations tested. (2) Toxics emissions must be measured when testing the extension fuels per the requirements of § 80... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated...
Water quality of streams in the Neshaminy Creek basin, Pennsylvania
McCarren, Edward F.
1972-01-01
The Neshaminy has carved a scenic route on its way to the Delaware River, thereby helping to increase the value of land. The unabated growth of nearby metropolitan areas and the multiplying needs for water and open space for water storage and recreation in southeastern Pennsylvania have become impelling forces that mark the Neshaminy valley watershed for continued development of its land and water resources. Toward this end the Neshaminy Valley Watershed Association, Inc., which came into existence June 13, 1956, is one of several organizations dedicated to land and water-resources development in the Neshaminy Creek basin. The principal objectives of the Neshaminy Valley Watershed Association are (1) to provide for future water-supply and recreation needs, (2) to safeguard against flood and drought damage, (3) to decrease stream pollution, (4) to preserve wildlife and natural beauty, (5) to reduce soil erosion and siltation, 96) to reforest marginal land, and (7) to improve and protect existing woodland. This study shows that there is a wide variance in water quality between the West Branch and the North Branch of the Neshaminy. However, the study shows no significant difference between the chemical composition of the Little Neshaminy Creek and the main stream before they come together at Rushland. Just beyond their confluence the main stream has drained more than half its total drainage area. The average flow of the stream at this location is about 85 percent of the average flow at Langhorne. The continued presence of game fish in most of Neshaminy Creek indicates a degree of water purity that characterizes this stream as suitable for recreation. However, during the summer and early fall, several small streams feeding the Neshaminy go dry. The diminished flow during these periods and during prolonged drought impairs stream quality by causing a greater concentration of dissolved solids in water. The relatively inferior water during low-flow periods, therefore, necessitates providing more water of good quality to reservoirs for emergency releases, not only to augment supply to users in needful downstream areas but also to improve stream quality by dilution.
Gradient-augmented hybrid interface capturing method for incompressible two-phase flow
NASA Astrophysics Data System (ADS)
Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu
2016-06-01
Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
Noise of deflectors used for flow attachment with STOL-OTW configurations
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.; Groesbeck, D.
1977-01-01
Future STOL aircraft may utilize engine-over-the-wing installations in which the exhaust nozzles are located above and separated from the upper surface of the wing. An external jet flow deflector can be used with such installations to provide flow attachment to the wing/flap surfaces for lift augmentation. Deflector noise in the flyover plane measured with several model-scale nozzle/deflector/wing configurations is examined. The deflector-associated noise is correlated in terms of velocity and geometry parameters. The data also indicate that the effective overall sound pressure level of the deflector-associated noise peaks in the forward quadrant near 40 deg from the inlet axis.
Design of ground test suspension systems for verification of flexible space structures
NASA Technical Reports Server (NTRS)
Cooley, V. M.; Juang, J. N.; Ghaemmaghami, P.
1988-01-01
A simple model demonstrates the frequency-increasing effects of a simple cable suspension on flexible test article/suspension systems. Two passive suspension designs, namely a negative spring mechanism and a rolling cart mechanism, are presented to alleviate the undesirable frequency-increasing effects. Analysis methods are provided for systems in which the augmentations are applied to both discrete and continuous representations of test articles. The damping analyses are based on friction equivalent viscous damping. Numerical examples are given for comparing the two augmentations with respect to minimizing frequency and damping increases.
Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A
2014-08-05
The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.
Image Analysis of Proppant Performance in Pressurized Fractures
NASA Astrophysics Data System (ADS)
Crandall, D.; Smith, M. M.; Carroll, S.; Walsh, S. D.; Gill, M.; Moore, J.; Tennant, B.; Aines, R. D.
2014-12-01
Proppants are small particles used to prop or hold open subsurface fractures to permit fluid flow through these pathways. In many oil and gas well applications, the most common proppant materials are sand, ceramic particles, resin-coated sands, glass beads or even walnut shells. More dense proppants require additives to create viscous fluids which can transport them further along wells and into fractures, but are generally preferred over neutrally buoyant options due to their increased strength. Currently, proppant strength and generation of broken fragments ("fines") is analyzed via a standardized crush test between parallel plates. To augment this type of information, we present here the results of various experiments involving resin-coated proppants held at increasing pressures in fractured samples of Marcellus shale. The shale/proppant samples were imaged continuously with an industrial tomography scanner during pressurization up to 10,000psi. This technique allows for in situ characterization of fracture/proppant interactions and fracture void volume and average aperture with varying confining pressures.
Estimating long-term behavior of periodically driven flows without trajectory integration
NASA Astrophysics Data System (ADS)
Froyland, Gary; Koltai, Péter
2017-05-01
Periodically driven flows are fundamental models of chaotic behavior and the study of their transport properties is an active area of research. A well-known analytic construction is the augmentation of phase space with an additional time dimension; in this augmented space, the flow becomes autonomous or time-independent. We prove several results concerning the connections between the original time-periodic representation and the time-extended representation, focusing on transport properties. In the deterministic setting, these include single-period outflows and time-asymptotic escape rates from time-parameterized families of sets. We also consider stochastic differential equations with time-periodic advection term. In this stochastic setting one has a time-periodic generator (the differential operator given by the right-hand-side of the corresponding time-periodic Fokker-Planck equation). We define in a natural way an autonomous generator corresponding to the flow on time-extended phase space. We prove relationships between these two generator representations and use these to quantify decay rates of observables and to determine time-periodic families of sets with slow escape rate. Finally, we use the generator on the time-extended phase space to create efficient numerical schemes to implement the various theoretical constructions. These ideas build on the work of Froyland et al (2013 SIAM J. Numer. Anal. 51 223-47), and no expensive time integration is required. We introduce an efficient new hybrid approach, which treats the space and time dimensions separately.
Davis, Stephen N; Horton, Edward S; Battelino, Tadej; Rubin, Richard R; Schulman, Kevin A; Tamborlane, William V
2010-04-01
Sensor-augmented pump therapy (SAPT) integrates real-time continuous glucose monitoring (RT-CGM) with continuous subcutaneous insulin infusion (CSII) and offers an alternative to multiple daily injections (MDI). Previous studies provide evidence that SAPT may improve clinical outcomes among people with type 1 diabetes. Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 is a multicenter randomized controlled trial comparing the efficacy of SAPT to that of MDI in subjects with type 1 diabetes. Subjects were randomized to either continue with MDI or transition to SAPT for 1 year. Subjects in the MDI cohort were allowed to transition to SAPT for 6 months after completion of the study. SAPT subjects who completed the study were also allowed to continue for 6 months. The primary end point was the difference between treatment groups in change in hemoglobin A1c (HbA1c) percentage from baseline to 1 year of treatment. Secondary end points included percentage of subjects with HbA1c < or =7% and without severe hypoglycemia, as well as area under the curve of time spent in normal glycemic ranges. Tertiary end points include percentage of subjects with HbA1c < or =7%, key safety end points, user satisfaction, and responses on standardized assessments. A total of 495 subjects were enrolled, and the baseline characteristics similar between the SAPT and MDI groups. Study completion is anticipated in June 2010. Results of this randomized controlled trial should help establish whether an integrated RT-CGM and CSII system benefits patients with type 1 diabetes more than MDI.
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2016-01-01
In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2015-08-15
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.
Murugesan, Yahini Prabha; Alsadoon, Abeer; Manoranjan, Paul; Prasad, P W C
2018-06-01
Augmented reality-based surgeries have not been successfully implemented in oral and maxillofacial areas due to limitations in geometric accuracy and image registration. This paper aims to improve the accuracy and depth perception of the augmented video. The proposed system consists of a rotational matrix and translation vector algorithm to reduce the geometric error and improve the depth perception by including 2 stereo cameras and a translucent mirror in the operating room. The results on the mandible/maxilla area show that the new algorithm improves the video accuracy by 0.30-0.40 mm (in terms of overlay error) and the processing rate to 10-13 frames/s compared to 7-10 frames/s in existing systems. The depth perception increased by 90-100 mm. The proposed system concentrates on reducing the geometric error. Thus, this study provides an acceptable range of accuracy with a shorter operating time, which provides surgeons with a smooth surgical flow. Copyright © 2018 John Wiley & Sons, Ltd.
New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows
Li, Zhilin; Lai, Ming-Chih
2012-01-01
In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308
Auble, Gregor T.; Bowen, Zachary H.
2008-01-01
In June 2006, an opportunistic high-flow release was made from Tiber Dam on the Marias River in Mont., to investigate possible alternatives for partially restoring the river's natural flow pattern and variability. At two sites along the river, we measured channel geometry before and after the high-flow release to evaluate channel change and alteration of physical habitat. Streamflow downstream from Tiber Dam has been stabilized by reduction of high flows and augmentation of low flows. This has produced flood-control benefits as well as some possible adverse environmental effects downstream from the dam. The 2006 high-flow release resulted in a downstream hydrograph with high flows of above-average magnitude in the post-dam flow regime of the Marias River. Timing of the peak and the declining limb of the release hydrograph were very similar to a historical, unregulated hydrograph of the Marias River. Furthermore, the high flow produced many of the qualitative elements of ecologically important physical processes that can be diminished or lost due to flow stabilization downstream from a dam. Typically dry back channels were occupied by flowing water. Islands were inundated, resulting in vegetation removal and sediment accretion that produced new disturbance patches of bare, moist substrate. Cut banks were eroded, and large woody debris was added to the river and redistributed. Flood-plain surfaces were inundated, producing substantial increases in wetted perimeter and spatially distinctive patterns of deposition associated with natural levee formation. The scale of the 2006 high flow - in terms of peak magnitude and the lateral extent of bottomland influenced by inundation or lateral channel movement - was roughly an order of magnitude smaller than the scale of an infrequent high flow in the pre-dam regime. Overall extent and composition of riparian vegetation will continue to change under a scaled-down, post-dam flow regime. For example, the importance of the non-native Russian-olive (Elaeagnus angustifolia) will likely increase. Reestablishing a more natural pattern of flows, however, should promote the increase of native cottonwood and willow (Salix spp.) in the new-albeit smaller-post-dam riparian ecosystem. A more natural flow regime will also likely provide improved habitat for native fish in the Marias River. Response of fish communities to such flows is the subject of current fisheries studies being conducted in cooperation with Bureau of Reclamation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
Corrêa, Ana Paula dos Santos; Antunes, Cristiano Fetter; Figueira, Franciele Ramos; de Castro, Marina Axmann; Ribeiro, Jorge Pinto; Schaan, Beatriz D'Agord
2015-01-01
To evaluate the effects of inspiratory loading on blood flow of resting and exercising limbs in patients with diabetic autonomic neuropathy. Ten diabetic patients without cardiovascular autonomic neuropathy (DM), 10 patients with cardiovascular autonomic neuropathy (DM-CAN) and 10 healthy controls (C) were randomly assigned to inspiratory muscle load of 60% or 2% of maximal inspiratory pressure (PImax) for approximately 5 min, while resting calf blood flow (CBF) and exercising forearm blood flow (FBF) were measured. Reactive hyperemia was also evaluated. From the 20 diabetic patients initially allocated, 6 wore a continuous glucose monitoring system to evaluate the glucose levels during these two sessions (2%, placebo or 60%, inspiratory muscle metaboreflex). Mean age was 58 ± 8 years, and mean HbA1c, 7.8% (62 mmol/mol) (DM and DM-CAN). A PImax of 60% caused reduction of CBF in DM-CAN and DM (P<0.001), but not in C, whereas calf vascular resistance (CVR) increased in DM-CAN and DM (P<0.001), but not in C. The increase in FBF during forearm exercise was blunted during 60% of PImax in DM-CAN and DM, and augmented in C (P<0.001). Glucose levels decreased by 40 ± 18.8% (P<0.001) at 60%, but not at 2%, of PImax. A negative correlation was observed between reactive hyperemia and changes in CVR (Beta coefficient = -0.44, P = 0.034). Inspiratory muscle loading caused an exacerbation of the inspiratory muscle metaboreflex in patients with diabetes, regardless of the presence of neuropathy, but influenced by endothelial dysfunction. High-intensity exercise that recruits the diaphragm can abruptly reduce glucose levels.
Clinical outcome of alveolar ridge augmentation with individualized CAD-CAM-produced titanium mesh.
Sagheb, K; Schiegnitz, E; Moergel, M; Walter, C; Al-Nawas, B; Wagner, W
2017-12-01
The augmentation of the jaw has been and continues to be a sophisticated therapy in implantology. Modern CAD-CAM technologies lead to revival of old and established augmentation techniques such as the use of titanium mesh (TM) for bone augmentation. The aim of this retrospective study was to evaluate the clinical outcome of an individualized CAD-CAM-produced TM based on the CT/DVT-DICOM data of the patients for the first time. In 17 patients, 21 different regions were augmented with an individualized CAD-CAM-produced TM (Yxoss CBR®, Filderstadt, Germany). For the augmentation, a mixture of autologous bone and deproteinized bovine bone mineral (DBBM) or autologous bone alone was used. Reentry with explantation of the TM and simultaneous implantation of 44 implants were performed after 6 months. Preoperative and 6-month postoperative cone beam computed tomographies (CBCT) were performed to measure the gained bone height. The success rate for the bone grafting procedure was 100%. Thirty-three percent of cases presented an exposure of the TM during the healing period. However, premature removal of these exposed meshes was not necessary. Exposure rate in augmentations performed with mid-crestal incisions was higher than in augmentations performed with a modified poncho incision (45.5 vs. 20%, p = 0.221). In addition, exposure rates in the maxilla were significantly higher than in the mandible (66.7 vs. 8.3%, p = 0.009). Gender, smoking, periodontal disease, gingiva type, used augmentation material, and used membrane had no significant influence on the exposure rate (p > 0.05). The mean vertical augmentation was 6.5 ± 1.7 mm, and the mean horizontal augmentation was 5.5 ± 1.9 mm. Implant survival rate after a mean follow-up of 12 ± 6 months after reentry was 100%. Within the limits of the retrospective character of this study, this study shows for the first time that individualized CAD-CAM TM provide a sufficient and safe augmentation technique, especially for vertical and combined defects. However, the soft tissue handling for sufficient mesh covering remains one of the most critical steps using this technique.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.
1989-01-01
A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.
NASA Astrophysics Data System (ADS)
Trujillo, Steven Mathew
Transition of a fluid boundary layer from a laminar to a turbulent regime is accompanied by a large increase in skin friction drag. The ability to manipulate the flow or its bounding geometry to reduce this drag effectively has been a long-sought goal in contemporary fluid mechanics. Recently, workers have demonstrated that continuous lateral oscillation of the flow's bounding surface is one means to this goal, producing significant drag reduction. The present study was performed to understand better the mechanism by which such a flow achieves drag reduction. An oscillating wall section was installed in a water channel facility, and the resulting flow was studied using laser Doppler velocimetry, hot-film anemometry, and visualization techniques. Traditional mean and fluctuating statistics were examined, as well as statistics computed from conditionally-sampled turbulent events. The dependence of these quantities on the phase of the oscillating surface's motion was also studied. Visualization-based studies were employed to provide insight into the structural changes brought on by the wall oscillation. The most dramatic changes effected by the wall motion were seen as reductions in frequency of bursts and sweeps, events which concentrate large production of Reynolds stress and which ultimately augment wall skin friction. These Reynolds-stress reductions were reflected in reductions in mean and fluctuating quantifies in the lower regions of the boundary layer. Other velocity measurements confirmed earlier workers' speculations that the secondary flow induced by the oscillating wall is comparable to Stokes' solution for an oscillating plate in a quiescent fluid. Other than this secondary flow, however, the boundary layer displayed essentially no dependence on the phase of the wall motion. A simple cost analysis showed that, in general, the energy cost required to implement this technique is greater than the savings it produces. The visualizations of the flow revealed a more uniform flow in the near-wall region resulting from wall oscillation. Quantitative analyses of the visualizations supported the velocity-based Reynolds-stress reductions; the same data also revealed that the quasi-streamwise vortical structures above the wall did not appear to be altered significantly by the wall motion.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Measurement of bronchial blood flow in the sheep by video dilution technique.
Link, D P; Parsons, G H; Lantz, B M; Gunther, R A; Green, J F; Cross, C E
1985-01-01
Bronchial blood flow was determined in five adult anaesthetised sheep by the video dilution technique. This is a new fluoroscopic technique for measuring blood flow that requires only arterial catheterisation. Catheters were placed into the broncho-oesophageal artery and ascending aorta from the femoral arteries for contrast injections and subsequent videotape recording. The technique yields bronchial blood flow as a percentage of cardiac output. The average bronchial artery blood flow was 0.6% (SD 0.20%) of cardiac output. In one sheep histamine (90 micrograms) injected directly into the bronchial artery increased bronchial blood flow by a factor of 6 and histamine (90 micrograms) plus methacholine (4.5 micrograms) augmented flow by a factor of 7.5 while leaving cardiac output unchanged. This study confirms the high degree of reactivity of the bronchial circulation and demonstrates the feasibility of using the video dilution technique to investigate the determinants of total bronchial artery blood flow in a stable animal model avoiding thoracotomy. Images PMID:3883564
Lean stability augmentation study. [on gas turbine combustion chambers
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.
1979-01-01
An analytical conceptual design study and an experimental test program were conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. The use of hot gas pilots, catalyzed flameholder elements, and heat recirculation to augment lean stability limits was considered in the conceptual design study. Tests of flameholders embodying selected concepts were conducted at a pressure of 10 arm and over a range of entrance temperatures simulating conditions to be encountered during stratospheric cruise. The tests were performed using an axisymmetric flametube test rig having a nominal diameter of 10.2 cm. A total of sixteen test configurations were examined in which lean blowout limits, pollutant emission characteristics, and combustor performance were evaluated. The use of a piloted perforated plate flameholder employing a pilot fuel flow rate equivalent to 4 percent of the total fuel flow at a simulated cruise condition resulted in a lean blowout equivalence ratio of less than 0.25 with a design point (T sub zero = 600k, Phi = 0.6) NOx emission index of less than 1.0 g/kg.
Use of dissolved oxygen modeling results in the management of river quality
Rickert, D.A.
1984-01-01
In 1973, the U.S. Geological Survey initiated a study of the Willamette River, Oregon, to determine the major causes of dissolved oxygen (DO) depletion, and whether advanced treatment of municipal wastewaters was needed to achieve the DO standards. The study showed that rates of carbonaceous decay were low (kr = 0.03-0.06/day) and that point-source loadings of carbonaceous biochemical oxygen demand (BOD) accounted for less than one-third of the satisfied oxygen demand. Nitrification of industrially discharged ammonia was the dominant cause of DO depletion. The study led to the calibration and verification of a steady-state DO model which was used to examine selected scenarios of BOD loading, ammonia loading, and flow augmentation. In 1976, the modeling projections for the Willamette River were presented to resource managers. A review in 1981 indicated that the State of Oregon had instituted an effluent standard on the major discharger of ammonia, rescinded an order for all municipal wastewaters to receive advanced secondary treatment by 1980, and more fully acknowledged the need for flow augmentation during summer to attain the DO standards.
Garcia-Borreguero, Diego; Silber, Michael H; Winkelman, John W; Högl, Birgit; Bainbridge, Jacquelyn; Buchfuhrer, Mark; Hadjigeorgiou, Georgios; Inoue, Yuichi; Manconi, Mauro; Oertel, Wolfgang; Ondo, William; Winkelmann, Juliane; Allen, Richard P
2016-05-01
A Task Force was established by the International Restless Legs Syndrome Study Group (IRLSSG) in conjunction with the European Restless Legs Syndrome Study Group (EURLSSG) and the RLS Foundation (RLS-F) to develop evidence-based and consensus-based recommendations for the prevention and treatment of long-term pharmacologic treatment of dopaminergic-induced augmentation in restless legs syndrome/Willis-Ekbom disease (RLS/WED). The Task Force made the following prevention and treatment recommendations: As a means to prevent augmentation, medications such as α2δ ligands may be considered for initial RLS/WED treatment; these drugs are effective and have little risk of augmentation. Alternatively, if dopaminergic drugs are elected as initial treatment, then the daily dose should be as low as possible and not exceed that recommended for RLS/WED treatment. However, the physician should be aware that even low dose dopaminergics can cause augmentation. Patients with low iron stores should be given appropriate iron supplementation. Daily treatment by either medication should start only when symptoms have a significant impact on quality of life in terms of frequency and severity; intermittent treatment might be considered in intermediate cases. Treatment of existing augmentation should be initiated, where possible, with the elimination/correction of extrinsic exacerbating factors (iron levels, antidepressants, antihistamines, etc.). In cases of mild augmentation, dopamine agonist therapy can be continued by dividing or advancing the dose, or increasing the dose if there are breakthrough night-time symptoms. Alternatively, the patient can be switched to an α2δ ligand or rotigotine. For severe augmentation the patient can be switched either to an α2δ ligand or rotigotine, noting that rotigotine may also produce augmentation at higher doses with long-term use. In more severe cases of augmentation an opioid may be considered, bypassing α2δ ligands and rotigotine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Graft Utilization in the Augmentation of Large-to-Massive Rotator Cuff Repairs: A Systematic Review.
Ferguson, Devin P; Lewington, Matthew R; Smith, T Duncan; Wong, Ivan H
2016-11-01
Current treatment options for symptomatic large-to-massive rotator cuff tears can reduce pain, but failure rates remain high. Surgeons have incorporated synthetic and biologic grafts to augment these repairs, with promising results. Multiple reviews exist that summarize these products; however, no systematic review has investigated the grafts' ability to maintain structural integrity after augmentation of large-to-massive rotator cuff repairs. To systematically review and evaluate the effectiveness of grafts in the augmentation of large-to-massive rotator cuff repairs. Systematic review. A comprehensive search of 4 reputable databases was completed. Inclusion criteria were (1) large-to-massive rotator cuff tear, (2) graft augmentation of primary repairs ± primary repair control group, and (3) minimum clinical and radiologic follow-up of 12 months. Two reviewers screened the titles, abstracts, and full articles and extracted the data from eligible studies. Results were summarized into evidence tables stratified by graft origin and level of evidence. Ten studies fit the inclusion criteria. Allograft augmentation was functionally and structurally superior to primary repair controls, with intact repairs in 85% versus 40% of patients (P < .01). This was supported by observational study data. Xenograft augmentation failed to demonstrate superiority to primary repair controls, with worse structural healing rates (27% vs 60%; P =.11). Both comparative studies supported this finding. There have also been many reports of inflammatory reactions with xenograft use. Polypropylene patches are associated with improved structural (83% vs 59% and 49%; P < .01) and functional outcomes when compared with controls and xenograft augmentation; however, randomized data are lacking. Augmentation of large-to-massive rotator cuff repairs with human dermal allografts is associated with superior functional and structural outcome when compared with conventional primary repair. Xenograft augmentation failed to demonstrate a statistically significant difference and may be associated with worse rerupture rates and occasional severe inflammatory reactions. Polypropylene patches have initial promising results. Research in this field is limited; future researchers should continue to develop prospective, randomized controlled trials to establish clear recommendations. © 2016 The Author(s).
Influences of water and sediment quality and hydrologic processes on mussels in the Clinch River
Johnson, Gregory C.; Krstolic, Jennifer L.; Ostby, Brett J.K.
2014-01-01
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water-quality data showed higher turbidity and specific conductance in the reaches with low-quality mussel assemblages compared to reaches with high-quality mussel assemblages. Discrete water-quality samples showed higher major ions and metals concentrations in the low-quality reach. Base-flow samples contained high major ion and metal concentrations coincident to low-quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high-quality mussel populations occur.
Augmenting Trastuzumab Therapy Against Breast Cancer Through Selective Activation of NK Cells
2013-10-01
selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines...at a ratio of 1:1. After 24 hours, NK cells were isolated by negative selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow ... cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A), BT474M1 (B), HER18 (C), and SKBR3
Project SQUID. On the Performance Analysis of the Ducted Pulsejet
1951-10-01
by the mixing losses except for possible thrust augmentation at static operation or at extremely low flight velocities. The analysis, in the presented...oressure S btu/i- heir". added per pound of air "iass flow ratio = ft.’ "’i.Ug,pO gas constant A Btuaib.OR specifi" entropy t sec. time 1 lb. thrust = (a...from the tail pipe acts as an ejector jet in the surrounding flow, accelerating it, and thus tUnding to decrease the strength of the upstream moving
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
Yuill, Nicola; Hinske, Steve; Williams, Sophie E.; Leith, Georgia
2014-01-01
Cooperative social interaction is a complex skill that involves maintaining shared attention and continually negotiating a common frame of reference. Privileged in human evolution, cooperation provides support for the development of social-cognitive skills. We hypothesize that providing audio support for capturing playmates' attention will increase cooperative play in groups of young children. Attention capture was manipulated via an audio-augmented toy to boost children's attention bids. Study 1 (48 6- to 11-year-olds) showed that the augmented toy yielded significantly more cooperative play in triads compared to the same toy without augmentation. In Study 2 (33 7- to 9-year-olds) the augmented toy supported greater success of attention bids, which were associated with longer cooperative play, associated in turn with better group narratives. The results show how cooperation requires moment-by-moment coordination of attention and how we can manipulate environments to reveal and support mechanisms of social interaction. Our findings have implications for understanding the role of joint attention in the development of cooperative action and shared understanding. PMID:24904453
Visual error augmentation enhances learning in three dimensions.
Sharp, Ian; Huang, Felix; Patton, James
2011-09-02
Because recent preliminary evidence points to the use of Error augmentation (EA) for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed). Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation) when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.
NASA Astrophysics Data System (ADS)
Allen, Jeffery M.
This research involves a few First-Order System Least Squares (FOSLS) formulations of a nonlinear-Stokes flow model for ice sheets. In Glen's flow law, a commonly used constitutive equation for ice rheology, the viscosity becomes infinite as the velocity gradients approach zero. This typically occurs near the ice surface or where there is basal sliding. The computational difficulties associated with the infinite viscosity are often overcome by an arbitrary modification of Glen's law that bounds the maximum viscosity. The FOSLS formulations developed in this thesis are designed to overcome this difficulty. The first FOSLS formulation is just the first-order representation of the standard nonlinear, full-Stokes and is known as the viscosity formulation and suffers from the problem above. To overcome the problem of infinite viscosity, two new formulation exploit the fact that the deviatoric stress, the product of viscosity and strain-rate, approaches zero as the viscosity goes to infinity. Using the deviatoric stress as the basis for a first-order system results in the the basic fluidity system. Augmenting the basic fluidity system with a curl-type equation results in the augmented fluidity system, which is more amenable to the iterative solver, Algebraic MultiGrid (AMG). A Nested Iteration (NI) Newton-FOSLS-AMG approach is used to solve the nonlinear-Stokes problems. Several test problems from the ISMIP set of benchmarks is examined to test the effectiveness of the various formulations. These test show that the viscosity based method is more expensive and less accurate. The basic fluidity system shows optimal finite-element convergence. However, there is not yet an efficient iterative solver for this type of system and this is the topic of future research. Alternatively, AMG performs better on the augmented fluidity system when using specific scaling. Unfortunately, this scaling results in reduced finite-element convergence.
Continuous Glucose Monitoring: Impact on Hypoglycemia.
van Beers, Cornelis A J; DeVries, J Hans
2016-11-01
The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. © 2016 Diabetes Technology Society.
van Beers, Cornelis A. J.; DeVries, J. Hans
2016-01-01
The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. PMID:27257169
The role of surface vorticity during unsteady separation
NASA Astrophysics Data System (ADS)
Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán
2018-04-01
Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.
Continuous glucose monitoring and hypoglycemia unawareness in type 1 diabetes: a pilot study.
Zalzali, Mohamed; Houdelet-Guerinot, Valérie; Socquard, Eric; Thierry, Aurore; Delemer, Brigitte; Lukas-Croisier, Céline
2017-09-01
Looking for strict normoglycemia in type 1 diabetes increases the risk of hypoglycemia, exposing to hypoglycemia unawareness. It has been shown that the early correction of hypoglycemia can help recovering the perception of hypoglycemia. The purpose of this prospective study was to assess the value of sensor-augmented insulin-pump therapy to treat hypoglycemia unawareness. Eleven patients with type 1 diabetes and partial or total hypoglycemia unawareness received sensor-augmented insulin-pump therapy combined to the low blood glucose-suspend feature (Paradigm® Veo™ pump and Enlite® sensors) for three months. Eighty per cent of the patients improved their hypoglycemia unawareness with an increase in the hypoglycemia perception threshold of 31 mg/dL as evaluated by blinded continuous glucose monitoring. These results were correlated to a self-assessment quiz evaluation. Results were sustained at six months (three months after patients stopped using the system). Sensitive neuropathy, untreated hypoglycemia and the area under the curve for hypoglycemia events were associated with less chance of recovery. These devices were globally considered by the patients as simple to use, with no major disadvantages and only a single withdrawal occurred. Sensor-augmented insulin-pump therapy should be considered as a possible treatment of hypoglycemia unawareness.
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,
2003-01-01
In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.
Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips
NASA Technical Reports Server (NTRS)
Tse, David G.N.; Steuber, Gary
1996-01-01
Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Robin
During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additionalmore » funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are displayed in Table 1 (page 5). Work on the restoration of the original Sandy River channel (dam removal, contract 26198) continued slowly. The draft EA was completed and sent out for review. The COE has decided to finish the NEPA with the intent to complete the project.« less
Flight-determined correction terms for angle of attack and sideslip
NASA Technical Reports Server (NTRS)
Shafer, M. F.
1982-01-01
The effects of local flow, upwash, and sidewash on angle of attack and sideslip (measured with boom-mounted vanes) were determined for subsonic, transonic, and supersonic flight using a maximum likelihood estimator. The correction terms accounting for these effects were determined using a series of maneuvers flown at a large number of flight conditions in both augmented and unaugmented control modes. The correction terms provide improved angle-of-attack and sideslip values for use in the estimation of stability and control derivatives. In addition to detailing the procedure used to determine these correction terms, this paper discusses various effects, such as those related to Mach number, on the correction terms. The use of maneuvers flown in augmented and unaugmented control modes is also discussed.
Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
2008-01-01
An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.
NASA Astrophysics Data System (ADS)
MacLean, M.; Holden, M.
2009-01-01
The effect of gas/surface interaction in making CFD predictions of convective heating has been considered with application to ground tests performed in high enthalpy shock tunnels where additional heating augmentation attributable to surface recombination has been observed for nitrogen, air and carbon dioxide flows. For test articles constructed of stainless steel and aluminum, measurements have been made with several types of heat transfer instrumentation including thin- film, calorimeter, and coaxial thermocouple sensors. These experiments have been modeled by computations made with the high quality, chemically reacting, Navier- Stokes solver, DPLR and the heating results compared. Some typical cases considered include results on an axisymmetric sphere-cone, axisymmetric spherical capsule, spherical capsule at angle of attack, and two- dimensional cylinder. In nitrogen flows, cases considered show a recombination probability on the order of 10-3, which agrees with published data. In many cases in air and CO2, measurements exceeding the predicted level of convective heating have been observed which are consistent with approximately complete recombination (to O2/N2 or CO2) on the surface of the model (sometimes called a super-catalytic wall). It has been recognized that the conclusion that this behavior is tied to an excessively high degree of catalytic efficiency is dependent on the current understanding of the freestream and shock-layer state of the gas.
An adaptive brain actuated system for augmenting rehabilitation
Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.
2014-01-01
For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945
Safety Arguments for Next Generation, Location Aware Computing
NASA Technical Reports Server (NTRS)
Johnson, C. W.; Holloway, C. M.
2010-01-01
Concerns over accuracy, availability, integrity, and continuity have limited the integration of Global Positioning System (GPS) and Global Navigation Satellite System (GLONASS) for safety-critical applications. More recent augmentation systems, such as the European Geostationary Navigation Overlay Service (EGNOS) and the North American Wide Area Augmentation System (WAAS) have begun to address these concerns. Augmentation architectures build on the existing GPS/GLONASS infrastructures to support location based services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance for aviation applications. During the next twelve months, the full certification of EGNOS for SoL applications is expected. This paper discusses similarities and differences between the safety assessment techniques used in Europe and North America.
Hard and soft tissue augmentation in a postorthodontic patient: a case report.
Bonacci, Fred J
2011-02-01
A combination of hard and soft tissue grafting is used to augment a thin biotype. A 26-year-old woman with mandibular anterior flaring and Miller Class I and III recessions requested interceptive treatment. Surgery included a full-thickness buccal flap, intramarrow penetrations, bone graft placement, and primary flap closure. Postoperative visits were at 2 and 4 weeks and 2, 3, and 6 months. Stage-two surgery consisted of submerged connective tissue graft placement. Postoperative visits were completed at 2, 4, 6, and 8 weeks and 1 year. Follow-up was completed 3 years after the initial surgery. Interradicular concavities were resolved and gingival biotype was augmented. Soft tissue recession remained at 6 months. Reentry revealed clinical labial plate augmentation; 2 mm was achieved at the lateral incisors and the left central incisor and 3 mm was achieved at the right canine. No bone augmentation was achieved on the left canine and right central incisor. The dehiscence at the right central incisor appeared narrower. Overall, a 2- to 3-mm gain in alveolar bone thickness/height was observed. Two months after stage-two surgery, near complete root coverage was achieved; 1 mm of recession remained on the left central incisor. There was a soft tissue thickness gain of 2 mm without any visual difference in keratinized tissue height. Interradicular concavities were eliminated; the soft tissue was augmented and the gingival biotype was altered. Interdental soft tissue craters remained. One year after connective tissue graft placement, there was near complete root coverage at the left central incisor, which at 2 months experienced residual recession. Interradicular concavities and interdental soft tissue craters were eliminated with soft tissue augmentation, including clinical reestablishment of the mucogingival junction. Clinical stability remained 3 years after the initial surgery, with the patient noting comfort during mastication and routine oral hygiene. A clinical increase in labial plate thickness, in conjunction with soft tissue augmentation, appears to provide for continued stability and decreased potential for future clinical attachment loss.
Interacting with Visual Poems through AR-Based Digital Artwork
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen
2012-01-01
In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…
The Infrared Signature of the High Altitude Supersonic Target (HAST) at Sea Level
1975-08-01
T h revr se o f: t h i p a g is b la n k ) r : -- : : - -= : - -- . .. IM TABLE OF CONTENTS Section Title Page ji I INTRODUCTION ...of merit, ,, in watts/steradian/gram/second, computed from the radiometer data (8) The infrared augmentation ratio ( Jaug /J)flow is the ratio of the
James Sedell; Maitland Sharpe; Daina Dravnieks Apple; Max Copenhagen; Mike Furniss
2000-01-01
Public concern about adequate supplies of clean water led to the establishment in 1891 of federally protected forest reserves. The Forest Service Natural Resources Agenda is refocusing the agency on its original purpose. This report focuses on the role of forests in water supplyâincluding quantity, quality, timing of release, flood reductions and low flow augmentation...
The Use of an Information Brokering Tool in an Electronic Museum Environment.
ERIC Educational Resources Information Center
Zimmermann, Andreas; Lorenz, Andreas; Specht, Marcus
When art and technology meet, a huge information flow has to be managed. The LISTEN project conducted by the Fraunhofer Institut in St. Augustin (Germany) augments every day environments with audio information. In order to distribute and administer this information in an efficient way, the Institute decided to employ an information brokering tool…
Izumi, So; Okada, Kenji; Hasegawa, Tomomi; Omura, Atsushi; Munakata, Hiroshi; Matsumori, Masamichi; Okita, Yutaka
2010-05-01
Paraplegia from spinal cord ischemia remains an unresolved complication in thoracoabdominal aortic surgery, with high morbidity and mortality. This study investigated postoperative effects of systemic blood pressure augmentation during ischemia. Spinal cord ischemia was induced in rabbits by infrarenal aortic occlusion for 15 minutes with infused phenylephrine (high blood pressure group, n = 8) or nitroprusside (low blood pressure group, n = 8) or without vasoactive agent (control, n = 8). Spinal cord blood flow, transcranial motor evoked potentials, neurologic outcome, and motor neuron cell damage (apoptosis, necrosis, superoxide generation, myeloperoxidase activity) were evaluated. Mean arterial pressures during ischemia were controlled at 121.9 +/- 2.8, 50.8 +/- 4.3, and 82.3 +/- 10.7 mm Hg in high blood pressure, low blood pressure, and control groups, respectively. In high blood pressure group, high spinal cord blood flow (P < .01), fast recovery of transcranial motor evoked potentials (P < .01), and high neurologic score (P < .05) were observed after ischemia relative to low blood pressure and control groups. At 48 hours after ischemia, there were significantly more viable neurons, fewer terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive neurons, and less alpha-fodrin expression in high blood pressure group than low blood pressure and control groups. Superoxide generation and myeloperoxidase activity at 3 hours after ischemia were suppressed in high blood pressure group relative to low blood pressure group. Augmentation of systemic blood pressure during spinal cord ischemia can reduce ischemic insult and postoperative neurologic adverse events. 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Winklewski, Pawel J; Barak, Otto; Madden, Dennis; Gruszecka, Agnieszka; Gruszecki, Marcin; Guminski, Wojciech; Kot, Jacek; Frydrychowski, Andrzej F; Drvis, Ivan; Dujic, Zeljko
2015-01-01
The aim of the study was to assess changes in subarachnoid space width (sas-TQ), the marker of intracranial pressure (ICP), pial artery pulsation (cc-TQ) and cardiac contribution to blood pressure (BP), cerebral blood flow velocity (CBFV) and cc-TQ oscillations throughout the maximal breath hold in elite apnoea divers. Non-invasive assessment of sas-TQ and cc-TQ became possible due to recently developed method based on infrared radiation, called near-infrared transillumination/backscattering sounding (NIR-T/BSS). The experimental group consisted of seven breath-hold divers (six men). During testing, each participant performed a single maximal end-inspiratory breath hold. Apnoea consisted of the easy-going and struggle phases (characterised by involuntary breathing movements (IBMs)). Heart rate (HR) was determined using a standard ECG. BP was assessed using the photoplethysmography method. SaO2 was monitored continuously with pulse oximetry. A pneumatic chest belt was used to register thoracic and abdominal movements. Cerebral blood flow velocity (CBFV) was estimated by a 2-MHz transcranial Doppler ultrasonic probe. sas-TQ and cc-TQ were measured using NIR-T/BSS. Wavelet transform analysis was performed to assess cardiac contribution to BP, CBFV and cc-TQ oscillations. Mean BP and CBFV increased compared to baseline at the end of the easy phase and were further augmented by IBMs. cc-TQ increased compared to baseline at the end of the easy phase and remained stable during the IBMs. HR did not change significantly throughout the apnoea, although a trend toward a decrease during the easy phase and recovery during the IBMs was visible. Amplitudes of BP, CBFV and cc-TQ were augmented. sas-TQ and SaO2 decreased at the easy phase of apnoea and further decreased during the IBMs. Apnoea increases intracranial pressure and pial artery pulsation. Pial artery pulsation seems to be stabilised by the IBMs. Cardiac contribution to BP, CBFV and cc-TQ oscillations does not change throughout the apnoea.
Stadelmann, Vincent A; Zderic, Ivan; Baur, Annick; Unholz, Cynthia; Eberli, Ursula; Gueorguiev, Boyko
2016-02-01
Vertebroplasty has been shown to reinforce weak vertebral bodies and reduce fracture risks, yet cement leakage is a major problem that can cause severe complications. Since cement flow is nearly impossible to control during surgery, small volumes of cement are injected, but then mechanical benefits might be limited. A better understanding of cement flows within bone structure is required to further optimize vertebroplasty and bone augmentation in general. We developed a novel imaging method, composite time-lapse CT, to characterize cement flow during injection. In brief, composite-resolution time-lapse CT exploits the qualities of microCT and clinical CT. The method consists in overlaying low-resolution time-lapse CT scans acquired during injection onto pre-operative high-resolution microCT scans, generating composite-resolution time-lapse CT series of cement flow within bone. In this in vitro study, composite-resolution time-lapse CT was applied to eight intact and five artificially fractured cadaveric vertebrae during vertebroplasty. The time-lapse scans were acquired at one-milliliter cement injection steps until a total of 10 ml cement was injected. The composite-resolution series were then converted into micro finite element models to compute strains distribution under virtual axial loading. Relocation of strain energy density within bone structure was observed throughout the progression of the procedure. Interestingly, the normalized effect of cement injection on the overall stiffness of the vertebrae was similar between intact and fractured specimens, although at different orders of magnitude. In conclusion, composite time-lapse CT can picture cement flows during bone augmentation. The composite images can also be easily converted into finite element models to compute virtual strain distributions under loading at every step of an injection, providing deeper understanding on the biomechanics of vertebroplasty. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
Bayes to the Rescue: Continuous Positive Airway Pressure Has Less Mortality Than High-Flow Oxygen.
Modesto I Alapont, Vicent; Khemani, Robinder G; Medina, Alberto; Del Villar Guerra, Pablo; Molina Cambra, Alfred
2017-02-01
The merits of high-flow nasal cannula oxygen versus bubble continuous positive airway pressure are debated in children with pneumonia, with suggestions that randomized controlled trials are needed. In light of a previous randomized controlled trial showing a trend for lower mortality with bubble continuous positive airway pressure, we sought to determine the probability that a new randomized controlled trial would find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure through a "robust" Bayesian analysis. Sample data were extracted from the trial by Chisti et al, and requisite to "robust" Bayesian analysis, we specified three prior distributions to represent clinically meaningful assumptions. These priors (reference, pessimistic, and optimistic) were used to generate three scenarios to represent the range of possible hypotheses. 1) "Reference": we believe bubble continuous positive airway pressure and high-flow nasal cannula oxygen are equally effective with the same uninformative reference priors; 2) "Sceptic on high-flow nasal cannula oxygen": we believe that bubble continuous positive airway pressure is better than high-flow nasal cannula oxygen (bubble continuous positive airway pressure has an optimistic prior and high-flow nasal cannula oxygen has a pessimistic prior); and 3) "Enthusiastic on high-flow nasal cannula oxygen": we believe that high-flow nasal cannula oxygen is better than bubble continuous positive airway pressure (high-flow nasal cannula oxygen has an optimistic prior and bubble continuous positive airway pressure has a pessimistic prior). Finally, posterior empiric Bayesian distributions were obtained through 100,000 Markov Chain Monte Carlo simulations. In all three scenarios, there was a high probability for more death from high-flow nasal cannula oxygen compared with bubble continuous positive airway pressure (reference, 0.98; sceptic on high-flow nasal cannula oxygen, 0.982; enthusiastic on high-flow nasal cannula oxygen, 0.742). The posterior 95% credible interval on the difference in mortality identified a future randomized controlled trial would be extremely unlikely to find a mortality benefit for high-flow nasal cannula oxygen over bubble continuous positive airway pressure, regardless of the scenario. Interpreting these findings using the "range of practical equivalence" framework would recommend rejecting the hypothesis that high-flow nasal cannula oxygen is superior to bubble continuous positive airway pressure for these children. For children younger than 5 years with pneumonia, high-flow nasal cannula oxygen has higher mortality than bubble continuous positive airway pressure. A future randomized controlled trial in this population is unlikely to find high-flow nasal cannula oxygen superior to bubble continuous positive airway pressure.
Catalytic Microtube Rocket Igniter
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Deans, Matthew C.
2011-01-01
Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each approximately 10 cm long and are heated via direct electric resistive heating. This heating brings the gasses to their minimum required ignition temperature, which is lower than the auto-thermal ignition temperature, and causes the onset of both surface and gas phase ignition producing hot temperatures and a highly reacting flame. The combustion products from the catalytic tubes, which are below the melting point of platinum, are injected into the center of another combustion stage, called the primary augmenter. The reactants for this combustion stage come from the same source but the flows of non-premixed methane and oxygen gas are split off to a secondary mixing apparatus and can be mixed in a near-stoichiometric to highly lean mixture ratio. The primary augmenter is a component that has channels venting this mixed gas to impinge on each other in the center of the augmenter, perpendicular to the flow from the catalyst. The total crosssectional area of these channels is on a similar order as that of the catalyst. The augmenter has internal channels that act as a manifold to distribute equally the gas to the inward-venting channels. This stage creates a stable flame kernel as its flows, which are on the order of 0.01 g/s, are ignited by the combustion products of the catalyst. This stage is designed to produce combustion products in the flame kernel that exceed the autothermal ignition temperature of oxygen and methane.
Dopamine in the management of shock.
Thompson, W L
1977-01-01
Shock is a syndrome with serious prognostic implications--the harbinger of death. Hypoperfusion of essential organs is common, though total blood flow may be significantly greater than normal. Specific therapy is directed to the specific inciting event--infection, abscess, tamponade, &c. Symptomatic therapy keeps the patient alive until we discover the specific problem or until he recovers spontaneously. The intravascular volume must be carefully monitored and corrected, using the pulmonary wedge pressure as the principal guide, and colloid osmotic pressure must be maintained. If the patient does not respond to volume augmentation alone then inotropic drugs may be needed, and of these dopamine is a selective vasodilator which redirects blood flow to the critical organs. The outstanding challenge in shock is the maldistribution of perfusion in the microvasculature. Although this may be ameliorated by the early administration of large doses of glucocorticoids, there is little convincing that these drugs constitute more than supportive therapy. Of greatest importance is reevaluation, reevaluation, and reevaluation. The patient in shock becomes a new patient every five minutes. Drugs that formerly worked, doses previously optimal--these are no guide because the situation changes so rapidly. The principles of management are to monitor vital functions, constantly vary drugs and doses, and continually attempt to put right all the parameters measured. This strategy will be more effective when we know what parameters to measure. PMID:264200
Hermanides, J; Nørgaard, K; Bruttomesso, D; Mathieu, C; Frid, A; Dayan, C M; Diem, P; Fermon, C; Wentholt, I M E; Hoekstra, J B L; DeVries, J H
2011-10-01
To investigate the efficacy of sensor-augmented pump therapy vs. multiple daily injection therapy in patients with suboptimally controlled Type 1 diabetes. In this investigator-initiated multi-centre trial (the Eurythmics Trial) in eight outpatient centres in Europe, we randomized 83 patients with Type 1 diabetes (40 women) currently treated with multiple daily injections, age 18-65 years and HbA(1c) ≥ 8.2% (≥ 66 mmol/mol) to 26 weeks of treatment with either a sensor-augmented insulin pump (n = 44) (Paradigm(®) REAL-Time) or continued with multiple daily injections (n = 39). Change in HbA(1c) between baseline and 26 weeks, sensor-derived endpoints and patient-reported outcomes were assessed. The trial was completed by 43/44 (98%) patients in the sensor-augmented insulin pump group and 35/39 (90%) patients in the multiple daily injections group. Mean HbA(1c) at baseline and at 26 weeks changed from 8.46% (SD 0.95) (69 mmol/mol) to 7.23% (SD 0.65) (56 mmol/mol) in the sensor-augmented insulin pump group and from 8.59% (SD 0.82) (70 mmol/mol) to 8.46% (SD 1.04) (69 mmol/mol) in the multiple daily injections group. Mean difference in change in HbA(1c) after 26 weeks was -1.21% (95% confidence interval -1.52 to -0.90, P < 0.001) in favour of the sensor-augmented insulin pump group. This was achieved without an increase in percentage of time spent in hypoglycaemia: between-group difference 0.0% (95% confidence interval -1.6 to 1.7, P = 0.96). There were four episodes of severe hypoglycaemia in the sensor-augmented insulin pump group and one episode in the multiple daily injections group (P = 0.21). Problem Areas in Diabetes and Diabetes Treatment Satisfaction Questionnaire scores improved in the sensor-augmented insulin pump group. Sensor augmented pump therapy effectively lowers HbA(1c) in patients with Type 1 diabetes suboptimally controlled with multiple daily injections. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
Sex hormone effects on autonomic mechanisms of thermoregulation in humans.
Charkoudian, Nisha; Stachenfeld, Nina
2016-04-01
Autonomic mechanisms are fundamental to human physiological thermoregulation, and female reproductive hormones have substantial influences on several aspects of these mechanisms. Of these, the best recognized are the thermoregulatory responses that occur at menopause (hot flushes) and the changes in body temperature within the menstrual cycle which may help couples predict ovulation. Our goal in this brief review is to summarize current knowledge regarding the influences of reproductive hormones on autonomic mechanisms in human thermoregulation. In general, estrogens tend to promote lower body temperatures via augmentation of heat dissipation responses, whereas progesterone tends to promote higher body temperatures. Recent evidence suggests specific influences of estrogens on central autonomic nuclei involved in control of skin blood flow and sweating. Estrogens also augment vasodilation by direct effects on peripheral blood vessels. Influences of progesterone are less well understood, but include both centrally regulated changes in thermoregulatory set-point as well as and peripheral effects, including augmented vasoconstriction in the skin. We conclude with a brief discussion of thermoregulatory adjustments associated with changing hormone levels during menopause, pregnancy and polycystic ovary syndrome. Published by Elsevier B.V.
Kleydman, Kate; Cohen, Joel L; Marmur, Ellen
2012-12-01
Skin necrosis after soft tissue augmentation with dermal fillers is a rare but potentially severe complication. Nitroglycerin paste may be an important treatment option for dermal and epidermal ischemia in cosmetic surgery. To summarize the knowledge about nitroglycerin paste in cosmetic surgery and to understand its current use in the treatment of vascular compromise after soft tissue augmentation. To review the mechanism of action of nitroglycerin, examine its utility in the dermal vasculature in the setting of dermal filler-induced ischemia, and describe the facial anatomy danger zones in order to avoid vascular injury. A literature review was conducted to examine the mechanism of action of nitroglycerin, and a treatment algorithm was proposed from clinical observations to define strategies for impending facial necrosis after filler injection. Our experience with nitroglycerin paste and our review of the medical literature supports the use of nitroglycerin paste on the skin to help improve flow in the dermal vasculature because of its vasodilatory effect on small-caliber arterioles. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Simonetto, E.; Froment, C.; Labergerie, E.; Ferré, G.; Séchet, B.; Chédorge, H.; Cali, J.; Polidori, L.
2013-07-01
Terrestrial Laser Scanning (TLS), 3-D modeling and its Web visualization are the three key steps needed to perform storage and grant-free and wide access to cultural heritage, as highlighted in many recent examples. The goal of this study is to set up 3-D Web resources for "virtually" visiting the exterior of the Abbaye de l'Epau, an old French abbey which has both a rich history and delicate architecture. The virtuality is considered in two ways: the flowing navigation in a virtual reality environment around the abbey and a game activity using augmented reality. First of all, the data acquisition consists in GPS and tacheometry survey, terrestrial laser scanning and photography acquisition. After data pre-processing, the meshed and textured 3-D model is generated using 3-D Reshaper commercial software. The virtual reality visit and augmented reality animation are then created using Unity software. This work shows the interest of such tools in bringing out the regional cultural heritage and making it attractive to the public.
The Effects of a Dynamic Spectrum Access Overlay in LTE-Advanced Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan D. Deaton; Ryan E. lrwin; Luiz A. DaSilva
As early as 2014, wireless network operators spectral capacity will be overwhelmed by a data tsunami brought on by new devices and applications. To augment spectral capacity, operators could deploy a Dynamic Spectrum Access (DSA) overlay. In the light of the many planned Long Term Evolution (LTE) network deployments, the affects of a DSA overlay have not been fully considered into the existing LTE standards. Coalescing many different aspects of DSA, this paper develops the Spectrum Accountability (SA) framework. The SA framework defines specific network element functionality, protocol interfaces, and signaling flow diagrams for LTE to support service requests andmore » enforce rights of responsibilities of primary and secondary users, respectively. We also include a network simulation to quantify the benefits of using DSA channels to augment capacity. Based on our simulation we show that, network operators can benefit up to %40 increase in operating capacity when sharing DSA bands to augment spectral capacity. With our framework, this paper could serve as an guide in developing future LTE network standards that include DSA.« less
Voelker, W; Reul, H; Nienhaus, G; Stelzer, T; Schmitz, B; Steegers, A; Karsch, K R
1995-02-15
Valvular resistance and stroke work loss have been proposed as alternative measures of stenotic valvular lesions that may be less flow dependent and, thus, superior over valve area calculations for the quantification of aortic stenosis. The present in vitro study was designed to compare the impacts of valvular resistance, stroke work loss, and Gorlin valve area as hemodynamic indexes of aortic stenosis. In a pulsatile aortic flow model, rigid stenotic orifices in varying sizes (0.5, 1.0, 1.5 and 2.0 cm2) and geometry were studied under different hemodynamic conditions. Ventricular and aortic pressures were measured to determine the mean systolic ventricular pressure (LVSPm) and the transstenotic pressure gradient (delta Pm). Transvalvular flow (Fm) was assessed with an electromagnetic flowmeter. Valvular resistance [VR = 1333.(delta Pm/Fm)] and stroke work loss [SWL = 100.(delta Pm/LVSPm)] were calculated and compared with aortic valve area [AVA = Fm/(50 square root of delta Pm)]. The measurements were performed for a large range of transvalvular flows. At low-flow states, flow augmentation (100-->200 mL/s) increased calculated valvular resistance between 21% (2.0 cm2 orifice) and 66% (0.5-cm2 orifice). Stroke work loss demonstrated an increase from 43% (2.0 cm2) to 100% (1.0 cm2). In contrast, Gorlin valve area revealed only a moderate change from 29% (2.0 cm2) to 5% (0.5 cm2). At physiological flow rates, increase in transvalvular flow (200-->300 mL/s) did not alter calculated Gorlin valve area, whereas valvular resistance and stroke work loss demonstrated a continuing increase. Our experimental results were adopted to interpret the results of three clinical studies in aortic stenosis. The flow-dependent increase of Gorlin valve area, which was found in the cited clinical studies, can be elucidated as true further opening of the stenotic valve but not as a calculation error due to the Gorlin formula. Within the physiological range of flow, calculated aortic valve area was less dependent on hemodynamic conditions than were valvular resistance and stroke work loss, which varied as a function of flow. Thus, for the assessment of the severity of aortic stenosis, the Gorlin valve area is superior over valvular resistance and stroke work loss, which must be indexed for flow to adequately quantify the hemodynamic severity of the obstruction.
Subsurface and Surface Characterization using an Information Framework Model
NASA Astrophysics Data System (ADS)
Samuel-Ojo, Olusola
Groundwater plays a critical dual role as a reservoir of fresh water for human consumption and as a cause of the most severe problems when dealing with construction works below the water table. This is why it is critical to monitor groundwater recharge, distribution, and discharge on a continuous basis. The conventional method of monitoring groundwater employs a network of sparsely distributed monitoring wells and it is laborious, expensive, and intrusive. The problem of sparse data and undersampling reduces the accuracy of sampled survey data giving rise to poor interpretation. This dissertation addresses this problem by investigating groundwater-deformation response in order to augment the conventional method. A blend of three research methods was employed, namely design science research, geological methods, and geophysical methods, to examine whether persistent scatterer interferometry, a remote sensing technique, might augment conventional groundwater monitoring. Observation data (including phase information for displacement deformation from permanent scatterer interferometric synthetic aperture radar and depth to groundwater data) was obtained from the Water District, Santa Clara Valley, California. An information framework model was built and applied, and then evaluated. Data was preprocessed and decomposed into five components or parts: trend, seasonality, low frequency, high frequency and octave bandwidth. Digital elevation models of observed and predicted hydraulic head were produced, illustrating the piezometric or potentiometric surface. The potentiometric surface characterizes the regional aquifer of the valley showing areal variation of rate of percolation, velocity and permeability, and completely defines flow direction, advising characteristics and design levels. The findings show a geologic forcing phenomenon which explains in part the long-term deformation behavior of the valley, characterized by poroelastic, viscoelastic, elastoplastic and inelastic deformations under the influence of an underlying geologic southward plate motion within the theory of plate tectonics. It also explains the impact of a history of heavy pumpage of groundwater during the agricultural and urbanization era. Thus the persistent scatterer interferometry method offers an attractive, non-intrusive, cost-effective augmentation of the conventional method of monitoring groundwater for water resource development and stability of soil mass.
Exercise as an augmentation strategy for treatment of major depression.
Trivedi, Madhukar H; Greer, Tracy L; Grannemann, Bruce D; Chambliss, Heather O; Jordan, Alexander N
2006-07-01
The use of augmentation strategies among patients with major depression is increasing because rates of complete remission with standard antidepressant monotherapy are quite low. Clinical and neurobiological data suggest that exercise may be a good candidate for use as an augmentation treatment for depression. This pilot study examined the use of exercise to augment antidepressant medication in patients with major depression. Seventeen patients with incomplete remission of depressive symptoms began a 12-week exercise program while continuing their antidepressant medication (unchanged in type or dose). Individual exercise prescriptions were calculated based on an exercise dose consistent with currently recommended public health guidelines. The exercise consisted of both supervised and home-based sessions. The 17-item Hamilton Rating Scale for Depression (HRSD17) and the Inventory of Depressive Symptomatology-Self-Report (IDS-SR30) were used to assess symptoms of depression on a weekly basis. Intent-to-treat analyses yielded significant decreases on both the HRSD17 (5.8 points, p < 0.008) and IDS-SR30 (13.9 points, p < 0.002). For patients who completed the study (n = 8), HRSD17 scores decreased by 10.4 points and IDS-SR30 scores decreased by 18.8 points. This study provides preliminary evidence for exercise as an effective augmentation treatment for antidepressant medication. This is a lower-cost augmentation strategy that has numerous health benefits and may further reduce depressive symptoms in partial responders to antidepressant treatment. Practical tips on how practitioners can use exercise to enhance antidepressant treatment are discussed. Longer-term use of exercise is also likely to confer additional health benefits for this population.
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Biddiss, Elaine; Erickson, David; Li, Dongqing
2004-06-01
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.
Vortical flow management techniques
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Campbell, James F.
1987-01-01
The aerodynamic performance and controllability of advanced, highly maneuverable supersonic aircraft can be enhanced by means of 'vortex management', which refers to the purposeful manipulation and reordering of stable and concentrated vortical structures due to flow separations from highly swept leading edges and slender forebodies at moderate-to-high angles-of-attack. Attention is presently given to a variety of results obtained in the course of experiments on generic research models at NASA Langley, clarifying their underlying aerodynamics and evaluating their performance-improvement potential. The vortex-management concepts discussed encompass aerodynamic compartmentation of highly swept leading edges, vortex lift augmentation and modulation, and forebody vortex manipulation.
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, C. C.
2016-05-15
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
NASA Astrophysics Data System (ADS)
Fung, C. F.; Lopez, A.; New, M.
2009-04-01
Climate change is likely to impact on freshwater ecology, the delivery of regulatory commitments to ecological status and the management of water resources. It is becoming increasingly important for European environment agencies to use and develop methods to aid planning and abstraction licensing procedures and policies in the face of climate change and with the introduction of the Water Framework Directive. Studies have been carried out in the past to investigate the implications of climate change for biodiversity. However, predicting the future is fraught with uncertainty, an area which has not been dealt with in great depth in the past. This study has been undertaken to draw on the results of new methodologies to address the uncertainties inherent in modelling future climate and assess their usability for decision-making in water resources allocations specifically in considering interactions between flow and invertebrate communities The River Itchen was chosen as the case study catchment on the strength of having a long-term coupled ecological and flow dataset and having been an area of intensive study in the past. It is a chalk stream located in the south of England and a candidate Special Area of Conservation. It has also been designated a Special Site of Scientific Interest achieved due to the number of rare species, and the richness of the macro-invertebrate community in the river catchment. An ensemble of 246 transient simulations for future climate was obtained from ClimatePrediction.net which were then used to drive a rainfall-runoff model. In order to link the modelled river flow to ecology, the Lotic Invertebrate Flow Evaluation score has been used where the invertebrate community is linked to flow largely through sensitivity to water velocity and siltation, driven by flow variability at sites with fixed channel dimensions The large ensemble of climate scenarios and thereby flow and ecological indices allows the exploration of the risk of the river of not meeting environmental flow targets in the future. Three sets of environmental flow targets which were drawn up by the Environment Agency for England and Wales for the River Itchen were tested and show that it may be difficult to maintain a natural chalk stream invertebrate community in the River Itchen in the future. The ensemble also shows low flows regularly extending from August to December which could result in the loss of a high proportion of individuals recruited that year. This would in turn lead to diminished over-wintering populations, with potentially catastrophic consequences for the following years breeding and recruitment programme. Due to a paucity of quantitative data for the response of macroinvertebrates to multi-year droughts, to provide a richer story, a matrix has been proposed for analysing the effects on biodiversity of the river which combines both the thresholds derived previously and expert opinion on how the ecology of the River Itchen will react to climate change. The matrices also provide a more accessible way of communicating rather complex information to a wider community of decision-makers. Should large changes in flow arise in the future it is likely that some form of action will be taken to mitigate or adapt to the impacts of climate change. Maintaining the ecological status of the river throug river support, i.e. augmenting river flow by pumping from the groundwater aquifer, has also been investigated. However, by augmenting the flow, the high flows are also reduced which can be important for scouring the river bed and removing silt to the benefit of the invertebrate community. Therefore at some point further augmentation may need to be curtailed in order to maintain high flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; Schilp, Reinhard; Ross, Christopher W.
A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the airmore » flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).« less
Mechanisms for Flow-Enhanced Cell Adhesion
Zhu, Cheng; Yago, Tadayuki; Lou, Jizhong; Zarnitsyna, Veronika I.; McEver, Rodger P.
2009-01-01
Cell adhesion is mediated by specific receptor—ligand bonds. In several biological systems, increasing flow has been observed to enhance cell adhesion despite the increasing dislodging fluid shear forces. Flow-enhanced cell adhesion includes several aspects: flow augments the initial tethering of flowing cells to a stationary surface, slows the velocity and increases the regularity of rolling cells, and increases the number of rollingly adherent cells. Mechanisms for this intriguing phenomenon may include transport-dependent acceleration of bond formation and force-dependent deceleration of bond dissociation. The former includes three distinct transport modes: sliding of cell bottom on the surface, Brownian motion of the cell, and rotational diffusion of the interacting molecules. The latter involves a recently demonstrated counterintuitive behavior called catch bonds where force prolongs rather than shortens the lifetimes of receptor—ligand bonds. In this article, we summarize our recently published data that used dimensional analysis and mutational analysis to elucidate the above mechanisms for flow-enhanced leukocyte adhesion mediated by L-selectinligand interactions. PMID:18299992
Hybrid Manipulation of Streamwise Vorticity in a Diffuser Boundary Layer
NASA Astrophysics Data System (ADS)
Gissen, Abraham; Vukasinovic, Bojan; Culp, John; Glezer, Ari
2010-11-01
The formation of streamwise vorticity concentrations by exploiting the interaction of surface-mounted passive (micro-vanes) and active (synthetic jets) flow control elements with the cross flow is investigated experimentally in a small-scale serpentine duct at high subsonic speeds (up to M = 0.6). Streamwise vortices can be a key element in the mitigation of the adverse effects on pressure recovery and distortion caused by the naturally occurring secondary flows in embedded propulsion systems with complex inlet geometries. Counter rotating and single-sense vortices are formed using conventional passive micro-vanes and active high-power synthetic jet actuators. Interaction of the flow control elements is examined through a hybrid actuation scheme whereby synthetic jet actuation augments the primary vanes' vortices resulting in dynamic enhancement of their strength. It is shown that such sub-boundary layer individual vortices can merge and evolve into duct-scale vortical structures that counteract the inherent secondary flow and mitigates global flow distortion.
Low-flow characteristics of Indiana streams
Fowler, K.K.; Wilson, J.T.
1996-01-01
Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.
NASA Astrophysics Data System (ADS)
Ligrani, P. M.
2018-03-01
A variety of different types of vortices and vortex structures have important influences on thermal protection, heat transfer augmentation, and cooling performance of impingement cooling, effusion cooling, and cross flow cooling. Of particular interest are horseshoe vortices, which form around the upstream portions of effusion coolant concentrations just after they exit individual holes, hairpin vortices, which develop nearby and adjacent to effusion coolant trajectories, and Kelvin-Helmholtz vortices which form within the shear layers that form around each impingement cooling jet. The influences of these different vortex structures are described as they affect and alter the thermal performance of effusion cooling, impingement cooling, and cross flow cooling, as applied to a double wall configuration.
Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartand, Chris; Jagers, Bert
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.
A three-dimensional potential-flow program with a geometry package for input data generation
NASA Technical Reports Server (NTRS)
Halsey, N. D.
1978-01-01
Information needed to run a computer program for the calculation of the potential flow about arbitrary three dimensional lifting configurations is presented. The program contains a geometry package which greatly reduces the task of preparing the input data. Starting from a very sparse set of coordinate data, the program automatically augments and redistributes the coordinates, calculates curves of intersection between components, and redistributes coordinates in the regions adjacent to the intersection curves in a suitable manner for use in the potential flow calculations. A brief summary of the program capabilities and options is given, as well as detailed instructions for the data input, a suggested structure for the program overlay, and the output for two test cases.
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.
2017-01-01
A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
Recent developments in ejector technology in the Air Force: An overview
NASA Technical Reports Server (NTRS)
Nagaraja, K. S.
1979-01-01
Basic and applied studies in thrust augmentation conducted at the Aerospace Research Laboratory at Wright-Patterson AFB which led to an effective configuration of the jet flap diffuser ejector, are reviewed. A method for compressible ejector flow analysis, developed in support of the preliminary design of an ejector thrust aircraft, is discussed and applied to single- and two-stage ejectors.
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Imakiire, Akihiro; Iimori, Kenichi
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by electric double-layer capacitors (EDLCs) is proposed. In the proposed system, EDLCs are arranged in series with batteries so that a lesser number of the EDLCs and batteries will be required. The proposed system has two bi-directional voltage boosters: one is for both the batteries and EDLCs to control the dc-link voltage of a PWM inverter and the other is for only the EDLCs and is used to control the energy flow from and to the EDLCs. In this paper, a strategy to control the energy flow to and from the EDLCs is explained and its effectiveness is confirmed by simulation and experimental results. Furthermore, the efficiencies of the voltage booster, inverter, PM motor, and whole system are measured for the system with the basic configuration, i.e., which consists of only one bi-directional voltage booster and PWM inverter. Then, the steady-state characteristics are determined. Finally, the efficiency of the voltage boosters in the proposed system is determined, and the advantage of the proposed PM motor drive system is discussed.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
NASA Astrophysics Data System (ADS)
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Enhance wound healing monitoring through a thermal imaging based smartphone app
NASA Astrophysics Data System (ADS)
Yi, Steven; Lu, Minta; Yee, Adam; Harmon, John; Meng, Frank; Hinduja, Saurabh
2018-03-01
In this paper, we present a thermal imaging based app to augment traditional appearance based wound growth monitoring. Accurate diagnose and track of wound healing enables physicians to effectively assess, document, and individualize the treatment plan given to each wound patient. Currently, wounds are primarily examined by physicians through visual appearance and wound area. However, visual information alone cannot present a complete picture on a wound's condition. In this paper, we use a smartphone attached thermal imager and evaluate its effectiveness on augmenting visual appearance based wound diagnosis. Instead of only monitoring wound temperature changes on a wound, our app presents physicians a comprehensive measurements including relative temperature, wound healing thermal index, and wound blood flow. Through the rat wound experiments and by monitoring the integrated thermal measurements over 3 weeks of time frame, our app is able to show the underlying healing process through the blood flow. The implied significance of our app design and experiment includes: (a) It is possible to use a low cost smartphone attached thermal imager for added value on wound assessment, tracking, and treatment; and (b) Thermal mobile app can be used for remote wound healing assessment for mobile health based solution.
Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason
2016-01-01
The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena. PMID:28090510
Khor, Wee Sim; Baker, Benjamin; Amin, Kavit; Chan, Adrian; Patel, Ketan; Wong, Jason
2016-12-01
The continuing enhancement of the surgical environment in the digital age has led to a number of innovations being highlighted as potential disruptive technologies in the surgical workplace. Augmented reality (AR) and virtual reality (VR) are rapidly becoming increasingly available, accessible and importantly affordable, hence their application into healthcare to enhance the medical use of data is certain. Whether it relates to anatomy, intraoperative surgery, or post-operative rehabilitation, applications are already being investigated for their role in the surgeons armamentarium. Here we provide an introduction to the technology and the potential areas of development in the surgical arena.
History of gluteal augmentation.
de la Peña, J Abel; Rubio, Omar V; Cano, Jacobo P; Cedillo, Mariana C; Garcés, Miriam T
2006-07-01
The concept of female beauty has changed throughout time, but the form and size of the breasts and gluteal region have remained constant as symbols of maximum femininity. Sculptures and prints show us feminine figures that are voluminous and reflect human history's interest in fertility. The early years of gluteal augmentation saw few published reports that described the procedure technique, follow-up, or possible complications. But developments continued as surgeons began experimenting with different anatomical planes for implant placement. The most important goal in plastic surgery is meeting a patient's expectations. It is important for the surgeon to thoroughly explain to patients what can realistically be achieved with a procedure.
The assembly and use of continuous flow systems for chemical synthesis.
Britton, Joshua; Jamison, Timothy F
2017-11-01
The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.
Johnson, Gary R.; Chen, Peijun; Hicks, Paul B.; Davis, Lori L.; Yoon, Jean; Gleason, Theresa C.; Vertrees, Julia E.; Weingart, Kimberly; Tal, Ilanit; Scrymgeour, Alexandra; Lawrence, David D.; Planeta, Beata; Thase, Michael E.; Huang, Grant D.; Zisook, Sidney; Rao, Sanjai D.; Pilkinton, Patricia D.; Wilcox, James A.; Iranmanesh, Ali; Sapra, Mamta; Jurjus, George; Michalets, James P.; Aslam, Muhammed; Beresford, Thomas; Anderson, Keith D.; Fernando, Ronald; Ramaswamy, Sriram; Kasckow, John; Westermeyer, Joseph; Yoon, Gihyun; D’Souza, D. Cyril; Larson, Gunnar; Anderson, William G.; Klatt, Mary; Fareed, Ayman; Thompson, Shabnam I.; Carrera, Carlos J.; Williams, Solomon S.; Juergens, Timothy M.; Albers, Lawrence J.; Nasdahl, Clifford S.; Villarreal, Gerardo; Winston, Julia L.; Nogues, Cristobal A.; Connolly, K. Ryan; Tapp, Andre; Jones, Kari A.; Khatkhate, Gauri; Marri, Sheetal; Suppes, Trisha; LaMotte, Joseph; Hurley, Robin; Mayeda, Aimee R.; Niculescu, Alexander B.; Fischer, Bernard A.; Loreck, David J.; Rosenlicht, Nicholas; Lieske, Steven; Finkel, Mitchell S.; Little, John T.
2017-01-01
Importance Less than one-third of patients with major depressive disorder (MDD) achieve remission with their first antidepressant. Objective To determine the relative effectiveness and safety of 3 common alternate treatments for MDD. Design, Setting, and Participants From December 2012 to May 2015, 1522 patients at 35 US Veterans Health Administration medical centers who were diagnosed with nonpsychotic MDD, unresponsive to at least 1 antidepressant course meeting minimal standards for treatment dose and duration, participated in the study. Patients were randomly assigned (1:1:1) to 1 of 3 treatments and evaluated for up to 36 weeks. Interventions Switch to a different antidepressant, bupropion (switch group, n = 511); augment current treatment with bupropion (augment-bupropion group, n = 506); or augment with an atypical antipsychotic, aripiprazole (augment-aripiprazole group, n = 505) for 12 weeks (acute treatment phase) and up to 36 weeks for longer-term follow-up (continuation phase). Main Outcomes and Measures The primary outcome was remission during the acute treatment phase (16-item Quick Inventory of Depressive Symptomatology-Clinician Rated [QIDS-C16] score ≤5 at 2 consecutive visits). Secondary outcomes included response (≥50% reduction in QIDS-C16 score or improvement on the Clinical Global Impression Improvement scale), relapse, and adverse effects. Results Among 1522 randomized patients (mean age, 54.4 years; men, 1296 [85.2%]), 1137 (74.7%) completed the acute treatment phase. Remission rates at 12 weeks were 22.3% (n = 114) for the switch group, 26.9% (n = 136)for the augment-bupropion group, and 28.9% (n = 146) for the augment-aripiprazole group. The augment-aripiprazole group exceeded the switch group in remission (relative risk [RR], 1.30 [95% CI, 1.05-1.60]; P = .02), but other remission comparisons were not significant. Response was greater for the augment-aripiprazole group (74.3%) than for either the switch group (62.4%; RR, 1.19 [95% CI, 1.09-1.29]) or the augment-bupropion group (65.6%; RR, 1.13 [95% CI, 1.04-1.23]). No significant treatment differences were observed for relapse. Anxiety was more frequent in the 2 bupropion groups (24.3% in the switch group [n = 124] vs 16.6% in the augment-aripiprazole group [n = 84]; and 22.5% in augment-bupropion group [n = 114]). Adverse effects more frequent in the augment-aripiprazole group included somnolence, akathisia, and weight gain. Conclusions and Relevance Among a predominantly male population with major depressive disorder unresponsive to antidepressant treatment, augmentation with aripiprazole resulted in a statistically significant but only modestly increased likelihood of remission during 12 weeks of treatment compared with switching to bupropion monotherapy. Given the small effect size and adverse effects associated with aripiprazole, further analysis including cost-effectiveness is needed to understand the net utility of this approach. Trial Registration clinicaltrials.gov Identifier: NCT01421342 PMID:28697253
Mohamed, Somaia; Johnson, Gary R; Chen, Peijun; Hicks, Paul B; Davis, Lori L; Yoon, Jean; Gleason, Theresa C; Vertrees, Julia E; Weingart, Kimberly; Tal, Ilanit; Scrymgeour, Alexandra; Lawrence, David D; Planeta, Beata; Thase, Michael E; Huang, Grant D; Zisook, Sidney; Rao, Sanjai D; Pilkinton, Patricia D; Wilcox, James A; Iranmanesh, Ali; Sapra, Mamta; Jurjus, George; Michalets, James P; Aslam, Muhammed; Beresford, Thomas; Anderson, Keith D; Fernando, Ronald; Ramaswamy, Sriram; Kasckow, John; Westermeyer, Joseph; Yoon, Gihyun; D'Souza, D Cyril; Larson, Gunnar; Anderson, William G; Klatt, Mary; Fareed, Ayman; Thompson, Shabnam I; Carrera, Carlos J; Williams, Solomon S; Juergens, Timothy M; Albers, Lawrence J; Nasdahl, Clifford S; Villarreal, Gerardo; Winston, Julia L; Nogues, Cristobal A; Connolly, K Ryan; Tapp, Andre; Jones, Kari A; Khatkhate, Gauri; Marri, Sheetal; Suppes, Trisha; LaMotte, Joseph; Hurley, Robin; Mayeda, Aimee R; Niculescu, Alexander B; Fischer, Bernard A; Loreck, David J; Rosenlicht, Nicholas; Lieske, Steven; Finkel, Mitchell S; Little, John T
2017-07-11
Less than one-third of patients with major depressive disorder (MDD) achieve remission with their first antidepressant. To determine the relative effectiveness and safety of 3 common alternate treatments for MDD. From December 2012 to May 2015, 1522 patients at 35 US Veterans Health Administration medical centers who were diagnosed with nonpsychotic MDD, unresponsive to at least 1 antidepressant course meeting minimal standards for treatment dose and duration, participated in the study. Patients were randomly assigned (1:1:1) to 1 of 3 treatments and evaluated for up to 36 weeks. Switch to a different antidepressant, bupropion (switch group, n = 511); augment current treatment with bupropion (augment-bupropion group, n = 506); or augment with an atypical antipsychotic, aripiprazole (augment-aripiprazole group, n = 505) for 12 weeks (acute treatment phase) and up to 36 weeks for longer-term follow-up (continuation phase). The primary outcome was remission during the acute treatment phase (16-item Quick Inventory of Depressive Symptomatology-Clinician Rated [QIDS-C16] score ≤5 at 2 consecutive visits). Secondary outcomes included response (≥50% reduction in QIDS-C16 score or improvement on the Clinical Global Impression Improvement scale), relapse, and adverse effects. Among 1522 randomized patients (mean age, 54.4 years; men, 1296 [85.2%]), 1137 (74.7%) completed the acute treatment phase. Remission rates at 12 weeks were 22.3% (n = 114) for the switch group, 26.9% (n = 136)for the augment-bupropion group, and 28.9% (n = 146) for the augment-aripiprazole group. The augment-aripiprazole group exceeded the switch group in remission (relative risk [RR], 1.30 [95% CI, 1.05-1.60]; P = .02), but other remission comparisons were not significant. Response was greater for the augment-aripiprazole group (74.3%) than for either the switch group (62.4%; RR, 1.19 [95% CI, 1.09-1.29]) or the augment-bupropion group (65.6%; RR, 1.13 [95% CI, 1.04-1.23]). No significant treatment differences were observed for relapse. Anxiety was more frequent in the 2 bupropion groups (24.3% in the switch group [n = 124] vs 16.6% in the augment-aripiprazole group [n = 84]; and 22.5% in augment-bupropion group [n = 114]). Adverse effects more frequent in the augment-aripiprazole group included somnolence, akathisia, and weight gain. Among a predominantly male population with major depressive disorder unresponsive to antidepressant treatment, augmentation with aripiprazole resulted in a statistically significant but only modestly increased likelihood of remission during 12 weeks of treatment compared with switching to bupropion monotherapy. Given the small effect size and adverse effects associated with aripiprazole, further analysis including cost-effectiveness is needed to understand the net utility of this approach. clinicaltrials.gov Identifier: NCT01421342.
Global navigation satellite systems performance analysis and augmentation strategies in aviation
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian
2017-11-01
In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA).
Transumbilical breast augmentation (TUBA): patient selection, technique, and clinical experience.
Pound, E C; Pound, E C
2001-07-01
The TUBA procedure offers another approach to placing inflatable breast implants in the subglandular or submuscular position. It is an easy procedure to learn and to perform, using only a few relatively inexpensive specialized instruments. It also can be modified to use preexisting scars on the abdomen as the access point. The authors believe that complications seem to occur less with TUBA patients than with patients having breast augmentation by other approaches, an observation shared by other plastic surgeons offering the TUBA procedure. Limitations include the fact that only inflatable implants can be used. Also, with increasing distance from the breast, there is less control over manipulation of the pocket. Fortunately, the authors have not found this to be a problem in achieving symmetry. Furthermore, bleeding tends to be minimal with this approach. Nevertheless, should technical difficulties arise, conversion to a standard breast incision is an easy back-up option and should be discussed with the patient before surgery. Interest in the TUBA approach to breast augmentation continues to grow. Patients appreciate the lack of scarring on the breast and the short recovery that allows them to resume their normal lifestyle quickly. The authors' caseload has increased considerably over the past 8 years through word-of-mouth advertising from satisfied patients. Other plastic surgeons who offer this approach agree that patient demand for this operation continues to grow dramatically in their practices.
Black, James C; Ricci, William M; Gardner, Michael J; McAndrew, Christopher M; Agarwalla, Avinesh; Wojahn, Robert D; Abar, Orchid; Tang, Simon Y
2016-12-01
Patellar tendon ruptures commonly are repaired using transosseous patellar drill tunnels with modified-Krackow sutures in the patellar tendon. This simple suture technique has been associated with failure rates and poor clinical outcomes in a modest proportion of patients. Failure of this repair technique can result from gap formation during loading or a single catastrophic event. Several augmentation techniques have been described to improve the integrity of the repair, but standardized biomechanical evaluation of repair strength among different techniques is lacking. The purpose of this study was to describe a novel figure-of-eight suture technique to augment traditional fixation and evaluate its biomechanical performance. We hypothesized that the augmentation technique would (1) reduce gap formation during cyclic loading and (2) increase the maximum load to failure. Ten pairs (two male, eight female) of fresh-frozen cadaveric knees free of overt disorders or patellar tendon damage were used (average donor age, 76 years; range, 65-87 years). For each pair, one specimen underwent the standard transosseous tunnel suture repair with a modified-Krackow suture technique and the second underwent the standard repair with our experimental augmentation method. Nine pairs were suitable for testing. Each specimen underwent cyclic loading while continuously measuring gap formation across the repair. At the completion of cyclic loading, load to failure testing was performed. A difference in gap formation and mean load to failure was seen in favor of the augmentation technique. At 250 cycles, a 68% increase in gap formation was seen for the control group (control: 5.96 ± 0.86 mm [95% CI, 5.30-6.62 mm]; augmentation: 3.55 ± 0.56 mm [95% CI, 3.12-3.98 mm]; p = 0.02). The mean load to failure was 13% greater in the augmentation group (control: 899.57 ± 96.94 N [95% CI, 825.06-974.09 N]; augmentation: 1030.70 ± 122.41 N [95% CI, 936.61-1124.79 N]; p = 0.01). This biomechanical study showed improved performance of a novel augmentation technique compared with the standard repair, in terms of reduced gap formation during cyclic loading and increased maximum load to failure. Decreased gap formation and higher load to failure may improve healing potential and minimize failure risk. This study shows a potential biomechanical advantage of the augmentation technique, providing support for future clinical investigations comparing this technique with other repair methods that are in common use such as transosseous suture repair.
Impact of Climate Change and Human Intervention on River Flow Regimes
NASA Astrophysics Data System (ADS)
Singh, Rajendra; Mittal, Neha; Mishra, Ashok
2017-04-01
Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.
Landram, Michael J; Utter, Alan C; Baldari, Carlo; Guidetti, Laura; McAnulty, Steven R; Collier, Scott R
2018-01-01
Landram, MJ, Utter, AC, Baldari, C, Guidetti, L, McAnulty, SR, and Collier, SR. Differential effects of continuous versus discontinuous aerobic training on blood pressure and hemodynamics. J Strength Cond Res 32(1): 97-104, 2018-The purpose of this study was to compare the hemodynamic, arterial stiffness, and blood flow changes after 4 weeks of either continuous or discontinuous aerobic exercise in adults. Forty-seven subjects between the ages of 18 and 57 were recruited for 1 month of either continuous aerobic treadmill work for 30 minutes at 70% max heart rate or 3 bouts of 10 minutes of exercise at 70% of max heart rate with two 10 minutes break periods in between, totaling 30 minutes of aerobic work. After exercise, both continuous (CON) and discontinuous (DIS) groups demonstrated a significant improvement in maximal oxygen uptake (V[Combining Dot Above]O2max, CON 35.39 ± 1.99 to 38.19 ± 2.03; DIS 36.18 ± 1.82 to 39.33 ± 1.75), heart rate maximum (CON 183.5 ± 3.11 to 187.17 ± 3.06; DIS 179.06 ± 2.75 to 182 ± 2.61), decreases in systolic blood pressure (CON 119 ± 1.82 to 115.11 ± 1.50; DIS 117.44 ± 1.90 to 112.67 ± 1.66), diastolic blood pressure (CON 72.56 ± 1.65 to 70.56 ± 1.06; DIS 71.56 ± 1.59 to 69.56 ± 1.43), augmentation index (CON 17.17 ± 2.17 to 14.9 ± 1.92; DIS 19.71 ± 2.66 to 13.91 ± 2.46), central pulse wave velocity (CON 8.29 ± 0.32 to 6.92 ± 0.21; DIS 7.85 ± 0.30 to 6.83 ± 0.29), peripheral pulse wave velocity (CON 9.49 ± 0.35 to 7.72 ± 0.38; DIS 9.11 ± 0.37 to 7.58 ± 0.47), and significant increases in average forearm blood flow (CON 4.06 ± 0.12 to 4.34 ± 0.136; DIS 4.26 ± 0.18 to 4.53 ± 0.15), peak forearm blood flow (FBF) after reactive hyperemia (CON 28.45 ± 0.094 to 29.96 ± 0.45; DIS 29.29 ± 0.46 to 30.6 ± 0.38), area under the curve (AUC) of FBF (CON 28.65 ± 1.77 to 30.4 ± 1.08; DIS 30.52 ± 1.9 to 31.67 ± 1.44), and AUC peak FBF after reactive hyperemia (CON 222.3 ± 5.68 to 231.95 ± 4.42; DIS 230.81 ± 6.91 to 237.19 ± 5.39). These data suggest that for healthy people either 4 weeks of continuous or discontinuous aerobic training is effective in improving measures of fitness and vascular health.
NASA Astrophysics Data System (ADS)
Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.
2011-06-01
Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air-to-water flow rates ratio, particularly below 10, resulted in mists of bigger and slower droplets with low impinging Weber numbers. However, increasing the air pressure maintaining a constant water flow rate caused a greater proportion of finer and faster drops with Weber numbers greater than 80, which suggests an increased probability of wet drop contact with a hot surface that would intensify heat extraction.
Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E
2017-05-18
Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.
Kartamyshev, Sergey P; Balashov, Sergey A; Melkumyants, Arthur M
2007-01-01
The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress. Copyright (c) 2007 S. Karger AG, Basel.
IL-33 Drives Augmented Responses to Ozone in Obese Mice
Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce D.; Shore, Stephanie Ann
2016-01-01
Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272 PMID:27472835
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor
NASA Astrophysics Data System (ADS)
Kojima, Takayuki; Mori, Hiroyuki
This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.
USGS GNSS Applications to Earthquake Disaster Response and Hazard Mitigation
NASA Astrophysics Data System (ADS)
Hudnut, K. W.; Murray, J. R.; Minson, S. E.
2015-12-01
Rapid characterization of earthquake rupture is important during a disaster because it establishes which fault ruptured and the extent and amount of fault slip. These key parameters, in turn, can augment in situ seismic sensors for identifying disruption to lifelines as well as localized damage along the fault break. Differential GNSS station positioning, along with imagery differencing, are important methods for augmenting seismic sensors. During response to recent earthquakes (1989 Loma Prieta, 1992 Landers, 1994 Northridge, 1999 Hector Mine, 2010 El Mayor - Cucapah, 2012 Brawley Swarm and 2014 South Napa earthquakes), GNSS co-seismic and post-seismic observations proved to be essential for rapid earthquake source characterization. Often, we find that GNSS results indicate key aspects of the earthquake source that would not have been known in the absence of GNSS data. Seismic, geologic, and imagery data alone, without GNSS, would miss important details of the earthquake source. That is, GNSS results provide important additional insight into the earthquake source properties, which in turn help understand the relationship between shaking and damage patterns. GNSS also adds to understanding of the distribution of slip along strike and with depth on a fault, which can help determine possible lifeline damage due to fault offset, as well as the vertical deformation and tilt that are vitally important for gravitationally driven water systems. The GNSS processing work flow that took more than one week 25 years ago now takes less than one second. Formerly, portable receivers needed to be set up at a site, operated for many hours, then data retrieved, processed and modeled by a series of manual steps. The establishment of continuously telemetered, continuously operating high-rate GNSS stations and the robust automation of all aspects of data retrieval and processing, has led to sub-second overall system latency. Within the past few years, the final challenges of standardization and adaptation to the existing framework of the ShakeAlert earthquake early warning system have been met, such that real-time GNSS processing and input to ShakeAlert is now routine and in use. Ongoing adaptation and testing of algorithms remain the last step towards fully operational incorporation of GNSS into ShakeAlert by USGS and its partners.
Improving the analysis of composite endpoints in rare disease trials.
McMenamin, Martina; Berglind, Anna; Wason, James M S
2018-05-22
Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations of continuous components. The augmented binary method offers a more efficient alternative and is therefore especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties when the sample size is small. Here we investigate small sample properties and implement small sample corrections. We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary and augmented binary methods and determine the power, type I error rate, coverage and average confidence interval width for each of the estimators. We implement Firth's adjustment for the binary component models and a small sample variance correction for the generalized estimating equations, applying the small sample adjusted methods to each sub-sample as before for comparison. For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to 12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6-8%. The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in average confidence interval width when using the adjusted augmented binary method is 17-18%. This is equivalent to requiring a 32% smaller sample size to achieve the same statistical power. The augmented binary method with small sample corrections provides a substantial improvement for rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the quality of evidence generated from rare disease trials rather than replace them.
High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor
NASA Technical Reports Server (NTRS)
Kopasakis, George
2003-01-01
This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.
NASA Technical Reports Server (NTRS)
Iliff, Kenneth W.; Wang, Kon-Sheng Charles
1997-01-01
The results of parameter identification to determine the lateral-directional stability and control derivatives of an F-18 research aircraft in its basic hardware and software configuration are presented. The derivatives are estimated from dynamic flight data using a specialized identification program developed at NASA Dryden Flight Research Center. The formulation uses the linearized aircraft equations of motions in their continuous/discrete form and a maximum likelihood estimator that accounts for both state and measurement noise. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics, such as separated and vortical flows, over the aircraft. The derivatives are plotted as functions of angle of attack between 3 deg and 47 deg and compared with wind-tunnel predictions. The quality of the derivative estimates obtained by parameter identification is somewhat degraded because the maneuvers were flown with the aircraft's control augmentation system engaged, which introduced relatively high correlations between the control variables and response variables as a result of control motions from the feedback control system.
Curtis, Jennifer A.
2015-01-01
Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.
Brackish groundwater and its potential to augment freshwater supplies
Stanton, Jennifer S.; Dennehy, Kevin F.
2017-07-18
Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.
Intra-Aortic Balloon Pump Malposition Reduces Visceral Artery Perfusion in an Acute Animal Model.
Vondran, Maximilian; Rastan, Ardawan J; Tillmann, Eugen; Seeburger, Jörg; Schröter, Thomas; Dhein, Stefan; Bakhtiary, Farhad; Mohr, Friedrich-Wilhelm
2016-04-01
Visceral artery perfusion can be potentially affected by intra-aortic balloon pump (IABP) catheters. We utilized an animal model to quantify the acute impact of a low balloon position on mesenteric artery perfusion. In six pigs (78 ± 7 kg), a 30-cc IABP was placed in the descending aorta in a transfemoral procedure. The celiac artery (CA) and the cranial mesenteric artery (CMA) were surgically dissected. Transit time blood flow was measured for (i) baseline, (ii) 1:1 augmentation with the balloon proximal to the visceral arteries, and (iii) 1:1 augmentation with the balloon covering the visceral arteries. Blood flow in the CMA and CA was reduced by 17 and 24%, respectively, when the balloon compromised visceral arteries compared with a position above the visceral arteries (flow in mL/min: CMA: (i) 1281 ± 512, (ii) 1389 ± 287, (iii) 1064 ± 276, P < 0.05 for 3 vs. 1 and 3 vs. 2; CA: (i) 885 ± 370, (ii) 819 ± 297, (iii) 673 ± 315; P < 0.05 for 3 vs. 1). The covering of visceral arteries by an IABP balloon causes a significant reduction of visceral artery perfusion; thus, the positioning of this device during implantation is critical for obtaining a satisfactory outcome. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar
2018-08-01
River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.
Experiments in free shear flows: Status and needs for the future
NASA Technical Reports Server (NTRS)
Kline, S. J.; Coles, D. E.; Eggers, J. M.; Harsha, P. T.
1973-01-01
Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers.
Illuminating Spaces in the Classroom with Qualitative GIS
ERIC Educational Resources Information Center
Battista, Geoffrey A.; Manaugh, Kevin
2018-01-01
As social and postmodern ontologies continue to shape our definition of space, undergraduate instructors have struggled to incorporate these paradigms in the geography classroom. Recent research suggests that practical applications using field work, qualitative research, and geographic information science can augment students' understanding of…
USDA-ARS?s Scientific Manuscript database
NCARL is proud of its active partnerships among industry, academic, and extension specialists, and we continue to pursue improved uses and values for distillers grain. We aim to augment both the livestock industry as well as fuel ethanol manufacturers with our research programs. The importance of ...
Sensor-Augmented Insulin Pumps and Hypoglycemia Prevention in Type 1 Diabetes.
Steineck, Isabelle; Ranjan, Ajenthen; Nørgaard, Kirsten; Schmidt, Signe
2017-01-01
Hypoglycemia can lead to seizures, unconsciousness, or death. Insulin pump treatment reduces the frequency of severe hypoglycemia compared with multiple daily injections treatment. The addition of a continuous glucose monitor, so-called sensor-augmented pump (SAP) treatment, has the potential to further limit the duration and severity of hypoglycemia as the system can detect and in some systems act on impending and prevailing low blood glucose levels. In this narrative review we summarize the available knowledge on SAPs with and without automated insulin suspension, in relation to hypoglycemia prevention. We present evidence from randomized trials, observational studies, and meta-analyses including nonpregnant individuals with type 1 diabetes mellitus. We also outline concerns regarding SAPs with and without automated insulin suspension. There is evidence that SAP treatment reduces episodes of moderate and severe hypoglycemia compared with multiple daily injections plus self-monitoring of blood glucose. There is some evidence that SAPs both with and without automated suspension reduces the frequency of severe hypoglycemic events compared with insulin pumps without continuous glucose monitoring.
Kroening, Sharon E.
2004-01-01
To meet water-supply needs in central Florida for 2020, the St. Johns River is being considered as a source of water supply to augment ground water from the Floridan aquifer system. Current (2004) information on streamflow and water-quality characteristics of the St. Johns River in east-central Florida is needed by water resources planners to assess the feasibility of using the river as an alternate source of water supply and to design water treatment facilities. To address this need, streamflow and water quality of the 90-mile-long middle reach of the St. Johns River, Florida, from downstream of Lake Poinsett to near DeLand, were characterized by using retrospective (1991-99) and recently collected data (2000-02). Streamflow characteristics were determined by using data from water years 1933-2000. Water-quality characteristics were described using data from 1991-99 at 15 sites on the St. Johns River and 1 site each near the mouths of the Econlockhatchee and Wekiva Rivers. Data were augmented with biweekly water-quality data and continuous physical properties data at four St. Johns River sites and quarterly data from sites on the Wekiva River, Blackwater Creek, and downstream of Blue Springs from 2000-02. Water-quality constituents described were limited to information on physical properties, major ions and other inorganic constituents, nutrients, organic carbon, suspended solids, and phytoplankton chlorophyll-a. The occurrence of antibiotics, human prescription and nonprescription drugs, pesticides, and a suite of organic constituents, which may indicate domestic or industrial waste, were described at two St. Johns River sites using limited data collected in water years 2002-03. The occurrence of these same constituents in water from a pilot water treatment facility on Lake Monroe also was described using data from one sampling event conducted in March 2003. Dissolved oxygen concentration and water pH values in the St. Johns River were significantly lower during high-flow conditions than during low-flow conditions. Low dissolved oxygen concentrations may have resulted from the input of water from marsh areas or the subsequent decomposition of organic matter transported to the river during high-flow events. Low water pH values during high-flow conditions likely resulted from the increased dissolved organic carbon concentrations in the river. Concentrations of total dissolved solids and other inorganic constituents in the St. Johns River were inversely related with streamflow. Most major ion concentrations, total dissolved solids concentrations, and specific conductance values varied substantially at the Christmas, Sanford, and DeLand sites during low-flow periods in 2000-01 probably reflecting wind and tidal effects. Sulfide concentrations as high as 6 milligrams per liter (mg/L) were measured in the St. Johns River during high-flow periods. Increased sulfide concentrations likely resulted from the decomposition of organic matter or the reduction of sulfate. Bromide concentrations as high as 17 mg/L were measured at the most upstream site on the St. Johns River during 2000-02. Temporal variations in bromide were characterized by sharp peaks in concentration during low-flow periods. Peaks in bromide concentrations tended to coincide with peaks in chloride concentrations because the likely source of both constituents is ground water affected by relict seawater. Median dissolved organic carbon concentrations ranged from 15 to 26 mg/L during 2000-02, and concentrations as high as 42 mg/L were measured. Water color values and dissolved organic carbon concentrations generally were significantly greater during high-flow conditions than during low-flow conditions. Specific ultraviolet light absorbance data indicated the organic carbon during high-flow events was more aromatic in composition and likely originated from terrestrially derived sources compared to organic carbon in the river during other times of the year. D
Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet
NASA Astrophysics Data System (ADS)
Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang
2018-02-01
Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.
Limberg, Jacqueline K.; Malterer, Katherine R.; Kellawan, J. Mikhail; Schrage, William G.; Wilkins, Brad W.; Nicholson, Wayne T.; Eisenach, John H.; Joyner, Michael J.; Curry, Timothy B.
2017-01-01
Purpose Previous work has shown nitric oxide (NO) contributes to ~15% of the hyperemic response to dynamic exercise in healthy humans. This NO-mediated vasodilation occurs, in part, via increases in intracellular cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase. We sought to examine the effect of phosphodiesterase-5 (PDE-5) inhibition on forearm blood flow (FBF responses to dynamic handgrip exercise in healthy humans and the role of NO. We hypothesized exercise hyperemia would be augmented by sildenafil citrate (SDF, PDE-5 inhibitor). We further hypothesized any effect of SDF on exercise hyperemia would be abolished with intra-arterial infusion of the NO synthase (NOS) inhibitor L-NG-monomethyl arginine (L-NMMA). Methods FBF (Doppler ultrasound) was assessed at rest and during 5 minutes of dynamic forearm handgrip exercise at 15% of maximal voluntary contraction under control (saline) conditions and during 3 experimental protocols: 1) oral SDF (n=10), 2) intra-arterial L-NMMA (n=20), 3) SDF and L-NMMA (n=10). FBF responses to intra-arterial sodium nitroprusside (NTP, NO donor) were also assessed. Results FBF increased with exercise (p<0.01). Intra-arterial infusion of L-NMMA resulted in a reduction in exercise hyperemia (17±1 to 15±1 mL/dL/min, p<0.01). Although the hyperemic response to NTP was augmented by SDF (Area under the curve: 41±7 vs 61±11 AU, p<0.01), there was no effect of SDF on exercise hyperemia (p=0.33). Conclusions Despite improving NTP-mediated vasodilation, oral SDF failed to augment exercise hyperemia in young, healthy adults. These observations reflect a minor contribution of NO and the cGMP pathway during exercise hyperemia in healthy young humans. PMID:28013386
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
McLean, Carmen P; Zandberg, Laurie J; Van Meter, Page E; Carpenter, Joseph K; Simpson, Helen Blair; Foa, Edna B
2015-12-01
Serotonin reuptake inhibitors (SRIs) are a first-line treatment for obsessive-compulsive disorder (OCD). Yet, most patients with OCD who are taking SRIs do not show excellent response. Recent studies show that augmenting SRIs with risperidone benefits a minority of patients. We evaluated the effectiveness of exposure and response prevention (EX/RP) among nonresponders to SRI augmentation with 8 weeks of risperidone or placebo. The study was conducted from January 2007 to August 2012. Nonresponders to SRI augmentation with risperidone or pill placebo (N = 32) in a randomized controlled trial for adults meeting DSM-IV-TR criteria for OCD were offered up to 17 twice-weekly EX/RP sessions. Independent evaluators, blind to treatment, evaluated patients at crossover baseline (week 8), midway through crossover treatment (week 12), post-EX/RP treatment (week 16), and follow-up (weeks 20, 24, 28, and 32). The primary outcome was OCD severity, measured with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Secondary outcomes were depression, quality of life, insight, and social functioning. Between crossover baseline and follow-up, nonresponders to SRI augmentation with risperidone or placebo who received EX/RP showed significant reductions in OCD symptoms and depression, as well as significant increases in insight, quality of life, and social functioning (all P < .001). Exposure and response prevention is an effective treatment for patients who have failed to respond to SRI augmentation with risperidone or placebo. This study adds to the body of evidence supporting the use of EX/RP with patients who continue to report clinically significant OCD symptoms after multiple pharmacologic trials. ClinicalTrials.gov Identifier: NCT00389493. © Copyright 2015 Physicians Postgraduate Press, Inc.
Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming
NASA Astrophysics Data System (ADS)
Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo
2017-11-01
It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.
Energy Efficient Engine exhaust mixer model technology report addendum; phase 3 test program
NASA Technical Reports Server (NTRS)
Larkin, M. J.; Blatt, J. R.
1984-01-01
The Phase 3 exhaust mixer test program was conducted to explore the trends established during previous Phases 1 and 2. Combinations of mixer design parameters were tested. Phase 3 testing showed that the best performance achievable within tailpipe length and diameter constraints is 2.55 percent better than an optimized separate flow base line. A reduced penetration design achieved about the same overall performance level at a substantially lower level of excess pressure loss but with a small reduction in mixing. To improve reliability of the data, the hot and cold flow thrust coefficient analysis used in Phases 1 and 2 was augmented by calculating percent mixing from traverse data. Relative change in percent mixing between configurations was determined from thrust and flow coefficient increments. The calculation procedure developed was found to be a useful tool in assessing mixer performance. Detailed flow field data were obtained to facilitate calibration of computer codes.
An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows
NASA Technical Reports Server (NTRS)
Felici, Helene M.; Drela, Mark
1993-01-01
A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.
Stochastic modeling of mode interactions via linear parabolized stability equations
NASA Astrophysics Data System (ADS)
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
21 CFR 862.2150 - Continuous flow sequential multiple chemistry analyzer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Continuous flow sequential multiple chemistry..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2150 Continuous flow sequential multiple chemistry...
A framework for the continual improvement of behavioral healthcare. Part II--Policy for leadership.
Redelheim, P S; Pomeroy, L H; Batalden, P
1994-01-01
In the first part of this article, published in the November/December 1993 issue of Behavioral Healthcare Tomorrow, the authors presented a framework for understanding the process of continuous quality improvement in the behavioral healthcare setting. Four elements of continual improvement were identified: underlying knowledge, policy for leadership, tools and methods, and daily work applications. They showed how traditional professional knowledge of one's subject, discipline and values must be augmented by improvement knowledge--which quality improvement guru W. Edwards Deming calls "the system of profound knowledge." In Part II, they focus on the second element of continual improvement, the importance of organizational leadership.
Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters
NASA Astrophysics Data System (ADS)
Jiang, H.; Wheeler, J.; Anderson, E.
2016-02-01
Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.
Long-term effects of vertebroplasty: adjacent vertebral fractures.
Baroud, Gamal; Vant, Christianne; Wilcox, Ruth
2006-01-01
In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre-augmentation measurements. This translates to a high hydrostatic pressure adjacent to the augmented vertebra, representing the first evidence of increased loading. Computational finite element (FE) models have found that the rigid cement augmentation results in an increase in loading in the structures adjacent to the augmented vertebra. The mechanism of the increase of the loading is predicted to be the pillar effect of the rigid cement. The cement inhibits the normal endplate bulge into the augmented vertebra and thus pressurizes the adjacent disc, which subsequently increases the loading of the untreated vertebra. The mechanism for adjacent vertebral fractures is still unclear, but from experimental and computational studies, it appears that the change in mechanical loading following augmentation is responsible. The pillar effect of injected cement is hypothesized to decrease the endplate bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated to the adjacent vertebra. To confirm the viability of the pillar effect as the responsible mechanism, endplate bulge and disc pressure should be directly measured before and after augmentation. Future studies should be concerned with quantifying the current and ideal mechanical response of the spine and subsequently developing cements that can achieve this optimum response.
Moberly, Steven P; Berwick, Zachary C; Kohr, Meredith; Svendsen, Mark; Mather, Kieren J; Tune, Johnathan D
2012-03-01
We examined the acute dose-dependent effects of intracoronary glucagon-like peptide (GLP)-1 (7-36) on coronary vascular tone, cardiac contractile function and metabolism in normal and ischemic myocardium. Experiments were conducted in open chest, anesthetized dogs at coronary perfusion pressures (CPP) of 100 and 40 mmHg before and during intracoronary GLP-1 (7-36) infusion (10 pmol/L to 1 nmol/L). Isometric tension studies were also conducted in isolated coronary arteries. Cardiac and coronary expression of GLP-1 receptors (GLP-1R) was assessed by Western blot and immunohistochemical analysis. GLP-1R was present in the myocardium and the coronary vasculature. The tension of intact and endothelium-denuded coronary artery rings was unaffected by GLP-1. At normal perfusion pressure (100 mmHg), intracoronary GLP-1 (7-36) (targeting plasma concentration 10 pmol/L to 1 nmol/L) did not affect blood pressure, coronary blood flow or myocardial oxygen consumption (MVO(2)); however, there were modest reductions in cardiac output and stroke volume. In untreated control hearts, reducing CPP to 40 mmHg produced marked reductions in coronary blood flow (0.50 ± 0.10 to 0.17 ± 0.03 mL/min/g; P < 0.001) and MVO(2) (27 ± 2.3 to 15 ± 2.7 μL O(2)/min/g; P < 0.001). At CPP = 40 mmHg, GLP-1 had no effect on coronary blood flow, MVO(2) or regional shortening, but dose-dependently increased myocardial glucose uptake from 0.11 ± 0.02 μmol/min/g at baseline to 0.17 ± 0.04 μmol/min/g at 1 nmol/L GLP-1 (P < 0.001). These data indicate that acute, intracoronary administration of GLP-1 (7-36) preferentially augments glucose metabolism in ischemic myocardium, independent of effects on cardiac contractile function or coronary blood flow.
Chen, Li-Jing; Chuang, Li; Huang, Yi-Hsuan; Zhou, Jing; Lim, Seh Hong; Lee, Chih-I; Lin, Wei-Wen; Lin, Ting-Er; Wang, Wei-Li; Chen, Linyi; Chien, Shu; Chiu, Jeng-Jiann
2015-01-01
Rationale In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. Objective To address the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Methods and Results Co-culturing ECs with sSMCs under static condition causes initial increases of four anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 h and those for miR-451/98 lasted for only 6-12 h. Shear stress (12 dynes/cm2) to co-cultured ECs for 24 h augments these four miR expressions. In vivo, these four miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, -708, -451, and -98 target interleukin (IL)-1 receptor-associated kinase, inhibitor of nuclear factor-κB (NF-κB) kinase subunit-γ, IL-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit NF-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. NF-E2-related factor-2 (Nrf-2) is critical for shear-induction of miR-146a in co-cultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Conclusions Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries. PMID:25623956
Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment
NASA Astrophysics Data System (ADS)
Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc
2012-11-01
This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.
Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation
Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael
2015-01-01
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Thrust Augmentation Study of Cross-Flow Fan for Vertical Take-Off and Landing Aircraft
2012-09-01
configuration by varying the gap between the CFFs. Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the...Computational fluid simulations of the dual CFF configuration was performed using ANSYS CFX to find the thrust generated as well as the optimal operating point...RECOMMENDATIONS ...............................................................................43 APPENDIX A. ANSYS CFX SETTINGS FOR DUAL CFF (8,000
Keith Jennings; Julia A. Jones
2015-01-01
This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992â2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly...
Oxygen Flow Rate Requirements of Critically Injured Patients
2015-04-08
2.0 BACKGROUND Supplemental oxygen is required to correct hypoxemia and is often used to augment tissue oxygen delivery following hemorrhagic ...least 6 months after enrollment to determine mortality status. 3.4 Outcome Measurements The primary outcomes were the proportion of subjects...and 53/204 (26%) with hemorrhagic shock (systolic blood pressure (SBP) ៊ or blood transfusion). There were 33/142 (23%) patients with an indication
Fluidically Augmented Nozzles for Pulse Detonation Engine Applications
2011-12-01
25 captured the flow soon after the leading shock wave passed through the diverging section of the nozzle. As can be seen, the “pillow” has begun to...35 Figure 25. Initial Detonation Wave Enters the Diverging Section of the Nozzle...charging the combustor with an appropriate fuel/air mixture. This mixture is then ignited, producing a flame that is initially a deflagration wave . A
78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...
Neural network based adaptive output feedback control: Applications and improvements
NASA Astrophysics Data System (ADS)
Kutay, Ali Turker
Application of recently developed neural network based adaptive output feedback controllers to a diverse range of problems both in simulations and experiments is investigated in this thesis. The purpose is to evaluate the theory behind the development of these controllers numerically and experimentally, identify the needs for further development in practical applications, and to conduct further research in directions that are identified to ultimately enhance applicability of adaptive controllers to real world problems. We mainly focus our attention on adaptive controllers that augment existing fixed gain controllers. A recently developed approach holds great potential for successful implementations on real world applications due to its applicability to systems with minimal information concerning the plant model and the existing controller. In this thesis the formulation is extended to the multi-input multi-output case for distributed control of interconnected systems and successfully tested on a formation flight wind tunnel experiment. The command hedging method is formulated for the approach to further broaden the class of systems it can address by including systems with input nonlinearities. Also a formulation is adopted that allows the approach to be applied to non-minimum phase systems for which non-minimum phase characteristics are modeled with sufficient accuracy and treated properly in the design of the existing controller. It is shown that the approach can also be applied to augment nonlinear controllers under certain conditions and an example is presented where the nonlinear guidance law of a spinning projectile is augmented. Simulation results on a high fidelity 6 degrees-of-freedom nonlinear simulation code are presented. The thesis also presents a preliminary adaptive controller design for closed loop flight control with active flow actuators. Behavior of such actuators in dynamic flight conditions is not known. To test the adaptive controller design in simulation, a fictitious actuator model is developed that fits experimentally observed characteristics of flow control actuators in static flight conditions as well as possible coupling effects between actuation, the dynamics of flow field, and the rigid body dynamics of the vehicle.
Undulated Nozzle for Enhanced Exit Area Mixing
NASA Technical Reports Server (NTRS)
Seiner, John M. (Inventor); Gilinsky, Mikhail M. (Inventor)
2000-01-01
A nozzle having an undulating surface for enhancing the mixing of a primary flow with a secondary flow or ambient air, without requiring an ejector. The nozzle includes a nozzle structure and design for introducing counter-rotating vorticity into the primary flow either through (i) internal surface corrugations where an axisymmetric line through each corrugation is coincident with an axisymmetric line through the center of the flow passageway or (ii) through one or more sets of alternating convexities and cavities in the internal surface of the nozzle where an axisymmetric line through each convexity and cavity is coincident with an axisymmetric line through the center of the flow passageway, and where the convexities contract from the entrance end towards the exit end. Exit area mixing is also enhanced by one or more chevrons attached to the exit edge of the nozzle. The nozzle is ideally suited for application as a jet engine nozzle. When used as a jet engine nozzle, noise suppression with simultaneous thrust augmentation/minimal thrust loss is achieved.
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Fluid mechanics and heat transfer spirally fluted tubing
NASA Astrophysics Data System (ADS)
Yampolsky, J. S.; Libby, P. A.; Launder, B. E.; Larue, J. C.
1984-12-01
The objective of this program is to develop an understanding of the fluid mechanics and heat transfer mechanisms that result in the demonstrated performance of the spiral fluted tubing under development at GA Technologies Inc. Particularly emphasized are the processes that result in the augmentation of the heat transfer coefficient without an increase in friction coefficient in the single-phase flow. Quantitative delineation of these processes would allow for their application to the optimal solution of heat transfer problems in general was well as to tubular heat exchanges using spiral fluted tubes. The experimental phase of the program consisted of the following: (1) Flow visualization studies using high-speed photography of dye injected into water flowing in a cast acrylic spiral fluted tube. (2) Time-resolved axial velocity measurements as a function of radius at the exit plane of a spiral fluted tube with water flowing through the tube. (3) Simultaneous time-resolved measurements of the axial and radial velocity components and temperature with heated air flowing through the tube cooled by a water jacket.
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-01-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988
Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon
USDA-ARS?s Scientific Manuscript database
Biochar continues to receive worldwide enthusiasm as means of augmenting recalcitrant organic carbon in agricultural soils. Realistic biochar amendment rate (typically less than 1 wt%) in the field scale, and loss by sizing, rain, and other transport events demand reliable methods to quantify the r...
At a Glance – Pelleting of DDGS
USDA-ARS?s Scientific Manuscript database
NCARL is proud of its active partnership among industry, academic, and extension specialists, and we continue to pursue improved uses and values for distillers grain. We aim to augment both the livestock industry as well as fuel ethanol manufacturers with our research programs. Pelleting is one wa...
Mindfulness-based cognitive therapy as an augmentation treatment for obsessive-compulsive disorder.
Key, Brenda L; Rowa, Karen; Bieling, Peter; McCabe, Randi; Pawluk, Elizabeth J
2017-09-01
A significant number of obsessive-compulsive disorder (OCD) patients continue to experience symptoms that interfere with their functioning following cognitive behavioural therapy (CBT). Providing an additional augmentation treatment following CBT could help reduce these residual symptoms. Mindfulness interventions that facilitate less reactivity to thoughts and feelings may be helpful for patients suffering from residual OCD symptoms. The purpose of the current randomized waitlist control trial was to evaluate the feasibility and impact of providing an 8-week mindfulness-based cognitive therapy (MBCT) intervention following completion of a CBT intervention to OCD patients who continued to suffer from significant symptoms. Results indicated that compared to the waitlist control group, MBCT participants reported decreases in OCD symptoms (d = 1.38), depression symptoms (d = 1.25), anxiety symptoms (d = 1.02), and obsessive beliefs (d = 1.20) along with increases in self-compassion (d = 0.77) and mindfulness skills (d = 0.77). Additionally, participants reported high levels of satisfaction with the MBCT intervention. The results suggest that the use of MBCT for OCD as an augmentation therapy is acceptable to patients who continue to suffer from OCD symptoms after completing CBT and provides some additional relief from residual symptoms. Mindfulness interventions teach skills that facilitate disengaging from cognitive routines and accepting internal experience, and these skills may be valuable in treating obsessive-compulsive disorder (OCD), as individuals describe getting "stuck" in repetitive thoughts and consequent rituals. The results of this study suggest that teaching mindfulness skills using an 8-week mindfulness-based cognitive therapy (MBCT) intervention provides an added benefit (decreases in OCD, depression, and anxiety symptoms) for patients with OCD who have completed a cognitive behavioural therapy intervention and continued to suffer from significant symptoms. Participation in MBCT was also associated with increases in mindfulness skills including increased ability to be nonjudgmental and nonreactive. By fostering a nonjudgmental stance towards intrusive thoughts, mindfulness may discourage suppression and avoidance of thoughts and this could lead to increased habituation and a decreased reliance on compulsions. The use of MBCT as an augmentation treatment should be further explored to elucidate whether this treatment is beneficial for preventing relapse of OCD and could be compared against further cognitive behavioural therapy to see if offering participants a different and theoretically compelling intervention, such as MBCT, would outperform "more of the same" for individuals with OCD. Copyright © 2017 John Wiley & Sons, Ltd.
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T. Tazwell; Keller, Jay O.
1989-01-01
A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.
NASA Technical Reports Server (NTRS)
Bilbro, J. W.; Vaughan, W. W.
1980-01-01
Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.
Effect of simulated forward airspeed on small-scale-model externally blown flap noise
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.; Dorsch, R. G.; Olsen, W. A.
1976-01-01
Noise tests were conducted on a small-scale model of an externally blown flap lift augmentation system. The nozzle/wing model was subjected to external flow that simulated takeoff and landing flight velocities by placing it in a 33-centimeter-diameter free jet. The results showed that external flow attenuated the noise associated with the various configurations tested. The amount of attenuation depended on flap setting. More attenuation occurred with a trailing-flap setting of 20 deg than with one of 60 deg. Noise varied with relative velocity as a function of the trailing-flap setting and the angle from the nozzle inlet.
Low-speed aerodynamic characteristics of a generic forward-swept-wing aircraft
NASA Technical Reports Server (NTRS)
Ross, J. C.; Matarazzo, A. D.
1982-01-01
Low-speed wind-tunnel tests were performed on a generic forward-swept-wing aircraft model in the 7- by 10-Foot Wind Tunnel (No. 2) at Ames Research Center. The effects of various configurational changes and control-surface deflections on the performance of the model were measured. Six-component force measurements were augmented by flow-visualization photographs, using both surface oil-flow and tufts. It was found that the tendency toward premature root separation on the forward-swept wing could be reduced by use of either canards or leading-edge wing strakes and that differential canard deflections can be used to produce a direct side-force control.
The variable magnetic baffle as a control device for Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1972-01-01
The variable magnetic baffle described in this paper aids in control of electron flow from the hollow cathode plasma into the main discharge region by augmenting the fringe magnetic field which impedes this electron flow in conventionally baffled Kaufman thrusters. A passive, low loss, and automatic control device is obtained by using the discharge current to excite the control winding. Used in conjunction with typical thruster control loops, stable operation has been obtained over a 10:1 throttling range with a 30 cm thruster. Discharge ignition and overcurrent recycling is also facilitated through use of this device in a permanent magnet thruster.
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
The wire-mesh sensor as a two-phase flow meter
NASA Astrophysics Data System (ADS)
Shaban, H.; Tavoularis, S.
2015-01-01
A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.
Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.; Tso, Jin
1993-01-01
Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
A time-parallel approach to strong-constraint four-dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Rao, Vishwas; Sandu, Adrian
2016-05-01
A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.
Wu, Juanfang; Xu, Kerui; Landers, James P.; Weber, Stephen G.
2013-01-01
We demonstrate an all-electric sampling/derivatization/separation/detection system for the quantitation of thiols in tissue cultures. Extracellular fluid collected from rat organotypic hippocampal slice cultures (OHSCs) by electroosmotic flow through an11 cm (length) × 50 μm (ID) sampling capillary is introduced to a simple microfluidic chip for derivatization, continuous flow-gated injection, separation and detection.With the help of a fluorogenic, thiol-specific reagent, ThioGlo-1, we have successfully separated and detected the extracellular levels of free reduced cysteamine, homocysteineand cysteinefrom OHSCs within 25 s in a 23 mm separation channel with a confocal laser induced fluorescence (LIF) detector. Attention to the conductivities of the fluids being transported is required for successful flow-gated injections.When the sample conductivity is much higher than the run buffer conductivities, the electroosmotic velocities are such that there is less fluid coming by electroosmosis into the cross from the sample/reagent channel than is leaving by electroosmosis into the separation and waste channels. The resulting decrease in the internal fluid pressure in the injection cross pulls flow from the gated channel. This process may completely shut down the gated injection. Using a glycylglycine buffer with physiological osmolarity but only 62% of physiological conductivity and augmenting the conductivity of the run buffers solved this problem. Quantitation is by standard additions. Concentrations of cysteamine, homocysteine and cysteine in the extracellular space of OHSCs are10.6±1.0 nM (n=70), 0.18±0.01 μM (n=53) and 11.1±1.2 μM (n=70), respectively. This is the first in situquantitative estimation of endogenous cysteamine in brain. Extracellular levels of homocysteine and cysteine are comparable with other reported values. PMID:23330713
NASA Astrophysics Data System (ADS)
Viparelli, Enrica; Gaeuman, David; Wilcock, Peter; Parker, Gary
2011-02-01
Major changes in the morphology of the Trinity River in California, such as narrowing of the cross section and sedimentation of fine sediment in pools, occurred after the closure of a system of dams. These changes caused a dramatic reduction in the salmonid population and a resulting decline of the fishery. Gravel augmentation, regulated flood releases, and mechanical channel rehabilitation are currently being implemented to help restore the aquatic habitat of the river. The present paper describes a tool, named the Spawning Gravel Refresher, for designing and predicting the effects of gravel augmentation in gravel bed rivers. The tool assumes an imposed, cycled hydrograph. The model is calibrated and applied to the regulated reach of the Trinity River in four steps: (1) zeroing runs to reproduce conditions of mobile bed equilibrium as best can be estimated for the predam Trinity River, (2) runs to compare the predictions with the results of previous studies, (3) runs at an engineering time scale to reproduce the effects of the dams, and (4) runs to design gravel augmentation schemes. In the fourth group of runs, the combined effects of engineered flood flow releases and gravel augmentation are predicted. At an engineering time scale, the model indicates that the fraction of fine sediment in the surface layer and in the topmost part of the substrate should decrease when subjected to these two restoration measures, with a consequent improvement of the quality of the spawning gravel.
NASA Astrophysics Data System (ADS)
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
ERIC Educational Resources Information Center
Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.
Life Impairments in Adults with Medication-Treated ADHD
ERIC Educational Resources Information Center
Safren, Steven A.; Sprich, Susan E.; Cooper-Vince, Christine; Knouse, Laura E.; Lerner, Jonathan A.
2010-01-01
Objective: In developing psychosocial approaches to augment outcomes for medication-treated adults with ADHD, it is important to understand what types of life-impairments are most affected by continued ADHD symptoms that occur despite medication treatment. This may assist in delineating targets for interventions, as well as assessments of…
76 FR 65494 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... research. To develop policies designed to promote and enhance science and technology, past trends and the... for international comparative statistics on business R&D spending. The 2011 BRDIS will continue to... been designed to augment the Foreign Direct Investment (FDI) data collected by BEA. The initial attempt...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false General. 123.20 Section 123.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FISH AND FISHERY PRODUCTS Raw Molluscan Shellfish § 123.20 General. This subpart augments subpart...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false General. 123.20 Section 123.20 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FISH AND FISHERY PRODUCTS Raw Molluscan Shellfish § 123.20 General. This subpart augments subpart...
Augmenting Classroom Practices with QR Codes
ERIC Educational Resources Information Center
Thorne, Tristan
2016-01-01
The use of mobile devices in the language classroom can help accomplish innumerable learning objectives, yet many teachers regard smartphones and tablets as obstacles to lesson goals. However, as portable technology continues to infiltrate classroom boundaries, it is becoming increasingly clear that educators should find ways to take advantage of…
75 FR 32209 - North San Pablo Bay Restoration and Reuse Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
... Napa counties are facing long-term water supply shortfalls. Surface and groundwater supplies within... water levels and water quality. Recycled water can augment local water supplies on a regional basis... reliability. Additionally, reliable water supply is needed in order to continue the restoration of tidal...
Radiation/Catalytic Augmented Combustion.
1982-05-01
enhanced combustion processes, utilizing pulsed and continuous VUV light- serces . Similarly, the catalytic technique has provided efficient combustion...tures we had a pl /cx LiF lens with a focal length of 200 nm, and a MgF2 window 2 nmn in thickness. Although these materials are considered to be among
USDA-ARS?s Scientific Manuscript database
Synthetic weather generators are important for continuous-simulation of agricultural watersheds for risk analyses of downstream water quality. Many watersheds are sparsely or totally ungauged and daily weather must either be transposed or augmented. Since water quality models must recognize runoff...
Funding Music: Guidelines for Grant Writing in the Music Classroom
ERIC Educational Resources Information Center
Rajan, Rekha S.
2016-01-01
With music education's continued unstable role within the school system, music educators are actively seeking external funding to support and augment their programs. However, there are many challenges involved with grant writing including understanding where to find potential funders, writing the proposal, developing a budget, and including an…
USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert
DOT National Transportation Integrated Search
2017-03-30
GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...
SATWG networked quality function deployment
NASA Technical Reports Server (NTRS)
Brown, Don
1992-01-01
The initiative of this work is to develop a cooperative process for continual evolution of an integrated, time phased avionics technology plan that involves customers, technologists, developers, and managers. This will be accomplished by demonstrating a computer network technology to augment the Quality Function Deployment (QFD). All results are presented in viewgraph format.
The Prominent Role of the Upstream Conditions on the Large-scale Motions of a Turbulent Channel Flow
NASA Astrophysics Data System (ADS)
Castillo, Luciano; Dharmarathne, Suranga; Tutkun, Murat; Hutchins, Nicholas
2017-11-01
In this study we investigate how upstream perturbations in a turbulent channel flow impact the downstream flow evolution, especially the large-scale motions. Direct numerical simulations were carried out at a friction Reynolds number, Reτ = 394 . Spanwise varying inlet blowing perturbations were imposed at 1 πh from the inlet. The flow field is decomposed into its constituent scales using proper orthogonal decomposition. The large-scale motions and the small-scale motions of the flow field are separated at a cut-off mode number, Mc. The cut-off mode number is defined as the number of the mode at which the fraction of energy recovered is 55 % . It is found that Reynolds stresses are increased due to blowing perturbations and large-scale motions are responsible for more than 70 % of the increase of the streamwise component of Reynolds normal stress. Surprisingly, 90 % of Reynolds shear stress is due to the energy augmentation of large-scale motions. It is shown that inlet perturbations impact the downstream flow by means of the LSM.
Disruption of intracardiac flow patterns in the newborn infant.
Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David
2012-04-01
Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.
Heteroleptic Cu-Based Sensitizers in Photoredox Catalysis.
Hernandez-Perez, Augusto C; Collins, Shawn K
2016-08-16
Photochemistry is an important tool in organic synthesis that has largely been underdeveloped in comparison to thermal activation. Recent advances in technology have ushered in a new era in synthetic photochemistry. The emergence of photocatalysis, which exploits sensitizers for the absorption of visible light, has provided organic chemists with a new route to the generation of radical intermediates for synthesis. Of particular interest is the development of Cu-based complexes for photocatalysis, which possess variable photophysical properties and can display complementary reactivity with common photocatalysts based on heavier transition metals such as Ru or Ir. Heteroleptic Cu-based sensitizers incorporating the presence of both a bisphosphine and diamine ligand bound to the copper center are a promising class of photocatalysts. Their synthesis is a single step, often involving only precipitation for purification. In addition, it was shown that the sensitizers could be formed in situ in the reaction mixture, simplifying the experimental setup. The heteroleptic nature of the Cu-complexes also affords opportunities to fine-tune properties. For example, structurally rigidified bisphosphines reinforce geometries about the metal center to extend the excited state lifetime. Variation of the diamine ligand can influence the excited state oxidation/reduction potentials and optical absorbances. The heteroleptic complex Cu(XantPhos)(neo)BF4 has demonstrated utility in the synthesis of helical polyaromatic carbocycles. The synthesis of [5]helicene, a relatively simple member of the helicene family, was improved from the existing UV-light mediated method by eliminating the formation of unwanted byproducts. In addition, the Cu-based sensitizers also promoted the formation of novel pyrene/helicene hybrids for materials science applications. The synthetic methods that were developed were augmented when combined with continuous flow technology. The irradiation of reaction mixtures as they are pumped through small diameter tubing provides a more homogeneous and increased photon flux compared with irradiation in round-bottom flasks or other batch reactors. The value of continuous flow methods is also evident when examining UV-light photochemistry, where the simple and safe experimental set-ups allow for further exploration of high energy light for synthetic purposes. The synthesis of functionalized complex carbazoles was also studied using both a visible light method exploiting a heteroleptic copper-based sensitizer and a UV-light mediated method. It was demonstrated that both the photocatalysis methods and UV light photochemistries were rendered more user-friendly, safe, and reproducible when using continuous flow methods. Interestingly, the two photochemical methods often afford contrasting selectivities as a result of their inherently different mechanisms. It can be expected that the complementarity of the various photochemical methods will be an asset to synthetic chemists as the field continues to evolve.
In-situ shear stress indicator using heated strain gages at the flow boundary
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Yang, Fuling
2011-11-01
This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.
2014-09-30
good test 3 case to study the multiscale data assimilation capabilities of our GMM-DO filter. We also performed stochastic simulations with our DO...Morakot and internal tides. The ignorance score and Kullback - Leibler divergence were employed to measure the skill of the multiscale pdf forecasts...read off from the posterior of the augmented state vector. We implemented this new smoother and tested it using a 2D-in-space stochastic flow exiting
Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
Hunsbedt, Anstein; Boardman, Charles E.
1993-01-01
A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.
Energetics of Vortex Ring Formation.
1983-11-01
Sorohia, V., "An Experimental Investigation of Thrust Augmenting Ejector Flows", Proceedings of the Ejector Workshop for Aerospace Applications, AFWAL-TR...induction thrust augmentrs, su’h comparing thr mass and energy content of fully formed as the ejector , the migration of finite sized eddie, laminar vortex...Intermittent Jet to a Secondary Fluid in an Ejector Type Thrust Augmentor", Hiller Aircraft Company, Interim Report ARD-305, June 1962. 3. Bernal, L. and
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Preliminary dynamic tests of a flight-type ejector
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1992-01-01
A thrust augmenting ejector was tested to provide experimental data to assist in the assessment of theoretical models to predict duct and ejector fluid-dynamic characteristics. Eleven full-scale thrust augmenting ejector tests were conducted in which a rapid increase in the ejector nozzle pressure ratio was effected through a unique facility, bypass/burst-disk subsystem. The present work examines two cases representative of the test performance window. In the first case, the primary nozzle pressure ration (NPR) increased 36 percent from one unchoked (NPR = 1.29) primary flow condition to another (NPR = 1.75) over a 0.15 second interval. The second case involves choked primary flow conditions, where a 17 percent increase in primary nozzle flowrate (from NPR = 2.35 to NPR = 2.77) occurred over approximately 0.1 seconds. Although the real-time signal measurements support qualitative remarks on ejector performance, extracting quantitative ejector dynamic response was impeded by excessive aerodynamic noise and thrust stand dynamic (resonance) characteristics. It does appear, however, that a quasi-steady performance assumption is valid for this model with primary nozzle pressure increased on the order of 50 lb(sub f)/s. Transient signal treatment of the present dataset is discussed and initial interpretations of the results are compared with theoretical predictions for a similar Short Takeoff and Vertical Landing (STOVL) ejector model.
NASA Astrophysics Data System (ADS)
Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.
2008-05-01
Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.
Quirós, Carmen; Patrascioiu, Ioana; Giménez, Marga; Vinagre, Irene; Vidal, Mercè; Jansà, Margarita; Conget, Ignacio
2014-01-01
Patients with type 1 diabetes (T1DM) treated with continuous subcutaneous insulin infusion (CSII) have available several specific features of these devices. The aim of this study was to evaluate the relationship between real use of them and the degree of glycemic control in patients using this therapy. Forty-four T1DM patients on CSII therapy with or without real-time continuous glucose monitoring (CGM) were included. Data from 14 consecutive days were retrospectively collected using the therapy management software CareLink Personal/Pro(®) and HbA1c measurement performed at that period. The relationship between the frequency of usie of specific features of insulin pumps (non-sensor augmented or sensor-augmented) and glycemic control was analyzed. Mean HbA1c in the group was 7.5 ± .8%. Mean daily number of boluses administered was 5.1 ± 1.8, with 75.4% of them being bolus wizards (BW). Daily number of boluses was significantly greater in patients with HbA1c <7.5% than in those with HbA1c>7.5% (5.3 ± 1.6 vs. 4.3 ± 1.6, P=.056). There was a trend to greater use of BW in patients with better control (82.8 ± 21.4% vs. 69.9 ± 29.1%, P=.106). HbA1c was lower in patients using CGM (n=8) as compared to those not using sensor-augmented pumps (7.6 ± .8 vs 7.1 ± .7, P=.067), but the difference was not statistically significant. More frequent use of BW appears to be associated to better metabolic control in patients with T1DM using pump therapy. In standard clinical practice, augmentation of insulin pump with CGM may be associated to improved glycemic control. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.
Winkelman, John W; Mackie, Susan E; Mei, Leslie A; Platt, Samuel; Schoerning, Laura
2016-08-01
We examined the short- and long-term efficacy and tolerability of a cross-titration algorithm from oral dopamine agonists to the rotigotine transdermal patch in patients dissatisfied with their restless legs syndrome (RLS) treatment, predominantly with mild augmentation. Patients with RLS (n = 20) were recruited at a single site. The cross-titration consisted of decreasing oral dopaminergic agents (ropinirole by 1 mg or pramipexole by 0.25 mg) and increasing rotigotine by 1 mg every two days. Efficacy and adverse events (AEs) were assessed at one, three, six and 12 months after the switch. Patients had moderate-severe RLS symptoms at the baseline (mean international restless legs syndrome (IRLS) score 19.4 ± 5.5); 85% had augmentation and 45% reported afternoon RLS symptoms. The baseline mean pramipexole equivalent dose was 0.6 ± 0.3 mg. At Week 5, 85% (17/20) had successfully switched from their oral dopamine agonist to rotigotine (mean dose 2.5 ± 0.6 mg; change in IRLS score: -6.7 ± 8.4, p = 0.002); 14 patients were CGI-I responders (much or very much improved). Three patients withdrew due to lack of efficacy. Twelve months after cross-titration, 10 patients continued on rotigotine, of whom four required either higher doses of rotigotine or supplemental RLS medication compared with their optimal Week 5 dose; five patients withdrew due to AEs and two due to lack of efficacy. A cross-titration to rotigotine was efficacious after five weeks in 70% of patients dissatisfied with RLS treatment, most of whom had mild augmentation. At one year following the medication switch, 50% had discontinued rotigotine due to lack of continued efficacy or side effects. Copyright © 2016 Elsevier B.V. All rights reserved.
1982-02-01
control unit will detect and classify submerged submarins transiting within PJ The EnCAPsulated pedo augments air, surface and submarine anti...vidicon (date link video enhancement). Conduct Operational Test and Evaluation. Complete Large Scale Integration Receiver-Decoder improvement. Continue...analysis, and data link video enhancement focusing on application of a new silicon vidicon was continued; data link improvements such as adaptive null
P-glycoprotein Blockers Augment the Effect of Mitomycin C on Human Tenon's Fibroblasts.
White, Andrew J R; Kelly, Elizabeth; Healey, Paul R; Crowston, Jonathan G; Mitchell, Paul; Zoellner, Hans
2013-08-01
Mitomycin C (MMC), which induces apoptosis in human Tenon's fibroblasts (HTF), is frequently used to retard wound healing after glaucoma surgery. The aim of this in vitro study was to examine whether adjunctive Verapamil and Cyclosporine could augment the cytotoxic effect of MMC on HTF. Fibroblast cell lines were established by explant culture from human tissue biopsy samples obtained during trabeculectomy procedures. Cells were exposed to MMC at varying concentrations (0.01-0.4 mg/ml) for 3 minutes, prior to washing in the presence or absence of the following drugs: Staurosporine (0.003mg/ml), Verapamil (2.5-0.25 mg/ml), or Cyclosporine (50-0.5 mg/ml). Following exposure, cells were cultured for 6 hours and surviving cells quantitated by haemocytometer counts. Both Verapamil and Staurosporine exhibited mild toxic effects on their own, but greatly enhanced the apoptotic effect of MMC. Staurosporine is too toxic to be considered clinically, so its augmentive effect on the activity of MMC was not studied further here. Doses as low as 0.25 mg/ml of Verapamil continued to show significant augmentation of the apoptotic effect of MMC Cyclosporine at a clinically used concentration (5 mg/ml) exhibited modest augmentation of the effect of MMC. Verapamil and Cyclosporine in clinically acceptable concentrations potentiate the effect of MMC and may obviate the need for high dose antimetabolites in trabeculectomy; however, further preclinical study is required. Adjunctive Verapamil or Cyclosporine may allow lower dose MMC to be used in glaucoma filtration surgery while maintaining the same antifibrotic effects.
Jiang, Danfeng; Kawagoe, Yukiko; Kuwasako, Kenji; Kitamura, Kazuo; Kato, Johji
2017-07-05
Increased blood pressure variability has been shown to be associated with cardiovascular morbidity and mortality. Recently we reported that continuous infusion of angiotensin II not only elevated blood pressure level, but also increased blood pressure variability in a manner assumed to be independent of blood pressure elevation in rats. In the present study, the effects of the angiotensin type I receptor blocker losartan and the calcium channel blocker azelnidipine on angiotensin II-induced blood pressure variability were examined and compared with that of the vasodilator hydralazine in rats. Nine-week-old male Wistar rats were subcutaneously infused with 240 pmol/kg/min angiotensin II for two weeks without or with oral administration of losartan, azelnidipine, or hydralazine. Blood pressure variability was evaluated using a coefficient of variation of blood pressure recorded every 15min under an unrestrained condition via an abdominal aortic catheter by a radiotelemetry system. Treatment with losartan suppressed both blood pressure elevation and augmentation of systolic blood pressure variability in rats infused with angiotensin II at 7 and 14 days. Azelnidipine also inhibited angiotensin II-induced blood pressure elevation and augmentation of blood pressure variability; meanwhile, hydralazine attenuated the pressor effect of angiotensin II, but had no effect on blood pressure variability. In conclusion, angiotensin II augmented blood pressure variability in an angiotensin type 1 receptor-dependent manner, and azelnidipine suppressed angiotensin II-induced augmentation of blood pressure variability, an effect mediated by the mechanism independent of the blood pressure-lowering action. Copyright © 2017 Elsevier B.V. All rights reserved.
Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.
Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L
2011-03-01
Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.
Jung, Mette Holme; Hansen, Peter Bo; Sander, Kaare; Olsen, Peter Skov; Rossing, Kasper; Boesgaard, Soeren; Russell, Stuart D; Gustafsson, Finn
2014-04-01
Continuous-flow left ventricular assist device (CF-LVAD) implantation is associated with improved quality of life, but the effect on exercise capacity is less well documented. It is uncertain whether a fixed CF-LVAD pump speed, which allows for sufficient circulatory support at rest, remains adequate during exercise. The aim of this study was to evaluate the effects of fixed versus incremental pump speed on peak oxygen uptake (peak VO2) during a maximal exercise test. In CF-LVAD (HeartMate II) patients exercise testing measuring peak oxygen uptake (VO2) was performed on an ergometer bike twice in one day: once with fixed pump speed (testfix) and once with incremental pump speed (testinc). The order of testfix and testinc in each patient was determined by randomization. During testinc pump speed was increased from the baseline value by 400 rpm/2 min. Fourteen patients (aged 23–69 years) were included with a mean support duration of 465±483 days. Baseline CF-LVAD speed was 9357±238 rpm and during testinc speed was increased by a mean of 1486±775 rpm. Mean peak VO2 was significantly higher in testinc compared with testfix (15.4±5.9 mL/kg/min vs. 14.1±6.3 mL/kg/min; P=0.012), corresponding to a 9.2% increase. All exercise tests (n=28) were adequately performed with RER>1. Increasing pump speed during exercise augments peak VO2 in patients supported with CF-LVADs. An automatic speed-change function in future generations of CF-LVADs might improve functional capacity. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.
NASA Technical Reports Server (NTRS)
Hawk, C. W.; Landrum, D. B.; Muller, S.; Turner, M.; Parkinson, D.
1998-01-01
The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during low speed flight. A model of the Strutjet device has been built and is undergoing test to investigate the mixing of the streams as a function of distance from the Strutjet exit plane during simulated low speed flight conditions. Cold flow testing of a 1/6 scale Strutjet model is underway and nearing completion. Planar Laser Induced Fluorescence (PLIF) diagnostic methods are being employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air simulating low speed, air augmented operation of the RBCC. The ratio of the pressure in the turbine exhaust duct to that in the rocket nozzle wall at the point of their intersection is the independent variable in these experiments. Tests were accomplished at values of 1.0, 1.5 and 2.0 for this parameter. Qualitative results illustrate the development of the mixing zone from the exit plane of the model to a distance of about 10 rocket nozzle exit diameters downstream. These data show the mixing to be confined in the vertical plane for all cases, The lateral expansion is more pronounced at a pressure ratio of 1.0 and suggests that mixing with the ingested flow would be likely beginning at a distance of 7 nozzle exit diameters downstream of the nozzle exit plane.
NASA Astrophysics Data System (ADS)
Liu, Zhen; Qu, Hengliang; Shi, Hongda; Hu, Gexing; Hyun, Beom-Soo
2016-12-01
Tidal current energy is renewable and sustainable, which is a promising alternative energy resource for the future electricity supply. The straight-bladed vertical-axis turbine is regarded as a useful tool to capture the tidal current energy especially under low-speed conditions. A 2D unsteady numerical model based on Ansys-Fluent 12.0 is established to conduct the numerical simulation, which is validated by the corresponding experimental data. For the unsteady calculations, the SST model, 2×105 and 0.01 s are selected as the proper turbulence model, mesh number, and time step, respectively. Detailed contours of the velocity distributions around the rotor blade foils have been provided for a flow field analysis. The tip speed ratio (TSR) determines the azimuth angle of the appearance of the torque peak, which occurs once for a blade in a single revolution. It is also found that simply increasing the incident flow velocity could not improve the turbine performance accordingly. The peaks of the averaged power and torque coefficients appear at TSRs of 2.1 and 1.8, respectively. Furthermore, several shapes of the duct augmentation are proposed to improve the turbine performance by contracting the flow path gradually from the open mouth of the duct to the rotor. The duct augmentation can significantly enhance the power and torque output. Furthermore, the elliptic shape enables the best performance of the turbine. The numerical results prove the capability of the present 2D model for the unsteady hydrodynamics and an operating performance analysis of the vertical tidal stream turbine.
Gohean, Jeffrey R; George, Mitchell J; Pate, Thomas D; Kurusz, Mark; Longoria, Raul G; Smalling, Richard W
2013-01-01
The purpose of this investigation is to use a computational model to compare a synchronized valveless pulsatile left ventricular assist device with continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate the support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous pulsatile valveless dual-piston positive displacement pump. These results were compared with measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared with the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device.
Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.
2012-01-01
The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771
Electroosmosis of viscoelastic fluids over charge modulated surfaces in narrow confinements
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2015-06-01
In the present work, we attempt to analyze the electroosmotic flow of a viscoelastic fluid, following quasi-linear constitutive behavior, over charge modulated surfaces in narrow confinements. We obtain analytical solutions for the flow field for thin electrical double layer (EDL) limit through asymptotic analysis for small Deborah numbers. We show that a combination of matched and regular asymptotic expansion is needed for the thin EDL limit. We subsequently determine the modified Smoluchowski slip velocity for viscoelastic fluids and show that the quasi-linear nature of the constitutive behavior adds to the periodicity of the flow. We also obtain the net throughput in the channel and demonstrate its relative decrement as compared to that of a Newtonian fluid. Our results may have potential implications towards augmenting microfluidic mixing by exploiting electrokinetic transport of viscoelastic fluids over charge modulated surfaces.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
ERIC Educational Resources Information Center
Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.
Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2016-09-14
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Kocsis, James H.; Gelenberg, Alan J.; Rothbaum, Barbara O.; Klein, Daniel N.; Trivedi, Madhukar H.; Manber, Rachel; Keller, Martin B.; Leon, Andrew C.; Wisniewski, Steven R.; Arnow, Bruce A.; Markowitz, John C.; Thase, Michael E.
2012-01-01
Context Previous studies have found that few chronically depressed patients remit with antidepressant medications alone. Objective To determine the role of adjunctive psychotherapy in the treatment of chronically depressed patients with less than complete response to an initial medication trial. Design This trial compared 12 weeks of (1) continued pharmacotherapy and augmentation with cognitive behavioral analysis system of psychotherapy (CBASP), (2) continued pharmacotherapy and augmentation with brief supportive psychotherapy (BSP), and (3) continued optimized pharmacotherapy (MEDS) alone. We hypothesized that adding CBASP would produce higher rates of response and remission than adding BSP or continuing MEDS alone. Setting Eight academic sites. Participants Chronically depressed patients with a current DSM-IV–defined major depressive episode and persistent depressive symptoms for more than 2 years. Interventions Phase 1 consisted of open-label, algorithm-guided treatment for 12 weeks based on a history of antidepressant response. Patients not achieving remission received next-step pharmacotherapy options with or without adjunctive psychotherapy (phase 2). Individuals undergoing psychotherapy were randomized to receive either CBASP or BSP stratified by phase 1 response, ie, as nonresponders (NRs) or partial responders (PRs). Main Outcome Measures Proportions of remitters, PRs, and NRs and change on Hamilton Scale for Depression (HAM-D) scores. Results In all, 808 participants entered phase 1, of which 491 were classified as NRs or PRs and entered phase 2 (200 received CBASP and MEDS, 195 received BSP and MEDS, and 96 received MEDS only). Mean HAM-D scores dropped from 25.9 to 17.7 in NRs and from 15.2 to 9.9 in PRs. No statistically significant differences emerged among the 3 treatment groups in the proportions of phase 2 remission (15.0%), partial response (22.5%), and non-response (62.5%) or in changes on HAM-D scores. Conclusions Although 37.5% of the participants experienced partial response or remitted in phase 2, neither form of adjunctive psychotherapy significantly improved outcomes over that of a flexible, individualized pharmacotherapy regimen alone. A longitudinal assessment of later-emerging benefits is ongoing. Trial Registration clinicaltrials.gov Identifier: NCT00057551 PMID:19884606
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Ultrasoft microgels displaying emergent platelet-like behaviours
NASA Astrophysics Data System (ADS)
Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.
2014-12-01
Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.
Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis
NASA Technical Reports Server (NTRS)
Buchholz, Mark D.
1992-01-01
Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Winterstein, Thomas A.; Arntson, Allan D.; Mitton, Gregory B.
2007-01-01
The 1-, 7-, and 30-day low-flow series were determined for 120 continuous-record streamflow stations in Minnesota having at least 20 years of continuous record. The 2-, 5-, 10-, 50-, and 100-year statistics were determined for each series by fitting a log Pearson type III distribution to the data. The methods used to determine the low-flow statistics and to construct the plots of the low-flow frequency curves are described. The low-flow series and the low-flow statistics are presented in tables and graphs.
Hinderer, U T; del Rio, J L
1992-01-01
A summary of Hans May's biography of Erich Lexer is reproduced, followed by a translation of Lexer's first publication, in Spain in 1921, on the correction of pendular breasts. Lexer's fundamental contributions to mammaplasty are analyzed. This author was the first in the history of mammaplasty to perform breast reduction with an "open" nipple-areola complex transposition, with preservation of the continuity of the skin to the remaining gland. This feature was far ahead of its time, as the techniques based on this concept did not become popular until after 1955. Lexer also was the first to propose subcutaneous mastectomy for treatment of fibrocystic disease, to perform breast augmentation in the ptotic hypoplastic breast with fat flaps, and to use free fat grafts taken from the abdomen or hips for augmentation mammaplasty.
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
Addressing the Influence of Space Weather on Airline Navigation
NASA Technical Reports Server (NTRS)
Sparks, Lawrence
2012-01-01
The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances
ERIC Educational Resources Information Center
Reganick, Karol A.
The Cooperative Training Program was implemented with 20 students having severe behavior problems, to augment a classroom employability curriculum. Educators and business managers at a local Perkins restaurant worked cooperatively to design a new curriculum and recruitment procedure to benefit both students and the business. A continuous and…
Participation in Field Learning and Teaching Opportunities: Avenues to Research and Publication
ERIC Educational Resources Information Center
Albert, Donald; Strait, John; Fujimoto-Strait, Ava
2016-01-01
Field experiences continue to be a hallmark of a geographer's education and, for that matter, reeducation, as we all strive to remain current in the real world. Academic geographers beginning their ascent towards tenure and promotion might consider augmenting their portfolios with materials emerging from field teaching and learning activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... to allow material placed in the corner of the site closest to the jetty to continue augmentation... addressing, as appropriate, disproportionately high and adverse human health or environmental effects of... United States. EPA determined that this rule will not have disproportionately high and adverse human...
Adolescent Student Use of School-Based Salad Bars
ERIC Educational Resources Information Center
Andersen, Lori; Myers, Leann; O'Malley, Keelia; Mundorf, Adrienne R.; Harris, Diane M.; Johnson, Carolyn C.
2015-01-01
Background: Childhood obesity continues to be a public health problem in the United States. Increasing consumption of fruits and vegetables (F/V) is one strategy for decreasing high consumption of energy-dense, high-fat foods, thereby improving weight status. Many Orleans Parish public schools were provided with salad bars (SBs) to augment school…
Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair.
Chainani, Abby; Little, Dianne
2016-06-01
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.
Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair
Chainani, Abby; Little, Dianne
2015-01-01
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation. PMID:27346922
Sensor-Augmented Insulin Pumps and Hypoglycemia Prevention in Type 1 Diabetes
Steineck, Isabelle; Ranjan, Ajenthen; Nørgaard, Kirsten; Schmidt, Signe
2016-01-01
Hypoglycemia can lead to seizures, unconsciousness, or death. Insulin pump treatment reduces the frequency of severe hypoglycemia compared with multiple daily injections treatment. The addition of a continuous glucose monitor, so-called sensor-augmented pump (SAP) treatment, has the potential to further limit the duration and severity of hypoglycemia as the system can detect and in some systems act on impending and prevailing low blood glucose levels. In this narrative review we summarize the available knowledge on SAPs with and without automated insulin suspension, in relation to hypoglycemia prevention. We present evidence from randomized trials, observational studies, and meta-analyses including nonpregnant individuals with type 1 diabetes mellitus. We also outline concerns regarding SAPs with and without automated insulin suspension. There is evidence that SAP treatment reduces episodes of moderate and severe hypoglycemia compared with multiple daily injections plus self-monitoring of blood glucose. There is some evidence that SAPs both with and without automated suspension reduces the frequency of severe hypoglycemic events compared with insulin pumps without continuous glucose monitoring. PMID:28264173
Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.
2010-01-01
As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Kadman, Y.; Chanaud, R. C.
1972-01-01
The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.
Lagrangian numerical methods for ocean biogeochemical simulations
NASA Astrophysics Data System (ADS)
Paparella, Francesco; Popolizio, Marina
2018-05-01
We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.
2015-01-01
Purpose To investigate the effects of pulsatile and continuous pediatric ventricular assist (PVAD) flow and pediatric blood viscoelasticity on hemodynamics in a pediatric aortic graft model. Methods Hemodynamic parameters of pulsatility, along with velocity and wall shear stress (WSS), are analyzed and compared between Newtonian and viscoelastic blood models at a range of physiological pediatric hematocrits using computational fluid dynamics. Results Both pulsatile and continuous PVAD flow lead to a decrease in pulsatility (surplus hemodynamic energy (SHE), ergs/cm3) compared to healthy aortic flow but with continuous PVAD pulsatility up to 2.4 times lower than pulsatile PVAD pulsatility at each aortic outlet. Significant differences are also seen between the two flow modes in velocity and WSS. The higher velocity jet during systole with pulsatile flow leads to higher WSSs at the anastomotic toe and at the aortic branch bifurcations. The lower velocity but continuous flow jet leads to a much different flow field and higher WSSs into diastole. Under a range of physiological pediatric hematocrit (20-60%), both velocity and WSS can vary significantly with the higher hematocrit blood model generally leading to higher peak WSSs but also lower WSSs in regions of flow separation. Conclusions The large decrease in pulsatility seen from continuous PVAD flow could lead to complications in pediatric vascular development while the high WSSs during peak systole from pulsatile PVAD flow could lead to blood damage. Both flow modes lead to similar regions prone to intimal hyperplasia (IH) resulting from low time-averaged WSS (TAWSS) and high oscillatory shear index (OSI). PMID:26643646
Patil, Narendra G; Rebrov, Evgeny V; Eränen, Kari; Benaskar, Faysal; Meuldijk, Jan; Mikkola, Jyri-Pekka; Hessel, Volker; Hulshof, Lumbertus A; Murzin, Dmitry Yu; Schouten, Jaap C
2012-01-01
A novel heating efficiency analysis of the microwave heated stop-flow (i.e. stagnant liquid) and continuous-flow reactors has been presented. The thermal losses to the surrounding air by natural convection have been taken into account for heating efficiency calculation of the microwave heating process. The effect of the load diameter in the range of 4-29 mm on the heating efficiency of ethylene glycol was studied in a single mode microwave cavity under continuous flow and stop-flow conditions. The variation of the microwave absorbing properties of the load with temperature was estimated. Under stop-flow conditions, the heating efficiency depends on the load diameter. The highest heating efficiency has been observed at the load diameter close to the half wavelength of the electromagnetic field in the corresponding medium. Under continuous-flow conditions, the heating efficiency increased linearly. However, microwave leakage above the propagation diameter restricted further experimentation at higher load diameters. Contrary to the stop-flow conditions, the load temperature did not raise monotonously from the inlet to outlet under continuous-flow conditions. This was due to the combined effect of lagging convective heat fluxes in comparison to volumetric heating. This severely disturbs the uniformity of the electromagnetic field in the axial direction and creates areas of high and low field intensity along the load Length decreasing the heating efficiency as compared to stop-flow conditions.
Setyawan, Juliana; Hodgkins, Paul; Guérin, Annie; Gauthier, Geneviève; Cloutier, Martin; Wu, Eric; Erder, M Haim
2013-10-01
To compare therapy augmentation and deviation rates from the recommended once-daily dosing regimen in Attention Deficit Hyperactivity Disorder (ADHD) patients initiated on lisdexamfetamine (LDX) vs other once-daily Food and Drug Administration (FDA) approved stimulants. ADHD patients initiated on a long-acting ADHD stimulant medication (index medication) in/after 2007 were selected from a large U.S. administrative claims database. Patients were required to be persistent for ≥90 days and continuously enrolled in their healthcare plan for ≥12 months following treatment initiation date. Based on age and previous treatment status, patients were classified into treatment-naïve children and adolescents (6-17 years old), previously treated children and adolescents, treatment-naïve adults (≥18 years old), and previously treated adults. Furthermore, patients were classified into four mutually exclusive treatment groups, based on index medication: lisdexamfetamine (LDX), osmotic release methylphenidate hydrochloride long-acting (OROS MPH), other methylphenidate/dexmethylphenidate long-acting (MPH LA), and amphetamine/dextroamphetamine long-acting (AMPH LA). The average daily consumption was measured as the quantity of index medication supplied in the 12-month study period divided by the total number of days of supply. Therapy augmentation was defined as the use of another ADHD medication concomitantly with the index medication for ≥28 consecutive days. Therapy augmentation and deviation rates from the recommended once-daily dosing regimen were compared between treatment groups using multivariate logistic regression models. Compared to the other treatment groups, LDX patients were less likely to augment with another ADHD medication (range odds ratios [OR]; 1.28-3.30) and to deviate from the recommended once-daily dosing regimen (range OR; 1.73-4.55), except for previously treated adult patients, where therapy augmentation differences were not statistically significant when compared to OROS MPH and MPH LA patients. This study did not control for ADHD severity. Overall, compared to LDX-treated patients, patients initiated on other ADHD medications were equally or more likely to have a therapy augmentation and more likely to deviate from the recommended once-daily dosing regimen.
Grunberger, George; Handelsman, Yehuda; Bloomgarden, Zachary T; Fonseca, Vivian A; Garber, Alan J; Haas, Richard A; Roberts, Victor L; Umpierrez, Guillermo E
2018-03-01
This document represents the official position of the American Association of Clinical Endocrinologists and American College of Endocrinology. Where there are no randomized controlled trials or specific U.S. FDA labeling for issues in clinical practice, the participating clinical experts utilized their judgment and experience. Every effort was made to achieve consensus among the committee members. Position statements are meant to provide guidance, but they are not to be considered prescriptive for any individual patient and cannot replace the judgment of a clinician. AACE/ACE Task Force on Integration of Insulin Pumps and Continuous Glucose Monitoring in the Management of Patients With Diabetes Mellitus Chair George Grunberger, MD, FACP, FACE Task Force Members Yehuda Handelsman, MD, FACP, FNLA, MACE Zachary T. Bloomgarden, MD, MACE Vivian A. Fonseca, MD, FACE Alan J. Garber, MD, PhD, FACE Richard A. Haas, MD, FACE Victor L. Roberts, MD, MBA, FACP, FACE Guillermo E. Umpierrez, MD, CDE, FACP, FACE Abbreviations: AACE = American Association of Clinical Endocrinologists ACE = American College of Endocrinology A1C = glycated hemoglobin BGM = blood glucose monitoring CGM = continuous glucose monitoring CSII = continuous subcutaneous insulin infusion DM = diabetes mellitus FDA = Food & Drug Administration MDI = multiple daily injections T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus SAP = sensor-augmented pump SMBG = self-monitoring of blood glucose STAR 3 = Sensor-Augmented Pump Therapy for A1C Reduction phase 3 trial.
Use of NTRIP for optimizing the decoding algorithm for real-time data streams.
He, Zhanke; Tang, Wenda; Yang, Xuhai; Wang, Liming; Liu, Jihua
2014-10-10
As a network transmission protocol, Networked Transport of RTCM via Internet Protocol (NTRIP) is widely used in GPS and Global Orbiting Navigational Satellite System (GLONASS) Augmentation systems, such as Continuous Operational Reference System (CORS), Wide Area Augmentation System (WAAS) and Satellite Based Augmentation Systems (SBAS). With the deployment of BeiDou Navigation Satellite system(BDS) to serve the Asia-Pacific region, there are increasing needs for ground monitoring of the BeiDou Navigation Satellite system and the development of the high-precision real-time BeiDou products. This paper aims to optimize the decoding algorithm of NTRIP Client data streams and the user authentication strategies of the NTRIP Caster based on NTRIP. The proposed method greatly enhances the handling efficiency and significantly reduces the data transmission delay compared with the Federal Agency for Cartography and Geodesy (BKG) NTRIP. Meanwhile, a transcoding method is proposed to facilitate the data transformation from the BINary EXchange (BINEX) format to the RTCM format. The transformation scheme thus solves the problem of handing real-time data streams from Trimble receivers in the BeiDou Navigation Satellite System indigenously developed by China.
NASA Astrophysics Data System (ADS)
Goma, Sergio R.
2015-03-01
In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...
Design Rules and Issues with Respect to Rocket Based Combined Cycles
2010-09-01
cause thrust augmentation due to the ejector effects, which in turn, can reduce the requirement for the rocket engine output. In the speed regime with...should produce sufficient thrust to takeoff and to overcome the drag at transonic regime. When embedded into a flow pass, the rocket exhaust can...between the ejector -jet operation and ramjet operation, between the ramjet operations at various flight conditions, and between the ramjet operation and
Cherney, David Z I; Scholey, James W; Jiang, Shan; Har, Ronnie; Lai, Vesta; Sochett, Etienne B; Reich, Heather N
2012-11-01
Diabetes is associated with renin-angiotensin system (RAS) activation, leading to renal and systemic vascular dysfunction that contribute to end-organ injury and significant morbidity. RAS blockade with ACE inhibitors reduces, but does not abolish, RAS effects. Accordingly, our aim was to determine if direct renin inhibition alone, and in combination with an ACE inhibitor, corrects early hemodynamic abnormalities associated with type 1 diabetes. Arterial stiffness (augmentation index), flow-mediated vasodilatation (FMD), and renal hemodynamic function (inulin and paraaminohippurate clearance) were measured at baseline under clamped euglycemic and hyperglycemic conditions (n = 21). Measures were repeated after 4 weeks of aliskiren therapy and again after aliskiren plus ramipril. Blood pressure-lowering effects of aliskiren were similar during clamped euglycemia and hyperglycemia. Combination therapy augmented this effect under both glycemic conditions (P = 0.0005). Aliskiren reduced arterial stiffness under clamped euglycemic and hyperglycemic conditions, and the effects were augmented by dual RAS blockade (-3.4 ± 11.2 to -8.0 ± 11.5 to -14.3 ± 8.4%, respectively, during euglycemia, P = 0.0001). During clamped euglycemia, aliskiren increased FMD; dual therapy exaggerated this effect (5.1 ± 3.3 to 7.5 ± 3.0 to 10.8 ± 3.5%, repeated-measures ANOVA, P = 0.0001). Aliskiren monotherapy caused renal vasodilatation during clamped hyperglycemia only. In contrast, dual therapy augmented renal vasodilatory effects during clamped euglycemia and hyperglycemia. In patients with uncomplicated type 1 diabetes, aliskiren-based dual RAS blockade is associated with greater arterial compliance, FMD, and renal vasodilatation.
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, Raymond
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
Thermally induced gas flows in ratchet channels with diffuse and specular boundaries
Shahabi, Vahid; Baier, Tobias; Roohi, Ehsan; Hardt, Steffen
2017-01-01
A net gas flow can be induced in the gap between periodically structured surfaces held at fixed but different temperatures when the reflection symmetry along the channel axis is broken. Such a situation arises when one surface features a ratchet structure and can be augmented by altering the boundary conditions on different parts of this surface, with some regions reflecting specularly and others diffusely. In order to investigate the physical mechanisms inducing the flow in this configuration at various Knudsen numbers and geometric configurations, direct simulation Monte Carlo (DSMC) simulations are employed using transient adaptive subcells for collision partner selection. At large Knudsen numbers the results compare favorably with analytical expressions, while for small Knudsen numbers a qualitative explanation for the flow in the strong temperature inhomogeneity at the tips of the ratchet is provided. A detailed investigation of the performance for various ratchet geometries suggests optimum working conditions for a Knudsen pump based on this mechanism. PMID:28128309
Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E
2013-10-01
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Asymmetric reactions in continuous flow
Mak, Xiao Yin; Laurino, Paola
2009-01-01
Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913
Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Taylor, Carl A.
2014-01-01
During January and February 2011 the U.S. Geological Survey (USGS), in cooperation with the University of South Florida (USF), conducted geochemical surveys on the west Florida Shelf. Data collected will allow USGS and USF scientists to investigate the effects of climate change on ocean acidification within the northern Gulf of Mexico, specifically, the effect of ocean acidification on marine organisms and habitats. This work is part of a larger USGS study on Climate and Environmental Variability (CEV). The first cruise was conducted from January 3 – 7 (11CEV01) and the second from February 17 - 27 (11CEV02). To view each cruise's survey lines, please see the Trackline page. Both cruises took place aboard the R/V Weatherbird II, a ship of opportunity led by Dr. Kendra Daly (USF), which departed and returned from Saint Petersburg, Florida. Data collection included sampling of the surface and water column (referred to as station samples) with lab analysis of pH, dissolved inorganic carbon (DIC), and total alkalinity. Augmenting the lab analysis was a continuous flow-through system with a Conductivity-Temperature-Depth (CTD) sensor, which also recorded salinity, and pH. Corroborating the USGS data are the vertical CTD profiles collected by USF. The CTD casts measured continuous vertical profiles of oxygen, chlorophyll fluorescence, optical backscatter, and transmissometer. Discrete samples for nutrients, chlorophyll, and particulate organic carbon/nitrogen were also collected during the CTD casts.
A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis.
Hawkins, Troy; Hendrickson, Chris; Higgins, Cortney; Matthews, H Scott; Suh, Sangwon
2007-02-01
Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in an economy. We combine these two types of models to create a mixed-unit input-output model that is able to bettertrack economic transactions and material flows throughout the economy associated with changes in production. A 13 by 13 economic input-output direct requirements matrix developed by the U.S. Bureau of Economic Analysis is augmented with material flow data derived from those published by the U.S. Geological Survey in the formulation of illustrative mixed-unit input-output models for lead and cadmium. The resulting model provides the capabilities of both material flow and input-output models, with detailed material tracking through entire supply chains in response to any monetary or material demand. Examples of these models are provided along with a discussion of uncertainty and extensions to these models.
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-11-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier-Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. © 2014 Wiley Periodicals, Inc.
Self-Similar Compressible Free Vortices
NASA Technical Reports Server (NTRS)
vonEllenrieder, Karl
1998-01-01
Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.
Applications of immobilized catalysts in continuous flow processes.
Kirschning, Andreas; Jas, Gerhard
2004-01-01
As part of the dramatic changes associated with automation in pharmaceutical and agrochemical research laboratories, the search for new technologies has become a major topic in the chemical community. Commonly, high-throughput chemistry is still carried out in batches whereas flow-through processes are rather restricted to production processes, despite the fact that the latter concept allows facile automation, reproducibility, safety, and process reliability. Indeed, methods and technologies are missing that allow rapid transfer from the research level to process development. Continuous flow processes are considered as a universal lever to overcome these restrictions and only recently, joint efforts between synthetic and polymer chemists and chemical engineers have resulted in the first continuous flow devices and microreactors which allow rapid preparation of compounds with minimum workup. Importantly, more and more developments combine the use of immobilized reagents and catalysts with the concept of structured continuous flow reactors. Consequently, the present article focuses on this new research field, which is located at the interface of continuous flow processes and solid-phase-bound catalysts.